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Flashback

We have formulated the Farrell-Jones Conjecture and the
Baum-Connes Conjecture.
We have already discussed applications.
Cliffhanger

Question (Status)
For which groups are the Farrell-Jones Conjecture and the
Baum-Connes Conjecture known to be true? What are open
interesting cases?

Question (Relations)
What are the relations between the Farrell-Jones Conjecture and the
Baum-Connes Conjecture?
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Outline

We briefly review the Farrell-Jones and the Baum-Connes
Conjecture.
We review applications of the Farrell-Jones and the Baum-Connes
Conjecture.
We mention other versions of the Isomorphism Conjectures.
We explain relations between the Farrell-Jones and the
Baum-Connes Conjecture.
We give a status report about the Farrell-Jones and the
Baum-Connes Conjecture.
Miscellaneous.
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Review of the Isomorphism Conjectures

Conjecture (K -theoretic Farrell-Jones-Conjecture)
The K -theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), KR) → HG

n (pt, KR) = Kn(RG)

is bijective for all n ∈ Z.

Conjecture (L-theoretic Farrell-Jones-Conjecture)
The L-theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), L〈−∞〉

R ) → HG
n (pt, L〈−∞〉

R ) = L〈−∞〉
n (RG)

is bijective for all n ∈ Z.
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Conjecture (Baum-Connes Conjecture)
The Baum-Connes Conjecture predicts that the assembly map

K G
n (EG) = HG

n (EFIN (G), Ktop) → HG
n (pt, Ktop) = Kn(C∗

r (G))

is bijective for all n ∈ Z.
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Review of Applications

The following results or conjectures are consequences of the
Farrell-Jones or Baum-Connes Conjecture.
FJ K (R), FJ L(R) or BC respectively are the classes of groups
which satisfy the Farrell-Jones Conjecture for K - or L-theory with
coefficients in R or the Baum-Connes Conjecture respectively.
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Theorem (Kn(ZG) for n ≤ 1 and torsionfree G)
We get for a torsionfree group G ∈ FJ (Z):

Kn(ZG) = 0 for n ≤ −1;

K̃0(ZG) = 0;
Wh(G) = 0;
Every finitely dominated CW-complex X with G = π1(X ) is
homotopy equivalent to a finite CW-complex;
Every compact h-cobordism W = (W ; M0, M1) of dimension ≥ 6
with π1(W ) ∼= G is trivial.
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Conjecture (Kaplansky Conjecture)
The Kaplansky Conjecture says for a torsionfree group G and an
integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky
Conjecture)
If F is a field of characteristic zero and the torsionfree group G belongs
to FJ K (F ), then G and F satisfy the Kaplansky Conjecture.
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Conjecture (Borel Conjecture)
The Borel Conjecture for G predicts for two closed aspherical
manifolds M and N with π1(M) ∼= π1(N) ∼= G that any homotopy
equivalence M → N is homotopic to a homeomorphism and in
particular that M and N are homeomorphic.

Theorem (The Farrell-Jones Conjecture and the Borel
Conjecture)
If G belongs to both FJ K (Z) and FJ L(Z), then the Borel Conjecture is
true in dimension ≥ 5 and in dimension 4 if G is good in the sense of
Freedman.
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Conjecture (Novikov Conjecture)
The Novikov Conjecture for G predicts for a closed oriented manifold
M together with a map f : M → BG that for any x ∈ H∗(BG) the higher
signature

signx(M, f ) := 〈L(M) ∪ f ∗x , [M]〉

is an oriented homotopy invariant of (M, f )

Theorem (The Farrell-Jones, the Baum-Connes and the Novikov
Conjecture)
If G belongs to FJ L(Z) or to BC, then the Novikov Conjecture holds for
the group G.
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Theorem (K0(RG) and induction from finite subgroups)
Let R be a regular ring with Q ⊆ R. Suppose G ∈ FJ (R).
Then the map given by induction from finite subgroups of G

colim
OrFIN (G)

K0(RH) → K0(RG)

is bijective.
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Conjecture (Bass Conjecture)
Let R be a commutative integral domain and let G be a group. Let
g 6= 1 be an element in G. Suppose that either the order |g| is infinite
or that the order |g| is finite and not invertible in R.
Then the Bass Conjecture predicts that for every finitely generated
projective RG-module P the value of its Hattori-Stallings rank HSRG(P)
at (g) is trivial.

Theorem (The Farrell-Jones Conjecture and the Bass
Conjecture)
Let G be a group. Suppose that G ∈ FJ (F ) for every field F of prime
characteristic.
Then the Bass Conjecture is satisfied for every integral domain R.
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Conjecture (Homotopy invariance of L2-torsion)

If X and Y are det-L2-acyclic finite G-CW-complexes, which are
G-homotopy equivalent, then their L2-torsion agree:

ρ(2)(X ;N (G)) = ρ(2)(Y ;N (G)).

Theorem
Suppose that G ∈ FJ (Z). Then G satisfies the Conjecture above.
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Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)
Let M be a closed connected Spin-manifold of dimension n ≥ 5.
Then M × Bk carries for some integer k ≥ 0 a Riemannian metric with
positive scalar curvature if and only if

indC∗r (π1(M);R)(M) = 0 ∈ KOn(C∗
r (π1(M); R)).

Theorem (The Baum-Connes Conjecture and the stable
Gromov-Lawson-Rosenberg Conjecture)
If G ∈ BC, then the Stable Gromov-Lawson-Rosenberg Conjecture true
for all closed Spin-manifolds of dimension ≥ 5 with π1(M) ∼= G.
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Other versions of Isomorphism Conjectures

Conjecture (Isomorphism Conjecture)
Let H?

∗ be an equivariant homology theory. It satisfies the Isomorphism
Conjecture for the group G and the family F if the projection
EF (G) → pt induces for all n ∈ Z a bijection

HG
n (EF (G)) → HG

n (pt).

Example
The Farrell-Jones Conjecture for K -theory or L-theory respectively
with coefficients in R is the Isomorphism Conjecture for
H?
∗ = H∗(−; KR) or H?

∗ = H∗(−; L〈−∞〉
R ) respectively and

F = VCYC.
The Baum-Connes Conjecture is the Isomorphism Conjecture for
H?
∗ = K ?

∗ = H?
∗(−; Ktop) and F = FIN .
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There are functors P and A which assign to a space X the space
of pseudo-isotopies and its A-theory.
Composing it with the functor sending a groupoid to its classifying
space yields functors P and A from Groupoids to Spectra.
Thus we obtain equivariant homology theories H?

∗(−; P) and
H?
∗(−; A). They satisfy HG

n (G/H; P) = πn(P(BH)) and
HG

n (G/H; A) = πn(A(BH)).

Conjecture (The Farrell-Jones Conjecture for pseudo-isotopies
and A-theory)
The Farrell-Jones Conjecture for pseudo-isotopies and A-theory
respectively is the Isomorphism Conjecture for H?

∗(−; P) and H?
∗(−; A)

respectively for the family VCYC.
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Theorem (Relating pseudo-isotopy and K -theory)
The rational version of the K -theoretic Farrell-Jones Conjecture for
coefficients in Z is equivalent Farrell-Jones Conjecture for
Pseudoisotopies.
In degree n ≤ 1 this is even true integrally.

Pseudo-isotopy and A-theory are important theories. In particular
they are closely related to the space of selfhomeomorphisms and
the space of selfdiffeomorphisms of closed manifolds.
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There are functors THH and TC which assign to a ring (or more
generally to an S-algebra) a spectrum describing its topological
Hochschild homology and its topological cyclic homology.
These functors play an important role in K -theoretic computations.
Composing it with the functor sending a groupoid to a kind of
group ring yields functors THHR and TCR from Groupoids to
Spectra.
Thus we obtain equivariant homology theories H?

∗(−; THHR) and
H?
∗(−; TCR). They satisfy HG

n (G/H; THHR) = THHn(RH) and
HG

n (G/H; TCR) = TCn(RH).
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Conjecture (The Farrell-Jones Conjecture for topological
Hochschild homology and cyclic homology)
The Farrell-Jones Conjecture for topological Hochschild homology and
cyclic homology respectively is the Isomorphism Conjecture for
H?
∗(−; THH) and H?

∗(−; TC) respectively for the family CYC of cyclic
subgroups.
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We can apply the functor topological K -theory also to Banach
algebras such that l1(G).

Let Ktop
l1 be the functor from Groupoids to Spectra which assign

to a groupoid the topological K -theory spectrum of its l1-algebra.
We obtain an equivariant homology theory H?

∗(−; Ktop
l1 ). It satisfies

HG
n (G/H, Ktop

l1 ) = Kn(l1(H)).

Conjecture (Bost Conjecture)

The Bost Conjecture is the Isomorphism Conjecture for H?
∗(−; Ktop

l1 )
and the family FIN .
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We obtain an equivariant homology theory H?

∗(−; Ktop
l1 ). It satisfies

HG
n (G/H, Ktop

l1 ) = Kn(l1(H)).

Conjecture (Bost Conjecture)

The Bost Conjecture is the Isomorphism Conjecture for H?
∗(−; Ktop

l1 )
and the family FIN .
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The assembly map appearing in the Bost Conjecture

HG
n (EG; Ktop

l1 ) → HG
n (pt; Ktop

l1 ) = Kn(l1(G))

composed with the change of algebras homomorphism

Kn(l1(G)) → Kn(C∗
r (G))

is precisely the assembly map appearing in the Baum-Connes
Conjecture

HG
n (EG; Ktop) = HG

n (EG; Ktop
l1 ) → HG

n (pt; Ktop) = Kn(C∗
r (G)).
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Relations between the Farrell-Jones and the
Baum-Connes Conjecture

We discuss some relations between the Farrell-Jones Conjecture
and the Baum-Connes Conjecture.
Mainly these come from the sequence of inclusions of rings

ZG → RG → C∗
r (G; R) → C∗

r (G)

and the change of theories from algebraic to topological K -theory
and from algebraic L-theory to topological K -theory for
C∗-algebras.
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HG
n (EFIN (G); Lp

Z)[1/2]
∼=−−−−→ Lp

n(ZG)[1/2]y∼= y∼=
HG

n (EFIN (G); Lp
R)[1/2]

∼=−−−−→ Lp
n(RG)[1/2]y∼= y∼=

HG
n (EFIN (G); Lp

C∗r (?;R))[1/2]
∼=−−−−→ Lp

n(C∗
r (G; R))[1/2]y∼= y∼=
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n (EFIN (G); Ktop
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∼=−−−−→ Kn(C∗
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Theorem (Rational computations of K -groups, L. (2002))
Let G be a group. Let T be the set of conjugacy classes (g) of
elements g ∈ G of finite order.
Then there is a commutative diagram⊕

p+q=n
⊕

(g)∈T Hp(BCG〈g〉; C)⊗Z Kq(C) //

��

Kn(CG)⊗Z C

��⊕
p+q=n

⊕
(g)∈T Hp(BCG〈g〉; C)⊗Z K top

q (C) // K top
n (C∗

r (G))⊗Z C

The horizontal arrows can be identified with the assembly maps
occurring in the Farrell-Jones Conjecture and the Baum-Connes
Conjecture by the equivariant Chern character.
In particular they are isomorphisms if these conjecture hold for G.
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Splitting principle.

The calculation of the relevant K -and L-groups often split into a
universal group homology part which is independent of the theory,
and a second part which essentially depends on the theory in
question and the coefficients.
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Status of the Farrell-Jones and the Baum-Connes
Conjecture

Theorem (Bartels-L.-Reich (2007), Bartels-Echterhoff-Reich
(2007))
Let R be a ring. Then:

Every hyperbolic group and every virtually nilpotent group belongs
to FJ (R);
If G1 and G2 belong to FJ (R), then G1 ×G2 belongs to FJ (R);
Let {Gi | i ∈ I} be a directed system of groups (with not
necessarily injective structure maps) such that Gi ∈ FJ (R) for
i ∈ I. Then colimi∈I Gi belongs to FJ (R);
If H is a subgroup of G and G ∈ FJ (R), then H ∈ FJ (R).
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We emphasize that this result holds for all rings R. Actually we
can even treat crossed product rings R ∗G. For more information
about the last result and its proof we refer to the talks of Bartels.
The groups above are certainly wild in Bridson’s universe of
groups.
Many recent constructions of groups with exotic properties are
given by colimits of directed systems of hyperbolic groups.
Examples are.

groups with expanders;
Lacunary hyperbolic groups in the sense of Olshanskii-Osin-Sapir;
Tarski monsters, i.e., infinite groups whose proper subgroups are all
finite cyclic of p-power order for a given prime p;

Gromov’s groups with expanders, for which the Baum-Connes
Conjecture with coefficients fails by Higson-Lafforgue-Skandalis
(2002), belong to FJ K (R) for all R.
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If G is a torsionfree hyperbolic group and R any ring, then we get
an isomorphism

Hn(BG; KR)⊕
( ⊕

(C),C⊆G,C 6=1
C maximal cyclic

NKn(R)

)
∼=−→ Kn(RG).

Bartels and L. have a program to prove G ∈ FJ K (R) if G acts
properly and cocompactly on a simply connected CAT(0)-space.
This would imply G ∈ FJ K (R) for all subgroups G of cocompact
lattices in almost connected Lie groups and for all limit groups G.
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Theorem (Farrell-Jones (1993))
Let G be a subgroup of a cocompact lattice in an almost connected Lie
group.
Then the Farrell-Jones Conjecture for pseudo-isotopy is true for G.

Theorem (L.-Reich-Rognes-Varisco (2007))
The Farrell-Jones Conjecture for topological Hochschild homology is
true for all groups.

For more information about the theorems above and further
results we refer to the talks by Bartels, Rosenthal and Varisco.
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Theorem (Farrell-Jones (1991 - 1993))
The Borel Conjecture and the L-theoretic Farrell-Jones Conjecture with
coefficients in Z are true for a group G if one of the following conditions
are satisfied:

G is the fundamental group of a closed Riemannian manifold with
non-positive curvature;
G is the fundamental group of a complete Riemannian manifold
with pinched negative curvature;
G is a torsionfree subgroup of GL(n, R).
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Bartels and L. have a program to prove the L-theoretic
Farrell-Jones Conjecture for all coefficient rings and the same
class of groups for which the K -theoretic versions have been
proved.
Bartels and L. have a program to prove G ∈ FJ L(R) if G acts
properly and cocompactly on a simply connected CAT(0)-space.
This would yield the same result for all subgroups of cocompact
lattices in almost connected Lie groups.
Recall that a group G which belongs to both FJ K (Z) and FJ L(Z)
satisfies the Borel Conjecture.
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Definition (a-T-menable group)
A group G is a-T-menable, or, equivalently, has the Haagerup property
if G admits a metrically proper isometric action on some affine Hilbert
space.

The class of a-T-menable groups is closed under taking
subgroups, under extensions with finite quotients and under finite
products.
It is not closed under semi-direct products.
Examples of a-T-menable groups are:

countable amenable groups;
countable free groups;
discrete subgroups of SO(n, 1) and SU(n, 1);
Coxeter groups;
countable groups acting properly on trees, products of trees, or
simply connected CAT(0) cubical complexes.
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A group G has Kazhdan’s property (T) if, whenever it acts
isometrically on some affine Hilbert space, it has a fixed point.
An infinite a-T-menable group does not have property (T).
Since SL(n, Z) for n ≥ 3 has property (T), it cannot be
a-T-menable.

Theorem (Higson-Kasparov(2001))
A group G which is a-T-menable satisfies the Baum Connes
Conjecture (with coefficients).
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Theorem (Lafforgue (1998))
The Baum-Connes Conjecture is true for a certain class of groups
which does contain some groups with property (T).

Theorem (Mineyev-Yu (2002))
The Baum-Connes Conjecture is true for subgroups of hyperbolic
groups.

Theorem (Bartels-Echterhoff-L. (2007))
The Bost Conjecture is true for a colimit of a directed system of
hyperbolic groups.
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Miscellaneous

The Baum-Connes Conjecture and the Farrell-Jones Conjecture
are not known for SLn(Z) for n ≥ 3, mapping class groups and
Out(Fn);
Certain groups with expanders yield counterexamples to the
Baum-Connes Conjecture with coefficients by a construction due
to Higson-Lafforgue-Skandalis (2002).
The K -theoretic Farrell-Jones conjecture and the Bost Conjecture
are true for these groups by recent results of Bartels-L.-Reich
(2007) and Bartels-Echterhoff-L. (2007).
It is not known whether there are counterexamples to the
Farrell-Jones Conjecture or the Baum-Connes Conjecture.
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There seems to be no promising candidate of a group G which is
a potential counterexample to the K - or L-theoretic Farrell-Jones
Conjecture or the Bost Conjecture.
The Baum-Connes Conjecture is the one for which it is most likely
that there may exist a counterexample.
One reason is the existence of counterexamples to the version
with coefficients.
Another reason is that Kn(C∗

r (G)) has certain failures concerning
functoriality which do not exists for K G

n (EG).
For instance it is not functorial for arbitrary group homomorphisms
since the reduced group C∗-algebra is not functorial for arbitrary
group homomorphisms.
These failures are not present for Kn(RG), L〈−∞〉(RG) and
Kn(l1(G)).
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Most of the proofs of the Farrell-Jones Conjecture use methods
from controlled topology.
Roughly speaking, controlled topology means that one considers
free modules with a basis and thinks of these basis elements as
sitting in a metric space.
Then a map between such modules can be visualized by arrows
between these basis elements.
Control means that these arrows are small.
Our homological approach to the assembly map is good for
structural investigations but not for proofs.
For proofs of these Conjectures it is often helpful to get some
geometric input.
In the Farrell-Jones setting the door to geometry is opened by
interpreting the assembly map as a forget control map.
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The task to show for instance surjectivity is to manipulate a
representative of the K -or L-theory class such that its class is
unchanged but one has gained control.
This is done by geometric constructions which yield contracting
maps.
These constructions are possible if some geometry connected to
the group is around, such as negative curvature.
We refer to the lectures of Bartels for such controlled methods.
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The approach using topological cyclic homology goes back to
Böckstedt-Hsiang-Madsen.
It is of homotopy theoretic nature.
We refer to the lecture of Varisco for more information about that
approach.
The methods of proof for the Baum-Connes Conjecture are of
analytic nature.
The most prominent one is the Dirac-Dual-Dirac method based on
KK -theory due to Kasparov.
KK -theory is a bivariant theory together with a product.
The assembly map is given by multiplying with a certain element
in a certain KK -group.
The essential idea is to construct another element in a dual
KK -group which implements the inverse of the assembly map.
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The analytic methods for the proof of the Baum-Connes
Conjecture do not seem to be applicable to the Farrell-Jones
setting.
One would hope for a transfer of methods from the Farrell-Jones
setting to the Baum-Connes Conjecture.
So far not much has happened in this direction.
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The end
Thank you for listening
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