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Outline

Introduce the projective class group K0(R).
Discuss its algebraic and topological significance (e.g., finiteness
obstruction).
Introduce K1(R) and the Whitehead group Wh(G).
Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).
Introduce negative K -theory and the Bass-Heller-Swan
decomposition.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 2 / 30



Outline

Introduce the projective class group K0(R).
Discuss its algebraic and topological significance (e.g., finiteness
obstruction).
Introduce K1(R) and the Whitehead group Wh(G).
Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).
Introduce negative K -theory and the Bass-Heller-Swan
decomposition.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 2 / 30



Outline

Introduce the projective class group K0(R).
Discuss its algebraic and topological significance (e.g., finiteness
obstruction).
Introduce K1(R) and the Whitehead group Wh(G).
Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).
Introduce negative K -theory and the Bass-Heller-Swan
decomposition.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 2 / 30



Outline

Introduce the projective class group K0(R).
Discuss its algebraic and topological significance (e.g., finiteness
obstruction).
Introduce K1(R) and the Whitehead group Wh(G).
Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).
Introduce negative K -theory and the Bass-Heller-Swan
decomposition.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 2 / 30



Outline

Introduce the projective class group K0(R).
Discuss its algebraic and topological significance (e.g., finiteness
obstruction).
Introduce K1(R) and the Whitehead group Wh(G).
Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).
Introduce negative K -theory and the Bass-Heller-Swan
decomposition.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 2 / 30



Outline

Introduce the projective class group K0(R).
Discuss its algebraic and topological significance (e.g., finiteness
obstruction).
Introduce K1(R) and the Whitehead group Wh(G).
Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).
Introduce negative K -theory and the Bass-Heller-Swan
decomposition.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 2 / 30



The projective class group

Definition (Projective R-module)
An R-module P is called projective if it satisfies one of the following
equivalent conditions:

P is a direct summand in a free R-module;
The following lifting problem has always a solution

M
p

// N // 0

P
f

``@
@

@
@

f

OO

If 0 → M0 → M1 → M2 → 0 is an exact sequence of R-modules,
then 0 → homR(P, M0) → homR(P, M1) → homR(P, M2) → 0 is
exact.
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Over a field or, more generally, over a principal ideal domain every
projective module is free.
If R is a principal ideal domain, then a finitely generated R-module
is projective (and hence free) if and only if it is torsionfree.
For instance Z/n is for n ≥ 2 never projective as Z-module.
Let R and S be rings and R × S be their product. Then R × {0} is
a finitely generated projective R × S-module which is not free.

Example (Representations of finite groups)
Let F be a field of characteristic p for p a prime number or 0. Let G be
a finite group.
Then F with the trivial G-action is a projective FG-module if and only if
p = 0 or p does not divide the order of G. It is a free FG-module only if
G is trivial.
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Definition (Projective class group K0(R))
Let R be an (associative) ring (with unit). Define its projective class
group

K0(R)

to be the abelian group whose generators are isomorphism classes [P]
of finitely generated projective R-modules P and whose relations are
[P0] + [P2] = [P1] for every exact sequence 0 → P0 → P1 → P2 → 0 of
finitely generated projective R-modules.

This is the same as the Grothendieck construction applied to the
abelian monoid of isomorphism classes of finitely generated
projective R-modules under direct sum.
The reduced projective class group K̃0(R) is the quotient of K0(R)
by the subgroup generated by the classes of finitely generated
free R-modules, or, equivalently, the cokernel of K0(Z) → K0(R).
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Let P be a finitely generated projective R-module. It is stably free,
i.e., P ⊕ Rm ∼= Rn for appropriate m, n ∈ Z, if and only if [P] = 0 in
K̃0(R).

K̃0(R) measures the deviation of finitely generated projective
R-modules from being stably finitely generated free.
The assignment P 7→ [P] ∈ K0(R) is the universal additive
invariant or dimension function for finitely generated projective
R-modules.
Induction
Let f : R → S be a ring homomorphism. Given an R-module M, let
f∗M be the S-module S ⊗R M. We obtain a homomorphism of
abelian groups

f∗ : K0(R) → K0(S), [P] 7→ [f∗P].
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Compatibility with products
The two projections from R × S to R and S induce isomorphisms

K0(R × S)
∼=−→ K0(R)× K0(S).

Morita equivalence
Let R be a ring and Mn(R) be the ring of (n, n)-matrices over R.
We can consider Rn as a Mn(R)-R-bimodule and as a
R-Mn(R)-bimodule.
Tensoring with these yields mutually inverse isomorphisms

K0(R)
∼=−→ K0(Mn(R)), [P] 7→ [Mn(R)Rn

R ⊗R P];

K0(Mn(R))
∼=−→ K0(R), [Q] 7→ [RRn

Mn(R) ⊗Mn(R) Q].
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Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Principal ideal domains)
If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)
Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G) is the same as K0(FG). Taking the
character of a representation yields an isomorphism

RC(G)⊗Z C = K0(CG)⊗Z C
∼=−→ class(G, C),

where class(G; C) is the complex vector space of class functions
G → C, i.e., functions, which are constant on conjugacy classes.

Wolfgang Lück (Münster, Germany) Lower and middle K-theory in topology Hangzhou, July 2007 8 / 30



Example (Dedekind domains)
Let R be a Dedekind domain, for instance the ring of integers in
an algebraic number field.
Call two ideals I and J in R equivalent if there exists non-zero
elements r and s in R with rI = sJ. The ideal class group C(R) is
the abelian group of equivalence classes of ideals under
multiplication of ideals.
Then we obtain an isomorphism

C(R)
∼=−→ K̃0(R), [I] 7→ [I].

The structure of the finite abelian group

C(Z[exp(2πi/p)]) ∼= K̃0(Z[exp(2πi/p)]) ∼= K̃0(Z[Z/p])

is only known for small prime numbers p.
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Theorem (Swan (1960))

If G is finite, then K̃0(ZG) is finite.

Topological K -theory
Let X be a compact space. Let K 0(X ) be the Grothendieck group
of isomorphism classes of finite-dimensional complex vector
bundles over X .
This is the zero-th term of a generalized cohomology theory
K ∗(X ) called topological K -theory. It is 2-periodic, i.e.,
K n(X ) = K n+2(X ), and satisfies K 0(pt) = Z and K 1(pt) = {0}.
Let C(X ) be the ring of continuous functions from X to C.

Theorem (Swan (1962))
There is an isomorphism

K 0(X )
∼=−→ K0(C(X )).
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Wall’s finiteness obstruction

Definition (Finitely dominated)
A CW -complex X is called finitely dominated if there exists a finite (=
compact) CW -complex Y together with maps i : X → Y and r : Y → X
satisfying r ◦ i ' idX .

A finite CW -complex is finitely dominated.
A closed manifold is a finite CW -complex.

Problem
Is a given finitely dominated CW-complex homotopy equivalent to a
finite CW-complex?
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Definition (Wall’s finiteness obstruction)
A finitely dominated CW -complex X defines an element

o(X ) ∈ K0(Z[π1(X )])

called its finiteness obstruction as follows.
Let X̃ be the universal covering. The fundamental group
π = π1(X ) acts freely on X̃ .

Let C∗(X̃ ) be the cellular chain complex. It is a free Zπ-chain
complex.
Since X is finitely dominated, there exists a finite projective
Zπ-chain complex P∗ with P∗ 'Zπ C∗(X̃ ).
Define

o(X ) :=
∑

n

(−1)n · [Pn] ∈ K0(Zπ).
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Theorem (Wall (1965))
A finitely dominated CW-complex X is homotopy equivalent to a finite
CW-complex if and only if its reduced finiteness obstruction
õ(X ) ∈ K̃0(Z[π1(X )]) vanishes.

A finitely dominated simply connected CW -complex is always
homotopy equivalent to a finite CW -complex since K̃0(Z) = {0}.
Given a finitely presented group G and ξ ∈ K0(ZG), there exists a
finitely dominated CW -complex X with π1(X ) ∼= G and o(X ) = ξ.
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Theorem (Geometric characterization of K̃0(ZG) = {0})
The following statements are equivalent for a finitely presented group
G:

Every finite dominated CW-complex with G ∼= π1(X ) is homotopy
equivalent to a finite CW-complex.
K̃0(ZG) = {0}.

Conjecture (Vanishing of K̃0(ZG) for torsionfree G)
If G is torsionfree, then

K̃0(ZG) = {0}.
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The Whitehead group

Definition (K1-group K1(R))
Define the K1-group of a ring R

K1(R)

to be the abelian group whose generators are conjugacy classes [f ] of
automorphisms f : P → P of finitely generated projective R-modules
with the following relations:

Given an exact sequence 0 → (P0, f0) → (P1, f1) → (P2, f2) → 0 of
automorphisms of finitely generated projective R-modules, we get
[f0] + [f2] = [f1];
[g ◦ f ] = [f ] + [g].
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This is the same as GL(R)/[GL(R), GL(R)].
An invertible matrix A ∈ GL(R) can be reduced by elementary row
and column operations and (de-)stabilization to the trivial empty
matrix if and only if [A] = 0 holds in the reduced K1-group

K̃1(R) := K1(R)/{±1} = cok (K1(Z) → K1(R)) .

If R is commutative, the determinant induces an epimorphism

det : K1(R) → R×,

which in general is not bijective.
The assignment A 7→ [A] ∈ K1(R) can be thought of the universal
determinant for R.
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Definition (Whitehead group)
The Whitehead group of a group G is defined to be

Wh(G) = K1(ZG)/{±g | g ∈ G}.

Lemma
We have Wh({1}) = {0}.

Proof.
The ring Z possesses an Euclidean algorithm.
Hence every invertible matrix over Z can be reduced via
elementary row and column operations and destabilization to a
(1, 1)-matrix (±1).
This implies that any element in K1(Z) is represented by ±1.
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Let G be a finite group. Then:

Let F be Q, R or C.
Define rF (G) to be the number of irreducible F -representations of
G.
This is the same as the number of F -conjugacy classes of
elements of G.
Here g1 ∼C g2 if and only if g1 ∼ g2, i.e., gg1g−1 = g2 for some
g ∈ G. We have g1 ∼R g2 if and only if g1 ∼ g2 or g1 ∼ g−1

2 holds.
We have g1 ∼Q g2 if and only if 〈g1〉 and 〈g1〉 are conjugated as
subgroups of G.
The Whitehead group Wh(G) is a finitely generated abelian group.
Its rank is rR(G)− rQ(G).
The torsion subgroup of Wh(G) is the kernel of the map
K1(ZG) → K1(QG).

In contrast to K̃0(ZG) the Whitehead group Wh(G) is computable.
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Whitehead torsion

Definition (h-cobordism)
An h-cobordism over a closed manifold M0 is a compact manifold W
whose boundary is the disjoint union M0 qM1 such that both inclusions
M0 → W and M1 → W are homotopy equivalences.

Theorem (s-Cobordism Theorem, Barden, Mazur, Stallings,
Kirby-Siebenmann)
Let M0 be a closed (smooth) manifold of dimension ≥ 5. Let
(W ; M0, M1) be an h-cobordism over M0.
Then W is homeomorphic (diffeomorpic) to M0 × [0, 1] relative M0 if
and only if its Whitehead torsion

τ(W , M0) ∈ Wh(π1(M0))

vanishes.
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Then W is homeomorphic (diffeomorpic) to M0 × [0, 1] relative M0 if
and only if its Whitehead torsion

τ(W , M0) ∈ Wh(π1(M0))

vanishes.
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Conjecture (Poincaré Conjecture)
Let M be an n-dimensional topological manifold which is a homotopy
sphere, i.e., homotopy equivalent to Sn.
Then M is homeomorphic to Sn.

Theorem
For n ≥ 5 the Poincaré Conjecture is true.
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Proof.
We sketch the proof for n ≥ 6.

Let M be a n-dimensional homotopy sphere.
Let W be obtained from M by deleting the interior of two disjoint
embedded disks Dn

1 and Dn
2 . Then W is a simply connected

h-cobordism.
Since Wh({1}) is trivial, we can find a homeomorphism
f : W

∼=−→ ∂Dn
1 × [0, 1] which is the identity on ∂Dn

1 = Dn
1 × {0}.

By the Alexander trick we can extend the homeomorphism
f |Dn

1×{1} : ∂Dn
2

∼=−→ ∂Dn
1 × {1} to a homeomorphism g : Dn

1 → Dn
2 .

The three homeomorphisms idDn
1
, f and g fit together to a

homeomorphism h : M → Dn
1 ∪∂Dn

1×{0} ∂Dn
1 × [0, 1] ∪∂Dn

1×{1} Dn
1 .

The target is obviously homeomorphic to Sn.
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The argument above does not imply that for a smooth manifold M
we obtain a diffeomorphism g : M → Sn.
The Alexander trick does not work smoothly.
Indeed, there exists so called exotic spheres, i.e., closed smooth
manifolds which are homeomorphic but not diffeomorphic to Sn.
The s-cobordism theorem is a key ingredient in the surgery
program for the classification of closed manifolds due to Browder,
Novikov, Sullivan and Wall.
Given a finitely presented group G, an element ξ ∈ Wh(G) and a
closed manifold M of dimension n ≥ 5 with G ∼= π1(M), there
exists an h-cobordism W over M with τ(W , M) = ξ.
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Theorem (Geometric characterization of Wh(G) = {0})
The following statements are equivalent for a finitely presented group
G and a fixed integer n ≥ 6

Every compact n-dimensional h-cobordism W with G ∼= π1(W ) is
trivial;
Wh(G) = {0}.

Conjecture (Vanishing of Wh(G) for torsionfree G)
If G is torsionfree, then

Wh(G) = {0}.
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Negative K -theory

Definition (Bass-Nil-groups)
Define for n = 0, 1

NKn(R) := coker (Kn(R) → Kn(R[t ])) .

Theorem (Bass-Heller-Swan decomposition for K1 (1964))
There is an isomorphism, natural in R,

K0(R)⊕ K1(R)⊕ NK1(R)⊕ NK1(R)
∼=−→ K1(R[t , t−1]) = K1(R[Z]).
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Definition (Negative K -theory)
Define inductively for n = −1,−2, . . .

Kn(R) := coker
(

Kn+1(R[t ])⊕ Kn+1(R[t−1]) → Kn+1(R[t , t−1])
)

.

Define for n = −1,−2, . . .

NKn(R) := coker (Kn(R) → Kn(R[t ])) .

Theorem (Bass-Heller-Swan decomposition for negative
K -theory)
For n ≤ 1 there is an isomorphism, natural in R,

Kn−1(R)⊕ Kn(R)⊕ NKn(R)⊕ NKn(R)
∼=−→ Kn(R[t , t−1]) = Kn(R[Z]).
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Definition (Regular ring)
A ring R is called regular if it is Noetherian and every finitely generated
R-module possesses a finite projective resolution.

Principal ideal domains are regular. In particular Z and any field
are regular.
If R is regular, then R[t ] and R[t , t−1] = R[Z] are regular.
If R is regular, then RG in general is not Noetherian or regular.
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Theorem (Bass-Heller-Swan decomposition for regular rings)
Suppose that R is regular. Then

Kn(R) = 0 for n ≤ −1;

NKn(R) = 0 for n ≤ 1,

and the Bass-Heller-Swan decomposition reduces for n ≤ 1 to the
natural isomorphism

Kn−1(R)⊕ Kn(R)
∼=−→ Kn(R[t , t−1]) = Kn(R[Z]).
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There are also higher algebraic K -groups Kn(R) for n ≥ 2 due to
Quillen (1973).
They are defined as homotopy groups of certain spaces or
spectra. We refer to the lectures of Grayson.
Most of the well known features of K0(R) and K1(R) extend to
both negative and higher algebraic K -theory.
For instance the Bass-Heller-Swan decomposition holds also for
higher algebraic K -theory.
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Notice the following formulas for a regular ring R and a
generalized homology theory H∗, which look similar:

Kn(R[Z]) ∼= Kn(R)⊕ Kn−1(R);

Hn(BZ) ∼= Hn(pt)⊕Hn−1(pt).

If G and K are groups, then we have the following formulas, which
look similar:

K̃n(Z[G ∗ K ]) ∼= K̃n(ZG)⊕ K̃n(ZK );

H̃n(B(G ∗ K )) ∼= H̃n(BG)⊕ H̃n(BK ).
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look similar:

K̃n(Z[G ∗ K ]) ∼= K̃n(ZG)⊕ K̃n(ZK );

H̃n(B(G ∗ K )) ∼= H̃n(BG)⊕ H̃n(BK ).
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Question (K -theory of group rings and group homology)
Is there a relation between Kn(RG) and group homology of G?

To be continued
Stay tuned
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