Equivariant homology theories (Lecture IV)

Wolfgang Lück
Münster
Germany
email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

Flashback

- We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups and discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
- We have explained that the formulations for torsionfree groups cannot extend to arbitrary groups.
Our goal is to find a formulation which makes sense for all groups and all rings.
- For this purpose we have introduced classifying spaces for families of subgroups of a group G which we will recall next.
- In the sequel group will mean discrete group.

Flashback

- We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups and discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
- We have explained that the formulations for torsionfree groups cannot extend to arbitrary groups.
Our goal is to find a formulation which makes sense for all groups and all rings.
- For this purpose we have introduced classifying spaces for families of subgroups of a group G which we will recall next.
- In the sequel group will mean discrete group.

Flashback

- We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups and discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
- We have explained that the formulations for torsionfree groups cannot extend to arbitrary groups.
Our goal is to find a formulation which makes sense for all groups
and all rings.
- For this purpose we have introduced classifying spaces for families of subgroups of a group G which we will recall next. - In the sequel group will mean discrete group.

Flashback

- We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups and discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
- We have explained that the formulations for torsionfree groups cannot extend to arbitrary groups.
Our goal is to find a formulation which makes sense for all groups and all rings.
- For this purpose we have introduced classifying spaces for families of subgroups of a group G which we will recall next. - In the sequel group will mean discrete group.

Flashback

- We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups and discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
- We have explained that the formulations for torsionfree groups cannot extend to arbitrary groups.
Our goal is to find a formulation which makes sense for all groups and all rings.
- For this purpose we have introduced classifying spaces for families of subgroups of a group G which we will recall next.
- In the sequel group will mean discrete group.

Flashback

- We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups and discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
- We have explained that the formulations for torsionfree groups cannot extend to arbitrary groups.
Our goal is to find a formulation which makes sense for all groups and all rings.
- For this purpose we have introduced classifying spaces for families of subgroups of a group G which we will recall next.
- In the sequel group will mean discrete group.

Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

```
Examples for \mathcal{F are:}
    IR = {trivial subgroup};
    FIN = {finite subgroups};
    FC\mathcal{C}={{inite cyclic subgroups};
    VC\mathcal{C}={virtually cyclic subgroups};
    ALL = {all subgroups}.
```


Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

```
Examples for }\mathcal{F}\mathrm{ are:
    T\mathcal{R}={ {trivial subgroup};
    = {finite subgroups}
    = {finite cyclic subgroups};
    = {virtually cyclic subgroups};
    = {all subgroups}
```


Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:
$\mathcal{T R}=$ \{trivial subgroup\};
$\mathcal{F I N}=$ \{finite subgroups $\} ;$
$=$ \{finite cyclic subgroups\};
$=$ \{virtually cyclic subgroups\};
$=$ \{all subgroups $\}$

Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:
$\mathcal{T R}=$ \{trivial subgroup\};
$\mathcal{F I N}=$ \{finite subgroups\};
$\mathcal{F C Y C}=\{$ finite cyclic subgroups $\} ;$
$=\{$ virtually cyclic subgroups\};
= \{all subgroups\}.

Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:
$\mathcal{T R}=$ \{trivial subgroup\};
$\mathcal{F I N}=$ \{finite subgroups\};
$\mathcal{F C Y C}=\{$ finite cyclic subgroups $\} ;$
$\mathcal{V C Y C}=$ \{virtually cyclic subgroups\};
= \{all subgroups\}

Definition (Family of subgroups)

A family \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:
$\mathcal{T R}=$ \{trivial subgroup\};
$\mathcal{F I N}=$ \{finite subgroups\};
$\mathcal{F C Y C}=\{$ finite cyclic subgroups $\} ;$
$\mathcal{V C Y C}=$ \{virtually cyclic subgroups $\} ;$
$\mathcal{A L L}=$ \{all subgroups $\}$.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow X$.
We abbreviate $E G:=E_{\mathcal{F I N}}(G)$ and call it the universal
G-CW-complex for proper G-actions.
We also write $E G=E_{T \mathcal{R}}(G)$.
- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying
G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy aroups of $E_{\mathcal{F}}(G)$ belong to $\mathcal{F}_{\text {; }}$
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow X$.
We abbreviate $E G:=E_{\mathcal{F T N}}(G)$ and call it the universal
G-CW-complex for proper G-actions.
We also write $E G=E_{T \mathcal{R}}(G)$.
- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying $G-C W$-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow X$.

We abbreviate $E G:=E_{\mathcal{F T N}}(G)$ and call it the universal We also write $E G=E_{T \mathcal{R}}(G)$.

- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow X$.

- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow X$.
We abbreviate $E G:=E_{\mathcal{F I N}}(G)$ and call it the universal G-CW-complex for proper G-actions.
- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow X$.
We abbreviate $E G:=E_{\mathcal{F I N}}(G)$ and call it the universal G-CW-complex for proper G-actions.
We also write $E G=E_{\mathcal{T R}}(G)$.
- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the classifying G-CW-complex for the family \mathcal{F} is a G-CW-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F};
- For any G-CW-complex Y, whose isotropy groups belong to \mathcal{F}, there is up to G-homotopy precisely one G-map $Y \rightarrow X$.
We abbreviate $E G:=E_{\mathcal{F I N}}(G)$ and call it the universal G-CW-complex for proper G-actions.
We also write $E G=E_{\mathcal{T R}}(G)$.
- A model for $E_{\mathcal{F}}(G)$ exists and is unique up to G-homotopy.

- Cliffhanger

Question (Homological computations based on nice models for EG)

Can nice geometric models for $E G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_{n}(R G)$ and the group homology of G ?

```
Question (Isomorphism Conjectures and classifying spaces of
families)
```

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all groups and all rings?

- Cliffhanger

Question (Homological computations based on nice models for EG)

Can nice geometric models for $\underline{E} G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)
Is there a relation between $K_{n}(R G)$ and the group homology of G ?

Question (Isomorphism Conjectures and classifying spaces of families)
Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all groups and all rings?

- Cliffhanger

Question (Homological computations based on nice models for EG)
Can nice geometric models for $\underline{E} G$ be used to compute the group homology and more general homology and cohomology theories of a group G ?

> Question (K-theory of group rings and group homology)
> Is there a relation between $K_{n}(R G)$ and the group homology of G ?

\square

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all groups and all rings?

- Cliffhanger

Question (Homological computations based on nice models for EG)
Can nice geometric models for $\underline{E} G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_{n}(R G)$ and the group homology of G ?

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all groups and all rings?

- Cliffhanger

Question (Homological computations based on nice models for EG)
Can nice geometric models for $\underline{E} G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)
Is there a relation between $K_{n}(R G)$ and the group homology of G ?

Question (Isomorphism Conjectures and classifying spaces of
families)
Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all groups and all rings?

- Cliffhanger

Question (Homological computations based on nice models for EG)
Can nice geometric models for $\underline{E} G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology) Is there a relation between $K_{n}(R G)$ and the group homology of G ?

Question (Isomorphism Conjectures and classifying spaces of families)

- Cliffhanger

Question (Homological computations based on nice models for EG)
Can nice geometric models for $\underline{E} G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology) Is there a relation between $K_{n}(R G)$ and the group homology of G ?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all groups and all rings?

Outline

- We intoduce the notion of an equivariant homology theory.
- We present the general formulation of the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We discuss equivariant Chern characters.
- We present some explicit computations of equivariant topological K-groups and of homology groups associated to classifying spaces of groups.

Outline

- We intoduce the notion of an equivariant homology theory.
- We present the general formulation of the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We discuss equivariant Chern characters.
- We present some explicit computations of equivariant topological K-groups and of homology groups associated to classifying spaces of groups.

Outline

- We intoduce the notion of an equivariant homology theory.
- We present the general formulation of the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We discuss equivariant Chern characters.
- We present some explicit computations of equivariant topological K-groups and of homology groups associated to classifying spaces of groups.

Outline

- We intoduce the notion of an equivariant homology theory.
- We present the general formulation of the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We discuss equivariant Chern characters.
- We present some explicit computations of equivariant topological K-groups and of homology groups associated to classifying spaces of groups.

Outline

- We intoduce the notion of an equivariant homology theory.
- We present the general formulation of the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We discuss equivariant Chern characters.
- We present some explicit computations of equivariant topological K-groups and of homology groups associated to classifying spaces of groups.

Equivariant homology theories

Definition (homology theory)

A G-homology theory \mathcal{H}_{*} is a covariant functor from the category of G-CW-pairs to the category of \mathbb{Z}-graded \wedge-modules together with natural transformations

$$
\partial_{n}(X, A): \mathcal{H}_{n}(X, A) \rightarrow \mathcal{H}_{n-1}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Equivariant homology theories

Definition (G-homology theory)

A homology theory \mathcal{H}_{*} is a covariant functor from the category of $C W$-pairs to the category of \mathbb{Z}-graded \wedge-modules together with natural transformations

$$
\partial_{n}(X, A): \mathcal{H}_{n}(X, A) \rightarrow \mathcal{H}_{n-1}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Equivariant homology theories

Definition (G-homology theory)

A homology theory \mathcal{H}_{*} is a covariant functor from the category of $C W$-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$
\partial_{n}(X, A): \mathcal{H}_{n}(X, A) \rightarrow \mathcal{H}_{n-1}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:
homotopy invariance;

- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Equivariant homology theories

Definition (G-homology theory)

A homology theory \mathcal{H}_{*} is a covariant functor from the category of $C W$-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$
\partial_{n}(X, A): \mathcal{H}_{n}(X, A) \rightarrow \mathcal{H}_{n-1}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disioint union axiom.

Equivariant homology theories

Definition (G-homology theory)

A homology theory \mathcal{H}_{*} is a covariant functor from the category of $C W$-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$
\partial_{n}(X, A): \mathcal{H}_{n}(X, A) \rightarrow \mathcal{H}_{n-1}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Equivariant homology theories

Definition (G-homology theory)

A homology theory \mathcal{H}_{*} is a covariant functor from the category of $C W$-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$
\partial_{n}(X, A): \mathcal{H}_{n}(X, A) \rightarrow \mathcal{H}_{n-1}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Equivariant homology theories

Definition (G-homology theory)

A homology theory \mathcal{H}_{*} is a covariant functor from the category of $C W$-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$
\partial_{n}(X, A): \mathcal{H}_{n}(X, A) \rightarrow \mathcal{H}_{n-1}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Equivariant homology theories

Definition (G-homology theory)

A G-homology theory \mathcal{H}_{*}^{G} is a covariant functor from the category of G-CW-pairs to the category of \mathbb{Z}-graded Λ-modules together with natural transformations

$$
\partial_{n}^{G}(X, A): \mathcal{H}_{n}^{G}(X, A) \rightarrow \mathcal{H}_{n-1}^{G}(A)
$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Definition (Equivariant homology theory)

An equivariant homology theory \mathcal{H}_{*}, assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism $\alpha: H \rightarrow G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$
\text { ind }_{\alpha}: \mathcal{H}_{n}^{H}(X, A) \quad \rightarrow \mathcal{H}_{n}^{G}\left(\operatorname{ind}_{\alpha}(X, A)\right)
$$

satisfying

- Biiectivity If $\operatorname{ker}(\alpha)$ acts freely on X, then ind $_{\alpha}$ is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with conjugation.

Definition (Equivariant homology theory)

An equivariant homology theory \mathcal{H}_{*} assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism $\alpha: H \rightarrow G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$
\text { inda }: \mathcal{H}_{n}^{H}(X, A) \rightarrow \mathcal{H}_{n}^{G}\left(\text { ind }_{a}(X, A)\right)
$$

satisfying

- Bijectivity

If $\operatorname{ker}(\alpha)$ acts freely on X, then ind α_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with conjugation.

Definition (Equivariant homology theory)

An equivariant homology theory $\mathcal{H}_{*}^{?}$ assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism α

- Biiectivity

If $\operatorname{ker}(\alpha)$ acts freely on X, then ind $_{\alpha}$ is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with conjugation.

Definition (Equivariant homology theory)

An equivariant homology theory $\mathcal{H}_{*}^{?}$ assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism $\alpha: H \rightarrow G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$
\operatorname{ind}_{\alpha}: \mathcal{H}_{n}^{H}(X, A) \quad \rightarrow \mathcal{H}_{n}^{G}\left(\operatorname{ind}_{\alpha}(X, A)\right)
$$

satisfying

- Bijectivity If $\operatorname{ker}(\alpha)$ acts freely on X, then ind α_{α} is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with conjugation.

Definition (Equivariant homology theory)

An equivariant homology theory $\mathcal{H}_{*}^{?}$ assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism $\alpha: H \rightarrow G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$
\operatorname{ind}_{\alpha}: \mathcal{H}_{n}^{H}(X, A) \quad \rightarrow \quad \mathcal{H}_{n}^{G}\left(\operatorname{ind}_{\alpha}(X, A)\right)
$$

satisfying

- Bijectivity If $\operatorname{ker}(\alpha)$ acts freely on X, then ind ${ }_{\alpha}$ is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with corjugation.

Definition (Equivariant homology theory)

An equivariant homology theory \mathcal{H}_{*} ? assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism $\alpha: H \rightarrow G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$
\operatorname{ind}_{\alpha}: \mathcal{H}_{n}^{H}(X, A) \rightarrow \mathcal{H}_{n}^{G}\left(\operatorname{ind}_{\alpha}(X, A)\right)
$$

satisfying

- Bijectivity If $\operatorname{ker}(\alpha)$ acts freely on X, then ind ${ }_{\alpha}$ is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with conjugation.

Definition (Equivariant homology theory)

An equivariant homology theory $\mathcal{H}_{*}^{?}$ assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism $\alpha: H \rightarrow G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$
\operatorname{ind}_{\alpha}: \mathcal{H}_{n}^{H}(X, A) \quad \rightarrow \quad \mathcal{H}_{n}^{G}\left(\operatorname{ind}_{\alpha}(X, A)\right)
$$

satisfying

- Bijectivity If $\operatorname{ker}(\alpha)$ acts freely on X, then ind ${ }_{\alpha}$ is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with conjugation.

Definition (Equivariant homology theory)

An equivariant homology theory \mathcal{H}_{*} assigns to every group G a G-homology theory \mathcal{H}_{*}^{G}. These are linked together with the following so called induction structure: given a group homomorphism $\alpha: H \rightarrow G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$
\operatorname{ind}_{\alpha}: \mathcal{H}_{n}^{H}(X, A) \rightarrow \mathcal{H}_{n}^{G}\left(\operatorname{ind}_{\alpha}(X, A)\right)
$$

satisfying

- Bijectivity If $\operatorname{ker}(\alpha)$ acts freely on X, then ind ${ }_{\alpha}$ is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α;
- Compatibility with conjugation.

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\begin{aligned}
& \mathcal{H}_{*}^{G}(X):=\mathcal{K}_{*}(X / G) \\
& \mathcal{H}_{*}^{G}(X):=\mathcal{K}_{*}\left(E G \times_{G} X\right) \quad \text { (Borel homology). }
\end{aligned}
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theo y $K_{*}(X)$.

Theorem (L.-Reich (2005))

Given a functor $\mathbf{E}:$ Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}_{*}^{?}(-;$ E) satisfying

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H)) .
$$

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theo ${ }^{\prime} K_{*}(X)$.

Theorem

Given a functor E: Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}_{*}^{?}(-;$ E) satisfying

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H)) .
$$

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\mathcal{H}_{*}^{G}(X):=\mathcal{K}_{*}(X / G) ;
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theor $K_{!}^{?}(X)$.

Theorem

Given a functor E: Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}_{*}^{?}(-; \mathbf{E})$ satisfying

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H)) .
$$

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\begin{aligned}
& \mathcal{H}_{*}^{G}(X):=\mathcal{K}_{*}(X / G) ; \\
& \mathcal{H}_{*}^{G}(X):=\mathcal{K}_{*}\left(E G \times_{G} X\right) \quad \text { (Borel homology). }
\end{aligned}
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theor $K_{!}^{?}(X)$.

Theorem

Given a functor E: Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}_{*}^{?}(-;$ E) satisfying

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H)) .
$$

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\begin{aligned}
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}(X / G) \\
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}\left(E G \times_{G} X\right) \quad \text { (Borel homology) }
\end{aligned}
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theory $K_{*}^{?}(X)$.

```
Theorem
Given a functor E: Groupoids }->\mathrm{ Spectra sending equivalences to
weak equivalences, there exists an equivariant homology theory
H
\[
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbb{E}(H)) .
\]
```


Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\begin{aligned}
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}(X / G) \\
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}\left(E G \times_{G} X\right) \quad \text { (Borel homology) }
\end{aligned}
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theory $K_{*}^{?}(X)$.

Theorem

Given a functor E: Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}_{*}^{?}(-$ E $)$ satisfying

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H)) .
$$

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\begin{aligned}
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}(X / G) \\
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}\left(E G \times_{G} X\right) \quad \text { (Borel homology) }
\end{aligned}
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theory $K_{*}^{?}(X)$.

Theorem (L.-Reich (2005))

Given a functor $\mathbf{E}:$ Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory E) satisfying

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H))
$$

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\begin{aligned}
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}(X / G) \\
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}\left(E G \times_{G} X\right) \quad \text { (Borel homology) }
\end{aligned}
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theory $K_{*}^{?}(X)$.

Theorem (L.-Reich (2005))

Given a functor $\mathbf{E}:$ Groupoids \rightarrow Spectra sending equivalences to weak equivalences,

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H))
$$

Example (Equivariant homology theories)

- Given a non-equivariant homology theory \mathcal{K}_{*}, put

$$
\begin{aligned}
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}(X / G) \\
\mathcal{H}_{*}^{G}(X) & :=\mathcal{K}_{*}\left(E G \times_{G} X\right) \quad \text { (Borel homology) }
\end{aligned}
$$

- Equivariant bordism $\Omega_{*}^{?}(X)$;
- Equivariant topological K-theory $K_{*}^{?}(X)$.

Theorem (L.-Reich (2005))

Given a functor E: Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}_{*}^{?}(-;$ E) satisfying

$$
\mathcal{H}_{n}^{H}(p t) \cong \mathcal{H}_{n}^{G}(G / H) \cong \pi_{n}(\mathbf{E}(H))
$$

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))

Let R be a ring (with involution). There exist covariant functors

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

with the following properties:

- They send equivalences af groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have $\pi_{n}\left(K_{R}(G)\right) \simeq K(R G)$

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors
K_{R} : Groupoids \rightarrow Spectra;
Groupoids \rightarrow Spectra;
Groupoids ${ }^{\text {inj }} \rightarrow$ Spectra
with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have $\pi_{n}\left(K_{R}(G)\right) \cong K_{n}(R G) ;$

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

$$
\begin{aligned}
\mathrm{K}_{R}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathrm{L}_{R}^{\langle\infty\rangle}: \text { Groupoids } & \rightarrow \text { Spectra; }
\end{aligned}
$$

with the following properties:

- They send equivalences af groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have $\pi_{n}\left(K_{R}(G)\right) \approx K_{n}(R G)$

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

$$
\begin{aligned}
\mathbf{K}_{R}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{L}_{R}^{\langle\infty\rangle}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{K}^{\text {top }}: \text { Groupoids }{ }^{\text {inj }} & \rightarrow \text { Spectra }
\end{aligned}
$$

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every aroup G and all $n \in \mathbb{Z}$ we have

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

$$
\begin{aligned}
\mathbf{K}_{R}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{L}_{R}^{\langle(\infty)}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{K}^{\text {top }}: \text { Groupoids }{ }^{\text {inj }} & \rightarrow \text { Spectra }
\end{aligned}
$$

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

$$
\begin{aligned}
\mathbf{K}_{R}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{L}_{R}^{\langle(\infty)}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{K}^{\text {top }}: \text { Groupoids }{ }^{\text {inj }} & \rightarrow \text { Spectra }
\end{aligned}
$$

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

$$
\begin{aligned}
\mathrm{K}_{R}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{L}_{R}^{\langle(\infty)}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{K}^{\text {top }}: \text { Groupoids }{ }^{\text {inj }} & \rightarrow \text { Spectra }
\end{aligned}
$$

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have

$$
\pi_{n}\left(\mathbf{K}_{R}(G)\right) \cong K_{n}(R G) ;
$$

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

$$
\begin{aligned}
\mathbf{K}_{R}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{L}_{R}^{\langle\infty\rangle}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{K}^{\text {top }}: \text { Groupoids }{ }^{\text {inj }} & \rightarrow \text { Spectra }
\end{aligned}
$$

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have

$$
\begin{aligned}
\pi_{n}\left(\mathbf{K}_{R}(G)\right) & \cong K_{n}(R G) \\
\pi_{n}\left(\mathbf{L}_{R}^{\langle-\infty\rangle}(G)\right) & \cong L_{n}^{\langle-\infty\rangle}(R G)
\end{aligned}
$$

Theorem (Equivariant homology theories associated to K and L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

$$
\begin{aligned}
\mathbf{K}_{R}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{L}_{R}^{\langle\infty\rangle}: \text { Groupoids } & \rightarrow \text { Spectra; } \\
\mathbf{K}^{\text {top }}: \text { Groupoids }{ }^{\text {inj }} & \rightarrow \text { Spectra }
\end{aligned}
$$

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have

$$
\begin{aligned}
\pi_{n}\left(\mathbf{K}_{R}(G)\right) & \cong K_{n}(R G) ; \\
\pi_{n}\left(\mathbf{L}_{R}^{\langle-\infty}(G)\right) & \cong L_{n}^{\langle-\infty\rangle}(R G) ; \\
\pi_{n}\left(\mathbf{K}^{\mathrm{top}}(G)\right) & \cong K_{n}\left(C_{r}^{*}(G)\right) .
\end{aligned}
$$

Example (Equivariant homology theories associated to K and L-theory)

We get equivariant homology theories

satisfying for $H \subseteq G$

Example (Equivariant homology theories associated to K and L-theory)

We get equivariant homology theories

$$
\begin{gathered}
H_{*}^{?}\left(-; \mathbf{K}_{R}\right) ; \\
H_{*}^{?}\left(-; \mathbf{L} \mathbf{L}_{R}^{\langle-\infty\rangle}\right) ; \\
H_{*}^{?}\left(-; \mathbf{K}^{\mathrm{top}}\right),
\end{gathered}
$$

satisfying for $H \subseteq G$

Example (Equivariant homology theories associated to K and L-theory)

We get equivariant homology theories

$$
\begin{gathered}
H_{*}^{?}\left(-; \mathbf{K}_{R}\right) ; \\
H_{*}^{?}\left(-; \mathbf{L}_{R}^{\langle-\infty\rangle}\right) ; \\
H_{*}^{?}\left(-; \mathbf{K}^{\mathrm{top}}\right),
\end{gathered}
$$

satisfying for $H \subseteq G$

$$
\begin{array}{lll}
H_{n}^{G}\left(G / H ; \mathbf{K}_{R}\right) & \cong H_{n}^{H}\left(\mathrm{pt} ; \mathbf{K}_{R}\right) & \cong K_{n}(R H) ; \\
H_{n}^{G}\left(G / H ; \mathbf{L}_{R}^{-\infty)}\right) & \cong H_{n}^{H}\left(\mathrm{pt} ; \mathbf{L}_{R}^{\langle-\infty\rangle}\right) & \cong L_{n}^{\langle-\infty\rangle}(R H) ; \\
H_{n}^{G}\left(G / H ; \mathbf{K}^{\text {top }}\right) & \cong H_{n}^{H}\left(\mathrm{pt} ; \mathbf{K}^{\text {top }}\right) & \cong K_{n}\left(C_{r}^{*}(H)\right) .
\end{array}
$$

The general formulation of the Isomorphism Conjectures

Conjecture (K-theoretic Farrell-Jones-Conjecture)

The K-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$
H_{n}^{G}\left(E_{\mathcal{V C y C}}(G), \mathbf{K}_{R}\right) \rightarrow H_{n}^{G}\left(p t, \mathbf{K}_{R}\right)=K_{n}(R G)
$$

is bijective for all $n \in \mathbb{Z}$.

- The assembly map is the map induced by the projection $E_{\mathcal{V C Y C}}(G) \rightarrow \mathrm{pt}$.

The general formulation of the Isomorphism Conjectures

Conjecture (K-theoretic Farrell-Jones-Conjecture)

The K-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$
H_{n}\left(E_{v c \nu c}(G), K_{R}\right) \rightarrow H_{n}^{G}\left(p ; K_{R}\right)=K_{n}(R G)
$$

is bijective for all $n \in \mathbb{Z}$.

The general formulation of the Isomorphism Conjectures

Conjecture (K-theoretic Farrell-Jones-Conjecture)

The K-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$
H_{n}^{G}\left(E_{\mathcal{V C Y C}}(G), \mathbf{K}_{R}\right) \rightarrow H_{n}^{G}\left(p t, \mathbf{K}_{R}\right)=K_{n}(R G)
$$

is bijective for all $n \in \mathbb{Z}$.

- The assembly map is the map induced by the projection $E_{\mathcal{V C Y C}}(G) \rightarrow \mathrm{pt}$.

The general formulation of the Isomorphism Conjectures

Conjecture (K-theoretic Farrell-Jones-Conjecture)

The K-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$
H_{n}^{G}\left(E_{\mathcal{V C Y C}}(G), \mathbf{K}_{R}\right) \rightarrow H_{n}^{G}\left(p t, \mathbf{K}_{R}\right)=K_{n}(R G)
$$

is bijective for all $n \in \mathbb{Z}$.

- The assembly map is the map induced by the projection $E_{\mathcal{V C Y C}}(G) \rightarrow \mathrm{pt}$.

Conjecture (L-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$
H_{n}^{G}\left(E_{\nu \operatorname{cvc}}(G), \mathrm{L}_{R}^{\prime-\infty)}\right) \rightarrow H_{n}^{C}\left(p t, \mathrm{~L}_{R}^{(-\infty)}\right)=L_{n}^{\langle-\infty)}(R G)
$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (L-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$
H_{n}^{G}\left(E_{\mathcal{V C Y C}}(G), \mathbf{L}_{R}^{\langle-\infty\rangle}\right) \rightarrow H_{n}^{G}\left(p t, \mathbf{L}_{R}^{\langle-\infty)}\right)=L_{n}^{\langle-\infty\rangle}(R G)
$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

- We will discuss these conjectures and their applications in the next lecture.
- We will now continue with equivariant homology theories.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$
K_{n}^{G}(\underline{E} G)=H_{n}^{G}\left(E_{\mathcal{F I N}}(G), \mathbf{K}^{\mathrm{top}}\right) \rightarrow H_{n}^{G}\left(p t, \mathbf{K}^{\mathrm{top}}\right)=K_{n}\left(C_{r}^{*}(G)\right)
$$

is bijective for all $n \in \mathbb{Z}$.

- We will discuss these conjectures and their applications in the next lecture.
- We will now continue with equivariant homology theories.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$
K_{n}^{G}(\underline{E} G)=H_{n}^{G}\left(E_{\mathcal{F I N}}(G), \mathbf{K}^{\mathrm{top}}\right) \rightarrow H_{n}^{G}\left(p t, \mathbf{K}^{\mathrm{top}}\right)=K_{n}\left(C_{r}^{*}(G)\right)
$$

is bijective for all $n \in \mathbb{Z}$.

- We will discuss these conjectures and their applications in the next lecture.
- We will now continue with equivariant homology theories.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$
K_{n}^{G}(\underline{E} G)=H_{n}^{G}\left(E_{\mathcal{F I N}}(G), \mathbf{K}^{\mathrm{top}}\right) \rightarrow H_{n}^{G}\left(p t, \mathbf{K}^{\mathrm{top}}\right)=K_{n}\left(C_{r}^{*}(G)\right)
$$

is bijective for all $n \in \mathbb{Z}$.

- We will discuss these conjectures and their applications in the next lecture.
- We will now continue with equivariant homology theories.

Equivariant Chern characters

- Let \mathcal{H}_{*} be a (non-equivariant) homology theory. There is the Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^{2}-term

$$
E_{p, q}^{2}=H_{p}\left(X ; \mathcal{H}_{q}(\mathrm{pt})\right)
$$

- Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character, Dold (1962))

Let \mathcal{H}_{*} be a homology theory with values in \wedge-modules for $\mathbb{Q} \subseteq \Lambda$. Then there exists for every $n \in \mathbb{Z}$ and every $C W$-complex X a natural isomorphism

$$
\bigoplus_{p+q=n} H_{p}(X ; \wedge) \otimes \wedge \mathcal{H}_{q}(p t) \stackrel{ }{\cong} \mathcal{H}_{n}(X)
$$

Equivariant Chern characters

- Let \mathcal{H}_{*} be a (non-equivariant) homology theory. There is the

Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^{2}-term

$$
E_{p, q}^{2}=H_{p}\left(X ; \mathcal{H}_{q}(\mathrm{pt})\right)
$$

- Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character,
 Let \mathcal{H}_{*} be a homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$.
 Then there exists for every $n \in \mathbb{Z}$ and every $C W$-complex X a natural isomorphism

$$
\bigoplus_{p+q=n} H_{p}(X ; \wedge) \otimes_{\wedge} \mathcal{H}_{q}(p t) \stackrel{\cong}{\cong} \mathcal{H}_{n}(X)
$$

Equivariant Chern characters

- Let \mathcal{H}_{*} be a (non-equivariant) homology theory. There is the Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^{2}-term

$$
E_{p, q}^{2}=H_{p}\left(X ; \mathcal{H}_{q}(\mathrm{pt})\right)
$$

- Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character
 Let \mathcal{H}_{*} be a homology theory with values in \wedge-modules for $\mathbb{Q} \subseteq \Lambda$. Then there exists for every $n \in \mathbb{Z}$ and every $C W$-complex X a natural isomorphism

$$
\bigoplus_{p+q=n} H_{p}(X ; \Lambda) \otimes_{\wedge} \mathcal{H}_{q}(p t) \cong \mathcal{H}_{n}(X)
$$

Equivariant Chern characters

- Let \mathcal{H}_{*} be a (non-equivariant) homology theory. There is the Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^{2}-term

$$
E_{p, q}^{2}=H_{p}\left(X ; \mathcal{H}_{q}(\mathrm{pt})\right)
$$

- Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character, Dold (1962)) Let \mathcal{H}_{*} be a homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Then there exists for every $n \in \mathbb{Z}$ and every $C W$-complex X a natural isomorphism

$$
\bigoplus H_{p}(X ; \wedge) \otimes_{\wedge} \mathcal{H}_{q}(p t) \stackrel{\cong}{\cong} \mathcal{H}_{n}(X)
$$

Equivariant Chern characters

- Let \mathcal{H}_{*} be a (non-equivariant) homology theory. There is the Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^{2}-term

$$
E_{p, q}^{2}=H_{p}\left(X ; \mathcal{H}_{q}(\mathrm{pt})\right)
$$

- Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character, Dold (1962))

Let \mathcal{H}_{*} be a homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$.
Then there exists for every $n \in \mathbb{Z}$ and every $C W$-complex X a natural
isomorphism

Equivariant Chern characters

- Let \mathcal{H}_{*} be a (non-equivariant) homology theory. There is the Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^{2}-term

$$
E_{p, q}^{2}=H_{p}\left(X ; \mathcal{H}_{q}(\mathrm{pt})\right)
$$

- Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character, Dold (1962))

Let \mathcal{H}_{*} be a homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. isomorphism

Equivariant Chern characters

- Let \mathcal{H}_{*} be a (non-equivariant) homology theory. There is the Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^{2}-term

$$
E_{p, q}^{2}=H_{p}\left(X ; \mathcal{H}_{q}(\mathrm{pt})\right)
$$

- Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character, Dold (1962))

Let \mathcal{H}_{*} be a homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Then there exists for every $n \in \mathbb{Z}$ and every $C W$-complex X a natural isomorphism

$$
\bigoplus_{p+q=n} H_{p}(X ; \Lambda) \otimes_{\wedge} \mathcal{H}_{q}(p t) \stackrel{\cong}{\cong} \mathcal{H}_{n}(X)
$$

Dold's Chern character for a CW-complex X is given by the following composite:

where $D_{p, q}$ sends $\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta$ to the image of η under the composite

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\operatorname{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes \mathbb{Z} \mathcal{H}_{q}(*)
$$

where $D_{p, q}$ sends $\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta$ to the image of η under the composite

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\operatorname{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*)
$$

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\begin{gathered}
\mathrm{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\
\xrightarrow{\oplus_{p+q=n}(\text { hur } \otimes i \mathrm{did})^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}\left(X_{+}, *\right) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\bigoplus_{p+q=n} D_{p, q}} \mathcal{H}_{n}(*
\end{gathered}
$$

$$
\text { where } D_{p, q} \text { sends }\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta \text { to the image of } \eta
$$

under the composite

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\begin{gathered}
\mathrm{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\
\xrightarrow{\oplus_{p+q=n}(h u r \otimes \mathrm{id})^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}\left(X_{+}, *\right) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\oplus_{p+q=n} D_{p, q}} \mathcal{H}_{n}(X),
\end{gathered}
$$

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\begin{gathered}
\mathrm{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\
\xrightarrow{\oplus_{p+q=n}(\mathrm{hur} \otimes \mathrm{id})^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}\left(X_{+}, *\right) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\oplus_{p+q=n} D_{p, q}} \mathcal{H}_{n}(X),
\end{gathered}
$$

where $D_{p, q}$ sends $\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta$ to the image of η under the composite

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\begin{gathered}
\mathrm{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\
\xrightarrow{\oplus_{p+q=n}(\mathrm{hur} \otimes \mathrm{id})^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}\left(X_{+}, *\right) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\oplus_{p+q=n} D_{p, q}} \mathcal{H}_{n}(X),
\end{gathered}
$$

where $D_{p, q}$ sends $\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta$ to the image of η under the composite

$$
\mathcal{H}_{q}(*)
$$

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\begin{gathered}
\mathrm{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\
\xrightarrow{\left.\oplus_{p+q=n}(h u r \otimes i d)\right)^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}\left(X_{+}, *\right) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\oplus_{p+q=n} D_{p, q}} \mathcal{H}_{n}(X),
\end{gathered}
$$

where $D_{p, q}$ sends $\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta$ to the image of η under the composite

$$
\mathcal{H}_{q}(*) \cong \mathcal{H}_{p+k+q}\left(S^{p+k}, \mathrm{pt}\right)
$$

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\begin{gathered}
\mathrm{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\
\xrightarrow{\oplus_{p+q=n}(\mathrm{hur} \otimes \mathrm{id})^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}\left(X_{+}, *\right) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\oplus_{p+q=n} D_{p, q}} \mathcal{H}_{n}(X),
\end{gathered}
$$

where $D_{p, q}$ sends $\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta$ to the image of η under the composite

$$
\mathcal{H}_{q}(*) \cong \mathcal{H}_{p+k+q}\left(S^{p+k}, \mathrm{pt}\right) \xrightarrow{\mathcal{H}_{p+k+q}(f)} \mathcal{H}_{p+k+q}\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)
$$

Dold's Chern character for a CW-complex X is given by the following composite:

$$
\begin{gathered}
\mathrm{ch}_{n}: \bigoplus_{p+q=n} H_{p}\left(X ; \mathcal{H}_{q}(*)\right) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\
\xrightarrow{\oplus_{p+q=n}(\mathrm{hur} \otimes \mathrm{id})^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}\left(X_{+}, *\right) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\oplus_{p+q=n} D_{p, q}} \mathcal{H}_{n}(X),
\end{gathered}
$$

where $D_{p, q}$ sends $\left[f:\left(S^{p+k}, \mathrm{pt}\right) \rightarrow\left(S^{k} \wedge X_{+}, \mathrm{pt}\right)\right] \otimes \eta$ to the image of η under the composite

$$
\mathcal{H}_{q}(*) \cong \mathcal{H}_{p+k+q}\left(S^{p+k}, \mathrm{pt}\right) \xrightarrow{\mathcal{H}_{p+k+q}(f)} \mathcal{H}_{p+k+q}\left(S^{k} \wedge X_{+}, \mathrm{pt}\right) \cong \mathcal{H}_{p+q}(X)
$$

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory \mathcal{H}_{*}.
- We define a covariant functor called induction

$$
\text { ind }: \mathcal{F G I} \rightarrow \Lambda-\operatorname{Mod}
$$

from the category $\mathcal{F} \mathcal{G I}$ of finite groups with injective group homomorphisms as morphisms to the category of Λ-modules as follows. It sends G to $\mathcal{H}_{n}^{G}(p t)$ and an injection of finite groups $\alpha: H \rightarrow G$ to the morphism given by the induction structure

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory \mathcal{H}_{*}.
- We define a covariant functor called induction

from the category $\mathcal{F} \mathcal{G I}$ of finite groups with injective group homomorphisms as morphisms to the category of Λ-modules as follows. It sends G to $\mathcal{H}_{n}^{G}(p t)$ and an injection of finite groups $\alpha: H \rightarrow G$ to the morphism given by the induction structure

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory \mathcal{H}_{*}.
- We define a covariant functor called induction

$$
\text { ind }: \mathcal{F G I} \rightarrow \Lambda-\operatorname{Mod}
$$

from the category $\mathcal{F G I}$ of finite groups with injective group homomorphisms as morphisms to the category of Λ-modules as follows.

t sends G to $\mathcal{H}_{n}^{G}(\mathrm{pt})$ and an injection of finite groups

G to the morphism given by the induction structure

$$
\mathcal{H}_{n}^{H}(\mathrm{pt}) \xrightarrow{\mathrm{ind}_{\alpha}} \mathcal{H}_{n}^{G}\left(\mathrm{ind}_{\alpha} \mathrm{pt}\right) \xrightarrow{\mathcal{H}_{n}^{G}(\mathrm{pr})} \mathcal{H}_{n}^{G}(\mathrm{pt}) .
$$

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory \mathcal{H}_{*}.
- We define a covariant functor called induction

$$
\text { ind }: \mathcal{F G I} \rightarrow \Lambda \text { - Mod }
$$

from the category $\mathcal{F G \mathcal { G }}$ of finite groups with injective group homomorphisms as morphisms to the category of Λ-modules as follows. It sends G to $\mathcal{H}_{n}^{G}(\mathrm{pt})$ and an injection of finite groups $\alpha: H \rightarrow G$ to the morphism given by the induction structure

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory \mathcal{H}_{*}.
- We define a covariant functor called induction

$$
\text { ind }: \mathcal{F G I} \rightarrow \Lambda \text { - Mod }
$$

from the category $\mathcal{F G \mathcal { G }}$ of finite groups with injective group homomorphisms as morphisms to the category of Λ-modules as follows. It sends G to $\mathcal{H}_{n}^{G}(\mathrm{pt})$ and an injection of finite groups $\alpha: H \rightarrow G$ to the morphism given by the induction structure

$$
\mathcal{H}_{n}^{H}(\mathrm{pt}) \xrightarrow{\text { ind }} \mathcal{H}_{n}^{G}\left(\text { ind } \alpha_{\alpha} \mathrm{pt}\right) \xrightarrow{\mathcal{H}_{n}^{G}(\mathrm{pr})} \mathcal{H}_{n}^{G}(\mathrm{pt})
$$

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory \mathcal{H}_{*}.
- We define a covariant functor called induction

$$
\text { ind }: \mathcal{F G I} \rightarrow \Lambda \text { - Mod }
$$

from the category $\mathcal{F G \mathcal { G }}$ of finite groups with injective group homomorphisms as morphisms to the category of Λ-modules as follows. It sends G to $\mathcal{H}_{n}^{G}(\mathrm{pt})$ and an injection of finite groups $\alpha: H \rightarrow G$ to the morphism given by the induction structure

$$
\mathcal{H}_{n}^{H}(\mathrm{pt}) \xrightarrow{\mathrm{ind}_{\alpha}} \mathcal{H}_{n}^{G}\left(\mathrm{ind}_{\alpha} \mathrm{pt}\right) \xrightarrow{\mathcal{H}_{n}^{G}(\mathrm{pr})} \mathcal{H}_{n}^{G}(\mathrm{pt})
$$

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory \mathcal{H}_{*}.
- We define a covariant functor called induction

$$
\text { ind }: \mathcal{F G I} \rightarrow \Lambda \text { - Mod }
$$

from the category $\mathcal{F G \mathcal { G }}$ of finite groups with injective group homomorphisms as morphisms to the category of Λ-modules as follows. It sends G to $\mathcal{H}_{n}^{G}(\mathrm{pt})$ and an injection of finite groups $\alpha: H \rightarrow G$ to the morphism given by the induction structure

$$
\mathcal{H}_{n}^{H}(\mathrm{pt}) \xrightarrow{\mathrm{ind}_{\alpha}} \mathcal{H}_{n}^{G}\left(\mathrm{ind}_{\alpha} \mathrm{pt}\right) \xrightarrow{\mathcal{H}_{n}^{G}(\mathrm{pr})} \mathcal{H}_{n}^{G}(\mathrm{pt})
$$

Definition (Mackey extension)

We say that \mathcal{H}_{*} ? has a Mackey extension if for every $n \in \mathbb{Z}$ there is a contravariant functor called restriction

$$
\text { res: } \mathcal{F G I} \rightarrow \Lambda-\text { Mod }
$$

such that these two functors ind and res agree on objects and satisfy the double coset formula ,i.e., we have for two subgroups $H, K \subset G$ of the finite group G

where $c(g)$ is conjugation with g, i.e., $c(g)(h)=g h g^{-1}$.

Definition (Mackey extension)

We say that $\mathcal{H}_{*}^{?}$ has a Mackey extension if for every $n \in \mathbb{Z}$ there is a contravariant functor called restriction

$$
\text { res: } \mathcal{F G I} \rightarrow \Lambda \text { - Mod }
$$

such that these two functors ind and res agree on objects and satisfy the double coset formula ,i.e., we have for two subgroups $H, K \subset G$ of the finite group G

\square

Definition (Mackey extension)

We say that \mathcal{H}_{*} ? has a Mackey extension if for every $n \in \mathbb{Z}$ there is a contravariant functor called restriction

$$
\text { res: } \mathcal{F G I} \rightarrow \Lambda \text { - Mod }
$$

such that these two functors ind and res agree on objects and satisfy the double coset formula, ,i.e., we have for two subgroups $H, K \subset G$ of the finite group G

$$
\operatorname{res}_{G}^{K} \circ \operatorname{ind}_{H}^{G}=\sum_{K g H \in K \backslash G / H} \operatorname{ind}_{c(g): H \cap g^{-1} K g \rightarrow K} \circ \operatorname{res}_{H}^{H \cap g^{-1} K g},
$$

where $c(g)$ is conjugation with g, i.e., $c(g)(h)=g h g^{-1}$.

- In every case we will consider such a Mackey extension does exist and is given by an actual restriction.
- For instance for H_{0} ? $\left(-; \mathbf{K}^{\text {top }}\right)$ induction is the functor complex representation ring $R_{\mathbb{C}}$ with respect to induction of representations. The restriction part is given by the restriction of representations.
- In every case we will consider such a Mackey extension does exist and is given by an actual restriction.
- For instance for $H_{0}^{?}\left(-; \mathbf{K}^{\text {top }}\right)$ induction is the functor complex representation ring $R_{\mathbb{C}}$ with respect to induction of representations.
- In every case we will consider such a Mackey extension does exist and is given by an actual restriction.
- For instance for $H_{0}^{?}\left(-; \mathbf{K}^{\text {top }}\right)$ induction is the functor complex representation ring $R_{\mathbb{C}}$ with respect to induction of representations. The restriction part is given by the restriction of representations.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in \wedge-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{\text {? }}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character
chn ${ }_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in 1} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X)$.

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);
- $S_{H}\left(\mathcal{U}_{q}^{H}(*)\right):=\operatorname{cok}\left(\bigoplus_{K \in H}^{K \in H^{\prime}}\right.$ ind $\left._{K}^{H}: \bigoplus_{K \neq H}^{K \in H_{q}^{K}(*)} \rightarrow \mathcal{H}_{q}^{H}(*)\right)$
- $\mathrm{ch}_{*}^{?}$ is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in \wedge-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that H? has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);

- $\mathrm{ch}_{*}^{?}$ is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{?}$ has a Mackey extension. conjugacy classes (H) of finite subgroups H of G. Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);

- $\mathrm{ch}_{*}^{?}$ is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{?}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);

- $\mathrm{ch}_{*}^{?}$ is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that \mathcal{H}_{*} h has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group)
- $S_{H}\left(\mathcal{H}_{q}^{H}(*)\right):=\operatorname{cok}\left(\bigoplus_{\substack{K \subset H \\ K \neq H}}\right.$ ind $_{K}^{H}$$\bigoplus_{\substack{K \neq H}} \mathcal{H}_{q}^{K}($
- ch_{*} is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{?}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group)
\square
- ch_{*} is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{?}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);

- $\mathrm{ch}_{*}^{?}$ is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{?}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\leftrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);
- $S_{H}\left(\mathcal{H}_{a}^{H}(*)\right):=\operatorname{cok}$

- $c_{*}^{?}$ is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{?}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);
- $S_{H}\left(\mathcal{H}_{q}^{H}(*)\right):=\operatorname{cok}\left(\underset{\substack{K \subset H \\ K \neq H}}{ } \operatorname{ind}_{K}^{H}: \bigoplus_{\substack{K \neq H}}^{K \neq H} \mathcal{H} \mathcal{H}_{q}^{K}(*) \rightarrow \mathcal{H}_{q}^{H}(*)\right)$;
- ch? is an equivalence of equivariant homology theories.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}_{*}^{?}$ be a equivariant homology theory with values in Λ-modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}_{*}^{?}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\leftrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

- $C_{G} H$ is the centralizer and $N_{G} H$ the normalizer of $H \subseteq G$;
- $W_{G} H:=N_{G} H / H \cdot C_{G} H$ (This is always a finite group);
- $S_{H}\left(\mathcal{H}_{q}^{H}(*)\right):=\operatorname{cok}\left(\underset{\substack{K \neq H \\ K \neq H}}{ } \operatorname{ind}_{K}^{H}: \bigoplus_{\substack{K \neq H}}^{K \neq H} \mathcal{H} \mathcal{H}_{q}^{K}(*) \rightarrow \mathcal{H}_{q}^{H}(*)\right)$;
- $\mathrm{ch}_{*}^{?}$ is an equivalence of equivariant homology theories.

Theorem (Artin's Theorem)

Let G be finite. Then the map

is surjective after inverting $|G|$, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

$$
\bigoplus_{C C, D \neq C} \operatorname{ind}_{D}^{C}: \bigoplus_{D \subset C, D \neq C} R_{\mathbb{C}}(D) \rightarrow R_{\mathbb{C}}(C) .
$$

For an appropriate idempotent $\theta_{C} \in R_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]$ the Artin defect is after inverting the order of $|C|$ canonically isomorphic to

Theorem (Artin's Theorem)

Let G be finite. Then the map

is surjective after inverting $|G|$, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

$$
\bigoplus_{-C, D \neq C} \operatorname{ind}_{D}^{C}: \bigoplus_{D \subset C, D \neq C} R_{\mathbb{C}}(D) \rightarrow R_{\mathbb{C}}(C) .
$$

For an appropriate idempotent $\theta_{C} \in R_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]$ the Artin defect is after inverting the order of $|C|$ canonically isomorphic to

Theorem (Artin's Theorem)

Let G be finite. Then the map

$$
\bigoplus_{C \subset G} \operatorname{ind}_{C}^{G}: \bigoplus_{C \subset G} R_{\mathbb{C}}(C) \rightarrow R_{\mathbb{C}}(G)
$$

is surjective after inverting $|G|$, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

For an appropriate idempotent $\theta_{C} \in R_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]$ the Artin defect is after inverting the order of $|C|$ canonically isomorphic to

Theorem (Artin's Theorem)

Let G be finite. Then the map

$$
\bigoplus_{C \subset G} \operatorname{ind}_{C}^{G}: \bigoplus_{C \subset G} R_{\mathbb{C}}(C) \rightarrow R_{\mathbb{C}}(G)
$$

is surjective after inverting $|G|$, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

For an appropriate idempotent $\theta_{C} \in R_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]$ the Artin defect is after inverting the order of $|C|$ canonically isomorphic to

Theorem (Artin's Theorem)

Let G be finite. Then the map

$$
\bigoplus_{C \subset G} \operatorname{ind}_{C}^{G}: \bigoplus_{C \subset G} R_{\mathbb{C}}(C) \rightarrow R_{\mathbb{C}}(G)
$$

is surjective after inverting $|G|$, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

$$
\bigoplus_{\triangle \subset C, D \neq C} \operatorname{ind}_{D}^{C}: \bigoplus_{D \subset C, D \neq C} R_{\mathbb{C}}(D) \rightarrow R_{\mathbb{C}}(C) .
$$

For an appropriate idempotent $\theta_{C} \in R_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z} \frac{1}{C}$ the Artin defect is after inverting the order of $|C|$ canonically isomorphic to

Theorem (Artin's Theorem)

Let G be finite. Then the map

$$
\bigoplus_{C \subset G} \operatorname{ind}_{C}^{G}: \bigoplus_{C \subset G} R_{\mathbb{C}}(C) \rightarrow R_{\mathbb{C}}(G)
$$

is surjective after inverting $|G|$, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

$$
\bigoplus_{D \subset C, D \neq C} \operatorname{ind}_{D}^{C}: \bigoplus_{D \subset C, D \neq C} R_{\mathbb{C}}(D) \rightarrow R_{\mathbb{C}}(C) .
$$

For an appropriate idempotent $\theta_{C} \in R_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]$ the Artin defect is after inverting the order of $|C|$ canonically isomorphic to

$$
\theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right] .
$$

- Let $K_{*}^{G}=H_{*}^{?}\left(-; \mathbf{K}^{\text {top }}\right)$ be equivariant topological K-theory. - We get for a finite subgroup $H \subseteq G$

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd.
- $S_{C}\left(K_{q}^{C}(*)\right) \otimes_{\pi} \mathbb{Q}=\theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{T}} \mathbb{Q}$ if C is finite cyclic and a is even.
- Let $K_{*}^{G}=H_{*}^{?}\left(-; \mathbf{K}^{\text {top }}\right)$ be equivariant topological K-theory.
- We get for a finite subgroup $H \subseteq G$

$$
K_{n}^{G}(G / H)=K_{n}^{H}(\mathrm{pt})= \begin{cases}R_{\mathbb{C}}(H) & \text { if } n \text { is even; } \\ \{0\} & \text { if } n \text { is odd }\end{cases}
$$

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd.
- $S_{C}\left(K_{G}^{C}(*)\right) \otimes_{\pi} \mathbb{Q}=\theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\pi} \mathbb{Q}$ if C is finite cyclic and a is even.
- Let $K_{*}^{G}=H_{*}^{?}\left(-; \mathbf{K}^{\text {top }}\right)$ be equivariant topological K-theory.
- We get for a finite subgroup $H \subseteq G$

$$
K_{n}^{G}(G / H)=K_{n}^{H}(\mathrm{pt})= \begin{cases}R_{\mathbb{C}}(H) & \text { if } n \text { is even; } \\ \{0\} & \text { if } n \text { is odd }\end{cases}
$$

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd.
 even.
- Let $K_{*}^{G}=H_{*}^{?}\left(-; \mathbf{K}^{\text {top }}\right)$ be equivariant topological K-theory.
- We get for a finite subgroup $H \subseteq G$

$$
K_{n}^{G}(G / H)=K_{n}^{H}(\mathrm{pt})= \begin{cases}R_{\mathbb{C}}(H) & \text { if } n \text { is even; } \\ \{0\} & \text { if } n \text { is odd }\end{cases}
$$

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd.
- $S_{C}\left(K_{q}^{C}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=\theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q}$ if C is finite cyclic and q is even.
- Recall

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

Example (Improvement of Artin's Theorem)

Let G be finite, $X=\{*\}$ and $\mathcal{H}_{*}=K_{*}$? Then we get an improvement of Artin's theorem. Namely, the equivariant Chern character induces an isomorphism

where (C) runs over the conjugacy classes of finite cyclic subgroups.

- Recall

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

Example (Improvement of Artin's Theorem)

Let G be finite, $X=\{*\}$ and $\mathcal{H}_{*}^{?}=K_{*}$? Then we get an improvement of Artin's theorem. Namely, the equivariant Chern character induces an isomorphism

- Recall

$$
\mathrm{ch}_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \xlongequal{\Rightarrow} \mathcal{H}_{n}^{G}(X) .
$$

Example (Improvement of Artin's Theorem)

Let G be finite, $X=\{*\}$ and $\mathcal{H}_{*}^{?}=K_{*}^{?}$. Then we get an improvement of Artin's theorem. Namely, the equivariant Chern character induces an isomorphism

where (C) runs over the conjugacy classes of finite cyclic subgroups.

- Recall

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X)
$$

Example (Improvement of Artin's Theorem)

Let G be finite, $X=\{*\}$ and $\mathcal{H}_{*}^{?}=K_{*}^{?}$. Then we get an improvement of Artin's theorem. Namely, the equivariant Chern character induces an isomorphism

where (C) runs over the conjugacy classes of finite cyclic subgroups.

- Recall

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\rightrightarrows} \mathcal{H}_{n}^{G}(X) .
$$

Example (Improvement of Artin's Theorem)

Let G be finite, $X=\{*\}$ and $\mathcal{H}_{*}^{?}=K_{*}^{?}$. Then we get an improvement of Artin's theorem. Namely, the equivariant Chern character induces an isomorphism

$$
\operatorname{ch}_{0}^{G}(\mathrm{pt}): \bigoplus_{(C)} \mathbb{Z} \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|G|}\right] \cong R_{\mathbb{C}}(G) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|G|}\right]
$$

where (C) runs over the conjugacy classes of finite cyclic subgroups.

Corollary (Rational computation of $K_{*}^{G}(\underline{E} G)$)

For every group G and every $n \in \mathbb{Z}$ we obtain an isomorphism

- If the Baum-Connes Conjecture holds for G, this gives a computation of $K_{n}\left(C_{r}^{*}(G)\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Corollary (Rational computation of $K_{*}^{G}(\underline{E} G)$)

For every group G and every $n \in \mathbb{Z}$ we obtain an isomorphism
$\bigoplus \bigoplus H_{p+2 k}\left(B C_{G} C\right) \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\rightrightarrows} K_{n}^{G}(\underline{E} G) \otimes_{\mathbb{Z}} \mathbb{Q}$.
(C) k

- If the Baum-Connes Conjecture holds for G, this gives a computation of $K_{n}\left(C_{r}^{*}(G)\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Corollary (Rational computation of $K_{*}^{G}(\underline{E} G)$)

For every group G and every $n \in \mathbb{Z}$ we obtain an isomorphism
$\bigoplus \bigoplus H_{p+2 k}\left(B C_{G} C\right) \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\rightrightarrows} K_{n}^{G}(\underline{E} G) \otimes_{\mathbb{Z}} \mathbb{Q}$.
(C) k

- If the Baum-Connes Conjecture holds for G, this gives a computation of $K_{n}\left(C_{r}^{*}(G)\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.
- The last corollary follows from the equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\Longrightarrow} \mathcal{H}_{n}^{G}(X)
$$

using the following facts.

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd.
$S_{C}\left(K_{q}^{C}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=\theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q}$ if C is finite cyclic and q is even.
- The last corollary follows from the equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\Longrightarrow} \mathcal{H}_{n}^{G}(X)
$$

using the following facts.

- $E G^{C}$ is a contractible proper $C_{G} C$ - space. Hence the canonical map $B C_{G} C \rightarrow C_{G} C \backslash E G^{C}$ induces an isomorphism

$$
H_{p}\left(B C_{G} C\right) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\rightrightarrows} H_{p}\left(C_{G} C \backslash E G^{C}\right)
$$

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd. $S_{C}\left(K_{q}^{C}(*)\right) \otimes_{\mathbb{Z}} \mathbb{O}=\theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{T}} \mathbb{O}$ if C is finite cyclic and a is even.
- The last corollary follows from the equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\Longrightarrow} \mathcal{H}_{n}^{G}(X)
$$

using the following facts.

- $E G^{C}$ is a contractible proper $C_{G} C$ - space. Hence the canonical map $B C_{G} C \rightarrow C_{G} C \backslash \underline{E} G^{C}$ induces an isomorphism

$$
H_{p}\left(B C_{G} C\right) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\rightrightarrows} H_{p}\left(C_{G} C \backslash \underline{E} G^{C}\right) \otimes_{\mathbb{Z}} \mathbb{Q} .
$$

- The last corollary follows from the equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\Longrightarrow} \mathcal{H}_{n}^{G}(X)
$$

using the following facts.

- $E G^{C}$ is a contractible proper $C_{G} C$ - space. Hence the canonical map $B C_{G} C \rightarrow C_{G} C \backslash \underline{E} G^{C}$ induces an isomorphism

$$
H_{p}\left(B C_{G} C\right) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\leftrightarrows} H_{p}\left(C_{G} C \backslash \underline{E} G^{C}\right) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd. even.
- The last corollary follows from the equivariant Chern character

$$
\operatorname{ch}_{n}^{G}: \bigoplus_{p+q=n(H) \in I} \bigoplus_{p} H_{p}\left(C_{G} H \backslash X^{H} ; \Lambda\right) \otimes_{\Lambda\left[W_{G} H\right]} S_{H}\left(\mathcal{H}_{q}^{H}(*)\right) \stackrel{\cong}{\Longrightarrow} \mathcal{H}_{n}^{G}(X)
$$

using the following facts.

- $E G^{C}$ is a contractible proper $C_{G} C$ - space. Hence the canonical map $B C_{G} C \rightarrow C_{G} C \backslash \underline{E} G^{C}$ induces an isomorphism

$$
H_{p}\left(B C_{G} C\right) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\leftrightarrows} H_{p}\left(C_{G} C \backslash \underline{E} G^{C}\right) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

- $S_{H}\left(K_{q}^{H}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=0$ if H is not cyclic and q is even or if q is odd.
- $S_{C}\left(K_{q}^{C}(*)\right) \otimes_{\mathbb{Z}} \mathbb{Q}=\theta_{C} \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q}$ if C is finite cyclic and q is even.

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

Theorem (Completion Theorem, Atiyah-Segal (1969))

Let G be a finite group.
Then there are isomorphisms of abelian groups

$$
\begin{aligned}
& K^{0}(B G) \cong R_{\mathbb{C}}(G) \widehat{\mathbb{I}_{G}} \\
& \cong \mathbb{Z} \times \prod_{p \text { prime }} \mathbb{I}_{p}(G) \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \cong \mathbb{Z} \times \prod_{\text {p prime }}\left(\mathbb{Z}_{p}\right)^{r(p)}
\end{aligned}
$$

$$
K^{1}(B G) \cong 0
$$

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
I_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

Theorem (Completion Theorem,

Let G be a finite group.
Then there are isomorphisms of abelian groups

$K^{1}(B G) \cong 0$.

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

$K^{1}(B G) \cong 0$.

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

$K^{1}(B G) \cong 0$.

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

Theorem (Completion Theorem, Atiyah-Segal (1969))

Let G be a finite group.

Then there are isomorphisms of abelian groups

p prime
p prime

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

Theorem (Completion Theorem, Atiyah-Segal (1969))

Let G be a finite group.
Then there are isomorphisms of abelian groups

p prime

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

Theorem (Completion Theorem, Atiyah-Segal (1969))

Let G be a finite group.
Then there are isomorphisms of abelian groups

$$
K^{0}(B G) \cong R_{\mathbb{C}}(G)_{\mathbb{I}_{G}}
$$

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

Theorem (Completion Theorem, Atiyah-Segal (1969))

Let G be a finite group.
Then there are isomorphisms of abelian groups

$$
\begin{aligned}
K^{0}(B G) & \cong R_{\mathbb{C}}(G) \widehat{\mathbb{I}_{G}} \\
& \cong \mathbb{Z} \times \prod_{\text {p prime }} \mathbb{I}_{p}(G) \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \cong \mathbb{Z} \times \prod_{\text {p prime }}\left(\mathbb{Z}_{p}\right)^{r(p)}
\end{aligned}
$$

Topological K-theory of classifying spaces

- For a prime p denote by $r(p)=\left|\operatorname{con}_{p}(G)\right|$ the number of conjugacy classes (g) of elements $g \neq 1$ in G of p-power order.
- \mathbb{I}_{G} is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{p}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \rightarrow \mathbb{I}\left(G_{p}\right)$.

Theorem (Completion Theorem, Atiyah-Segal (1969))

Let G be a finite group.
Then there are isomorphisms of abelian groups

$$
\begin{aligned}
K^{0}(B G) \cong & R_{\mathbb{C}}(G) \widehat{\mathbb{I}_{G}} \\
& \cong \mathbb{Z} \times \prod_{\text {pprime }} \mathbb{I}_{p}(G) \otimes_{\mathbb{Z}} \mathbb{Z} \hat{p} \cong \mathbb{Z} \times \prod_{\text {pprime }}\left(\mathbb{Z}_{p}\right)^{r(p)} ; \\
K^{1}(B G) \cong & 0
\end{aligned}
$$

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^{*}(B G)$ the topological (complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space EG for proper G-actions.
Then there is a \mathbb{Q}-isomorphism
$\overline{\operatorname{ch}}_{G}^{n}: K^{n}(B G) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\longrightarrow}$
$\left(\prod_{i \in \mathbb{Z}} H^{2 i+n}(B G ; \mathbb{Q})\right) \times \prod_{\text {p prime }} \prod_{(g) \in \operatorname{con} p(G)}\left(\prod_{i \in \mathbb{Z}} H^{2 i+n}\left(B C_{G}\langle g\rangle ; Q_{p}\right)\right)$.

- The multiplicative structure can also be determined.
- There are many groups for which a cocompact G-CW-model for EG exists, e.g., hyperbolic groups.

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^{*}(B G)$ the topological
(complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space EG for proper G-actions.
Then there is a \mathbb{Q}-isomorphism

- The multiplicative structure can also be determined.
- There are many groups for which a cocompact G-CW-model for EG exists, e.g., hyperbolic groups.

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^{*}(B G)$ the topological (complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space EG for proper G-actions.
Then there is a \mathbb{Q}-isomorphism

- The multiplicative structure can also be determined.
- There are many groups for which a cocompact G-CW-model for EG exists, e.g., hyperbolic groups.

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^{*}(B G)$ the topological (complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space $\underline{E} G$ for proper G-actions.
Then there is a \mathbb{Q}-isomorphism

- The multiplicative structure can also be determined
- There are many groups for which a cocompact G-CW-model for EG exists, e.g., hyperbolic groups.

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^{*}(B G)$ the topological (complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space $\underline{E} G$ for proper G-actions.
Then there is a \mathbb{Q}-isomorphism

$$
\begin{aligned}
& \overline{\mathrm{ch}}_{G}^{n}: K^{n}(B G) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\rightrightarrows} \\
& \left(\prod_{i \in \mathbb{Z}} H^{2 i+n}(B G ; \mathbb{Q})\right) \times \prod_{p \text { prime }} \prod_{(g) \in \operatorname{con}_{p}(G)}\left(\prod_{i \in \mathbb{Z}} H^{2 i+n}\left(B C_{G}\langle g\rangle ; \mathbb{Q}_{\hat{p}}\right)\right) .
\end{aligned}
$$

- The multiplicative structure can also be determined
- There are many groups for which a cocompact G-CW-model for EG exists, e.g., hyperbolic groups.

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^{*}(B G)$ the topological (complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space $\underline{E} G$ for proper G-actions.
Then there is a \mathbb{Q}-isomorphism

$$
\begin{aligned}
& \overline{\mathrm{ch}}_{G}^{n}: K^{n}(B G) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\rightrightarrows} \\
& \left(\prod_{i \in \mathbb{Z}} H^{2 i+n}(B G ; \mathbb{Q})\right) \times \prod_{p \text { prime }} \prod_{(g) \in \operatorname{con}_{p}(G)}\left(\prod_{i \in \mathbb{Z}} H^{2 i+n}\left(B C_{G}\langle g\rangle ; \mathbb{Q}_{\hat{p}}\right)\right) .
\end{aligned}
$$

- The multiplicative structure can also be determined.
- There are many groups for which a cocompact G-CW-model for EG exists, e.g., hyperbolic groups.

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^{*}(B G)$ the topological (complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space EG for proper G-actions.
Then there is a \mathbb{Q}-isomorphism

$$
\begin{aligned}
& \overline{\operatorname{ch}}_{G}^{n}: K^{n}(B G) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} \\
& \left(\prod_{i \in \mathbb{Z}} H^{2 i+n}(B G ; \mathbb{Q})\right) \times \prod_{p \text { prime }} \prod_{(g) \in \operatorname{con}_{p}(G)}\left(\prod_{i \in \mathbb{Z}} H^{2 i+n}\left(B C_{G}\langle g\rangle ; \mathbb{Q}_{\hat{p}}\right)\right) .
\end{aligned}
$$

- The multiplicative structure can also be determined.
- There are many groups for which a cocompact G-CW-model for EG exists, e.g., hyperbolic groups.

Example $\left(S L_{3}(\mathbb{Z})\right)$

- It is well-known that its rational cohomology satisfies $\tilde{H}^{n}\left(B S L_{3}(\mathbb{Z}) ; \mathbb{Q}\right)=0$ for all $n \in \mathbb{Z}$.
- Actually by a result of Snule (1978) the quotient space $S L_{3}(\mathbb{Z}) \backslash E S L_{3}(\mathbb{Z})$ is contractible and compact.
- From the classification of finite subgroups of $S L_{3}(\mathbb{Z})$ we see that $S L_{3}(\mathbb{Z})$ contains up to conjugacy two elements of order 2 , two elements of order 4 and two elements of order 3 and no further conjugacy classes of non-trivial elements of prime power order.
- The rational homoloav of each of the centralizers of elements in $\operatorname{con}_{2}(G)$ and $\operatorname{con}_{3}(G)$ agrees with the one of the trivial group.
- Hence we get

$$
\begin{aligned}
& K^{0}\left(B S L_{3}(\mathbb{Z})\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q} \times\left(Q_{2}\right)^{4} \times\left(Q_{3}\right)^{2} \\
& K^{1}\left(B S L_{3}(\mathbb{Z})\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong 0
\end{aligned}
$$

Example ($\mathrm{SL}_{3}(\mathbb{Z})$)

- It is well-known that its rational cohomology satisfies $\widetilde{H}^{n}\left(B S L_{3}(\mathbb{Z}) ; \mathbb{Q}\right)=0$ for all $n \in \mathbb{Z}$.
- Actually, by a result of Soule (1978) the quotient space $S L_{3}(\mathbb{Z}) \backslash E S L_{3}(\mathbb{Z})$ is contractible and compact.
- From the clascification of finite subgrouns of $S_{3}(\mathbb{Z})$ we see that $S L_{3}(\mathbb{Z})$ contains up to conjugacy two elements of order 2, two elements of order 4 and two elements of order 3 and no further coniugacy classes of non-trivial elements of prime power order.
- The rational homology of each of the centralizers of elements in $\operatorname{con}_{2}(G)$ and $\operatorname{con}_{3}(G)$ agrees with the one of the trivial group.
- Hence we get

Example ($\mathrm{SL}_{3}(\mathbb{Z})$)

- It is well-known that its rational cohomology satisfies $\tilde{H}^{n}\left(B S L_{3}(\mathbb{Z}) ; \mathbb{Q}\right)=0$ for all $n \in \mathbb{Z}$.
- Actually, by a result of Soule (1978) the quotient space $S L_{3}(\mathbb{Z}) \backslash \underline{E} S L_{3}(\mathbb{Z})$ is contractible and compact.
- From the classification of finite subgroups of $S L_{3}(\mathbb{Z})$ we see that $S L_{3}(\mathbb{Z})$ contains up to conjugacy two elements of order 2 , two elements of order 4 and two elements of order 3 and no further conjugacy classes of non-trivial elements of prime power order.
- The rational homology of each of the centralizers of elements in $\operatorname{con}_{2}(G)$ and $\operatorname{con}_{3}(G)$ agrees with the one of the trivial group.
- Hence we get

Example ($\mathrm{SL}_{3}(\mathbb{Z})$)

- It is well-known that its rational cohomology satisfies $\tilde{H}^{n}\left(B S L_{3}(\mathbb{Z}) ; \mathbb{Q}\right)=0$ for all $n \in \mathbb{Z}$.
- Actually, by a result of Soule (1978) the quotient space $S L_{3}(\mathbb{Z}) \backslash \underline{E} S L_{3}(\mathbb{Z})$ is contractible and compact.
- From the classification of finite subgroups of $S L_{3}(\mathbb{Z})$ we see that $S L_{3}(\mathbb{Z})$ contains up to conjugacy two elements of order 2, two elements of order 4 and two elements of order 3 and no further conjugacy classes of non-trivial elements of prime power order.
- The rational homology of each of the centralizers of elements in $\operatorname{con}_{2}(G)$ and $\mathrm{con}_{3}(G)$ agrees with the one of the trivial group.
- Hence we det

Example ($\mathrm{SL}_{3}(\mathbb{Z})$)

- It is well-known that its rational cohomology satisfies $\tilde{H}^{n}\left(B S L_{3}(\mathbb{Z}) ; \mathbb{Q}\right)=0$ for all $n \in \mathbb{Z}$.
- Actually, by a result of Soule (1978) the quotient space $S L_{3}(\mathbb{Z}) \backslash \underline{E} S L_{3}(\mathbb{Z})$ is contractible and compact.
- From the classification of finite subgroups of $S L_{3}(\mathbb{Z})$ we see that $S L_{3}(\mathbb{Z})$ contains up to conjugacy two elements of order 2, two elements of order 4 and two elements of order 3 and no further conjugacy classes of non-trivial elements of prime power order.
- The rational homology of each of the centralizers of elements in $\operatorname{con}_{2}(G)$ and $\operatorname{con}_{3}(G)$ agrees with the one of the trivial group.
- Hence we get

Example ($\mathrm{SL}_{3}(\mathbb{Z})$)

- It is well-known that its rational cohomology satisfies $\tilde{H}^{n}\left(B S L_{3}(\mathbb{Z}) ; \mathbb{Q}\right)=0$ for all $n \in \mathbb{Z}$.
- Actually, by a result of Soule (1978) the quotient space $S L_{3}(\mathbb{Z}) \backslash \underline{E} S L_{3}(\mathbb{Z})$ is contractible and compact.
- From the classification of finite subgroups of $S L_{3}(\mathbb{Z})$ we see that $S L_{3}(\mathbb{Z})$ contains up to conjugacy two elements of order 2, two elements of order 4 and two elements of order 3 and no further conjugacy classes of non-trivial elements of prime power order.
- The rational homology of each of the centralizers of elements in $\operatorname{con}_{2}(G)$ and $\operatorname{con}_{3}(G)$ agrees with the one of the trivial group.
- Hence we get

$$
\begin{aligned}
& K^{0}\left(B S L_{3}(\mathbb{Z})\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q} \times\left(\mathbb{Q}_{2}\right)^{4} \times\left(\mathbb{Q}_{3}\right)^{2} ; \\
& K^{1}\left(B S L_{3}(\mathbb{Z})\right) \otimes_{\mathbb{Z}} \mathbb{Q} \cong 0 .
\end{aligned}
$$

Example (Continued)

- The identification of $K^{0}\left(B S L_{3}(\mathbb{Z})\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ above is compatible with the multiplicative structures.
- Actually the computation using Brown-Petersen cohomology and the Conner-Floyd relation by Tezuka-Yagita (1992) gives the integral computation

has computed the integral cohomology of $S L_{3}(\mathbb{Z})$.

Example (Continued)

- The identification of $K^{0}\left(B S L_{3}(\mathbb{Z})\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ above is compatible with the multiplicative structures.
- Actually the computation using Brown-Petersen cohomology and the Conner-Floyd relation by Tezuka-Yagita (1992) gives the integral computation

$$
\begin{aligned}
& K^{0}\left(B S L_{3}(\mathbb{Z})\right) \cong \mathbb{Z} \times(\mathbb{Z} \hat{2})^{4} \times\left(\mathbb{Z}_{\hat{3}}\right)^{2} ; \\
& K^{1}\left(B S L_{3}(\mathbb{Z})\right) \cong 0 .
\end{aligned}
$$

has computed the integral cohomology of $S L_{3}(\mathbb{Z})$.

Example (Continued)

- The identification of $K^{0}\left(B S L_{3}(\mathbb{Z})\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ above is compatible with the multiplicative structures.
- Actually the computation using Brown-Petersen cohomology and the Conner-Floyd relation by Tezuka-Yagita (1992) gives the integral computation

$$
\begin{aligned}
K^{0}\left(B S L_{3}(\mathbb{Z})\right) & \cong \mathbb{Z} \times\left(\mathbb{Z}_{2}\right)^{4} \times\left(\mathbb{Z}_{3}\right)^{2} \\
K^{1}\left(B S L_{3}(\mathbb{Z})\right) & \cong 0
\end{aligned}
$$

- Soule (1978) has computed the integral cohomology of $S L_{3}(\mathbb{Z})$.

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
(NM) $M \in M \mathcal{M N}, M \neq\{1\} \Rightarrow N_{G} M=M$.
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
- Fuchsian groups;
- One-relator groups G.

A computation

- Let G be a discrete group. Let MFIN be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
(NM) $M \in \mathcal{M F I N}, M \neq\{1\} \Rightarrow N_{G} M=M$.
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
- Fuchsian groups;
- One-relator groups G.

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
- Fuchsian groups;
- One-relator groups G.

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F} \mathcal{I N}$.
- Assume that G satisfies the following assertions:

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
- Fuchsian groups;
- One-relator groups G.

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
(NM) $M \in \mathcal{M F I N}, M \neq\{1\} \Rightarrow N_{G} M=M$.

- Here are some examples of groups G which satisfy conditions (M) and (NM)
 - Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
 - Fuchsian groups;
 - One-relator groups G.

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
(NM) $M \in \mathcal{M F I N}, M \neq\{1\} \Rightarrow N_{G} M=M$.
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the
conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
- Fuchsian groups;
- One-relator groups G.

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
(NM) $M \in \mathcal{M F I N}, M \neq\{1\} \Rightarrow N_{G} M=M$.
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
(NM) $M \in \mathcal{M F I N}, M \neq\{1\} \Rightarrow N_{G} M=M$.
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
- Fuchsian groups;

A computation

- Let G be a discrete group. Let $\mathcal{M F I N}$ be the subset of $\mathcal{F I N}$ consisting of elements in $\mathcal{F I} \mathcal{N}$ which are maximal in $\mathcal{F I N}$.
- Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
(NM) $M \in \mathcal{M F I N}, M \neq\{1\} \Rightarrow N_{G} M=M$.
- Here are some examples of groups G which satisfy conditions (M) and (NM):
- Extensions $1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow F \rightarrow 1$ for finite F such that the conjugation action of F on \mathbb{Z}^{n} is free outside $0 \in \mathbb{Z}^{n}$;
- Fuchsian groups;
- One-relator groups G.
- For such a group there is a nice model for $\underline{E} G$ with as few non-free cells as possible.
conjugacy classes of maximal finite subgroups of $M_{i} \subseteq G$. By attaching free G-cells we get an inclusion of G-CW-complexes $j_{1}: \coprod_{i \in I} G \times_{M_{i}} E M_{i} \rightarrow E G$.
- Define EG as the G-pushout

where u_{1} is the obvious G-map obtained by collapsing each $E M_{i}$ to a point.
- For such a group there is a nice model for $\underline{E} G$ with as few non-free cells as possible. Let $\left\{\left(M_{i}\right) \mid i \in I\right\}$ be the set of conjugacy classes of maximal finite subgroups of $M_{i} \subseteq G$.
- Define EG as the G-pushout

where u_{1} is the obvious G-map obtained by collapsing each $E M_{i}$
to a point.
- For such a group there is a nice model for $\underline{E} G$ with as few non-free cells as possible. Let $\left\{\left(M_{i}\right) \mid i \in I\right\}$ be the set of conjugacy classes of maximal finite subgroups of $M_{i} \subseteq G$. By attaching free G-cells we get an inclusion of G-CW-complexes $j_{1}: \coprod_{i \in I} G \times_{M_{i}} E M_{i} \rightarrow E G$.
- Define EG as the G-pushout

where u_{1} is the obvious G-map obtained by collapsing each $E M_{i}$
to a point.
- For such a group there is a nice model for $\underline{E} G$ with as few non-free cells as possible. Let $\left\{\left(M_{i}\right) \mid i \in I\right\}$ be the set of conjugacy classes of maximal finite subgroups of $M_{i} \subseteq G$. By attaching free G-cells we get an inclusion of G - $C W$-complexes $j_{1}: \coprod_{i \in I} G \times_{M_{i}} E M_{i} \rightarrow E G$.
- Define $\underline{E} G$ as the G-pushout

$$
\begin{aligned}
& \coprod_{i \in I} G \times_{M_{i}} E M_{i} \xrightarrow{j_{1}} E G \\
& \underset{\coprod_{i \in I} G / M_{i} \xrightarrow{k_{1}} \underset{\text { EG }}{ }{ }^{f_{1}} G}{u_{1}}
\end{aligned}
$$

where u_{1} is the obvious G-map obtained by collapsing each $E M_{i}$ to a point.

- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We beain with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\prod_{i \in l} G / M_{i}\right)^{H}=\left(G / M_{i 0}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=\mathrm{pt}$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence $\underline{E} G$ is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite
that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i 0}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=\mathrm{pt}$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence $\underline{E} G$ is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=p t$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence $\underline{E} G$ is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is
subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=p t$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence $\underline{E} G$ is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$.

Hence $E G^{H}=\mathrm{pt}$.

- It remains to treat $H:=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence $\underline{E} G$ is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=p t$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence EG is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E \underline{G} G^{H}=\mathrm{pt}$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence $\underline{E} G$ is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=\mathrm{pt}$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant
non-equivariant homotopy equivalence. Hence $E G$ is contractible.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=\mathrm{pt}$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence.
- Next we explain why $\underline{E} G$ is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for $H \subseteq G$ finite that $\underline{E} G^{H}$ contractible.
- We begin with the case $H \neq\{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_{0} \in I$ such that H is subconjugated to $M_{i_{0}}$ and is not subconjugated to M_{i} for $i \neq i_{0}$. We get

$$
\left(\coprod_{i \in I} G / M_{i}\right)^{H}=\left(G / M_{i_{0}}\right)^{H}=\mathrm{pt} .
$$

Hence $E G^{H}=\mathrm{pt}$.

- It remains to treat $H=\{1\}$. Since u_{1} is a non-equivariant homotopy equivalence and j_{1} is a cofibration, f_{1} is a non-equivariant homotopy equivalence. Hence $\underline{E} G$ is contractible.
- Consider the pushout obtained from the G-pushout above by dividing the G-action
$\coprod_{i \in I} B M_{i} \longrightarrow B G$

$\coprod_{i \in I} \mathrm{pt} \longrightarrow G \backslash \underline{E} G$
- The associated Mayer-Vietoris sequence yields

$$
\rightarrow \widetilde{H}_{p+1}(G \backslash E G) \rightarrow \bigoplus_{i \in 1} \widetilde{H}_{p}\left(B M_{i}\right) \rightarrow \widetilde{H}_{p}(B G)
$$

$\rightarrow \widetilde{H}_{p}(G \backslash \underline{E} G) \rightarrow$

- In particular we obtain an isomorphism for $p \geq \operatorname{dim}(\underline{E} G)+2$

- Consider the pushout obtained from the G-pushout above by dividing the G-action

- The associated Mayer-Vietoris sequence yields

$$
\begin{aligned}
\cdots \rightarrow \tilde{H}_{p+1}(G \backslash \underline{E} G) \rightarrow \bigoplus_{i \in 1} \tilde{H}_{p}\left(B M_{i}\right) \rightarrow \widetilde{H}_{p}(B G) & \\
& \rightarrow \widetilde{H}_{p}(G \backslash \underline{E} G) \rightarrow \ldots
\end{aligned}
$$

- In particular we obtain an isomorphism for $p \geq \operatorname{dim}(\underline{E} G)+2$

- Consider the pushout obtained from the G-pushout above by dividing the G-action

- The associated Mayer-Vietoris sequence yields

$$
\begin{aligned}
\cdots \rightarrow \tilde{H}_{p+1}(G \backslash \underline{E} G) \rightarrow \bigoplus_{i \in 1} \tilde{H}_{p}\left(B M_{i}\right) \rightarrow \widetilde{H}_{p}(B G) & \\
& \rightarrow \widetilde{H}_{p}(G \backslash \underline{E} G) \rightarrow \ldots
\end{aligned}
$$

- In particular we obtain an isomorphism for $p \geq \operatorname{dim}(\underline{E} G)+2$

$$
\bigoplus_{i \in I} H_{p}\left(B M_{i}\right) \stackrel{\cong}{\rightrightarrows} H_{p}(B G) .
$$

Theorem

Let G be a discrete group which satisfies the conditions (M) and (NM) above.
Then there is an isomorphism

$$
K_{1}^{G}(\underline{E} G) \stackrel{ }{\cong} K_{1}(G \backslash \underline{E} G),
$$

and a short exact sequence

It splits if we invert the orders of all finite subgroups of G.

- If the Baum-Connes Conjecture is true for G, then

$$
K_{n}\left(C_{r}^{*}(G)\right) \cong K_{n}^{G}(\underline{E} G)
$$

Theorem

Let G be a discrete group which satisfies the conditions (M) and (NM) above.
Then there is an isomorphism

$$
K_{1}^{G}(\underline{E} G) \stackrel{\cong}{\rightrightarrows} K_{1}(G \backslash \underline{E} G)
$$

and a short exact sequence

It splits if we invert the orders of all finite subgroups of G.

- If the Baum-Connes Conjecture is true for G, then

$$
K_{n}\left(C_{r}^{*}(G)\right) \cong K_{n}^{G}(\underline{E} G)
$$

Theorem

Let G be a discrete group which satisfies the conditions (M) and (NM) above.
Then there is an isomorphism

$$
K_{1}^{G}(\underline{E} G) \stackrel{ }{\cong} K_{1}(G \backslash \underline{E} G),
$$

and a short exact sequence

$$
0 \rightarrow \bigoplus_{i \in 1} \widetilde{R}_{\mathbb{C}}\left(M_{i}\right) \rightarrow K_{0}(\underline{E} G) \rightarrow K_{0}(G \backslash \underline{E} G) \rightarrow 0
$$

It splits if we invert the orders of all finite subgroups of G.

- If the Baum-Connes Conjecture is true for G, then

$$
K_{n}\left(C_{r}^{*}(G)\right) \cong K_{n}^{G}(E G)
$$

Theorem

Let G be a discrete group which satisfies the conditions (M) and (NM) above.
Then there is an isomorphism

$$
K_{1}^{G}(\underline{E} G) \stackrel{\cong}{\Rightarrow} K_{1}(G \backslash \underline{E} G),
$$

and a short exact sequence

$$
0 \rightarrow \bigoplus_{i \in I} \widetilde{R}_{\mathbb{C}}\left(M_{i}\right) \rightarrow K_{0}(\underline{E} G) \rightarrow K_{0}(G \backslash \underline{E} G) \rightarrow 0
$$

It splits if we invert the orders of all finite subgroups of G.

$$
\text { - If the Baum-Connes Conjecture is true for } G \text {, then }
$$

$$
K_{n}\left(C_{r}^{*}(G)\right) \cong K_{n}^{G}(\underline{E} G) .
$$

Theorem

Let G be a discrete group which satisfies the conditions (M) and (NM) above.
Then there is an isomorphism

$$
K_{1}^{G}(\underline{E} G) \stackrel{\cong}{\Rightarrow} K_{1}(G \backslash \underline{E} G),
$$

and a short exact sequence

$$
0 \rightarrow \bigoplus_{i \in I} \widetilde{R}_{\mathbb{C}}\left(M_{i}\right) \rightarrow K_{0}(\underline{E} G) \rightarrow K_{0}(G \backslash \underline{E} G) \rightarrow 0
$$

It splits if we invert the orders of all finite subgroups of G.

- If the Baum-Connes Conjecture is true for G, then

$$
K_{n}\left(C_{r}^{*}(G)\right) \cong K_{n}^{G}(\underline{E} G) .
$$

- We see that for computations of group homology or of K - and L-groups of group rings and group C^{*}-algebras it is important to understand the spaces $G \backslash \underline{E} G$.
- Often geometric input ensures that $G \backslash E G$ is a fairly small CW-complex.
- On the other hand recall the result due to that for any $C W$-complex X there exists a group G with $X \simeq G \backslash \underline{E} G$.
- We see that for computations of group homology or of K - and L-groups of group rings and group C^{*}-algebras it is important to understand the spaces $G \backslash \underline{E} G$.
- Often geometric input ensures that $G \backslash \underline{E} G$ is a fairly small CW-complex.
- On the other hand recall the result due to that for any $C W$-complex X there exists a group G with $X \simeq G \backslash \underline{E} G$.
- We see that for computations of group homology or of K - and L-groups of group rings and group C^{*}-algebras it is important to understand the spaces $G \backslash \underline{E} G$.
- Often geometric input ensures that $G \backslash \underline{E} G$ is a fairly small CW-complex.
- On the other hand recall the result due to Leary-Nucinkis (2001) that for any $C W$-complex X there exists a group G with $X \simeq G \backslash \underline{E} G$.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

To be continued

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

To be continued

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

To be continued

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

To be continued Stay tuned

