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Flashback

We have introduced Kn(R) for n ∈ Z, n ≤ 1.
We have discussed the topological relevance of K0(RG) and the
Whitehead group Wh(G), e.g., the finiteness obstruction and the
s-cobordism theorem.
We have stated the conjectures that K̃0(ZG) and Wh(G) vanish
for torsionfree G.
We have presented the Bass-Heller-Swan decomposition and
indicated some similarities between Kn(RG) and group homology.
Cliffhanger

Question (K -theory of group rings and group homology)
Is there a relation between Kn(RG) and the group homology of G?
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Outline

We introduce spectra and how they yield homology theories.
We state the Farrell-Jones-Conjecture and the Baum-Connes
Conjecture for torsionfree groups.
We discuss applications of these conjectures such as the
Kaplansky Conjecture and the Borel Conjecture.
We explain that the formulations for torsionfree groups cannot
extend to arbitrary groups.
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Homology theories and spectra

Definition (Spectrum)
A spectrum

E = {(E(n), σ(n)) | n ∈ Z}

is a sequence of pointed spaces {E(n) | n ∈ Z} together with pointed
maps called structure maps

σ(n) : E(n) ∧ S1 −→ E(n + 1).

A map of spectra
f : E → E′

is a sequence of maps f (n) : E(n) → E ′(n) which are compatible with
the structure maps σ(n), i.e., f (n + 1) ◦ σ(n) = σ′(n) ◦ (f (n) ∧ idS1)
holds for all n ∈ Z.
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Given two pointed spaces X = (X , x0) and Y = (Y , y0), their
one-point-union and their smash product are defined to be the
pointed spaces

X ∨ Y := {(x , y0) | x ∈ X} ∪ {(x0, y) | y ∈ Y} ⊆ X × Y ;

X ∧ Y := (X × Y )/(X ∨ Y ).

We have Sn+1 ∼= Sn ∧ S1.
The sphere spectrum S has as n-th space Sn and as n-th
structure map the homeomorphism Sn ∧ S1 ∼=−→ Sn+1.
Let X be a pointed space. Its suspension spectrum Σ∞X is given
by the sequence of spaces {X ∧ Sn | n ≥ 0} with the
homeomorphism (X ∧ Sn) ∧ S1 ∼= X ∧ Sn+1 as structure maps.
We have S = Σ∞S0.
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Definition (Ω-spectrum)
Given a spectrum E, we can consider instead of the structure map
σ(n) : E(n) ∧ S1 → E(n + 1) its adjoint

σ′(n) : E(n) → ΩE(n + 1) = map(S1, E(n + 1)).

We call E an Ω-spectrum if each map σ′(n) is a weak homotopy
equivalence.
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Definition (Homotopy groups of a spectrum)
Given a spectrum E, define for n ∈ Z its n-th homotopy group

πn(E) := colim
k→∞

πk+n(E(k))

to be the abelian group which is given by the colimit over the directed
system indexed by Z with k -th structure map

πk+n(E(k))
σ′(k)−−−→ πk+n(ΩE(k + 1)) = πk+n+1(E(k + 1)).

Notice that a spectrum can have in contrast to a space non-trivial
negative homotopy groups.
If E is an Ω-spectrum, then πn(E) = πn(E(0)) for all n ≥ 0.
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Eilenberg-MacLane spectrum
Let A be an abelian group. The n-th Eilenberg-MacLane space
EM(A, n) associated to A for n ≥ 0 is a CW -complex with
πm(EM(A, n)) = A for m = n and πm(EM(A, n)) = {0} for m 6= n.
The associated Eilenberg-MacLane spectrum H(A) has as n-th
space EM(A, n) and as n-th structure map a homotopy
equivalence EM(A, n) → ΩEM(A, n + 1).
Algebraic K -theory spectrum
For a ring R there is the algebraic K -theory spectrum KR with the
property

πn(KR) = Kn(R) for n ∈ Z.
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Algebraic L-theory spectrum
For a ring with involution R there is the algebraic L-theory
spectrum L〈−∞〉

R with the property

πn(L
〈−∞〉
R ) = L〈−∞〉

n (R) for n ∈ Z.

Topological K -theory spectrum
By Bott periodicity there is a homotopy equivalence

β : BU × Z '−→ Ω2(BU × Z).

The topological K -theory spectrum Ktop has in even degrees
BU × Z and in odd degrees Ω(BU × Z).
The structure maps are given in even degrees by the map β and
in odd degrees by the identity id : Ω(BU × Z) → Ω(BU × Z).
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Definition (Homology theory)

Let Λ be a commutative ring, for instance Z or Q.
A homology theory H∗ with values in Λ-modules is a covariant functor
from the category of CW -pairs to the category of Z-graded Λ-modules
together with natural transformations

∂n(X , A) : Hn(X , A) → Hn−1(A)

for n ∈ Z satisfying the following axioms:
Homotopy invariance
Long exact sequence of a pair
Excision
If (X , A) is a CW -pair and f : A → B is a cellular map , then

Hn(X , A)
∼=−→ Hn(X ∪f B, B).
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Definition (continued)
Disjoint union axiom

⊕
i∈I

Hn(Xi)
∼=−→ Hn

(∐
i∈I

Xi

)
.

Definition (Smash product)
Let E be a spectrum and X be a pointed space. Define the smash
product X ∧ E to be the spectrum whose n-th space is X ∧ E(n) and
whose n-th structure map is

X ∧ E(n) ∧ S1 idX ∧σ(n)−−−−−−→ X ∧ E(n + 1).
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Theorem (Homology theories and spectra)
Let E be a spectrum. Then we obtain a homology theory H∗(−; E) by

Hn(X , A; E) := πn ((X ∪A cone(A)) ∧ E) .

It satisfies
Hn(pt; E) = πn(E).
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Example (Stable homotopy theory)
The homology theory associated to the sphere spectrum S is stable
homotopy πs

∗(X ). The groups πs
n(pt) are finite abelian groups for n 6= 0

by a result of Serre (1953). Their structure is only known for small n.

Example (Singular homology theory with coefficients)
The homology theory associated to the Eilenberg-MacLane spectrum
H(A) is singular homology with coefficients in A.

Example (Topological K -homology)
The homology theory associated to the topological K -theory spectrum
Ktop is K -homology K∗(X ). We have

Kn(pt) ∼=
{

Z n even;
{0} n odd.
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The Isomorphism Conjectures for torsionfree groups

Conjecture (K -theoretic Farrell-Jones Conjecture for torsionfree
groups)
The K -theoretic Farrell-Jones Conjecture with coefficients in the
regular ring R for the torsionfree group G predicts that the assembly
map

Hn(BG; KR) → Kn(RG)

is bijective for all n ∈ Z.

Kn(RG) is the algebraic K -theory of the group ring RG;
KR is the (non-connective) algebraic K -theory spectrum of R;
Hn(pt; KR) ∼= πn(KR) ∼= Kn(R) for n ∈ Z.
BG is the classifying space of the group G, i.e., the base space of
the universal G-principal G-bundle G → EG → BG. Equivalently,
BG = EM(G, 1). The space BG is unique up to homotopy.
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Conjecture (L-theoretic Farrell-Jones Conjecture for torsionfree
groups)
The L-theoretic Farrell-Jones Conjecture with coefficients in the ring
with involution R for the torsionfree group G predicts that the assembly
map

Hn(BG; L〈−∞〉
R ) → L〈−∞〉

n (RG)

is bijective for all n ∈ Z.

L〈−∞〉
n (RG) is the algebraic L-theory of RG with decoration 〈−∞〉;

L〈−∞〉
R is the algebraic L-theory spectrum of R with decoration
〈−∞〉;
Hn(pt; L〈−∞〉

R ) ∼= πn(L
〈−∞〉
R ) ∼= L〈−∞〉

n (R) for n ∈ Z.
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Conjecture (Baum-Connes Conjecture for torsionfree groups)
The Baum-Connes Conjecture for the torsionfree group predicts that
the assembly map

Kn(BG) → Kn(C∗
r (G))

is bijective for all n ∈ Z.

Kn(BG) is the topological K -homology of BG, where
K∗(−) = H∗(−; Ktop) for Ktop the topological K -theory spectrum.
Kn(C∗

r (G)) is the topological K -theory of the reduced complex
group C∗-algebra C∗

r (G) of G which is the closure in the norm
topology of CG considered as subalgebra of B(l2(G)).
There is also a real version of the Baum-Connes Conjecture

KOn(BG) → Kn(C∗
r (G; R)).
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Consequences of the Isomorphism Conjectures for
torsionfree groups

In order to illustrate the depth of the Farrell-Jones Conjecture and
the Baum-Connes Conjecture, we present some conclusions
which are interesting in their own right.
Let FJ K (R) and FJ L(R) respectively be the class of groups
which satisfy the K -theoretic and L-theoretic respectively
Farrell-Jones Conjecture for the coefficient ring R.
Let BC be the class of groups which satisfy the Baum-Connes
Conjecture.
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Lemma
Let R be a regular ring. Suppose that G is torsionfree and
G ∈ FJ K (R). Then

Kn(RG) = 0 for n ≤ −1;
The change of rings map K0(R) → K0(RG) is bijective. In
particular K̃0(RG) is trivial if and only if K̃0(R) is trivial.

Lemma
Suppose that G is torsionfree and G ∈ FJ K (Z).
Then the Whitehead group Wh(G) is trivial.

Proof.
The idea of the proof is to study the Atiyah-Hirzebruch spectral
sequence converging to Hn(BG; KR) whose E2-term is given by

E2
p,q = Hp(BG, Kq(R)).
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Proof (continued).
Since R is regular by assumption, we get Kq(R) = 0 for q ≤ −1.
Hence the edge homomorphism yields an isomorphism

K0(R) = H0(pt, K0(R))
∼=−→ H0(BG; KR) ∼= K0(RG).

We have K0(Z) = Z and K1(Z) = {±1}. We get an exact
sequence

0 → H0(BG; K1(Z)) = {±1} → H1(BG; KZ) ∼= K1(ZG)

→ H1(BG; K0(Z)) = G/[G, G] → 0.

This implies Wh(G) := K1(ZG)/{±g | g ∈ G} ∼= 0.
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In particular we get for a torsionfree group G ∈ FJ K (Z):

Kn(ZG) = 0 for n ≤ −1;

K̃0(ZG) = 0;
Wh(G) = 0;
Every finitely dominated CW -complex X with G = π1(X ) is
homotopy equivalent to a finite CW -complex;
Every compact h-cobordism W of dimension ≥ 6 with π1(W ) ∼= G
is trivial;
If G belongs to FJ K (Z), then it is of type FF if and only if it is of
type FP (Serre’s problem).
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Conjecture (Kaplansky Conjecture)
The Kaplansky Conjecture says for a torsionfree group G and an
integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky
Conjecture, Bartels-L.-Reich(2007))
Let F be a skew-field and let G be a group with G ∈ FJ K (F ). Suppose
that one of the following conditions is satisfied:

F is commutative and has characteristic zero and G is torsionfree;
G is torsionfree and sofic, e.g., residually amenable;
The characteristic of F is p, all finite subgroups of G are p-groups
and G is sofic.

Then 0 and 1 are the only idempotents in FG.
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G is torsionfree and sofic, e.g., residually amenable;
The characteristic of F is p, all finite subgroups of G are p-groups
and G is sofic.

Then 0 and 1 are the only idempotents in FG.
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Proof.
Let p be an idempotent in FG. We want to show p ∈ {0, 1}.
Denote by ε : FG → F the augmentation homomorphism sending∑

g∈G rg · g to
∑

g∈G rg . Obviously ε(p) ∈ F is 0 or 1. Hence it
suffices to show p = 0 under the assumption that ε(p) = 0.
Let (p) ⊆ FG be the ideal generated by p which is a finitely
generated projective FG-module.
Since G ∈ FJ K (F ), we can conclude that

i∗ : K0(F )⊗Z Q → K0(FG)⊗Z Q

is surjective.
Hence we can find a finitely generated projective F -module P and
integers k , m, n ≥ 0 satisfying

(p)k ⊕ FGm ∼=FG i∗(P)⊕ FGn.
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Proof (continued).

If we now apply i∗ ◦ ε∗ and use ε ◦ i = id, i∗ ◦ ε∗(FGl) ∼= FGl and
ε(p) = 0 we obtain

FGm ∼= i∗(P)⊕ FGn.

Inserting this in the first equation yields

(p)k ⊕ i∗(P)⊕ FGn ∼= i∗(P)⊕ FGn.

Our assumptions on F and G imply that FG is stably finite, i.e., if A
and B are square matrices over FG with AB = I, then BA = I.
This implies (p)k = 0 and hence p = 0.
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Theorem (The Baum-Connes Conjecture and the Kaplansky
Conjecture)
Let G be a torsionfree group with G ∈ BC. Then 0 and 1 are the only
idempotents in CG.

Proof.
There is a trace map

tr : C∗
r (G) → C

which sends f ∈ C∗
r (G) ⊆ B(l2(G)) to 〈f (e), e〉l2(G).

The L2-index theorem due to Atiyah (1976) shows that the
composite

K0(BG) → K0(C∗
r (G))

tr−→ C

coincides with

K0(BG)
K0(pr)−−−−→ K0(pt) = Z i−→ C.
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Proof (continued).
Hence G ∈ BC implies tr(p) ∈ Z.
Since tr(1) = 1, tr(0) = 0, 0 ≤ p ≤ 1 and p2 = p, we get tr(p) ∈ R
and 0 ≤ tr(p) ≤ 1.
We conclude tr(0) = tr(p) or tr(1) = tr(p).
This implies already p = 0 or p = 1.
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Conjecture (Borel Conjecture)
The Borel Conjecture for G predicts for two closed aspherical
manifolds M and N with π1(M) ∼= π1(N) ∼= G that any homotopy
equivalence M → N is homotopic to a homeomorphism and in
particular that M and N are homeomorphic.

The Borel Conjecture can be viewed as the topological version of
Mostow rigidity. A special case of Mostow rigidity says that any
homotopy equivalence between closed hyperbolic manifolds of
dimension ≥ 3 is homotopic to an isometric diffeomorphism.
The Borel Conjecture is not true in the smooth category by results
of Farrell-Jones(1989).
There are also non-aspherical manifolds which are topologically
rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).
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Theorem (The Farrell-Jones Conjecture and the Borel
Conjecture)
If the K - and L-theoretic Farrell-Jones Conjecture hold for G in the
case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in
dimension 4 if G is good in the sense of Freedman.

Thurston’s Geometrization Conjecture implies the Borel
Conjecture in dimension 3.
The Borel Conjecture in dimension 1 and 2 is obviously true.
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Definition (Structure set)
The structure set Stop(M) of a manifold M consists of equivalence
classes of orientation preserving homotopy equivalences N → M with
a manifold N as source.
Two such homotopy equivalences f0 : N0 → M and f1 : N1 → M are
equivalent if there exists a homeomorphism g : N0 → N1 with
f1 ◦ g ' f0.

Theorem
The Borel Conjecture holds for a closed manifold M if and only if
S top(M) consists of one element.
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Theorem (Ranicki (1992))
There is an exact sequence of abelian groups, called algebraic surgery
exact sequence, for an n-dimensional closed manifold M

. . .
σn+1−−−→ Hn+1(M; L〈1〉) An+1−−−→ Ln+1(Zπ1(M))

∂n+1−−−→

S top(M)
σn−→ Hn(M; L〈1〉) An−→ Ln(Zπ1(M))

∂n−→ . . .

It can be identified with the classical geometric surgery sequence due
to Sullivan and Wall in high dimensions.

S top(M) consist of one element if and only if An+1 is surjective and
An is injective.
Hk (M; L〈1〉) → Hk (M; L) is bijective for k ≥ n + 1 and injective for
k = n.

Wolfgang Lück (Münster, Germany) The Iso. Conj. in the torsionfree case Hangzhou, July 2007 29 / 35



Theorem (Ranicki (1992))
There is an exact sequence of abelian groups, called algebraic surgery
exact sequence, for an n-dimensional closed manifold M

. . .
σn+1−−−→ Hn+1(M; L〈1〉) An+1−−−→ Ln+1(Zπ1(M))

∂n+1−−−→

S top(M)
σn−→ Hn(M; L〈1〉) An−→ Ln(Zπ1(M))

∂n−→ . . .

It can be identified with the classical geometric surgery sequence due
to Sullivan and Wall in high dimensions.

S top(M) consist of one element if and only if An+1 is surjective and
An is injective.
Hk (M; L〈1〉) → Hk (M; L) is bijective for k ≥ n + 1 and injective for
k = n.

Wolfgang Lück (Münster, Germany) The Iso. Conj. in the torsionfree case Hangzhou, July 2007 29 / 35



Theorem (Ranicki (1992))
There is an exact sequence of abelian groups, called algebraic surgery
exact sequence, for an n-dimensional closed manifold M

. . .
σn+1−−−→ Hn+1(M; L〈1〉) An+1−−−→ Ln+1(Zπ1(M))

∂n+1−−−→

S top(M)
σn−→ Hn(M; L〈1〉) An−→ Ln(Zπ1(M))

∂n−→ . . .

It can be identified with the classical geometric surgery sequence due
to Sullivan and Wall in high dimensions.

S top(M) consist of one element if and only if An+1 is surjective and
An is injective.
Hk (M; L〈1〉) → Hk (M; L) is bijective for k ≥ n + 1 and injective for
k = n.

Wolfgang Lück (Münster, Germany) The Iso. Conj. in the torsionfree case Hangzhou, July 2007 29 / 35



Theorem (Ranicki (1992))
There is an exact sequence of abelian groups, called algebraic surgery
exact sequence, for an n-dimensional closed manifold M

. . .
σn+1−−−→ Hn+1(M; L〈1〉) An+1−−−→ Ln+1(Zπ1(M))

∂n+1−−−→

S top(M)
σn−→ Hn(M; L〈1〉) An−→ Ln(Zπ1(M))

∂n−→ . . .

It can be identified with the classical geometric surgery sequence due
to Sullivan and Wall in high dimensions.

S top(M) consist of one element if and only if An+1 is surjective and
An is injective.
Hk (M; L〈1〉) → Hk (M; L) is bijective for k ≥ n + 1 and injective for
k = n.

Wolfgang Lück (Münster, Germany) The Iso. Conj. in the torsionfree case Hangzhou, July 2007 29 / 35



What happens for groups with torsion?

The versions of the Farrell-Jones Conjecture and the Baum-
Connes Conjecture above become false for finite groups unless
the group is trivial.
For instance the version of the Baum-Connes Conjecture above
would predict for a finite group G

K0(BG) ∼= K0(C∗
r (G)) ∼= RC(G).

However, K0(BG)⊗Z Q ∼=Q K0(pt)⊗Z Q ∼=Q Q and
RC(G)⊗Z Q ∼=Q Q holds if and only if G is trivial.
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If G is torsionfree, then the version of the K -theoretic Farrell-Jones
Conjecture predicts

Hn(BZ; KR) = Hn(S1; KR) = Hn(pt; KR)⊕ Hn−1(pt; KR)

= Kn(R)⊕ Kn−1(R) ∼= Kn(RZ).

In view of the Bass-Heller-Swan decomposition this is only
possible if NKn(R) vanishes which is true for regular rings R but
not for general rings R.
We want to figure out what is needed for a general version which
may be true for all groups.
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Assembly
For a field F of characteristic zero and some groups G one knows
that there is an isomorphism

colim
H⊆G
|H|<∞

K0(FH)
∼=−→ K0(FG).

This indicates that one has at least to take into account the values
for all finite subgroups to assemble Kn(FG).
Degree Mixing
The Bass-Heller-Swan decomposition shows that the K -theory of
finite subgroups in degree m ≤ n can affect the K -theory in
degree n and that at least in the Farrell-Jones setting finite
subgroups are not enough.
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In the Baum-Connes setting Nil-phenomena do not appear.
Namely, a special case of a result due to Pimsner-Voiculescu
(1982) says

Kn(C∗
r (G × Z)) ∼= Kn(C∗

r (G))⊕ Kn−1(C∗
r (G)).

Homological behaviour
There is still a lot of homological behaviour known for K∗(C∗

r (G)).
For instance there exists a long exact Mayer-Vietoris sequence
associated to amalgamated products G1 ∗G0 G2 and a
Wang-sequence associated to semi-direct products G o Z by
Pimsner-Voiculescu (1982).
Similar versions under certain restrictions exist in K -and L-theory
due to Cappell (1974) and Waldhausen (1978) if one makes
certain assumptions on R or ignores certain Nil-phenomena.
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Question (Classifying spaces for families)
Is there a version EF (G) of the classifying space EG which takes the
structure of the family of finite subgroups or other families F of
subgroups into account and can be used for a general formulation of
the Farrell-Jones Conjecture?

Question (Equivariant homology theories)

Can one define appropriate G-homology theories HG
∗ that are in some

sense computable and yield when applied to EF (G) a term which
potentially is isomorphic to the groups Kn(RG), L−〈∞〉(RG) or
Kn(C∗

r (G))?
In the torsionfree case they should reduce to Hn(BG; KR),
Hn(BG; L−〈∞〉) and Kn(BG).
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To be continued
Stay tuned
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