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Flashback

We have introduced the Farrell-Jones Conjecture and the
Baum-Connes Conjecture for torsionfree groups:

Hn(BG; KR)
∼=−→ Kn(RG);

Hn(BG; L〈−∞〉R )
∼=−→ L〈−∞〉n (RG);

Kn(BG)
∼=−→ Kn(C∗

r (G)).

We have discussed applications of these conjectures such as to
the Kaplansky Conjecture and the Borel Conjecture.
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Cliffhanger

Question (Classifying spaces for families)
Is there a version EF (G) of the classifying space EG which takes the
structure of the family of finite subgroups or other families F of
subgroups into account and can be used for a general formulation of
the Farrell-Jones Conjecture?
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Outline

We introduce the notion of the classifying space of a family F of
subgroups EF (G) and JF (G).
In the case, where F is the family COM of compact subgroups,
we present some nice geometric models for EF (G) and explain
EF (G) ' JF (G).
We discuss finiteness properties of these classifying spaces.
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Classifying spaces for families of subgroups

Definition (G-CW -complex)
A G-CW-complex X is a G-space together with a G-invariant filtration

∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration,
and Xn is obtained from Xn−1 for each n ≥ 0 by attaching equivariant
n-dimensional cells, i.e., there exists a G-pushout

∐
i∈In G/Hi × Sn−1

‘
i∈In qn

i
//

��

Xn−1

��∐
i∈In G/Hi × Dn

‘
i∈In Qn

i
// Xn
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Group means locally compact Hausdorff topological group with a
countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)
Let X be a simplicial complex. Suppose that G acts simplicially on X .
Then G acts simplicially also on the barycentric subdivision X ′, and all
isotropy groups are open and closed. The G-space X ′ inherits the
structure of a G-CW -complex.

Example (Smooth actions)
Let G be a Lie group acting properly and smoothly on a smooth
manifold M.
Then M inherits the structure of G-CW -complex.
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Definition (Proper G-action)
A G-space X is called proper if for each pair of points x and y in X
there are open neighborhoods Vx of x and Wy of y in X such that the
closure of the subset {g ∈ G | gVx ∩Wy 6= ∅} of G is compact.

Lemma
A proper G-space has always compact isotropy groups.
A G-CW-complex X is proper if and only if all its isotropy groups
are compact.
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Definition (Family of subgroups)
A family F of subgroups of G is a set of (closed) subgroups of G which
is closed under conjugation and finite intersections.

Examples for F are:
T R = {trivial subgroup};
FIN = {finite subgroups};
VCYC = {virtually cyclic subgroups};
COM = {compact subgroups};
COMOP = {compact open subgroups};
ALL = {all subgroups}.
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Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → EF (G).

We abbreviate EG := ECOM(G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).
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Theorem (Homotopy characterization of EF(G))
Let F be a family of subgroups.

There exists a model for EF (G) for any family F ;
Two model for EF (G) are G-homotopy equivalent;
A G-CW-complex X is a model for EF (G) if and only if all its
isotropy groups belong to F and for each H ∈ F the H-fixed point
set X H is weakly contractible.
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A model for EALL(G) is G/G;
EG → BG := G\EG is the universal G-principal bundle for
G-CW -complexes.

Example (Infinite dihedral group)
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.

Lemma
If G is totally disconnected, then ECOMOP(G) = EG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007 11 / 35



A model for EALL(G) is G/G;
EG → BG := G\EG is the universal G-principal bundle for
G-CW -complexes.

Example (Infinite dihedral group)
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.

Lemma
If G is totally disconnected, then ECOMOP(G) = EG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007 11 / 35



A model for EALL(G) is G/G;
EG → BG := G\EG is the universal G-principal bundle for
G-CW -complexes.

Example (Infinite dihedral group)
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.

Lemma
If G is totally disconnected, then ECOMOP(G) = EG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007 11 / 35



A model for EALL(G) is G/G;
EG → BG := G\EG is the universal G-principal bundle for
G-CW -complexes.

Example (Infinite dihedral group)
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.

Lemma
If G is totally disconnected, then ECOMOP(G) = EG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007 11 / 35



A model for EALL(G) is G/G;
EG → BG := G\EG is the universal G-principal bundle for
G-CW -complexes.

Example (Infinite dihedral group)
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.

Lemma
If G is totally disconnected, then ECOMOP(G) = EG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007 11 / 35



A model for EALL(G) is G/G;
EG → BG := G\EG is the universal G-principal bundle for
G-CW -complexes.

Example (Infinite dihedral group)
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.

Lemma
If G is totally disconnected, then ECOMOP(G) = EG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007 11 / 35



A model for EALL(G) is G/G;
EG → BG := G\EG is the universal G-principal bundle for
G-CW -complexes.

Example (Infinite dihedral group)
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.

Lemma
If G is totally disconnected, then ECOMOP(G) = EG.

Wolfgang Lück (Münster, Germany) Classifying spaces for families Hangzhou, July 2007 11 / 35



Definition (F-numerable G-space)
A F-numerable G-space is a G-space, for which there exists an open
covering {Ui | i ∈ I} by G-subspaces satisfying:

For each i ∈ I there exists a G-map Ui → G/Gi for some Gi ∈ F ;
There is a locally finite partition of unity {ei | i ∈ I} subordinate to
{Ui | i ∈ I} by G-invariant functions ei : X → [0, 1].

Notice that we do not demand that the isotropy groups of a
F-numerable G-space belong to F .
If f : X → Y is a G-map and Y is F-numerable, then X is also
F-numerable.
A G-CW -complex is F-numerable if and only if each isotropy
group appears as a subgroup of an element in F .
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There is also a version JF (G) of a classifying space for
F-numerable G-spaces.
It is characterized by the property that JF (G) is F-numerable and
for every F-numerable G-space Y there is up to G-homotopy
precisely one G-map Y → JF (G).
We abbreviate JG = JCOM(G) and JG = JT R(G).
JG → G\JG is the universal G-principal bundle for numerable free
proper G-spaces.
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Theorem (Comparison of EF(G) and JF(G), L. (2005))
There is up to G-homotopy precisely one G-map

φ : EF (G) → JF (G);

It is a G-homotopy equivalence if one of the following conditions is
satisfied:

Each element in F is open and closed;
G is discrete;
F is COM;

Let G be totally disconnected. Then EG → JG is a G-homotopy
equivalence if and only if G is discrete.
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Special models for EG

We want to illustrate that the space EG = JG often has very nice
geometric models and appear naturally in many interesting
situations.
Let C0(G) be the Banach space of complex valued functions of G
vanishing at infinity with the supremum-norm. The group G acts
isometrically on C0(G) by (g · f )(x) := f (g−1x) for f ∈ C0(G) and
g, x ∈ G.
Let PC0(G) be the subspace of C0(G) consisting of functions f
such that f is not identically zero and has non-negative real
numbers as values.

Theorem (Operator theoretic model, Abels (1978))
The G-space PC0(G) is a model for JG.
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Theorem
Let G be discrete. A model for JG is the space

XG =

{
f : G → [0, 1]

∣∣∣∣ f has finite support,
∑
g∈G

f (g) = 1
}

with the topology coming from the supremum norm.

Theorem (Simplicial Model)
Let G be discrete. Let P∞(G) be the geometric realization of the
simplicial set whose k-simplices consist of (k + 1)-tupels
(g0, g1, . . . , gk ) of elements gi in G. This is a model for EG.
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The spaces XG and P∞(G) have the same underlying sets but in
general they have different topologies.
The identity map induces a G-map P∞(G) → XG which is a
G-homotopy equivalence, but in general not a G-homeomorphism.
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Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G0 is compact
for G0 the component of the identity element.
Then G contains a maximal compact subgroup K which is unique up to
conjugation, and the G-space G/K is a model for JG.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)
Let L be a Lie group with finitely many path components.
Then L contains a maximal compact subgroup K which is unique up to
conjugation, and the L-space L/K is a model for EL.
If G ⊆ L is a discrete subgroup of L, then L/K with the obvious left
G-action is a finite dimensional G-CW-model for EG.
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Let L be a Lie group with finitely many path components.
Then L contains a maximal compact subgroup K which is unique up to
conjugation, and the L-space L/K is a model for EL.
If G ⊆ L is a discrete subgroup of L, then L/K with the obvious left
G-action is a finite dimensional G-CW-model for EG.
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Theorem (Actions on CAT(0)-spaces)
Let G be a (locally compact Hausdorff) topological group. Let X be a
proper G-CW-complex. Suppose that X has the structure of a
complete simply connected CAT(0)-space for which G acts by
isometries.
Then X is a model for EG.

The result above contains as special case isometric G actions on
simply-connected complete Riemannian manifolds with
non-positive sectional curvature and G-actions on trees.
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Theorem (Affine buildings)
Let G be a totally disconnected group. Suppose that G acts on the
affine building Σ by simplicial automorphisms such that each isotropy
group is compact.
Then Σ is a model for both JCOMOP(G) and JG and the barycentric
subdivision Σ′ is a model for both ECOMOP(G) and EG.

An important example is the case of a reductive p-adic algebraic
group G and its associated affine Bruhat-Tits building β(G).
Then β(G) is a model for JG and β(G)′ is a model for EG by the
previous result.
For more information about buildings we refer to the lectures of
Abramenko.
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The Rips complex Pd(G, S) of a group G with a symmetric finite
set S of generators for a natural number d is the geometric
realization of the simplicial set whose set of k -simplices consists
of (k + 1)-tuples (g0, g1, . . . gk ) of pairwise distinct elements
gi ∈ G satisfying dS(gi , gj) ≤ d for all i , j ∈ {0, 1, . . . , k}.
The obvious G-action by simplicial automorphisms on Pd(G, S)
induces a G-action by simplicial automorphisms on the
barycentric subdivision Pd(G, S)′.

Theorem (Rips complex, Meintrup-Schick (2002))
Let G be a discrete group with a finite symmetric set of generators.
Suppose that (G, S) is δ-hyperbolic for the real number δ ≥ 0. Let d be
a natural number with d ≥ 16δ + 8.
Then the barycentric subdivision of the Rips complex Pd(G, S)′ is a
finite G-CW-model for EG.
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Arithmetic groups in a semisimple connected linear Q-algebraic
group possess finite models for EG.
Namely, let G(R) be the R-points of a semisimple Q-group G(Q)
and let K ⊆ G(R) be a maximal compact subgroup.
If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left
A-action is a model for EA as already explained above.
The A-space G(R)/K is not necessarily cocompact.

Theorem (Borel-Serre compactification)
The Borel-Serre compactification of G(R)/K is a finite A-CW-model for
EA.

For more information about arithmetic groups we refer to the
lectures of Abramenko.
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Let Γs
g,r be the mapping class group of an orientable compact

surface F of genus g with s punctures and r boundary
components.
We will always assume that 2g + s + r > 2, or, equivalently, that
the Euler characteristic of the punctured surface F is negative.
It is well-known that the associated Teichmüller space T s

g,r is a
contractible space on which Γs

g,r acts properly.

Theorem (Teichmüller space)
The Γs

g,r -space T s
g,r is a model for EΓs

g,r .
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Let Fn be the free group of rank n.
Denote by Out(Fn) the group of outer automorphisms of Fn, i.e.,
the quotient of the group of all automorphisms of Fn by the normal
subgroup of inner automorphisms.
Culler-Vogtmann (1996) have constructed a space Xn called outer
space on which Out(Fn) acts with finite isotropy groups. It is
analogous to the Teichmüller space of a surface with the action of
the mapping class group of the surface.
The space Xn contains a spine Kn which is an Out(Fn)-equivariant
deformation retraction. This space Kn is a simplicial complex of
dimension (2n − 3) on which the Out(Fn)-action is by simplicial
automorphisms and cocompact.

Theorem (Spine of outer space)
The barycentric subdivision K ′

n is a finite (2n − 3)-dimensional model
of E Out(Fn).
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Example (SL2(R) and SL2(Z))
In order to illustrate some of the general statements above we
consider the special example SL2(R) and SL2(Z).
Let H2 be the 2-dimensional hyperbolic space. The group SL2(R)
acts by isometric diffeomorphisms on the upper half-plane by
Moebius transformations. This action is proper and transitive. The
isotropy group of z = i is SO(2). Since H2 is a simply-connected
Riemannian manifold, whose sectional curvature is constant −1,
the SL2(R)-space H2 is a model for ESL2(R).
The group SL2(R) is a connected Lie group and SO(2) ⊆ SL2(R)
is a maximal compact subgroup. Hence SL2(R)/SO(2) is a model
for ESL2(R)

Since the SL2(R)-action on H2 is transitive and SO(2) is the
isotropy group at i ∈ H2, we see that the SL2(R)-manifolds
SL2(R)/SO(2) and H2 are SL2(R)-diffeomorphic.
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Example (continued)

Since SL2(Z) is a discrete subgroup of SL2(R), the space H2 with
the obvious SL2(Z)-action is a model for ESL2(Z).
The group SL2(Z) is isomorphic to the amalgamated product
Z/4 ∗Z/2 Z/6. This implies that there is a tree on which SL2(Z)
acts with finite stabilizers. The tree has alternately two and three
edges emanating from each vertex. This is a 1-dimensional model
for ESL2(Z).
The tree model and the other model given by H2 must be
SL2(Z)-homotopy equivalent. They can explicitly be related by the
following construction.
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Example (continued)
Divide the Poincaré disk into fundamental domains for the
SL2(Z)-action. Each fundamental domain is a geodesic triangle
with one vertex at infinity, i.e., a vertex on the boundary sphere,
and two vertices in the interior. Then the union of the edges,
whose end points lie in the interior of the Poincaré disk, is a tree T
with SL2(Z)-action which is the tree model above. The tree is a
SL2(Z)-equivariant deformation retraction of the Poincaré disk. A
retraction is given by moving a point p in the Poincaré disk along a
geodesic starting at the vertex at infinity, which belongs to the
triangle containing p, through p to the first intersection point of this
geodesic with T .
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Example (continued)
The tree T above can be identified with the Bruhat-Tits building of
SL2(Qp̂) and hence is a model for ESL2(Qp̂). Since SL2(Z) is a
discrete subgroup of SL2(Qp̂), we get another reason why this
tree is a model for SL2(Z).
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Finiteness properties

Finiteness properties of the spaces EG and EG have been
intensively studied in the literature. We mention a few examples
and results. For more information we refer to the lectures of
Brown.
If EG has a finite-dimensional model, the group G must be
torsionfree. There are often finite models for EG for groups G with
torsion.
Often geometry provides small model for EG in cases, where the
models for EG are huge. These small models can be useful for
computations concerning BG itself.
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Theorem (Discrete subgroups of Lie groups)
Let L be a Lie group with finitely many path components. Let K ⊆ L be
a maximal compact subgroup K . Let G ⊆ L be a discrete subgroup of
L. Then L/K with the left G-action is a model for EG.
Suppose additionally that G is virtually torsionfree, i.e., contains a
torsionfree subgroup ∆ ⊆ G of finite index.
Then we have for its virtual cohomological dimension

vcd(G) ≤ dim(L/K ).

Equality holds if and only if G\L is compact.
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Theorem (A criterion for 1-dimensional models for BG, Stallings
(1968), Swan (1969))
Let G be a discrete group. The following statements are equivalent:

There exists a 1-dimensional model for EG;
There exists a 1-dimensional model for BG;
The cohomological dimension of G is less or equal to one;
G is a free group.

Theorem (A criterion for 1-dimensional models for EG,
Dunwoody (1979))
Let G be a discrete group. Then there exists a 1-dimensional model for
EG if and only if the cohomological dimension of G over the rationals
Q is less or equal to one.
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Theorem (Virtual cohomological dimension and dim(EG), L.
(2000))
Let G be a discrete group which is virtually torsionfree.

Then
vcd(G) ≤ dim(EG)

for any model for EG.
Let l ≥ 0 be an integer such that for any chain of finite subgroups
H0 ( H1 ( . . . ( Hr we have r ≤ l .
Then there exists a model for EG of dimension
max{3, vcd(G)}+ l .
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The following problem has been stated by Brown (1979) and has
created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there
exist a G-CW-model for EG of dimension vcd(G)?

The results above do give some evidence for a positive answer.
However, Leary-Nucinkis (2003) have constructed groups, where
the answer is negative.

Theorem ( Leary-Nucinkis (2001))
Let X be a CW-complex. Then there exists a group G with X ' G\EG.
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Question (Homological Computations based on nice models for
EG)
Can nice geometric models for EG be used to compute the group
homology and more general homology and cohomology theories of a
group G?

Question (K -theory of group rings and group homology)
Is there a relation between Kn(RG) and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of
families)
Can classifying spaces of families be used to formulate a version of the
Farrell-Jones Conjecture and the Baum-Connes Conjecture which may
hold for all group G and all rings?
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To be continued
Stay tuned
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