Classifying spaces for families (Lecture III)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

$$\begin{array}{rcl} H_n(BG; \mathbf{K}_R) & \xrightarrow{\cong} & K_n(RG); \\ H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) & \xrightarrow{\cong} & L_n^{\langle -\infty \rangle}(RG); \\ & K_n(BG) & \xrightarrow{\cong} & K_n(C_r^*(G)). \end{array}$$

• We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.

4 A N

$$\begin{array}{rcl} H_n(BG; \mathbf{K}_R) & \xrightarrow{\cong} & K_n(RG); \\ H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) & \xrightarrow{\cong} & L_n^{\langle -\infty \rangle}(RG); \\ & K_n(BG) & \xrightarrow{\cong} & K_n(C_r^*(G)). \end{array}$$

• We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.

< 4 →

$$\begin{array}{rcl} H_n(BG; \mathbf{K}_R) & \xrightarrow{\cong} & K_n(RG); \\ H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) & \xrightarrow{\cong} & L_n^{\langle -\infty \rangle}(RG); \\ K_n(BG) & \xrightarrow{\cong} & K_n(C_r^*(G)). \end{array}$$

• We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.

4 A N

$$\begin{array}{rcl} H_n(BG; \mathbf{K}_R) & \xrightarrow{\cong} & K_n(RG); \\ H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) & \xrightarrow{\cong} & L_n^{\langle -\infty \rangle}(RG); \\ & K_n(BG) & \xrightarrow{\cong} & K_n(C_r^*(G)). \end{array}$$

 We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.

• Cliffhanger

Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

• Cliffhanger

Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

• Cliffhanger

Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

- We introduce the notion of the classifying space of a family *F* of subgroups *E_F(G)* and *J_F(G)*.
- In the case, where *F* is the family *COM* of compact subgroups, we present some nice geometric models for *E_F(G)* and explain *E_F(G)* ≃ *J_F(G)*.
- We discuss finiteness properties of these classifying spaces.

4 A N

- We introduce the notion of the classifying space of a family *F* of subgroups *E_F(G)* and *J_F(G)*.
- In the case, where *F* is the family *COM* of compact subgroups, we present some nice geometric models for *E_F(G)* and explain *E_F(G)* ≃ *J_F(G)*.
- We discuss finiteness properties of these classifying spaces.

- We introduce the notion of the classifying space of a family *F* of subgroups *E_F(G)* and *J_F(G)*.
- In the case, where *F* is the family *COM* of compact subgroups, we present some nice geometric models for *E_F(G)* and explain *E_F(G)* ≃ *J_F(G)*.
- We discuss finiteness properties of these classifying spaces.

- We introduce the notion of the classifying space of a family *F* of subgroups *E_F(G)* and *J_F(G)*.
- In the case, where *F* is the family *COM* of compact subgroups, we present some nice geometric models for *E_F(G)* and explain *E_F(G)* ≃ *J_F(G)*.
- We discuss finiteness properties of these classifying spaces.

Definition (G-CW-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X$$

such that *X* carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\underbrace{\coprod_{i \in I_n} G/H_i \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1}}_{ \bigcup_{i \in I_n} G/H_i \times D^n \xrightarrow{\coprod_{i \in I_n} Q_i^n} X_n }$$

• • • • • • • • • • • • • •

Definition (*G*-*CW*-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X$$

such that *X* carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\begin{array}{c} \coprod_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1} \\ \downarrow & \downarrow \\ \coprod_{i \in I_n} G/H_i \times D^n & \xrightarrow{\coprod_{i \in I_n} Q_i^n} X_n \end{array}$$

Wolfgang Lück (Münster, Germany)

Definition (*G-CW*-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X_n$$

such that *X* carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\begin{array}{c} \coprod_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1} \\ \downarrow & \downarrow \\ \coprod_{i \in I_n} G/H_i \times D^n & \xrightarrow{\coprod_{i \in I_n} Q_i^n} X_n \end{array}$$

Wolfgang Lück (Münster, Germany)

Definition (*G-CW*-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X$$

such that *X* carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\begin{array}{c} \coprod_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1} \\ \downarrow & \downarrow \\ \coprod_{i \in I_n} G/H_i \times D^n & \xrightarrow{\coprod_{i \in I_n} Q_i^n} X_n \end{array}$$

Definition (*G-CW*-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X$$

such that *X* carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\underbrace{\coprod_{i \in I_n} G/H_i \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1} }_{\coprod_{i \in I_n} Q_i^n} \xrightarrow{\bigcup}_{X_n} X_n$$

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the **barycentric subdivision** X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M. Then M inherits the structure of G-CW-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

.

A D M A A A M M

A *G*-space *X* is called *proper* if for each pair of points *x* and *y* in *X* there are open neighborhoods V_x of *x* and W_y of *y* in *X* such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of *G* is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.

A *G*-space *X* is called *proper* if for each pair of points *x* and *y* in *X* there are open neighborhoods V_x of *x* and W_y of *y* in *X* such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of *G* is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A *G*-space *X* is called *proper* if for each pair of points *x* and *y* in *X* there are open neighborhoods V_x of *x* and W_y of *y* in *X* such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of *G* is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.

A *G*-space *X* is called *proper* if for each pair of points *x* and *y* in *X* there are open neighborhoods V_x of *x* and W_y of *y* in *X* such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of *G* is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.

A D M A A A M M

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

	{trivial subgroup};
	{finite subgroups};
	{virtually cyclic subgroups};
	{compact subgroups};
	{compact open subgroups};
	{all subgroups}.

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

	{trivial subgroup};
	{finite subgroups};
	{virtually cyclic subgroups]
	{compact subgroups};
	{compact open subgroups
	{all subgroups}.

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

	{trivial subgroup};
	{finite subgroups};
	{virtually cyclic subgroups};
	{compact subgroups};
	{compact open subgroups};
	{all subgroups}.

THE 1 AT 1

4 A N

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

\mathcal{TR}	=	{trivial subgroup};
		{finite subgroups};
		{virtually cyclic subgroups};
		{compact subgroups};
		{compact open subgroups};
		{all subgroups}.

THE 1 AT 1

4 A N

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

$T\mathcal{R}^{+}$	=	{trivial subgroup};
${\cal FIN}$	=	{finite subgroups};
		{virtually cyclic subgroups
		{compact subgroups};
		{compact open subgroups
		{all subgroups}.

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

\mathcal{TR}	=	{trivial subgroup};
${\cal FIN}$	=	{finite subgroups};
VCYC	=	{virtually cyclic subgroups};
		{compact subgroups};
		{compact open subgroups};
		{all subgroups}.

4 A N

Definition (Family of subgroups)

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

$T\mathcal{R}$	=	{trivial subgroup};
${\cal FIN}$	=	{finite subgroups};
VCYC	=	{virtually cyclic subgroups};
\mathcal{COM}	=	{compact subgroups};
		{compact open subgroups};
		{all subgroups}.

THE 1 AT 1

4 A N

Definition (Family of subgroups)

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

\mathcal{TR}	=	{trivial subgroup};
${\cal FIN}$	=	{finite subgroups};
VCYC	=	{virtually cyclic subgroups};
\mathcal{COM}	=	{compact subgroups};
\mathcal{COMOP}	=	{compact open subgroups};
		{all subgroups}.

The local state

4 A N

Definition (Family of subgroups)

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

\mathcal{TR}	=	{trivial subgroup};
${\cal FIN}$	=	{finite subgroups};
VCYC	=	{virtually cyclic subgroups};
\mathcal{COM}	=	{compact subgroups};
СОМОР	=	{compact open subgroups};
\mathcal{ALL}	=	{all subgroups}.

The local state

4 A N

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).

We abbreviate $\underline{E}G := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$.

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).

We abbreviate $\underline{E}G := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$.

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).

We abbreviate $\underline{E}G := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).
 We abbreviate *EG* := *E*_{*COM*}(*G*) and call it the *universal*

G-CW-complex for proper G-actions.

We also write $EG = E_{TR}(G)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).

We abbreviate $\underline{E}G := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$.

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).

We abbreviate $\underline{E}G := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$.

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).

We abbreviate $\underline{E}G := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$.

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two model for E_F(G) are G-homotopy equivalent;
- A G-CW-complex X is a model for E_F(G) if and only if all its isotropy groups belong to F and for each H ∈ F the H-fixed point set X^H is weakly contractible.

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two model for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for E_F(G) if and only if all its isotropy groups belong to F and for each H ∈ F the H-fixed point set X^H is weakly contractible.

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two model for E_F(G) are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is weakly contractible.

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two model for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for E_F(G) if and only if all its isotropy groups belong to F and for each H ∈ F the H-fixed point set X^H is weakly contractible.

A B b 4 B b

A D b 4 A b

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two model for E_F(G) are G-homotopy equivalent;
- A G-CW-complex X is a model for E_F(G) if and only if all its isotropy groups belong to F and for each H ∈ F the H-fixed point set X^H is weakly contractible.

★ ∃ > < ∃ >

• A model for $E_{ALL}(G)$ is G/G;

 EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for *ED*_∞ is the universal covering of ℝP[∞] ∨ ℝP[∞].
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

- A model for $E_{ALL}(G)$ is G/G;
- EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for *ED*_∞ is the universal covering of ℝP[∞] ∨ ℝP[∞].
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- A model for $E_{ALL}(G)$ is G/G;
- EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_{∞} is the universal covering of $\mathbb{RP}^{\infty} \vee \mathbb{RP}^{\infty}$.
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- A model for $E_{ALL}(G)$ is G/G;
- EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_{∞} is the universal covering of $\mathbb{RP}^{\infty} \vee \mathbb{RP}^{\infty}$.
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

< ロ > < 同 > < 回 > < 回 >

- A model for $E_{ALL}(G)$ is G/G;
- EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_{∞} is the universal covering of $\mathbb{RP}^{\infty} \vee \mathbb{RP}^{\infty}$.
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

イロト イ団ト イヨト イヨト

- A model for $E_{ALL}(G)$ is G/G;
- EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_{∞} is the universal covering of $\mathbb{RP}^{\infty} \vee \mathbb{RP}^{\infty}$.
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

- A model for $E_{ALL}(G)$ is G/G;
- EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_{∞} is the universal covering of $\mathbb{RP}^{\infty} \vee \mathbb{RP}^{\infty}$.
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

A \mathcal{F} -numerable G-space is a G-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by G-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by *G*-invariant functions $e_i \colon X \to [0, 1]$.
- Notice that we do not demand that the isotropy groups of a \mathcal{F} -numerable *G*-space belong to \mathcal{F} .
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G*-*CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

< ロ > < 同 > < 回 > < 回 >

Definition (*F*-numerable *G*-space)

A *F*-numerable *G*-space is a *G*-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by *G*-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by *G*-invariant functions $e_i \colon X \to [0, 1]$.
- Notice that we do not demand that the isotropy groups of a \mathcal{F} -numerable *G*-space belong to \mathcal{F} .
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G-CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

< ロ > < 同 > < 回 > < 回 >

A *F*-numerable *G*-space is a *G*-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by *G*-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by *G*-invariant functions $e_i \colon X \to [0, 1]$.
- Notice that we do not demand that the isotropy groups of a \mathcal{F} -numerable *G*-space belong to \mathcal{F} .
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G-CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

A *F*-numerable *G*-space is a *G*-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by *G*-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by *G*-invariant functions $e_i \colon X \to [0, 1]$.
- Notice that we do not demand that the isotropy groups of a *F*-numerable *G*-space belong to *F*.
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G-CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

A *F*-numerable *G*-space is a *G*-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by *G*-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by *G*-invariant functions $e_i \colon X \to [0, 1]$.
- Notice that we do not demand that the isotropy groups of a \mathcal{F} -numerable *G*-space belong to \mathcal{F} .
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G-CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

A *F*-numerable *G*-space is a *G*-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by *G*-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity {*e_i* | *i* ∈ *I*} subordinate to {*U_i* | *i* ∈ *I*} by *G*-invariant functions *e_i*: *X* → [0, 1].
- Notice that we do not demand that the isotropy groups of a \mathcal{F} -numerable *G*-space belong to \mathcal{F} .
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G-CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

A *F*-numerable *G*-space is a *G*-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by *G*-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity $\{e_i \mid i \in I\}$ subordinate to $\{U_i \mid i \in I\}$ by *G*-invariant functions $e_i \colon X \to [0, 1]$.
- Notice that we do not demand that the isotropy groups of a \mathcal{F} -numerable *G*-space belong to \mathcal{F} .
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G*-*CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

There is also a version J_F(G) of a classifying space for *F*-numerable G-spaces.

- It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F} -numerable and for every \mathcal{F} -numerable *G*-space *Y* there is up to *G*-homotopy precisely one *G*-map $Y \to J_{\mathcal{F}}(G)$.
- We abbreviate $\underline{J}G = J_{COM}(G)$ and $JG = J_{TR}(G)$.
- JG → G\JG is the universal G-principal bundle for numerable free proper G-spaces.

4 3 5 4 3 5

- There is also a version J_F(G) of a classifying space for *F*-numerable G-spaces.
- It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F} -numerable and for every \mathcal{F} -numerable *G*-space *Y* there is up to *G*-homotopy precisely one *G*-map $Y \to J_{\mathcal{F}}(G)$.
- We abbreviate $\underline{J}G = J_{COM}(G)$ and $JG = J_{TR}(G)$.
- JG → G\JG is the universal G-principal bundle for numerable free proper G-spaces.

4 3 5 4 3 5

- There is also a version J_F(G) of a classifying space for *F*-numerable G-spaces.
- It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F} -numerable and for every \mathcal{F} -numerable *G*-space *Y* there is up to *G*-homotopy precisely one *G*-map $Y \to J_{\mathcal{F}}(G)$.
- We abbreviate $\underline{J}G = J_{COM}(G)$ and $JG = J_{TR}(G)$.
- JG → G\JG is the universal G-principal bundle for numerable free proper G-spaces.

A B < A B </p>

- There is also a version J_F(G) of a classifying space for *F*-numerable G-spaces.
- It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F} -numerable and for every \mathcal{F} -numerable G-space Y there is up to G-homotopy precisely one G-map $Y \to J_{\mathcal{F}}(G)$.
- We abbreviate $\underline{J}G = J_{COM}(G)$ and $\overline{J}G = J_{TR}(G)$.
- JG → G\JG is the universal G-principal bundle for numerable free proper G-spaces.

Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

• It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in \mathcal{F} is open and closed;
- G is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

< ロ > < 同 > < 回 > < 回 >

Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

 It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in \mathcal{F} is open and closed;
- G is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

< ロ > < 同 > < 回 > < 回 >

Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

 It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in $\mathcal F$ is open and closed;
- G is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

 It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in \mathcal{F} is open and closed;
- *G* is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

 It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in \mathcal{F} is open and closed;
- G is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

 It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in \mathcal{F} is open and closed;
- G is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

 It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in \mathcal{F} is open and closed;
- G is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

イロト イ押ト イヨト イヨト

- We want to illustrate that the space $\underline{E}G = \underline{J}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.
 Let PC₀(G) be the subspace of C₀(G) consisting of functions f such that f is not identically zero and has non-negative real

numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for <u>J</u>G.

- We want to illustrate that the space $\underline{E}G = \underline{J}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.
 Let PC₀(G) be the subspace of C₀(G) consisting of functions f such that f is not identically zero and has non-negative real

numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for <u>J</u>G.

- We want to illustrate that the space $\underline{E}G = \underline{J}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.
 Let PC₀(G) be the subspace of C₀(G) consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for <u>J</u>G.

- We want to illustrate that the space $\underline{E}G = \underline{J}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.

Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for <u>J</u>G.

- We want to illustrate that the space $\underline{E}G = \underline{J}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.
 Let PC₀(G) be the subspace of C₀(G) consisting of functions f such that f is not identically zero and has non-negative real

numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for <u>J</u>G.

- We want to illustrate that the space $\underline{E}G = \underline{J}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.
 Let PC₀(G) be the subspace of C₀(G) consisting of functions f

such that *f* is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for $\underline{J}G$.

Let G be discrete. A model for <u>J</u>G is the space

$$X_G = \left\{ f \colon G \to [0,1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose k-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for <u>E</u>G.

イロト イポト イヨト イヨ

Let G be discrete. A model for $\underline{J}G$ is the space

$$X_G = \left\{ f \colon G \to [0,1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose k-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for <u>E</u>G.

Let G be discrete. A model for $\underline{J}G$ is the space

$$X_G = \left\{ f \colon G \to [0,1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose k-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for <u>E</u>G.

Let G be discrete. A model for $\underline{J}G$ is the space

$$X_G = \left\{ f \colon G \to [0,1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose k-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for <u>E</u>G.

Let G be discrete. A model for $\underline{J}G$ is the space

$$X_G = \left\{ f \colon G \to [0,1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose k-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for $\underline{E}G$.

Let G be discrete. A model for $\underline{J}G$ is the space

$$X_G = \left\{ f \colon G \to [0,1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose k-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for <u>E</u>G.

- The spaces X_G and $P_{\infty}(G)$ have the same underlying sets but in general they have different topologies.
- The identity map induces a *G*-map $P_{\infty}(G) \rightarrow X_G$ which is a *G*-homotopy equivalence, but in general not a *G*-homeomorphism.

- The spaces X_G and P_∞(G) have the same underlying sets but in general they have different topologies.
- The identity map induces a *G*-map $P_{\infty}(G) \rightarrow X_G$ which is a *G*-homotopy equivalence, but in general not a *G*-homeomorphism.

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

• As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left *G*-action is a finite dimensional *G*-*CW*-model for <u>E</u>*G*.

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element.

Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

• As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for <u>E</u>G.

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

• As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for <u>E</u>G.

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for <u>E</u>G.

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

• As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components.

Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for <u>E</u>G.

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

• As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left

G-action is a finite dimensional G-CW-model for <u>E</u>G.

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

• As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for <u>E</u>G.

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for $\underline{E}G$.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

Let G be a (locally compact Hausdorff) topological group. Let X be a

proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for $\underline{E}G$.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

12 N 4 12

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for $\underline{E}G$.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for $\underline{E}G$.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

4 3 > 4 3

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for $\underline{E}G$.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

3 > 4 3

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for $\underline{E}G$.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

3 > 4 3

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $J_{COMOP}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{COMOP}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)' is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact. Then Σ is a model for both decree (G) and dG and the barycentric

subdivision Σ' is a model for both $E_{COMOP}(G)$ and <u>E</u>G.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)' is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $J_{COMOP}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{COMOP}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)' is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

(4) (5) (4) (5)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $J_{COMOP}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{COMOP}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)' is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $J_{COMOP}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{COMOP}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)^r is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $J_{COMOP}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{COMOP}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)' is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

A B F A B F

Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $J_{COMOP}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{COMOP}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)' is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

A B b 4 B b

A D M A A A M M

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious *G*-action by simplicial automorphisms on *P*_d(*G*, *S*) induces a *G*-action by simplicial automorphisms on the barycentric subdivision *P*_d(*G*, *S*)'.

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a

finite G-CW-model for <u>E</u>G.

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious *G*-action by simplicial automorphisms on *P*_d(*G*, *S*) induces a *G*-action by simplicial automorphisms on the barycentric subdivision *P*_d(*G*, *S*)'.

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a

finite G-CW-model for <u>E</u>G.

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious *G*-action by simplicial automorphisms on *P*_d(*G*, *S*) induces a *G*-action by simplicial automorphisms on the barycentric subdivision *P*_d(*G*, *S*)'.

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for <u>E</u>G.

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious *G*-action by simplicial automorphisms on *P*_d(*G*, *S*) induces a *G*-action by simplicial automorphisms on the barycentric subdivision *P*_d(*G*, *S*)'.

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for <u>E</u>G.

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious *G*-action by simplicial automorphisms on *P*_d(*G*, *S*) induces a *G*-action by simplicial automorphisms on the barycentric subdivision *P*_d(*G*, *S*)'.

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$.

Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for <u>E</u>G.

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious *G*-action by simplicial automorphisms on *P*_d(*G*, *S*) induces a *G*-action by simplicial automorphisms on the barycentric subdivision *P*_d(*G*, *S*)'.

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for <u>E</u>G.

Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.

- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

- Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.
- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

- Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.
- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

- Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.
- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

- Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.
- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left
 A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

- Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.
- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

- Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.
- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left
 A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

We will always assume that 2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured surface *F* is negative.

• It is well-known that the associated Teichmüller space $T_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$ -space $\mathcal{T}_{g,r}^s$ is a model for $\underline{E}\Gamma_{g,r}^s$.

★ ∃ > < ∃ >

We will always assume that 2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured surface *F* is negative.

• It is well-known that the associated Teichmüller space $T_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$ -space $\mathcal{T}_{g,r}^s$ is a model for $\underline{E}\Gamma_{g,r}^s$.

★ 3 > < 3 >

We will always assume that 2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured surface *F* is negative.

• It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$ -space $\mathcal{T}_{g,r}^s$ is a model for $\underline{E}\Gamma_{g,r}^s$.

A B A A B A

We will always assume that 2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured surface *F* is negative.

• It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$ -space $\mathcal{T}_{g,r}^s$ is a model for $\underline{E}\Gamma_{g,r}^s$.

We will always assume that 2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured surface *F* is negative.

• It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$ -space $\mathcal{T}_{g,r}^s$ is a model for $\underline{E}\Gamma_{g,r}^s$.

• Let F_n be the free group of rank n.

- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out(F_n).

- Let F_n be the free group of rank n.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out(F_n).

- Let *F_n* be the free group of rank *n*.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which Out(F_n) acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out(F_n).

- Let *F_n* be the free group of rank *n*.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out(F_n).

- Let *F_n* be the free group of rank *n*.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an Out(F_n)-equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the Out(F_n)-action is by simplicial automorphisms and cocompact.

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out(F_n).

イロト イヨト イヨト イヨト

- Let *F_n* be the free group of rank *n*.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out(F_n).

э

<ロ> <問> <問> < 回> < 回> 、

- Let *F_n* be the free group of rank *n*.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out (F_n) .

э

- Let *F_n* be the free group of rank *n*.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of <u>E</u> Out(F_n).

э

イロト イヨト イヨト イヨト

- In order to illustrate some of the general statements above we consider the special example $SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$.
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

Example ($SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$)

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for ESL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at i ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

Example ($SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$)

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at i ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

Example ($SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$)

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Since SL₂(ℤ) is a discrete subgroup of SL₂(ℝ), the space ℍ² with the obvious SL₂(ℤ)-action is a model for <u>E</u>SL₂(ℤ).
- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $\underline{E}SL_2(\mathbb{Z})$.
- The tree model and the other model given by ℍ² must be SL₂(ℤ)-homotopy equivalent. They can explicitly be related by the following construction.

4 D N 4 B N 4 B N 4 B

- Since SL₂(ℤ) is a discrete subgroup of SL₂(ℝ), the space ℍ² with the obvious SL₂(ℤ)-action is a model for <u>E</u>SL₂(ℤ).
- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $\underline{E}SL_2(\mathbb{Z})$.
- The tree model and the other model given by ℍ² must be SL₂(ℤ)-homotopy equivalent. They can explicitly be related by the following construction.

- Since SL₂(ℤ) is a discrete subgroup of SL₂(ℝ), the space ℍ² with the obvious SL₂(ℤ)-action is a model for <u>E</u>SL₂(ℤ).
- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $\underline{E}SL_2(\mathbb{Z})$.
- The tree model and the other model given by ℍ² must be SL₂(ℤ)-homotopy equivalent. They can explicitly be related by the following construction.

< ロ > < 同 > < 回 > < 回 >

- Since SL₂(ℤ) is a discrete subgroup of SL₂(ℝ), the space ℍ² with the obvious SL₂(ℤ)-action is a model for <u>E</u>SL₂(ℤ).
- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $ESL_2(\mathbb{Z})$.
- The tree model and the other model given by ℍ² must be SL₂(ℤ)-homotopy equivalent. They can explicitly be related by the following construction.

< ロ > < 同 > < 回 > < 回 >

- Since SL₂(ℤ) is a discrete subgroup of SL₂(ℝ), the space ℍ² with the obvious SL₂(ℤ)-action is a model for <u>E</u>SL₂(ℤ).
- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $\underline{E}SL_2(\mathbb{Z})$.
- The tree model and the other model given by ℍ² must be SL₂(ℤ)-homotopy equivalent. They can explicitly be related by the following construction.

< ロ > < 同 > < 回 > < 回 >

- Since SL₂(ℤ) is a discrete subgroup of SL₂(ℝ), the space ℍ² with the obvious SL₂(ℤ)-action is a model for <u>E</u>SL₂(ℤ).
- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $\underline{E}SL_2(\mathbb{Z})$.
- The tree model and the other model given by ℍ² must be SL₂(ℤ)-homotopy equivalent. They can explicitly be related by the following construction.

(B)

 Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$ -action. Each fundamental domain is a geodesic triangle

 Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$ -action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges.

 Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$ -action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with $SL_2(\mathbb{Z})$ -action which is the tree model above. The tree is a

E 5 4 E

 Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$ -action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree Twith $SL_2(\mathbb{Z})$ -action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$ -equivariant deformation retraction of the Poincaré disk. A

 Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$ -action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree Twith $SL_2(\mathbb{Z})$ -action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$ -equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point p in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T.

4 3 > 4 3

The tree *T* above can be identified with the Bruhat-Tits building of SL₂(Q_p̂) and hence is a model for <u>E</u>SL₂(Q_p̂). Since SL₂(ℤ) is a discrete subgroup of SL₂(Q_p̂), we get another reason why this tree is a model for SL₂(ℤ).

(4) (5) (4) (5)

The tree *T* above can be identified with the Bruhat-Tits building of SL₂(Q_p) and hence is a model for <u>E</u>SL₂(Q_p). Since SL₂(ℤ) is a discrete subgroup of SL₂(Q_p), we get another reason why this tree is a model for SL₂(ℤ).

< 3 > < 3</p>

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for *EG* for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge. These small models can be useful for computations concerning <u>BG</u> itself.

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for *EG* for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge. These small models can be useful for computations concerning <u>BG</u> itself.

- Finiteness properties of the spaces *EG* and *<u>E</u><i>G* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for *EG* for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge. These small models can be useful for computations concerning <u>BG</u> itself.

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for *EG* for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge. These small models can be useful for computations concerning <u>BG</u> itself.

A B F A B F

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for *EG* for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge. These small models can be useful for computations concerning <u>BG</u> itself.

A B b 4 B b

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for <u>*EG*</u> for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.

A B b 4 B b

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for <u>*EG*</u> for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for EG are huge. These small models can be useful for computations concerning BG itself.

★ ∃ > < ∃ >

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for <u>*EG*</u> for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge. These small models can be useful for computations concerning <u>BG</u> itself.

E 5 4 E

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for <u>E</u>G. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

The Sec. 74

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for <u>E</u>G. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

The Sec. 74

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for EG. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

3 > 4 3

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for EG. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

Let *L* be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup *K*. Let $G \subseteq L$ be a discrete subgroup of *L*. Then L/K with the left *G*-action is a model for <u>E</u>*G*.

Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

A B b 4 B b

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for <u>E</u>G. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index.

Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for <u>E</u>G. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

A B A A B A

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for <u>E</u>G. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

< 3 > < 3</p>

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for <u>E</u>G, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for <u>EG</u>, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for <u>EG</u>, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for <u>EG</u>, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one; G is a free group.

Theorem (A criterion for 1-dimensional models for <u>E</u>G, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;

• G is a free group.

Theorem (A criterion for 1-dimensional models for <u>E</u>G, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for $\underline{E}G$, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for $\underline{E}G$, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for $\underline{E}G$, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for $\underline{E}G$, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for $\underline{E}G$ if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Let G be a discrete group which is virtually torsionfree.

• Then

$\operatorname{vcd}(G) \leq \dim(\underline{E}G)$

for any model for <u>E</u>G.

Let *I* ≥ 0 be an integer such that for any chain of finite subgroups *H*₀ ⊊ *H*₁ ⊊ ... ⊊ *H_r* we have *r* ≤ *I*. Then there exists a model for <u>E</u>G of dimension max{3,vcd(G)} + *I*.

Let G be a discrete group which is virtually torsionfree.

• Then

$\operatorname{vcd}(G) \leq \dim(\underline{E}G)$

for any model for <u>E</u>G.

 Let *I* ≥ 0 be an integer such that for any chain of finite subgroups *H*₀ ⊊ *H*₁ ⊊ ... ⊊ *H_r* we have *r* ≤ *I*. Then there exists a model for <u>E</u>G of dimension max{3,vcd(G)} + *I*.

Let G be a discrete group which is virtually torsionfree.

Then

$\operatorname{vcd}(G) \leq \dim(\underline{E}G)$

for any model for $\underline{E}G$.

 Let *I* ≥ 0 be an integer such that for any chain of finite subgroups *H*₀ ⊊ *H*₁ ⊊ ... ⊊ *H_r* we have *r* ≤ *I*. Then there exists a model for <u>E</u>G of dimension max{3,vcd(G)} + *I*.

Let G be a discrete group which is virtually torsionfree.

Then

$$vcd(G) \leq dim(\underline{E}G)$$

for any model for $\underline{E}G$.

 Let *I* ≥ 0 be an integer such that for any chain of finite subgroups *H*₀ ⊊ *H*₁ ⊊ ... ⊊ *H_r* we have *r* ≤ *I*. Then there exists a model for <u>E</u>G of dimension max{3,vcd(G)} + *I*.

Let G be a discrete group which is virtually torsionfree.

• Then

$$vcd(G) \leq dim(\underline{E}G)$$

for any model for $\underline{E}G$.

 Let *I* ≥ 0 be an integer such that for any chain of finite subgroups *H*₀ ⊊ *H*₁ ⊊ ... ⊊ *H_r* we have *r* ≤ *I*. Then there exists a model for <u>E</u>G of dimension max{3, vcd(G)} + *I*.

글 🕨 🖌 글

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for \underline{E} G of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \setminus \underline{E}G$.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for \underline{E} G of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \setminus \underline{E}G$.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for \underline{E} G of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \setminus \underline{E}G$.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for \underline{E} G of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \setminus \underline{E}G$.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for \underline{E} G of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \setminus \underline{E}G$.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for \underline{E} G of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \setminus \underline{E}G$.

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

To be continued Stay tuned

Wolfgang Lück (Münster, Germany)

Classifying spaces for families

Hangzhou, July 2007 35 / 35

э

(4) (5) (4) (5)

< 6 b

To be continued Stay tuned

э

< A