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FREE ENTROPY DIMENSION IN AMALGAMATED FREE

PRODUCTS

NATHANIAL P. BROWN, KENNETH J. DYKEMA AND KENLEY JUNG

WITH AN APPENDIX BY WOLFGANG LÜCK

Abstract. We calculate the microstates free entropy dimension of natural gen-
erators in an amalgamated free product of certain von Neumann algebras, with
amalgamation over a hyperfinite subalgebra. In particular, some ‘exotic’ Popa al-
gebra generators of free group factors are shown to have the expected free entropy
dimension. We also show that microstates and non–microstates free entropy dimen-
sion agree for generating sets of many groups. In the appendix, the first L2–Betti
number for certain amalgamated free products of groups is calculated.

1. Introduction

The modified free entropy dimension δ0(X) is a number associated to any finite set
X of self-adjoint operators in a finite von Neumann algebra. This noncommutative
analogue of Minkowski dimension was introduced by Dan Voiculescu and has been
one of the major applications of free probability to operator algebras. (See [32] for
the definition of δ0 and a nice survey of the theory and applications.) Voiculescu [29]
showed that δ0(X) is an invariant of the algebra generated by X. It is an open
question whether δ0(X) is an invariant of the von Neumann algebra X ′′ generated by
X. It was shown in [17] that δ0(X) is an invariant of X ′′ if X ′′ = B is a hyperfinite
von Neumann algebra and in such cases we may write δ0(B) instead of δ0(X).

Computations with δ0 have been made in a number of situations. The first were
made by Voiculescu for a single selfadjoint and a free family of selfadjoints in [27], and
more generally for any separably acting von Neumann algebra with a Cartan subal-
gebra or one with property Γ ([28]). In [31], Voiculescu also made such computations
for sequentially commuting operators. These results were signifcantly generalized by
Ge and Shen in [15] (previously Ge used such techniques to show that the free group
factors are prime in [14]). Bounds and computations with δ0 have also been made for
subfactors of finite index, property T factors, group generators of a discrete group,
and free products of certain von Neumann algebras with amalgamation over a diffuse
subalgebra ([20], [22], [7] [21]).

The purpose of this paper is to show that in many cases, natural generators of an
amalgamated free product M1∗BM2 of von Neumann algebras (with respect to trace–
preserving conditional expectations) have the expected free entropy dimension, when
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B is hyperfinite. More precisely, let M1 and M2 be finite von Neumann algebras
with fixed normal, faithful, tracial states τ1 and τ2 and having finite generating sets
X1 and X2, respectively. Suppose B is a hyperfinite von Neumann algebra that is
embedded in both M1 and M2 so that the restrictions of the traces τ1 and τ2 agree.
Consider the amalgamated free product von Neumann algebra M1∗BM2, taken with
respect to the trace–preserving conditional expectations Mi → B. Our goal is to
show

δ0(X1 ∪X2) = δ0(X1) + δ0(X2) − δ0(B). (1)

We can show this and similar results, under certain technical assumptions (see Theo-
rem 4.4 and its corollaries). For example we prove (1) in the case that both M1 and
M2 are hyperfinite.

Our results for δ0 allow us to test the conjecture δ0 = δ∗, where δ∗ is the non–
microstates free entropy dimension of Voiculescu [30]. (See the discussion prior to
Theorem 4.12.) Indeed, we verify δ0(X) = δ∗(X) when X is a generating set of the
group algebra C[G] endowed with its canonical trace, for a large class of groups. In
testing this conjecture, we use results of [17], [15] and [22] as well as (1) to compute
δ0(X), and we use a result of Mineyev and Shlyakhtenko [25] to compute δ∗(X) in
terms of L2–Betti numbers. We then use results of W. Lück and others to compute
L2–Betti numbers of groups, including a new result, found in the appendix to this
paper, on the first L2–Betti number for certain amalgamated free products of groups.

We are interested in amalgamated free products in part because they give new
presentations of (interpolated) free group factors. Indeed, in [5] it was shown that
L(Fn) can be realized as (a corner of) an amalgamated free product of the type
above. Using this fact, some generators were constructed which appeared to be
exotic in terms of the properties of the C∗–algebras they generate. We will prove in
this paper that these generators have, in fact, the expected free entropy dimension.
In other words, from the free probability perspective the free-group-factor generators
constructed in [5] aren’t all that exotic.

The next section of this paper establishes notation, recalls some definitions; we
also introduce a regularity property as pertains to microstates packing that is of
technical use in later sections. In Section 3 we prove an asymptotic freeness result
which is used to get lower bounds for δ0. Section 4 contains the proof of the main
theorem and (under certain hypotheses) equation (1) above. At the end of this
section, as corollaries, we show that the conjectured equality between δ0 and the
non–microstates free entropy dimention δ∗ holds for generating sets of many groups.
In Section 5, we prove a cut–down forumla for δ0, again under certain techincal
assumptions, (and we remark that a general cut–down formula is equivalent to the
von Neumann algebra invariance question). Section 6 explains why the generators
constructed in [5] are covered by our results, and, therefore, have the expected free
entropy dimension. Finally, the appendix, by W. Lück, calculates the first L2–Betti
numbers of amalgamated free products of certain groups.
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2. Micorstates packing regularity

In this section, we begin by recalling some basic facts about matricial microstates
and the packing number approach to δ0 and then we define microstate–packing reg-
ularity, which is analogous to the notion of regularity given by Voiculescu in Defini-
tion 3.6 of [29].

For a finite set X, #X denotes the cardinality of X. Msa
k (C) denotes the set of

k× k selfadjoint complex matrices and for n ∈ N, (Msa
k (C))n is the set of n-tuples of

such matrices. Uk will denote the set of k × k unitaries.
Given a finite setX = {x1, . . . , xn} of selfadjoint elements in a tracial von Neumann

algebra (M,ϕ), denote by Γ(X;m, k, γ) the set of all n-tuples of k × k selfadjoint
matrices (a1, . . . , an) such that for any 1 ≤ p ≤ m and 1 ≤ i1, . . . , ip ≤ n,

|trk(ai1 · · ·aip) − ϕ(xi1 · · ·xip)| < γ.

Here trk denotes the normalized trace on the k×k matrices. We regard subsets of the
space of n-tuples of k× k selfadjoint complex matrices as metric spaces with respect
to the normalized Hilbert-Schmidt norm |(a1, . . . , an)|2 = (

∑n
i=1 trk(a

2
i ))

1

2 .
For any metric space (Ω, d) and ǫ > 0, Pǫ(Ω) denotes the maximum number of

elements in a collection of mutually disjoint open ǫ balls of Ω. Similarly Kǫ(Ω)
denotes the minimum number of open ǫ-balls required to cover Ω (such a cover is
called an ǫ-net for Ω).

We will now recall the following asymptotic packing quantity; it can be used to
define δ0 and allows for lower bound computations. Define successively:

Pǫ(X;m, γ) = lim sup
k→∞

k−2 · log(Pǫ(Γ(X;m, k, γ))), (2)

Pǫ(X) = inf{Pǫ(X;m, γ) : m ∈ N, γ > 0}. (3)

One can also define Kǫ(X) in an analogous way by replacing Pǫ above with Kǫ.
Finally, by [18], the free entropy dimension of X is

δ0(X) = lim sup
ǫ→0

Pǫ(X)

| log ǫ|
. (4)

The equality (4) persists if Pǫ is replaced with Kǫ.
With minor modifications, δ0 and related quantities can be defined for n-tuples of

non-self-adjoint operators too (see, for example, [13]). Moreover, if R is a real number
greater than the operator norm of any element of X, then letting ΓR(X;m, k, γ) be
the set of n–tuples (a1, . . . , an) ∈ Γ(X;m, k, γ) such that ‖ai‖ ≤ R for all i, replacing
Γ by ΓR in (2) doesn’t change the value of δ0(X).

Similarly, we define

Pǫ(X;m, γ) = lim inf
k→∞

k−2 · log(Pǫ(Γ(X;m, k, γ))), (5)

Pǫ(X) = inf{Pǫ(X;m, γ) : m ∈ N, γ > 0}. (6)
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and we also define Kǫ(X) in an analogous way by replacing Pǫ above with Kǫ. Finally,
we let

δ0(X) = lim sup
ǫ→0

Pǫ(X)

| log ǫ|
. (7)

Again, the equality (7) persists if Pǫ is replaced with Kǫ. Also here the value of δ0(X)
is unchanged by substituting ΓR for Γ in (5). Moreover, it is easily seen that also
δ0(X) is an invariant of the ∗–algebra generated by X.

Clearly, we always have

δ0(X) ≤ δ0(X)

and we think of δ0 as a sort of lower free entropy dimension.

Definition 2.1. An n–tuple X in a finite von Neumann algebra is said to be
microstates–packing regular if δ0(X) = δ0(X).

Throughout this paper, we will abbreviate this term by writing simply “regular.”
(Compare to Definition 3.6 of [29].) In order to show that certain n–tuples X are
regular, we will use Voiculescu’s original definition of the (modified) free entropy
dimension [27] and [28], whereby if X = {x1, . . . , xn}, then for s1, . . . , sn a standard
semicircular family free from X and for any R > maxj(‖xj‖),

δ0(X) = n+ lim sup
ǫ→0

χR(x1 + ǫs1, . . . , xn + ǫsn : s1, . . . , sn)

| log ǫ|
, (8)

where χR is the free entropy of Voiculescu. The free entropy χR is defined in terms of
the asymptotics of volumes of microstate spaces as the matrix size k tends to infinity.
Let us denote by χR the quantity obtained by, in the definition of χR, (see [27]
and [28]), replacing lim supk→∞ by lim infk→∞. Let us denote by δ0 the quantity

obtained by replacing χR in (8) by χR. It is another sort of lower free entropy
dimension. A key technical fact is the equality

δ0(x1) = δ(x1) = δ0(x1) (9)

for any single element x1 of a finite von Neumann algebra. This is analogous to
Corollary 6.7 of [28] and can be proved by modifying this corollary’s proof.

The following is a variation on Theorem 4.5 of [17].

Lemma 2.2. Let X be a finite subset of self–adjoint elements in a finite von Neumann
algebra that is embeddable in the ultrapower Rω of the hyperfinite II1–factor. Suppose
that B is a finite subset of self–adjoint elements in the ∗–algebra generated by X and
that B generates a hyperfinite von Neumann algebra. Then

δ0(X) ≥ δ0(B). (10)

Proof. Let R̃ be some sufficiently large real number. WriteX = {x1, . . . , xn} and B =

{b1, . . . , bp}. SinceX can be embedded inRω, one can find a sequence 〈(x(k)
1 , . . . , x

(k)
n )〉∞k=1

of n–tuples of self–adjoint k × k matrices such that for every m and γ we have

(x
(k)
1 , . . . , x(k)

n ) ∈ ΓR̃(X;m, k, γ).
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Replacing every lim supk→∞ with lim infk→∞ in the proofs of Lemmas 4.3 and 4.4
of [17], one shows that for every m and γ and every 0 < ǫ < 1 we have

lim inf
k→∞

(
k−2 · log(P4ǫ

√
n(U(x

(k)
1 , . . . , x(k)

n )))
)

≥ χλ(b1 + ǫs1, . . . , bp + ǫsp : s1, . . . , sp) + p| log ǫ| −K1,

where s1, . . . , sp are as above, where U(x
(k)
1 , . . . , x

(k)
n ) denotes the unitary orbit of

(x
(k)
1 , . . . , x

(k)
n ) and where K1 and λ are constants independent of m, γ and ǫ. Since

the aformentioned unitary orbit lies in the micorstate space ΓR(X;m, k, γ) for all k
sufficiently large, we get

P4ǫ
√

n(X) ≥ χλ(b1 + ǫs1, . . . , bp + ǫsp : s1, . . . , sp) + p| log ǫ| −K1.

Dividing by | log ǫ| and letting ǫ tend to zero, we get (10). �

Combining the above lemma with (9), we get the following lemma.

Lemma 2.3. Let X be as in Lemma 2.2 and let b be a self–adjoint element of the
∗–algebra generated by X. Then

δ0(X) ≥ δ0(b).

Proposition 2.4. Let X be an n–tuple of self–adjoint elements in a finite von Neu-
mann algebra. Suppose either (a) X ′′ is hyperfinite or (b) δ0(X) ≤ 1 and there is an
element of the ∗–algebra generated by X whose trace of spectral measure is diffuse.
Then X is regular.

Proof. Assume first that X ′′ is hyperfinite. The proof is essentially contained in
Sections 5 and 6 of [17]. Indeed, all the relevant inqualities remain valid when lim sup
is replaced with lim inf. We leave the details to the reader.

Consider now the case (b). Let x0 be a self–adjoint element in the ∗–algebra
generated by X whose trace of spectral measure is diffuse. Then (by [27] and [28])
δ0(x0) = 1, so using Lemma 2.3 we get

δ0(X) ≥ δ0(x0) = 1 = δ0(X),

and we conclude that X is regular. �

We now state for later use Lemma 3.2 of [19] and a minor variation of it whose
proof is an easy adaptation of that lemma’s proof. Let X and Y be finite sets of self–
adjoint elements in a finite von Neumann algebra. The (relative) microstate space of
X relative to some microstates ξk for Y is defined (see [19]) by

Ξ(X;m, k, γ) = {η | (η, ξk) ∈ Γ(X ∪ Y ;m, k, γ)}.

Then Pǫ(Ξ(X;m, γ)) and Pǫ(Ξ(X)) are defined as in (2) and (3), but replacing Γ
with Ξ, and similarly for Kǫ(Ξ(X)), Pǫ(Ξ(X)), Kǫ(Ξ(X)), and so on. Moreover, for
R > 0, when we write ΞR in any of these contexts, we mean the quantities obtained
by restricing to spaces of microstates having norms bounded above by R.
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Lemma 2.5. Let X and Y be as above. Suppose Y ′′ is hyperfinite. Let R > 0 be larger
than the norm of every element of X∪Y . Choose a sequence 〈ξk〉∞k=1 so that for every
m ∈ N and γ > 0 and t > 0, ξk ∈ ΓR(Y ;m, k, γ) and dim ξ′k ≥ k2(1 − δ0(Y ) − t) for
all sufficiently large k, where ξ′k is the commutant of the set ξk in the k× k matrices.
Taking relative microstates ΞR(X; · · · ) with respect to this sequence 〈ξk〉

∞
1 , we have

δ0(X ∪ Y ) = δ0(Y ) + lim sup
ǫ→0

Kǫ(ΞR(X))

| log ǫ|
(11)

δ0(X ∪ Y ) = δ0(Y ) + lim sup
ǫ→0

Kǫ(ΞR(X))

| log ǫ|
(12)

3. Asymptotic Freeness Results

In this section we prove some asymptotic freeness results for random matrices.
The asymptotic freeness is with amalgamation over a finite dimensional C∗–algebra
D. A general description of our results is that, if we fix certain n(k)–dimensional
representations πk of D and if we consider independent random unitary matrices,
each distributed according to Haar measure on the commutant of πk(D), then these
become ∗–free over D from each other and from scalar matrices as the matrix size
n(k) increases without bound. These results are generalizations of some results of
Voiculescu from [26] and [29], which are for the case D = C, and our techniques are
also extensions of Voiculescu’s techniques.

Lemma 3.1. Let (A, φ) be a C∗–noncommutative probability space, suppose D ⊆ A is
a unital C∗–subalgebra and suppose φ↾D has faithful Gelfand–Naimark–Segal (GNS)
representation. Suppose ρ : A → D is a conditional expectation such that φ ◦ ρ = φ
and suppose Bn ⊆ A is a unital C∗–subalgebra (n ∈ N) such that the family (Bn)∞n=1

is free with respect to φ and D ⊆ B1. Let An = C∗(Bn ∪D) for every n ∈ N. Then
the family (An)∞n=1 is free over D with respect to ρ.

Proof. Let Ãn denote the algebra generated by Bn ∪D. It will suffice to show that

the family (Ãn)n≥1 is free over D with respect to ρ. We will use the notation

Λo((Si)i∈I) := {s1s2 · · · sn | n ≥ 1, sj ∈ Sij , i1, . . . , in ∈ I, ij 6= ij+1} (13)

for any family (Si)i ∈ I of subsets of an algebra, and we will think of elements of the
set (13) as either words in the Si or as elements of the algebra, blurring the distinction
between them. For n ≥ 2, since Bn and D are free with respect to φ, we have

Ãn = D+spanDΘnD, where Θn is the set of all elements in Λo(Bn∩ker φ,D∩kerφ)
whose first and last letters are from Bn∩ker φ. Since Bn and Dn are free with respect
to φ, we have DΘnD ⊆ kerφ. Since φ↾D has faithful GNS representation, we get
DΘnD ⊆ ker ρ, and, therefore,

Ãn ∩ ker ρ = spanDΘnD.

To prove the lemma, it will suffice to show

Λo(B1 ∩ ker ρ, (DΘnD)n≥2) ⊆ ker ρ.
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Since φ has faithful GNS representation, it will suffice to show

Λo(B1 ∩ ker ρ, (DΘnD)n≥2) ⊆ ker φ. (14)

Let w be a word from the left–hand side of (14). If w belongs to B1∩ker ρ, then we are
done, so we may suppose that at least one letter of w is from DΘnD, for some n ≥ 2.
By stripping off the copies of D from each DΘnD and by using D(B1 ∩ ker ρ)D =
B1 ∩ ker ρ, we see that w equals a word

w′ ∈ Λo((B1 ∩ ker ρ), D, (Θn)n≥2),

where each letter of w′ that comes from D satisfies one of the following three condi-
tions:

• it is the left–most letter of w′ and has a letter from some Θn to the right
• it is the right–most letter of w′ and has a letter from some Θn to the left
• it lies between a letter from some Θn immediately to the left and some Θm

immediately to the right, with n,m ≥ 2, n 6= m.

For all d ∈ D appearing as letters in the writing of w′ described above, write d =
(d − φ(d)1) + φ(d)1 and distribute. Furthermore, write out each element of Θn as a
word coming from Λo(Bn ∩ ker φ,D ∩ ker φ) that begins and ends with elements of
Bn ∩ ker φ. We thereby see that w′ is equal to a linear combination of words from

Λo((B1 ∩ ker ρ) ∪ (D ∩ ker φ), (Bn ∩ ker φ)n≥2). (15)

Be freeness of (Bn)n≥1 with respect to φ, the set (15) lies in ker φ, and we get w′ ∈
ker φ, as required. �

3.2. For the remainder of this section, we fix a finite dimensional C∗–algebra D
with spanning set {d1, . . . , dM} and a faithful tracial state τD on D. Fixing integers
n(1) < n(2) < · · · , we let πk : D →Mn(k)(C) be a faithful ∗–homomorphism and we
assume

lim
k→∞

trn(k)(πk(d)) = τD(d), (d ∈ D),

where trn denotes the normalized trace on Mn(C). We let ψk : Mn(k)(C) → πk(D) be
the trn(k)–preserving conditional expectation, and we let Ek : Mn(k)(C) → D be such
that ψk = πk ◦ Ek.

Theorem 3.3. Let (B, τB) be a C∗–noncommutative probability space with tracial
state τB and suppose D is embedded in B as a unital C∗–subalgebra such that the
restriction of τB to D equals τD. Let EB

D be the τB–preserving conditional expectation
from B onto D. Let u1, u2, . . . be the ∗–free family of Haar unitary elements of
(C∗

r (F∞), τF∞
) coming from the free generators of F∞, and let

(A, E) = (B,EB
D) ∗D (C∗

r (F∞) ⊗D, τF∞
⊗ idD)

be the reduced amalgamated free product of C∗–algebras. It is easily seen that τ :=
τd ◦ E is a trace on A. Let u1, u2, . . . denote also the obvious unitary elements of A

coming from the unitaries in C∗
r (F∞).

Let b1, b2, . . . ∈ B and suppose B(s, k) ∈Mn(k)(C) (s ∈ N) are such that

∀s ∈ N sup
k∈N

‖B(s, k)‖ <∞
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and the family (
B(s, k)

)
s∈N

,
(
πk(di)

)M
i=1

in (Mn(k)(C), trn(k)) converges in ∗–moments to

(bs)s∈N, (di)
M
i=1

in (B, τB) as k → ∞.
For each k ∈ N, let (U(j, k))j∈N be a family of mutually independent random

unitary matrices in Mn(k), each distributed according to Haar measure on the unitary
group of πk(D)′. Then the family

(
B(s, k)

)
s∈N

,
(
U(j, k)

)
j∈N

in (Mn(k), τn(k)) converges in ∗–moments to the family

(bs)s∈N, (uj)j∈N

in (A, τ) as k → ∞.

Proof. For convenience of notation, we may suppose the first M of the list b1, b2, . . .
consist of d1, . . . , dM , and B(s, k) = πk(ds) for 1 ≤ s ≤M .

Let (Ã, τ̃ ) be a W∗–noncommutative probability space with τ̃ a faithful trace and

with B a unital C∗–subalgebra of Ã such that τ̃↾B = τB and with (0, 1)–circular

elements z1, z2, . . . ∈ Ã such that B,
(
{zj})∞j=1 is a ∗–free family. Let Ed : Ã → D be

the τ̃–preserving conditional expectation onto D. Let Z(j, k) ∈ GRM(n(k), 1/n(k))
be such that (Z(j, k))∞k=1 is an independent family of matrix–valued random variables.
By [29], the family (

B(s, k)
)

s∈N
,
(
Z(j, k)

)
k∈N

in (Mn(k), τn(k)) converges in ∗–moments to the family (bs)s∈N, (zj)j∈N.
Let

ψk : Mn(k)(C) → πk(D)

be the trn(k)–preserving conditional expectation and let Ek : Mn(k) → D be such that

ψk = πk ◦ Ek. (16)

Writing

D =
L⊕

ℓ=1

Mm(ℓ)(C), (17)

let (e
(ℓ)
pq )1≤p,q≤m(ℓ) be a system of matrix units for the ℓth direct summand in the

right–hand–side of (17) and let αℓ = τ(e
(ℓ)
11 ). Let

yj =
K∑

ℓ=1

α
−1/2
ℓ

m(ℓ)∑

q=1

e
(ℓ)
q1 zje

(ℓ)
1q .

Then yj is a (0, 1)–circular element that commutes with D. Furthermore, by Lemma
3.1, the family B, ({yj})∞j=1 is ∗–free over D with respect to ED. Let vj be the polar
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part of yj . By [26], vj is Haar unitary and, therefore, the family (bs)s∈N, (vj)j∈N has
the same ∗–moments as the family (bs)s∈N, (uj)j∈N in (A, τ).

Let

Y (j, k) =
K∑

ℓ=1

α
−1/2
ℓ

m(ℓ)∑

q=1

πk(e
(ℓ)
q1 )Z(j, k)πk(e

(ℓ)
1q ).

Then the family (
B(s, k)

)
s∈N

,
(
{Y (j, k)}

)
j∈N

in (Mn(k), τn(k)) converges in ∗–moments to the family (bs)s∈N, (yj)j∈N in (Ã, τ̃) as
k → ∞ and, therefore the family,

{B(s, k) | s ∈ N},
(
{Y (j, k)}

)
j∈N

(18)

of sets of noncommutative random variables in (Mn(k), Ek) is asymptotically ∗–free
over D.

The subalgebra πk(e
(ℓ)
11 )Mn(k)πk(e

(ℓ)
11 ) is canonically identified with Mr(ℓ,k), where

r(ℓ, k) is the rank of the projection πk(e
(ℓ)
11 ), and under this identification, we have

πk(e
(ℓ)
11 )Z(j, k)πk(e

(ℓ)
11 ) ∈ GRM(r(ℓ, k), 1/n(k))

and, for each j, (
πk(e

(ℓ)
11 )Z(j, k)πk(e

(ℓ)
11 )
)L

ℓ=1

is an independent family of random variables. Consequently, the polar part V (ℓ)(j, k)

of πk(e
(ℓ)
11 )Z(j, k)πk(e

(ℓ)
11 ) belongs to HURM(r(ℓ, k)) and

(
V (ℓ)(j, k)

)L
ℓ=1

is an indenpendent family of random variables. Therefore, the polar part of Y (j, k)
is

V (j, k) =

L∑

ℓ=1

m(ℓ)∑

q=1

πk(e
(ℓ)
q1 )V (ℓ)(j, k)πk(e

(ℓ)
1q ),

which is a random unitary distributed according to Haar measure on the unitary
group of πk(D)′.

To finish the proof of the proposition, it will suffice to show that the family
(
B(s, k)

)
s∈N

,
(
V (j, k)

)
j∈N

converges in ∗–moments to the family (bs)s∈N, (vj)j∈N as k → ∞, and for this it will
suffice to show that the family

{B(s, k) | s ∈ N},
(
{V (j, k)}

)
j∈N

(19)

in (Mn(k), Ek) is asymptotically ∗–free over D, where Ek : Mn(k) → D are as defined
in (16). This, in turn, follows using the method of the proof of Theorem 3.8 of [26].
For A ∈ Mn and 1 ≤ d <∞, let

|A|d = (τn(A∗A)d/2)1/d.
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Let d, ℓ ∈ N and let Q be a monomial of degree d in 2ℓ noncommuting variables.
Given ǫ > 0, let

Vǫ(j, k) = Y (j, k)(ǫ+ Y (j, k)∗Y (j, k))−1/2.

Let δ ∈ (0, 1]. By Step I of the proof of [26, 3.8], there is a polynomial Pδ such that,
letting Wδ(j, k) = Y (j, k)Pδ(Y (j, k)∗Y (j, k)), we have

lim sup
k→∞

|Wδ(j, k) − Vǫ(j, k)|d < δ. (20)

Since |Vǫ(j, k)|d ≤ 1, we get lim supk→∞ |Wδ(j, k)|d < 1 + δ. Let

R1(k, ǫ) = Q(B(1, k), . . . , B(ℓ, k), Vǫ(1, k), . . . , Vǫ(ℓ, k))

R2(k, ǫ, δ) = Q(B(1, k), . . . , B(ℓ, k),Wδ(1, k), . . . ,Wδ(ℓ, k))

Let K ≥ 1 be such that lim supk→∞ ‖B(s, k)‖ ≤ K for all s ∈ {1, . . . , ℓ}. Using
Hölders’s inequality, we get

lim sup
k→∞

|R1(k, ǫ) −R2(k, ǫ, δ)|1 ≤ 2dKd(1 + δ)d−1δ.

Therefore,
lim sup

k→∞
|τn(k)(R1(k, ǫ)) − τn(k)(R2(k, ǫ, δ))| = 0.

From (20), we also have

lim
δ→0

lim sup
k→∞

|τ(Wδ(j, k)
p − Vǫ(j, k)

p)| = 0

for all p ∈ {1, . . . , d}. Therefore, the asymptotic ∗–freeness of the family

{B(s, k) | s ∈ N},
(
{Vǫ(j, k)}

)
j∈N

over D follows from that of the family (18).
Step III of the proof of [26, 3.8] shows

lim
ǫ→0

lim sup
k→∞

|Vǫ(j, k) − V (j, k)|d = 0.

Therefore, letting

R3(k) = Q(B(1, k), . . . , B(ℓ, k), V (1, k), . . . , V (ℓ, k))

and using Hölder’s inequality again, we get

lim
ǫ→0

lim sup
k→∞

|τn(k)(R1(k, ǫ)) − τn(k)(R3(k))| = 0.

This implies that the family (19) is asymptotically ∗–free over D. �

Corollary 3.4. Suppose B(s, k) ∈Mn(k)(C) (for s, k ∈ N) are such that

∀s ∈ N, sup
k≥1

‖B(s, k)‖ <∞.

Let (U(j, k))j∈N be a family of mutually independent random n(k) × n(k)–valued
unitary matrices, each distributed according to Haar measure on πk(D)′. Let F∞
denote the group freely generated by a1, a2, . . . and denote by

F∞ ∋ g 7→ Ug(k)
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the group representation determined by aj 7→ U(j, k). If N ∈ N and if g0, g1, . . . , gN

are nontrivial elements of F∞ and if s1, . . . , sN ∈ N, then

lim
k→∞

Ek(U
g0(k)B(s1, k)U

g1(k) · · ·B(sN , k)U
gN (k)) = 0. (21)

Proof. Suppose, to obtain a contradiction, (21) does not hold. Then, by passing to a
subsequence, if necessary, we may assume

lim
k→∞

Ek(U
g0(k)B(s1, k)U

g1(k) · · ·B(sN , k)U
gN (k)) = d 6= 0,

and, therefore,

lim
k→∞

trn(k)(U
g0(k)B(s1, k)U

g1(k) · · ·B(sN , k)U
gN (k)πk(d

∗)) = τD(dd∗) > 0.

By passing to a subsequence, if necessary, (using a diagonalization argument), we
may without loss of generality assume that the family

(
B(s, k)

)
s∈N

,
(
πk(dj)

)M
j=1

(22)

in (Mn(k), trn(k)) converges in ∗–moments as k → ∞. This family (22) converges in
∗–moments to a family

(bs)s∈N, (dj)
M
j=1

in a C∗–algebra B equipped with a tracial state τ whose restriction to D is τD,
and there is a unique τ–preserving conditional expectation EB

D : B → D. But the
asymptotic freeness result of Theorem 3.3 implies

lim
k→∞

trn(k)(U
g0(k)B(s1, k)U

g1(k) · · ·B(sN , k)U
gN (k)πk(d

∗)) = 0,

a contradiction. �

Remark 3.5. In exactly the same way that (21) was proved, one shows also

lim
k→∞

Ek(B(s1, k)U
g1(k) · · ·B(sN , k)U

gN (k)) = 0 (23)

lim
k→∞

Ek(U
g0(k)B(s1, k) · · ·U

gN−1(k)B(sN , k)) = 0 (24)

lim
k→∞

Ek(B(s1, k)U
g1(k)B(s2, k) · · ·U

gN−1(k)B(sN , k)) = 0. (25)

A reformulation of Corollary 3.4 the following:

Corollary 3.6. Let Ug(k) for g ∈ F∞ be as in Corollary 3.4. Fix N ∈ N, R > 0
and g0, g1, . . . , gN nontrivial elements of F∞. Then

lim
k→∞

(
sup

{
‖Ek(U

g0(k)B(1)Ug1(k) · · ·B(N)UgN (k))‖

∣∣∣∣

B(1), . . . , B(N) ∈Mn(k)(C) ∩ kerEk, ‖B(j)‖ ≤ R

})
= 0.

(26)

Theorem 3.7. Fix N, p ∈ N and R > 0 and for each j ∈ {1, . . . , N} and k ∈ N, let
B(j, k) ∈ Mn(k)(C) ∩ kerEk satisfy ‖B(j, k)‖ ≤ R.

Let Vk be the group of all unitary n(k) × n(k) matrices that commute with πk(d)
for all d ∈ D and let µk denote the normalized Haar measure on Vk. Let Fp denote
the group freely generated by a1, . . . , ap. For v = (v1, . . . , vp) ∈ Vp

k , denote by g 7→ vg
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the group representation of Fp determined by vaj = vj. Fix nontrivial elements
g0, g1, . . . , gN ∈ Fp and let

Ωk =
{
v ∈ Vp

k | ‖Ek(v
g0B(1, k)vg1 · · ·B(N, k)vgN )‖ < ǫ

}
. (27)

Then
lim
k→∞

µ⊗p
k (Ωk) = 1. (28)

Proof. This is a strengthening of Corollary 3.6 based on the concentration results of
Gromov and Milman [16], using the argument from the proof of Theorem 2.7 of [29].

Consider the metric

dk(w1, w2) =
(
Trn(k)((w1 − w2)

∗(w1 − w2))
)1/2

(29)

on Vk, where Trn denotes the unnormalized trace on Mn(C). We will first see that
(Vk, dk, µk) is a Levy family as k → ∞. It is known (see the proof of Theorem 3.9
of [26]) for the group Uk of all k × k unitary matrices with respect to the metric
δk(w1, w2) = (Trk((w1 − w2)

∗(w1 − w2)))
1/2 and normalized Haar measure νk, that

(Uk, δk, νk) is a Levy family as k → ∞. Write

D =

q⊕

j=1

Mm(j)(C) (30)

and let ej be a minimal projection of the jth matrix summand Mm(j)(C) in (30). Let
r(j, k) = Trn(k)(πk(ej)) Then Vk is as a topological group isomorphic to

q
×

j=1
Ur(j,k) (31)

in such a way that the metric dk on Vk as given in (29) corresponds to the obvious
product metric

∑q
j=1m(j)1/2δr(j,k) on the Cartesian product (31) of metric spaces, so

that we have the identification

(Vk, dk, µk) ∼=

q∏

j=1

(Ur(j,k), m(j)1/2δr(j,k), νr(j,k)).

Since trn(k)(ej) = r(j, k)/n(k) and since limk→∞ trn(k)(ej) = τD(ej) > 0, we have

limk→∞ r(j, k) = ∞. Thus, for each j, (Ur(j,k), m(j)1/2δr(j,k), νr(j,k)) is a Levy family
as k → ∞ and it follows (see Proposition 3.8 of [23]), that (Vk, dk, µk) is a Levy
family. Furthermore, the p–fold product (Vp

k ,
∑p

1 dk, µ
⊗p
k ) is a Levy family.

Since D is finite dimensional, in order to show (28), it will suffice to show that for
each d ∈ D we have

lim
k→∞

µ⊗p
k (Ωk(d)) = 1, (32)

where

Ωk(d) =
{
v ∈ Vp

k | |trn(k)(πk(d)v
g0B(1, k)vg1 · · ·B(N, k)vgN )| < ǫ

}
.

Now we apply the argument from the proof of Theorem 3.9 of [26] or Theorem 2.7
of [29]. The functions fk : Vp

k → C given by

fk(v) = n(k)1/2trn(k)(πk(d)v
g0B(1, k)vg1 · · ·B(N, k)vgN )
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are uniformly Lipschitz (uniformly in k). By Corollary 3.4, we have

lim
k→∞

n(k)−1/2

∫

Vp
k

fn dµ
⊗p
k = 0. (33)

Let

Θ(δ, k) = {v ∈ Vp
k | Re fk(v) ≥ δ}.

Suppose, to obtain a contradiction, we have

lim inf
k→∞

µ⊗p
k (Θ(n(k)1/2δ, k)) > 0

for some δ > 0. Note that the diameter of Vp
k is Dk := (2pn(k))1/2. Since Vp

k is a
Levy family, it follows that for all η > 0, we have

lim
k→∞

µ⊗p
k (NDkη(Θ(n(k)1/2δ, k))) = 1,

where Nǫ(·) denotes the ǫ–neighborhood. Since fk is uniformly Lipschitz, we get

lim
k→∞

µ⊗p
k (Θ(n(k)1/2δ/2, k)) = 1.

This, in turn, implies

lim inf
k→∞

n(k)−1/2

∫

Vp
k

Re fn dµ
⊗p
k ≥ δ/2,

which contradicts (33). Therefore, we must have

lim inf
k→∞

µ⊗p
k (Θ(n(k)1/2δ, k)) = 0

for all δ > 0. Replacing fn in turn by −fn, ±ifn, we easily show (32). �

Remark 3.8. Of course, one has the analogues of (26) and of (27)–(28), in the same
way that (23)–(25) are analogues of (21).

We continue to operate under the assumptions of 3.2, but let Z = {d1, . . . , dM}
denote the spanning set for D.

Theorem 3.9. Let (A,E) be a D–valued C∗–noncommutative probability space and
suppose τ : A → C is a tracial state with τ ◦ E = τ↾D. Let p ∈ N, R > 0 and for
every i ∈ {1, . . . , p} let Xi be a finite subset of A. Assume that the family X1, . . . , Xp

is free (over D) with respect to E. Let Z ⊂ D be a finite spanning set. Suppose that

for each i ∈ {1, . . . , p}, B(k)
i is a tuple of n(k) × n(k) matrices such that for every

η > 0 and every m ∈ N we have

(B
(k)
i , πk(Z)) ∈ ΓR(Xi, Z;m,n(k), η),

for k ∈ N large enough. Then for every m ∈ N, γ > 0 and R > 0, letting

Ξk =
{
v ∈ Vp

k |
(
(v∗iB

(k)
i vi)

p
i=1, πk(Z)

)
∈ ΓR((Xi)

p
i=1, Z;m,n(k), γ)

}
,

we have

lim
k→∞

µ⊗p
k (Ξk) = 1.
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Proof. Let us write

Xi = (x
(i)
1 , . . . , x

(i)
n(i)), B

(k)
i = (b

(i,k)
1 , . . . , b

(i,k)
n(i) ).

Fix ℓ ∈ N and i1, . . . , iℓ ∈ {1, . . . , p} with ij 6= ij+1 and let

gj = wj(x
(ij )
1 , . . . , x

(ij)

n(ij)
, d1, . . . , dM)

f
(k)
j = wj(b

(ij ,k)
1 , . . . , b

(ij ,k)

n(ij)
, πk(d1), . . . , πk(dM))

for some monomials wj in n(ij)+M noncommuting variables, (1 ≤ j ≤ ℓ). Note that
we have

lim
k→∞

‖Ek(fj) − E(gj)‖ = 0 (34)

for all j. As a consequence of (34) and Theorem 3.7, letting

Θo
k = {v ∈ Vp

k |
∣∣trn(k)

(
(v∗i1(f1 − Ek(f1))vi1)(v

∗
i2
(f2 − Ek(f2))vi2) · · ·

(v∗iℓ(fℓ − Ek(fℓ))viℓ)
)∣∣ < γ}, (35)

we have limk→∞ µ⊗p
k (Θo

k) = 1. By distributing inside the trace in (35) and using
induction on ℓ, it follows that if

Θk = {v ∈ Vp
k |
∣∣trn(k)

(
(v∗i1f1vi1)(v

∗
i2
f2vi2) · · · (v

∗
iℓ
fℓviℓ)

)
− τ(g1g2 · · · gℓ)

∣∣ < γ},

then limk→∞ µ⊗p
k (Θk) = 1. Now the set Ξk consists of the intersection of the sets Θk

over all choices of ℓ, i1, . . . , iℓ and words wj whose degrees sum to no more than m.
Thus, the theorem is proved. �

In the following corollary, we continue to assume D and πk are as described in 3.2.
Fix k ∈ N. Given Bi ⊆ Mn(k)(C), for i in some index set I and given m ∈ N and
γ > 0, we say that the family (Bi)i∈I is (m, γ)–free over D if

‖Ek(b1b2 · · · bq) − d‖ < γ (36)

whenever 1 ≤ q ≤ m, bj ∈ Bi(j), i(1) 6= i(2), i(2) 6= i(3), . . . , i(q−1) 6= i(q) and where
d is what the expectation of the product would be if the family (Bi)i∈I actually were
free. More precisely, in a D–valued noncommutative probability space (A,E), let
ρi : Bi ∪ πk(D) → A be mappings that preserve moments, i.e., such that for any
c1, . . . , cn ∈ Bi, we have E(ρi(c1) · · · ρi(cn)) = Ek(c1 · · · cn) and that agree on D, and
assume that (ρi(Bi))i∈I is free (over D) in (A,E). Then the d appearing in (36) is
d = E(ρi(1)(b1)ρi(2)(b2) · · · ρi(q)(bq)).

Corollary 3.10. Let p ∈ N, R > 0 m ∈ N and γ > 0. Let 0 < θ < 1. Then there
is k0 ∈ N such that whenever k ≥ k0 and whenever Bi ⊂ Mn(k)(C), (1 ≤ i ≤ p) with
cardinality |Bi| ≤ R and with ‖b‖ ≤ R for all b ∈ Bi, then letting

Ξk = {v ∈ (Vk)
p | (viBiv

∗
i )

p
i=1 is (m, γ)–free over D},

we have µ⊗p
k (Ξk) > θ, where µk is Haar measure on Vk.
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Proof. Suppose not. Then for some 0 < θ < 1, there are positive integers k1 < k2 <

· · · and for every j there are sets B
(kj)
1 , . . . , B

(kj)
p ⊆ Mkj

(C), each with cardinality
≤ R and consisting of matrices of norms ≤ R, such that the corresponding sets

Ξkj
= {v ∈ (Vkj

)p | (viB
(kj)
i v∗i )

p
i=1 is (m, γ)–free over D},

all satisfy µ⊗p
kj

(Ξkj
) ≤ θ. By passing to a subsequence, if necessary, we may without

loss of generality assume that for each i, B
(kj)
i has the same cardinality for all j and,

fixing and ordering of each B
(kj)
i , that B

(kj)
i converges in D–valued moments as j →

∞. Now, by taking amalgamated free products, we find a D–valued noncommutative

probability space (A,E) and sets Xi ⊆ A such that B
(kj)
i converges in D–valued

moments to Xi and such that (Xi)
p
i=1 is free over D. Then Theorem 3.9 implies

limj→∞ µ⊗p
kj

(Ξkj
) = 1, contrary to assumption. �

4. The Main Theorem

We assume that M1 and M2 are finite von Neumann algebras that are embeddable
in Rω (the ultrapower of the hyperfinite II1–factor), each equipped with a fixed normal
faithful tracial state, and that B is a hyperfinite von Neumann algebra that is unitally
embedded into each of M1 and M2 in such a way that the traces on M1 and M2

restrict to the same trace on B. We work in the von Neumann algebra amalgamated
free product M = M1 ∗B M2, taken with respect to the trace–preserving conditional
expectations Mi → B, and we regard M1 and M2 as subalgebras of M in the usual
way. The von Neumann algebra M is endowed with a normal, faithful, tracial state
φ, which is the composition of the free product conditional expectation M → B and
the specified trace on B.

Suppose now that X1, X2 and Y are finite sets of selfadjoint elements in M1∗BM2

with X ′′
1 = M1, X

′′
2 = M2, and Y ′′ = B.

Lemma 4.1. δ0(X1 ∪X2 ∪ Y ) ≤ δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(Y ).

Proof. This is the hyperfinite inequality ([19]). �

Before we begin the lower bound a few remarks are in order. There exists an
increasing sequence of finite dimensional ∗-subalgebras of B, 〈Bn〉∞n=1, such that each
Bn is generated by En(Y ) where En : B → Bn is the trace preserving conditional
expectation. Let M1 ∗Bn

M2 denote the amalgamated free product von Neumann
algebra taken with respect to the trace–preserving conditional expectations Mi →
Bn, let φn denote the resulting tracial state on M1∗Bn

M2 and consider the canonical
embeddings σni : Mi → M1 ∗Bn

M2, (i = 1, 2). It is clear that for any word w in
(#X1 + #X2 + #Y ) letters,

lim
n→∞

ϕn(w(σ1n(X1), σ2n(X2), En(Y ))) = ϕ(w(X1, X2, Y )).

Fix R > 0 to be greater than the norm of any element in X1 ∪ X2 ∪ Y . Find
and fix for the remainder of this section a sequence 〈ξk〉∞k=1 of (#Y )–tuples of self
adjoint k × k matrices such that for any m ∈ N and γ > 0, ξk ∈ ΓR(Y ;m, k, γ) for
k sufficiently large. When we write Ξ(·) or ΞR(·), this will always denote relative
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microstate spaces of finite sets in M1 ∗B M2, computed with respect to this sequence
〈ξk〉∞k=1.

For each n find a sequence 〈ξnk〉∞k=1 of (#Y )–tuples of self adjoint k × k matrices
which satisfies the property that for each m and γ, we have

(ξk, ξnk) ∈ ΓR(Y ∪ En(Y );m, k, γ)

for k sufficiently large. This can be done by approximating elements of En(Y ) with
polynomials in Y , and using a spectral cut–off function.

For each n choose a sequence of unital representations πnk : Bn → Mk(C) such
that

lim
k→∞

‖trk ◦ πnk − ϕ|Bn
‖ = 0. (37)

(In fact, depending on the structure of Bn, some values of k may admit no such
reprensentation πnk; however, one can always choose a sequence kp → ∞ and repre-
sentations πnkp

having the apporpriate approximation property like (37), and where
the kp run through an arithmetic progession of integers; these suffice for estimating
packing numbers of microstate spaces for arbitrary k; we will not go into these tech-
nical details, and for simplicity we’ll continue to write πnk for all k.) By standard
techniques on finite dimensional algebras, after conjugating with a unitary, if neces-
sary, we may assume ‖πnk(En(Y )) − ξnk‖2 → 0 as k → ∞. Thus, we may assume
ξnk = πnk(En(Y )).

When we write ΞR(n)(·), this will always denote relative microstate spaces of finite
sets in M1 ∗Bn

M2, computed with respect to the sequence 〈ξnk〉∞k=1. Then, given n
and any m, γ, there exists m′, γ′ such that ΞR(Xi;m

′, k, γ′) ⊂ ΞR(n)(σin(Xi);m, k, γ)
for sufficiently large k.

We will need a preliminary lemma. We show that microstates for the canonical
generators of M1 ∗Bn

M2 approximate those of M1 ∗B M2 in a way that behaves
properly with respect to the relative microstate spaces.

Lemma 4.2. For any given m and γ there exists an N ∈ N such that for each n ≥ N
we have

ΞR(n)(σn1(X1) ∪ σn2(X2);m, k, γ/3) ⊂ ΞR(X1 ∪X2;m, k, γ), (38)

for all k sufficiently large. Therefore, for any ǫ > 0, we have

Pǫ(ΞR(n)(σn1(X1) ∪ σn2(X2);m, γ/3)) ≤ Pǫ(ΞR(X1 ∪X2;m, γ)). (39)

Proof. Suppose m, γ are given. There exists an N1 ∈ N such that for all n ≥ N1,
‖ξnk − ξk‖ < (3(R + 1))−m · γ for k sufficiently large. There also exists an N2 ∈ N

such that for all n ≥ N2 and for any word w in (#X1 + #X2 + #Y )-letters with
length no more than m,

|ϕnw(σn1(X1), σn2(X2), En(Y )) − ϕ(w(X1, X2, Y ))| < γ/3.
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Thus, if n ≥ N1 +N2 and if (ζ1, ζ2) ∈ Ξ(n)(σn1(X1)∪ σn2(X2));m, γ/3), then for any
word w in (#X1 + #X2 + #Y )-letters with length no more than m, we have

|trk(w(ζ1,ζ2, ξk)) − ϕ(w(X1, X2, Y ))| ≤

≤ |trk(w(ζ1, ζ2, ξk)) − trk(w(ζ1, ζ2, ξnk))|

+ |trk(w(ζ1, ζ2, ξnk)) − ϕn(wn(σn1(X1), σn2(X2), En(Y )))|

+ |ϕn(w(σn1(X1), σn2(X2), En(Y ))) − ϕ(w(X1, X2, Y ))|

<γ/3 + γ/3 + γ/3 = γ.

This shows (38), and (39) follows directly. �

Next is the main technical lemma in this section.

Lemma 4.3.

δ0(X1 ∪X2 ∪ Y ) ≥ δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(Y ) (40)

δ0(X1 ∪X2 ∪ Y ) ≥ δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(Y ). (41)

Proof. Suppose m ∈ N and γ > 0 are given. Choose N ∈ N as in Lemma 4.2
so that for n ≥ N , Ξ(n)(σ1n(X1) ∪ σ2n(X2);m, k, γ/3) ⊂ Ξ(X1 ∪ X2;m, k, γ) for
k sufficiently large. By Corollary 3.10, there exists a K and γ0 > 0 such that if
(ηik, πkN(EN(Y )) ∈ ΓR(σiN (Xi) ∪EN (Y );m, k, γ0), i = 1, 2, then for k ≥ K, letting

Gk = {v ∈ Vk : (η1k, v
∗η2kv, πk(EN(Y )))

∈ ΓR(σ1N (X1) ∪ σ2N (X2) ∪ EN(Y );m, k, γ/3)},

where Vk denotes the set of k × k unitaries that commutes with πNk(BN), we have

µk(Gk) > 1/2, (42)

where µk is Haar measure on Vk. Since πk(EN(Y )) = ξkN we have by Lemma 4.2
that, for any ǫ > 0,

Pǫ(ΞR(N)(σ1N (X1) ∪ σ2N (X2);m, γ/3)) ≤ Pǫ(ΞR(X1 ∪X2;m, γ)).

Thus, in order to find a lower bound for Pǫ(ΞR(X1 ∪X2;m, γ)), it will suffice to find
one for Pǫ(ΞR(N)(σ1N (X1) ∪ σ2N (X2);m, γ/3)), and, as we will see, good bounds of
this can be obtained by the estimate µk(Gk) > 1/2.

Fix t0 > 0. It follows from Lemma 3.2 of [19] that there exists ǫ0 > 0, depending
only on t0, X1, X2 and Y , such that for all 0 < ǫ < ǫ0,

Pǫ(ΞR(X1)) > (δ0(X1 ∪ Y ) − δ0(Y ) − t0)| log ǫ| (43)

Pǫ(ΞR(X2)) > (δ0(X2 ∪ Y ) − δ0(Y ) − t0)| log ǫ|. (44)

The discussion preceding Lemma 4.2 allows us to find m′, γ′ such that

ΞR(Xi;m
′, k, γ′) ⊂ ΞR(N)(σiN (Xi);m, k, γ0), (i = 1, 2),
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for k sufficiently large. Fix ǫ < ǫ0. From (43), we get 2ǫ separated subsets 〈η(1)
jk 〉j∈Jk

of ΞR(N)(σ1N (X1);m, k, γ0) satisfying

#Jk >

(
1

ǫ

)(δ0(X1∪Y )−δ0(Y )−t0)k2

for all k sufficiently large. Now for each j ∈ Jk, we will estimate those relative

microstates for ΞR(N)(X2) which are compatible with a fixed η
(1)
jk .

Find a subset 〈ηjpk〉p∈Lk
of ΞR(X2;m

′, k, γ′) ⊂ ΞR(N)(σ2N (X2);m, k, γ0) of maxi-
mum cardinality which satisfies the condition that for any p 6= p′ ∈ Lk,

inf
u∈Vk

|uηjpku
∗ − ηjp′k|2 > ǫ.

If Tjpk = {uηjpku
∗ : u ∈ Vk}, then clearly

K4ǫ(ΞR(X2;m
′, k, γ′)) <

∑

p∈Lk

Pǫ(Tjpk).

On the other hand, for each p ∈ Lk, denote by Ωjpk the set of all elements of the
form uηjpku

∗, u ∈ Vk, such that

(η
(1)
jk , uηjpku

∗) ∈ ΞR(N)(σ1N (X1) ∪ σ2N (X2);m, k, γ/3).

Clearly Ωjpk ⊂ Tjpk. Moreover, Tjkp is a compact, locally isometric space and there-
fore has a unique Hausdorff probability measure on it, say mk. Now, because γ0 was
chosen so that (42) holds, we have

mk(Ωjpk) =

∫

Vk

mk(vΩjpkv
∗) dµk(v)

=

∫

Vk

(∫

Tjpk

χvΩjpkv∗(x) dmk(x)

)
dµk(v)

=

∫

Tjpk

(∫

Vk

χΩjpk
(v∗ηjpkv) dµk(v)

)
dmk(x)

> 1/2

for all sufficiently large k. Because Tjpk is locally isometric, we get

Pǫ(Ωjpk) ≥ K2ǫ(Ωjpk) ≥
mk(Ωjpk)

mk(B2ǫ)
≥

1

2mk(B2ǫ)
≥

1

2
P2ǫ(Tjpk).

So by taking a maximal ǫ-packing for Ωjpk for each p and taking their union over Lk,

we can produce for j ∈ Jk an an ǫ-separated set 〈η(2)
jrk〉r∈S(j) in ΞR(X2;m

′, k, γ′) ⊂
ΞR(N)(σ2N (X2);m, k, γ0) with index set S(j) having cardinality at least

∑

p∈Lk

Pǫ(Ωjpk) ≥
1

2

∑

p∈Lk

P2ǫ(Tjpk) ≥
1

2
K3ǫ(ΞR(X2;m

′, k, γ′))

and such that for each r ∈ S(j),

(η
(1)
jk , η

(2)
jrk) ∈ ΞR(N)(σ1N (X1) ∪ σ2N (X2);m, k, γ/3).
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It now follows that 〈(η(1)
jk , η

(2)
jrk)〉(j,r)∈Jk×S(j) is an ǫ-separated subset of ΞR(N)(σ1N (X1)∪

σ2N (X2);m, k, γ/3). Consequently, invoking the preceding lemma we now have

Pǫ(ΞR(X1 ∪X2;m, γ)) ≥ Pǫ(ΞR(N)(σ1N (X1) ∪ σ2N (X2);m, γ/3))

≥ lim sup
k→∞

k−2
(
log(#Jk) + log(K3ǫ(ΞR(X2;m

′, k, γ′)))
)

≥ lim inf
k→∞

k−2 · log(#Jk)

+ lim sup
k→∞

k−2 · log(K3ǫ(ΞR(X2;m
′, k, γ′))

≥ (δ0(X1 ∪ Y ) − δ0(Y ) − t0)| log ǫ| + K3ǫ(ΞR(X2)).

Since m and γ were arbitrary, the lower bound holds for Pǫ(ΞR(X1 ∪X2)), whence

Pǫ(ΞR(X1 ∪X2))

| log ǫ|
≥ δ0(X1 ∪ Y ) − δ0(Y ) − t0 +

K3ǫ(ΞR(X2))

| log ǫ|
.

Now (11) of Lemma 2.5 yields

δ0(X1 ∪X2 ∪ Y ) ≥ δ0(X1 ∪ Y ) − t0 + δ0(X2 ∪ Y ) − δ0(Y ).

As t0 > 0 was arbitrary, we have the desired lower bound (40).
On the other hand, we similarly have

Pǫ(ΞR(X1 ∪X2;m, γ)) ≥ Pǫ(ΞR(N)(σ1N (X1) ∪ σ2N(X2);m, γ/3))

≥ lim inf
k→∞

k−2
(
log(#Jk) + log(K3ǫ(ΞR(X2;m

′, k, γ′)))
)

≥ lim inf
k→∞

k−2 · log(#Jk)

+ lim inf
k→∞

k−2 · log(K3ǫ(ΞR(X2;m
′, k, γ′))

≥ (δ0(X1 ∪ Y ) − δ0(Y ) − t0)| log ǫ| + K3ǫ(ΞR(X2)),

which, by (12) of Lemma 2.5, gives

δ0(X1 ∪X2 ∪ Y ) ≥ δ0(X1 ∪ Y ) − t0 + δ0(X2 ∪ Y ) − δ0(Y )

and, in turn, shows (41). �

For convenience, we collect the inequalities from Lemmas 4.1 and 4.3 into a theorem
(and we restate, in short form, the hypotheses).

Theorem 4.4. Let M1 ∗B M2 be the amalgamated free product of tracial von Neu-
mann algebras M1 and M2 over a hyperfinite von Neumann algebra B. Take finite
generating sets Xi for Mi and Y for B. Then

δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(B) ≤ δ0(X1 ∪X2 ∪ Y )

≤ δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(B) (45)

and

δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(B) ≤ δ0(X1 ∪X2 ∪ Y )

≤ δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(B). (46)



20 BROWN, DYKEMA, JUNG

In particular, taking M1 to be hyperfinite and using Proposition 2.4 and the hy-
perfinite inequality [19], we get the following consequences of (45).

Corollary 4.5. If M1 is hyperfinite, then

δ0(X1 ∪X2) = δ0(M1) + δ0(X2 ∪ Y ) − δ0(B).

Corollary 4.6. If M1 and M2 are copies of the hyperfinite II1–factor, then

δ0(X1 ∪X2) = 2 − δ0(B).

We should mention a much stronger result: in the setting of Corollary 4.6, if B is
taken to be diffuse, then δ0(B) = 1 and from [21] we have that any finite generating
set X of M1 ∗B M2 has δ0(X) = 1.

Finally, applying both (45) and (46), we address questions of regularity.

Corollary 4.7. In the setting of Theorem 4.4, if both X1∪Y and X2∪Y are regular,
then X1 ∪X2 ∪ Y is regular and

δ0(X1 ∪X2 ∪ Y ) = δ0(X1 ∪ Y ) + δ0(X2 ∪ Y ) − δ0(B).

Using the facts that δ0(X) and δ0(X) are invariants of the ∗–algebras generated
by X, we get:

Corollary 4.8. If Y lies in the ∗–algebra generated by X1 and in the ∗–algebra
generated by X2 and if both X1 and X2 are regular, then X1 ∪X2 is regular and

δ0(X1 ∪X2) = δ0(X1) + δ0(X2) − δ0(B).

Let us now consider a finitely generated group G and its group algebra C[G] em-
bedded in the group von Neumann algebra L(G) equipped with its canonical tracial
state, (where we endow G with the discrete topology). By algebraic invariance, δ0(X)
is the same for all finite generating sets X of C[G], and we will denote this quanitity
by δ0(C[G]). Note that, from [17], if G is amenable, then

δ0(C[G]) = 1 − |G|−1, (47)

(where here and below it is understood that if G is infinite then |G|−1 equals 0). Let
us say G is microstates–packing regular if some (and then any) finite generating set X
of C[G] is regular. The following is an instance of Corollary 4.8, making use of (47).

Corollary 4.9. Let G1 and G2 be finitely generated groups that are microstates–
packing regular and suppose H is a finitely generated amenable group that is embedded
as a subgroup of both G1 and G2. Let G = G1 ∗H G2 be the amalgamated free product
of groups. Then G is microstates–packing regular and

δ0(C[G]) = δ0(C[G1]) + δ0(C[G2]) − δ0(C[H ]) (48)

= δ0(C[G1]) + δ0(C[G2]) − (1 − |H|−1).

Let A0 denote the class of all finitely generated groups G such that G either (i) is
amenable, (ii) has Kazhdan’s property (T) and has an element of infinite order, or
(iii) is a direct product of infinite groups and has an element of infinite order. Let A
be the smallest class of groups such that A0 ⊂ A and such that if G1, G2 ∈ A and if
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H is a finitely generated amenable group that is embedded in both G1 and G2, then
the amalgamated free product G1 ∗H G2 is in A.

Proposition 4.10. If G ∈ A0, then

δ0(C[G]) = 1 − |G|−1, (49)

Furthermore, every group G ∈ A is microstates–packing regular.

Proof. If G is amenable, then G is microstates–packing regular by Proposition 2.4
and, as noted above, (49) holds by [17]. If G has property T of if G = G1 × G2 is a
product of infinite groups, then by [22], respectively, by [15], we have δ0(X) ≤ 1 for
any generating set X of the von Neumann algebra L(G). On the other hand, if G
has an element of infinite order, then δ0(C[G]) ≥ 1 by [17]. In either case, we have
that G is microstates packing regular by Proposition 2.4 and (49) holds.

Define the class An of groups for n ≥ 1 recursively as the class of groups G such
that either G ∈ An−1 or G = G1 ∗H G2 with G1, G2 ∈ An−1 and with H a finitely
generated amenable group embedded in both G1 and G2. Then A =

⋃∞
n=0 An.

Applying Corollary 4.9 and using induction on n, one shows the every group in An

is microstates–packing regular. �

Remark 4.11. If G ∈ A, then either G ∈ A0 or G can be written as a nested
amalgamated free product of groups from A0. In the latter case, δ0(C[G]) can be
computed by recursive application of Corollary 4.9.

The non–microstates free entropy dimension, δ∗, was introduced by Voiculescu [30],
and also δ∗(X) is also known to be an invariant of the ∗–algebra generated by X. It
is conjectured that δ∗ = δ0, and the truth of this conjecture would have important
consequences for understanding von Neumann algebras. The inequality δ∗ ≥ δ0 was
shown by Biane, Capitaine and Guionnet [3] to hold in general. If G is a discrete
group, let δ∗(C[G]) denote the quantity δ∗(X) for any generating set X of C[G], where
we regard C[G] as embedded in the group von Neumann algebra L(G) equipped with
its canonical tracial state. In [25], Mineyev and Shlyakhtenko proved the formula

δ∗(C[G]) = β1(G) − β0(G) + 1 (50)

for any finitely generated group G, where βn(G) are the L2–Betti numbers of G
(see [1], [6] and [24]).

Theorem 4.12. If G belongs to the class A, then

δ0(C[G]) = δ∗(C[G]). (51)

Proof. It is known that β0(G) = |G|−1 (see Theorem 6.54(8) of [24]), and, if G is
amenable, then β1(G) = 0 (see Theorem 7.2 of [24]). These facts, combined with (50)
gives δ∗(C[G]) = 1 − |G|−1 for all amenable, finitely generated groups G. If G has
property (T), then β1(G) = 0 by Corollary 6 of [2], while of G = G1 ×G2 is a direct
product of infinite groups G1 and G2, then β1(G) = 0 follows from the Künneth
formula (Theorem 6.54(5), p. 266 of [24]). Thus, from (50) we get δ∗(C[G]) = 1 for
G infinite with property (T) or a direct product of infinite groups. Combined with
Proposition 4.10, this shows that (51) holds for all G ∈ A0.
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Now Mineyev and Shlyakhtenko’s formula (50) combined with Theorem A.1 from
W. Lück’s appendix to this paper shows that if G = G1∗HG2 is the amalgamated free
product of any two finitely generated groups G1 and G2 over an amenable subgroup
H , then

δ∗(C[G]) = δ∗(C[G1]) + δ∗(C[G2]) − δ∗(C[H ]) (52)

= δ∗(C[G1]) + δ∗(C[G2]) − (1 − |H|−1).

Using (52) and (48), one shows by induction on n that (51) holds for every G ∈ An,
where An is as defined in the proof of Proposition 4.10. Since A =

⋃∞
n=1 An, we are

done. �

An example of a nonamenable, non–free group G in the class A is the fundamen-
tal group of a closed, orientable surface of genus g ≥ 2, namely, the group with
presentation

G = 〈a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 · · ·agbga
−1
g b−1

g 〉.

We have δ0(C[G]) = δ∗(C[G]) = 2g − 1. (For general results on L2–Betti numbers of
one–relator groups, see [8].)

5. Cutting to a Corner

For use in the next section, we now generalize some cases of the main theorem a bit.
Namely, we compute the free entropy dimension of certain generators in particular
corners of M1∗B M2. The technical assumptions we require will undoubtedly irk the
impatient. However we don’t know how to avoid them, for a general scaling formula
would solve the famous invariance problem (cf. Remark 5.2).

Our set–up is as follows: X ′′
1 = M1 and X ′′

2 = M2 and B is a hyperfinite von
Neumann algebra embedded into both M1 and M2 and M1 ∗B M2 is the reduced
amalgamated free product with trace φ, as before; p ∈Mm(C) ⊂ M1 is a projection
in a matrix subalgebra of M1; {eij}1≤i,j≤m ⊂ Mm(C) are matrix units such that

p =
∑k

1 eii, for some k ≤ m; finally, we define partial isometries vi = em−i,1 for
0 ≤ i ≤ m− k − 1 and vm−k = p.

Since v∗i vi ≤ p and
∑m−k−1

i=0 viv
∗
i = 1 − p, one easily checks that

m−k⋃

i,j=0

v∗i (X1 ∪X2)vj

generates p(M1 ∗B M2)p.

Proposition 5.1. In the situation above, if there is Y ⊆ X1 such that Y ′′ is hyper-
finite and {eij}1≤i,j≤m ⊂ Y ′′, then

δ0(
m−k⋃

i,j=0

v∗i (X1 ∪X2)vj) = 1 −
1

φ(p)2
+

1

φ(p)2
δ0(X1 ∪X2).
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Proof. For notational convenience, define

X(p) :=

m−k⋃

i,j=0

v∗i (X1 ∪X2)vj , Z :=

m⋃

i,j=0

e1i(X1 ∪X2)ej1.

One easily checks that the ∗-algebras generated by X(p) ∪ {eij}1≤i,j≤k and Z ∪
{eij}1≤i,j≤k are identical, and hence

δ0(X(p) ∪ {eij}1≤i,j≤k) = δ0(Z ∪ {eij}1≤i,j≤k).

However, since {eij}1≤i,j≤k is contained in the (hyperfinite) von Neumann algebra
generated by

m−k⋃

i,j=0

v∗i Y vj ,

from [19, Corollary 4.1] we have

δ0(X(p)) = δ0(X(p) ∪ {eij}1≤i,j≤k).

Hence, applying Lemma 3.1 and Corollary 3.2 from [20] we have

δ0(X(p)) = δ0(Z ∪ {eij}1≤i,j≤k)

= 1 −
1

k2
+

1

k2
δ0(Z)

= 1 −
1

k2
+

1

k2

(
m2δ0(Z ∪ {eij}1≤i,j≤m) −m2 + 1

)

= 1 −
m2

k2
+
m2

k2
δ0(Z ∪ {eij}1≤i,j≤m).

Since m2

k2 = 1/φ(p)2, it only remains to check δ0(Z ∪ {eij}1≤i,j≤m) = δ0(X1 ∪X2).
However, the ∗-algebras generated by Z ∪ {eij}1≤i,j≤m and X1 ∪X2 ∪ {eij}1≤i,j≤m

are identical, and

δ0(X1 ∪X2 ∪ {eij}1≤i,j≤m) = δ0(X1 ∪X2),

again, since {eij}1≤i,j≤m ⊂ Y ′′, by [19, Corollary 4.1]. �

Remark 5.2 (Scaling and the Invariance Problem). It is natural to wonder whether
one can always compute the free entropy dimension of canonical generators in a
corner, in terms of the original set of generators. For example, if S generates a II1-
factorM , p ∈M is a projection of trace tr(p) = 1/n and p = v1, . . . , vn ∈Mn(C) ⊂M
are partial isometries such that v∗i vi = p and

∑n
i=2 viv

∗
i = 1 − p, then one might

conjecture that

δ0(
n⋃

i,j=1

v∗i Svj) = 1 −
1

tr(p)2
+

1

tr(p)2
δ0(S).

Though it may appear benign, perhaps even tractable, it is neither; no assumption is
made on the position of the partial isometries vj and therein lies the trouble. Indeed,
the scaling formula above implies that δ0 is a W∗-invariant, as we prove below.

So, let’s assume
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δ0(
n⋃

i,j=1

v∗i Svj) = 1 − n2 + n2 · δ0(S).

As in the proof of Proposition 5.1, we always have

δ0((

n⋃

i,j=1

v∗i Svj) ∪ {v1, . . . , vn}) = 1 −
1

n2
+

1

n2
δ0(

n⋃

i,j=1

v∗i Svj).

These two equations imply that δ0((∪n
i,j=1v

∗
i Svj) ∪ {v1, . . . , vn}) = δ0(S) so that ∗-

algebraic invariance of δ0 implies

δ0(S) = δ0((
n⋃

i,j=1

v∗i Svj) ∪ {v1, . . . , vn}) = δ0(S ∪ {v1, . . . , vn, v1v
∗
1, . . . , vnv

∗
n}

≥ δ0(S ∪ {v1v
∗
1, · · · , vnv

∗
n})

≥ δ0(S).

Thus, the scaling formula implies that for any partition of unity {e1, . . . , en}, δ0(S) =
δ0(S ∪ {e1, . . . , en}). This is pretty close to proving invariance of δ0, a bit more work
and we’ll be done.

It suffices to show that for any self-adjoint element x ∈ S ′′, δ0(S ∪ {x}) = δ0(S).
It is clear that δ0(S ∪ {x}) ≥ δ0(S). For the reverse inclusion let ǫ > 0. It is easily
seen that there exist projections e1, . . . , en in x′′, all having the same trace, such that
δ0(e1, . . . , en) > δ0(x)− ǫ. Thus, an appeal to the hyperfinite inequality for δ0 yields:

δ0(S ∪ {x} ∪ {e1, . . . en}) ≤ δ0(S ∪ {e1, . . . , en}) + δ0(x, e1, . . . , en) − δ0(e1, . . . , en)

< δ0(S) + δ0(x) − (δ0(x) − ǫ)

< δ0(S) − ǫ.

Since ǫ > 0 was arbitrary and δ0(S ∪ {x}) ≤ δ0(S ∪ {x} ∪ {e1, . . . en}) we see that
δ0(S ∪ {x}) ≤ δ0(S). This evidently implies that δ0 is a von Neumann algebra
invariant.

6. Popa Algebras and Free Group Factors

In [5] it was shown that for any 1 < s < ∞ there is a finitely generated, weakly
dense Popa algebra As ⊂ L(Fs) such that L(Fs) has a weak expectation relative to
As. The precise definitions of these things are not important; here is what makes
them (appear) ‘exotic’:

(1) Let {X1, . . . , Xn} ⊂ As be a generating set. Then the Xi’s are not free in
any traditional sense. The reason being that Popa algebras are quasidiagonal
– an approximation property not enjoyed by any C∗-algebra containing a
unital copy of the reduced group C∗-algebra C∗

r (F2). Hence most C∗-reduced
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amalgamated free products are not Popa algebras – i.e. our generators do not
arise from the usual (reduced) free product constructions.

(2) The C∗-algebra As is not exact. Indeed, if a II1-factor has a weak expectation
relative to a weakly dense exact C∗-subalgebra then it must be hyperfinite
[4]. (This also implies that As is not isomorphic to any reduced amalgamated
free product of exact C∗-algebras [11], [12].)

In other words, if one looks at the C∗-level then the generators constructed in [5] are
significantly different from all other known generators of free group factors.

However, it turns out that our generators are not so exotic when viewed inside the
larger von Neumann algebra L(Fs). They may not be free in the C∗-world, but there
is a natural conditional expectation on L(Fs) – one which maps As outside itself –
with respect to which they are free.

Unfortunately, to make sense of this we must recall the details of the construction
used in [5]. Here is an overview of what is going to happen:

• For any 1 < s < 2 we describe an atomic type I subalgebra Bs ⊂ R1 = R2

such that δ0(Bs) = 2 − s and R1 ∗Bs
R2

∼= L(Fs);
• Then we construct a Popa algebra As, which is generated by self-adjoints
{X1, X2, X3, X4} and has a dense embedding As ⊂ R1 ∗Bs

R2
∼= L(Fs);

• Next, we observe that the embedding As ⊂ R1 ∗Bs
R2 maps X1 = {X1, X2}

into R1, while X2 = {X3, X4} gets mapped into R2 – hence δ0(X1 ∪ X2) = s,
by our main theorem;

• Finally, we deduce the general case (i.e. s ≥ 2) from Proposition 5.1.

So, fix 1 < s < 2 and let’s see how to construct1 Bs ⊂ R. First, we must find
natural numbers ℓ(n) < k(n) such that

s = 1 +
∞∏

n=1

(
(1 −

ℓ(n)

k(n)
)2 +

1

k(n)2

)
.

Define Bs to be the infinite tensor product of the algebras

Bn = C ⊕Mℓ(n)(C) ⊂Mk(n)(C),

where Mℓ(n)(C) ⊂ Mk(n)(C) is a corner and C ⊕ 0 is spanned by the orthogonal
projection of rank k(n) − ℓ(n). Hence we have a natural inclusion

Bs =
⊗̄∞

1
Bn ⊂

⊗̄∞

1
Mk(n)(C) = R.

Then [17] implies (after some tedious calculations)

δ0(Bs) = 1 −
∞∏

n=1

(
(1 −

ℓ(n)

k(n)
)2 +

1

k(n)2

)
= 2 − s

while Corollary 3.2 in [5] tells us that

R ∗Bs
R ∼= L(Fs).

1The reader wishing to nail down every detail should first see [5]. Indeed, we will intention-
ally overlook numerous subtleties and important details in hopes of making the main ideas more
transparent.



26 BROWN, DYKEMA, JUNG

Now we must construct the dense Popa algebra

As ⊂ R ∗Bs
R =

(⊗̄∞

1
Mk(n)(C)

)
∗⊗̄∞

1
Bn

(⊗̄∞

1
Mk(n)(C)

)
.

As is the inductive limit of a sequence

A(1) → A(2) → A(3) → · · · ,

where each A(n) is a full amalgamated free product of the form

A(n) ∼=

n⊗

p=1

Mk(p)(C) ∗⊗n
p=1

Bp

n⊗

p=1

Mk(p)(C).

The connecting maps ρn : A(n) → A(n+ 1) used in this inductive system are not the
canonical ones. Indeed, the canonical connecting maps σn : A(n) → A(n + 1) – i.e.

the ones induced by the natural inclusions
⊗n

p=1Mk(p)(C) ⊂
⊗n+1

p=1 Mk(p)(C) – would
not yield a Popa algebra in the limit, hence we must modify them. The details are
fully described in the proof of [5, Theorem 4.1] – we only recall the facts relevant to
this paper:

(1) If qn+1 ∈ Bn+1 = C ⊕Mℓ(n+1)(C) ⊂ A(n + 1) denotes the unit of C ⊕ 0 then
qn+1 commutes with ρn(A(n)) (Note: it also commutes with σn(A(n)));

(2) qn+1ρn(x) = qn+1σn(x) for all x ∈ A(n).

The point of these two facts is that the maps ρn and σn are almost the same in trace;
that is,

|τn+1(ρn(x) − σn(x))| ≤
ℓ(n+ 1)

k(n + 1)
‖x‖

for all x ∈ A(n), where τn+1 is the canonical trace on A(n + 1). (In [5] we arrange

things so that ℓ(n)
k(n)

< γ2−n, for some constant γ, and hence ρn is approaching σn

exponentially fast in trace.)
It is also true that

(1 − qn+1)ρn(A(n)) ⊂Mℓ(n+1)(C) ⊂ Bn+1 ⊂ A(n + 1).

This implies that the limit Popa algebra As is generated by two copies of the UHF
algebra

∞⊗

p=1

Mk(p)(C).

More precisely, since ρn maps the left copy of
⊗n

p=1Mk(p)(C) ⊂ A(n) into the left copy

of
⊗n+1

p=1 Mk(p)(C) ⊂ A(n+ 1) – and similarly on the right hand side – the inductive
limits of these matrix algebras will be the desired UHF algebras. As is well-known,
UHF algebras are generated by two self-adjoints so we can find {X1, X2} ⊂ As which
generate the ‘left hand’ copy and {X3, X4} which generate the ‘right hand’ copy of⊗∞

p=1Mk(p)(C) ⊂ As. (By ‘left’ UHF algebra we mean the inductive limit of the left

matrix algebras of the A(n)’s – this terminology is misleading, however, as As is not
an amalgamated free product algebra and hence has no left or right side.)
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Note that As has a natural inductive limit tracial state τ arising from the canonical
traces on the A(n)’s. Hence we can consider the GNS representation πτ : As →
B(L2(As, τ)).

Theorem 6.1. With notation as above, there exists a ∗-isomorphism

Φ: πτ (As)
′′ → R ∗Bs

R

such that Φ maps {πτ (X1), πτ (X2)} into the left copy of R and {πτ (X3), πτ (X4)} into
the right.

Proof. Unfortunately, the ∗-isomorphism Φ: πτ (As)
′′ → R ∗Bs

R constructed in [5]
is quite complicated to describe; it arises from Elliott’s intertwining argument and
hence is the limit of a bunch of partially defined maps. As above, we stick closely to
the notation used in [5] and quote a number of things proved there.

First we must consider the projections

Q(n)
m = qnqn+1 · · · qm ∈ As.

(We identify each A(n) with its natural image in As.) For fixed n, this is a decreasing
sequence of projections and hence we can define a projection

Q(n) = (s.o.t.) lim
m→∞

πτ (Q
(n)
m ) ∈ πτ (As)

′′.

We now consider the nonunital C∗-subalgebras

Cn = Q(n+1)πτ (A(n)) ⊂ πτ (As)
′′.

It is shown in [5] that there are (nonunital, not-quite-canonical) inclusions Cn ⊂ Cn+1

and that ∪Cn is weakly dense in πτ (As)
′′. More importantly, it is a fact that Cn is

naturally isomorphic to the reduced amalgamated C∗-free product

An =
( n⊗

p=1

Mk(p)(C), E
)
∗⊗n

p=1
Bp

( n⊗

p=1

Mk(p)(C), E
)
,

where E :
⊗n

p=1Mk(p)(C) →
⊗n

p=1 Bp is the trace preserving conditional expectation.

Since we have canonical (unital) inclusions An ⊂ R∗Bs
R, the isomorphisms Cn

∼= An

give rise to maps φn : Cn → R ∗Bs
R.

Here is the crucial observation: If

T ∈ A(n) =
n⊗

p=1

Mk(p)(C) ∗⊗n
p=1

Bp

n⊗

p=1

Mk(p)(C)

comes from the left (resp. right) tensor product then

φm(πτ (T )Q(n+1)) ∈ R ∗Bs
R

is a sequence of elements (n fixed and m → ∞) belonging to the left (resp. right)
copy of R.

It follows that Φ(T ) belongs to the left (resp. right) copy of R too; indeed, Φ(T ) =
limn Φ(πτ (T )Q(n+1)), by normality, while

Φ(πτ (T )Q(n+1)) = lim
m→∞

φm(πτ (T )Q(n+1)),
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by the very definition of Φ.
This, however, completes the proof since the generators {X1, X2} (resp. {X3, X4})

are norm limits of elements from the left (resp. right) tensor products which comprise
A(n), hence continuity of Φ ensures they get mapped into the left (resp. right) hand
copy of R. �

Having handled the case 1 < s < 2 we are now ready for the general result. For any
t ≥ 2, a sequence of integers ℓ(n) < k(n) was constructed in [5] with the property that
cutting the Popa algebra construction above by a projection gives a dense embedding
into L(Ft). More precisely, if As is the Popa algebra constructed using ℓ(n) < k(n)
and

p ∈ B1 ⊂ A(1) = Mk(1)(C) ∗B1
Mk(1)(C)

is the unit of (the nonunital corner) Mℓ(1), then pAsp is again a Popa algebra and its
weak closure in R ∗Bs

R is isomorphic to L(Ft).

Hence if {ei,j}1≤i,j≤k(1) ⊂ Mk(1)(C) are matrix units such that p =
∑ℓ(1)

1 ei,i, and
we define partial isometries vi = ek(1)−i,1 for 0 ≤ i ≤ k(1)−ℓ(1)−1 and vk(1)−ℓ(1) = p,
then

X :=

k(1)−ℓ(1)⋃

i,j=0

v∗i {X1, X2, X3, X4}vj

is a generating set for At := pAsp. As this is precisely the set-up required to invoke
Proposition 5.1, the following corollary is an immediate consequence of our main
result and Theorem 6.1.

Corollary 6.2. Let 2 ≤ t < ∞ be arbitrary and At ⊂ L(Ft) be the weakly dense
Popa algebra constructed in [5]. If X ⊂ At is the generating set described above then
δ0(X ) = t.

Appendix A. L2–Betti numbers of some amalgamated free products

of groups

by Wolfgang Lück

Theorem A.1. Let G = G1 ∗G0
G2 be the amalgamated product of G1 and G2 over

a common subgroup G0. Suppose that the first L2-Betti number b
(2)
1 (G0) is trivial.

Then

b
(2)
1 (G) = b

(2)
1 (G1) + b

(2)
1 (G2) + |G0|

−1 − |G1|
−1 − |G2|

−1 + |G|−1.

Remark A.2. The formula appearing in Theorem A.1 is understood as follows. If H
is a group, then |H|−1 is the inverse of its order |H| if |H| is finite, and is zero if

|H| is infinite. If b
(2)
1 (G1) or b

(2)
1 (G2) is infinite, then the formula says that b

(2)
1 (G)

is infinite. If both b
(2)
1 (G1) and b

(2)
1 (G2) are finite, the formula is just an equation of

real numbers.
It is essential that G0 is a subgroup of both G1 and G2. The formula is in general

not valid if the amalgamated product is taken with respect to not necessarily injective
group homomorphisms G0 → G1 and G0 → G2.
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The class of groups with b
(2)
1 (G) = 0 is discussed in [24, Theorem 7.2 on page 294]).

Amenable groups belong to this class.

Proof. Using the Seifert–van Kampen Theorem and elementary covering theory one
easily checks that there is a G-pushout of G-CW -complexes

G×G0
EG0

//

��

G×G1
EG1

��

G×G2
EG2

// EG

Let N (G) be the group von Neumann algebra. Denote by C∗(EGi) the cellular
ZGi-chain complex and by C∗(G ×Gi

EGi) and C∗(EG) the ZG-chain complexes.
We obtain from the G-pushout above a long exact sequence of N (G)-modules. (All
tensor products are understood as purely algebraic tensor products)

H1(N (G) ⊗ZG C∗(G×G0
EG0))

→ H1(N (G) ⊗ZG C∗(G×G1
EG1)) ⊕H1(N (G) ⊗ZG C∗(G×G2

EG2))

→ H1(N (G) ⊗ZG C∗(EG)) → H0(N (G) ⊗ZG C∗(G×G0
EG0))

→ H0(N (G) ⊗ZG C∗(G×G1
EG1)) ⊕H0(N (G) ⊗ZG C∗(G×G2

EG2))

→ H0(N (G) ⊗ZG C∗(EG)) → 0. (53)

There are a natural identifications of N (G)-chain complexes

N (G) ⊗ZG C∗(G×Gi
EGi) = N (G) ⊗ZG ZG⊗ZGi

C∗(EGi)

= N (G) ⊗ZGi
C∗(EGi)

= N (G) ⊗N (Gi) N (Gi) ⊗ZGi
C∗(EGi).

Since N (G) is flat as N (Gi)-module by [24, Theorem 6.9 (1) on page 253], we obtain
the identification of N (G)-modules

Hn(N (G) ⊗ZGi
C∗(EGi)) = N (G) ⊗N (Gi) Hn(N (Gi) ⊗ZGi

C∗(EGi).

We conclude from [24, Theorem 6.9 (2) on page 253]

dimN (G)

(
N (G) ⊗N (Gi) Hn(N (Gi) ⊗ZGi

C∗(EGi))
)

= dimN (Gi) (Hn(N (Gi) ⊗ZGi
C∗(EGi))) .

We have by definition

b(2)p (Gi) := dimN (Gi) (Hn(N (Gi) ⊗ZGi
C∗(EGi))) ;

b(2)p (G) := dimN (G) (Hn(N (G) ⊗ZG C∗(EG))) .

This implies

b(2)p (G) := dimN (G) (Hp(N (G) ⊗ZG C∗(EG))) ;

b(2)p (Gi) := dimN (G) (Hp(N (G) ⊗ZG C∗(G×Gi
EGi))) for i = 0, 1, 2.

We have b
(2)
0 (Gi) = |Gi|−1 and b

(2)
0 (G) = |G|−1 (see [24, Theorem 6.54 (8) on

page 266]). One of the main features of the dimension function dimN (G) is Additivity
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(see [24, Theorem 6.7 on page 239]), i.e., for any exact sequence of N (G)-modules
0 →M0 →M1 → M2 → 0 we have the equation of real numbers

dimN (G)(M1) = dimN (G)(M1) + dimN (G)(M1)

if both dimN (G)(M1) and dimN (G)(M1) are finite, and dimN (G)(M1) = ∞ otherwise.
Now the claim follows from elementary arguments using Additivity and the long exact
homology sequence (53) �
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