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FREE ENTROPY DIMENSION IN AMALGAMATED FREE
PRODUCTS

NATHANIAL P. BROWN, KENNETH J. DYKEMA AND KENLEY JUNG

WITH AN APPENDIX BY WOLFGANG LUCK

ABSTRACT. We calculate the microstates free entropy dimension of natural gen-
erators in an amalgamated free product of certain von Neumann algebras, with
amalgamation over a hyperfinite subalgebra. In particular, some ‘exotic’ Popa al-
gebra generators of free group factors are shown to have the expected free entropy
dimension. We also show that microstates and non—microstates free entropy dimen-
sion agree for generating sets of many groups. In the appendix, the first L?-Betti
number for certain amalgamated free products of groups is calculated.

1. INTRODUCTION

The modified free entropy dimension dy(X) is a number associated to any finite set
X of self-adjoint operators in a finite von Neumann algebra. This noncommutative
analogue of Minkowski dimension was introduced by Dan Voiculescu and has been
one of the major applications of free probability to operator algebras. (See [32] for
the definition of §y and a nice survey of the theory and applications.) Voiculescu [29]
showed that do(X) is an invariant of the algebra generated by X. It is an open
question whether do(X) is an invariant of the von Neumann algebra X" generated by
X. It was shown in [I7] that do(X) is an invariant of X” if X” = B is a hyperfinite
von Neumann algebra and in such cases we may write do(B) instead of do(X).

Computations with J; have been made in a number of situations. The first were
made by Voiculescu for a single selfadjoint and a free family of selfadjoints in [27], and
more generally for any separably acting von Neumann algebra with a Cartan subal-
gebra or one with property I' (J28]). In [B1], Voiculescu also made such computations
for sequentially commuting operators. These results were signifcantly generalized by
Ge and Shen in [I5] (previously Ge used such techniques to show that the free group
factors are prime in [I4]). Bounds and computations with ¢, have also been made for
subfactors of finite index, property T factors, group generators of a discrete group,
and free products of certain von Neumann algebras with amalgamation over a diffuse
subalgebra ([20], [22], [4 [21]).

The purpose of this paper is to show that in many cases, natural generators of an
amalgamated free product My *pMs of von Neumann algebras (with respect to trace—
preserving conditional expectations) have the expected free entropy dimension, when
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B is hyperfinite. More precisely, let M; and M be finite von Neumann algebras
with fixed normal, faithful, tracial states 71 and 7, and having finite generating sets
X; and X, respectively. Suppose B is a hyperfinite von Neumann algebra that is
embedded in both M; and M, so that the restrictions of the traces 7, and 7 agree.
Consider the amalgamated free product von Neumann algebra M x5 Mo, taken with
respect to the trace—preserving conditional expectations M; — B. Our goal is to
show

50(X1 U XQ) - (50(X1) + 50(X2) - (50(3) (1)

We can show this and similar results, under certain technical assumptions (see Theo-
rem L4 and its corollaries). For example we prove ([l) in the case that both M; and
M are hyperfinite.

Our results for dy allow us to test the conjecture 6y = ¢*, where 0* is the non—
microstates free entropy dimension of Voiculescu [30]. (See the discussion prior to
Theorem EETA) Indeed, we verify do(X) = 6*(X) when X is a generating set of the
group algebra C[G] endowed with its canonical trace, for a large class of groups. In
testing this conjecture, we use results of [I7], [T5] and [22] as well as ([l) to compute
do(X), and we use a result of Mineyev and Shlyakhtenko [25] to compute 6*(X) in
terms of L2 Betti numbers. We then use results of W. Liick and others to compute
L?-Betti numbers of groups, including a new result, found in the appendix to this
paper, on the first L?-Betti number for certain amalgamated free products of groups.

We are interested in amalgamated free products in part because they give new
presentations of (interpolated) free group factors. Indeed, in [5] it was shown that
L(F,) can be realized as (a corner of) an amalgamated free product of the type
above. Using this fact, some generators were constructed which appeared to be
exotic in terms of the properties of the C*—algebras they generate. We will prove in
this paper that these generators have, in fact, the expected free entropy dimension.
In other words, from the free probability perspective the free-group-factor generators
constructed in [B] aren’t all that exotic.

The next section of this paper establishes notation, recalls some definitions; we
also introduce a regularity property as pertains to microstates packing that is of
technical use in later sections. In Section Bl we prove an asymptotic freeness result
which is used to get lower bounds for dy. Section Bl contains the proof of the main
theorem and (under certain hypotheses) equation () above. At the end of this
section, as corollaries, we show that the conjectured equality between d, and the
non—microstates free entropy dimention 6* holds for generating sets of many groups.
In Section B we prove a cut—down forumla for Jy, again under certain techincal
assumptions, (and we remark that a general cut—down formula is equivalent to the
von Neumann algebra invariance question). Section [l explains why the generators
constructed in [5] are covered by our results, and, therefore, have the expected free
entropy dimension. Finally, the appendix, by W. Liick, calculates the first L Betti
numbers of amalgamated free products of certain groups.
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2. MICORSTATES PACKING REGULARITY

In this section, we begin by recalling some basic facts about matricial microstates
and the packing number approach to d; and then we define microstate—packing reg-
ularity, which is analogous to the notion of regularity given by Voiculescu in Defini-
tion 3.6 of [29)].

For a finite set X, #X denotes the cardinality of X. M*(C) denotes the set of
k x k selfadjoint complex matrices and for n € N, (M*(C))" is the set of n-tuples of
such matrices. U, will denote the set of k x k unitaries.

Given a finite set X = {z1,...,z,} of selfadjoint elements in a tracial von Neumann
algebra (M, ¢), denote by I'(X;m, k,~) the set of all n-tuples of k& x k selfadjoint
matrices (ay,...,a,) such that for any 1 <p <mand 1 <iy,...,i, <n,

[brg (@i, - - as,) = (@i - 23,)| <.

Here tr; denotes the normalized trace on the k x k matrices. We regard subsets of the
space of n-tuples of k x k selfadjoint complex matrices as metric spaces with respect
to the normalized Hilbert-Schmidt norm |(ay, ..., a,)2 = O, try(a2))z.

For any metric space (€2,d) and € > 0, P.(Q2) denotes the maximum number of
elements in a collection of mutually disjoint open e balls of Q. Similarly K.(2)
denotes the minimum number of open e-balls required to cover Q (such a cover is
called an e-net for ).

We will now recall the following asymptotic packing quantity; it can be used to
define ¢ and allows for lower bound computations. Define successively:

P (X;m,7) = limsup k=% - log(P(T(X:m, k, 7)), (2)
k—o0
P (X) = inf{P.(X;m,v) : m € N,y > 0}. (3)

One can also define K. (X) in an analogous way by replacing P. above with K..
Finally, by [18], the free entropy dimension of X is

P.(X
9o(X) = limsup ( )
e—0 | loge]

(4)

The equality (H) persists if P, is replaced with K.

With minor modifications, dp and related quantities can be defined for n-tuples of
non-self-adjoint operators too (see, for example, [13]). Moreover, if R is a real number
greater than the operator norm of any element of X, then letting I'r(X;m, k,v) be
the set of n—tuples (ay, ..., a,) € I'(X;m, k, ) such that ||a;|| < R for all i, replacing
[ by I'g in (@) doesn’t change the value of dy(X).

Similarly, we define
Pe(X;m, ) = liminf &2 - log(P(T(X; m, k, 7)), (5)

P (X) = inf{P.(X;m,vy) : m € N,y > 0}. (6)
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and we also define K, (X) in an analogous way by replacing P, above with K. Finally,
we let o P.(X)

0(X) = lim sup Toge| (7)
Again, the equality () persists if P is replaced with K. Also here the value of do(X)
is unchanged by substituting I'p for I' in ([H). Moreover, it is easily seen that also
0o(X) is an invariant of the x—algebra generated by X.

Clearly, we always have

0 (X) < 0p(X)

and we think of §y as a sort of lower free entropy dimension.

Definition 2.1. An n-tuple X in a finite von Neumann algebra is said to be
microstates—packing reqular if do(X) = 0o (X).

Throughout this paper, we will abbreviate this term by writing simply “regular.”
(Compare to Definition 3.6 of [29].) In order to show that certain n—tuples X are
regular, we will use Voiculescu’s original definition of the (modified) free entropy
dimension [27] and [28], whereby if X = {xy,...,2,}, then for s;,...,s, a standard
semicircular family free from X and for any R > max;(]|z;||),

do(X) = n + limsup Xr(T1 4 sy, Tnt Esn 51, 5n)
=0 | log |

, (8)

where x g is the free entropy of Voiculescu. The free entropy xg is defined in terms of
the asymptotics of volumes of microstate spaces as the matrix size k tends to infinity.
Let us denote by xgr the quantity obtained by, in the definition of xg, (see 7]
and [2§]), replacing limsup,_,, by liminf, .. Let us denote by dy the quantity
obtained by replacing yr in ) by xg. It is another sort of lower free entropy
dimension. A key technical fact is the equality

do(x1) = 6(x1) = do(1) (9)

for any single element z; of a finite von Neumann algebra. This is analogous to
Corollary 6.7 of [28] and can be proved by modifying this corollary’s proof.
The following is a variation on Theorem 4.5 of [17].

Lemma 2.2. Let X be a finite subset of self-adjoint elements in a finite von Neumann
algebra that is embeddable in the ultrapower R* of the hyperfinite II,—factor. Suppose
that B is a finite subset of self-adjoint elements in the x—algebra generated by X and
that B generates a hyperfinite von Neumann algebra. Then

80(X) > du(B). (10)

Proof. Let R be some sufficiently large real number. Write X = {zy,...,2,} and B =
(k) (k)

{b1,...,b,}. Since X can be embedded in R¥, one can find a sequence ((zy ", ..., 20 )52,

of n—tuples of self-adjoint k£ x k matrices such that for every m and + we have

(:cgk), . :c(k)) ep(X;m, k7).

rn
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Replacing every limsup,_,., with liminf; . in the proofs of Lemmas 4.3 and 4.4
of [I7], one shows that for every m and v and every 0 < € < 1 we have

lim inf (k_2 . lOg(P4E\/ﬁ(U(ZE§k)> e ax(k)))))

n
k—oo

> Xa(br +e€s1,..., by + €5, 51,...,8,) +plloge| — K,

where s1,...,s, are as above, where U (xgk), .,x%k)) denotes the unitary orbit of
(xgk), e ,x&{“)) and where K; and A are constants independent of m, v and €. Since

the aformentioned unitary orbit lies in the micorstate space I'r(X;m, k,~) for all k
sufficiently large, we get

Py n(X) > xa(by +e€s1,...,by, + €5, 51,...,5,) +plloge| — K.
Dividing by |loge| and letting € tend to zero, we get (I0). O
Combining the above lemma with (), we get the following lemma.

Lemma 2.3. Let X be as in Lemmal[Z and let b be a self-adjoint element of the
x—algebra generated by X. Then

0 (X) > do(b).

Proposition 2.4. Let X be an n—tuple of self-adjoint elements in a finite von Neu-
mann algebra. Suppose either (a) X" is hyperfinite or (b) do(X) < 1 and there is an
element of the x—algebra generated by X whose trace of spectral measure is diffuse.
Then X is reqular.

Proof. Assume first that X” is hyperfinite. The proof is essentially contained in
Sections 5 and 6 of [I7]. Indeed, all the relevant inqualities remain valid when lim sup
is replaced with liminf. We leave the details to the reader.

Consider now the case (b). Let xy be a self-adjoint element in the x—algebra
generated by X whose trace of spectral measure is diffuse. Then (by [27] and [2§])
do(zo) = 1, so using Lemma 3 we get

00(X) > do(x0) = 1 = do(X),
and we conclude that X is regular. U

We now state for later use Lemma 3.2 of [I9] and a minor variation of it whose
proof is an easy adaptation of that lemma’s proof. Let X and Y be finite sets of self-
adjoint elements in a finite von Neumann algebra. The (relative) microstate space of
X relative to some microstates & for Y is defined (see [19]) by

E(Xsm, k) ={n| (n&) e (X UY;m,k,v)}.

Then P (Z(X;m,v)) and P (Z(X)) are defined as in (@) and (@), but replacing I'
with =, and similarly for K. (2(X)), P.(=(X)), K(=(X)), and so on. Moreover, for
R > 0, when we write =g in any of these contexts, we mean the quantities obtained
by restricing to spaces of microstates having norms bounded above by R.
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Lemma 2.5. Let X andY be as above. SupposeY” is hyperfinite. Let R > 0 be larger
than the norm of every element of XUY . Choose a sequence ()52, so that for every
méeN andy >0 andt >0, & € Tr(Y;m, k,v) and dim &), > k*(1 — 6o(Y) — t) for
all sufficiently large k, where &, is the commutant of the set & in the k X k matrices.
Taking relative microstates Zr(X; - -+ ) with respect to this sequence (&)3°, we have

(X UY)=6(Y)+ lir?jélp % (11)
KG(ER(X))

(X UY) =66(Y)+ limsup =

12
% nsup = (12)

3. ASYMPTOTIC FREENESS RESULTS

In this section we prove some asymptotic freeness results for random matrices.
The asymptotic freeness is with amalgamation over a finite dimensional C*—algebra
D. A general description of our results is that, if we fix certain n(k)-dimensional
representations 7, of D and if we consider independent random unitary matrices,
each distributed according to Haar measure on the commutant of 7, (D), then these
become x—free over D from each other and from scalar matrices as the matrix size
n(k) increases without bound. These results are generalizations of some results of
Voiculescu from [26] and [29], which are for the case D = C, and our techniques are
also extensions of Voiculescu’s techniques.

Lemma 3.1. Let (A, ¢) be a C*—noncommutative probability space, suppose D C A is
a unital C*—subalgebra and suppose ¢|p has faithful Gelfand—Naimark—Segal (GNS)
representation. Suppose p : A — D is a conditional expectation such that ¢ o p = ¢
and suppose B, C A is a unital C*—subalgebra (n € N) such that the family (B,)5,

is free with respect to ¢ and D C By. Let A, = C*(B, U D) for everyn € N. Then
the family (A,)SS, is free over D with respect to p.

Proof. Let ;1:@ denote the algebra generated by B, U D. It will suffice to show that
the family (A, ),>1 is free over D with respect to p. We will use the notation

AO((SZ'>Z'€[) = {8182 Sy | n Z 1, Sj S Sij, 7;1, e ,’in S [, ij §£ ij+1} (13)

for any family (S;); € I of subsets of an algebra, and we will think of elements of the
set (I3) as either words in the S; or as elements of the algebra, blurring the distinction
between them. For n > 2, since B, and D are free with respect to ¢, we have
A, = D+span DO, D, where O, is the set of all elements in A°(B, Nker ¢, D Nker ¢)
whose first and last letters are from B,, Nker ¢. Since B,, and D,, are free with respect
to ¢, we have DO, D C ker¢. Since ¢, has faithful GNS representation, we get
DO, D C ker p, and, therefore,

A, Nker p =span DO, D.
To prove the lemma, it will suffice to show

A°(By Nker p, (DO, D),>2) C ker p.
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Since ¢ has faithful GNS representation, it will suffice to show
AO(Bl N ker P, (D@nD)n22> Q ker qb (14)

Let w be a word from the left—hand side of ([dl). If w belongs to BiNker p, then we are
done, so we may suppose that at least one letter of w is from D®©,, D, for some n > 2.
By stripping off the copies of D from each DO, D and by using D(B; Nker p)D =
By Nker p, we see that w equals a word

w' € AO((Bl N ker p), D, (Gn)n22)>

where each letter of w’ that comes from D satisfies one of the following three condi-
tions:

e it is the left—most letter of w’ and has a letter from some ©,, to the right

e it is the right-most letter of w’ and has a letter from some O,, to the left

e it lies between a letter from some ©, immediately to the left and some ©,,

immediately to the right, with n,m > 2, n # m.

For all d € D appearing as letters in the writing of w’ described above, write d =
(d— ¢(d)1) + ¢(d)1 and distribute. Furthermore, write out each element of ©,, as a
word coming from A°(B, Nker ¢, D N ker ¢) that begins and ends with elements of
B,, Nker ¢. We thereby see that w’ is equal to a linear combination of words from

A°((By Nker p) U (D Nker ¢), (B, Nker ¢),>2). (15)
Be freeness of (B,,),>1 with respect to ¢, the set (IH) lies in ker ¢, and we get w' €
ker ¢, as required. O

3.2. For the remainder of this section, we fix a finite dimensional C*-algebra D
with spanning set {ds,...,dy} and a faithful tracial state 7, on D. Fixing integers
n(l) <n(2) <---, welet m, : D — M,;;)(C) be a faithful *-homomorphism and we
assume

lim b1, (mi(d) = 7 (d),  (d € D),

where tr,, denotes the normalized trace on M, (C). We let ¢y, : M,x)(C) — (D) be
the tr,)—preserving conditional expectation, and we let Ej, : M,y (C) — D be such
that wk = T O Ek

Theorem 3.3. Let (B, 75) be a C*—noncommutative probability space with tracial
state Tg and suppose D is embedded in B as a unital C*—subalgebra such that the
restriction of g to D equals Tp. Let EB be the Tp—preserving conditional expectation
from B onto D. Let uj,us,... be the x—free family of Haar unitary elements of
(C*(Fy),Tr,,) coming from the free generators of F, and let

(A, E) = (B,EE) #p (C*(Fy) ® D, 7 ®idp)

be the reduced amalgamated free product of C*—algebras. It is easily seen that T :=
Ta0o E 1s a trace on A. Let uy,us, ... denote also the obvious unitary elements of 2
coming from the unitaries in C}(Fy).

Let by, by, ... € B and suppose B(s, k) € Myuu)(C) (s € N) are such that

Vs € N sup||B(s, k)| < oo
keN
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and the family
M

(B(s: k) sener (maldi)) iy

in (M) (C), tryw)) converges in x—moments to

(bS)seN, (dz)i‘il

in (B,75) as k — oc.

For each k € N, let (U(j,k))jen be a family of mutually independent random
unitary matrices in My, each distributed according to Haar measure on the unitary
group of mp(D)'. Then the family

(B(Svk))sew (U(jvk))jeN
in (Maky, Tn@k)) converges in x—moments to the family

(bs)sen,  (uj)jen
n (A, 7) as k — oco.
Proof. For convenience of notation, we may suppose the first M of the list by, bo, . ..
consist of dy,...,dy, and B(s, k) = m(ds) for 1 < s < M.

Let (A, 7) be a W*—noncommutative probability space with 7 a faithful trace and
with B a unital C*-subalgebra of A such that 7], = 75 and with (0, 1)-circular
elements 2z, 2o, . .. € 2 such that B, ({z})52, is a - free family. Let E, : A — D be
the 7—preserving conditional expectation onto D. Let Z(j,k) € GRM(n(k),1/n(k))

be such that (Z(j, k)72, is an independent family of matrix—valued random variables.
By [29], the family

(B(s:k)) ,en: (Z205:F)) pen
in (My(k)» Tn(k)) converges in x-moments to the family (b,)sen, (25)jen-
Let
U+ M) (C) — mi (D)
be the tr,)—preserving conditional expectation and let Ej : M,,xy — D be such that

’Qbk :WkOEk. (]_6)
Writing

D = (P M (C), (17)

let (61(51))1Sp’qgm(g) be a system of matrix units for the ¢th direct summand in the
right-hand-side of () and let oy, = T(en) Let

—1/2
el 1 Z]elq

Then y; is a (0, 1)-circular element that commutes with D. Furthermore, by Lemma
B the family B, ({y;})32, is *free over D with respect to Ep. Let v; be the polar
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part of y;. By [26], v; is Haar unitary and, therefore, the family (by)sen, (v;);en has
the same *-moments as the family (bs)sen, (u;)jen in (A, 7).
Let

K m(¢)
Y k) =D oy mlen) 20 kmery).
=1 q=1

Then the family
(B(S’k))seN’ ({Y(j’k)})jeN

in (My(x), Tn(k)) converges in *—moments to the family (bs)sen, (¥;)jen in (9~1, 7) as
k — oo and, therefore the family,

{B(s.k) | s e N}, ({Y(5.5)}) jen (18)

of sets of noncommutative random variables in (M, ), £x) is asymptotically xfree
over D.
The subalgebra Wk(eﬁ))M”(k)ﬁk(egﬁ)) is canonically identified with M, ), where

r(¢, k) is the rank of the projection ﬁk(eﬁ)), and under this identification, we have
m(e!) 20 F)mi(el) € GRM(r(¢, k), 1/n(k))
and, for each j,
L
(mele) 2 Rym(eld))

is an independent family of random variables. Consequently, the polar part V() (5, k)
of ﬂk(eﬁ))Z(j, l{:)wk(eg?) belongs to HURM (r(¢, k)) and

(VOUR),,

is an indenpendent family of random variables. Therefore, the polar part of Y (j, k)
is

L m(f)
VR =YY mleVOG km(el),
(=1 g=1

which is a random unitary distributed according to Haar measure on the unitary
group of 7, (D)".
To finish the proof of the proposition, it will suffice to show that the family

(B ) e (V000

converges in *-moments to the family (by)sen, (v)jen as k — oo, and for this it will
suffice to show that the family

{B(s,k) | s €N}, ({V(5,5)}) jen (19)

in (Mo k), Ex) is asymptotically *—free over D, where Ej, : My — D are as defined
in ([I6). This, in turn, follows using the method of the proof of Theorem 3.8 of [26].
For Ae M, and 1 <d < o0, let

|Alg = (T (AT A)2)H.
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Let d,/ € N and let @ be a monomial of degree d in 2¢ noncommuting variables.
Given € > 0, let

Vel k) =Y (5. k) (e + Y (5, k)Y (5. k)2,
Let 6 € (0,1]. By Step I of the proof of [26, 3.8], there is a polynomial Py such that,
1ett1ng W(S(]> k) = Y(]> k)P5(Y(]a k)*Y(]a k))a we have

llIl’lSllp|W5(j, k) _‘/e(jv k)‘d < 0. (2(])
k—o0

Since |V.(j, k)|a < 1, we get limsup,_, . |Ws(j,k)|q <1+ 0. Let
Ri(k,e) = Q(B(1,k),..., B, k), Vo(1,k),..., V. (L, k))
Ry(k,€e,0) = Q(B(1,k),..., Bl k), Ws(1,k),..., Ws({,k))
Let K > 1 be such that limsup,_, . [|B(s,k)|| < K for all s € {1,...,¢}. Using
Holders’s inequality, we get
limsup |Ry(k, €) — Ry(k,€,0)|; < 2dK*(1 + §)*14.

k—oo
Therefore,
lim sup |7, k) (R1 (K, €)) — Ty (R2(k, €,6))| = 0.

k—o00

From (20), we also have
im lim sup |7(Ws(7, k)’ — Ve(4, k)P)| =0

1
=0 koo

for all p € {1,...,d}. Therefore, the asymptotic *—freeness of the family

{B(s.k) | s € N}, ({Ve(i B)}) e
over D follows from that of the family (IS).
Step III of the proof of [26, 3.8] shows

€~ k—oo

Therefore, letting
Rs3(k) = Q(B(1,k),...,B({,k),V(1,k),..., V(L))
and using Holder’s inequality again, we get
li_r)% lim sup |7, ) (R1(k, €)) — Ty (R3(k))| = 0.

k—o0

This implies that the family (Id) is asymptotically x—free over D. U
Corollary 3.4. Suppose B(s, k) € M) (C) (for s,k € N) are such that
Vs € N, sup||B(s, k)| < oo.
k>1
Let (U(j,k))jen be a family of mutually independent random n(k) x n(k)-valued

unitary matrices, each distributed according to Haar measure on m(D)'. Let Fo
denote the group freely generated by aq,as, ... and denote by

Fo 29— U'k)
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the group representation determined by a; — U(j, k). If N € N and if go, 01, ..., 9n

are nontrivial elements of Foo and if s1,...,sy € N, then
klim Ex(U%(k)B(s1,k)U% (k) - - - B(sn, k)UN (k) = 0. (21)

Proof. Suppose, to obtain a contradiction, ([II) does not hold. Then, by passing to a
subsequence, if necessary, we may assume

klim En(U%(k)B(s1, k) U (k) --- B(sn, k)UN (k) =d # 0,
and, therefore,
klim tTn) (U (K)B(s1, k)UY (k) - - - B(sn, k) U (k)mp(d*)) = 7p(dd”) > 0.

By passing to a subsequence, if necessary, (using a diagonalization argument), we
may without loss of generality assume that the family

(Bs.B) oo (meld) )L, (22)
in (M), tryk)) converges in *+—moments as k — oo. This family (22) converges in
x—moments to a family

(bS)SENa (d])]]\il

in a C*—algebra B equipped with a tracial state 7 whose restriction to D is 7p,
and there is a unique 7-preserving conditional expectation E5 : B — D. But the
asymptotic freeness result of Theorem implies

klim trn(k)(Ugo(k:)B(sl, kYU (k) - B(sn, k)UN (k)m(d*)) = 0,
a contradiction. O

Remark 3.5. In exactly the same way that (£II) was proved, one shows also

lim By (B(sy, kU (k) - Blsy, KU (k)) = 0 (23)
Tim By(U% (k) B(s1, k) - - U= (k) Bsw, ) = 0 (24)
Jim B (B(s1, kU (k) B(sa, k) - U= (k) Bsy, ) = 0. (25)

A reformulation of Corollary B4l the following:

Corollary 3.6. Let U9(k) for g € Fo be as in Corollary[54 Fizx N € N, R > 0
and go, g1, - - - , gy nontrivial elements of Fo,. Then

tin (sup {LB(0m ) BOUT 1) VO] |
(26)
B(l),..., B(N) € My (C) Nker By, | BG)|| < R}) 0.

Theorem 3.7. Fix N,p € N and R > 0 and for each j € {1,...,N} and k € N, let
B(j,k) € My,u)(C) Nker By, satisfy ||B(j, k)| < R.

Let Vi, be the group of all unitary n(k) x n(k) matrices that commute with 7 (d)
for all d € D and let p, denote the normalized Haar measure on Vi,. Let F,, denote
the group freely generated by ay, ..., a,. Forv= (vi,...,v,) € Vi, denote by g — v9
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the group representation of F, determined by v* = v;. Fix nontrivial elements
90,91, ---,98 € F, and let
Q= {v eV} | |Ex(v*B(1, k)v? -+ B(N, k)v?™)| < e}. (27)
Then
Jim P () = 1. (28)

Proof. This is a strengthening of Corollary based on the concentration results of
Gromov and Milman [T6], using the argument from the proof of Theorem 2.7 of [29].
Consider the metric

di(wi,ws) = (Trau (w1 — ws)*(wy — wy))) " (29)

on Vi, where Tr,, denotes the unnormalized trace on M, (C). We will first see that
(Vk, di, p) is a Levy family as & — oo. It is known (see the proof of Theorem 3.9
of [26]) for the group U, of all k x k unitary matrices with respect to the metric
Sk(wr, ws) = (Trp((wy — wy)* (w1 — wy)))Y? and normalized Haar measure v, that
(Uy, Or, ) is a Levy family as k — oco. Write

D = D M5 (C) (30)

and let e; be a minimal projection of the jth matrix summand M,,;)(C) in (B0). Let
7(J, k) = Trypey(me(e;)) Then Vy is as a topological group isomorphic to

q
'X Z/{r(%k) (31)
7=1

in such a way that the metric dj on V as given in ([29) corresponds to the obvious
product metric 7, m( 4)Y26,(; 1y on the Cartesian product (&) of metric spaces, so
that we have the identification

q
Vi, di, i) g1_[ )y M) 200Gk Ve

Since trpuy(e;) = (4, k)/n(k) and since limy_.o0 troy(€;) = 7p(e;) > 0, we have
limy .00 7(j, k) = oo. Thus, for each j, Uy, m(5)?6r1), Vr(ip)) is & Levy family
as k — oo and it follows (see Proposition 3.8 of [23]), that (V,dk, px) is a Levy
family. Furthermore, the p—fold product (V¥,>F dy, ") is a Levy family.
Since D is finite dimensional, in order to show (25)), 1t will suffice to show that for
each d € D we have
lim " (Q(d)) =1, (32)

where
Qu(d) = {v € VI | [trnp) (mi(d)v® B(1, k)v? - - - B(N, k)vIV)| < €}.

Now we apply the argument from the proof of Theorem 3.9 of [26] or Theorem 2.7
of [29]. The functions f; : Vi — C given by

Fr(v) = n(k)2tr ) (i ()0 B(1, k)v? - - - B(N, k)vo™)
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are uniformly Lipschitz (uniformly in k). By Corollary B4l we have

lim n(k)™2 [ fodul? = 0. (33)
Let
O(8, k) = {v € V! | Re fi(v) > 6}

Suppose, to obtain a contradiction, we have

lim inf 1P (O(n(k)26, k) > 0

for some § > 0. Note that the diameter of VI is Dy, := (2pn(k))/2. Since V! is a
Levy family, it follows that for all n > 0, we have

T 2P (N, (O(n(k)25, 1)) = 1,
where N, (-) denotes the e-neighborhood. Since f is uniformly Lipschitz, we get
Lim 7 (O(n(k)'26/2,k)) = 1.
This, in turn, implies

lim inf n (k)12 / Re f, du;? > 6/2,
which contradicts (B3]). Therefore, we must have

li}gn inf 1P (O(n(k)26,k)) = 0
for all 6 > 0. Replacing f,, in turn by — f,,, +if,,, we easily show (B2). O

Remark 3.8. Of course, one has the analogues of (Z8) and of ([27)-(E8), in the same
way that (23)—(20) are analogues of ().

We continue to operate under the assumptions of B2, but let Z = {d;,...,dy}
denote the spanning set for D.

Theorem 3.9. Let (A, E) be a D—valued C*—noncommutative probability space and
suppose 7 : A — C is a tracial state with To E = 71[. Let p € N, R > 0 and for
everyi € {1,...,p} let X; be a finite subset of A. Assume that the family Xy, ..., X,
is free (over D) with respect to E. Let Z C D be a finite spanning set. Suppose that

for each i € {1,...,p}, BZ-(k) is a tuple of n(k) x n(k) matrices such that for every
n > 0 and every m € N we have

(B, 7(2)) € Ta(X, Zim,n(k), ),
for k € N large enough. Then for every m € N, v > 0 and R > 0, letting
e = {v e VI | (0 BMw)iy, mi(2)) € Tr((Xo)iy, Z5m,n(k), )},
we have

lim i (Z) = 1.

k—o0
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Proof. Let us write

X; ==\, x“)), B® = (3 >,...,bg(i)>>.

» (i i

Fix £ € N and 4y,...,4 € {1,...,p} with 4; # i;4; and let
gj = ’wj(l'gij), N l’(ij)),dl, .. ,dM)

’ n(ij

f(k) - w](bglpk)a e b(ij’k)a Wk(dl)’ tee ’Wk(dM))

7 Un(i;)

for some monomials w; in n(i;) 4+ M noncommuting variables, (1 < j < ¢). Note that
we have

Jim {| B (f5) = E(g)l| = 0 (34)

for all 7. As a consequence of ([B4) and Theorem B, letting

b ={v e V| traum ((v (fi = Ex(f1)vi) (W), (f2 — Ee(f2))vs,) - -
(05, (fe — Ex(fo))vi,))| <7}, (35)

we have limy_. p;?(0%) = 1. By distributing inside the trace in (BH) and using
induction on /¢, it follows that if

O = {v € VI | [trnmy ((v], frvi,) (vF foviy) - - - (V] fovi,)) — T(g192- - - 90)| <7},

then limy_, o u?”(@k) = 1. Now the set =, consists of the intersection of the sets Oy
over all choices of ¢, i1, ...,% and words w; whose degrees sum to no more than m.
Thus, the theorem is proved. O

In the following corollary, we continue to assume D and 7, are as described in B2
Fix k € N. Given B; C M,)(C), for i in some index set I and given m € N and
~v > 0, we say that the family (B;);c; is (m,y)—free over D if

[Ex(brb - - bg) — d]| < (36)

whenever 1 < ¢ < m, b; € By(j, i(1) #1(2), i(2) #i(3),...,i(¢g—1) # i(q) and where
d is what the expectation of the product would be if the family (B;);c; actually were
free. More precisely, in a D—valued noncommutative probability space (A, E), let
pi + B; Ump(D) — A be mappings that preserve moments, i.e., such that for any
Cly ..., Cn € By, we have E(p;i(c1) -+ pi(cn)) = Ex(cq - -+ ¢,) and that agree on D, and
assume that (p;(B;))ies is free (over D) in (A, E). Then the d appearing in (B0) is
d = E(piq1)(b1)pi2)(b2) - - - pi(q) (bg))-

Corollary 3.10. Letp e N, R>0m &€ N andy > 0. Let 0 < 8§ < 1. Then there
is ko € N such that whenever k > ko and whenever B; C M,4)(C), (1 < i < p) with
cardinality |B;| < R and with ||b]| < R for all b € B;, then letting

Ex={ve V)| (v;Bv;)t_, is (m,~)—free over D},

we have ,ufp(Ek) > 6, where uy, is Haar measure on Vy.
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Proof. Suppose not. Then for some 0 < 6 < 1, there are positive integers k1 < kg <

- and for every j there are sets BYW ..., B C My, (C), each with cardinality
< R and consisting of matrices of norms < R, such that the corresponding sets

Er, ={ve W, | (0 B0V, is (m, y)-free over D},
all satisfy u%” (Zk;) < 0. By passing to a subsequence, if necessary, we may without

loss of generality assume that for each 1, BZ-(kj ) has the same cardinality for all j and,

fixing and ordering of each Bi(kj ), that Bi(kj ) converges in D-valued moments as j —
oo. Now, by taking amalgamated free products, we find a D—valued noncommutative
probability space (A, E) and sets X; C A such that Bi(kj ) converges in D-valued
moments to X; and such that (X;)!_, is free over D. Then Theorem implies
lim;_ o M%’(Ekj) = 1, contrary to assumption. O

4. THE MAIN THEOREM

We assume that M; and M are finite von Neumann algebras that are embeddable
in R¥ (the ultrapower of the hyperfinite II;—factor), each equipped with a fixed normal
faithful tracial state, and that B is a hyperfinite von Neumann algebra that is unitally
embedded into each of M; and M in such a way that the traces on M; and M,
restrict to the same trace on B. We work in the von Neumann algebra amalgamated
free product M = M *xg Mo, taken with respect to the trace—preserving conditional
expectations M; — B, and we regard M; and M as subalgebras of M in the usual
way. The von Neumann algebra M is endowed with a normal, faithful, tracial state
¢, which is the composition of the free product conditional expectation M — B and
the specified trace on B.

Suppose now that X7, X5 and Y are finite sets of selfadjoint elements in M *xg M,
with X = My, X)) = My, and V" = B.

Lemma 4.1. 50(X1 U X2 U Y) S 50(X1 U Y) + 50(X2 U Y) — 6()(Y)
Proof. This is the hyperfinite inequality ([19]). O

Before we begin the lower bound a few remarks are in order. There exists an
increasing sequence of finite dimensional x-subalgebras of B, (B,)%° , such that each
B, is generated by E,(Y) where E, : B — B, is the trace preserving conditional
expectation. Let My xg My denote the amalgamated free product von Neumann
algebra taken with respect to the trace—preserving conditional expectations M; —
B, let ¢,, denote the resulting tracial state on M x5, M and consider the canonical
embeddings o,; : M; — My xg Mo, (i = 1,2). It is clear that for any word w in

(#X1 + #Xo + #Y) letters,
Tim g (w(010(X1), 020 (X2), En(Y))) = p(w(Xy, X5, Y)).

Fix R > 0 to be greater than the norm of any element in X; U Xy UY. Find
and fix for the remainder of this section a sequence (&x)72; of (#Y)-tuples of self
adjoint k£ x k matrices such that for any m € N and v > 0, & € T'r(Y;m, k,~) for
k sufficiently large. When we write Z(-) or Zg(+), this will always denote relative
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microstate spaces of finite sets in M xg My, computed with respect to this sequence
<§k>20:1

For each n find a sequence (&,;)7, of (#Y)-tuples of self adjoint k x k matrices
which satisfies the property that for each m and -, we have

(gka gnk) € FR(Y U En(Y)7 m, k? 7)

for k sufficiently large. This can be done by approximating elements of F,(Y) with
polynomials in Y, and using a spectral cut—off function.

For each n choose a sequence of unital representations m,; : B, — M(C) such
that

i foxy 0 7 — ol | = 0. (37)

(In fact, depending on the structure of B,,, some values of k£ may admit no such
reprensentation m,;; however, one can always choose a sequence k, — oo and repre-
sentations m,, having the apporpriate approximation property like (&), and where
the k, run through an arithmetic progession of integers; these suffice for estimating
packing numbers of microstate spaces for arbitrary k; we will not go into these tech-
nical details, and for simplicity we’ll continue to write 7, for all k.) By standard
techniques on finite dimensional algebras, after conjugating with a unitary, if neces-
sary, we may assume ||mx(E,(Y)) — &l — 0 as & — oo. Thus, we may assume

When we write Zg(n)(+), this will always denote relative microstate spaces of finite
sets in M *xp, My, computed with respect to the sequence (£,,)52,. Then, given n
and any m, 7, there exists m’, v such that Zx(X;;m/', k,v") C Zr(n)(0m(X;);m, k, )
for sufficiently large k.

We will need a preliminary lemma. We show that microstates for the canonical
generators of My xg M, approximate those of M xg My in a way that behaves
properly with respect to the relative microstate spaces.

Lemma 4.2. For any given m and vy there exists an N € N such that for eachn > N
we have

Zr(n) (001 (X1) Uona(Xa);m, k,v/3) C ZEr(X1 U Xoym, k,7), (38)
for all k sufficiently large. Therefore, for any € > 0, we have
Pe(Er(n)(on (X1) Uon(Xa);m,7/3)) < P(Er(X1 U Xz;m, 7). (39)

Proof. Suppose m,~y are given. There exists an N; € N such that for all n > Ny,
1€k — &kll < (B(R+1))™™ - 4 for k sufficiently large. There also exists an Ny € N
such that for all n > Ny and for any word w in (#X; + #X, + #Y)-letters with
length no more than m,

|Pntw(0n1(X1), na(X2), En(Y)) = p(w(X1, Xa, Y))| < /3.
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Thus, if n > Ny + Ny and if ((1, () € Z(n)(0n1(X1) Uone(Xs)); m,v/3), then for any
word w in (#X1 + #Xo + #Y)-letters with length no more than m, we have
[tre(w(C1,C2, &) — p(w(X1, X2, Y))| <
<|tr(w(Ci, Cos &k)) — tra(w(Ci, Cos En))|
+ [trr(w(Cr, Cos §nr)) — @nlWn (001 (X1), 002(X2), En(Y)))]
+ [on(w(0n1(X1), 0n2(X2), B, (Y))) — p(w(Xy, X5, Y))]
<v/3+~v/3+7/3=".
This shows ([B), and (BY) follows directly. O

Next is the main technical lemma in this section.

Lemma 4.3.

So(X1UX,UY) > 6o(X1 UY) +8p(Xa UY) — 6p(Y) (40)

Op(X1UXoUY) > 0g(X1UY) +0p(XoUY) = o(Y). (41)

Proof. Suppose m € N and v > 0 are given. Choose N € N as in Lemma
so that for n > N, Z(n)(o1n(X1) U 02,(X2);m, k,v/3) C Z(X1 U Xo;m, k,) for
k sufficiently large. By Corollary BIM, there exists a K and vy > 0 such that if
i, Ten (EN(Y)) € Tr(oin (X)) U En(Y);m, k, %), @ = 1,2, then for k£ > K, letting

Gr = {v € Vi s (Mg, v nawv, me(En(Y)))
€ I'r(oin(X1) Uoan(X2) U En(Y);m, k,v/3)},
where V, denotes the set of k X k unitaries that commutes with 7y (By), we have
i(Gr) > 1/2, (42)

where p, is Haar measure on V. Since m,(En(Y)) = &n we have by Lemma
that, for any € > 0,

PE(ER(N)(O'lN(Xl) U O'2N<X2); m, ’)//3)) S PE(ER(Xl U XQ, m,y))

Thus, in order to find a lower bound for P.(Zx(X; U Xo; m, 7)), it will suffice to find
one for P (Zg(N)(o1n(X1) U oan(X2);m,v/3)), and, as we will see, good bounds of
this can be obtained by the estimate p(Gy) > 1/2.

Fix ty > 0. It follows from Lemma 3.2 of [19] that there exists ¢y > 0, depending
only on ty, X1, X5 and Y, such that for all 0 < € < ¢,

P (Er(X1)) > (S(X1 UY) —60(Y) — to)|log ] (43)

Pe(Er(X2)) > (60(X2UY) —d0(Y) — to)[loge]. (44)
The discussion preceding Lemma allows us to find m’,~" such that
Er(Xiym' k,y") C Er(N) (o (Xi)im, k,y), (i=1,2),
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for k sufficiently large. Fix € < ¢y. From H3), we get 2¢ separated subsets (n](?) i,
of Zr(N)(o1n(X1); m, k, 7o) satisfying
1\ (Go(XaUY)=do(Y)—to)k?
#Jk > <—)
€
for all k sufficiently large. Now for each j € Ji, we will estimate those relative
microstates for Zg(N)(Xz) which are compatible with a fixed nﬁ).

Find a subset (njpr)per, of Zr(Xo;m/, k, ") C ZEg(N)(oan(X2);m, k, ) of maxi-
mum cardinality which satisfies the condition that for any p # p’ € L,

Jnf |[unjprt” — Njpila > €.
If Tjpr = {unjpru” : w € Vi }, then clearly
K4E(ER(X2; m,> k? ’}/)) < Z Ps(ir]pk)
pELy
On the other hand, for each p € Lj, denote by €2, the set of all elements of the
form un;pru*, u € Vi, such that
(ﬁﬁ%uﬁjpw*) € Er(N)(o1n(X1) Uoan(Xa);m, k,v/3).

Clearly Qj,r C Tjpr. Moreover, T}y, is a compact, locally isometric space and there-
fore has a unique Hausdorff probability measure on it, say m;. Now, because vy was
chosen so that ([2) holds, we have

my(Qpr) = s My, (VS prv™) dpig(v)
k

A

— /T ( /J: kXijk(v*njpkv)dﬂk(“)) dmy(z)

Jpk
> 1/2

for all sufficiently large k. Because Tj, is locally isometric, we get

mk(ijk) 1 1

> > > Z Py (Tipge)-

me(Bye) = 2mn(Bar) = 27 2 Lint)

So by taking a maximal e-packing for €2, for each p and taking their union over Ly,

Xijpkv* (I) dmk(x)> d,uk(v)

we can produce for j € J, an an e-separated set <77ﬁ3€>res(j) in Zx(Xo;m/ k') C
Er(N)(oan(X2); m, k,vo) with index set S(j) having cardinality at least

1 |
D PelQp) 2 5 D Pae(Tipn) 2 5 Kae(Er(Xaim' k,7))

pELy pELy
and such that for each r € S(j),

(15, 120) € Zr(N) (o1n(X1) U oan (X2);m, k, 7/3).
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(1)

It now follows that <(7]j,1c : n](.iz))(j,r)ekag(j) is an e-separated subset of Zg(N) (o5 (X71)U

oon(Xa);m, k,v/3). Consequently, invoking the preceding lemma we now have
P(Er(X1UXym, 7)) = P(Er(N)(o1n(X1) Uoan(Xa);m, v/3))
> limsup k™ (log(#Jy) + log(Kse(Er(Xa;m', k,7))))

k—oo

V

> li}in inf k=2 - log(#Jx)
+ limsup k™2 - log(Ksc (Zr(Xo;m', k, 7))

k—o0

Z (@(Xl U Y) - 50(Y) - to)‘ lOgE‘ + ng(ER(X2>>.
Since m and 7 were arbitrary, the lower bound holds for P.(Zg(X; U X3)), whence

P.(Er(X; UX Ksc(Er (X
ErXiUX)) 5 50X, UY) = o) -ty + elEr(X2))
| log €| - | log |
Now ([I) of Lemma [ZH yields
So(X1UXoUY) > 0p(XqUY) —tg+ 0p(XoUY) — 0p(Y).

As ty > 0 was arbitrary, we have the desired lower bound ().
On the other hand, we similarly have

P (Er(X1 U Xo;m, 7)) = P(Er(N)(o1n(X1) Uoan(Xa);m,v/3))

> 1igg)lf k2 (log(#J) + log(Kse(Er(Xo;m', k, 7))
> liminf k=2 - log(#Jx)
+liminf k2 - log(Kse(Sr(Xa: m' )
> (0(X1UY) = 6(Y) —to)| log €| + Kz (Er(X2)),
which, by ([2) of Lemma Z0 gives
Op(X1UXoUY) > 6(X1UY) —to+ 0p(XoUY) —6p(Y)
and, in turn, shows (EII). O

For convenience, we collect the inequalities from Lemmas . Tland B3 into a theorem
(and we restate, in short form, the hypotheses).

Theorem 4.4. Let My xg My be the amalgamated free product of tracial von Neu-
mann algebras My and My over a hyperfinite von Neumann algebra B. Take finite
generating sets X; for M; and 'Y for B. Then
00(X1UY) +00(XoUY) —6p(B) < dp(X1UXoUY)
< 0p(XTUY) +0p(XoUY) —o(B) (45)

and

Op(X1UY) 4+ 0g(XoUY) = 0g(B) < 6p(X1 UX,UY)
<O (X1 UY)+6(XoUY) —6(B). (46)
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In particular, taking M; to be hyperfinite and using Proposition Z4] and the hy-
perfinite inequality [T9], we get the following consequences of (EH).

Corollary 4.5. If M, is hyperfinite, then
Jo(X1 U Xy) = dg(M1) + (X UY) — 6o(B).
Corollary 4.6. If My and M, are copies of the hyperfinite II,—factor, then
do(X1 U Xo) =2 —d0(B).

We should mention a much stronger result: in the setting of Corollary L6l if B is
taken to be diffuse, then dy(B) = 1 and from [2I] we have that any finite generating
set X of My xp My has dp(X) = 1.

Finally, applying both ([#H) and (#f), we address questions of regularity.

Corollary 4.7. In the setting of Theorem[[.4), if both X1 UY and XoUY are regular,
then X1 U Xy UY is regular and

Using the facts that do(X) and §y(X) are invariants of the *-algebras generated
by X, we get:

Corollary 4.8. If Y lies in the x—algebra generated by X, and in the x—algebra
generated by Xo and if both Xy and Xo are reqular, then X1 U Xy is reqular and

50(X1 U Xg) = 50(X1) —|— 50(X2) - 50(3)

Let us now consider a finitely generated group G and its group algebra C[G] em-
bedded in the group von Neumann algebra L(G) equipped with its canonical tracial
state, (where we endow GG with the discrete topology). By algebraic invariance, do(X)
is the same for all finite generating sets X of C[G], and we will denote this quanitity
by do(C[G]). Note that, from [I7], if G is amenable, then

6 (CIG]) =1 -G, (47)

(where here and below it is understood that if G is infinite then |G|™! equals 0). Let
us say G is microstates—packing regular if some (and then any) finite generating set X
of C[G] is regular. The following is an instance of Corollary EE8, making use of (H1).

Corollary 4.9. Let G; and Gy be finitely generated groups that are microstates—
packing reqular and suppose H is a finitely generated amenable group that is embedded
as a subgroup of both G and Gs. Let G = G xy Go be the amalgamated free product
of groups. Then G is microstates—packing reqular and

00(C[G]) = 00(C[G1]) + do(C[G2]) — do(C[H]) (48)

= 00(C[G1]) + 60(C[Ga]) — (1 — [H|™).
Let Ay denote the class of all finitely generated groups G such that G either (i) is
amenable, (ii) has Kazhdan’s property (T) and has an element of infinite order, or

(iii) is a direct product of infinite groups and has an element of infinite order. Let A
be the smallest class of groups such that Ay C A and such that if G1, G5 € A and if
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H is a finitely generated amenable group that is embedded in both G; and G5, then
the amalgamated free product Gy *xy G5 is in A.

Proposition 4.10. If G € Ay, then
5 (ClG]) =1~ |G|, (49)
Furthermore, every group G € A is microstates—packing regular.

Proof. If G is amenable, then G is microstates—packing regular by Proposition 2.7
and, as noted above, (@) holds by [I7]. If G has property T of if G = G; x G is a
product of infinite groups, then by [22], respectively, by [15], we have do(X) < 1 for
any generating set X of the von Neumann algebra L(G). On the other hand, if G
has an element of infinite order, then dy(C[G]) > 1 by [I7]. In either case, we have
that G is microstates packing regular by Proposition 224 and ([#9) holds.

Define the class A,, of groups for n > 1 recursively as the class of groups G such
that either G € A,,_; or G = G xy Gy with G1,G5 € A,,_; and with H a finitely
generated amenable group embedded in both G; and G,. Then A = (J7°, A,
Applying Corollary and using induction on n, one shows the every group in A,
is microstates—packing regular. U

Remark 4.11. If G € A, then either G € Ay or G can be written as a nested
amalgamated free product of groups from Ay. In the latter case, do(C[G]) can be
computed by recursive application of Corollary EE9.

The non—microstates free entropy dimension, §*, was introduced by Voiculescu [30],
and also 0*(X) is also known to be an invariant of the x—algebra generated by X. It
is conjectured that ¢ = &y, and the truth of this conjecture would have important
consequences for understanding von Neumann algebras. The inequality 6* > dy was
shown by Biane, Capitaine and Guionnet [3] to hold in general. If G is a discrete
group, let 6*(C[G]) denote the quantity 0*(X) for any generating set X of C[G], where
we regard C[G] as embedded in the group von Neumann algebra L(G) equipped with
its canonical tracial state. In [25], Mineyev and Shlyakhtenko proved the formula

0" (ClG]) = 5i(G) = Fo(G) +1 (50)

for any finitely generated group G, where (3,(G) are the L?*-Betti numbers of G
(see [, [6] and [24]).

Theorem 4.12. If G belongs to the class A, then
do(C[G]) = 0*(C[G]). (51)

Proof. Tt is known that Gy(G) = |G|™' (see Theorem 6.54(8) of [24]), and, if G is
amenable, then (1(G) = 0 (see Theorem 7.2 of [24]). These facts, combined with (&)
gives 0*(C[G]) = 1 — |G|™! for all amenable, finitely generated groups G. If G has
property (T), then §1(G) = 0 by Corollary 6 of [2], while of G = G; x G is a direct
product of infinite groups G; and G, then (;(G) = 0 follows from the Kiinneth
formula (Theorem 6.54(5), p. 266 of [24]). Thus, from (B) we get 6*(C[G]) = 1 for
G infinite with property (T) or a direct product of infinite groups. Combined with
Proposition EEI0, this shows that (B&l) holds for all G € A,.
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Now Mineyev and Shlyakhtenko’s formula (B0) combined with Theorem [AT] from
W. Liick’s appendix to this paper shows that if G = G %y G5 is the amalgamated free
product of any two finitely generated groups G; and G5 over an amenable subgroup
H, then

0" (ClG]) = 6" (C[Gh]) + 0" (C[Go]) — 6*(C[H]) (52)
= 0" (C[G1]) + 07(C[G]) — (1 — |H| ™).

Using (B2) and (@8), one shows by induction on n that (BIl) holds for every G € A,,
where A, is as defined in the proof of Proposition EEI0L Since A = |, , A,,, we are
done. 0

An example of a nonamenable, non—free group G in the class A is the fundamen-
tal group of a closed, orientable surface of genus g > 2, namely, the group with
presentation

G = (a1,b1,...,a4,by | azbyay'by’ - - - aghga, b)),

We have dy(C[G]) = 6*(C[G]) = 29 — 1. (For general results on L*-Betti numbers of
one-relator groups, see [].)

5. CUTTING TO A CORNER

For use in the next section, we now generalize some cases of the main theorem a bit.
Namely, we compute the free entropy dimension of certain generators in particular
corners of My%xg M,. The technical assumptions we require will undoubtedly irk the
impatient. However we don’t know how to avoid them, for a general scaling formula
would solve the famous invariance problem (cf. Remark B2).

Our set—up is as follows: X! = M; and X} = M, and B is a hyperfinite von
Neumann algebra embedded into both M; and My and M xg Mj is the reduced
amalgamated free product with trace ¢, as before; p € M,,(C) C M is a projection
in a matrix subalgebra of My; {e;j}1<ij<m C My, (C) are matrix units such that
p = Z]f ei;, for some k < m; finally, we define partial isometries v; = e,,_;1 for
0<i<m—k—1and v,_ =p.

Since viv; < pand Y ;" vvf =1 — p, one easily checks that

mU (X1 U Xa)v

generates p(M xg Ms)p.

Proposition 5.1. In the situation above, if there is Y C X; such that Y is hyper-
ﬁm’te and {eij}lgidgm C Y”, then

m—k

50(2'5301% (X1UXp)vy) =1~ e + W%(Xl U X,).
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Proof. For notational convenience, define

m—k m

X(p) = U U;(Xl UXQ)’Uj, Z = U €1i(X1 UX2>€j1.

i,j=0 4,3=0
One easily checks that the x-algebras generated by X(p) U {e;;}1<ij<x and Z U
{eij}1<ij<i are identical, and hence
00(X (p) U {es hr<ij<i) = 00(Z U {eij hr<ij<k)-

However, since {e;;}1<; j<k is contained in the (hyperfinite) von Neumann algebra
generated by

m—k

%
U v Yv;,

i,j=0
from [19, Corollary 4.1] we have

do(X (p)) = 00(X (p) U {es;}1<ij<)-
Hence, applying Lemma 3.1 and Corollary 3.2 from [20] we have

60(X(p)) =do(Z U {ez’j}lgi,jgk)

1 1
1 1 2 2
—1— 3 + Z\m do(Z U{eijhizijem) —m” +1
m?  m?
=1- §E3 + ﬁé@(z U {eij}lﬁi,jﬁm)’

Since 7,?—22 = 1/¢(p)?, it only remains to check do(Z U {e;; }1<ij<m) = do(X1 U X3).
However, the -algebras generated by Z U {e;;}1<ij<m and X7 U Xo U {e;;}1<ij<m
are identical, and

80(X1 U Xo U {e;}i<ijm) = 00(X1 U X3),
again, since {e;;}1<; j<m C Y”, by [19, Corollary 4.1]. d

Remark 5.2 (Scaling and the Invariance Problem). It is natural to wonder whether
one can always compute the free entropy dimension of canonical generators in a
corner, in terms of the original set of generators. For example, if S generates a II;-
factor M, p € M is a projection of trace tr(p) = 1/nandp = vy,...,v, € M, (C) C M
are partial isometries such that vjv; = p and > . ,vvf = 1 — p, then one might
conjecture that
" 1 1
*Su.) =1 —

MU S =1 SR )
Though it may appear benign, perhaps even tractable, it is neither; no assumption is
made on the position of the partial isometries v; and therein lies the trouble. Indeed,
the scaling formula above implies that dy is a W*-invariant, as we prove below.

So, let’s assume

200(S).
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So( | viSvs) =1—=n”+n*-5(S).
ij=1
As in the proof of Proposition B, we always have

n n

1 1
do(( U v;Sv;) Ufvr, ... 00}) =1 — ) + ﬁfso( U v; Svj).

i,j=1 i,j=1
These two equations imply that Jo((U7,—,v;Sv;) U{v1,...,v.}) = do(S) so that *-
algebraic invariance of ¢y implies

n

50(8) = 50(( U ’U;kSUj) U {Ula s >’Un}) = 50(3 U {’U17 ooy Un, Ulvfa s >'U7L,U;kz}
ij=1
> 0o(SU{vvy, -+ u,0n})
> 00(S).
Thus, the scaling formula implies that for any partition of unity {eq,...,e,}, do(S) =
do(SU{ey,...,e,}). This is pretty close to proving invariance of dy, a bit more work

and we’ll be done.

It suffices to show that for any self-adjoint element x € 8", 6o(S U {z}) = 6o(S).
It is clear that 6o(S U {z}) > §o(S). For the reverse inclusion let € > 0. It is easily
seen that there exist projections eq, ..., e, in z”, all having the same trace, such that
do(e1,...,en) > do(x) —e. Thus, an appeal to the hyperfinite inequality for dy yields:

do(SU{z}U{er,...en}t) < do(SU{er,...,en}) +do(z,e1,...,en) —doler, ... en)
< 0(S) + do(x) — (dg(z) — €)
<

50(8) — €.

Since € > 0 was arbitrary and do(S U {z}) < 0o(S U {z} U {ey,...e,}) we see that
do(S UA{z}) < 60(S). This evidently implies that dp is a von Neumann algebra
invariant.

6. PorA ALGEBRAS AND FREE GROUP FACTORS

In [B] it was shown that for any 1 < s < oo there is a finitely generated, weakly
dense Popa algebra Ay C L(FF,) such that L(FF,) has a weak expectation relative to
A,. The precise definitions of these things are not important; here is what makes
them (appear) ‘exotic’:

(1) Let {Xy,...,X,} C As be a generating set. Then the X,’s are not free in
any traditional sense. The reason being that Popa algebras are quasidiagonal
— an approximation property not enjoyed by any C*-algebra containing a
unital copy of the reduced group C*-algebra C}(F2). Hence most C*-reduced
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amalgamated free products are not Popa algebras — i.e. our generators do not
arise from the usual (reduced) free product constructions.

(2) The C*-algebra A is not exact. Indeed, if a II;-factor has a weak expectation
relative to a weakly dense exact C*-subalgebra then it must be hyperfinite
[]. (This also implies that Ay is not isomorphic to any reduced amalgamated
free product of exact C*-algebras [I1], [12].)

In other words, if one looks at the C*-level then the generators constructed in [5] are
significantly different from all other known generators of free group factors.

However, it turns out that our generators are not so exotic when viewed inside the
larger von Neumann algebra L(FF,). They may not be free in the C*-world, but there
is a natural conditional expectation on L(F,) — one which maps A, outside itself —
with respect to which they are free.

Unfortunately, to make sense of this we must recall the details of the construction
used in [5]. Here is an overview of what is going to happen:

e For any 1 < s < 2 we describe an atomic type I subalgebra B, C Ry = Rs
such that d¢g(Bs) =2 — s and Ry *p, Ro = L(Fy);

e Then we construct a Popa algebra A,, which is generated by self-adjoints
{X1, Xo, X3, X4} and has a dense embedding A; C Ry *p, Ry = L(Fy);

e Next, we observe that the embedding Ay C Ry *p, Ry maps X; = {X1, Xo}
into Ry, while Xy = {X3, X4} gets mapped into Ry — hence do(X; U X)) = s,
by our main theorem;

e Finally, we deduce the general case (i.e. s > 2) from Proposition Bl

So, fix 1 < s < 2 and let’s see how to construct’ B, C R. First, we must find
natural numbers £(n) < k(n) such that

= l(n) 1
3:1+H<(1— )%+ )
i k(n)" ~ k(n)?
Define B, to be the infinite tensor product of the algebras
%B,=Cao Mg(n)(C) C Mk(n)(C),

where M,)(C) C My, (C) is a corner and C @ 0 is spanned by the orthogonal
projection of rank k(n) — ¢(n). Hence we have a natural inclusion

B, =), B € Q), M (€) = R.
Then [I7] implies (after some tedious calculations)

() =1 =TT (1= i+ o) =2

n=1
while Corollary 3.2 in [B] tells us that
R xp, R = L(Fy).

IThe reader wishing to nail down every detail should first see [5]. Indeed, we will intention-
ally overlook numerous subtleties and important details in hopes of making the main ideas more
transparent.
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Now we must construct the dense Popa algebra

A, CR *B, R = (®1 Mk(n)((C)) *®c1>o%n (®1 Mk(n)((C)).

A, is the inductive limit of a sequence
Al) = A(2) = A(3) — - -,

where each A(n) is a full amalgamated free product of the form

n) = ® Mi) (C) x@n_ =, ® M) (C)
p=1 p=1

The connecting maps p,: A(n) — A(n+ 1) used in this inductive system are not the
canonical ones. Indeed, the canonical connecting maps o,,: A(n) — A(n +1) —ie.
the ones induced by the natural inclusions @, _; My, (C) C ®n+1 (»(C) — would
not yield a Popa algebra in the limit, hence we must modify them The details are
fully described in the proof of [B, Theorem 4.1] — we only recall the facts relevant to
this paper:

(1) If g1 € By = CD My1)(C) C A(n + 1) denotes the unit of C ® 0 then

Gn+1 commutes with p,(A(n)) (Note: it also commutes with o,(A(n)));

(2) gua1pn(x) = gniron(z) for all z € A(n).
The point of these two facts is that the maps p,, and o,, are almost the same in trace;
that is,
ralpale) = @) < 1 e
for all z € A(n ), where 7,41 is the canonical trace on A(n + 1). (In [B] we arrange
things so that " ))
exponentially fast in trace.)

It is also true that

(1 = gns1)pn(A(n)) C Mﬁ(n+1)((c) C B CAM+1).
This implies that the limit Popa algebra A, is generated by two copies of the UHF

algebra
® Mip) (&)
p=1

More precisely, since p,, maps the left copy of ®Z:1 M) (C) C A(n) into the left copy

of ®"+1 M) (C) € A(n + 1) — and similarly on the right hand side — the inductive
hmlts of these matrix algebras will be the desired UHF algebras. As is well-known,
UHF algebras are generated by two self-adjoints so we can find { X, Xo} C Ag which
generate the ‘left hand’ copy and {X3, X4} which generate the ‘right hand’ copy of
Qo1 Mi)(C) C A, (By ‘left” UHF algebra we mean the inductive limit of the left
matrix algebras of the A(n)’s — this terminology is misleading, however, as A, is not
an amalgamated free product algebra and hence has no left or right side.)

< 27", for some constant v, and hence p,, is approaching o,
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Note that A, has a natural inductive limit tracial state 7 arising from the canonical
traces on the A(n)’s. Hence we can consider the GNS representation m,: Ay —
B(L*(A,,7)).

Theorem 6.1. With notation as above, there exists a x-isomorphism

Q: . (As)" = Rx*p, R
such that ® maps {m.(X1), 7, (X2)} into the left copy of R and {n.(X3), 7 (X4)} into
the right.

"

Proof. Unfortunately, the s-isomorphism ®: 7. (A5)” — R *p, R constructed in [5]
is quite complicated to describe; it arises from Elliott’s intertwining argument and
hence is the limit of a bunch of partially defined maps. As above, we stick closely to
the notation used in [5] and quote a number of things proved there.

First we must consider the projections

Qgg) = QnGn+1" " Gm € As.
(We identify each A(n) with its natural image in A,.) For fixed n, this is a decreasing
sequence of projections and hence we can define a projection
QM = (s.0.t.) Jim QM) € 1, (A,)".
We now consider the nonunital C*-subalgebras
Cp = Q"1 (A(n)) C 7, (A,)".

It is shown in [5] that there are (nonunital, not-quite-canonical) inclusions C,, C C,,1;
and that UC,, is weakly dense in m.(A,)"”. More importantly, it is a fact that C,, is
naturally isomorphic to the reduced amalgamated C*-free product

91 = ®Mk >l<®n %p ®Mk(p

where E': @7, My (C) — @,_, B, is the trace preserving conditional expectation.
Since we have canonical (unital) inclusions 2, C Rx*p, R, the isomorphisms C,, = 2,
give rise to maps ¢, : C;, — R xp, R.

Here is the crucial observation: If

T € Aln ® My (C) *ep_,m, ® M;()(C)

p=1
comes from the left (resp. rlght) tensor product then
¢m(7TT(T)Q(n+1)) €Rx*p, R

is a sequence of elements (n fixed and m — o0) belonging to the left (resp. right)
copy of R.

It follows that ®(7") belongs to the left (resp. right) copy of R too; indeed, ®(7) =
lim,, ®(7,(T)Q" V), by normality, while

B (T)QUH) = Tim 6,,(m(T)Q),
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by the very definition of ®.

This, however, completes the proof since the generators { Xy, Xo} (resp. { X35, X4})
are norm limits of elements from the left (resp. right) tensor products which comprise
A(n), hence continuity of ® ensures they get mapped into the left (resp. right) hand
copy of R. U

Having handled the case 1 < s < 2 we are now ready for the general result. For any
t > 2, a sequence of integers ¢(n) < k(n) was constructed in [b] with the property that
cutting the Popa algebra construction above by a projection gives a dense embedding
into L(IF;). More precisely, if A, is the Popa algebra constructed using ¢(n) < k(n)
and
p € By C A1) = My (C) #m, My (C)

is the unit of (the nonunital corner) My, then pA,p is again a Popa algebra and its
weak closure in R xp, R is isomorphic to L(F,).

Hence if {e;;}1<ij<kq) € Mya)(C) are matrix units such that p = f(l) e, and
we define partial isometries v; = ej1)—;1 for 0 <4 < k(1) —£(1) —1 and vgy—¢1) = P
then

k(1)—£(1)
X=X Xa, X, Xu by,
i,j=0
is a generating set for A; := pA,p. As this is precisely the set-up required to invoke
Proposition B], the following corollary is an immediate consequence of our main
result and Theorem GBI

Corollary 6.2. Let 2 < t < oo be arbitrary and A; C L(F,) be the weakly dense
Popa algebra constructed in ). If X C A, is the generating set described above then
do(X) = t.

APPENDIX A. L?>- BETTI NUMBERS OF SOME AMALGAMATED FREE PRODUCTS
OF GROUPS

by WOLFGANG LUCK

Theorem A.l. Let G = Gy xg, G2 be the amalgamated product of G1 and Gy over

a common subgroup Gy. Suppose that the first L?-Betti number bgz)(Go) 18 trivial.
Then

b(G) = bP(G1) + 07 (Ga) + |Gol ™ = |Gh| ™t — |G Tt + |G

Remark A.2. The formula appearing in Theorem [A]] is understood as follows. If H
is a group, then |H|™! is the inverse of its order |H| if |H| is finite, and is zero if
|H| is infinite. If bgz)(Gl) or bgz)(Gg) is infinite, then the formula says that bgz)(G)
is infinite. If both b§2)(G1) and b§2)(G2) are finite, the formula is just an equation of
real numbers.

It is essential that G is a subgroup of both GG; and G5. The formula is in general
not valid if the amalgamated product is taken with respect to not necessarily injective
group homomorphisms Gy — G; and Gg — Gs.
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The class of groups with b§2’ (G) = 0 is discussed in [24, Theorem 7.2 on page 294]).
Amenable groups belong to this class.

Proof. Using the Seifert—van Kampen Theorem and elementary covering theory one
easily checks that there is a G-pushout of G-C'W-complexes

G XGo EGy—— G X EG,

| !

G X Gy EG2 EG

Let NV (G) be the group von Neumann algebra. Denote by C,(EG;) the cellular
ZGj-chain complex and by C.(G Xg, EG;) and C(EG) the ZG-chain complexes.
We obtain from the G-pushout above a long exact sequence of N'(G)-modules. (All
tensor products are understood as purely algebraic tensor products)
Hi(N(G) @26 C«(G xg, EGy))
— Hi(N(G) ®z¢ C(G x¢, EG1)) & Hi(N(G) ®z¢ C.(G xg, EGy))
— H{(N(G) ®@z¢ C.(EG)) — Ho(N(G) @76 C.(G xg, EGy))
— Ho(N(G) @26 Ci(G xXg, EGY)) ® Ho(N(G) @76 C.(G x¢g, EG5))
— Ho(N(G) @z¢ C.(EG)) — 0. (53)

There are a natural identifications of N/(G)-chain complexes

N(G) ®z¢ Cu(G x¢, EG;)) = N(G) Qua ZG @76, CL.(EG,)
= N(G) ®z¢, C.(EG;)
= N(G) ®nc) N(Gi) ®za, C.(EG,).

Since N(G) is flat as N'(G;)-module by [24, Theorem 6.9 (1) on page 253|, we obtain
the identification of A'(G)-modules

H,(N(G) ®zc, C.(EG;)) = N(G) QN(Gy) H,(N(G;) ®za, C.(EG;).
We conclude from [24, Theorem 6.9 (2) on page 253]
dimpr) (N(G) @y Ha(WN(Gi) @za, C(EG)))
= dimy(c,) (Hn(N(G;) @z, C+(EG)))) -

We have by definition
b2(Gy) = dimpa) (Ho(N(G;) @26, CL(EG))));

p
b(G) = dimye) (Ho(N(G) ®z¢ CL(EG))).
This implies
b2 (G) = dimye) (Hy(N(G) ®za Cu(EG)));
bP(Gy) = dimpg) (H,WN(G) ®z¢ C.(G x¢, EGy)))  fori=0,1,2.
We have b2 (G;) = |Gy|™" and B(G) = |G|~! (see [, Theorem 6.54 (8) on
page 266]). One of the main features of the dimension function dimyr ) is Additivity
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(see 24, Theorem 6.7 on page 239]), i.e., for any exact sequence of N(G)-modules
0 — My — M; — My — 0 we have the equation of real numbers

dimN(G)(Ml) = dimN(G)(M1) +dimN(G)(M1)

if both dim(g) (M) and dims(e)(M;) are finite, and dimp(g) (A1) = oo otherwise.
Now the claim follows from elementary arguments using Additivity and the long exact
homology sequence (B3) O
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