On hyperbolic groups with spheres as boundary

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

November 2009

Let G be a hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

The Conjecture is true for $n > 6$.

Conjecture (Gromov (1994))

Let G be a hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

The Conjecture is true for $n > 6$.

Conjecture (Gromov (1994))

Let G be a hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

Theorem (Bartels-Lück-Weinberger (2009))

The Conjecture is true for $n > 6$.

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with sec(M) $\leq \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n\leq 1.$

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin. A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with sec(M) $\leq \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n\leq 1.$

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with sec(M) $\leq \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n\leq 1.$

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with sec(M) $\leq \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n\leq 1.$

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with sec(M) $\leq \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n\leq 1.$

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with sec(M) $\leq \kappa$ for some $\kappa < 0$ is hyperbolic.

 \mathbb{R}^n is hyperbolic if and only if $n\leq 1.$

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

A geodesic space is called hyperbolic if it is δ -hyperbolic for some $\delta > 0$.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with $\sec(M) \leq \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

• Two geodesic rays $c_1, c_2 : [0, \infty) \to X$ are called equivalent if there exists $C>0$ satisfying $d_X\big(c_1(t),c_2(t)\big)\leq C$ for $t\in[0,\infty).$

Let X be a hyperbolic space. Define its boundary ∂X to be the set of equivalence classes of geodesic rays. Put

 $\overline{X} = X \Pi \partial X.$

• Two geodesic rays $c_1, c_2 : [0, \infty) \to X$ are called equivalent if there exists $C>0$ satisfying $d_X\big(c_1(t),c_2(t)\big)\leq C$ for $t\in[0,\infty).$

Definition (Boundary of a hyperbolic space)

Let X be a hyperbolic space. Define its boundary ∂X to be the set of equivalence classes of geodesic rays. Put

 $X := X \Pi \partial X$.

• Two geodesic rays $c_1, c_2 : [0, \infty) \to X$ are called equivalent if there exists $C>0$ satisfying $d_X\big(c_1(t),c_2(t)\big)\leq C$ for $t\in[0,\infty).$

Definition (Boundary of a hyperbolic space)

Let X be a hyperbolic space. Define its boundary ∂X to be the set of equivalence classes of geodesic rays. Put

 $\overline{X} = X \Pi \partial X$.

つひひ

Lemma

There is a topology on \overline{X} with the properties:

- \bullet X is compact and metrizable;
- The subspace topology $X \subseteq \overline{X}$ is the given one;
- \bullet X is open and dense in \overline{X} .

 \bullet Let M be a simply connected complete Riemannian manifold M with $\sec(M) \leq \kappa$ for some $\kappa < 0$. Then M is hyperbolic and $\partial M = S^{\dim(M)-1}.$

Lemma

There is a topology on \overline{X} with the properties:

- \bullet X is compact and metrizable;
- The subspace topology $X \subseteq \overline{X}$ is the given one;
- \bullet X is open and dense in \overline{X} .
- \bullet Let M be a simply connected complete Riemannian manifold M with $\sec(M) \leq \kappa$ for some $\kappa < 0$. Then M is hyperbolic and $\partial M = S^{\dim(M)-1}.$

Definition (Quasi-isometry)

A map $f: X \to Y$ of metric spaces is called a quasi-isometry if there exist real numbers λ , $C > 0$ satisfying:

• The inequality

 $\lambda^{-1} \cdot d_X\big(x_1,x_2\big) - C \leq d_Y\big(f(x_1),f(x_2)\big) \leq \lambda \cdot d_X(x_1,x_2) + C$

holds for all $x_1, x_2 \in X$;

For every y in Y there exists $x\in X$ with $d_Y\big(f(x),y\big)< C.$

Definition (Quasi-isometry)

A map $f: X \to Y$ of metric spaces is called a quasi-isometry if there exist real numbers λ , $C > 0$ satisfying:

• The inequality

$$
\lambda^{-1} \cdot d_X\big(x_1,x_2\big)-C \leq d_Y\big(f(x_1),f(x_2)\big) \leq \lambda \cdot d_X(x_1,x_2)+C
$$

holds for all $x_1, x_2 \in X$;

For every y in Y there exists $x\in X$ with $d_Y\big(f(x),y\big)<\mathcal{C}.$

Lemma (Švarc-Milnor Lemma)

Let X be a geodesic space. Suppose that G acts properly, cocompactly and isometrically on X. Choose a base point $x \in X$. Then the map

$$
f\colon G\to X,\quad g\mapsto gx
$$

is a quasiisometry.

The quasi-isometry type of the Cayley graph of a finitely generated group is independent of the choice of a finite set of generators.

Lemma (Švarc-Milnor Lemma)

Let X be a geodesic space. Suppose that G acts properly, cocompactly and isometrically on X. Choose a base point $x \in X$. Then the map

$$
f\colon G\to X,\quad g\mapsto gx
$$

is a quasiisometry.

Lemma (Quasi-isometry invariance of the Cayley graph)

The quasi-isometry type of the Cayley graph of a finitely generated group is independent of the choice of a finite set of generators.

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

A quasi-isometry $f: X_1 \rightarrow X_2$ of hyperbolic spaces induces a homeomorphism

 $\partial X_1 \stackrel{\cong}{\longrightarrow} \partial X_2.$

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Define the boundary ∂G of a hyperbolic group to be the boundary of its Cayley graph.

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \rightarrow X_2$ of hyperbolic spaces induces a homeomorphism

 $\partial X_1 \stackrel{\cong}{\longrightarrow} \partial X_2.$

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Define the boundary ∂G of a hyperbolic group to be the boundary of its Cayley graph.

 Ω

K ロ ト K 伺 ト K ミ ト

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \rightarrow X_2$ of hyperbolic spaces induces a homeomorphism

 $\partial X_1 \stackrel{\cong}{\longrightarrow} \partial X_2.$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Define the boundary ∂G of a hyperbolic group to be the boundary of its Cayley graph.

 Ω

≮ロト ⊀伺ト ⊀∃ト

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \rightarrow X_2$ of hyperbolic spaces induces a homeomorphism

 $\partial X_1 \stackrel{\cong}{\longrightarrow} \partial X_2.$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Define the boundary ∂G of a hyperbolic group to be the boundary of its Cayley graph.

 Ω

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \rightarrow X_2$ of hyperbolic spaces induces a homeomorphism

 $\partial X_1 \stackrel{\cong}{\longrightarrow} \partial X_2.$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

Define the boundary ∂G of a hyperbolic group to be the boundary of its

 Ω

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \rightarrow X_2$ of hyperbolic spaces induces a homeomorphism

 $\partial X_1 \stackrel{\cong}{\longrightarrow} \partial X_2.$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

Define the boundary ∂G of a hyperbolic group to be the boundary of its Cayley graph.

 QQ

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(\mathcal{M})$ is hyperbolic with $S^{\dim(\mathcal{M})-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z} * \mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0 . Then $\pi_1(\mathcal{M})$ is hyperbolic with $\mathcal{S}^{\dim(\mathcal{M})-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z} \times \mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0 . Then $\pi_1(\mathcal{M})$ is hyperbolic with $\mathcal{S}^{\dim(\mathcal{M})-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z} \times \mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0 . Then $\pi_1(\mathcal{M})$ is hyperbolic with $\mathcal{S}^{\dim(\mathcal{M})-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z} * \mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0 . Then $\pi_1(\mathcal{M})$ is hyperbolic with $\mathcal{S}^{\dim(\mathcal{M})-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z} * \mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0 . Then $\pi_1(\mathcal{M})$ is hyperbolic with $\mathcal{S}^{\dim(\mathcal{M})-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z} * \mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group.

A hyperbolic group G has \mathcal{S}^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Let G be an infinite hyperbolic group which is the fundamental group of a closed irreducible 3-manifold M. Then M is hyperbolic and G satisfies Cannon's Conjecture.

 Ω

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group.

A hyperbolic group G has \mathcal{S}^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Let G be an infinite hyperbolic group which is the fundamental group of a closed irreducible 3-manifold M. Then M is hyperbolic and G satisfies Cannon's Conjecture.

 Ω

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group.

Conjecture (Cannon's Conjecture)

A hyperbolic group G has \mathcal{S}^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Let G be an infinite hyperbolic group which is the fundamental group of a closed irreducible 3-manifold M. Then M is hyperbolic and G satisfies Cannon's Conjecture.

 200

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group.

Conjecture (Cannon's Conjecture)

A hyperbolic group G has \mathcal{S}^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Theorem (Bestvina-Mess (1991))

Let G be an infinite hyperbolic group which is the fundamental group of a closed irreducible 3-manifold M. Then M is hyperbolic and G satisfies Cannon's Conjecture.

 \leftarrow \Box
- In dimension four the only hyperbolic groups which are known to be good in the sense of Freedman are virtually cyclic.
- Possibly our results hold also in dimension 5.

- In dimension four the only hyperbolic groups which are known to be good in the sense of Freedman are virtually cyclic.
- Possibly our results hold also in dimension 5.

A topological space X is called absolute neighborhood retract (ANR) if it is normal and for every normal space Z, closed subset $Y \subseteq Z$ and map f : $Y \rightarrow X$ there is an open neighborhood $U \subseteq Z$ of Y and a map $F: U \rightarrow X$ extending f.

Definition (Absolute neighborhood retract (ANR))

A topological space X is called absolute neighborhood retract (ANR) if it is normal and for every normal space Z, closed subset $Y \subseteq Z$ and map f : $Y \rightarrow X$ there is an open neighborhood $U \subseteq Z$ of Y and a map $F: U \rightarrow X$ extending f.

Definition (Absolute neighborhood retract (ANR))

A topological space X is called absolute neighborhood retract (ANR) if it is normal and for every normal space Z, closed subset $Y \subseteq Z$ and map f : $Y \rightarrow X$ there is an open neighborhood $U \subseteq Z$ of Y and a map $F: U \rightarrow X$ extending f.

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- \bullet X has a countable basis for its topology;
- The topological dimension of X is finite;
- \bullet X is locally compact;
- for every $x \in X$ we have for the singular homology

$$
H_i(X, X - \{x\}; \mathbb{Z}) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}
$$

If X is additionally compact, it is called a closed ANR-homology There is also the notion of a compact ANR-homology manifold with

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- \bullet X has a countable basis for its topology;
- The topological dimension of X is finite;
- \bullet X is locally compact;
- for every $x \in X$ we have for the singular homology

$$
H_i(X,X-\{x\};\mathbb{Z})\cong\begin{cases}0 & i\neq n;\\ \mathbb{Z} & i=n.\end{cases}
$$

If X is additionally compact, it is called a closed ANR-homology There is also the notion of a compact ANR-homology manifold with

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- \bullet X has a countable basis for its topology;
- The topological dimension of X is finite;
- \bullet X is locally compact;
- for every $x \in X$ we have for the singular homology

$$
H_i(X,X-\{x\};\mathbb{Z})\cong\begin{cases}0 & i\neq n;\\ \mathbb{Z} & i=n.\end{cases}
$$

If X is additionally compact, it is called a closed ANR-homology manifold. There is also the notion of a compact ANR-homology manifold with boundary.

Every closed topological manifold is a closed ANR-homology manifold.

 \bullet Let M be homology sphere with non-trivial fundamental group. Then its suspension ΣM is a closed ANR-homology manifold but not a topological manifold.

- Every closed topological manifold is a closed ANR-homology manifold.
- \bullet Let M be homology sphere with non-trivial fundamental group. Then its suspension ΣM is a closed ANR-homology manifold but not a topological manifold.

Definition (Disjoint Disk Property (DDP))

A homology ANR-manifold M has the disjoint disk property (DDP), if for any $\epsilon > 0$ and maps $f,g \colon D^2 \to M$, there are maps $f',g' \colon D^2 \to M$ so that f' is $\epsilon\text{-close}$ to f , g' is $\epsilon\text{-close}$ to g and $f'(D^2)\cap g'(D^2)=\emptyset$

 \bullet A topological manifold of dimension $>$ 5 is a closed ANR-homology manifold, which has the DDP by transversality.

Definition (Disjoint Disk Property (DDP))

A homology ANR-manifold M has the disjoint disk property (DDP), if for any $\epsilon > 0$ and maps $f,g \colon D^2 \to M$, there are maps $f',g' \colon D^2 \to M$ so that f' is $\epsilon\text{-close}$ to f , g' is $\epsilon\text{-close}$ to g and $f'(D^2)\cap g'(D^2)=\emptyset$

 \bullet A topological manifold of dimension $>$ 5 is a closed ANR-homology manifold, which has the DDP by transversality.

Definition (Disjoint Disk Property (DDP))

A homology ANR-manifold M has the disjoint disk property (DDP), if for any $\epsilon > 0$ and maps $f,g \colon D^2 \to M$, there are maps $f',g' \colon D^2 \to M$ so that f' is $\epsilon\text{-close}$ to f , g' is $\epsilon\text{-close}$ to g and $f'(D^2)\cap g'(D^2)=\emptyset$

 \bullet A topological manifold of dimension \geq 5 is a closed ANR-homology manifold, which has the DDP by transversality.

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

G is of type FP;

•
$$
H^i(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}
$$

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n.

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

•
$$
G
$$
 is of type FP;

•
$$
H^i(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}
$$

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n.

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

•
$$
G
$$
 is of type FP;

•
$$
H^i(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}
$$

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n.

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

•
$$
G
$$
 is of type FP;

•
$$
H^i(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}
$$

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n.

Theorem (Poincar´e duality groups and ANR-homology manifolds Bartels-Lück-Weinberger (2009))

Let G be a torsion-free group. Suppose that its satisfies the K- and L-theoretic Farrell-Jones Conjecture. Consider $n \geq 6$.

Then the following statements are equivalent:

- \bullet G is a Poincaré duality group of dimension n;
- ² There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- ³ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

Theorem (Poincar´e duality groups and ANR-homology manifolds Bartels-Lück-Weinberger (2009))

Let G be a torsion-free group. Suppose that its satisfies the K - and L-theoretic Farrell-Jones Conjecture. Consider $n > 6$.

Then the following statements are equivalent:

 \bullet G is a Poincaré duality group of dimension n;

² There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;

³ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

Theorem (Poincar´e duality groups and ANR-homology manifolds Bartels-L¨uck-Weinberger (2009))

Let G be a torsion-free group. Suppose that its satisfies the K - and L-theoretic Farrell-Jones Conjecture. Consider $n > 6$.

Then the following statements are equivalent:

- \bullet G is a Poincaré duality group of dimension n;
- **2** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

Theorem (Poincar´e duality groups and ANR-homology manifolds Bartels-L¨uck-Weinberger (2009))

Let G be a torsion-free group. Suppose that its satisfies the K - and L-theoretic Farrell-Jones Conjecture. Consider $n > 6$.

Then the following statements are equivalent:

- \bullet G is a Poincaré duality group of dimension n;
- ² There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to \bullet Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn.

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to $\begin{array}{c} \bullet \\ \bullet \end{array}$ Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn.

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to $\begin{array}{c} \bullet \\ \bullet \end{array}$ Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn.

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn.

Let FT be the class of groups for which both the K-theoretic and the L-theoretic Farrell-Jones Conjectures hold with coefficients in any additive G -category (with involution). It has the following properties:

- \bullet Hyperbolic group and virtually nilpotent groups belongs to \mathcal{FI} :
- \bullet If G_1 and G_2 belong to \mathcal{FJ} , then $G_1 \times G_2$ and $G_1 * G_2$ belongs to \mathcal{FJ} ;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then colim_{i∈I} G_i belongs to \mathcal{FJ} ;
- **•** If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

Let $f\mathcal{F}f$ be the class of groups for which both the K-theoretic and the L-theoretic Farrell-Jones Conjectures hold with coefficients in any additive G -category (with involution). It has the following properties:

 \bullet Hyperbolic group and virtually nilpotent groups belongs to \mathcal{FI} :

- \bullet If G_1 and G_2 belong to \mathcal{FJ} , then $G_1 \times G_2$ and $G_1 * G_2$ belongs to \mathcal{FJ} ;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then colim_{i∈I} G_i belongs to \mathcal{FJ} ;
- **•** If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

Let $f\mathcal{F}f$ be the class of groups for which both the K-theoretic and the L-theoretic Farrell-Jones Conjectures hold with coefficients in any additive G -category (with involution). It has the following properties:

 \bullet Hyperbolic group and virtually nilpotent groups belongs to $f\mathcal{F}f$:

- \bullet If G_1 and G_2 belong to \mathcal{FJ} , then $G_1 \times G_2$ and $G_1 * G_2$ belongs to \mathcal{FJ} ;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then colim_{i∈I} G_i belongs to \mathcal{FJ} ;
- **•** If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

Let $f\mathcal{F}f$ be the class of groups for which both the K-theoretic and the L-theoretic Farrell-Jones Conjectures hold with coefficients in any additive G -category (with involution). It has the following properties:

- \bullet Hyperbolic group and virtually nilpotent groups belongs to $f\mathcal{F}f$:
- If G_1 and G_2 belong to $f \mathcal{J}$, then $G_1 \times G_2$ and $G_1 \times G_2$ belongs to $f \mathcal{J}$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then colimi∈I Gi belongs to \mathcal{FI} :
- **•** If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

 200

Let $f\mathcal{F}f$ be the class of groups for which both the K-theoretic and the L-theoretic Farrell-Jones Conjectures hold with coefficients in any additive G -category (with involution). It has the following properties:

- \bullet Hyperbolic group and virtually nilpotent groups belongs to $f\mathcal{F}f$:
- If G_1 and G_2 belong to $f \mathcal{J}$, then $G_1 \times G_2$ and $G_1 \times G_2$ belongs to $f \mathcal{J}$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then colim_{i∈I} G_i belongs to $f\mathcal{J}$;
- **•** If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

Let $f\mathcal{F}f$ be the class of groups for which both the K-theoretic and the L-theoretic Farrell-Jones Conjectures hold with coefficients in any additive G -category (with involution). It has the following properties:

- \bullet Hyperbolic group and virtually nilpotent groups belongs to $f\mathcal{F}f$:
- If G_1 and G_2 belong to $f \mathcal{J}$, then $G_1 \times G_2$ and $G_1 \times G_2$ belongs to $f \mathcal{J}$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then colim_{i∈I} G_i belongs to $f\mathcal{J}$;
- **•** If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

Theorem (continued)

- If we demand for the K-theory version only that the assembly map is 1-connected and keep the full L-theory version, then the properties above remain valid and the class $f\mathcal{J}$ contains also all CAT(0)-groups;
- The last statement is also true all cocompact lattices in almost connected Lie groups.
- For all applications presented in these talks the version, where we demand for the K -theory version only that the assembly map is 1-connected and keep the full L-theory version, is sufficient.

Theorem (continued)

- If we demand for the K-theory version only that the assembly map is 1-connected and keep the full L-theory version, then the properties above remain valid and the class $f\mathcal{J}$ contains also all CAT(0)-groups;
- The last statement is also true all cocompact lattices in almost connected Lie groups.
- For all applications presented in these talks the version, where we demand for the K -theory version only that the assembly map is 1-connected and keep the full L-theory version, is sufficient.

Theorem (continued)

- If we demand for the K-theory version only that the assembly map is 1-connected and keep the full L-theory version, then the properties above remain valid and the class $f\mathcal{J}$ contains also all CAT(0)-groups;
- The last statement is also true all cocompact lattices in almost connected Lie groups.
- For all applications presented in these talks the version, where we demand for the K -theory version only that the assembly map is 1-connected and keep the full L-theory version, is sufficient.

Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Let G be a torsion-free word-hyperbolic group. Let $n > 6$. Then the following statements are equivalent:

- \bullet The boundary ∂G has the integral Čech cohomology of $S^{n-1},$
- G is a Poincaré duality group of dimension n;
- ³ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- ⁴ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

 200

Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let $n > 6$.

Then the following statements are equivalent:

- \Box The boundary ∂G has the integral Čech cohomology of $S^{n-1},$
- G is a Poincaré duality group of dimension n;
- ³ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- ⁴ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

 Ω
Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let $n > 6$. Then the following statements are equivalent:

- \bullet The boundary ∂G has the integral Čech cohomology of Sn−1;
- **2** G is a Poincaré duality group of dimension n;
- ³ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **4** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

 200

∢ ロ ▶ - ィ 何 ▶ - ィ

Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let $n > 6$. Then the following statements are equivalent:

- \bullet The boundary ∂G has the integral Čech cohomology of Sn−1;
- **2** G is a Poincaré duality group of dimension n;
- ³ There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **4** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

∢ □ ▶ ∢ _□ ▶ ∢

 200

There is an invariant $\iota(M) \in 1+8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

• if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;

 \bullet Let M be a homology ANR-manifold of dimension \geq 5. Then M is a topological manifold if and only if M has the DDP and $\iota(M) = 1$.

Theorem (Quinn (1987))

There is an invariant $\iota(M) \in 1+8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

• if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;

 \bullet Let M be a homology ANR-manifold of dimension > 5 . Then M is a topological manifold if and only if M has the DDP and $\iota(M)=1$.

Theorem (Quinn (1987))

There is an invariant $\iota(M) \in 1+8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

- if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;
- \bullet Let M be a homology ANR-manifold of dimension > 5 . Then M is a topological manifold if and only if M has the DDP and $\iota(M) = 1$.

 200

Does the Quinn obstruction always vanishes for aspherical closed homology ANR-manifolds?

- If the answer is yes, we can replace "closed ANR-homology manifold"by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

Does the Quinn obstruction always vanishes for aspherical closed homology ANR-manifolds?

- If the answer is yes, we can replace "closed ANR-homology manifold"by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

Does the Quinn obstruction always vanishes for aspherical closed homology ANR-manifolds?

- If the answer is yes, we can replace "closed ANR-homology manifold"by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

Does the Quinn obstruction always vanishes for aspherical closed homology ANR-manifolds?

- If the answer is yes, we can replace "closed ANR-homology manifold"by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

Theorem (Quasi-isometry invariance of Quinn's resolution obstruction Bartels-Lück-Weinberger(2009))

Let G_1 and G_2 be torsionfree hyperbolic groups.

- \bullet Let G₁ and G₂ be quasi-isometric. Then G₁ is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(\mathcal{M}_i)\cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- \bullet Let G₁ and G₂ be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold $M₂$ with $\pi_1(M_2) = G_2$.

Theorem (Quasi-isometry invariance of Quinn's resolution obstruction Bartels-Lück-Weinberger(2009))

Let G_1 and G_2 be torsionfree hyperbolic groups.

- \bullet Let G₁ and G₂ be quasi-isometric. Then G₁ is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(\mathcal{M}_i)\cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- \bullet Let G₁ and G₂ be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold $M₂$ with $\pi_1(M_2) = G_2$.

Theorem (Quasi-isometry invariance of Quinn's resolution obstruction Bartels-L¨uck-Weinberger(2009))

Let G_1 and G_2 be torsionfree hyperbolic groups.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(\mathcal{M}_i)\cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- \bullet Let G₁ and G₂ be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold $M₂$ with $\pi_1(M_2) = G_2$.

Theorem (Quasi-isometry invariance of Quinn's resolution obstruction Bartels-L¨uck-Weinberger(2009))

Let G_1 and G_2 be torsionfree hyperbolic groups.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- \bullet Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(M_i)\cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree:
- \bullet Let G₁ and G₂ be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold $M₂$ with $\pi_1(M_2) = G_2$.

Theorem (Quasi-isometry invariance of Quinn's resolution obstruction Bartels-L¨uck-Weinberger(2009))

Let G_1 and G_2 be torsionfree hyperbolic groups.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- \bullet Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(M_i)\cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree:
- \bullet Let G₁ and G₂ be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold $M₂$ with $\pi_1(M_2) = G_2$.

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

1 The boundary ∂G is homeomorphic to S^{n-1} ;

2 There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \tilde{M} by ∂G is homeomorphic to D^n .

If the first statement is true, the manifold appearing above is unique up to homeomorphism.

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

 \Box The boundary ∂G is homeomorphic to $S^{n-1};$

2 There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \tilde{M} by ∂G is homeomorphic to D^n .

If the first statement is true, the manifold appearing above is unique up to homeomorphism.

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

 \Box The boundary ∂G is homeomorphic to $S^{n-1};$

² There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \tilde{M} by ∂G is homeomorphic to D^n .

If the first statement is true, the manifold appearing above is unique up to homeomorphism.

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

 $\textbf{\textit{D}}$ The boundary ∂G is homeomorphic to S^{n-1} ;

2 There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \tilde{M} by ∂G is homeomorphic to D^n .

If the first statement is true, the manifold appearing above is unique up to homeomorphism.

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

 $\textbf{\textit{D}}$ The boundary ∂G is homeomorphic to S^{n-1} ;

2 There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \tilde{M} by ∂G is homeomorphic to D^n .

If the first statement is true, the manifold appearing above is unique up to homeomorphism.

There are aspherical closed topological manifolds M with hyperbolic fundamental group $G = \pi_1(M)$ satisfying:

- For $n \geq 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to $S^{n-1}.$
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

There are aspherical closed topological manifolds M with hyperbolic fundamental group $G = \pi_1(M)$ satisfying:

- For $n \geq 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to $S^{n-1}.$
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

Examples (Exotic universal coverings)

There are aspherical closed topological manifolds M with hyperbolic fundamental group $G = \pi_1(M)$ satisfying:

- For $n \geq 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to $S^{n-1}.$
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

Examples (Exotic universal coverings)

There are aspherical closed topological manifolds M with hyperbolic fundamental group $G = \pi_1(M)$ satisfying:

- For $n \geq 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to $S^{n-1}.$
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

Examples (Exotic universal coverings)

There are aspherical closed topological manifolds M with hyperbolic fundamental group $G = \pi_1(M)$ satisfying:

- For $n \geq 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to $S^{n-1}.$
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

Examples (Exotic universal coverings)

There are aspherical closed topological manifolds M with hyperbolic fundamental group $G = \pi_1(M)$ satisfying:

- For $n \geq 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to $S^{n-1}.$
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

Example (No smooth structures)

For every $k \geq 2$ there exists a torsionfree hyperbolic group G with $\partial G \cong S^{4k-1}$ such that there is no aspherical closed smooth manifold M with $\pi_1(M) \cong G$. In particular G is not the fundamental group of a closed smooth Riemannian manifold with $sec(M) < 0$.

Example (No smooth structures)

For every $k \geq 2$ there exists a torsionfree hyperbolic group G with $\partial G \cong S^{4k-1}$ such that there is no aspherical closed smooth manifold M with $\pi_1(M) \cong G$. In particular G is not the fundamental group of a closed smooth Riemannian manifold with sec(M) < 0 .

つひひ