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Preview of the main result

Conjecture (Gromov (1994))

Let G be a hyperbolic group whose boundary is a sphere Sn−1. Then there
is a closed aspherical manifold M with π1(M) ∼= G .

Theorem (Bartels-Lück-Weinberger (2009))

The Conjecture is true for n ≥ 6.
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Hyperbolic spaces and hyperbolic groups

Definition (Hyperbolic space)

A δ-hyperbolic space X is a geodesic space whose geodesic triangles are all
δ-thin.
A geodesic space is called hyperbolic if it is δ-hyperbolic for some δ > 0.

A geodesic space with bounded diameter is hyperbolic.

A tree is 0-hyperbolic.

A simply connected complete Riemannian manifold M with
sec(M) ≤ κ for some κ < 0 is hyperbolic.

Rn is hyperbolic if and only if n ≤ 1.
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Two geodesic rays c1, c2 : [0,∞)→ X are called equivalent if there
exists C > 0 satisfying dX

(
c1(t), c2(t)

)
≤ C for t ∈ [0,∞).

Definition (Boundary of a hyperbolic space)

Let X be a hyperbolic space. Define its boundary ∂X to be the set of
equivalence classes of geodesic rays. Put

X := X q ∂X .
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Lemma

There is a topology on X with the properties:

X is compact and metrizable;

The subspace topology X ⊆ X is the given one;

X is open and dense in X .

Let M be a simply connected complete Riemannian manifold M with
sec(M) ≤ κ for some κ < 0. Then M is hyperbolic and
∂M = Sdim(M)−1.
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Definition (Quasi-isometry)

A map f : X → Y of metric spaces is called a quasi-isometry if there exist
real numbers λ,C > 0 satisfying:

The inequality

λ−1 · dX

(
x1, x2

)
− C ≤ dY

(
f (x1), f (x2)

)
≤ λ · dX (x1, x2) + C

holds for all x1, x2 ∈ X ;

For every y in Y there exists x ∈ X with dY

(
f (x), y

)
< C .
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Lemma (Švarc-Milnor Lemma)

Let X be a geodesic space. Suppose that G acts properly, cocompactly
and isometrically on X . Choose a base point x ∈ X . Then the map

f : G → X , g 7→ gx

is a quasiisometry.

Lemma (Quasi-isometry invariance of the Cayley graph)

The quasi-isometry type of the Cayley graph of a finitely generated group
is independent of the choice of a finite set of generators.
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Lemma (Quasi-isometry invariance of being hyperbolic)

The property “hyperbolic” is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry f : X1 → X2 of hyperbolic spaces induces a
homeomorphism

∂X1
∼=−→ ∂X2.

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is
hyperbolic.

Definition (Boundary of a hyperbolic group)

Define the boundary ∂G of a hyperbolic group to be the boundary of its
Cayley graph.
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A group G is hyperbolic if and only if it acts properly, cocompactly
and isometrically on a hyperbolic space. In this case ∂G = ∂X .

Let M be a closed Riemannian manifold with sec(M) < 0. Then
π1(M) is hyperbolic with Sdim(M)−1 as boundary.

A subgroup of a hyperbolic group is either virtually cyclic or contains
Z ∗ Z as subgroup.

Z2 is not a subgroup of a hyperbolic group.

If the boundary of a hyperbolic groups contains an open subset
homeomorphic to Rn, then the boundary is homeomorphic to Sn.

A random finitely presented group is hyperbolic.
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Gromov’s Conjecture in low dimensions

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S1 as boundary if and only if it is a Fuchsian group.

Conjecture (Cannon’s Conjecture)

A hyperbolic group G has S2 as boundary if and only if it acts properly,
cocompactly and isometrically on H3.

Theorem (Bestvina-Mess (1991))

Let G be an infinite hyperbolic group which is the fundamental group of a
closed irreducible 3-manifold M. Then M is hyperbolic and G satisfies
Cannon’s Conjecture.
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In dimension four the only hyperbolic groups which are known to be
good in the sense of Freedman are virtually cyclic.

Possibly our results hold also in dimension 5.
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ANR-homology manifolds

Definition (Absolute neighborhood retract (ANR))

A topological space X is called absolute neighborhood retract (ANR) if it
is normal and for every normal space Z , closed subset Y ⊆ Z and map
f : Y → X there is an open neighborhood U ⊆ Z of Y and a map
F : U → X extending f .
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Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

X has a countable basis for its topology;

The topological dimension of X is finite;

X is locally compact;

for every x ∈ X we have for the singular homology

Hi (X ,X − {x}; Z) ∼=

{
0 i 6= n;

Z i = n.

If X is additionally compact, it is called a closed ANR-homology
manifold.
There is also the notion of a compact ANR-homology manifold with
boundary.
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Every closed topological manifold is a closed ANR-homology manifold.

Let M be homology sphere with non-trivial fundamental group. Then
its suspension ΣM is a closed ANR-homology manifold but not a
topological manifold.
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Definition (Disjoint Disk Property (DDP))

A homology ANR-manifold M has the disjoint disk property (DDP), if for
any ε > 0 and maps f , g : D2 → M, there are maps f ′, g ′ : D2 → M so
that f ′ is ε-close to f , g ′ is ε-close to g and f ′(D2) ∩ g ′(D2) = ∅

A topological manifold of dimension ≥ 5 is a closed ANR-homology
manifold, which has the DDP by transversality.
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Poincaré duality groups

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group
satisfying:

G is of type FP;

H i (G ; ZG ) ∼=

{
0 i 6= n;

Z i = n.

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n.
Then its fundamental group is a Poincaré duality group of dimension n.
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A Poincaré duality group G of dimension n is a finitely presented group
satisfying:

G is of type FP;

H i (G ; ZG ) ∼=

{
0 i 6= n;

Z i = n.

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n.
Then its fundamental group is a Poincaré duality group of dimension n.
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A Poincaré duality group G of dimension n is a finitely presented group
satisfying:

G is of type FP;

H i (G ; ZG ) ∼=

{
0 i 6= n;

Z i = n.

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n.
Then its fundamental group is a Poincaré duality group of dimension n.
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Theorem (Poincaré duality groups and ANR-homology manifolds
Bartels-Lück-Weinberger (2009))

Let G be a torsion-free group. Suppose that its satisfies the K - and
L-theoretic Farrell-Jones Conjecture. Consider n ≥ 6.

Then the following statements are equivalent:

1 G is a Poincaré duality group of dimension n;

2 There exists a closed aspherical n-dimensional ANR-homology
manifold M with π1(M) ∼= G ;

3 There exists a closed aspherical n-dimensional ANR-homology
manifold M with π1(M) ∼= G which has the DDP.

If the first statements holds, then the homology ANR-manifold M
appearing above is unique up to s-cobordism of ANR-homology manifolds.
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The proof of the result above relies on:

Surgery theory as developed by Browder, Novikov, Sullivan, Wall for
smooth manifolds and its extension to topological manifolds using the
work of Kirby-Siebenmann.

The algebraic surgery theory of Ranicki

The surgery theory for ANR-manifolds due to
Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn.
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Theorem (Bartels-Lück-Reich(2008), Bartels-Lück(2009),
Bartels-Farrell-Lück-Reich (2010))

Let FJ be the class of groups for which both the K -theoretic and the
L-theoretic Farrell-Jones Conjectures hold with coefficients in any additive
G -category (with involution). It has the following properties:

Hyperbolic group and virtually nilpotent groups belongs to FJ ;

If G1 and G2 belong to FJ , then G1×G2 and G1 ∗G2 belongs to FJ ;

Let {Gi | i ∈ I} be a directed system of groups (with not necessarily
injective structure maps) such that Gi ∈ FJ for i ∈ I . Then
colimi∈I Gi belongs to FJ ;

If H is a subgroup of G and G ∈ FJ , then H ∈ FJ ;
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Theorem (continued)

If we demand for the K -theory version only that the assembly map is
1-connected and keep the full L-theory version, then the properties
above remain valid and the class FJ contains also all CAT(0)-groups;

The last statement is also true all cocompact lattices in almost
connected Lie groups.

For all applications presented in these talks the version, where we
demand for the K -theory version only that the assembly map is
1-connected and keep the full L-theory version, is sufficient.
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Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its
boundary and Sn−1 have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let n ≥ 6.
Then the following statements are equivalent:

1 The boundary ∂G has the integral Čech cohomology of Sn−1;

2 G is a Poincaré duality group of dimension n;

3 There exists a closed aspherical n-dimensional ANR-homology
manifold M with π1(M) ∼= G ;

4 There exists a closed aspherical n-dimensional ANR-homology
manifold M with π1(M) ∼= G which has the DDP.

If the first statements holds, then the homology ANR-manifold M
appearing above is unique up to s-cobordism of ANR-homology manifolds.
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Quinn’s resolution obstruction

Theorem (Quinn (1987))

There is an invariant ι(M) ∈ 1 + 8Z for homology ANR-manifolds with the
following properties:

if U ⊂ M is an open subset, then ι(U) = ι(M);

Let M be a homology ANR-manifold of dimension ≥ 5. Then M is a
topological manifold if and only if M has the DDP and ι(M) = 1.
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Question

Does the Quinn obstruction always vanishes for aspherical closed
homology ANR-manifolds?

If the answer is yes, we can replace “closed ANR-homology
manifold”by “closed topological manifold” in the theorem above.

In general the Quinn obstruction is not a homotopy invariant but it is
a homotopy invariant for aspherical closed ANR-homology manifolds.

However, most experts expect the answer no.
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Theorem (Quasi-isometry invariance of Quinn’s resolution obstruction
Bartels-Lück-Weinberger(2009))

Let G1 and G2 be torsionfree hyperbolic groups.

Let G1 and G2 be quasi-isometric. Then G1 is a Poincaré duality
group of dimension n if and only G2 is;

Let Mi be an aspherical closed ANR-homology manifold with
π1(Mi ) ∼= Gi . If ∂G1 and ∂G2 are homeomorphic, then the Quinn
obstructions of M1 and M2 agree;

Let G1 and G2 be quasi-isometric. Then there exists an aspherical
closed topological manifold M1 with π1(M1) = G1 if and only if there
exists an aspherical closed topological manifold M2 with
π1(M2) = G2.
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group of dimension n if and only G2 is;

Let Mi be an aspherical closed ANR-homology manifold with
π1(Mi ) ∼= Gi . If ∂G1 and ∂G2 are homeomorphic, then the Quinn
obstructions of M1 and M2 agree;

Let G1 and G2 be quasi-isometric. Then there exists an aspherical
closed topological manifold M1 with π1(M1) = G1 if and only if there
exists an aspherical closed topological manifold M2 with
π1(M2) = G2.

Wolfgang Lück (Münster, Germany) On hyperbolic groups with spheres as boundary November 2009 24 / 27



Theorem (Quasi-isometry invariance of Quinn’s resolution obstruction
Bartels-Lück-Weinberger(2009))

Let G1 and G2 be torsionfree hyperbolic groups.

Let G1 and G2 be quasi-isometric. Then G1 is a Poincaré duality
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Hyperbolic groups with spheres as boundary

Theorem (Hyperbolic groups with spheres as boundary
Bartels-Lück-Weinberger(2009))

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6.
Then the following statements are equivalent:

1 The boundary ∂G is homeomorphic to Sn−1;

2 There is a closed aspherical topological manifold M such that
G ∼= π1(M), its universal covering M̃ is homeomorphic to Rn and the
compactification of M̃ by ∂G is homeomorphic to Dn.

If the first statement is true, the manifold appearing above is unique up to
homeomorphism.
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Exotic Examples

By hyperbolization techniques due to Charney, Davis,Januskiewicz one can
find the following examples:

Examples (Exotic universal coverings)

There are aspherical closed topological manifolds M with hyperbolic
fundamental group G = π1(M) satisfying:

For n ≥ 1 the universal covering M̃ is not homeomorphic to Rn and
∂G is not homeomorphic to Sn−1.

M̃ is homeomorphic to Rn but ∂G is not Sn−1.
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Example (No smooth structures)

For every k ≥ 2 there exists a torsionfree hyperbolic group G with
∂G ∼= S4k−1 such that there is no aspherical closed smooth manifold M
with π1(M) ∼= G . In particular G is not the fundamental group of a closed
smooth Riemannian manifold with sec(M) < 0.
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