On hyperbolic groups with spheres as boundary

Wolfgang Lück
Münster
Germany
email lueck@math.uni-muenster.de
http://www.math.uni-muenster.de/u/lueck/

November 2009

Preview of the main result

Conjecture (Gromov (1994))

Let G be a hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

Theorem (Bartels-Lück-Weinberger (2009))

The Conjecture is true for $n \ge 6$.

Preview of the main result

Conjecture (Gromov (1994))

Let G be a hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

Theorem (Bartels-Lück-Weinberger (2009))

The Conjecture is true for $n \ge 6$.

Preview of the main result

Conjecture (Gromov (1994))

Let G be a hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

Theorem (Bartels-Lück-Weinberger (2009))

The Conjecture is true for $n \ge 6$.

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with $sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with $sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic
- A simply connected complete Riemannian manifold M with $sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic
- A simply connected complete Riemannian manifold M with $sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with $\sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with $sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

Definition (Hyperbolic space)

A δ -hyperbolic space X is a geodesic space whose geodesic triangles are all δ -thin.

- A geodesic space with bounded diameter is hyperbolic.
- A tree is 0-hyperbolic.
- A simply connected complete Riemannian manifold M with $sec(M) \le \kappa$ for some $\kappa < 0$ is hyperbolic.
- \mathbb{R}^n is hyperbolic if and only if $n \leq 1$.

• Two geodesic rays $c_1, c_2 : [0, \infty) \to X$ are called equivalent if there exists C > 0 satisfying $d_X(c_1(t), c_2(t)) \le C$ for $t \in [0, \infty)$.

Definition (Boundary of a hyperbolic space)

Let X be a hyperbolic space. Define its boundary ∂X to be the set of equivalence classes of geodesic rays. Put

$$\overline{X} := X \coprod \partial X.$$

• Two geodesic rays $c_1, c_2 : [0, \infty) \to X$ are called equivalent if there exists C > 0 satisfying $d_X(c_1(t), c_2(t)) \le C$ for $t \in [0, \infty)$.

Definition (Boundary of a hyperbolic space)

Let X be a hyperbolic space. Define its boundary ∂X to be the set of equivalence classes of geodesic rays. Put

$$\overline{X} := X \coprod \partial X.$$

• Two geodesic rays $c_1, c_2 : [0, \infty) \to X$ are called equivalent if there exists C > 0 satisfying $d_X(c_1(t), c_2(t)) \le C$ for $t \in [0, \infty)$.

Definition (Boundary of a hyperbolic space)

Let X be a hyperbolic space. Define its boundary ∂X to be the set of equivalence classes of geodesic rays. Put

$$\overline{X} := X \coprod \partial X$$
.

Lemma

There is a topology on \overline{X} with the properties:

- \overline{X} is compact and metrizable;
- The subspace topology $X \subseteq \overline{X}$ is the given one;
- X is open and dense in \overline{X} .
- Let M be a simply connected complete Riemannian manifold M with $\sec(M) \le \kappa$ for some $\kappa < 0$. Then M is hyperbolic and $\partial M = S^{\dim(M)-1}$.

Lemma

There is a topology on X with the properties:

- \overline{X} is compact and metrizable;
- The subspace topology $X \subseteq \overline{X}$ is the given one;
- X is open and dense in \overline{X} .
- Let M be a simply connected complete Riemannian manifold M with $\sec(M) \le \kappa$ for some $\kappa < 0$. Then M is hyperbolic and $\partial M = S^{\dim(M)-1}$.

Definition (Quasi-isometry)

A map $f: X \to Y$ of metric spaces is called a quasi-isometry if there exist real numbers λ , C > 0 satisfying:

The inequality

$$\lambda^{-1} \cdot d_X(x_1, x_2) - C \le d_Y(f(x_1), f(x_2)) \le \lambda \cdot d_X(x_1, x_2) + C$$

holds for all $x_1, x_2 \in X$;

• For every y in Y there exists $x \in X$ with $d_Y(f(x), y) < C$.

Definition (Quasi-isometry)

A map $f: X \to Y$ of metric spaces is called a quasi-isometry if there exist real numbers $\lambda, C > 0$ satisfying:

The inequality

$$\lambda^{-1} \cdot d_X(x_1, x_2) - C \le d_Y(f(x_1), f(x_2)) \le \lambda \cdot d_X(x_1, x_2) + C$$

holds for all $x_1, x_2 \in X$;

• For every y in Y there exists $x \in X$ with $d_Y(f(x), y) < C$.

Lemma (Švarc-Milnor Lemma)

Let X be a geodesic space. Suppose that G acts properly, cocompactly and isometrically on X. Choose a base point $x \in X$. Then the map

$$f: G \to X, \quad g \mapsto gx$$

is a quasiisometry.

Lemma (Quasi-isometry invariance of the Cayley graph)

The quasi-isometry type of the Cayley graph of a finitely generated group is independent of the choice of a finite set of generators.

Lemma (Švarc-Milnor Lemma)

Let X be a geodesic space. Suppose that G acts properly, cocompactly and isometrically on X. Choose a base point $x \in X$. Then the map

$$f: G \rightarrow X, \quad g \mapsto gx$$

is a quasiisometry.

Lemma (Quasi-isometry invariance of the Cayley graph)

The quasi-isometry type of the Cayley graph of a finitely generated group is independent of the choice of a finite set of generators.

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary

A quasi-isometry $f: X_1 \to X_2$ of hyperbolic spaces induces a homeomorphism

$$\partial X_1 \xrightarrow{\cong} \partial X_2.$$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \to X_2$ of hyperbolic spaces induces a homeomorphism

$$\partial X_1 \xrightarrow{\cong} \partial X_2$$
.

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \to X_2$ of hyperbolic spaces induces a homeomorphism

$$\partial X_1 \xrightarrow{\cong} \partial X_2.$$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \to X_2$ of hyperbolic spaces induces a homeomorphism

$$\partial X_1 \xrightarrow{\cong} \partial X_2.$$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \to X_2$ of hyperbolic spaces induces a homeomorphism

$$\partial X_1 \xrightarrow{\cong} \partial X_2.$$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

The property "hyperbolic" is a quasi-isometry invariant of geodesic spaces.

Lemma (Quasi-isometry invariance of the boundary)

A quasi-isometry $f: X_1 \to X_2$ of hyperbolic spaces induces a homeomorphism

$$\partial X_1 \xrightarrow{\cong} \partial X_2.$$

Definition (Hyperbolic group)

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

Definition (Boundary of a hyperbolic group)

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(M)$ is hyperbolic with $S^{\dim(M)-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z}*\mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(M)$ is hyperbolic with $S^{\dim(M)-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z}*\mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(M)$ is hyperbolic with $S^{\dim(M)-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z}*\mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(M)$ is hyperbolic with $S^{\dim(M)-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z}*\mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(M)$ is hyperbolic with $S^{\dim(M)-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z}*\mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

- A group G is hyperbolic if and only if it acts properly, cocompactly and isometrically on a hyperbolic space. In this case $\partial G = \partial X$.
- Let M be a closed Riemannian manifold with sec(M) < 0. Then $\pi_1(M)$ is hyperbolic with $S^{\dim(M)-1}$ as boundary.
- A subgroup of a hyperbolic group is either virtually cyclic or contains $\mathbb{Z}*\mathbb{Z}$ as subgroup.
- \mathbb{Z}^2 is not a subgroup of a hyperbolic group.
- If the boundary of a hyperbolic groups contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to S^n .
- A random finitely presented group is hyperbolic.

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group

Conjecture (Cannon's Conjecture)

A hyperbolic group G has S^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Theorem (Bestvina-Mess (1991))

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group.

Conjecture (Cannon's Conjecture)

A hyperbolic group G has S^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Theorem (Bestvina-Mess (1991))

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group.

Conjecture (Cannon's Conjecture)

A hyperbolic group G has S^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Theorem (Bestvina-Mess (1991))

Theorem (Casson-Jungreis (1994), Freden (1995), Gabai (1991))

A hyperbolic group has S^1 as boundary if and only if it is a Fuchsian group.

Conjecture (Cannon's Conjecture)

A hyperbolic group G has S^2 as boundary if and only if it acts properly, cocompactly and isometrically on \mathbb{H}^3 .

Theorem (Bestvina-Mess (1991))

- In dimension four the only hyperbolic groups which are known to be good in the sense of Freedman are virtually cyclic.
- Possibly our results hold also in dimension 5.

- In dimension four the only hyperbolic groups which are known to be good in the sense of Freedman are virtually cyclic.
- Possibly our results hold also in dimension 5.

ANR-homology manifolds

Definition (Absolute neighborhood retract (ANR))

A topological space X is called absolute neighborhood retract (ANR) if it is normal and for every normal space Z, closed subset $Y \subseteq Z$ and map $f: Y \to X$ there is an open neighborhood $U \subseteq Z$ of Y and a map $F: U \to X$ extending f.

ANR-homology manifolds

Definition (Absolute neighborhood retract (ANR))

A topological space X is called absolute neighborhood retract (ANR) if it is normal and for every normal space Z, closed subset $Y \subseteq Z$ and map $f: Y \to X$ there is an open neighborhood $U \subseteq Z$ of Y and a map $F: U \to X$ extending f.

ANR-homology manifolds

Definition (Absolute neighborhood retract (ANR))

A topological space X is called absolute neighborhood retract (ANR) if it is normal and for every normal space Z, closed subset $Y \subseteq Z$ and map $f \colon Y \to X$ there is an open neighborhood $U \subseteq Z$ of Y and a map $F \colon U \to X$ extending f.

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- X has a countable basis for its topology;
- The topological dimension of *X* is finite;
- X is locally compact;
- for every $x \in X$ we have for the singular homology

$$H_i(X, X - \{x\}; \mathbb{Z}) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$$

If X is additionally compact, it is called a closed ANR-homology manifold.

There is also the notion of a compact ANR-homology manifold with boundary.

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- X has a countable basis for its topology;
- The topological dimension of *X* is finite;
- X is locally compact;
- for every $x \in X$ we have for the singular homology

$$H_i(X, X - \{x\}; \mathbb{Z}) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$$

If X is additionally compact, it is called a closed ANR-homology manifold

There is also the notion of a compact ANR-homology manifold with boundary.

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- X has a countable basis for its topology;
- The topological dimension of X is finite;
- X is locally compact;
- for every $x \in X$ we have for the singular homology

$$H_i(X, X - \{x\}; \mathbb{Z}) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$$

If *X* is additionally compact, it is called a closed ANR-homology manifold.

There is also the notion of a compact ANR-homology manifold with boundary.

- Every closed topological manifold is a closed ANR-homology manifold.
- Let M be homology sphere with non-trivial fundamental group. Then its suspension ΣM is a closed ANR-homology manifold but not a topological manifold.

- Every closed topological manifold is a closed ANR-homology manifold.
- Let M be homology sphere with non-trivial fundamental group. Then its suspension ΣM is a closed ANR-homology manifold but not a topological manifold.

Definition (Disjoint Disk Property (DDP))

A homology ANR-manifold M has the disjoint disk property (DDP), if for any $\epsilon>0$ and maps $f,g\colon D^2\to M$, there are maps $f',g'\colon D^2\to M$ so that f' is ϵ -close to f,g' is ϵ -close to g and $f'(D^2)\cap g'(D^2)=\emptyset$

• A topological manifold of dimension ≥ 5 is a closed ANR-homology manifold, which has the DDP by transversality.

Definition (Disjoint Disk Property (DDP))

A homology ANR-manifold M has the disjoint disk property (DDP), if for any $\epsilon > 0$ and maps $f,g \colon D^2 \to M$, there are maps $f',g' \colon D^2 \to M$ so that f' is ϵ -close to f,g' is ϵ -close to g and $f'(D^2) \cap g'(D^2) = \emptyset$

 A topological manifold of dimension ≥ 5 is a closed ANR-homology manifold, which has the DDP by transversality.

Definition (Disjoint Disk Property (DDP))

A homology ANR-manifold M has the disjoint disk property (DDP), if for any $\epsilon > 0$ and maps $f, g \colon D^2 \to M$, there are maps $f', g' \colon D^2 \to M$ so that f' is ϵ -close to f, g' is ϵ -close to g and $f'(D^2) \cap g'(D^2) = \emptyset$

• A topological manifold of dimension ≥ 5 is a closed ANR-homology manifold, which has the DDP by transversality.

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

- *G* is of type FP;
- $H^{i}(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

- *G* is of type FP;
- $H^{i}(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

- G is of type FP;
- $H^{i}(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

- G is of type FP;
- $H^{i}(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Lemma

Let X be a closed aspherical ANR-homology manifold of dimension n. Then its fundamental group is a Poincaré duality group of dimension n.

Let G be a torsion-free group. Suppose that its satisfies the K- and L-theoretic Farrell-Jones Conjecture. Consider $n \ge 6$.

Then the following statements are equivalent:

- ① *G* is a Poincaré duality group of dimension n;
- ② There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

Let G be a torsion-free group. Suppose that its satisfies the K- and L-theoretic Farrell-Jones Conjecture. Consider $n \ge 6$.

Then the following statements are equivalent:

- G is a Poincaré duality group of dimension n;
- ② There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

Let G be a torsion-free group. Suppose that its satisfies the K- and L-theoretic Farrell-Jones Conjecture. Consider $n \ge 6$.

Then the following statements are equivalent:

- G is a Poincaré duality group of dimension n;
- ② There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

Let G be a torsion-free group. Suppose that its satisfies the K- and L-theoretic Farrell-Jones Conjecture. Consider $n \ge 6$.

Then the following statements are equivalent:

- G is a Poincaré duality group of dimension n;
- ② There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn.

- Surgery theory as developed by Browder, Novikov, Sullivan, Wall for smooth manifolds and its extension to topological manifolds using the work of Kirby-Siebenmann.
- The algebraic surgery theory of Ranicki
- The surgery theory for ANR-manifolds due to Bryant-Ferry-Mio-Weinberger and basic ideas of Quinn.

- ullet Hyperbolic group and virtually nilpotent groups belongs to ${\cal FI}$;
- ullet If G_1 and G_2 belong to \mathcal{FI} , then $G_1 \times G_2$ and $G_1 * G_2$ belongs to \mathcal{FI} ;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then $\mathsf{colim}_{i \in I} G_i$ belongs to \mathcal{FJ} ;
- If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

- ullet Hyperbolic group and virtually nilpotent groups belongs to ${\cal F}{\cal J};$
- If G_1 and G_2 belong to $\mathcal{F}\mathcal{J}$, then $G_1 \times G_2$ and $G_1 * G_2$ belongs to $\mathcal{F}\mathcal{J}$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then $\mathsf{colim}_{i \in I} G_i$ belongs to \mathcal{FJ} ;
- If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

- ullet Hyperbolic group and virtually nilpotent groups belongs to $\mathcal{F}\mathcal{J}$;
- If G_1 and G_2 belong to \mathcal{FJ} , then $G_1 \times G_2$ and $G_1 * G_2$ belongs to \mathcal{FJ} ;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FI}$ for $i \in I$. Then $\mathsf{colim}_{i \in I} G_i$ belongs to \mathcal{FI} ;
- If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

- ullet Hyperbolic group and virtually nilpotent groups belongs to ${\cal F}{\cal J}$;
- If G_1 and G_2 belong to $\mathcal{F}\mathcal{J}$, then $G_1 \times G_2$ and $G_1 * G_2$ belongs to $\mathcal{F}\mathcal{J}$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then $\mathsf{colim}_{i \in I} G_i$ belongs to \mathcal{FJ} ;
- If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

- ullet Hyperbolic group and virtually nilpotent groups belongs to ${\cal F}{\cal J}$;
- If G_1 and G_2 belong to \mathcal{FI} , then $G_1 \times G_2$ and $G_1 * G_2$ belongs to \mathcal{FI} ;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then $\mathsf{colim}_{i \in I} G_i$ belongs to \mathcal{FJ} ;
- If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

- ullet Hyperbolic group and virtually nilpotent groups belongs to \mathcal{FI} ;
- If G_1 and G_2 belong to $\mathcal{F}\mathcal{J}$, then $G_1 \times G_2$ and $G_1 * G_2$ belongs to $\mathcal{F}\mathcal{J}$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}$ for $i \in I$. Then $\mathsf{colim}_{i \in I} G_i$ belongs to \mathcal{FJ} ;
- If H is a subgroup of G and $G \in \mathcal{FJ}$, then $H \in \mathcal{FJ}$;

Theorem (continued)

- If we demand for the K-theory version only that the assembly map is 1-connected and keep the full L-theory version, then the properties above remain valid and the class $\mathcal{F}\mathcal{J}$ contains also all CAT(0)-groups;
- The last statement is also true all cocompact lattices in almost connected Lie groups.
- For all applications presented in these talks the version, where we demand for the *K*-theory version only that the assembly map is 1-connected and keep the full *L*-theory version, is sufficient.

Theorem (continued)

- If we demand for the K-theory version only that the assembly map is 1-connected and keep the full L-theory version, then the properties above remain valid and the class $\mathcal{F}\mathcal{J}$ contains also all CAT(0)-groups;
- The last statement is also true all cocompact lattices in almost connected Lie groups.
- For all applications presented in these talks the version, where we demand for the *K*-theory version only that the assembly map is 1-connected and keep the full *L*-theory version, is sufficient.

Theorem (continued)

- If we demand for the K-theory version only that the assembly map is 1-connected and keep the full L-theory version, then the properties above remain valid and the class $\mathcal{F}\mathcal{J}$ contains also all CAT(0)-groups;
- The last statement is also true all cocompact lattices in almost connected Lie groups.
- For all applications presented in these talks the version, where we
 demand for the K-theory version only that the assembly map is
 1-connected and keep the full L-theory version, is sufficient.

Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let $n \ge 6$.

Then the following statements are equivalent:

- ① The boundary ∂G has the integral Čech cohomology of S^{n-1} ;
- @ G is a Poincaré duality group of dimension n;
- ① There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- ① There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let $n \ge 6$.

Then the following statements are equivalent:

- ① The boundary ∂G has the integral Čech cohomology of S^{n-1} ;
- ② G is a Poincaré duality group of dimension n;
- ① There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- ① There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let $n \ge 6$.

- Then the following statements are equivalent:
 - The boundary ∂G has the integral Čech cohomology of S^{n-1} ;
 - G is a Poincaré duality group of dimension n;
 - **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
 - There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds

Theorem (Bestvina-Mess (1991))

A hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary and S^{n-1} have the same Čech cohomology.

Corollary

Let G be a torsion-free word-hyperbolic group. Let $n \ge 6$.

Then the following statements are equivalent:

- **1** The boundary ∂G has the integral Čech cohomology of S^{n-1} ;
- 2 G is a Poincaré duality group of dimension n;
- **3** There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$;
- There exists a closed aspherical n-dimensional ANR-homology manifold M with $\pi_1(M) \cong G$ which has the DDP.

If the first statements holds, then the homology ANR-manifold M appearing above is unique up to s-cobordism of ANR-homology manifolds.

Quinn's resolution obstruction

Theorem (Quinn (1987))

There is an invariant $\iota(M) \in 1 + 8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

- if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;
- Let M be a homology ANR-manifold of dimension ≥ 5 . Then M is a topological manifold if and only if M has the DDP and $\iota(M)=1$.

Quinn's resolution obstruction

Theorem (Quinn (1987))

There is an invariant $\iota(M) \in 1 + 8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

- if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;
- Let M be a homology ANR-manifold of dimension ≥ 5 . Then M is a topological manifold if and only if M has the DDP and $\iota(M)=1$.

Quinn's resolution obstruction

Theorem (Quinn (1987))

There is an invariant $\iota(M) \in 1 + 8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

- if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;
- Let M be a homology ANR-manifold of dimension ≥ 5 . Then M is a topological manifold if and only if M has the DDP and $\iota(M)=1$.

- If the answer is yes, we can replace "closed ANR-homology manifold" by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

- If the answer is yes, we can replace "closed ANR-homology manifold" by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

- If the answer is yes, we can replace "closed ANR-homology manifold" by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

- If the answer is yes, we can replace "closed ANR-homology manifold" by "closed topological manifold" in the theorem above.
- In general the Quinn obstruction is not a homotopy invariant but it is a homotopy invariant for aspherical closed ANR-homology manifolds.
- However, most experts expect the answer no.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(M_i) \cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- Let G_1 and G_2 be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold M_2 with $\pi_1(M_2) = G_2$.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(M_i) \cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- Let G_1 and G_2 be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold M_2 with $\pi_1(M_2) = G_2$.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(M_i) \cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- Let G_1 and G_2 be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold M_2 with $\pi_1(M_2) = G_2$.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(M_i) \cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- Let G_1 and G_2 be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold M_2 with $\pi_1(M_2) = G_2$.

- Let G_1 and G_2 be quasi-isometric. Then G_1 is a Poincaré duality group of dimension n if and only G_2 is;
- Let M_i be an aspherical closed ANR-homology manifold with $\pi_1(M_i) \cong G_i$. If ∂G_1 and ∂G_2 are homeomorphic, then the Quinn obstructions of M_1 and M_2 agree;
- Let G_1 and G_2 be quasi-isometric. Then there exists an aspherical closed topological manifold M_1 with $\pi_1(M_1) = G_1$ if and only if there exists an aspherical closed topological manifold M_2 with $\pi_1(M_2) = G_2$.

Theorem (Hyperbolic groups with spheres as boundary Bartels-Lück-Weinberger (2009))

Let G be a torsion-free hyperbolic group and let n be an integer \geq 6. Then the following statements are equivalent:

- ① The boundary ∂G is homeomorphic to S^{n-1} ;
- There is a closed aspherical topological manifold M such that G ≅ π₁(M), its universal covering M is homeomorphic to ℝⁿ and the compactification of M by ∂G is homeomorphic to Dⁿ.

Theorem (Hyperbolic groups with spheres as boundary Bartels-Lück-Weinberger (2009))

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

- ① The boundary ∂G is homeomorphic to S^{n-1} ;
- ② There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \widetilde{M} by ∂G is homeomorphic to D^n .

Theorem (Hyperbolic groups with spheres as boundary Bartels-Lück-Weinberger (2009))

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 .

Then the following statements are equivalent:

- The boundary ∂G is homeomorphic to S^{n-1} ;
- ② There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \widetilde{M} by ∂G is homeomorphic to D^n .

Theorem (Hyperbolic groups with spheres as boundary Bartels-Lück-Weinberger (2009))

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

- **1** The boundary ∂G is homeomorphic to S^{n-1} ;
- ② There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \widetilde{M} by ∂G is homeomorphic to D^n .

Theorem (Hyperbolic groups with spheres as boundary Bartels-Lück-Weinberger (2009))

Let G be a torsion-free hyperbolic group and let n be an integer ≥ 6 . Then the following statements are equivalent:

- **1** The boundary ∂G is homeomorphic to S^{n-1} ;
- ② There is a closed aspherical topological manifold M such that $G \cong \pi_1(M)$, its universal covering \widetilde{M} is homeomorphic to \mathbb{R}^n and the compactification of \widetilde{M} by ∂G is homeomorphic to D^n .

By hyperbolization techniques due to Charney, Davis, Januskiewicz one car find the following examples:

Examples (Exotic universal coverings)

- For $n \ge 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to S^{n-1} .
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

By hyperbolization techniques due to Charney, Davis, Januskiewicz one can find the following examples:

Examples (Exotic universal coverings)

- For $n \ge 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to S^{n-1} .
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

By hyperbolization techniques due to Charney, Davis, Januskiewicz one can find the following examples:

Examples (Exotic universal coverings)

- For $n \ge 1$ the universal covering M is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to S^{n-1} .
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

By hyperbolization techniques due to Charney, Davis, Januskiewicz one can find the following examples:

Examples (Exotic universal coverings)

- For $n \ge 1$ the universal covering M is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to S^{n-1} .
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

By hyperbolization techniques due to Charney, Davis, Januskiewicz one can find the following examples:

Examples (Exotic universal coverings)

- For $n \ge 1$ the universal covering \widetilde{M} is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to S^{n-1} .
- \widetilde{M} is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

By hyperbolization techniques due to Charney, Davis, Januskiewicz one can find the following examples:

Examples (Exotic universal coverings)

- For $n \ge 1$ the universal covering M is not homeomorphic to \mathbb{R}^n and ∂G is not homeomorphic to S^{n-1} .
- M is homeomorphic to \mathbb{R}^n but ∂G is not S^{n-1} .

Example (No smooth structures)

For every $k \geq 2$ there exists a torsionfree hyperbolic group G with $\partial G \cong S^{4k-1}$ such that there is no aspherical closed smooth manifold M with $\pi_1(M) \cong G$. In particular G is not the fundamental group of a closed smooth Riemannian manifold with $\sec(M) < 0$.

Example (No smooth structures)

For every $k \geq 2$ there exists a torsionfree hyperbolic group G with $\partial G \cong S^{4k-1}$ such that there is no aspherical closed smooth manifold M with $\pi_1(M) \cong G$. In particular G is not the fundamental group of a closed smooth Riemannian manifold with $\mathrm{sec}(M) < 0$.