Middle algebraic K-theory (Lecture I)

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Berlin, June 18, 2012

- Introduce the projective class group $K_0(R)$.
- Discuss its algebraic and topological significance (e.g., finiteness obstruction).
- Introduce $K_1(R)$ and the Whitehead group Wh(G).
- Discuss its algebraic and topological significance (e.g., s-cobordism theorem).
- Introduce negative *K*-theory and the Bass-Heller-Swan decomposition.

Definition (Projective class group $K_0(R)$)

Define the projective class group of an (associative) ring R (with unit)

$K_0(R)$

to be the following abelian group:

- Generators are isomorphism classes [*P*] of finitely generated projective *R*-modules *P*;
- The relations are $[P_0] + [P_2] = [P_1]$ for every exact sequence $0 \rightarrow P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow 0$ of finitely generated projective *R*-modules.

Exercise

Show that $K_0(R)$ is the same as the Grothendieck construction applied to the abelian monoid of isomorphism classes of finitely generated projective *R*-modules under direct sum.

A ring homomorphism *f*: *R* → *S* induces a homomorphism of abelian groups

$$f_*: K_0(R) \to K_0(S), \quad [P] \mapsto [f_*P].$$

 The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective *R*-modules.

- The *reduced projective class group* $K_0(R)$ is the quotient of $K_0(R)$ by the subgroup generated by the classes of finitely generated free *R*-modules, or, equivalently, the cokernel of $K_0(\mathbb{Z}) \to K_0(R)$.
- Let *P* be a finitely generated projective *R*-module. It is stably free, i.e., $P \oplus R^m \cong R^n$ for appropriate $m, n \in \mathbb{Z}$, if and only if [P] = 0 in $\widetilde{K}_0(R)$.
- $\widetilde{K}_0(R)$ measures the deviation of finitely generated projective *R*-modules from being stably finitely generated free.

Compatibility with products

The two projections from $R \times S$ to R and S induce an isomorphism

$$\mathcal{K}_0(\mathcal{R} \times \mathcal{S}) \xrightarrow{\cong} \mathcal{K}_0(\mathcal{R}) \times \mathcal{K}_0(\mathcal{S}).$$

Morita equivalence

Let *R* be a ring and $M_n(R)$ be the ring of (n, n)-matrices over *R*. Then there is a natural isomorphism

$$K_0(R) \xrightarrow{\cong} K_0(M_n(R)).$$

Example (Principal ideal domains)

If R is a principal ideal domain and F is its quotient field, then we obtain mutually inverse isomorphisms

Example (Representation ring)

- Let *G* be a finite group and let *F* be a field of characteristic zero.
- Then the representation ring $R_F(G)$ is the same as $K_0(FG)$.
- $K_0(FG) \cong R_F(G)$ is the finitely generated free abelian group with the irreducible *G*-representations as basis.
- For instance $K_o(\mathbb{C}[\mathbb{Z}/n]) \cong \mathbb{Z}^n$.

Exercise

Compute $K_0(\mathbb{C}[S_3])$.

Example (Dedekind domains)

- Let *R* be a Dedekind domain, for instance the ring of integers in an algebraic number field.
- The ideal class group C(R) is the abelian group of equivalence classes of ideals.
- Then we obtain an isomorphism

$$C(R) \xrightarrow{\cong} \widetilde{K}_0(R), \quad [I] \mapsto [I].$$

• The structure of the finite abelian group

 $C(\mathbb{Z}[\exp(2\pi i/\rho)]) \cong \widetilde{K}_0(\mathbb{Z}[\exp(2\pi i/\rho)]) \cong \widetilde{K}_0(\mathbb{Z}[\mathbb{Z}/\rho])$

is only known for small prime numbers *p*.

- Let X be a compact space. Let $K^0(X)$ be the Grothendieck group of isomorphism classes of finite-dimensional complex vector bundles over X.
- This is the zero-th term of a generalized cohomology theory $K^*(X)$, called topological *K*-theory, which is 2-periodic, i.e., $K^n(X) = K^{n+2}(X)$, and satisfies $K^0(\text{pt}) = \mathbb{Z}$ and $K^1(\text{pt}) = \{0\}$.
- Let C(X) be the ring of continuous functions from X to \mathbb{C} .

Theorem (Swan (1962))

There is an isomorphism

$$\mathcal{K}^0(X) \xrightarrow{\cong} \mathcal{K}_0(\mathcal{C}(X)).$$

Definition (Finitely dominated)

A *CW*-complex *X* is called *finitely dominated* if there exists a finite (= compact) *CW*-complex *Y* together with maps $i: X \to Y$ and $r: Y \to X$ satisfying $r \circ i \simeq id_X$.

Problem

Is a given finitely dominated CW-complex homotopy equivalent to a finite CW-complex?

Definition (Wall's finiteness obstruction)

A finitely dominated CW-complex X defines an element

 $o(X) \in K_0(\mathbb{Z}[\pi_1(X)])$

called its *finiteness obstruction* as follows:

- Let \widetilde{X} be the universal covering. The fundamental group $\pi = \pi_1(X)$ acts freely on \widetilde{X} .
- Let C_{*}(X̃) be the cellular chain complex, which is a free Zπ-chain complex.
- Since X is finitely dominated, there exists a finite projective $\mathbb{Z}\pi$ -chain complex P_* with $P_* \simeq_{\mathbb{Z}\pi} C_*(\widetilde{X})$.

Define

$$o(X) := \sum_n (-1)^n \cdot [P_n] \in \mathcal{K}_0(\mathbb{Z}\pi).$$

Theorem (Wall (1965))

A finitely dominated CW-complex X is homotopy equivalent to a finite CW-complex if and only if its reduced finiteness obstruction $\tilde{o}(X) \in \tilde{K}_0(\mathbb{Z}[\pi_1(X)])$ vanishes.

Exercise

Show that a finitely dominated simply connected CW-complex is always homotopy equivalent to a finite CW-complex.

Given a finitely presented group G and ξ ∈ K₀(ℤG), there exists a finitely dominated CW-complex X with π₁(X) ≅ G and o(X) = ξ.

Theorem (Geometric characterization of $K_0(\mathbb{Z}G) = \{0\}$) The following statements are equivalent for a finitely presented group *G*:

 Every finite dominated CW-complex with G ≅ π₁(X) is homotopy equivalent to a finite CW-complex;

•
$$\widetilde{K}_0(\mathbb{Z}G) = \{0\}.$$

Conjecture (Vanishing of $\widetilde{K}_0(\mathbb{Z}G)$ for torsion free G)

If G is torsion free, then

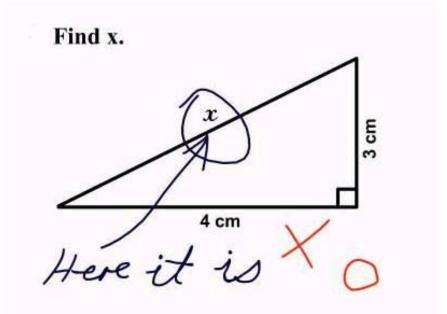
 $\widetilde{K}_0(\mathbb{Z}G) = \{0\}.$

Solutions to the exercises

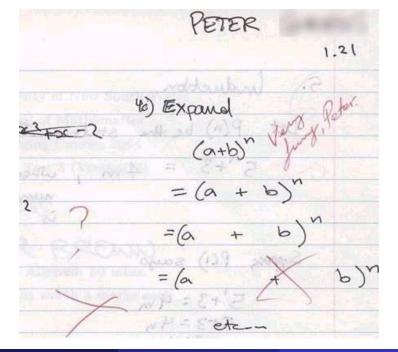
Wolfgang Lück (HIM)

Middle algebraic K-theory

Berlin, June 18, 2012 15 / 31



Wolfgang Lück (HIM)



Wolfgang Lück (HIM)

Definition (K_1 -group $K_1(R)$)

Define the K₁-group of a ring R

$K_1(R)$

to be the abelian group whose generators are conjugacy classes [*f*] of automorphisms $f: P \rightarrow P$ of finitely generated projective *R*-modules with the following relations:

Given an exact sequence 0 → (P₀, f₀) → (P₁, f₁) → (P₂, f₂) → 0 of automorphisms of finitely generated projective *R*-modules, we get [f₀] + [f₂] = [f₁];

•
$$[g \circ f] = [f] + [g].$$

- This is the same as GL(R)/[GL(R), GL(R)].
- An invertible matrix A ∈ GL(R) can be reduced by elementary row and column operations and (de-)stabilization to the trivial empty matrix if and only if [A] = 0 holds in the reduced K₁-group

$$\widetilde{\mathcal{K}}_1(R) := \mathcal{K}_1(R)/\{\pm 1\} = \operatorname{cok}\left(\mathcal{K}_1(\mathbb{Z}) \to \mathcal{K}_1(R)\right).$$

Exercise

Show for a commutative ring R that the determinant induces an epimorphism

det: $K_1(R) \rightarrow R^{\times}$.

The assignment A → [A] ∈ K₁(R) can be thought of as the universal determinant for R.

Definition (Whitehead group)

The Whitehead group of a group G is defined to be

$$\mathsf{Wh}(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$$

Lemma We have $Wh(\{1\}) = \{0\}.$

In contrast to K
₀(ℤG) the Whitehead group Wh(G) is computable for finite groups G.

Definition (*h*-cobordism)

An *h-cobordism* over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem, Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed (smooth) manifold of dimension ≥ 5 . Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is homeomorphic (diffeomorphic) to $M_0 \times [0, 1]$ relative M_0 if and only if its Whitehead torsion

 $\tau(W, M_0) \in Wh(\pi_1(M_0))$

vanishes.

Wolfgang Lück (HIM)

Middle algebraic K-theory

Conjecture (Poincaré Conjecture)

Let M be an n-dimensional topological manifold which is a homotopy sphere, i.e., homotopy equivalent to S^n . Then M is homeomorphic to S^n .

Theorem

For $n \ge 5$ the Poincaré Conjecture is true.

Proof.

We sketch the proof for $n \ge 6$.

- Let *M* be a *n*-dimensional homotopy sphere.
- Let *W* be obtained from *M* by deleting the interior of two disjoint embedded disks D_0^n and D_1^n . Then *W* is a simply connected *h*-cobordism.
- Since Wh({1}) is trivial, we can find a homeomorphism $f: W \xrightarrow{\cong} \partial D_0^n \times [0, 1]$ that is the identity on $\partial D_0^n = \partial D_0^n \times \{0\}$.
- By the Alexander trick we can extend the homeomorphism $f|_{\partial D_1^n} : \partial D_1^n \xrightarrow{\cong} \partial D_0^n$ to a homeomorphism $g : D_1^n \to D_0^n$.
- The three homeomorphisms *id*_{D₀ⁿ}, *f* and *g* fit together to a homeomorphism *h*: *M* → *D*₀ⁿ ∪_{∂D₀ⁿ×{0}} ∂*D*₀ⁿ × [0, 1] ∪_{∂D₀ⁿ×{1}} *D*₀ⁿ. The target is obviously homeomorphic to *Sⁿ*.

- The argument above does not imply that for a smooth manifold M we obtain a diffeomorphism $g: M \to S^n$, since the Alexander trick does not work smoothly.
- Indeed, there exist so called exotic spheres, i.e., closed smooth manifolds which are homeomorphic but not diffeomorphic to Sⁿ.
- The *s*-cobordism theorem is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.
- Given a finitely presented group G, an element ξ ∈ Wh(G) and a closed manifold M of dimension n ≥ 5 with G ≅ π₁(M), there exists an h-cobordism W over M with τ(W, M) = ξ.

Theorem (Geometric characterization of $Wh(G) = \{0\}$)

The following statements are equivalent for a finitely presented group G and a fixed integer $n \ge 6$

• Every compact n-dimensional h-cobordism W with $G \cong \pi_1(W)$ is trivial;

•
$$Wh(G) = \{0\}.$$

Conjecture (Vanishing of Wh(G) for torsion free G)

If G is torsion free, then

 $\mathsf{Wh}(G) = \{0\}.$

There exist K-groups K_n(R) for every n ∈ Z. The negative K-groups were introduced by Bass, the higher algebraic K-groups by Quillen.

Theorem (Bass-Heller-Swan decomposition)

For $n \in \mathbb{Z}$ there is an isomorphism, natural in R,

 $\mathcal{K}_{n-1}(R) \oplus \mathcal{K}_n(R) \oplus \mathrm{NK}_n(R) \oplus \mathrm{NK}_n(R) \xrightarrow{\cong} \mathcal{K}_n(R[t, t^{-1}]) = \mathcal{K}_n(R[\mathbb{Z}]).$

Definition (Regular ring)

A ring *R* is called *regular* if it is Noetherian and every finitely generated *R*-module possesses a finite projective resolution.

Theorem (Bass-Heller-Swan decomposition for regular rings)

Suppose that R is regular. Then

 $K_n(R) = 0$ for $n \le -1$; NK_n(R) = 0 for $n \in \mathbb{Z}$;

 The Bass-Heller-Swan decomposition reduces for n ∈ Z to the natural isomorphism

$$\mathcal{K}_{n-1}(\mathcal{R}) \oplus \mathcal{K}_n(\mathcal{R}) \xrightarrow{\cong} \mathcal{K}_n(\mathcal{R}[t, t^{-1}]) = \mathcal{K}_n(\mathcal{R}[\mathbb{Z}]).$$

Example (Eilenberg swindle)

- Consider a ring R. Let $\mathcal{P}(R)$ be the additive category of finitely generated projective R-modules.
- Suppose that there exists a functor S: P(R) → P(R) of additive categories together with a natural equivalence S ⊕ id_{P(R)} [≅]→ S.

• Then
$$K_n(R) = 0$$
 for $n \in \mathbb{Z}$ since
 $K_n(S) + id_{K_n(R)} = K_n(S \oplus id_{\mathcal{P}(R)}) = K_n(S)$ holds.

Exercise

Let *R* be a ring. Consider the ring *E* of *R*-endomorphisms of $\bigoplus_{i \in \mathbb{N}} R$. Show that *E* has such a functor *S* and hence $K_n(E) = 0$ for $n \in \mathbb{Z}$. • Notice the similarity between following formulas for a regular ring *R* and a generalized homology theory \mathcal{H}_* :

$$egin{array}{lll} \mathcal{K}_n(R[\mathbb{Z}]) &\cong \mathcal{K}_n(R) \oplus \mathcal{K}_{n-1}(R); \ \mathcal{H}_n(B\mathbb{Z}) &\cong \mathcal{H}_n(\mathrm{pt}) \oplus \mathcal{H}_{n-1}(\mathrm{pt}). \end{array}$$

• If *G* and *K* are groups, then we have the following formulas, which also look similar:

$$\begin{array}{lll} \widetilde{K}_n(\mathbb{Z}[G \ast K]) &\cong & \widetilde{K}_n(\mathbb{Z}G) \oplus \widetilde{K}_n(\mathbb{Z}K); \\ \widetilde{\mathcal{H}}_n(B(G \ast K)) &\cong & \widetilde{\mathcal{H}}_n(BG) \oplus \widetilde{\mathcal{H}}_n(BK). \end{array}$$

Question (K-theory of group rings and group homology)

Is there a relationship between $K_n(RG)$ and the group homology of G?

To be continued Stay tuned Next talk: Tomorrow at 10:20