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Flashback

We introduced the Farrell-Jones Conjecture and the
Baum-Connes Conjecture for torsion free groups:

Hn(BG; KR)
∼=−→ Kn(RG);

Hn(BG; L〈−∞〉R )
∼=−→ L〈−∞〉n (RG);

Kn(BG)
∼=−→ Kn(C∗r (G)).

We discussed applications of these conjectures such as to the
Kaplansky Conjecture and the Borel Conjecture.
Cliffhanger

Question (Arbitrary groups and rings)
Are there versions of the Farrell-Jones Conjecture for arbitrary groups
and rings and of the Baum-Connes Conjecture for arbitrary groups?
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Outline

We introduce classifying spaces for families.

We introduce equivariant homology theories.

We state the Farrell-Jones Conjecture and the Baum-Connes
Conjecture in general.

We discuss further applications, such as the Novikov Conjecture.
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Classifying spaces for families

Definition (Family of subgroups)
A family F of subgroups of G is a set of (closed) subgroups of G that is
closed under conjugation and taking subgroups.

Examples for F are:

T r = {trivial subgroup};
F in = {finite subgroups};
VCyc = {virtually cyclic subgroups};
All = {all subgroups}.
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Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) with the
following properties:

All isotropy groups of EF (G) belong to F ;

For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → EF (G).

We abbreviate EG := EF in(G) and call it the universal
G-CW-complex for proper G-actions.

We abbreviate EG := ET r(G) and EG := EVCyc(G).
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Theorem (Homotopy characterization of EF(G))
Let F be a family of subgroups.

There exists a model for EF (G) for any family F ;

Two models for EF (G) are G-homotopy equivalent;

A G-CW-complex X is a model for EF (G) if and only if all of its
isotropy groups belong to F and for each H ∈ F the H-fixed point
set X H is contractible.
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A model for EAll(G) is G/G;

EG→ BG := G\EG is the universal principal G-bundle for
G-CW -complexes.

Let F ⊆ G be an inclusion of families of subgroups of G. Then
there exists up to G-homotopy precisely one G-map
EF (G)→ EG(G).

Exercise
Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group. Show
that R with the obvious D∞-action is a model for ED∞.
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Special models for EG

We want to illustrate that the space EG often has very nice
geometric models and appears naturally in many interesting
situations.

The spaces EG are very interesting in their own right.
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Theorem (Simplicial Model)
The geometric realization of the simplicial set whose k-simplices
consist of (k + 1)-tuples (g0,g1, . . . ,gk ) of elements gi in G is a model
for EG.

Theorem (Discrete subgroups of almost connected Lie groups)
Let L be a Lie group with finitely many path components and let G ⊆ L
be a discrete subgroup. Then L contains a maximal compact subgroup
K which is unique up to conjugation, and L/K with the obvious left
G-action is a model for EG.
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Theorem (Actions on CAT(0)-spaces)
Let X be a proper G-CW-complex. Suppose that X has the structure
of a complete simply connected CAT(0)-space on which G acts by
isometries.
Then X is a model for EG.

The result above contains as special case:

isometric G-actions on simply connected complete Riemannian
manifolds with non-positive sectional curvature;

G-actions on trees.
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Theorem (Rips complex)
Let G be a hyperbolic group. Then the barycentric subdivision of the
Rips complex Pd (G,S)′ is a finite G-CW-model for EG, for large
enough d.

Theorem (Teichmüller space)
Let Γs

g,r be the mapping class group of an orientable compact surface
of genus g with s punctures and r boundary components. Suppose
2g + s + r > 2.
Then the associated Teichmüller space is a model for EΓs

g,r .
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Theorem (Outer space)
The outer space due to Culler-Vogtmann is a model for E Out(Fn).

Exercise
Find nice models for ESL2(Z).
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Equivariant homology theories

Definition (G-homology theory)

A G-homology theory H∗ is a covariant functor from the category of
G-CW -pairs to the category of Z-graded abelian groups together with
natural transformations

∂n(X ,A) : Hn(X ,A)→ Hn−1(A)

for n ∈ Z satisfying the following axioms:
G-homotopy invariance;
Long exact sequence of a pair;
Excision;
Disjoint union axiom.
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Equivariant homology theories

Definition (G-homology theory)

A G-homology theory HG
∗ is a covariant functor from the category of

G-CW -pairs to the category of Z-graded abelian groups together with
natural transformations

∂G
n (X ,A) : HG

n (X ,A)→ HG
n−1(A)

for n ∈ Z satisfying the following axioms:
G-homotopy invariance;
Long exact sequence of a pair;
Excision;
Disjoint union axiom.
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Definition (Equivariant homology theory)

An equivariant homology theory H?
∗ assigns to every group G a

G-homology theory HG
∗ . These are linked together with the following

so called induction structure: given a group homomorphism α : H → G
and a H-CW -pair (X ,A), there are for all n ∈ Z natural
homomorphisms

indα : HH
n (X ,A) → HG

n (indα(X ,A))

satisfying:
Bijectivity;
If ker(α) acts freely on X , then indα is a bijection;
Compatibility with the boundary homomorphisms;
Functoriality in α;
Compatibility with conjugation.

Wolfgang Lück (HIM) The Isomorphism Conjectures in general Berlin, June 20, 2012 14 / 34



Theorem (Equivariant homology theories and spectra over
groupoids)
Given a functor E : Groupoids→ Spectra sending equivalences to
weak equivalences, there exists an equivariant homology theory
H?
∗(−; E) satisfying

HH
n (pt) ∼= HG

n (G/H) ∼= πn(E(H)).
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Theorem (Equivariant homology theories associated to K and
L-theory)
Let R be a ring (with involution). There exist covariant functors

KR : Groupoids → Spectra;

L〈∞〉R : Groupoids → Spectra;

Ktop : Groupoidsinj → Spectra,

with the following properties:

They respect equivalences;
For every group G and all n ∈ Z we have

πn(KR(G)) ∼= Kn(RG);

πn(L〈−∞〉R (G)) ∼= L〈−∞〉n (RG);

πn(Ktop(G)) ∼= Kn(C∗r (G)).
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Example (Equivariant homology theories associated to K and
L-theory)
We get equivariant homology theories

H?
∗(−; KR);

H?
∗(−; L〈−∞〉R );

H?
∗(−; Ktop),

satisfying for H ⊆ G

HG
n (G/H; KR) ∼= HH

n (pt; KR) ∼= Kn(RH);

HG
n (G/H; L〈−∞〉R ) ∼= HH

n (pt; L〈−∞〉R ) ∼= L〈−∞〉n (RH);

HG
n (G/H; Ktop) ∼= HH

n (pt; Ktop) ∼= Kn(C∗r (H)).
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Mini-Break

Mathematics
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Mini-Break
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The general formulation of the Isomorphism
Conjectures

Conjecture (K -theoretic Farrell-Jones-Conjecture)
The K -theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCyc(G),KR)→ HG

n (pt,KR) = Kn(RG)

is bijective for every n ∈ Z.

The assembly map is the map induced by the projection
EVCyc(G)→ pt.
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Conjecture (L-theoretic Farrell-Jones-Conjecture)
The L-theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCyc(G),L〈−∞〉R )→ HG

n (pt,L〈−∞〉R ) = L〈−∞〉n (RG)

is bijective for every n ∈ Z.
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Conjecture (Baum-Connes Conjecture)
The Baum-Connes Conjecture predicts that the assembly map

K G
n (EG) = HG

n (EF in(G),Ktop)→ HG
n (pt,Ktop) = Kn(C∗r (G))

is bijective for every n ∈ Z.
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The assembly maps can also be interpreted in terms of homotopy
colimits, where the functor of interest evaluated at G is assembled
from its values on subgroups belonging to the relevant family.

For instance, K -theory, we get an interpretation of the assembly
map as the canonical map

hocolimV∈VCyc K(RV )→ K(RG).

There are other theories for which one can formulate Isomorphism
Conjectures in an analogous way, e.g., pseudoisotopy,
Waldhausen’s A-theory, topological Hochschild homology,
topological cyclic homology.
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Further Conclusions of the Isomorphism Conjectures

Conjecture (Novikov Conjecture)
The Novikov Conjecture for G predicts for a closed oriented manifold
M together with a map f : M → BG that for any x ∈ H∗(BG) the higher
signature

signx (M, f ) := 〈L(M) ∪ f ∗x , [M]〉

is an oriented homotopy invariant of (M, f ).
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For x = 1 this follows from Hirzebruch’s signature formula

sign(M) := 〈L(M), [M]〉.

For a homotopy equivalence f : M → N of closed aspherical
manifolds the Novikov Conjecture predicts f ∗L(N) = L(M).

In this case it follows from the Borel Conjecture together with
Novikov’s Theorem about the topological invariance of rational
Pontryagin classes.
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Theorem (The Farrell-Jones, the Baum-Connes and the Novikov
Conjecture)
Suppose that one of the following assembly maps

HG
n (EVCyc(G),L〈−∞〉R ) → HG

n (pt,L〈−∞〉R ) = L〈−∞〉n (RG);

K G
n (EG) = HG

n (EF in(G),Ktop) → HG
n (pt,Ktop) = Kn(C∗r (G)),

is rationally injective.
Then the Novikov Conjecture holds for the group G.
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Theorem (Moody’s Induction Conjecture)
Let F be a field of characteristic p. Suppose G ∈ FJ K (R). Then:

If p = 0, the map given by induction from finite subgroups of G

colim
H∈F in

K0(FH)→ K0(FG)

is bijective;
If p > 0, then the map

colim
H∈F in

K0(FH)[1/p]→ K0(FG)[1/p]

is bijective.
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The Farrell-Jones Conjecture for algebraic K -theory implies the
Bass Conjecture.

The Farrell-Jones Conjecture for algebraic K -theory is part of a
program due to Linnell to prove the Atiyah Conjecture about the
integrality of L2-Betti numbers of closed Riemannian manifolds
with torsion free fundamental groups.

The Baum-Connes Conjecture implies the Stable
Gromov-Lawson-Rosenberg Conjecture about the existence of
Riemannian metrics with positive scalar curvature.

The Farrell-Jones Conjecture for K and L-theory implies for a
Poincaré duality group G of dimension ≥ 5 that it is the
fundamental group of a closed ANR-homology manifold.
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Theorem (Bartels-Lück-Weinberger)
Let G be a torsion free hyperbolic group and let n be an integer ≥ 6.
The following statements are equivalent:

the boundary ∂G is homeomorphic to Sn−1;

there is a closed aspherical topological manifold M such that
G ∼= π1(M), its universal covering M̃ is homeomorphic to Rn and
the compactification of M̃ by ∂G is homeomorphic to Dn.

If the manifold above exists, it is unique up to homeomorphism by
the Borel Conjecture.
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The Farrell-Jones Conjecture and Baum-Connes Conjecture are
basic ingredients in concrete computations of K and L-groups.

Such computations have interesting applications to problems in
manifold theory and the classification of C∗-algebras.

Depending on the theory under consideration one can sometimes
choose a smaller family than VCyc or F in.
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Cliffhanger

Question (Status)
For which groups are the Farrell-Jones Conjecture and the
Baum-Connes Conjecture known to be true?
What are open interesting cases?

Question (Methods of proof)
What are the methods of proof?
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To be continued
Stay tuned

Next talk: Tomorrow at 14:00
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