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This is joint work with Matthias Kreck (Bonn)

Conjecture (Borel Conjecture)
Let M and N be closed aspherical topological manifolds. Then every
homotopy equivalence M → N is homotopic to a homeomorphism.

Conjecture (n-dimensional Poincaré Conjecture)
Let M be a closed topological manifold. Then every homotopy
equivalence M → Sn is homotopic to a homeomorphism.
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Manifold will always mean connected oriented closed topological
manifold.

Definition (Borel-manifold)

A manifold M is called a Borel manifold if for any orientation preserving
homotopy equivalence f : N → M of manifolds there exists an
orientation preserving homeomorphism h : N → M such that f and h
induce the same map on the fundamental groups up to conjugation.
It is called a strong Borel manifold if every orientation preserving
homotopy equivalence f : N → M of manifolds is homotopic to a
homeomorphism h : N → M.
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The Borel Conjecture is equivalent to the statement that every
aspherical manifold is strongly Borel.
If M is aspherical, then: Borel⇔ Strongly Borel.
The n-dimensional Poincaré Conjecture is equivalent to the
statement that Sn is strongly Borel.
Both conjectures become false in the smooth category.
Question: Which manifolds are (strongly) Borel?
Slogan: Interpolation between the Borel and the Poincaré
Conjecture.
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If dim(M) ≤ 2, then M is strongly Borel.
The Lens space L(7,1,1) is not Borel.
The following assertions are equivalent:

S1 × S2 is strongly Borel;
S1 × S2 is Borel;
The 3-dimensional Poincaré Conjecture is true.

Idea of proof: Suppose S1 × S2 is Borel. Then:

M ' S3 ⇒ M#(S1 × S2) ' S3#(S1 × S2) ∼= S1 × S3

⇒ M#(S1 × S2) ∼= S3#(S1 × S2)⇒ M ∼= S3.

The other direction uses the prime decomposition and the
characterization of S1 × S2 as the only non-irreducible prime
3-manifold with infinite π.
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Theorem (Dimension 3)

Suppose that Thurston’s Geometrization Conjecture for irreducible
3-manifolds with infinite fundamental group and the 3-dimensional
Poincaré Conjecture are true.
Then every 3-manifold with torsionfree fundamental group is a strong
Borel manifold.

The main input in the proof are Waldhausen’s rigidity results for
Haken manifolds.
Conclusion: If π1(M) is torsionfree, then π1(M) determines the
homeomorphism type.
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Example (Examples in dimension 4)

Let M be a 4-manifold with Spin structure such that its
fundamental group is finite cyclic.
Then M is Borel. This follows from a classification result of
Hambleton-Kreck.
If M is simply connected and Borel, then it has a Spin structure.
This follows results from the star operation M 7→ ∗M.
T 4 and S1 × S3 are strongly Borel.
S2 × S2 is Borel but not strongly Borel.
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Theorem (Connected sums)
Let M and N be manifolds of the same dimension n ≥ 5 such that
neither π1(M) nor π1(N) contains elements of order 2 or that n = 0,3
mod 4.
If both M and N are (strongly) Borel, then the same is true for their
connected sum M#N.

The proof is based on Cappell’s work on splitting obstructions and
of UNIL-groups and recent improvements by Banagl, Connolly,
Davis, Ranicki.
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Theorem (Products of two spheres)

Suppose that k + d 6= 3. Then Sk × Sd is a strong Borel manifold
if and only if both k and d are odd;

Suppose k ,d > 1 and k + d ≥ 4. Then the manifold Sk × Sd is
Borel if and only if the following conditions are satisfied:

1 Neither k nor d is divisible by 4;
2 If k = 2 mod 4, then there is a map gk : Sk ×Sd → Sd such that its

Arf invariant Arf(gk ) is non-trivial and its restriction to pt× Sd is an
orientation preserving homotopy equivalence pt× Sd → Sd .

3 The same condition with the role of k and d interchanged.
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The condition (2) appearing in the last Theorem implies that the
Arf invariant homomorphism

Arfk : Ωfr
k → Z/2

is surjective. This is the famous Arf-invariant-one-problem.
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Definition (structure set)
The structure set Stop(M) of a manifold M consists of equivalence
classes of orientation preserving homotopy equivalences N → M with
a manifold N as source.
Two such homotopy equivalences f0 : N0 → M and f1 : N1 → M are
equivalent if there exists a homeomorphism g : N0 → N1 with
f1 ◦ g ' f0.

Let ho-autπ(M) be the group of homotopy classes of self
equivalences inducing the identity on π1 up to conjugation.
It acts on the structure set by composition.
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Theorem (Surgery criterion for Borel manifolds)

A manifold M is a strong Borel manifold if and only if S top(M)
consists of one element;
A manifold M is a Borel manifold if and only if
S top(M)/ho-autπ(M) consists of one element.
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Theorem (Ranicki)
There is an exact sequence of abelian groups called algebraic surgery
exact sequence

. . .
σn+1−−−→ Hn+1(M; L〈1〉) An+1−−−→ Ln+1(Zπ1(M))

∂n+1−−−→

S top(M)
σn−→ Hn(M; L〈1〉) An−→ Ln(Zπ1(M))

∂n−→ . . .

It can be identified with the classical geometric surgery sequence due
to Sullivan and Wall in high dimensions.

M is strongly Borel⇔ An+1 is surjective and An is injective.
The Farrell-Jones Conjecture predicts for torsionfree π that

Hn(Bπ; L)
An−→ Ln(Zπ)

is bijective for n ∈ Z.
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Example

Consider M = Sk × Sd for k + d ≥ 4.
Then π1(M) is trivial and the assembly map can be identified with

Hm(Sk × Sd ; L〈1〉)→ Hm(pt; L〈1〉).

S top(Sk × Sd ) ∼= Hk+d (Sk × Sd ,pt; L〈1〉) ∼= Ld (Z)⊕ Lk (Z).

Hence Sk × Sd is strongly Borel if and only if k and d are odd.
To prove that Sk × Sd is Borel, one has to construct enough
selfhomotopy equivalences of Sk × Sd .
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Theorem (A necessary homological criterion for being Borel)
Let M be a Borel manifold and let c : M → Bπ be the classifying map.
Then for every i ≥ 1 with L(M)i = 0 the map

c∗ : Hn−4i(M; Q)→ Hn−4i(Bπ; Q)

is injective.

This criterion is obviously empty for aspherical manifolds.
Input in the proof: The image of [f : N → M] under the map

S top(M)
σn−→ Hn(M; L〈1〉)→

⊕
i≥1

H4i+n(M; Q)

is
f∗ (L(N) ∩ [N])− L(M) ∩ [M].
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Theorem (Sphere bundles over surfaces)

Let K be S1 or a 2-dimensional manifold different from S2. Let
Sd → E → K be a fiber bundle over K for d ≥ 3.
Then E is a Borel manifold. It is a strong Borel manifold if and only if
K = S1.
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Theorem (Sphere bundles over 3-manifolds)

Let K be an aspherical 3-dimensional manifold. Suppose that the
Farrell-Jones Conjecture holds for π1(K ). Let Sd → E

p−→ K be a fiber
bundle over K with orientable E such that d ≥ 4 or such that d = 2,3
and there is a map i : K → E with p ◦ i ' idK . Then

E is strongly Borel if and only if H1(K ; Z/2) = 0;
If d = 3 mod 4 and d ≥ 7, then K × Sd is Borel;
If d = 0 mod 4 and d ≥ 8 and H1(K ; Z/2) 6= 0, then K ×Sd is not
Borel.
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Theorem (Chang-Weinberger)

Let M4k+3 be a manifold for k ≥ 1 whose fundamental group has
torsion.
Then there are infinitely many pairwise not homeomorphic smooth
manifolds which are homotopy equivalent to M but not homeomorphic
to M. In particular M is not Borel.
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Theorem (Homology spheres)

Let M be a manifold of dimension n ≥ 5 with fundamental group
π = π1(M).

Let M be an integral homology sphere. Then M is a strong simple
Borel manifold if and only if

Ls
n+1(Z)

∼=−→ Ls
n+1(Zπ).

Suppose that M is a rational homology sphere and Borel.
Suppose that π satisfies the Novikov Conjecture. Then

Hn+1−4i(Bπ; Q) = 0

for i ≥ 1 and n + 1− 4i 6= 0.
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Theorem (Another construction of strongly Borel manifolds)
Start with a strongly Borel manifold M of dimension n ≥ 5. Choose an
emdedding S1 × Dn−1 → M which induces an injection on π1. Choose
a high dimensional knot K ⊆ Sn with complement X such that the
inclusion ∂X ∼= S1 × Sn−2 → X induces an isomorphism on π1. Put

M ′ = M − (S1 × Dn−1) ∪S1×Sn−2 X .

Then M ′ is strongly Borel.

If M is aspherical, then M ′ is in general not aspherical.
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Problem (Classification of certain low-dimensional manifolds)

Classify up to orientation preserving homotopy equivalence,
homeomorphism (or diffeomorphism in the smooth case) all manifolds
in dimension 1 ≤ k < n ≤ 6 satisfying:

π = π1(M) is isomorphic to π1(K ) for a manifold K of dimension
k ≤ 2.
π2(M) vanishes.

The case π = {1} was already solved by Wall;
In dimension ≤ 5 we give a complete answer in terms of the
second Stiefel Whitney class.
In dimension 6 we give in the Spin case a complete answer in
terms of the equivariant intersection pairing of the universal
covering.
Such a manifold is never strongly Borel but always Borel.
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In nearly all examples of Borel manifolds we have constructed —
what we call — a generalized topological space form, i.e.,
manifolds M, whose universal covering M̃ is contractibel or
homotopy-equivalent to a wedge of k -spheres Sk for some
2 ≤ k <∞.
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