Topological rigidity for non-aspherical manifolds

Wolfgang Lück

Mathematisches Institut Westfälische Wilhelms-Universität Münster Einsteinstr. 62 D-48149 Münster www.math.uni-muenster.de/u/lueck/

Banff, February 2007

This is joint work with Matthias Kreck (Bonn)

Conjecture (Borel Conjecture)

Let M and N be closed aspherical topological manifolds. Then every homotopy equivalence $M \rightarrow N$ is homotopic to a homeomorphism.

Conjecture (*n*-dimensional Poincaré Conjecture)

Let M be a closed topological manifold. Then every homotopy equivalence $M \rightarrow S^n$ is homotopic to a homeomorphism.

 Manifold will always mean connected oriented closed topological manifold.

Definition (Borel-manifold)

A manifold M is called a Borel manifold if for any orientation preserving homotopy equivalence $f : N \to M$ of manifolds there exists an orientation preserving homeomorphism $h : N \to M$ such that f and h induce the same map on the fundamental groups up to conjugation. It is called a strong Borel manifold if every orientation preserving homotopy equivalence $f : N \to M$ of manifolds is homotopic to a homeomorphism $h : N \to M$.

- The Borel Conjecture is equivalent to the statement that every aspherical manifold is strongly Borel.
- If *M* is aspherical, then: Borel \Leftrightarrow Strongly Borel.
- The *n*-dimensional Poincaré Conjecture is equivalent to the statement that *Sⁿ* is strongly Borel.
- Both conjectures become false in the smooth category.
- Question: Which manifolds are (strongly) Borel?
- Slogan: Interpolation between the Borel and the Poincaré Conjecture.

- If dim $(M) \leq 2$, then *M* is strongly Borel.
- The Lens space L(7, 1, 1) is not Borel.
- The following assertions are equivalent:
 - $S^1 \times S^2$ is strongly Borel;
 - $S^1 \times S^2$ is Borel;
 - The 3-dimensional Poincaré Conjecture is true.

Idea of proof: Suppose $S^1 \times S^2$ is Borel. Then:

$$\begin{split} M &\simeq S^3 \Rightarrow M \# (S^1 \times S^2) \simeq S^3 \# (S^1 \times S^2) \cong S^1 \times S^3 \ \Rightarrow M \# (S^1 \times S^2) \cong S^3 \# (S^1 \times S^2) \Rightarrow M \cong S^3. \end{split}$$

The other direction uses the prime decomposition and the characterization of $S^1 \times S^2$ as the only non-irreducible prime 3-manifold with infinite π .

Theorem (Dimension 3)

Suppose that Thurston's Geometrization Conjecture for irreducible 3-manifolds with infinite fundamental group and the 3-dimensional Poincaré Conjecture are true. Then every 3-manifold with torsionfree fundamental group is a strong Borel manifold.

- The main input in the proof are Waldhausen's rigidity results for Haken manifolds.
- Conclusion: If $\pi_1(M)$ is torsionfree, then $\pi_1(M)$ determines the homeomorphism type.

Example (Examples in dimension 4)

- Let *M* be a 4-manifold with Spin structure such that its fundamental group is finite cyclic.
 Then *M* is Borel. This follows from a classification result of Hambleton-Kreck.
- If *M* is simply connected and Borel, then it has a Spin structure. This follows results from the star operation $M \mapsto *M$.
- T^4 and $S^1 \times S^3$ are strongly Borel.
- $S^2 \times S^2$ is Borel but not strongly Borel.

Theorem (Connected sums)

Let M and N be manifolds of the same dimension $n \ge 5$ such that neither $\pi_1(M)$ nor $\pi_1(N)$ contains elements of order 2 or that n = 0, 3 mod 4.

If both M and N are (strongly) Borel, then the same is true for their connected sum M # N.

 The proof is based on Cappell's work on splitting obstructions and of UNIL-groups and recent improvements by Banagl, Connolly, Davis, Ranicki.

Theorem (Products of two spheres)

- Suppose that k + d ≠ 3. Then S^k × S^d is a strong Borel manifold if and only if both k and d are odd;
- Suppose k, d > 1 and k + d ≥ 4. Then the manifold S^k × S^d is Borel if and only if the following conditions are satisfied:
 - Neither k nor d is divisible by 4;
 - 2 If $k = 2 \mod 4$, then there is a map $g_k : S^k \times S^d \to S^d$ such that its Arf invariant $\operatorname{Arf}(g_k)$ is non-trivial and its restriction to $pt \times S^d$ is an orientation preserving homotopy equivalence $pt \times S^d \to S^d$.
 - 3 The same condition with the role of k and d interchanged.

• The condition (2) appearing in the last Theorem implies that the Arf invariant homomorphism

$$\operatorname{Arf}_k \colon \Omega^{\operatorname{fr}}_k \to \mathbb{Z}/2$$

is surjective. This is the famous Arf-invariant-one-problem.

Definition (structure set)

The *structure set* $S^{top}(M)$ of a manifold M consists of equivalence classes of orientation preserving homotopy equivalences $N \to M$ with a manifold N as source.

Two such homotopy equivalences $f_0: N_0 \to M$ and $f_1: N_1 \to M$ are equivalent if there exists a homeomorphism $g: N_0 \to N_1$ with $f_1 \circ g \simeq f_0$.

- Let ho-aut_π(M) be the group of homotopy classes of self equivalences inducing the identity on π₁ up to conjugation.
- It acts on the structure set by composition.

Theorem (Surgery criterion for Borel manifolds)

- A manifold M is a strong Borel manifold if and only if S^{top}(M) consists of one element;
- A manifold M is a Borel manifold if and only if S^{top}(M)/ ho-aut_π(M) consists of one element.

Theorem (Ranicki)

There is an exact sequence of abelian groups called algebraic surgery exact sequence

$$\cdots \xrightarrow{\sigma_{n+1}} H_{n+1}(M; \mathbf{L}\langle 1 \rangle) \xrightarrow{A_{n+1}} L_{n+1}(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_{n+1}} \\ \mathcal{S}^{\mathrm{top}}(M) \xrightarrow{\sigma_n} H_n(M; \mathbf{L}\langle 1 \rangle) \xrightarrow{A_n} L_n(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_n} \cdots$$

It can be identified with the classical geometric surgery sequence due to Sullivan and Wall in high dimensions.

- *M* is strongly Borel $\Leftrightarrow A_{n+1}$ is surjective and A_n is injective.
- The Farrell-Jones Conjecture predicts for torsionfree π that

$$H_n(B\pi; \mathbf{L}) \xrightarrow{A_n} L_n(\mathbb{Z}\pi)$$

is bijective for $n \in \mathbb{Z}$.

Example

- Consider $M = S^k \times S^d$ for $k + d \ge 4$.
- Then $\pi_1(M)$ is trivial and the assembly map can be identified with

$$H_m(S^k \times S^d; \mathbf{L}\langle 1 \rangle) \to H_m(\mathsf{pt}; \mathbf{L}\langle 1 \rangle).$$

- $\mathcal{S}^{\text{top}}(\mathcal{S}^k \times \mathcal{S}^d) \cong \mathcal{H}_{k+d}(\mathcal{S}^k \times \mathcal{S}^d, \text{pt}; \mathbf{L}\langle 1 \rangle) \cong \mathcal{L}_d(\mathbb{Z}) \oplus \mathcal{L}_k(\mathbb{Z}).$
- Hence $S^k \times S^d$ is strongly Borel if and only if k and d are odd.
- To prove that S^k × S^d is Borel, one has to construct enough selfhomotopy equivalences of S^k × S^d.

Theorem (A necessary homological criterion for being Borel)

Let *M* be a Borel manifold and let $c: M \to B\pi$ be the classifying map. Then for every $i \ge 1$ with $\mathcal{L}(M)_i = 0$ the map

$$\boldsymbol{c}_* \colon H_{n-4i}(\boldsymbol{M};\mathbb{Q}) \to H_{n-4i}(\boldsymbol{B}\pi;\mathbb{Q})$$

is injective.

- This criterion is obviously empty for aspherical manifolds.
- Input in the proof: The image of $[f: N \rightarrow M]$ under the map

$$\mathcal{S}^{\mathsf{top}}(M) \xrightarrow{\sigma_n} H_n(M; \mathbf{L}\langle 1 \rangle) \to \bigoplus_{i \ge 1} H_{4i+n}(M; \mathbb{Q})$$

is

$$f_*(\mathcal{L}(N)\cap [N]) - \mathcal{L}(M)\cap [M].$$

Theorem (Sphere bundles over surfaces)

Let *K* be S^1 or a 2-dimensional manifold different from S^2 . Let $S^d \rightarrow E \rightarrow K$ be a fiber bundle over *K* for $d \ge 3$. Then *E* is a Borel manifold. It is a strong Borel manifold if and only if $K = S^1$.

Theorem (Sphere bundles over 3-manifolds)

Let *K* be an aspherical 3-dimensional manifold. Suppose that the Farrell-Jones Conjecture holds for $\pi_1(K)$. Let $S^d \to E \xrightarrow{p} K$ be a fiber bundle over *K* with orientable *E* such that $d \ge 4$ or such that d = 2,3 and there is a map $i: K \to E$ with $p \circ i \simeq id_K$. Then

- *E* is strongly Borel if and only if $H_1(K; \mathbb{Z}/2) = 0$;
- If $d = 3 \mod 4$ and $d \ge 7$, then $K \times S^d$ is Borel;
- If d = 0 mod 4 and d ≥ 8 and H₁(K; Z/2) ≠ 0, then K × S^d is not Borel.

Theorem (Chang-Weinberger)

Let M^{4k+3} be a manifold for $k \ge 1$ whose fundamental group has torsion.

Then there are infinitely many pairwise not homeomorphic smooth manifolds which are homotopy equivalent to M but not homeomorphic to M. In particular M is not Borel.

Theorem (Homology spheres)

Let *M* be a manifold of dimension $n \ge 5$ with fundamental group $\pi = \pi_1(M)$.

• Let M be an integral homology sphere. Then M is a strong simple Borel manifold if and only if

$$L^{s}_{n+1}(\mathbb{Z}) \xrightarrow{\cong} L^{s}_{n+1}(\mathbb{Z}\pi).$$

 Suppose that M is a rational homology sphere and Borel. Suppose that π satisfies the Novikov Conjecture. Then

 $H_{n+1-4i}(B\pi;\mathbb{Q})=0$

for $i \ge 1$ and $n + 1 - 4i \ne 0$.

Theorem (Another construction of strongly Borel manifolds)

Start with a strongly Borel manifold M of dimension $n \ge 5$. Choose an emdedding $S^1 \times D^{n-1} \to M$ which induces an injection on π_1 . Choose a high dimensional knot $K \subseteq S^n$ with complement X such that the inclusion $\partial X \cong S^1 \times S^{n-2} \to X$ induces an isomorphism on π_1 . Put

$$M'=M-(S^1\times D^{n-1})\cup_{S^1\times S^{n-2}}X.$$

Then M' is strongly Borel.

• If *M* is aspherical, then *M'* is in general not aspherical.

Problem (Classification of certain low-dimensional manifolds)

Classify up to orientation preserving homotopy equivalence, homeomorphism (or diffeomorphism in the smooth case) all manifolds in dimension $1 \le k < n \le 6$ satisfying:

- $\pi = \pi_1(M)$ is isomorphic to $\pi_1(K)$ for a manifold K of dimension $k \leq 2$.
- $\pi_2(M)$ vanishes.
- The case $\pi = \{1\}$ was already solved by Wall;
- In dimension ≤ 5 we give a complete answer in terms of the second Stiefel Whitney class.
- In dimension 6 we give in the Spin case a complete answer in terms of the equivariant intersection pairing of the universal covering.
- Such a manifold is never strongly Borel but always Borel.

In nearly all examples of Borel manifolds we have constructed — what we call — a *generalized topological space form*, i.e., manifolds *M*, whose universal covering *M* is contractibel or homotopy-equivalent to a wedge of *k*-spheres *S^k* for some 2 ≤ *k* < ∞.