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Abstract: We prove the following two conjectures of Gromov. Firstly, all L2-Betti numbers
of a manifold fibered over S1 are trivial. Secondly, the first L2-Betti number of a finitely presented
group Γ vanishes provided that Γ is an extension {1} −→ ∆ −→ Γ −→ π −→ {1} of finitely pre-
sented groups such that ∆ is infinite and π contains Z as a subgroup. We conclude for such a
group Γ that its deficiency is less than or equal to one and that any closed 4-manifold with Γ as
fundamental group satisfies χ(M) ≥ |σ(M)|.

0. Introduction

In his preprint [12, page 152 and page 156] Gromov states the following two conjectures:

Let a compact aspherical manifoldM be fibered over the circle S1. Then all L2-Betti numbers
bp(M) are trivial.

Let {1} −→ ∆ −→ Γ −→ π −→ {1} be an extension of infinite groups which are fundamental
groups of finite aspherical CW -complexes. Then the first L2-Betti number b1(Γ) is trivial.

We will give affirmative answers to these conjectures. The first conjecture follows
from Theorem 2.1 which states that all L2-Betti numbers bp(Tf ) of a mapping torus Tf of an
endomorphism f of a finite CW -complex F vanish. We prove in Theorem 4.1 for an extension
{1} −→ ∆ −→ Γ −→ π −→ {1} of finitely presented groups that the first L2-Betti number
b1(Γ) vanishes provided that ∆ is infinite and π contains Z as a subgroup. This implies
the second conjecture above. Let Γ be an infinite finitely presented group with trivial first
L2-Betti number b1(Γ). As applications we show in Theorem 5.1 that a closed 4-manifold
with Γ as fundamental group satisfies χ(M) ≥ |σ(M)| for χ(M) the Euler characteristic and
σ(M) the signature. This generalizes a result of Johnson and Kotschick [16]. We prove in
Theorem 6.1 that the deficiency of Γ satisfies def(Γ) ≤ 1.

L2-Betti numbers were introduced by Atiyah [1]. In Section 1 we recall their defini-
tions and basic properties from the topological point of view. They also have an analytic
meaning, namely, the p-th L2-Betti number of a closed Riemannian manifold measures the
size of the space of harmonic L2-integrable smooth p-forms of the universal covering [7]. For
general information and applications of L2-Betti numbers, and in particular of conditions
that determine when they vanish, the reader may refer for example to [1], [4], [5], [6],[7],[8],
[11],[12], [18], [19], [21] and [22].
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The paper is organized as follows:

1. Preliminaries concerning L2-Betti numbers
2. The vanishing of the L2-Betti numbers of a mapping torus
3. The first L2-Betti number of a total space of a fibration
4. Groups with vanishing first L2-Betti number
5. 4-manifolds satisfying χ(M) ≥ |σ(M)|
6. Deficiency of groups

1. Preliminaries concerning L2-Betti numbers

In this section we give the basic definitions and properties of L2-Betti numbers.

Let Γ be a countable group and l2(Γ) be the Hilbert space of square integrable formal
sums

∑
γ∈Γ λγγ with coefficients λγ ∈ C. The von Neumann algebra N (Γ) is the algebra

B(l2(Γ), l2(Γ))Γ of bounded operators from l2(Γ) −→ l2(Γ) which commute with the left
Γ-action on l2(Γ). The von Neumann trace tr(f) of an element f ∈ N (Γ) is the complex
number 〈f(e), e〉 where e ∈ Γ is the unit element. This extends to square matrices over
N (Γ) by taking the sum of the traces of the diagonal entries. A Hilbert N (Γ)-module is a
Hilbert space M together with a left Γ-action by unitary operators such that there exists an
isometric Γ-equivariant embedding into H ⊗ l2(Γ) for a separable Hilbert space H (which
is not part of the structure). We call M finitely generated if H can be chosen to be Cn

for some positive integer n. The von Neumann dimension dim(M) of a finitely generated
Hilbert N (Γ)-module M is the non-negative real number tr(pr) for any projection pr in
M(n, n,N (Γ)) = B(⊕ni=1l

2(Γ),⊕ni=1l
2(Γ))Γ whose image is isometrically Γ-isomorphic to M .

A weakly exact sequence 0 −→M
i−→ N

p−→ P −→ 0 of Hilbert N (Γ)-modules is a sequence
of bounded operators such that i is injective, the closure of the image of i is the kernel of p
and the closure of the image of p is P . Given such a sequence of finitely generated Hilbert
N (Γ)-modules, the relation dim(M)− dim(N) + dim(P ) = 0 holds. We have dim(M) = 0
precisely if M = {0}. A (finitely generated) Hilbert N (Γ)-chain complex C is a chain
complex of (finitely generated) Hilbert N (Γ)-modules with bounded Γ-equivariant operators
as differential. Its L2-homology is defined to be Hp(C) = ker(cp)/im(cp+1). Notice that one
divides by the closure of the image and not just by the image so that the L2-homology is not
ordinary homology. Now one can define the p-th L2-Betti number as bp(C) = dim(Hp(C))
provided that Hp(C) is finitely generated.

Let X be a CW -complex with finite d-skeleton and fundamental group π. Consider a
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group homomorphism φ : π −→ Γ. Let X̃ be the universal covering. For dimensions less
than or equal to d, define the finitely generated Hilbert Γ-chain complex C(X;φ∗l2(Γ)) by

l2(Γ)⊗Zπ C(X̃). Here the right π-action on l2(Γ) is induced by φ : π −→ Γ and the Hilbert

N (Γ)-structure comes from the identification of l2(Γ) ⊗Zπ Cp(X̃) with ⊕ni=1l
2(Γ) given by

a cellular Zπ-basis. The cellular basis is not unique and a different choice of cellular basis
will give a different identification. Since the two different identifications differ only by a
unitary Γ-equivariant operator, the Hilbert N (Γ)-module structure is independent of the
choice of cellular basis. The differentials in dimension less than or equal to d are bounded
Γ-equivariant operators. These considerations prompt the following

Definition 1.1 Let X be a CW -complex with finite d-skeleton and φ : π1(X) −→ Γ be a
homomorphism. Define for p < d the p-th L2-Betti number of X with coefficients in φ∗l2(Γ)
by

bp(X;φ∗l2(Γ)) = bp(C(X;φ∗l2(Γ))).

In case Γ = π1(X) and φ = id, we abbreviate this to read

bp(X) = bp(X; id∗l2(π1(X))).

If Bπ has finite d-skeleton we define for p < d

bp(π) = bp(Bπ).

The next lemma shows in particular that the definition of bp(π) for p < d is independent
of the choice of Bπ. Notice that a group π is finitely presented if and only if Bπ has finite
2-skeleton. Most of the claims of the next lemma are already in the literature provided X
and Y are finite and Γ = π and φ = id. We require this more general setup for Theorem 2.1
which is needed in its present form to prove Theorem 3.1 and Theorem 4.1.

Lemma 1.2 Let X and Y be CW -complexes having finite d-skeletons. Let φ : π1(Y ) −→ Γ
be a group homomorphism.

1. Suppose f : X −→ Y is s-connected for s ≥ 2. Then for p < min{s, d}

bp(X; (φ ◦ f∗)∗l2(Γ)) = bp(Y ;φ∗l2(Γ)).

If s < d, then
bs(X; (φ ◦ f∗)∗l2(Γ)) ≥ bs(Y ;φ∗l2(Γ)).

2. If Y has finite 2-skeleton, then for p = 0, 1

bp(π1(Y )) = bp(Y ).
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3. If i : Γ −→ Γ′ is injective, then for p < d

bp(Y ; (i ◦ φ)∗l2(Γ′)) = bp(Y ;φ∗l2(Γ)).

4. Let p : Y −→ Y be a n-sheeted finite covering. Denote by Γn ⊂ Γ the image of φ ◦ p∗
and by φn : π1(Y ) −→ Γn the induced map. If Γn has index n in Γ, then for p < d

bp(Y ;φ∗nl
2(Γn)) = n · bp(Y ;φ∗l2(Γ)).

In particular for p < d
bp(Y ) = n · bp(Y ).

5. Assume d ≥ 1. If the image of φ : π1(Y ) −→ Γ is finite of cardinality n, then

b0(Y ;φ∗l2(Γ)) =
1

n
.

Otherwise
b0(Y ;φ∗l2(Γ)) = 0.

and in particular

b0(π) =
1

|π|
.

6. If Y is a finite CW -complex, then

χ(Y ) =
∑
p≥0

(−1)p · bp(Y ;φ∗l2(Γ)).

Proof : 1.) In the sequel we write π = π1(Y ). Let f̃ : X̃ −→ Ỹ be a lift of f to the

universal coverings. The induced Zπ-chain map Zπ ⊗Zπ1(X) C(X̃) −→ C(Ỹ ) is s-connected.
Hence it suffices to show the following chain complex analogue (which we will use later):
Let f : C −→ D be a s-connected Zπ-chain map of free Zπ-chain complexes such that the
d-dimensional chain complexes obtained by truncating C|d and D|d are finitely generated.
Then we have bp(l

2(Γ)⊗ZπC) = bp(l
2(Γ)⊗ZπD) if p < min{s, d} and bs(C) ≥ bs(D) if s < d.

The strategy of the proof is precisely the same as in [19, Lemma 2.4, Theorem 2.5 and
Lemma 4.3] which we describe briefly. One extends f to a Zπ-chain homotopy equivalence
f ′ : C ′ −→ D such that C|s = C ′|s and C ′s+1 is finitely generated free if s < d. Obviously
bp(l

2(Γ)⊗Zπ C) = bp(l
2(Γ)⊗Zπ C ′) for p < min{s, d} and bs(l

2(Γ)⊗Zπ C) ≥ bs(l
2(Γ)⊗Zπ C ′)

for s < d. Hence it suffices to show bp(l
2(Γ)⊗Zπ C) = bp(l

2(Γ)⊗Zπ D) for p < d provided
f : C −→ D is a homotopy equivalence. We may assume that f is an inclusion with a free
contractible quotient D/C, otherwise substitute D by the mapping cylinder. The exact
sequence 0 −→ C −→ D −→ D/C −→ 0 splits yielding an isomorphism between D and C⊕
D/C. This reduces the claim to the assertion that bp(l

2(Γ) ⊗Zπ C) = 0 for p < d provided
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that C is contractible. This follows from the fact that C is a direct sum ⊕p≥1E(p) of free
Zπ-chain complexes E(p) such that E(p) is concentrated in dimensions p and p+ 1 and the
non-trivial differential is a Zπ-isomorphism.

2.) follows from 1.) applied to the classifying map Y −→ Bπ.

3.) follows from the elementary proof of [19, Lemma 4.6].

4.) In the sequel res denotes restriction for the subgroup π1(Y ) ⊂ π1(Y ) respectively Γn ⊂ Γ.
Define a bounded Γn-equivariant operator for p ≤ d

Ip : l2(Γn)⊗Zπ1(Y ) res(Cp(Ỹ )) −→ res
(
l2(Γ)⊗Zπ1(Y ) Cp(Ỹ )

)
u⊗ v 7→ u⊗ v.

This map is a well-defined Γn-equivariant isometry since Cp(Ỹ ) is finitely generated free and
π1(Y ) ⊂ π1(Y ) and Γn ⊂ Γ have the same finite index, namely n. As the collection Ip
is compatible with the differentials, C(Y ;φ∗nl

2(Γn)) and res (C(Y ;φ∗l2(Γ))) have the same
L2-Betti numbers over N (Γn) for p < d. Given a finitely generated Hilbert N (Γ)-module
M , we have dimN (Γn)(res(M)) = n · dimN (Γ)(M) since trN (Γn)(res(k)) = n · trN (Γ)(k) holds
for any bounded Γ-equivariant endomorphism k of ⊕li=1l

2(Γ). This establishes assertion 4.).

5.) We can assume by assertion 3.) that φ is surjective. Choose a set of generators s1, s2, . . . sg
for π. Then φ(s1), φ(s2), . . . φ(sg) is a set of generators for Γ. Moreover, C(Y ;φ∗l2(Γ)) is
given in dimension 1 and 0 by

⊕gi=1l
2(Γ)

⊕gi=1r(φ(si)− 1)
−→ l2(Γ)

where r(φ(si) − 1) is right multiplication with φ(si) − 1. Hence we can assume π = Γ and
φ = id. It remains to show b0(π) = 0 if π is infinite and b0(π) = 1/|π| if π is finite. This
follows from the observation that l2(π)π is zero for infinite π and C with the trivial π-action
for finite π.

6.) follows from the additivity of the von Neumann dimension under weakly exact sequences.

Finally we mention the following combinatorial way of computing b1(π) for a finitely
presented group π proved in [21]. Let 〈s1, . . . , sg|R1, . . . , Rr〉 be any finite presentation of π.
Let A be the (r, g−1)-matrix over Zπ given by the the Fox derivatives Ai,j = ∂Ri

∂sj
for 1 ≤ i ≤ r

and 1 ≤ j ≤ g−1.(The index j does not take the value g.) Define for u =
∑

w∈π λw · w ∈ Rπ
its RΓ-trace trRπ(u) = λe ∈ R if e is the unit element in π. This extends to a square
(n, n)-matrix B with entries in Rπ by putting trRπ(B) =

∑n
k=1 trRπ(bk,k). Let K be any

real number satisfying K ≥ ‖A‖ where ‖A‖ is the operator norm of the bounded operator
⊕ri=1l

2(π) −→ ⊕g−1
j=1l

2(π) induced by A. A possible choice is the product of
√
g − 1 and the

maximum of the word length of the relations Ri in terms of the sj. Denote by A∗ the matrix
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obtained from A by transposing and applying to each entry the involution on Rπ sending∑
w∈π λw · w to

∑
w∈π λw · w−1. Denote by (Ig−1 −K−2 · A∗A)

n
the n-fold product of the

square (g− 1, g− 1)-matrix (Ig−1 −K−2 · A∗A) for Ig−1 the unit matrix. Then the sequence
of non-negative real numbers trRπ (1−K−2 · A∗A)

n
is monotone decreasing and converges

for n→∞ to b1(π). In this context we mention Conjectures 9.1 and 9.2 in [19] which imply
for torsion-free π that b1(π) is an integer.

2. The vanishing of the L2-Betti numbers of a mapping torus

Given a self map f : F −→ F , its mapping cylinder Mf is obtained by gluing the bottom
of the cylinder F × [0, 1] to F by the identification (x, 0) = f(x). Its mapping torus Tf is
obtained from the mapping cylinder by identifying the top and the bottom by the identity.
If f is a homotopy equivalence Tf is homotopy equivalent to the total space of a fibration
over S1 with fiber F . Conversely, the total space of such a fibration is homotopy equivalent
to the mapping torus of the self homotopy equivalence of F given by the fiber transport with
a generator of π1(S1). The homotopy type of Tf depends only on the homotopy class of f .

Let L denote the colimit of the following system of groups indexed by the integers

. . .
π1(f)−→ π1(F )

π1(f)−→ π1(F )
π1(f)−→ . . .

Denote by i : π1(F ) −→ L the map at the group indexed by zero. The map i is bijective if
and only if π1(f) is an isomorphism. Let Z operate on L by shifting the sequence. Then
π1(Tf ) is the semidirect product of L and Z with respect to the operation above. Consider any
factorization of the canonical epimorphism π1(Tf ) −→ Z into a composition of epimorphisms

π1(Tf )
φ−→ Γ

ψ−→ Z. Denote by F the covering of F associated to the homomorphism
φ ◦ i : π1(F ) −→ ker(ψ) and by Tf be the covering of Tf associated to the epimorphism φ.
Let f : F −→ F be a lift of f . Then Tf is the mapping telescope of F infinite to both sides,
i.e., the identification space

Tf =
∐
n∈Z

F × [n, n+ 1]/ ∼

where the identification ∼ is given by (x, n+ 1) ∼ (f(x), n). The group of deck transforma-
tions Γ is a semidirect product of ker(ψ) and Z and acts in the obvious way. One easily checks
that the cellular ZΓ-chain complex of Tf is the mapping cone of the following ZΓ-chain map

ZΓ⊗Z[ker(ψ)] C(F ) −→ ZΓ⊗Z[ker(ψ)] C(F ) γ ⊗ u 7→ γ ⊗ u− γt⊗ C(f)(u)

where t is a lift of the generator of Z to Γ.

The next theorem implies a conjecture by Gromov in [12, page 152]. The case of a
manifold fibered over S1 has already been dealt with in [19, Theorem 4.10].
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Theorem 2.1 Let f : F −→ F be a self map of a connected CW -complex F with finite

d-skeleton for d ≥ 2. Let π1(Tf )
φ−→ Γ

ψ−→ Z be a factorization of the canonical map
π1(Tf ) −→ Z into epimorphisms. Then the mapping torus Tf has a CW -structure with
finite d-skeleton and for p < d

bp(Tf ;φ
∗l2(Γ)) = 0.

Proof : Let T nf be obtained from the n-fold mapping telescope of f by identifying the
bottom and top by the identity. In this notation T 1

f is just Tf . There is an obvious n-fold
covering p : T nf −→ Tf . Let Γn be the image of φ ◦ p∗ and denote by φn : π1(T nf ) −→ Γn the
induced map. Then Γn has index n in Γ. Lemma 1.2.4 implies for all integers p < d

bp(Tf ;φ
∗l2(Γ)) =

bp(T
n
f ;φ∗nl

2(Γn))

n
.

There is a homotopy equivalence g : Tfn −→ T nf . Hence we get

bp(Tfn ; (φn ◦ g∗)∗l2(Γn)) = bp(T
n
f ;φ∗nl

2(Γn)).

The mapping torus Tfn has a CW -structure such that its d-skeleton is finite and the number
of p-cells is cp−1 + cp where cp is the number of p-cells in F . Thus

bp(Tfn ; (φn ◦ g∗)∗l2(Γn)) ≤ cp−1 + cp.

We conclude

0 ≤ bp(Tf ;φ
∗l2(Γ)) ≤ cp−1 + cp

n
.

Taking the limit n→∞ proves the claim.

3. The first L2-Betti number of a total space of a fibration

In this section we prove

Theorem 3.1 Let F −→ E
p−→ B be a fibration of connected CW -complexes such that F

and B have finite 2-skeletons. Then E has finite 2-skeleton up to homotopy. If the image
of π1(F ) −→ π1(E) is infinite and π1(B) contains Z as subgroup, then the first L2-Betti
number of E

b1(E) = 0.
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The proof of Theorem 3.1 requires some preparations. Let F −→ E
p−→ B be a

fibration of connected CW -complexes. Denote π = π1(B), Γ = π1(E) and let ∆ be the image

of π1(F ) −→ π1(E). We obtain the group extension {1} −→ ∆ −→ Γ
p∗−→ π −→ {1}. The

pointed fiber transport is a homomorphism of monoids into the monoid of pointed homotopy
classes of pointed self maps of the fiber

σ : Γ −→ [F, F ]+.

We recall its definition. Let w : I −→ E be a loop at the base point e ∈ E. Put b = p(e)
and F = p−1(b) . Choose a solution h of the following lifting problem

Fb × {0} ∪ {e} × I
i ∪ w
−→ E

j

↓

h

�
�
�
�
�>

↓
p

F × I
p ◦ w ◦ prI

−→ B

where i and j are the obvious inclusions. Then σ assigns to the class w ∈ Γ the pointed
homotopy class of the map (F, e) −→ (F, e) sending x to h(x, 1).

Let F −→ F be the connected covering of F with ∆ as group of deck transformations.
Let c(γ) : ∆ −→ ∆ send δ to γδγ−1 for γ ∈ Γ. A representative of σ(γ) lifts to a c(γ)-
equivariant (pointed) self map of F . Its c(γ)-equivariant (free) homotopy class denoted
by σ(γ) depends only on γ. Given w ∈ π, denote by w ∈ Γ some element satisfying
p∗(w) = w. Define a ZΓ-chain map U(w) : ZΓ⊗∆ C(F ) −→ ZΓ⊗∆ C(F ) by sending γ ⊗ x
to γw⊗C(σ(w(−1)))(x). The ZΓ-chain homotopy class of U(w) is independent of the choice
of w and of the representative of σ(w(−1)) and hence depends only on w. This follows from
the fact that a representative for σ(δ) for δ ∈ ∆ is given by left multiplication with δ on F .
For u =

∑
γ∈π λγγ ∈ Zπ define U(u) by

∑
γ∈π λγU(γ). Then the ZΓ-chain homotopy classes

of U(v) ◦ U(u) and U(uv) agree and U(1) = id. Hence we have constructed an algebra
homomorphism

U : Zπ −→ [ZΓ⊗Z∆ C(F ),ZΓ⊗Z∆ C(F )]opZΓ

into the opposite (reverse multiplication) of the algebra of ZΓ-chain homotopy classes of
ZΓ-chain self maps of ZΓ⊗Z∆C(F ). This is called chain homotopy presentation of the given
fibration. For more information and (elementary) proofs of some of the claims above we
refer to [20, section 1 and 6].

As ZΓ is free over Z∆ the natural ZΓ-map S1 : ZΓ⊗Z∆H∗(C(F )) −→ H∗(ZΓ⊗Z∆C(F ))
is bijective. The ZΓ-isomorphism S2 : ZΓ ⊗∆ H∗(C(F )) −→ Zπ ⊗Z H∗(C(F )) sends γ ⊗ x
to p∗(γ)⊗H∗(C(σ(γ)))(x) where γ ∈ Γ acts on Zπ by left multiplication with p∗(γ) ∈ π, on
H∗(C(F )) by H∗(σ(γ)) and diagonally on Zπ ⊗Z H∗(C(F )). Define the ZΓ-isomorphism

S : H∗(ZΓ⊗Z∆ C(F )) −→ Zπ ⊗Z H∗(C(F ))
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by S = S2 ◦ S−1
1 .

Lemma 3.2 Given u ∈ Zπ, let r(u) : Zπ −→ Zπ be right multiplication with u. The
following diagram commutes

H∗(ZΓ⊗Z∆ C(F ))
H∗(U(u))

−→ H∗(ZΓ⊗Z∆ C(F ))

S

↓ ↓

S

Zπ ⊗Z H∗(C(F ))
r(u)⊗ id

−→ Zπ ⊗Z H∗(C(F ))

and has isomorphisms as vertical arrows.

Proof of Theorem 3.1: Choose a set of generators s1, . . . , sg of π such that the cyclic
subgroup 〈s1〉 generated by s1 is infinite. The following sequence is exact

⊕gi=1Zπ
⊕gi=1r(1− si)

−→ Zπ
ε−→ Z −→ {0}

where Z here and in the sequel carries always the trivial ∆-,Γ-, respectively, π-action and the
augmentation ε sends

∑
w∈π λww to

∑
w∈π λw. As H0(C(F )) is ZΓ-isomorphic to Z, Lemma

3.2 proves the exactness of the sequence of ZΓ-modules

⊕gi=1H0(ZΓ⊗Z∆ C(F ))
⊕gi=1H0(U(1− si))

−→ H0(ZΓ⊗Z∆ C(F )) −→ Z −→ {0}.

Let cone(f) denote the mapping cone of a chain map f . We derive from the long homology

sequence that H0(cone(⊕gi=1U(1 − si))) is ZΓ-isomorphic to Z. Let Ẽ be the universal
covering of E. For a chain complex C let C|2 be the 2-dimensional chain complex obtained by

truncating C. Notice that C(Ẽ)|2 is a 2-dimensional ZΓ-chain complex such that H1(C(Ẽ)|2)

is trivial and H0(C(Ẽ)|2) is Z and that cone(⊕gi=1U(1−si)) is a free ZΓ-chain complex. Hence

there is a ZΓ-chain map f : cone(⊕gi=1U(1− si))|2 −→ C(Ẽ)|2 inducing the identity on H0.
Since f is 1-connected, we conclude from the proof of Lemma 1.2.1

b1(l2(Γ)⊗ZΓ cone(⊕gi=1U(1− si))) ≥ b1(l2(Γ)⊗ZΓ C(Ẽ)) = b1(E).

There is an obvious exact sequence of ZΓ-chain complexes
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0 −→ cone(U(1− s1)) −→ cone(⊕gi=1U(1− si)) −→ ⊕gi=2Σ
(
ZΓ⊗Z∆ C(F )

)
−→ 0

where Σ denotes the suspension. It induces the weakly exact sequence in L2-homology [4,
Theorem 2.1 on page 10]

H1(l2(Γ)⊗ZΓ cone(U(1− s1))) −→ H1(l2(Γ)⊗ZΓ cone(⊕gi=1U(1− si)))
−→ H1

(
l2(Γ)⊗ZΓ ⊕gi=2Σ

(
ZΓ⊗Z∆ C(F )

))
.

Clearly H1

(
l2(Γ)⊗ZΓ Σ

(
ZΓ⊗Z∆ C(F )

))
agrees with the L2-homology H0(F, (j ◦ l)∗l2(Γ))

where j : ∆ −→ Γ is the inclusion and l : π1(F ) −→ ∆ is the obvious surjection. This L2-
homology group vanishes by Lemma 1.2.5 as ∆ is infinite. This implies

b1(l2(Γ)⊗ZΓ cone(U(1− s1))) ≥ b1(l2(Γ)⊗ZΓ cone(⊕gi=1U(1− si)))

and hence
b1(l2(Γ)⊗ZΓ cone(U(1− s1))) ≥ b1(E).

Therefore it remains to show b1(l2(Γ) ⊗ZΓ cone(U(1 − s1))) = 0. Let Γ′ be the subgroup
of Γ generated by ∆ and s1 ∈ Γ. Define U ′(1− s1) : ZΓ′ ⊗Z∆ C(F ) −→ ZΓ′ ⊗Z∆ C(F ) by
mapping γ′ ⊗ x to γ′ ⊗ x− γ′s1 ⊗ C(σ(s1

(−1)))(x). Then U(1−s1) is obtained from U ′(1−s1)
by induction with the inclusion of groups i : Γ′ −→ Γ. This implies

b1(l2(Γ)⊗ZΓ′ cone(U
′(1− s1))) = b1(l2(Γ)⊗ZΓ cone(U(1− s1))).

Let Tσ(s1) be the mapping torus of σ(s1) : F −→ F . (Notice that the free homotopy class
of σ(s1) and hence the homotopy type of Tσ(s1) depend only on s1 ∈ π.) The obvious map

π1(Tσ(s1)) −→ Z factorizes into the composition of epimorphisms π1(Tσ(s1))
φ′−→ Γ′ −→ Z.

We get from Section 2 that cone(U ′(1−s1)) is the ZΓ′-chain complex of the covering of Tσ(s1)

associated to φ′. So we get

b1(l2(Γ)⊗ZΓ′ cone(U
′(1− s1))) = b1(Tσ(s1); (i ◦ φ′)∗l2(Γ)).

This finishes the proof of Theorem 3.1 since

b1(Tσ(s1); (i ◦ φ′)∗l2(Γ)) = b1(Tσ(s1); (φ′)∗l2(Γ′)) = 0

follows from Lemma 1.2.3 and Theorem 2.1.

4. Groups with vanishing first L2-Betti number
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In this section we give criteria for the triviality of the first L2-Betti number of a finitely
presented group π. The next theorem answers a query by Gromov [12, page 154].

Theorem 4.1 Let {1} −→ ∆ −→ Γ −→ π −→ {1} be an extension of finitely presented
groups. Suppose that ∆ is infinite and π contains Z as a subgroup. Then the first L2-Betti
number of Γ

b1(Γ) = 0.

Proof : Apply Theorem 3.1 to the fibration of classifying spaces B∆ −→ BΓ −→ Bπ.

We mention that there are counterexamples to the so called Burnside problem, namely,
infinite finitely generated groups which do not contain Z as a subgroup. At of this writing
the author does not know of an example of a infinite finitely presented group which does not
contain Z as a subgroup.

We call a prime 3-manifold exceptional if it is closed and no finite cover of it is homotopy
equivalent to a Haken, Seifert or hyperbolic 3-manifold. No exceptional prime 3-manifolds
are known, and standard conjectures (Thurston geometrization conjecture, Waldhausen con-
jecture) imply that there are none. The next theorem follows from [19, Corollary 7.7].

Theorem 4.2 Let π be the fundamental group of a prime 3-manifold M . Suppose either
that ∂M is a union of tori or that M is closed and not exceptional. Then

b1(π) = 0.

Next we investigate closed 4-manifolds with a geometric structure in the sense of
Thurston and compute their L2-Betti numbers. Note that bp(M) = b4−p(M) holds for such
a manifold by Poincaré duality [19, Proposition 4.2]. The descriptions of the geometries and
the computations of the Euler characteristics and signatures can be found in [24, Table 1 on
page 122 and Theorem 6.1 on page 135] with a correction in [17].

Theorem 4.3 Let M be a closed orientable 4-manifold with a geometry in the sense of
Thurston and fundamental group π. Then the following are the values of the L2-Betti num-
bers bp, the Euler characteristics χ and the signatures σ of M

11



geometry b0 = b4 b1 = b3 b2 χ σ

S4 1
|π| 0 0 2

|π| 0

S2 × S2 1
|π| 0 2

|π|
4
|π| 0

P 2(C) 1 0 1 3 1
S2 × R2 0 0 0 0 0

S2 ×H2 0 −χ(M)
2

0 < 0 0
R

4 0 0 0 0 0
R

2 ×H2 0 0 0 0 0
H

2 ×H2 0 0 χ(M) > 0 0
S3 × R1 0 0 0 0 0
H

3 × R 0 0 0 0 0

S̃L2 × R 0 0 0 0 0
Nil3 × R 0 0 0 0 0
Nil4 0 0 0 0 0
Sol4m,n 0 0 0 0 0
Sol40 0 0 0 0 0
Sol41 0 0 0 0 0
H

2(C) 0 0 χ(M) χ = 3σ > 0
H

4 0 0 χ(M) > 0 0

In particular b1(M) = b1(π) = 0 in all cases except S2 ×H2.

Proof : We first give the proofs of the statements of the L2-Betti numbers. Recall from
Lemma 1.2.6 that χ(M) = 2b0(M)−b1(M)+b2(M) holds. The fundamental group π is finite

if and only if the underlying manifold of the geometry is compact. If M̃ is the universal

covering and π is finite, then bp(M) = bp(fM)

|π| from Lemma 1.2.4. Now the claim follows

for S4, S2 × S2 and P 2(C). If M and N have the same geometry X , then bp(M) = 0 is
equivalent to bp(N) = 0 since bp(M) = 0 is equivalent to the fact that X has no harmonic
smooth L2-integrable p-forms [7]. Hence it suffices to check bp(M) = 0 for one example
of a manifold with a given geometry. Suppose the geometry is a product of two lower
dimensional geometries. Then such an example is given by a product of two surfaces or of
S1 with a 3-manifold. The L2-Betti numbers for a closed orientable surfaces Fg of genus
g ≥ 1 are b0(Fg) = b2(Fg) = 0 and b1(Fg) = 2g − 2 and the L2-Betti numbers of S1 are zero
[19, Example 4.11]. Using the Künneth formula for L2-cohomology [22, Theorem 3.16] one
obtains the claim for all these cases. Suppose the geometry is Nil4, Sol40, Sol41 or Sol4m,n.
Then an example for M can be constructed which fibers over S1. For such a space all L2-
Betti numbers are trivial by Theorem 2.1. One can also argue that the fundamental group of
a manifold carrying such a geometry contains a normal infinite amenable subgroup and refer
to [6, Theorem 0.2]. In the case X = H4, we get b1(M) = b0(M) = 0 and b2(M) = χ(M) > 0
from [8]. If M carries a H2(C)-geometry, then M is Kähler hyperbolic in the sense of [11]

12



and we derive bp(M) = 0 for p = 0, 1 from [11].

The statements about the Euler characteristic and the signature follow in the cases
where all L2-Betti numbers are trivial from the L2-signature theorem [1] and in the cases
where the geometry is compact from the multiplicativity of Euler characteristic and signature
under finite coverings. The remaining cases are S2 ×H2, H2 ×H2, H4 and H2(C). Because
of the Hirzebruch proportionality principle [15] it suffices to check the examples S2×Fg and
Fg×Fg for some g ≥ 2. In the cases S2×H2 and H2×H2 and one gets χ(M) = t ·χ(S4) and
σ(M) = t·σ(S4) ifM carries aH4-structure and χ(M) = s·χ(P 2(C)) and σ(M) = s·σ(P 2(C))
if M carries a H2(C)-structure for some non-zero constants t and s. From this the claim
follows.

5. 4-manifolds satisfying χ(M) ≥ |σ(M)|

Theorem 5.1 Let M be a closed oriented 4-manifold with fundamental group π. If b1(π) =
0, then the following inequality for the Euler characteristic and the signature holds

χ(M) ≥ |σ(M)|.

Proof : According to the L2-signature theorem (see [1]), the signature σ(M) is the dif-
ference of the von Neumann dimensions of two complementary subspaces of the second
L2-cohomology H2(M ; l2(π)) of M . This implies

|σ(M)| ≤ dimN (π)(H
2(M ; l2(π))) = dimN (π)(H2(M ; l2(π))) = b2(M).

Since b4(M) = b0(M) and b3(M) = b1(M) by Poincaré duality [19, Proposition 4.2] and
b1(M) = 0 by assumption holds, we conclude χ(M) = b2(M) + 2 · b0(M) from Lemma 1.2.6
and the claim follows.

This Theorem 5.1 together with Theorems 4.1, 4.2 and 4.3 generalizes respectively
reproves results of [16] (see also [25]). In [16] it is shown among other things that the
inequality in Theorem 5.1 holds if π is an extension of a finitely generated group ∆ and the
integers Z. (We have to assume that ∆ is finitely presented). If a connected closed oriented
4-manifold has a geometric structure in the sense of Thurston, then it is pointed out in [16]
that inspecting the 18 different cases using the results in [24] and the correction in [17] shows
that the inequality in Theorem 5.1 holds for M provided the geometry is not S2 × H2. A
simple proof can be found in [16] that the inequality above holds if π satisfies 3-dimensional
oriented Poincaré duality. If π is infinite amenable, b1(π) vanishes by [6, Theorem 0.2] and
Theorem 5.1 applies (see also [9]). For further information on lower bounds on the Euler
characteristic of a closed 4-manifold we refer to [13].
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6. Deficiency of groups

The deficiency of a finitely presented group π is the maximum over all differences g− r
where g respectively r is the number of generators respectively relations of a presentation of
π.

Theorem 6.1 Let π be a finitely presented group.

1. If Bπ has finite 3-skeleton, then

def(π) ≤ 1− b0(π) + b1(π)− b2(π).

2. def(π) ≤ 1− b0(π) + b1(π).

3. If b1(π) = 0, then
def(π) ≤ 1.

Proof : Given a presentation with r relations and g generators, let X be the corresponding
connected 2-dimensional CW -complex with fundamental group isomorphic to π which has
precisely one cell of dimension 0, g cells of dimension 1 and r cells of dimension 2. Since the
classifying map X −→ Bπ is 2-connected, we conclude from Lemma 1.2 that

1− g + r = χ(X) = b0(X)− b1(X) + b2(X) ≥ b0(π)− b1(π) + b2(π)

from which assertion 1.) follows. Assertion 2.) is proven similiarly and does imply assertion
3.).

From Theorem 4.1 and Theorem 6.1.3. we obtain

Corollary 6.2 Let {1} −→ ∆ −→ Γ −→ π −→ {1} be an extension of finitely presented
groups. Suppose that ∆ is infinite and π contains Z as a subgroup. Then

def(Γ) ≤ 1.

If π is finite, we rediscover from Theorem 6.1.1 the well-known fact that def(π) ≤ 0.
The inequality in Theorem 6.1.1 is obviously sharp and def(π) = 1 − χ(Bπ) if Bπ is a
finite 2-dimensional CW -complex. If π is a torsion-free one-relator group, the 2-dimensional
CW -complex associated with the presentation is aspherical and hence Bπ is 2-dimensional
[23, chapter III §§9 -11]. We conjecture for a torsion-free group having a presentation with
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g ≥ 2 generators and one non-trivial relation that b2(π) = 0 and b1(π) = def(π)− 1 = g − 2
holds (compare [12, page 156]). This would follow from [19, Conjecture 9.2] saying that the
L2-Betti numbers of a finite CW -complex with torsion-free fundamental groups are integers.
Namely, the kernel of the second differential of the L2-chain complex of Bπ is a proper
submodule of l2(π) so that its dimension b2(π) is less than one.

The L2-homological test for the deficiency described in Theorem 6.1 is useful in the
situation considered in Corollary 6.2 where the corresponding tests using homology with Z/p-
coefficients appears insufficient. However, in other situations homology with Z/p-coefficients
seems to be more useful than L2-homology as illustrated by the following result which is a
direct consequence of [10, Theorem 2.5]

Theorem 6.3 Let M be a compact 3-manifold with fundamental group π and prime decom-
position

M = M1]M2] . . . ]Mr.

Let s(M) be the number of prime factors Mi with non-empty boundary and t(M) be the num-
ber of prime factors which are S2-bundles over S1. Denote by χ(M) the Euler characteristic.
Then

def(π1(M)) = dimZ/2(H1(π; Z/2))− dimZ/2(H2(π; Z/2)) = s(M) + t(M)− χ(M).

Let M be a compact irreducible 3-manifold with infinite fundamental group. Any
such manifold is aspherical by the Sphere Theorem [14, page 40]. It follows from Theorem
6.3 that def(π1(M)) is 1 − χ(M) if ∂M is not empty and is zero if ∂M is empty. Thus
1− b0(M) + b1(M)− b2(M) = 1− χ(M) since b3(M) = 0 holds by [19, Lemma 4.5]. Hence
we rediscover Theorem 6.3 in the case ∂M 6= ∅ from our L2-homological test in Theorem
6.1. However, if M is closed, the inequality in Theorem 6.1.1 is not sharp.

Finally we mention the in a certain sense complementary result [3, Theorem 2]. If
π is a finitely presented group with def(π) ≥ 2, then π can be written as an amalgamated
product π = A ∗C B where A, B and C are finitely generated, C is proper subgroup of both
A and B and has index greater than two in A or B. In particular π contains a free subgroup
of rank 2 and is not amenable. This implies that an amenable finitely presented group has
deficiency less or equal to one (see also [2] and [9]). This also follows from Theorem 6.1.3
and the fact that b1(π) = 0 for a finitely presented amenable group [6, Theorem 0.2].
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