“L2-Betti numbers of mapping tori and groups”

by
Wolfgang Liick

Abstract: We prove the following two conjectures of Gromov. Firstly, all L?-Betti numbers
of a manifold fibered over S' are trivial. Secondly, the first L2-Betti number of a finitely presented
group I' vanishes provided that I' is an extension {1} — A — I' — 7m — {1} of finitely pre-
sented groups such that A is infinite and 7 contains Z as a subgroup. We conclude for such a
group I' that its deficiency is less than or equal to one and that any closed 4-manifold with I" as
fundamental group satisfies x (M) > |o(M)].

0. Introduction

In his preprint [12, page 152 and page 156] Gromov states the following two conjectures:

Let a compact aspherical manifold M be fibered over the circle S*. Then all L2-Betti numbers
b,(M) are trivial.

Let {1} — A — I' — m — {1} be an extension of infinite groups which are fundamental
groups of finite aspherical C'W-complexes. Then the first L?-Betti number b;(T) is trivial.

We will give affirmative answers to these conjectures. The first conjecture follows
from Theorem 2.1 which states that all L2-Betti numbers b,(7}) of a mapping torus T of an
endomorphism f of a finite CW-complex F' vanish. We prove in Theorem 4.1 for an extension
{1} — A — T — 7 — {1} of finitely presented groups that the first L*-Betti number
b1(I") vanishes provided that A is infinite and 7 contains Z as a subgroup. This implies
the second conjecture above. Let I" be an infinite finitely presented group with trivial first
L*-Betti number b;(T"). As applications we show in Theorem 5.1 that a closed 4-manifold
with T" as fundamental group satisfies x (M) > |o(M)| for x(M) the Euler characteristic and
o(M) the signature. This generalizes a result of Johnson and Kotschick [16]. We prove in
Theorem 6.1 that the deficiency of I' satisfies def(I') < 1.

L?-Betti numbers were introduced by Atiyah [1]. In Section 1 we recall their defini-
tions and basic properties from the topological point of view. They also have an analytic
meaning, namely, the p-th L?-Betti number of a closed Riemannian manifold measures the
size of the space of harmonic L%-integrable smooth p-forms of the universal covering [7]. For
general information and applications of L2-Betti numbers, and in particular of conditions
that determine when they vanish, the reader may refer for example to [1], [4], [5], [6],]7],[8],
[11],[12], [18], [19], [21] and [22].
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The paper is organized as follows:

Preliminaries concerning L?-Betti numbers

The vanishing of the L2-Betti numbers of a mapping torus
The first L2-Betti number of a total space of a fibration
Groups with vanishing first L2-Betti number

4-manifolds satisfying (M) > |o(M)]

Deficiency of groups

A

1. Preliminaries concerning L?-Betti numbers

In this section we give the basic definitions and properties of L2-Betti numbers.

Let ' be a countable group and [*(T") be the Hilbert space of square integrable formal
sums ) A,y with coefficients A, € C. The von Neumann algebra N(T') is the algebra
B(I*(T"), I*(T"))" of bounded operators from [*(I') — [*(T") which commute with the left
[-action on (?(T"). The von Neumann trace tr(f) of an element f € N(I') is the complex
number (f(e),e) where e € I" is the unit element. This extends to square matrices over
N(T') by taking the sum of the traces of the diagonal entries. A Hilbert N'(T')-module is a
Hilbert space M together with a left I'-action by unitary operators such that there exists an
isometric T-equivariant embedding into H ® [2(T") for a separable Hilbert space H (which
is not part of the structure). We call M finitely generated if H can be chosen to be C"
for some positive integer n. The von Neumann dimension dim(M) of a finitely generated
Hilbert A/ (T')-module M is the non-negative real number tr(pr) for any projection pr in
M(n,n, N (') = B(®r*(T'), ®™,1*(T"))" whose image is isometrically I'-isomorphic to M.
A weakly exact sequence 0 — M —— N -2 P — 0 of Hilbert A/(I")-modules is a sequence
of bounded operators such that 7 is injective, the closure of the image of 7 is the kernel of p
and the closure of the image of p is P. Given such a sequence of finitely generated Hilbert
N (I')-modules, the relation dim(M) — dim(N) + dim(P) = 0 holds. We have dim(M) =0
precisely if M = {0}. A (finitely generated) Hilbert N (T')-chain complex C' is a chain
complex of (finitely generated) Hilbert N'(T")-modules with bounded I'-equivariant operators
as differential. Tts L?-homology is defined to be H,(C') = ker(c,)/im(cp11). Notice that one
divides by the closure of the image and not just by the image so that the L?-homology is not
ordinary homology. Now one can define the p-th L?-Betti number as b,(C') = dim(H,(C))
provided that H,(C) is finitely generated.

Let X be a C'W-complex with finite d-skeleton and fundamental group w. Consider a
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group homomorphism ¢ : 7 — I'. Let X be the universal covering. For dimensions less
than or equal to d, define the finitely generated Hilbert I'-chain complex C(X; ¢*I*(T)) by
12(I') ®z C(X). Here the right m-action on [2(I') is induced by ¢ : # — I’ and the Hilbert
N (I')-structure comes from the identification of 12(I') @z, C,(X) with @ ,1%(T) given by
a cellular Zm-basis. The cellular basis is not unique and a different choice of cellular basis
will give a different identification. Since the two different identifications differ only by a
unitary I-equivariant operator, the Hilbert A/(T')-module structure is independent of the
choice of cellular basis. The differentials in dimension less than or equal to d are bounded
[-equivariant operators. These considerations prompt the following

Definition 1.1 Let X be a CW -complex with finite d-skeleton and ¢ : m(X) — T be a
homomorphism. Define for p < d the p-th L?-Betti number of X with coefficients in ¢*1?(T")

by
bp(X:6"1*(T)) = by(C(X;6"1*(I))).
In case I' = m(X) and ¢ = id, we abbreviate this to read
by(X) = b,y(X;id* 1P (1 (X))).
If B has finite d-skeleton we define for p < d

by(m) = b,(B). |

The next lemma shows in particular that the definition of b,(7) for p < dis independent
of the choice of Bwr. Notice that a group 7 is finitely presented if and only if Bx has finite
2-skeleton. Most of the claims of the next lemma are already in the literature provided X
and Y are finite and ' = 7w and ¢ = ¢d. We require this more general setup for Theorem 2.1
which is needed in its present form to prove Theorem 3.1 and Theorem 4.1.

Lemma 1.2 Let X and Y be CW -complexes having finite d-skeletons. Let ¢ : m(Y) — T’
be a group homomorphism.

1. Suppose f: X — Y is s-connected for s > 2. Then for p < min{s, d}

bp(X (¢ 0 fu) (D)) = by (Y ¢71(I)).

If s < d, then
bs(X; (@0 f) (D)) = bs(Y; 9" 1%(T)).

2. If Y has finite 2-skeleton, then for p=0,1

bp(m(Y)) = bp(Y').



3. If i : ' — 1" is injective, then for p < d
bp(Y5 (1 0 9) (1)) = by (Y5 ¢"1*(T)).

4. Letp:Y — Y be a n-sheeted finite covering. Denote by I',, C T’ the image of ¢ o p,
and by ¢y, : m(Y) — T, the induced map. If T',, has index n in T', then for p < d

bp(Y; @1 (Tn)) = m- by(Y; 67 1(I0)).

In particular for p < d
b(Y)=mn-b,(Y).

5. Assume d > 1. If the image of ¢ : m(Y) — T is finite of cardinality n, then

bo(¥: 6" (T)) =

Otherwise
bo<Y§ ¢*l2(F)) = 0.

and in particular

6. If Y is a finite CW -complex, then

X(Y) =) (=17 - by (Y: (D))

p=>0

Proof : 1.) In the sequel we write 7 = m(Y). Let f: X — Y be alift of f to the

universal coverings. The induced Zm-chain map Z7w ®z., (x) C ()} ) —C (}7) is s-connected.
Hence it suffices to show the following chain complex analogue (which we will use later):
Let f: C — D be a s-connected Zmn-chain map of free Zm-chain complexes such that the
d-dimensional chain complexes obtained by truncating C|; and D|,; are finitely generated.

Then we have b,(I*(T') @z, C') = b,(I*(T') ®z, D) if p < min{s, d} and bs(C') > bs(D) if s < d.

The strategy of the proof is precisely the same as in [19, Lemma 2.4, Theorem 2.5 and
Lemma 4.3] which we describe briefly. One extends f to a Zmr-chain homotopy equivalence
f':C" — D such that C|; = C'|; and C.,, is finitely generated free if s < d. Obviously
b,(I*(T) @z, C) = b,(I*(T") @z, C") for p < min{s,d} and bs(1*(T") ®z C) > bs(I*(T") ®z. C")
for s < d. Hence it suffices to show b,(I*(T') ®z, C) = b,(I*(T') ®z, D) for p < d provided
f:C — D is a homotopy equivalence. We may assume that f is an inclusion with a free
contractible quotient D/C, otherwise substitute D by the mapping cylinder. The exact
sequence 0 — C' — D — D/C — 0 splits yielding an isomorphism between D and C' @
D/C'. This reduces the claim to the assertion that b,(I*(I') ®z, C') = 0 for p < d provided
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that C' is contractible. This follows from the fact that C is a direct sum @&,>1E(p) of free
Zm-chain complexes F(p) such that E(p) is concentrated in dimensions p and p + 1 and the
non-trivial differential is a Zmr-isomorphism.

2.) follows from 1.) applied to the classifying map Y — Br.

3.) follows from the elementary proof of [19, Lemma 4.6].
4.) In the sequel res denotes restriction for the subgroup 71(Y) C 71 (Y) respectively I',, C T.
Define a bounded I',,-equivariant operator for p < d

I (L) @5 res(Cy(V)) — res (B(T) @zm ) Co(Y)) UBV U,

This map is a well-defined I',-equivariant isometry since C’,,()N/) is finitely generated free and
m(Y) C m(Y) and T, C T have the same finite index, namely n. As the collection I,
is compatible with the differentials, C(Y; ¢%1?(T',,)) and res (C(Y; ¢*12(T'))) have the same
L2-Betti numbers over N(T',,) for p < d. Given a finitely generated Hilbert A/(T")-module
M, we have dimyr,)(res(M)) = n - dimp (M) since traqr,)(res(k)) = n - trary(k) holds
for any bounded I'-equivariant endomorphism & of @&!_,I2(T"). This establishes assertion 4.).

5.) We can assume by assertion 3.) that ¢ is surjective. Choose a set of generators s1, s, ... s,
for . Then ¢(s1), ¢(s2),...d(s,) is a set of generators for I'. Moreover, C(Y;¢*1*(T)) is
given in dimension 1 and 0 by

Di_yr(d(si) — 1)
@, *(T) I*(T)

where r(¢(s;) — 1) is right multiplication with ¢(s;) — 1. Hence we can assume m = I" and
¢ =id. It remains to show by(w) = 0 if 7 is infinite and bo(7) = 1/|n| if 7 is finite. This
follows from the observation that [*(7)™ is zero for infinite 7 and C with the trivial 7-action
for finite 7.

6.) follows from the additivity of the von Neumann dimension under weakly exact sequences.
|

Finally we mention the following combinatorial way of computing b;(7) for a finitely
presented group 7 proved in [21]. Let (sq1,...,s4|R1,..., R,) be any finite presentation of 7.
Let A be the (r, g—1)-matrix over Zr given by the the Fox derivatives A; ; = 81;? forl <i<r
and 1 < j < g—1.(The index j does not take the value g.) Define for u =3 . Ay -w € Rm
its R -trace trr.(u) = Ae € R if e is the unit element in 7. This extends to a square
(n,n)-matrix B with entries in R by putting trg.(B) = Y ,_; trre(brx). Let K be any
real number satisfying K > || A|| where || A|| is the operator norm of the bounded operator

() — @92113() induced by A. A possible choice is the product of /g — 1 and the
maximum of the word length of the relations R; in terms of the s;. Denote by A* the matrix
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obtained from A by transposing and applying to each entry the involution on Rz sending
> wen Aw - w to Yo A, -wt. Denote by (I;_y — K2+ A*A)" the n-fold product of the
square (g — 1,9 — 1)-matrix (I,_; — K%+ A*A) for I, ; the unit matrix. Then the sequence
of non-negative real numbers trg, (1 — K2 A*A)" is monotone decreasing and converges
for n — oo to by(7). In this context we mention Conjectures 9.1 and 9.2 in [19] which imply
for torsion-free 7 that by () is an integer.

2. The vanishing of the L?Betti numbers of a mapping torus

Given aself map f : F' — F', its mapping cylinder My is obtained by gluing the bottom
of the cylinder F' x [0, 1] to F' by the identification (x,0) = f(x). Its mapping torus T is
obtained from the mapping cylinder by identifying the top and the bottom by the identity.
If f is a homotopy equivalence T is homotopy equivalent to the total space of a fibration
over S with fiber F. Conversely, the total space of such a fibration is homotopy equivalent
to the mapping torus of the self homotopy equivalence of F' given by the fiber transport with
a generator of m(S'). The homotopy type of T} depends only on the homotopy class of f.

Let L denote the colimit of the following system of groups indexed by the integers

m1(f) m1(f) m1(f)

7T1(F 7T1(F

Denote by i : m(F) — L the map at the group indexed by zero. The map i is bijective if
and only if 7 (f) is an isomorphism. Let Z operate on L by shifting the sequence. Then
m1(T) is the semidirect product of L and Z with respect to the operation above. Consider any
factorization of the canonical epimorphism 7 (7)) — Z into a composition of epimorphisms

1 (1) <%, T % Z. Denote by F the covering of F associated to the homomorphism
poi:m(F)— ker(y) and by Tf be the covering of T} associated to the epimorphism ¢.
Let f: F — F be a lift of f. Then Ty is the mapping telescope of F infinite to both sides,
i.e., the identification space
T = fo [n,n+ 1]/ ~
neZ
where the identification ~ is given by (2,1 + 1) ~ (f(x),n). The group of deck transforma-
tions I' is a semidirect product of ker(¢)) and Z and acts in the obvious way. One easily checks
that the cellular ZI'-chain complex of Tf is the mapping cone of the following ZI'-chain map

LI @zjer(wy) C(F) — LI @zpper(wy) C(F) 7@ u—>y@u—7t® C(f)(u)
where t is a lift of the generator of Z to I'.

The next theorem implies a conjecture by Gromov in [12, page 152]. The case of a
manifold fibered over S' has already been dealt with in [19, Theorem 4.10].
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Theorem 2.1 Let f : ' — F be a self map of a connected CW -complex F with finite

d-skeleton for d > 2. Let m(T}) 2o X Zobea factorization of the canonical map
m(Ty) — Z into epimorphisms. Then the mapping torus Ty has a CW -structure with
finite d-skeleton and for p < d

by(Ts; ¢*1%(T)) = 0.

Proof : Let T} be obtained from the n-fold mapping telescope of f by identifying the
bottom and top by the identity. In this notation T} is just Ty. There is an obvious n-fold
covering p : T} — T}y. Let I, be the image of ¢ o p, and denote by ¢, : m(T}) — I', the
induced map. Then I', has index n in I". Lemma 1.2.4 implies for all integers p < d

bp(T7; 612 (T'n))

n

by(Ty; ¢*1%(1)) =
There is a homotopy equivalence g : Tyn — T}". Hence we get

bp(Tf”§ (¢n © g*)*ZQ(Fn)) = bp(T}IQ ¢Zl2(rn))~

The mapping torus Ty» has a CW-structure such that its d-skeleton is finite and the number
of p-cells is ¢,—1 + ¢, where ¢, is the number of p-cells in F'. Thus

bp(Tyns (6n © 9.) T (Tn)) < o1 + 6.

We conclude
Cp-11 G
n

0 < by(Ty; 0" P(T)) <

Taking the limit n — oo proves the claim. [

3. The first L?-Betti number of a total space of a fibration

In this section we prove

Theorem 3.1 Let F — E -2 B be a fibration of connected CW -complexes such that F
and B have finite 2-skeletons. Then E has finite 2-skeleton up to homotopy. If the image
of m(F) — m(E) is infinite and m(B) contains Z as subgroup, then the first L?-Betti
number of K

b(E)=0. MW



The proof of Theorem 3.1 requires some preparations. Let F — E —» B be a
fibration of connected CW-complexes. Denote 7 = m1(B), I' = m(F) and let A be the image
of 1 (F) — 7, (E). We obtain the group extension {1} — A — I' 2> 7 — {1}. The
pointed fiber transport is a homomorphism of monoids into the monoid of pointed homotopy
classes of pointed self maps of the fiber

o: T — [F, F]".
We recall its definition. Let w: I — E be a loop at the base point e € E. Put b = p(e)
and F = p~1(b) . Choose a solution h of the following lifting problem
tUw
Fyx {0} u{e} x 1 _— E

) h
J p

powopr;
FxI — . B

where ¢ and j are the obvious inclusions. Then ¢ assigns to the class w € I' the pointed
homotopy class of the map (F,e) — (F e) sending x to h(z,1).

Let F — F be the connected covering of F' with A as group of deck transformations.
Let ¢(y) : A — A send § to y0y~! for v € . A representative of o(y) lifts to a c(v)-
equivariant (pointed) self map of F. Its c(y)-equivariant (free) homotopy class denoted
by @(vy) depends only on v. Given w € 7, denote by w € T' some element satisfying
p«(W) = w. Define a ZI'-chain map U(w) : ZI' @ C(F) — ZT @ C(F) by sending v ® x
to yw ® C(a(w™Y))(z). The ZI-chain homotopy class of U(w) is independent of the choice
of W and of the representative of @(w(~")) and hence depends only on w. This follows from
the fact that a representative for a(§) for § € A is given by left multiplication with 6 on F'.
Foru=73%_ _ A7 € Zr define U(u) by > . A\ U(7). Then the ZI'-chain homotopy classes
of U(v) o U(u) and U(uv) agree and U(1) = id. Hence we have constructed an algebra
homomorphism

U:Zr — [ZT @z C(F),ZT @z C(F)])%

into the opposite (reverse multiplication) of the algebra of ZI'-chain homotopy classes of
ZT'-chain self maps of ZI' ®za C(F). This is called chain homotopy presentation of the given
fibration. For more information and (elementary) proofs of some of the claims above we
refer to [20, section 1 and 6].

As ZI' is free over ZA the natural ZI'-map S : ZI'®@za H,(C(F)) — H_*(Zf‘@zAC(F))
is bijective. The ZI'-isomorphism S, : ZI' ®x H.(C(F)) — Zm ®z H.(C(F)) sends v ® x
to p«(7) ® H.(C(a(7)))(x) where v € T" acts on Zm by left multiplication with p,(y) € 7, on

H.(C(F)) by H.(5(7)) and diagonally on Zr ®z H.(C(F)). Define the ZI'-isomorphism
S H(ZT ®@za C(F)) — Zm @z H.(C(F))
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by S = Syo Syt

Lemma 3.2 Given u € Zm, let r(u) : Zw — Zm be right multiplication with u. The
following diagram commutes

. H(U(w) B
H.(ZT ®@za O(F)) —————  H,(ZD @24 C(F))

S S
_ r(u) ® id B
Zm @z H,(C(F)) Zm @z H,(C(F))
and has isomorphisms as vertical arrows. [
Proof of Theorem 3.1: Choose a set of generators si,...,s, of m such that the cyclic

subgroup (s;) generated by s is infinite. The following sequence is exact

Sioyr(1 = si) .
®_Zm Zm — 7 — {0}

where Z here and in the sequel carries always the trivial A-,I'-, respectively, 7-action and the
augmentation € sends » A, w to > - A,. As Ho(C(F)) is ZI-isomorphic to Z, Lemma

3.2 proves the exactness of the sequence of ZI'-modules

Of_ Ho(U(1 — s3))
@ Ho(ZT @za C(F)) Hy(ZI' @25 C(F)) — Z — {0}.

Let cone(f) denote the mapping cone of a chain map f. We derive from the long homology
sequence that Ho(cone(®_U(1 — s;))) is ZI-isomorphic to Z. Let E be the universal
covering of E. For a chain complex C'let C| be the 2-dimensional chain complex obtained by

truncating C. Notice that C'(E)|; is a 2-dimensional ZI'-chain complex such that H, (C/(E)|,)
is trivial and Ho(C(E)|,) is Z and that cone(®?_,U(1—s;)) is a free ZI'-chain complex. Hence
there is a ZI-chain map f : cone(&?_,U(1 — s;))|s — C(E)| inducing the identity on Hj.
Since f is 1-connected, we conclude from the proof of Lemma 1.2.1

by (12(T) @z cone(@,U(1 - 5,))) > by (I*(T) @zr C(E)) = bi(E).

There is an obvious exact sequence of ZI'-chain complexes



0 — cone(U(l—s1)) — cone(@_ U(l—s;) — @L,5(ZI @z4 C(F)) — 0

where Y denotes the suspension. It induces the weakly exact sequence in L2-homology [4,
Theorem 2.1 on page 10]

Hl(l2(f‘) ®ZF CO?’LG(U(]_ — 81))) — Hl(l2(F) ®ZF COTLG(@?ZlU(]. — SZ)))
— Hy (I3(T) ®zr @_,% (ZT ®z4 C(F))).

Clearly H; (I*(T') ®zr & (ZI ®za C(F))) agrees with the L*-homology Ho(F, (j o 1)*1*(T"))
where j : A — T is the inclusion and [ : 7y (F) — A is the obvious surjection. This L*-
homology group vanishes by Lemma 1.2.5 as A is infinite. This implies

b1 (I(T) @z cone(U(1 — 51))) > by (I*(T') @z cone(@_,U(1 — s;)))

and hence
by (I*(T) @zp cone(U(1 — 51))) > by(E).

Therefore it remains to show b;(I*(T") ®zr cone(U(1 — s1))) = 0. Let I” be the subgroup
of I' generated by A and 57 € T'. Define U'(1 — s;) : ZI' @za C(F) — ZI" @24 C(F) by
mapping 7' ® z toy' ® x — v'57 ® C(3(57C"Y)) (). Then U(1—s;) is obtained from U’(1—s;)
by induction with the inclusion of groups i : IY — I'. This implies

by (I2(T) @zp+ cone(U'(1 — 51))) = by (1%(T") ®zr cone(U(1 — 51))).

Let T, ) be the mapping torus of o(37) : ' — F. (Notice that the free homotopy class
of o(57) and hence the homotopy type of T, ;) depend only on s; € 7.) The obvious map

71 (Tym)) — Z factorizes into the composition of epimorphisms 7 (7 7)) KA N}
We get from Section 2 that cone(U’(1—s;)) is the ZI"-chain complex of the covering of T, )
associated to ¢'. So we get

bl(ZQ(F) ®ZF’ cone(U’(l — Sl>>> = bl(Ta(ﬁ), (Z @) ¢’)*l2(F))
This finishes the proof of Theorem 3.1 since
b (Tosry; (i 0 &) 1)) = bu(Tospy; () (1)) = 0

follows from Lemma 1.2.3 and Theorem 2.1. [ |

4. Groups with vanishing first L?-Betti number
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In this section we give criteria for the triviality of the first L2-Betti number of a finitely
presented group 7. The next theorem answers a query by Gromov [12, page 154].

Theorem 4.1 Let {1} — A — T' — m — {1} be an extension of finitely presented
groups. Suppose that A is infinite and 7 contains Z as a subgroup. Then the first L?-Betti
number of T’

by(T) = 0.

Proof : Apply Theorem 3.1 to the fibration of classifying spaces BA — BI' — Bm.
|

We mention that there are counterexamples to the so called Burnside problem, namely,
infinite finitely generated groups which do not contain Z as a subgroup. At of this writing
the author does not know of an example of a infinite finitely presented group which does not
contain Z as a subgroup.

We call a prime 3-manifold exceptional if it is closed and no finite cover of it is homotopy
equivalent to a Haken, Seifert or hyperbolic 3-manifold. No exceptional prime 3-manifolds
are known, and standard conjectures (Thurston geometrization conjecture, Waldhausen con-
jecture) imply that there are none. The next theorem follows from [19, Corollary 7.7].

Theorem 4.2 Let 7w be the fundamental group of a prime 3-manifold M. Suppose either
that OM s a union of tori or that M is closed and not exceptional. Then

bl(ﬂ') =0. [ |

Next we investigate closed 4-manifolds with a geometric structure in the sense of
Thurston and compute their L*-Betti numbers. Note that b,(M) = by_,(M) holds for such
a manifold by Poincaré duality [19, Proposition 4.2]. The descriptions of the geometries and
the computations of the Euler characteristics and signatures can be found in [24, Table 1 on
page 122 and Theorem 6.1 on page 135] with a correction in [17].

Theorem 4.3 Let M be a closed orientable 4-manifold with a geometry in the sense of
Thurston and fundamental group . Then the following are the values of the L*-Betti num-
bers by, the Euler characteristics x and the signatures o of M
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geometry by =0by by =0b3 by X o
St ﬁ 0 0 % 0
S? x §2 = 0 o o 0
P%(C) 1 0 1 3 1
52 x R? 0 0 0 0 0
S? x H? o X0 <0 0
R* 0 0 0 0 0
R? x H?2 0 0 0 0 0
H2 x H?2 0 0 x(M) >0 0
53 x R! 0 0 0 0 0
H? x R 0 0 0 0 0
SL, x R 0 0 0 0 0
NiBxR 0 0 0 0 0
Nil4 0 0 0 0 0
Sol?, , 0 0 0 0 0
Soll 0 0 0 0 0
Sol? 0 0 0 0 0
H?(C) 0 0 x(M) x=30 >0
H* 0 0 x(M) >0 0

In particular by (M) = by () = 0 in all cases except S* x H?.

Proof : We first give the proofs of the statements of the L?-Betti numbers. Recall from
Lemma 1.2.6 that x (M) = 2by(M ) —by (M )+by(M) holds. The fundamental group = is finite
if and only if the underlying manifold of the geometry is compact. If M is the universal

by ()

covering and = is finite, then b,(M) = o7 from Lemma 1.2.4. Now the claim follows

for S*, 5% x S? and P?(C). If M and N have the same geometry X , then b,(M) = 0 is
equivalent to b,(N) = 0 since b,(M) = 0 is equivalent to the fact that X has no harmonic
smooth L%integrable p-forms [7]. Hence it suffices to check b,(M) = 0 for one example
of a manifold with a given geometry. Suppose the geometry is a product of two lower
dimensional geometries. Then such an example is given by a product of two surfaces or of
S with a 3-manifold. The L*-Betti numbers for a closed orientable surfaces Fj, of genus
g > 1 are by(Fy) = ba(F,) = 0 and by (F,) = 2g — 2 and the L?-Betti numbers of S* are zero
[19, Example 4.11]. Using the Kiinneth formula for L*-cohomology [22, Theorem 3.16] one
obtains the claim for all these cases. Suppose the geometry is Nil*, Sol}, Sol} or Solfn’n.
Then an example for M can be constructed which fibers over S'. For such a space all L*-
Betti numbers are trivial by Theorem 2.1. One can also argue that the fundamental group of
a manifold carrying such a geometry contains a normal infinite amenable subgroup and refer
to [6, Theorem 0.2]. In the case X = H*, we get b1 (M) = by(M) = 0 and by(M) = x(M) >0
from [8]. If M carries a H?(C)-geometry, then M is Kéhler hyperbolic in the sense of [11]
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and we derive b,(M) =0 for p = 0,1 from [11].

The statements about the Euler characteristic and the signature follow in the cases
where all L?-Betti numbers are trivial from the L?-signature theorem [1] and in the cases
where the geometry is compact from the multiplicativity of Euler characteristic and signature
under finite coverings. The remaining cases are S? x H?, H? x H?, H* and H?(C). Because
of the Hirzebruch proportionality principle [15] it suffices to check the examples S? x F, and
F, x F, for some g > 2. In the cases S? x H? and H? x H? and one gets x(M) = ¢- x(S*) and
o(M) = t-o(S?) if M carries a H-structure and x (M) = s-x(P*(C)) and o(M) = s-0(P*(C))
if M carries a H?(C)-structure for some non-zero constants ¢ and s. From this the claim

follows. [ |

5. 4-manifolds satisfying x (M) > |o (M)

Theorem 5.1 Let M be a closed oriented 4-manifold with fundamental group w. If by(w) =
0, then the following inequality for the Euler characteristic and the signature holds

X(M) = [o(M)].

Proof : According to the L?-signature theorem (see [1]), the signature o (M) is the dif-

ference of the von Neumann dimensions of two complementary subspaces of the second
L?-cohomology H?(M;1*(r)) of M. This implies

o(M)| < dimyge(H*(M; (7)) = dimagie) (Ho (M: () = by(M).

Since by(M) = by(M) and b3(M) = by (M) by Poincaré duality [19, Proposition 4.2] and
b1 (M) = 0 by assumption holds, we conclude x (M) = by(M) + 2 - by(M) from Lemma 1.2.6
and the claim follows. |

This Theorem 5.1 together with Theorems 4.1, 4.2 and 4.3 generalizes respectively
reproves results of [16] (see also [25]). In [16] it is shown among other things that the
inequality in Theorem 5.1 holds if 7 is an extension of a finitely generated group A and the
integers Z. (We have to assume that A is finitely presented). If a connected closed oriented
4-manifold has a geometric structure in the sense of Thurston, then it is pointed out in [16]
that inspecting the 18 different cases using the results in [24] and the correction in [17] shows
that the inequality in Theorem 5.1 holds for M provided the geometry is not S? x H2. A
simple proof can be found in [16] that the inequality above holds if 7 satisfies 3-dimensional
oriented Poincaré duality. If 7 is infinite amenable, b;(7) vanishes by [6, Theorem 0.2] and
Theorem 5.1 applies (see also [9]). For further information on lower bounds on the Euler
characteristic of a closed 4-manifold we refer to [13].
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6. Deficiency of groups

The deficiency of a finitely presented group 7 is the maximum over all differences g —r
where g respectively r is the number of generators respectively relations of a presentation of
.

Theorem 6.1 Let 7 be a finitely presented group.

1. If Bm has finite 3-skeleton, then

def(r) <1 —bo(m) + by(m) — ba().

2. def(m) <1 —by(m) + by(m).

3. If by(m) =0, then
def(m) < 1.

Proof : Given a presentation with r relations and g generators, let X be the corresponding
connected 2-dimensional C'W-complex with fundamental group isomorphic to = which has
precisely one cell of dimension 0, g cells of dimension 1 and r cells of dimension 2. Since the
classifying map X — B is 2-connected, we conclude from Lemma 1.2 that

L —g+7r=x(X)=bo(X) = b1(X) + ba(X) > bo(7) — br(7) + ba()

from which assertion 1.) follows. Assertion 2.) is proven similiarly and does imply assertion
3.). [

From Theorem 4.1 and Theorem 6.1.3. we obtain

Corollary 6.2 Let {1} — A — I' — 7© — {1} be an extension of finitely presented
groups. Suppose that A is infinite and © contains Z. as a subgroup. Then

def0)<1. W

If 7 is finite, we rediscover from Theorem 6.1.1 the well-known fact that def(7) < 0.
The inequality in Theorem 6.1.1 is obviously sharp and def(r) = 1 — x(Bw) if Br is a
finite 2-dimensional CW-complex. If 7 is a torsion-free one-relator group, the 2-dimensional
CW-complex associated with the presentation is aspherical and hence B is 2-dimensional
[23, chapter IIT §§9 -11]. We conjecture for a torsion-free group having a presentation with
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g > 2 generators and one non-trivial relation that be(7) = 0 and by (7) = def(r) —1 =g — 2
holds (compare [12, page 156]). This would follow from [19, Conjecture 9.2] saying that the
L2-Betti numbers of a finite CW-complex with torsion-free fundamental groups are integers.
Namely, the kernel of the second differential of the L?-chain complex of B is a proper
submodule of ?(7) so that its dimension by(7) is less than one.

The L?*-homological test for the deficiency described in Theorem 6.1 is useful in the
situation considered in Corollary 6.2 where the corresponding tests using homology with Z/p-
coefficients appears insufficient. However, in other situations homology with Z/p-coefficients
seems to be more useful than L?-homology as illustrated by the following result which is a
direct consequence of [10, Theorem 2.5]

Theorem 6.3 Let M be a compact 3-manifold with fundamental group ™ and prime decom-
position
M = MigMot ... 4M,.

Let s(M) be the number of prime factors M; with non-empty boundary and t(M) be the num-
ber of prime factors which are S*-bundles over S*. Denote by x(M) the Euler characteristic.
Then

def(m (M) = dimg o (Hy (71 Z/2)) — dimg o (Ha(m; Z/2)) = s(M) + (M) — x(M).  ®

Let M be a compact irreducible 3-manifold with infinite fundamental group. Any
such manifold is aspherical by the Sphere Theorem [14, page 40]. It follows from Theorem
6.3 that def(m(M)) is 1 — x(M) if OM is not empty and is zero if OM is empty. Thus
1 —bo(M) 4+ by (M) —by(M) =1— x(M) since b3(M) = 0 holds by [19, Lemma 4.5]. Hence
we rediscover Theorem 6.3 in the case OM # () from our L2-homological test in Theorem
6.1. However, if M is closed, the inequality in Theorem 6.1.1 is not sharp.

Finally we mention the in a certain sense complementary result [3, Theorem 2]. If
7 is a finitely presented group with def(7) > 2, then 7 can be written as an amalgamated
product m = A *xc B where A, B and C' are finitely generated, C' is proper subgroup of both
A and B and has index greater than two in A or B. In particular 7 contains a free subgroup
of rank 2 and is not amenable. This implies that an amenable finitely presented group has
deficiency less or equal to one (see also [2] and [9]). This also follows from Theorem 6.1.3
and the fact that by(m) = 0 for a finitely presented amenable group [6, Theorem 0.2].
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