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0. Introduction

LetG be a finite group acting on a Riemannian manifoldM by isometries. We introduce
analytic torsion

ρGan(M,M1;V ) ∈ R⊗Z RepR(G)

PL-torsion
ρGpl(M,M1;V ) ∈ K1(RG)Z/2

Poincaré torsion
ρGpd(M,M1;V ) ∈ K1(RG)Z/2

and Euler characteristic
χG(M,M1;V ) ∈ RepR(G)

for ∂M the disjoint union of M1 and M2 and V an equivariant coefficient system. The
analytic torsionis defined in terms of the spectrum of the Laplace operator, the PL-torsionis
based on the cellular chain complex and Poincaré torsionmeasures the failure of equivariant
Poincaré duality in the PL-setting, which does hold in the analytic context. Denote by
R̂epR(G) the subgroup of RepR(G) generated by the irreducible representations of real or
complex type. We define an isomorphism

Γ1 ⊕ Γ2 : K1(RG)Z/2 −→ (R⊗Z RepR(G))⊕ (Z/2⊕Z R̂epR(G))

and show under mild conditions

ρGan(M,M1;V ) = Γ1(ρGpl(M,M1;V ))− 1

2
· Γ1(ρGpd(M,M1;V )) +

ln(2)

2
· χ(∂M ;V )

and
Γ2(ρGpl(M,M1;V )) = Γ2(ρGpd(M,M1;V )) = 0

For trivial G this reduces to the equation in R

ρan(M,M1;V ) = ln(ρpl(M,M1;V )) +
ln(2)

2
· χ(∂M) · dimR(V )
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Torsion invariants are important invariants which relate topology to algebraic K-theory
and hence to number theory (see Milnor [25]). The s-Cobordism Theorem and the classi-
fication of lens spaces are important examples. Motivated by fruitful connections between
topology and analysis, e.g. the Atiyah-Singer Index Formula, Ray and Singer [29] asked
whether (Reidemeister) PL-torsion can be interpreted analytically, namely, by the spectral
theory of the Laplace operator. They defined analytic torsion and gave some evidence for the
conjecture that analytic and PL-torsion agree. This was independently proved by Cheeger
[8] and Müller [26]. Analytic torsion is used and investigated in various contexts (see e.g.
Bismut-Freed [4], [5], Fried [14], Quillen [27], Schwarz [32], Witten [35]).

The PL-torsion is powerful as it is a very fine invariant and there are good tools
like sum and product formulas for its computation. In particular one can chop a manifold
into ”elementary” pieces, determine the PL-torsion of the pieces and use a sum formula to
compute the PL-torsion of M . Notice that these pieces have boundaries even if M is closed.
In order to get a sum formula for analytic torsion also, it is necessary to investigate the
relation between analytic and PL-torsion also for manifolds with boundary. Inspecting the
proofs of Cheeger [8] and Müller [26] one recognizes that they do not extend to the case where
M has a boundary. Moreover, an easy calculation for D1 shows that their result is not true
for D1. Now the key observation due to Cheeger (see [8], page 320) is that the equivariant
spectrum of the Laplace operator on M ∪∂MM with the Z/2-action given by the flip and the
spectrum of the Laplace operator on M for both Dirichlet and Neumann boundary conditions
determine one another. Hence the problem of comparing analytic torsion and PL-torsion for
manifolds with boundary can be reduced to the case of a closed manifold with a Z/2-action.
Notice that the flip on M ∪∂MM reverses the orientation. Inspecting the proof of Müller [26]
again it turns out that his methods carry over to closed orientable Riemannian G-manifolds
with orientation preserving and isometric G-action for a finite group G. This is carried out in
Lott-Rothenberg [19] and we will exploit their work. However, we will use a different setting
which seems to be more appropiate for our purposes here and for more general situations
(mainly an L2-version for proper actions of infinite groups on non-compact manifolds we will
treat in forthcoming papers).

Let (M ;M1,M2) be a m-dimensional (compact) Riemannian G-manifold triad (with G
acting by isometries). There is a canonical group extension

0 - π(M) -

i

DG(M) -

q

G - 0

and a DG(M)-action on the universal covering M̃ extending the action of the fundamental
group and covering the G-action. Consider an equivariant coefficient system V , i.e. an
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orthogonal representation of DG(M). Such a V may be thought of as an equivariant flat
G-vector bundle over M or as an equivariant flat connection. We want to allow a twisting of
our invariants by such equivariant coefficient systems because analytic torsion is important
for the study of moduli spaces of flat connections (see e.g. Quillen [27], Witten [35]). Put
certain boundary conditions of Dirichlet type on M1 and of Neumann type on M2. Then
the Laplace operator ∆p is elliptic, self-adjoint and non-negative definite and is compatible
with the G-action. The eigenspace EG

λ (M,M1;V )p of ∆p for the eigenvalue λ is a real
G-representation. We define the equivariant Zeta-function by meromorphic extension of

ζGp (M,M1;V )(s) :=
∑
λ>0

λ−s · [EG
λ (M,M1;V )p] ∈ C⊗Z RepR(G)

It is analytic in zero and we define analytic torsion in section 1 by

ρGan(M,M1;V ) :=
m∑
p=0

(−1)p · p · d
ds
ζGp (M,M1;V )|s=0 ∈ R⊗Z RepR(G)

For G = 1 this agrees up to a factor 2 with the definition of Ray-Singer [29].

A finite RG-Hilbert complex C is a finite-dimensional finitely generated RG-chain
complex C together with a R-Hilbert structure compatible with the G-action on each Cn.
Given a RG-chain equivalence f : C → D, we define in section 2 its Hilbert torsion

ht(f) ∈ K1(RG)Z/2

Let C be a RG-Hilbert complex. Suppose that its homology H(C) has the structure of a
finite RG-Hilbert complex with respect to the trivial differential. There is a RG-chain map
i : H(C)→ C uniquely determined up to RG-chain homotopy by the property H(i) = id.
Define the Hilbert-Reidemeister torsion of C

hr(C) := ht(i) ∈ K1(RG)Z/2

If G is trivial, hr(C) is the square of Milnor’s torsion defined for C and H(C) equipped with
any orthonormal bases. There is also a cochain version.

Using the Hodge-decomposition theorem and the cellular bases we get RG -Hilbert
structures on H∗(M,M1;V ) and C∗(M,M1;V ). We define the PL-torsion

ρGpl(M,M1;V ) := hr(C∗(M,M1;V )) ∈ K1(RG)Z/2

Let ∩[M ] : Cm−∗(M,M1;V ) −→ C∗(M,M1;V ) be the Poincaré RG-chain equivalence. Its
Hilbert torsion is the Poincaré torsion

ρGpd(M,M1;V ) ∈ R⊗Z RepR(G)
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This invariant is always zero for trivial G. This follows from the proof of Poincaré duality
based on the dual cell decomposition of a triangulation. In the equivariant case the dual cell
structure is not compatible with the G-action and ρGpd(M,M1;V ) measures the failure. The
equivariant Euler characteristic is defined by

χG(M,M1;V ) =
m∑
p=0

(−1)p · [Hp(M,M1;V )] ∈ RepR(G)

We will put the technical condition on the equivariant coefficient system V that it is cohe-
rent to a G-representation. This is always satisfied if G is trivial or if MH is non-empty and
connected for all H ⊂ G. Now we can state the main result of this paper.

Theorem 4.5 (Torsion Formula for Manifolds with Boundary and Symmetry)
Let M be a Riemannian G-manifold whose boundary is the disjoint union M1

∐
M2. Let V

be an equivariant coefficient system which is coherent to a G-representation. Assume that
the metric is a product near the boundary. Then

ρGan(M,M1;V ) = Γ1(ρGpl(M,M1;V ))− 1

2
· Γ1(ρGpd(M,M1;V )) +

ln(2)

2
· χ(∂M ;V )

If G is trivial, this reduces to the equation of real numbers

ρan(M,M1;V ) = ln(ρpl(M,M1;V )) +
ln(2)

2
· χ(∂M) · dimR(V )

Cheeger states in [8], page 320 without proof a formula relating analytic and PL-torsion
for a manifold with boundary (without group action). His formulas are not as precise as ours
since Cheeger claims only that the correction term can be computed locally at the boundary,
whereas we can identify it with the Euler characteristic.

The proof of the main theorem is organized as follows. In section 1, 2, and 3 we show
product and double formulas and Poincaré duality. We investigate how these invariants
depend on the Riemannian metric and relate PL-torsion to the equivariant Whitehead torsion
of a G-homotopy equivalence. Then Theorem 4.5 is verified in section 4 as follows. We first
give the proof under the extra conditions i.) M is orientable ii.) G acts orientation preserving
and iii.) ∂M is empty. If dim(M) is even, the assertion follows from Poincaré duality. The
Poincaré duality formulas for analytic and PL-torsion differ just by the Poincaré torsion.
This is the reason for the appearence of Poincaré torsion in the formula relating analytic and
PL-torsion. If dim(M) is odd, we reduce the claim to the case of trivial coefficients V = R
and then apply Lott-Rothenberg [19]. We remove condition ii.) by the various product
formulas and explicit calculations for S1 with the involution given by complex conjugation.
We get rid of i.) using the orientation covering. Finally we remove ii.) by the double
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formula which relates the invariants for the G×Z/2-manifold M ∪∂MM to the invariants of
the G-manifolds (M, ∅) and (M,∂M). The double formulas for the analytic torsion and the
PL-torsion differ by a certain Euler characteristic term of the boundary, as in the analytic
case the boundary is a zero set and does not affect the RG-Hilbert structure whereas in the
PL-case the cells of the boundary do contribute to the RG-Hilbert structure. This difference
in the double formulas causes the Euler characteristic term in the formula of the Theorem
above. The appearence of a correction term in the case of a manifold with boundary is not
very surprising if one thinks of the index formula for manifolds with boundary where the
η-invariant comes in (see Atiyah-Patodi-Singer [1], [2], [3]).

In section 5 we investigate some special cases. We derive from the sum formula in
the PL-case a sum formula for the analytic torsion. This is remarkable because it is in
general difficult to derive the spectrum of the Laplace operator on M ∪f N for an isometric
diffeomorphism f : ∂M −→ ∂N from the spectra of its restrictions to M , N and ∂M . We
express the various torsion invariants for spheres and disks of G-representations in terms of
their characters. We construct an injective homomorphism based on Poincaré torsion

ρGR : RepR(G) −→ Z⊕
(
⊕(H)K1(R[WH])Z/2

)
This reproves the Theorem of de Rham that two orthogonal G-representations V and W are
linearly RG-isomorphic if and only if their unit spheres SV and SW are G-diffeomorphic. We
use the sum formula for Poincaré torsion to establish a local formula for Poincaré torsion.
It computes the Poincaré torsion of M in terms of the Poincaré torsion of the tangent
representations of points with non-trivial isotropy group and the universal equivariant Euler
characteristic of M .

The author wants to thank the Deutsche Forschungsgemeinschaft for the financial
support and the department of mathematics of The University of Chicago for the hospitality
during the stay from October 88 to March 89 and in February 90, when this paper was
worked out. In particular the discussions with Prof. Rothenberg were very fruitful. The
paper is organized as follows.

0. Introduction
1. Analytic Torsion
2. Torsion Invariants for Chain Complexes
3. PL-Torsion
4. Comparision of Analytic and PL-Torsion
5. Some Computations
References
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1. Analytic Torsion

Let G be a finite group. A Riemannian G-manifold M is a compact smooth manifold
with differentiable G-action and invariant Riemannian metric. If ∂M is the disjoint union
of M1 and M2, we want to define the analytic torsion of (M,M1) with certain coefficients
V . We begin with explaining the coefficients.

Let X be a G-space with universial covering p : X̃ −→ X. The group of covering
translations is denoted by ∆(p). Let DG(p) be the discrete group

1.1 DG(p) := {(f̃ , g) | f : X̃ → X̃, g ∈ G, p ◦ f̃ = l(g) ◦ p}

where l(g) : X → X is multiplication with g. There is an obvious exact sequence

1.2 0 - ∆(p) -

i(p)

DG(p) -

q(p)

G - 0

and an operation of DG(p) on X̃ making the following diagram commute

1.3 ∆(p) × X̃ - X̃

?

i(p)× id
?

id

DG(p) × X̃ - X̃

?

q(p)× p
?

p

G × X - X

They are natural in p.In the sequel we identify ∆(p) with π = π1(X) and write DG(X)
instead of DG(p). The coefficients will be orthogonal DG(X)-representations.

Let M be a Riemannian G-manifold of dimension m. Define the orientation homomor-
phism

1.4 wG(M) : DG(M) −→ {±1}
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as follows. For some base point x ∈ M an element (f̃ , g) ∈ DG(M) is given by a homotopy
class of paths w from x to gx. The composition of the fibre transport of the tangent bundle
TM along w and the differential of l(g−1) at gx give an isotopy class of automorphisms of
TMx. If it is orientation preserving resp. reversing, we put wG(M)(f̃ , g) to be 1 resp. −1. An
equivalent definition uses the observation that Hm(HomZπ(C∗(M̃),Zπ)) is an infinite cyclic
group by Poincaré duality and f̃ induces an homomorphism f̃∗ : π −→ π, a Z[f̃∗]-equivariant
map C∗(f̃) : C∗(M̃) −→ C∗(M̃) and hence an automorphism of this infinite cyclic group by
Hm(HomZπ(C∗(f̃),Z[f−1

∗ ])). Then wG(M)(f̃ , g) is its degree.

If V is a DG(M)-representation, let wV be the w = wG(M)-twisted DG(M)-represen-
tation given by w(e) · ev for e ∈ DG(M) and v ∈ V . The vector bundle M̃ ×π V over
M becomes a G-vector bundle by g(x̃, v) = (x̃g̃−1, g̃v) for any lift g̃ ∈ DG(M) of g ∈ G.
The deRham complex Λ∗(M ;V ) of differential forms with coefficients in M̃ ×π V is a RG-
cochain complex. A choice of a local orientation on TM̃x̃ for some x̃ ∈ M̃ together with the
Riemannian metric determines a volume form dM ∈ Λn(M ;w R). Using the inner product on
V we get the product ∧ : Λp(M ;V )⊗ Λq(M ;w V ) −→ Λp+q(M ;w R). The Hodge star operator

1.5 ∗ : Λp(M ;V ) −→ Λm−p(M ;w V )

is defined by ω ∧ (∗η) =< ω, η > ·dM , where <,> is induced from the Riemannian metric.
Since dM is G-invariant, the map ∗ is RG-linear. The Riemannian metric induces an inner
product on Λp(M ;V ) by << ω, η >>:=

∫
M < ω, η > dM . Then ∗ is an isometry satisfying

∗ ◦ ∗ = (−1)p(m−p)id. The adjoint δp : Λp(M ;V ) −→ Λp−1(M ;V ) of the differential dp is
(−1)mp+p+1 ∗ dm−p∗. Define the Laplace operator

1.6 ∆p : Λp(M ;V ) −→ Λp(M ;V )

by dp−1δp + δp+1dp.

LetM be a RiemannianG-manifold whose boundary ∂M is the disjoint unionM1
∐
M2.

We allow that M1 or M2 or both are empty. Consider an orthogonal DG(M)-representation
V . Given a p-form ω ∈ Λp(M ;V ), let ωtan be the p-form on ∂M coming from restriction
with Ti : T∂M −→ TM for the inclusion i. Let ωnor be the (p− 1)-form ∗∂M(∗Mω)tan. We
will consider the boundary conditions

1.7 b(M,M1) : ωtan = 0, (δω)tan = 0 on M1

ωnor = 0, (dω)nor = 0 on M2

In the sequel we write
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1.8 Λp
1(M,M1;V ) = {ω ∈ Λp(M ;V ) | ωtan = 0 on M1 and ωnor = 0 on M2}

Λp
2(M,M1;V ) = {ω ∈ Λp(M ;V ) | ω satisfies b(M,M1)}

Hp
harm(M,M1;V ) = {ω ∈ Λp(M ;V ) | ∆ω = 0, ω satisfies b(M,M1)}

The space Hp
harm(M,M1;V ) is called space of harmonic forms . Denote by

1.9 A(M ;V ) : Λ∗(M ;V ) −→ C∗s (M ;V )

the V -twisted deRham map which is the composition

Λ∗(M ;V ) = Λ∗(M ; M̃ ×π V )
p∗−→ Λ∗(M̃ ; M̃ × V )π

jπ←− (Λ∗(M̃)⊗R V )π
(A(M̃)⊗Rid)π−→

(HomR(Cs
∗(M̃),R)⊗R V )π

Φπ−→ HomR(Cs
∗(M̃), V )π = HomRπ(Cs

∗(M̃), V ) =: C∗s (M ;V )

Here Cs
∗(M̃) is the singular chain complex. The map p∗ is induced from the projection

p : M̃ × V −→ M̃ ×π V . The isomorphism j : Λ∗(M̃)⊗R V −→ Λ∗(M̃ ; M̃ × V ) sends s⊗ v
given by a section s of

∧p T ∗M̃ and v ∈ V to the section x 7→ s(x)⊗ v. We denote by A(M̃)
the ordinary deRham map sending a p-form ω to the singular cosimplex σ 7→

∫
σ∗ω. The

isomorphism Φ maps φ⊗ v to the R-map Cs
∗(M̃) −→ V, σ 7→ φ(σ)v.

We denote by L2Λp(M ;V ) the Hilbert completion of Λp(M ;V ) under the inner product
<< ω, η >>:=

∫
M ω ∧ ∗η. For later purposes we state the following result whose proof can

be found in Müller [26] page 239.

Theorem 1.10 (Hodge-decomposition theorem)
a.) Hp

harm(M,M1;V ) = ker(d) ∩ ker(δ) ∩ Λp
1(M,M1;V )

b.) The R-modules ker(∆) ∩ Λp
1(M,M1;V ) and Hp

harm(M,M1;V ) are finitely generated.
c.) We have the orthogonal decomposition

Λp
1(M,M1;V ) = Hp

harm(M,M1;V )⊕ d(Λp−1
1 (M,M1;V ))⊕ δ(Λp+1

1 (M,M1;V ))

L2Λp(M,M1;V ) = Hp
harm(M,M1;V )⊕ clos(d(Λp−1

1 (M,M1;V )))⊕ clos(δ(Λp−1
1 (M,M1;V )))

d.) The inclusion i : Hp
harm(M,M1;V ) −→ ker(d) ∩ Λp

1(M,M1;V ) composed with deRham
map has image contained in the space of cocycles in Cp

s (M,M1;V ). We obtain an
isomorphism

i : Hp
harm(M,M1;V ) −→ Hp

s (M,M1;V )
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The Laplace operator ∆p : Λp
2(M ;V ) −→ Λp

2(M ;V ) is an elliptic self-adjoint differential
operator. Its spectrum is a pure point spectrum consisting of non-negative real numbers.
For λ ≥ 0 we put

1.11 EG
λ (M,M1;V )p = {ω ∈ Λp

2(M ;V ) | ∆pω = λω}

Because G acts on (M,M1) by isometries, ∆ is compatible with the RG-structure. Since
EG
λ (M,M1;V )p is finitely generated, it defines an element in the real representation ring

RepR(G). We define the equivariant Zeta-function

1.12 ζGp (M,M1;V )(s) :=
∑
λ>0 λ

−s · [EG
λ (M,M1;V )p] ∈ C⊗Z RepR(G)

ζG(M,M1;V ) :=
∑m
p=0(−1)p · p · ζGp (M,M1;V )

for s ∈ C with Real(s) > dim(M)/2. Because RepR(G) is a finitely generated free abelian
group with the isomorphism classes of irreducible representations as base, we may identify
C ⊗Z RepR(G) with Cr for r = rkZ(RepR(G)). Hence it makes sense to speak of con-
vergence in C ⊗Z RepR(G). Restriction to the trivial subgroup defines an homomorphism
res : C⊗Z RepR(G) −→ C⊗Z RepR({1}) = C. The image of ζGp (M,M1;V ) under this map
is just the non-equivariant Zeta-function which converges absolutely forReal(s) > dim(M)/2
(see Gilkey [15], page 79). This implies that ζGp (M,M1;V ) converges absolutely for Real(s) >
dim(M)/2.

Lemma 1.13 The equivariant Zeta-function ζGp (M,M1;V ) has a meromorphic extension to
C. It is analytic in zero and its derivative at zero lies in R⊗Z RepR(G).

We defer the proof of Lemma 1.13 to section 4.

Definition 1.14 The analytic torsion

ρGan(M,M1;V ) ∈ R⊗Z RepR(G)

is defined by ρGan(M,M1;V ) :=
∑m
p=0(−1)p · p · d

ds
ζGp (M,M1;V )|s=0

Example 1.15 Fix a positive real number µ. Equip R with the standard metric and the
unit circle S1 with the Riemannian metric for which R −→ S1, t 7→ exp(2πiµ−1t) is isomet-
ric. Then S1 has volume µ. Let Z/2 act on S1 by complex conjugation. The Laplace
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operator ∆1 : Λ1R −→ Λ1R maps f(t)dt to −f ′′(t)dt. By checking the µ-periodic solutions
of f ′′(t) = −λf(t) one shows that ∆1 on S1 has eigenspaces Eλ(S

1)1 = spanR(fndt, gndt)
for λ = (2πµ−1n)2, n ≥ 1, Eλ(S

1)1 = spanR(dt) for λ = 0 and Eλ(S
1) = {0} otherwise, if

fn(exp(2πiµ−1t)) = cos(2πµ−1nt) and gn(exp(2πiµ−1t)) = sin(2πµ−1nt). The Z/2-action on
S1 induces the Z/2-action on E(2πµ−1n)2(S1) sending fn to fn and gn to −gn. Denote by
ζRie(s) =

∑
n≥1 n

−s the Riemannian Zeta function . Let R be the trivial and R− be the
non-trivial 1-dimensional Z/2-representation. We get

ζ
Z/2
1 (S1; R) =

(
2π

µ

)−2s

· ζRie(2s) · ([R] + [R−])

As ζRie(0) = −1
2

and ζ ′Rie(0) = − ln(2π)
2

hold (see Titchmarsh [34]), we obtain

1.16 ρZ/2
an (S1; R) = ln(µ) · ([R] + [R−])

By restriction to the trivial subgroup we derive

1.17 ρan(S1; R) = 2 · ln(µ)

Example 1.18 Equip D1 = [0, 1] with the standard metric scaled by µ > 0. The volume
form is then µdt. The Laplace operator ∆1 : Λ1D1 −→ Λ1D1 maps f(t)dt to µ−2f ′′(t)dt. We

obtain Eλ(D
1; R) = spanR(sin(πnt)dt), Eλ(D

1, ∂D1; R) = spanR(cos(πnt)dt) for λ =
(
π
µ
n
)2

for n ∈ Z, n ≥ 1 and Eλ(D
1; R) = Eλ(D

1, ∂D1; R) = {0} otherwise. Hence we get

ζ1(D1; R) = ζ1(D1, ∂D1; R) =

(
π

µ

)−2s

· ζRie(2s)

This implies

1.19 ρan(D1,R) = ρan(D1, ∂D1; R) = ln(2µ)

Proposition 1.20 (Poincaré Duality for Analytic Torsion) Let M be a m-dimensio-
nal Riemannian G-manifold with orientation homomorphism w = wG(M). If V is an or-
thogonal DG(M)-representation and ∂M the disjoint union M1

∐
M2, we have

ρGan(M,M1;V ) + (−1)m · ρGan(M,M2;w V ) = 0
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Proof : Recall EG
λ (M,M1;V )p = {ω ∈ Λp

2(M,M1;V ) | ∆ω = λω} and Λp
2(M,M1;V ) =

{ω ∈ Λp(M ;V ) | ω satisfies b(M,M1)}, where the boundary conditions b(M,M1) were de-
fined in 1.7. Put E ′λ(M,M1;V )p := {ω ∈ Λp

2(M,M1;V ) | dδω = λω} and E ′′λ(M,M1;V )p :=
{ω ∈ Λp

2(M,M1;V ) | δdω = λω}. For λ 6= 0 we obtain an orthogonal RG-sum decomposition

1.21 λ−1dδ ⊕ λ−1δd : EG
λ (M,M1;V )p −→ E ′λ(M,M1;V )p ⊕ E ′′λ(M,M1;V )p

and inverse isometric RG-isomorphisms

1.22 λ−1/2δ : E ′λ(M,M1;V )p+1 −→ E ′′λ(M,M1;V )p

λ−1/2d : E ′′λ(M,M1;V )p −→ E ′λ(M,M1;V )p+1

The Hodge star operator ∗ induces an isometric RG-isomorphism

1.23 ∗ : EG
λ (M,M1;V )p −→ EG

λ (M,M2;w V )p

Now the following computation finishes the proof :

ζG(M,M1;V ) =

=
∑m
p=0

∑
λ>0(−1)p · p · λ−s · [EG

λ (M,M1;V )p]

=
∑m
p=0

∑
λ>0(−1)p · p · λ−s · [EG

λ (M,M2;w V )p]

= (−1)m ·∑m
p=0

∑
λ>0(−1)m−p · p · λ−s · [EG

λ (M,M2;w V )p]

= (−1)m+1 ·∑m
p=0

∑
λ>0(−1)m−p · (m− p) · λ−s · [EG

λ (M,M2;w V )p]

+(−1)m ·m ·∑m
p=0

∑
λ>0(−1)m−p · λ−s · [EG

λ (M,M2;w V )p]

= (−1)m+1 · ζG(M,M2;w V )

+(−1)m ·m ·∑m
p=0

∑
λ>0(−1)m−p · λ−s · ([E ′λ(M,M1;V )p+1] + [E ′λ(M,M1;V )p])

= (−1)m+1 · ζG(M,M2;w V )

Suppose that M is orientable and closed, its dimension m is even and G acts orientation
preserving. As w is trivial, we get ρGan(M ;V ) = 0.
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Remark 1.24 We often put the condition on the Riemannian metric that it is a pro-
duct near the boundary, i.e. there is an equivariant collar f : ∂M × [0, 1[ onto an invari-
ant neighbourhood of the boundary such that f is isometric if we equip ∂M ⊂M and
U ⊂M with the induced, [0, 1[ with the standard and ∂M × [0, 1[ with the product metric.
This condition ensures that for two such Riemannian G-manifolds M and N and an iso-
metric G-diffeomorphism f : M1 −→ N1 between open and closed submanifolds M1 ⊂ ∂M
and N1 ⊂ ∂N there is the structure of an Riemannian G-manifold on M ∪f N such that the
obvious inclusions iM : M −→M ∪f N and iN : N −→M ∪f N are isometric G-imbeddings.
Let V resp. W be an orthogonal DG(M) resp. DG(N)-representation. We denote by
jM : M1 −→M and jN : N1 −→ N the inclusions. Fix an orthogonal DG(M1)-isomorphism
f̄ : j∗MV −→ f ∗j∗NW . Then there is an orthogonal DG(M ∪f N)-representation V ∪f̄W such
that j∗M(V ∪f̄W ) and V resp. j∗N(V ∪f̄W ) and W agree. If G is trivial and M1 is connected,
this follows from the Theorem of Seifert-van Kampen. In the general case one must apply a
generalized version saying that the corresponding diagram of fundamental categories in the
sense of [21] is a push out of categories. Alternatively, one may think of the representations
as G-vector bundles and glue them together.

In particular we can choose f = id and f̄ = id and consider M ∪M1 M and V ∪M1 V .
There is a canonical Z/2-structure on M ∪M1 M obtained by switching the two copies of M .
Hence we can consider M ∪M1 M as a Riemannian G × Z/2-manifold. The Z/2-structure
induces a Z/2-action on DG(M ∪M1 M) and DG×Z/2(M ∪M1 M) is the semi-direct product
DG(M ∪M1 M)×s Z/2, provided that M1 is not empty. The orientation homomorphism
wG×Z/2(M ∪M1 M) maps (u,±1) ∈ DG×Z/2(M ∪M1 M) to ±1 · wG(M ∪M1 M)(u). One can
extend V ∪M1 V an orthogonal DG×Z/2(M ∪M1 M)-representation by (u,±1) · v = u · v for
u ∈ DG(M ∪M1 M) and v ∈ V , since u and (−1) · u ∈ DG(M ∪M1 M) for ±1 ∈ Z/2 operate
on V ∪M1 V in the same way.

The following result will allow us to reduce the case of a manifold with boundary to
the closed one. We have the isomorphism

1.25 (R⊗Z RepR(G))⊗Z RepR(H)
⊗R−→ R⊗Z RepR(G×H)

(λ · [P ])⊗Z [Q] 7→ λ · [P ⊗R Q]

For later purposes we mention the pairing, also denoted by ⊗R, we obtain from 1.25
for G = H and restriction to the diagonal.

1.26 (R⊗Z RepR(G))⊗Z RepR(G)
⊗R−→ R⊗Z RepR(G)

12



For the next result put H = Z/2 in 1.25.

Proposition 1.27 (Double Formula for Analytic Torsion)
Let M be a Riemannian G-manifold such that the Riemannian metric is a product near the
boundary. Suppose that ∂M is the disjoint union of M1 and M2. Let V be an orthogonal
DG(M)-representation. Then we have :

a.) E
G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p = (EG

λ (M ;V )p ⊗R R)⊕ (EG
λ (M,M1;V )p ⊗R R−)

b.) ζG×Z/2
p (M ∪M1 M ;V ∪M1 V ) = (ζGp (M ;V )⊗C C)⊕ (ζGp (M,M1;V )⊗C C−)

c.) ρG×Z/2
an (M ∪M1 M ;V ∪M1 V ) = (ρGan(M ;V )⊗R [R]) + (ρGan(M,M1;V )⊗R [R−])

Proof : Obviously b.) and c.) follow from a.).Let τ : M ∪M1 M −→M ∪M1 M be the flip
map. Define

1.28 E
G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p+ = {ω ∈ EG×Z/2

λ (M ∪M1 M ;V ∪M1 V )p | τ ∗ω = ω}

E
G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p− = {ω ∈ EG×Z/2

λ (M ∪M1 M ;V ∪M1 V )p | τ ∗ω = −ω}

Let i : M −→M ∪M1 M be the inclusion onto the first summand. Obviously i∗ is
compatible with d, ∗, δ and ∆. Since τ is an isometry and reverses the local orientation at
points in M1, the induced map τ ∗ maps the volume form d(M ∪M1 M) to −d(M ∪M1 M).
This implies τ ∗ ◦ ∗ = − ∗ ◦τ ∗. As τ is the identity on M1, we get (i∗τ ∗ω)tan = (i∗ω)tan on
M1. Hence i∗ω satisfies the boundary conditions b(M, ∅) resp. b(M,M1) (see 1.7) if τ ∗ω = ω
resp. τ ∗ω = −ω holds. Thus we can define RG-maps

1.29 i+ : E
G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p+ −→ EG

λ (M ;V ) ω 7→ i∗ω

i− : E
G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p− −→ EG

λ (M,M1;V )p ω 7→ i∗ω

Obviuosly i+ is injective, as i∗ω determines ω because of τ ∗ω = ω. We have to show
that i∗ is surjective. Given ω ∈ EG

λ (M ;V ), there is only one candidate as preimage, namely
ω ∪M1 ω. The problem is that ω ∪M1 ω is smooth on (M ∪M1 M)−M1 and a priori only
continuous on M ∪M1 M , but we need smoothness on M ∪M1 M . The obvious inclusion
induces an RG-isomorphism

1.30 j : E
G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p+ ⊕ E

G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p− −→

E
G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p

13



For any η ∈ Λp(M ∪M1 M ;V ) we get

<< ω ∪M1 ω, η >>M∪M1
M=<< ω, i∗η >>M + << ω, i∗τ ∗η >>M

since an integral over M ∪M1 M is the sum of its restrictions to the two copies of M . If
τ ∗η = −η holds, then << ω ∪M1 ω, η >>M∪M1

M= 0. Consider η ∈ EG
µ (M ∪M1 M,V ∪M1 V )p

with τ ∗η = η for µ 6= λ. Then i∗η ∈ EG
µ (M,V ) and µ 6= λ imply << ω ∪M1 ω, η >>= 0.

Notice that the Hilbert space L2Λp(M ∪M1 M ;V ∪M1 V ) has an orthonormal bases of smooth

eigenvectors of ∆M∪M1
M . For E

G×Z/2
λ (M ∪M1 M ;V ∪M1 V )p+ choose an orthonormal bases

{η1, η2, ...ηr}. Then the Fourier developement of ω ∪M1 ω is by the computations above

ω ∪M1 ω =
r∑
i=1

<< ω ∪M1 ω, ηi >> ·ηi

This equation holds in L2Λp(M ∪M1 M ;V ∪M1 V ). As both sides are represented by con-
tinuous sections, the two sides of the equation agree as functions. The right side is smooth
and hence also ω ∪M1 ω. This finishes the proof of Proposition 1.27.

We define the equivariant Euler characteristic

1.31 χG(M,M1;V ) =
∑m
p=0(−1)p · [Hp(M,M1;V )] ∈ RepR(G)

Proposition 1.32 (Product Formula for Analytic Torsion) Regard a Riemannian G-
manifold M whose boundary is the disjoint union M1

∐
M2 and a Riemannian H-manifold N

with empty boundary. Let V resp. W be an orthogonal DG(M)- resp. DH(N)-representation.
Then M ×N is a Riemannian G×H-manifold and V ⊗RW an orthogonal DG×H(M ×N)-
representation and we get using the pairing 1.25

ρG×Han (M ×N,M1 ×N ;V ⊗R W )

= χG(M,M1;V )⊗R ρHan(N ;W ) + ρGan(M,M1;V )⊗R χH(N ;W )

Proof : :We show the analogous statement for the Zeta-functions if Real(s) > dim(M)/2.
We conclude for λ > 0 from 1.21 and 1.22

1.33
∑
p≥0(−1)p · [EG

λ (M,M1;V )p] = 0

We derive from Theorem 1.10
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1.34 χG(M,M1;V ) =
∑
p≥0(−1)p · [EG

0 (M,M1;V )]

Notice that Λ∗(M ;V )⊗R Λ∗(N ;W ) is dense in Λ∗(M ×N ;V ⊗R W ) and on this dense
subspace we have ∆M×N = ∆M ⊗R id+ id⊗R ∆N . The eigenvalues of ∆M build a Hilbert
bases for L2Λ∗(M ;V ). We conclude

1.35 EG×H
γ (M ×N,M1 ×N ;V ⊗R W )i = ⊕p+q=i ⊕λ+µ=γ E

G
λ (M,M1;V )p ⊗R EH

µ (N ;W )q

Now we compute

ζG×H(M ×N ;M1 ×N ;V ⊗R W )

=
∑
i≥0(−1)i · i∑γ>0 γ

−s · [EG×H
γ (M ×N ;M1 ×N ;V ⊗R W )]

=
∑
p,q

∑
λ+µ>0(λ+ µ)−s · (−1)p+q · (p+ q) · [EG

λ (M,M1;V )p ⊗R EH
µ (N ;W )q]

=
∑
λ+µ>0(λ+ µ)−s ·

(∑
p≥0(−1)p · [EG

λ (M,M1;V )p]
)
⊗R

(∑
q≥0(−1)q · q · [EH

µ (N ;W )q]
)

+
∑
λ+µ>0(λ+ µ)−s ·

(∑
p≥0(−1)p · p · [EG

λ (M,M1;V )]
)
⊗R

(∑
q≥0(−1)q · [EH

µ (N ;W )q]
)

=
(∑

p≥0(−1)p · [EG
0 (M,M1;V )]

)
⊗R

(∑
q≥0(−1)q · q ·∑µ>0 µ

−s · [EH
µ (N ;W )q]

)
+
(∑

p≥0(−1)p · p ·∑λ>0 λ
−s · [EG

λ (M,M1;V )p]
)
⊗R

(∑
q≥0(−1)q · [EH

0 (N ;W )q]
)

+
∑
λ,µ>0(λ+ µ)−s ·

(∑
p≥0(−1)p · p · [EG

λ (M,M1;V )p]
)
⊗R

(∑
q≥0(−1)q · [EH

µ (N ;W )q]
)

+
∑
λ,µ>0(λ+ µ)−s ·

(∑
p≥0(−1)p · [EG

λ (M,M1;V )p]
)
⊗R

(∑
q≥0(−1)q · q · [EH

µ (N ;W )q]
)

= χG(M,M1;V )⊗R

(∑
q≥0(−1)q · q · ζHq (N ;W )

)
+(∑

p≥0(−1)p · p · ζGp (M,M1;V )
)
⊗R χH(N ;W )

= χG(M,M1;V )⊗R ζH(N ;W ) + ζG(M,M1;V )⊗R χH(N ;W )

1.36 If H is a subgroup of G, then there are obvious restriction and induction homomor-
phism for R⊗Z RepR(G). Restriction and induction is also defined for (M,M1;V ). The
equivariant analytic torsion is compatible with restriction and induction.
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2. Torsion Invariants for Chain Complexes

In order to define PL-torsion invariants for G-CW -complexes and Riemannian G-
manifolds it is convenient to do this for RG-chain complexes C = (C∗, c∗). We say that
C is finite if Ci is finitely generated for all i and is zero for all but a finite number of
i ∈ Z. Let f : C −→ D be a RG-chain equivalence of finite RG-chain complexes and let
φ : Codd ⊕Dev −→ Dodd ⊕ Cev be a RG-isomorphism. Denote by Cone(f) the mapping cone
of f whose differential is also denoted by c and given by

cn =

(
−cn−1 0
fn−1 dn

)
: Cn−1 ⊕Dn −→ Cn−2 ⊕Dn−1

Choose a chain contraction γ of Cone(f), i.e. a map of degree 1 such that c ◦ γ + γ ◦ c = id.
Then we obtain an isomorphism (c+ γ) : Cone(f)odd −→ Cone(f)ev if Cone(f)odd resp.
Cone(f)ev is the sum of all chain modules of odd resp. even dimension. If π denotes the
obvious permutation map, we get an RG-isomorphism of a finitely generated RG-module

Cone(f)odd
(c+γ)−→ Cone(f)ev

π−→ Codd ⊕Dev
φ−→ Dodd ⊕ Cev

π−→ Cone(f)odd

Denote its class in K1(A) by

2.1 tG(f, φ) = t(f, φ) ∈ K1(A)

We recall that K1(A) is the abelian group generated by automorphisms f : P −→ P of
finitely generated RG-modules with the relations [f2] = [f1] + [f3] for any exact sequence
{0} −→ (P1, f1) −→ (P2, f2) −→ (P3, f3) −→ {0} and [g ◦ f ] = [g] + [f ] for f, g : P −→ P
and [id : P −→ P ] = 0. We refer to Lück (1989)[21], chapter 12, for more details about
this invariant and the proofs that it is well-defined. The proofs of some results of this
sections are omitted as they are very similar to the ones appearing there.

A RG-Hilbert complex is a RG-chain complex C together with a G-invariant R-Hilbert
space structure on each Cn. Let f : C −→ D be a RG-chain equivalence of finite RG-Hilbert
complexes . Fix an isometric RG-isomorphism φ : Codd ⊕Dev −→ Dodd ⊕ Cev. Its existence
follows from the Polar Decomposition Theorem and the fact that Codd ⊕Dev and Dodd ⊕ Cev
are RG-isomorphic. Given a RG-module P , let P ∗ be HomR(P,R) equipped with the RG-
module structure g · f = f ◦ l(g−1). The natural RG-map P −→ P ∗∗ is bijective if and only
if P is finitely generated. We obtain an involution

2.2 ∗ : K1(A) −→ K1(A) [f ] 7→ [f ∗]
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Define the Hilbert torsion

2.3 htG(f) = ht(f) ∈ K1(RG)Z/2

by ht(f) = t(f, φ) + ∗t(f, φ). This is independent of the choice of φ. If ψ is another choice
we have

(t(f, φ) + ∗t(f, φ))− (t(f, ψ) + ∗t(f, ψ))

= (t(f, φ)− t(f, ψ)) + ∗(t(f, φ)− t(f, ψ))

= [ψ−1 ◦ φ] + ∗[ψ−1 ◦ φ]

= [ψ−1 ◦ φ]− [ψ−1 ◦ φ]

= 0

Proposition 2.4 If f and g : C −→ D are RG-chain homotopic, we get

ht(f) = ht(g)

Let C be a finite RG-Hilbert complex. Consider its homology H(C) as aRG-chain complex
by the trivial differential. Suppose that additionally H(C) has the structure of a RG-Hilbert
complex. Up to RG-chain homotopy there is precisely one RG-chain map i : H(C) −→ C
satisfying H(i) = id. Define the Hilbert-Reidemeister torsion

2.5 hrG(C) = hr(C) ∈ K1(RG)Z/2

by hr(C) := ht(i : H(C) −→ C).

Example 2.6 Let G be the trivial group. Let C be a finite R-Hilbert complex together
with a R-Hilbert structure on H(C). Choose orthonormal bases for each Ci and H(C)i.
The torsion defined by Milnor (1966)[25] takes values in K̃1(R) = R∗/Z∗. Its square is a
positive real number which agrees with hr(C) ∈ K1(R) = R∗.

We collect the main properties of these invariants. Consider the commutative diagram of
finite RG-Hilbert complexes whose rows are exact and whose vertical arrows are RG-chain
equivalences
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2.7 0 - C -

i

D -

p

E - 0

? ? ?

f g h

0 - C ′ -

i′

D′ -

p′

E ′ - 0

We get an acyclic finite RG-Hilbert complex 0 −→ Cn
in−→ Dn

pn−→ En −→ 0 concen-
trated in dimension 0, 1, 2 for each n ∈ Z. Let hr(Cn, Dn, En) be its Hilbert-Reidemeister
torsion. Define

2.8 hr(C,D,E) :=
∑
n(−1)n · hr(Cn, Dn, En) ∈ K1(RG)Z/2

Proposition 2.9 (Additivity) ht(f)− ht(g) + ht(h) = hr(C,D,E)− hr(C ′, D′, E ′)

Let 0 −→ C
i−→ D

p−→ E −→ 0 be an exact sequence of finite RG-Hilbert complexes. Sup-
pose that H(C), H(D) and H(E) come with RG-Hilbert structures. The long homology
sequence H(C,D,E) inherits the structure of an acyclic finite RG-Hilbert complex. Ana-
logously to Milnor [25] we get

Proposition 2.10 (Additivity) hr(C)− hr(D) + hr(E) = hr(C,D,E)− hr(H(C,D,E))

Proposition 2.11 (Composition Formula) If f : C −→ D and g : D −→ E are chain
equivalences of RG-Hilbert complexes , we have

ht(g ◦ f) = ht(g) + ht(f)

Proposition 2.12 (Comparision Formula) If f : C −→ D is a RG-chain equivalence of
finite RG-Hilbert complexes and H(C) and H(D) come with finite RG-Hilbert complex struc-
tures, then H(f) : H(C) −→ H(D)is a RG-chain equivalence of finite RG-Hilbert complexes
and we get

ht(f) = hr(D)− hr(C) + ht(H(f))
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Proof : Proposition 2.11

Given two finite groups G and H, there is a pairing

2.13 ⊗R : K0(RG)⊗Z K1(RH) −→ K1(RG×H)

[P ]⊗Z [f : Q −→ Q] 7→ [id⊗R f : P ⊗R Q −→ P ⊗R Q]

Notice that K0(RG) is RepR(G). Because P and P ∗ are (not naturally) RG-isomorphic, we
get induced pairings

2.14 ⊗R : K0(RG)⊗Z K1(RH)Z/2 −→ K1(RG×H)Z/2

⊗R : K0(RG)⊗Z K1(RG)Z/2 −→ K1(RG)Z/2

If C is a finite RG-chain complex, define its Euler characteristic

2.15 χ(C) :=
∑
i≥0(−1)i · [Ci] =

∑
≥0(−1)i · [Hi(C)] ∈ K0(RG)

Proposition 2.16 (Product Formula)
a.) Let f : C ′ −→ C resp. g : D′ −→ D be a RG- resp. RH-chain equivalence of finite
RG-Hilbert complexes. Then

htG×H(f ⊗R g) = χG(C)⊗R htH(g) + htG(f)⊗R χH(D)

b.) Let C resp. D be a finite RG- resp. RH-chain complex. Assume that H(C) resp.
H(D) possesses a finite RG- resp. RH-Hilbert complex structure. Equip H(C ⊗R D) with
the finite RG×H- Hilbert structure for which the Künneth isomorphism H(C)⊗R H(D)
∼= H(C ⊗R D) becomes an isometry. Then

hrG×H(C ⊗R D) = χG(C)⊗R hrH(D) + hrG(C)⊗R χH(D)

2.17 If H ⊂ G is a subgroup, there are obvious induction and restriction homomorphism.
Both ht and hr are compatible with induction and restriction.
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If C = (C∗, c∗) is a finite RG-chain complex, define its dual RG-chain complex Cn−∗ by
(Cn−∗)r := (Cr)

∗ and (cn−∗)r := (cn−r+1)∗. If the RG-module P has a finite RG-Hilbert
structure given by an RG-isomorphism φ : P −→ P ∗ satisfying φ∗ = φ, equip P ∗ with the

finite RG-Hilbert structure P ∗
φ−1

−→ P −→ P ∗∗. Hence Cn−∗ inherits a finite RG-Hilbert
complex structure from C. Notice that the natural RG-map C −→ (Cn−∗)

n−∗
is an isometric

RG-chain isomorphism.

Proposition 2.18
a.) If f : C −→ D is a RG-chain equivalence of RG-Hilbert complexes, we get

ht(fn−∗) = (−1)n · ht(f)

b.) Let C be a finite RG-Hilbert complex. Assume that H(C) has a finite RG-Hilbert complex
structure. Then:

hr(Cn−∗) = (−1)n+1 · hr(C)

Let f : C −→ D be a RG-chain equivalence of finite RG-Hilbert complexes. Let κ(Ci) and
κ̃(Ci) resp. κ(Di) and κ̃(Di) be two different RG-Hilbert structures on Ci resp Di. We
obtain RG-automorphisms

2.19 κ(Ci)
−1 ◦ κ̃(Ci) : Ci −→ C∗i −→ Ci

κ(Di)
−1 ◦ κ̃(Di) : Di −→ D∗i −→ Di

Proposition 2.20 We have :

ht(f : (C, κ(C)) −→ (D, κ(D)))− ht(f : (C, κ̃(C)) −→ (D, κ̃(D)))

=
∑
i≥0(−1)i · [κ(Ci)

−1 ◦ κ̃(Ci)]−
∑
i≥0(−1)i · [κ(Di)

−1 ◦ κ̃(Di)]

Proof : Because of Lemma 2.11 it suffices to prove

ht(id : (C, κ(C)) −→ (C, κ̃(C))) =
∑
i≥0

(−1)i · [κ(Ci)
−1 ◦ κ̃(Ci)]

Because of Proposition 2.9 we can assume that C is concentrated in dimension zero. If
φ : (C0, κ(C0)) −→ (C0, κ̃(C0)) is an isometric RG-isomorphism, we compute

ht(id : (C, κ(C)) −→ (C, κ̃(C))) = [φ] + [φ∗] = [φ] + [κ̃(C0) ◦ φ−1 ◦ κ(C0)−1]
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= [φ ◦ κ̃(C0) ◦ φ−1 ◦ κ(C0)−1] = [κ(C0)−1 ◦ κ̃(C0)]

Next we compare K1(RG)Z/2 and R ⊗Z RepR(G). Let I be a complete set of repre-
sentatives for the isomorphism classes of irreducible RG-representations. For any finitely
generated RG-module W we have the natural RG-isomorphism

2.21 φ : ⊕V ∈I HomRG(V, P )⊗EndRG(V ) V −→ P f ⊗ v 7→ f(v)

By Schur’s Lemma EndRG(V ) is a skew field. Hence the canonical homomorphism
EndRG(V )∗ −→ K1(EndRG(V )) induces an isomorphism from the abelianization of the group
of units EndRG(V )∗ab −→ K1(EndRG(V )) (see Silvester [33] page 133). We obtain from 2.21
an isomorphism

2.22 Φ : K1(A) −→ ⊕V ∈IEndRG(V )∗ab [g : P −→ P ] 7→ {[HomRG(idV , g)] | V ∈ I}

There is an involution ∗ : EndRG(V )∗ab −→ EndRG(V )∗ab sending [f ] to [k−1 ◦ f ∗ ◦ k] for
any RG-isomorphism k : V −→ V ∗satisfying k = k∗. Then φ is compatible with the in-
volution ∗ on K1(A) and the direct sum of the involutions ∗ on EndRG(V )∗ab. Because
EndRG(V ) is a skew field over R, it is isomorphic to R,C or H and we accordingly call V of
real, complex or quaternionic type. Under these isomorphisms the involution on EndRG(V )
corresponds to the trivial, complex or quaternionic involution. The map R+ × S3 −→ H∗

sending (λ, z) to λ · z is an isomorphism of Lie groups, if S3 inherits the Lie group struc-
ture from S3 ⊂ H. The Lie group S3 = SU(2) is its own commutator group. The inclusion
R+ ↪→ H∗ and the norm map H∗ −→ R sending a ∈ H to

√
aā induce to another inverse

isomorphisms R+ −→ H∗ab and H∗ab −→ R+. Now the inclusion i : R∗ −→ (EndRG(V )∗ab)
Z/2

mapping λ ∈ R∗ to λ · id : V −→ V induces an isomorphism

2.23 i : R∗ −→ (EndRG(V )∗ab)
Z/2 , if V is of real or complex type

i : R+ −→ (EndRG(V )∗ab)
Z/2 , if V is of quaternionic type

Let the isomorphisms γ1 : R+ −→ R resp. γ1 ⊕ γ2 : R∗ −→ R⊕ Z/2 send r to ln(r) resp.
(ln(| r |), r/ | r |). Denote by Î the subset of I consisting of V ’s of real or complex type
and by R̂epR(G) the subgroup of RepR(G) generated by Î. For an abelian group A we get
identifications

2.24 ⊕V ∈IA −→ A⊗Z RepR(G)

⊕V ∈ÎA −→ A⊗Z R̂epR(G)
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from the Z-bases I resp. Î Define

2.25 Γ1 ⊕ Γ2 : K1(RG)Z/2 −→ (R⊗Z RepR(G))⊕ (Z/2⊕Z R̂epR(G))

to be the composition
((
⊕V ∈Î γ1 ⊕ γ2

)
⊕
(
⊕V ∈I−Î γ1

))
◦ (⊕V ∈I i−1) ◦ ΦZ/2.

Proposition 2.26 The map Γ1 ⊕ Γ2 is an isomorphism and is natural with respect to induc-
tion and restriction and the operations of K0(RG) = RepR(G). If we denote by
m(V ) = dimR (EndRG(V )) the Schur index of V , we get

Γ1 ([f : P −→ P ]) =∑
V ∈I

1
2·m(V )

· ln
(
(det(HomRG(idV , f) : HomRG(V, P ) −→ HomRG(V, P ))2

)
where the determinant is taken for a linear map over R. The inverse of Γ1 ⊕ Γ2 maps
(λ⊗R [V ],±[W ]) to [exp(λ) · id : V −→ V ] + [±id : W −→ W ].

2.27 Until now we have dealt with homology and chain complexes. There is also a coho-
mology and cochain version. If C∗ is a finite RG-Hilbert cochain complex, let co(C∗) be the
finite RG-Hilbert complex with co(C∗)n := C−n and c−n as nth-differential. A RG-cochain
equivalence f ∗ : C∗ −→ D∗ induces a RG-chain equivalence co(f ∗) : co(C∗) −→ co(D∗) We
define

ht(f ∗) := ht(co(f ∗)) hr(C∗) := hr(co(C∗))

All the results of this section have cochain analogoues.

Let C be a finite RG-Hilbert chain complex with differential cn : Cn −→ Cn−1. The adjoint
of cn+1 is denoted by γn : Cn −→ Cn+1. Define a symmetric and non-negative definite RG--
homomorphism ∆n : Cn −→ Cn by cn+1 ◦ γn + γn−1 ◦ cn. Let Eλ(∆n) be the eigenspace for
λ ≥ 0. Define the holomorphic Zeta-function

2.28 ζn : C −→ C⊗Z RepR(G) s 7→ ∑
λ>0 λ

−s · [Eλ(∆n)]

By the finite-dimensional analogue of the Hodge Decomposition Theorem 1.10 we have a
canonical isomorphism i : E0(∆n) −→ Hn(C). Equip E0(∆n) ⊂ Cn and Hn(C) with the
induced RG-Hilbert structures. The following result motivates the definition of analytic
torsion and Hilbert-Reidemeister torsion (cf. Ray-Singer [29], Prop. 1.7)
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Proposition 2.29

a.) Γ1(hr(C)) =
∑
n≥0(−1)n · n · d

ds
ζn |s=0

b.) Γ2(hr(C)) = 1

Proof : First we treat the case where C is acyclic. Then ∆n is bijective. Let fn : Cn −→ Cn
be ∆n

n = ∆n ◦∆n ◦ . . . ◦∆n. Then the following diagram commutes

Codd Cev
-

c+ c∗∆−1

?

fodd

?

fev

Codd Cev
-

c∆−1 + c∗

As the lower horizontal arrow in the square above is the inverse of the adjoint of the upper
horizontal arrow and c∗ ◦∆−1 is a chain contraction for C, hr(C) = −∑n≥0(−1)n · n · [∆n]
is true. One easily checks

Γ1([∆n]) = Γ1(
∑
λ>0[λ · id : Eλ(∆n) −→ Eλ(∆n)]) =∑

λ>0 ln(λ) · [Eλ(∆n)] = − d
ds
ζn |s=0

This proves the claim for acyclic C. The general case follows from the obvious exact sequence

of finite RG-Hilbert complex 0 −→ H(C)
i−→ C −→ cok(i) −→ 0 and Proposition 2.10. We

leave b.) to the reader.
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3. PL-Torsion

Let G be a finite group. A finite G-CW -complex X is a CW -complex X together with
a G-action such that for any g ∈ G and any open cell e ⊂ X with e ∩ l(g)(e) 6= ∅ we have
l(g)(e) = e and l(g) |e= ide where l(g) : X −→ X is left-multiplication with g. We want to
define PL-torsion for finite G-CW -complexes with a RG-Hilbert structure on the homology
resp. cohomology groups. We prefer the name PL-torsion instead of topological torsion, as
in the equivariant setting torsion invariants are not invariants under G-homeomorphisms in
general (see Cappell-Shaneson (1981) [7]). We will apply this to Riemannian G-manifolds
using the equivariant triangulation theorem. Having these invariants also for G-CW -complex
gives some useful flexibility.

Consider a pair (X, Y ) of finite G-CW -complexes. Suppose for simplicity that X is
connected. The following definitions are easily extended to the non-connected case. Let
p : X̃ −→ X be the universal covering and Ỹ := p−1(Y ). Then (X̃, Ỹ ) is a finite DG(X)-
CW -pair. The group DG(X) was introduced in 1.1. Its cellular Z[DG(X)]-chain complex
C∗(X̃, Ỹ ) is free over Z[π1(X)]. Fix an orthogonal DG(X)-representation V . As we think of
π = π1(X) as group of deck transformations, DG(X) and π act from the left on C∗(X̃, Ỹ ).
Let¯: Z[DG(X)] −→ Z[DG(X)] be the involution sending

∑
λd · d to

∑
λd · d−1 and similar

for Rπ. There is an induced right module structure given by u · s := s̄ · u for s ∈ R[DG(X)],
u ∈ C∗(X̃, Ỹ ). Define the RG-Hilbert complex

3.1 C∗(X, Y ;V ) := C∗(X̃, Ỹ )⊗RπV

The RG-module structure comes from g · (u⊗Rπv) := g̃u⊗Rπg̃v for any lift g̃ ∈ DG(X)
of g ∈ G and u ∈ C∗(X̃, Ỹ ) and v ∈ V . We obtain a RG-Hilbert structure by requiring that
for one (and hence all) cellular Zπ-base B of C∗(X̃, Ỹ ) the following R-isomorphism is an
isometry with respect to the orthogonal structure on V

C∗(X, Y ;V ) −→ ⊕BV

∑
b∈B

ab · b

⊗Rπv 7→ {āb · v | b ∈ B}

Define the RG-Hilbert cochain complex

3.2 C∗(X,Y ;V ) := HomRπ(C∗(X̃, Ỹ ), V )

The RG-structure is induced from the DG(X)-action on HomR(C∗(X̃, Ỹ );V ) given by
d · f := l(d) ◦ f ◦ l(d−1) and the fact that the π-fixed point set is HomRπ(C∗(X̃, Ỹ );V ). The
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RG-Hilbert structure is determined by the property that for one (and hence all) cellular
Rπ-base B of C∗(X̃, Ỹ ) the following R-isomorphism is isometric

C∗(X, Y ;V ) −→ ⊕BV φ 7→ {φ(b) | b ∈ B}

We have explained before how P ∗ inherits a RG-Hilbert structure from P if P is a finitely
generated RG-module with RG-Hilbert structure. Let H∗(X, Y ;V ) resp. H∗(X, Y ;V ) be
the homology resp. cohomology of C∗(X, Y ;V ) resp. C∗(X, Y ;V ). There is an isometric
RG-chain isomorphism

3.3 C∗(X,Y ;V ) −→ HomR(C∗(X,Y ;V ∗),R)

sending φ ∈ HomRπ(C∗(X̃, Ỹ ), V ) to C∗(X̃, Ỹ )⊗RπV ∗ −→ R, u⊗Rπψ 7→ ψ ◦ φ(u). It
induces a RG-isomorphism

3.4 H∗(X, Y ;V ) −→ HomR(H∗(X,Y ;V ∗); R)

Definition 3.5 Let (X,Y) be a finite G-CW -pair and V be an orthogonal DG(X)-represen-
tation. Let κ∗ be a RG-Hilbert structure on H∗(X, Y ;V ). Define the Hilbert -PL-torsion or
briefly PL-torsion

ρGpl(X, Y ;V, κ∗) ∈ K1(RG)Z/2

by ρGpl(X, Y ;V, κ∗) := hr(C∗(X, Y ;V ), κ∗) (see 2.5). Similiarly, if κ∗ is a RG-Hilbert struc-
ture on H∗(X, Y ;V ), define

ρGpl(X, Y ;V, κ∗) ∈ K1(RG)Z/2

by ρGpl(X, Y ;V, κ∗) := hr(C∗(X, Y ;V ), κ∗) (see 2.27)

We derive from 2.18

Proposition 3.6 If κ∗ and κ∗ are compatible with 3.4, we have

ρGpl(X, Y ;V, κ∗) = −ρGpl(X, Y ;V, κ∗)

Remark 3.7 It is convenient to have both the homological and the cohomological definition.
The first one is more convenient for computations as other related torsion invariants like
Whitehead torsion are given by chain complexes and the cellular chain complex is easier to
compute than the cochain complex. The second one fits better into the context of analytic
torsion and deRham cohomology.
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Let (f, f1) : (X,X1) −→ (Y, Y1) be a G-homotopy equivalence of pairs of finite G-CW -
complexes. In Dovermann-Rothenberg (1986) [11], Illman (1974) [17] and in Lück (1989)
[21] equivariant Whitehead torsion τG(f, f1) ∈ WhG(Y ) is defined. Let V be an orthogonal
DG(Y )-representation. We consider RG-Hilbert structures κi(X) on Hi(X,X1; f ∗V ) and
κi(Y ) on Hi(Y, Y1; f ∗V ). Let the element ui ∈ K1(RG)Z/2 be given by the composition

Hi(X,X1; f ∗V )
Hi(f,f1)−→ Hi(Y, Y1;V )

κi(Y )−→ Hi(Y, Y1;V )∗
Hi(f,f1)∗−→

Hi(X,X1; f ∗V )∗
κi(X)−1

−→ Hi(X,X1; f ∗V )

Proposition 3.8 There is a natural homomorphism

ω = ωG(Y ;V ) : WhG(Y ) −→ K1(RG)Z/2

such that

ρGpl(Y, Y1;V, κ∗(Y ))− ρGpl(X,X1; f ∗V, κ∗(X)) = ω(τG(f, f1))−
∑
i≥0

(−1)i · ui

Proof : We describe ω in the language developed in Lück (1989) [21]. A class [k] ∈ WhG(Y )
is represented by an automorphism k : P −→ P of a finitely generated projective ZΠ(G, Y )-
module P . Let x ∈ Ob(Π(G, Y )) be represented by the G-map x : G −→ Y with G as do-
main. Let v ∈ K1(A) be the class of the RG-automorphism k(x)⊗ ZπidV of P (x)⊗ ZπV
where k(x) is given by evaluating k at x. Define ω([g]) := v + ∗v. We get from the definitions
ω(τG(f, f1)) = ht(C∗(f, f1;V )). Now apply Proposition 2.12.

Remark 3.9 A G-homotopy equivalence (f, f1) : (X,X1) −→ (Y, Y1) is simple if τG(f, f1)
vanishes. Hence ρGpl depends only on the simple G-homotopy type, provided that H∗(Y, Y1;V )
vanishes.

Consider the cellular G-push out of pairs of finite G-CW -complexes,where i1 is an
inclusion of such pairs
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3.10 (X0, A0) (X2, A2)-
i2

?

i1
Z
Z
Z
Z
ZZ~

j0

?

j2

(X1, A1) (X,A)-
j1

If V is an orthogonalDG(X)-representation, we get an exact sequence of RG-chain complexes

{0} −→ C∗(X0, A0, j
∗
0V )

i1∗⊕i2∗−→ C∗(X1, A1; j∗1V )⊕ C∗(X2, A2, j
∗
2V )

j1∗−j2∗−→ C∗(X,A;V ) −→ {0}

Denote by M∗ the long homology sequence of the sequence above. Suppose that we have
RG-Hilbert structures κi on H∗(Xi, Ai, j

∗
i V ) for i =, 0, 1, 2 and κ on H∗(X,A, V ). Then M∗

inherits the structure of an acyclic finite RG-Hilbert complex. We derive from Proposition
2.10.

Proposition 3.11 (Sum formula for PL-torsion) We have
ρGpl(X,A;V, κ) = ρGpl(X1, A1; j∗1V, κ1) + ρGpl(X2, A2; j∗2V, κ2)− ρGpl(X0, A0; j∗1V, κ0) + hr(M∗)

Let (X,A) resp. (Y,B) be a pair of finite G- resp. H-CW -complexes and V resp. W
be orthogonal DG(X)- resp DH(Y )-representations. Equip H∗(X,A, V ) resp. H∗(Y,B;W )
with RG- resp. RH-Hilbert structures κ(X) resp. κ(Y ). Then (X,A)× (Y,B) is a pair of
finite G × H-CW -complexes and V ⊗R W an orthogonal representation of DG×H(X × Y )
= DG(X)×DH(Y ). Put on H∗((X,A)× (Y,B);V ⊗R W ) the RG × H-Hilbert structure
κ(X×Y ) induced by the RG×H-Künneth isomorphism from H∗(X,A;V )⊗R H∗(Y,B;W )
to H∗((X,A)× (Y,B);V ⊗R W ). We define the equivariant Euler characteristic

3.12 χG(X,A;V ) ∈ K0(RG) = RepR(G)

by χG(X,A;V ) :=
∑
n≥0(−1)n · [Cn(X,A;V )] =

∑
n≥0(−1)n · [Hn(X,A;V )] as we have al-

ready done for manifolds in 1.31. We derive from Proposition 2.16

Proposition 3.13 (Product Formula for PL-Torsion)
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ρG×Hpl (X,A)× (Y,B);V ⊗R W,κ(X × Y )) =

ρGpl(X,A;V, κ(X))⊗R χH(Y,B;W ) + χG(X,A;V )⊗R ρHpl(Y,B;W,κ(Y ))

Remark 3.14 The PL-torsion is compatible with induction and restriction by 2.17.

Next we deal with manifolds. A Riemannian G-manifold triad (M ;M1,M2) consists of
a Riemannian G-manifold M together with G-invariant codimension zero submanifolds M1

and M2 of the boundary ∂M satisfying ∂M = M1 ∪M2 and ∂M1 = M1 ∩M2 = ∂M2. We
do not require in this section M1 ∩M2 = ∅ what we did in previous sections. Regard an
equivariant triangulation (f ; f1, f2) : (K;K1, K2) −→ (M ;M1,M2) (see Illman (1978) [18].
Roughly speaking, this is an ordinary triangulation together with a regular simplicial action
of G on K for which f is G-equivariant. In particular (K,K1) is a pair of finite G-CW -
complexes. Let V be an orthogonal DG(M)-representation. The Riemannian metric on
M gives an inner product << ω, η >>=

∫
M < ω, η > dM =

∫
M ω ∧ ∗η on Λp(M). Equip

the subspace of harmonic forms Hp
harm(M,M1;V ) with the induced innner product. There

is a natural RG-isomorphism j : Hp(K,K1; f ∗V ) −→ Hp
s (K,K1, f

∗V )between singular and
cellular homology. Denote by κ∗harm the RG-Hilbert structure on H∗(K,K1; f ∗V ) for which
the following RG-isomorphism becomes an isometry where ī is the Hodge isomorphism (see
Proposition 1.10)

Hp(K,K1; f ∗V )
j−→ Hp

s (K,K1; f ∗V )
(f∗)−1

−→ Hp
s (M,M1;V )

ī−1

−→ Hp
harm(M,M1;V )

Let κharm∗ be the RG-Hilbert structure on H∗(K,K1; f ∗V ) given by κ∗harm and 3.4

Definition 3.15 Define the PL-torsion

ρGpl(M,M1;V ) ∈ K1(RG)Z/2

by ρGpl(K,K1; f ∗V, κharm∗ )

If (g; g1, g2) : (L;L1, L2) −→ (M ;M1,M2) is a second triangulation, g ◦ f−1 is simple,
i.e. τG(g−1 ◦ f) = 0 in WhG(L). Now Proposition 3.8 shows that the choice of equivariant
triangulation does not matter. In the sequel we will identify M with a triangulation. We
emphasize that our notion on PL-torsion is based on homology (cf. Proposition 3.6)

Definition 3.16 We call the RG-Hilbert structures κ∗harm and κharm∗ constructed above the
harmonic Hilbert structure.
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In the equivariant setting there is a new invariant involved which does not occur in
the non-equivariant case. For a generator [M ] ∈ Hm(C∗(M̃, ˜∂M)⊗ ZπwZ) ∼= Z we obtain
by Poincaré duality a RG-chain equivalence unique up to homotopy

3.17 ∩[M ] : Cn−∗(M,M2;w V ) −→ C∗(M,M1;V )

It induces an RG-isomorphism

3.18 H(∩[M ]) : Hn−∗(M,M2;w V ) −→ H∗(M,M1;V )

The construction of ∩[M ] as a RG-chain map uses the existence of equivariant approxima-
tions of the diagonal G-map M −→M ×M . Recall that C∗(M,M1;V ) and Cn−∗(M,M1;V )
have preferred RG-Hilbert structures coming from cellular R-bases and the inner product
on V (see 3.1 and 3.2).

Definition 3.19 Define the Hilbert-Poincaré torsion or briefly Poincaré torsion

ρGpd(M,M1;V ) ∈ K1(RG)Z/2

to be the Hilbert torsion of ∩[M ] : Cn−∗(M,M2;w V ) −→ C∗(M,M1;V )

This definition is independent of the choice of [M ] as the Hilbert torsion of −id is always
zero.

Proposition 3.20 If G acts freely, then ρGpd(M,M1;V ) vanishes.

Proof : If G acts freely on M , then also DG(M) on M̃ . The proof of Poincaré duality
by the dual cell decomposition shows that the Z[DG(M)]-chain equivalence of finitely gene-
rated based free Z[DG(M)]-chain complexes ∩[M ] : Cn−∗(M,M2;w V ) −→ C∗(M,M1;V ) is
base preserving and hence has vanishing Hilbert torsion.

Remark 3.21 For non-free actions the dual CW -complex structure obtained from an equiv-
ariant triangulation is not a G-CW -complex structure. For example, consider S1 with the
Z/2-action given by complex conjugation. The upper and lower hemispheres give obvious
equivariant triangulations. The dual cell decomposition is obtained from it by rotation about
900. It is not an equivariant cell decomposition as Z/2 acts non-trivially on each of the 1-
cells. Therefore it can happen that the Poincaré torsion is not trivial, if the group acts
non-freely.
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On the homology level nothing happens.

Lemma 3.22 The RG-map H(∩[M ]) : Hn−∗(M,M2;w V ) −→ H∗(M,M1;V ) is isometric
with respect to the harmonic RG-Hilbert structures. In particular the Hilbert torsion of
it is zero

Proof : The claim follows from the commutativity of the following diagram, where A is the
deRham isomorphism and <,> denotes the Kronecker pairing resp. is given by the Hilbert
structure.

Hn−p
harm(M,M2;w V ) Hn−p(M,M2;w V )-

A

?

∗
?

H(∩[M ])

Hp
harm(M,M1;V ) Hp(M,M1;V )

?

<,>

?

<,>

Hp
harm(M,M1;V )∗ Hp(M,M1;V )∗-

A∗

Proposition 3.23 (Poincaré Duality for Poincaré and PL-Torsion)
Let (M ;M1,M2) be a m-dimensional Riemannian G-manifold triad with orientation homo-
morphism w : DG(M) −→ {±1}. Let V be an orthogonal DG(M)-representation. Then we
have :

a.) ρGpl(M,M1;V ) + (−1)m · ρGpl(M,M2;w V ) = ρGpd(M,M1;V )

b.) ρGpd(M,M1;V ) = (−1)m · ρGpd(M,M2;w V )

c.) χG(M,M1;V ) = (−1)m · χG(M,M2;w V )

Proof : a.) Because of Proposition 3.6 and Lemma 3.22 the claim follows from the Com-
parision formula 2.12 applied to ∩[M ] : Cm−∗(M,M2;V ) −→ C∗(M,M1;V ).

b.) The RG-chain maps ∩[M ] and (∩[M ])m−∗ from Cm−∗(M,M2;V ) to C∗(M,M1;V ) are
chain homotopic. Now apply Proposition 2.4 and Proposition 2.18.
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c.) follows from 3.4.

Remark 3.24 If one compares the statements about Poincaré duality for analytic torsion
1.20 and for PL-torsion 3.23, it becomes obvious that the Poincaré torsion has to enter in a
formula relating analytic and PL-torsion

Example 3.25 Let Z/2 act on S1 by complex conjugation. Equip S1 with the standard
metric scaled by a factor such that the volume of S1 is the positive real number µ. We use
the Z/2-CW -structure with the upper and lower hemispheres S1

+ and S1
− as 1-cells and the

points −1,+1 ∈ C as 0-cells. The cellular RZ/2-chain complex C∗(S
1; R) is

R[Z/2]
(−ε,ε)−→ R⊕R

where ε is the augmentation a+ b · t 7→ a+ b for t ∈ Z/2 the generator, S1
+ resp. S1

− cor-
responds to 1 resp. t ∈ R[Z/2] and the points −1, 1 to (1, 0), (0, 1) ∈ R⊕R. The cel-
lular R[Z/2]-Hilbert structure is given by the orthonormal R-bases {1, t} ⊂ R[Z/2] and
{(1, 0), (0, 1)} ⊂ R⊕R. The 1-form µ−1/2 · dvol for dvol the volume form has norm 1 be-
cause

<< µ−1/2 · dvol, µ−1/2 · dvol >>= µ−1· << dvol, dvol >>= µ−1 ·
∫
S1 dvol ∧ ∗dvol

= µ−1 ·
∫
s1 dvol = µ−1 · µ = 1

Notice that the generator (1− t) of H1(S1; R) is represented by id : S1 −→ S1 and we have

∫
S1 µ−1/2 · dvol = µ1/2

The harmonic 0-form S1 −→ R, z 7→ µ−1/2 has norm 1 and evaluating it at the generator
(1, 1) of H0(S1; R) yields 2 · µ−1/2. Hence the following maps are R[Z/2]-isometries, if R−

and R carry the standard and H∗(S
1; R) the harmonic R[Z/2]-Hilbert structures.

R− −→ H1(S1; R) 1 7→ µ−1/2 · (1− t)
R −→ H0(S1; R) 1 7→ 1/2 · (µ1/2, µ1/2)

We use them as identifications of R[Z/2]-Hilbert spaces. The following R[Z/2]-chain map
i : H∗(C

∗(S1; R)) −→ C∗(S1,R) satisfies H(i) = id
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R− R-
0

?

µ−1/2 · (1− t)
?

(µ
1/2

2
, µ

1/2

2
)

R[Z/2] R⊕R-
(−ε, ε)

Its mapping cone is concentrated in dimension 0, 1, 2 and has the following differential c and
chain contraction γ,where δ : R[Z/2] −→ R− maps a+ bt to a− b

R -
�

 0
µ−1/2 · (1− t)


(

0 µ1/2/2 · δ
) R⊕R[Z/2] -

�

 µ1/2/2 ε
µ1/2/2 −ε


 µ−1/2 µ−1/2

(t+ 1)/4 −(t+ 1)/4


R⊕R

Hence (c+ γ) : Cone(i)odd −→ Cone(i)ev is the R[Z/2]-isomorphism

 µ−1/2/2 ε
µ−1/2/2 −ε

0 µ1/2/2 · δ

 : R⊕R[Z/2] −→ R⊕R⊕R−

We have the R[Z/2]-isometry

φ =

(
1 0 0

0
√

2
2
· (t+ 1)

√
2

2
· (t− 1)

)
: R⊕R⊕R− −→ R⊕R[Z/2]

Hence [φ ◦ (c+ γ)] = [(c+ γ) ◦ φ] is represented by

 µ1/2/2
√

2 0

µ1/2/2 −
√

2 0

0 0 −
√

2/2 · µ1/2

 : R⊕R⊕R− −→ R⊕R⊕R−
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This shows

3.26 ρ
RZ/2
pl (S1; R) = [2µ · id : R −→ R] + [µ/2 · id : R− −→ R−]

We get by restriction to the trivial subgroup

3.27 ρpl(S
1; R) = µ2 ∈ R∗

We conclude from 3.26 and Lemma 3.32

3.28 ρ
RZ/2
pl (S1; R−) = [µ/2 · id : R −→ R] + [2µ · id : R− −→ R−]

We derive from 3.26, 3.28 and Proposition 3.23

3.29 ρ
RZ/2
pd (S1; R) = [4 · id : R −→ R] + [1

4
· id : R− −→ R−]

Example 3.30 Equip D1 = [0, 1] with the standard metric scaled my µ > 0. Then D1 has
volume µ. The cellular R-chain complex is

R
(1,−1)−→ R⊕R

The element (µ1/2/2, µ1/2/2) ∈ H0(D1; R) has norm 1 with respect to the harmonic Hilbert
structure. Now one easily checks

3.31 ρpl(D
1; R) = µ ∈ R∗

Recall the map q : DG(M) −→ G of 1.2 and the operation of K0(RG) = RepR(G) on
K1(RG)Z/2 and R⊗Z RepR(G) defined in 2.14 and 1.25.

Lemma 3.32 Let W be an orthogonal G-representation. We have

ρGan(M,M1;V ⊗R q∗W ) = ρGan(M,M1;V )⊗R [W ]
ρGpl(M,M1;V ⊗R q∗W ) = ρGpl(M,M1;V )⊗R [W ]
ρGpd(M,M1;V ⊗R q∗W ) = ρGpd(M,M1;V )⊗R [W ]
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Proof : There are natural isometric RG-isomorphisms

Λ∗(M ;V )⊗R W −→ Λ∗(M ;V ⊗R W ) and
C∗(M,M1;V )⊗R W −→ C∗(M,M1;V ⊗R q∗W )

Let (M ;M1,M2) and (N ;N1, N2) be m-dimensional Riemannian G-manifold triads and
(f ; f1, f2) : (M ;M1,M2) −→ (N ;N1, N2) be a G-homotopy equivalence of such triads. Let V
be an orthogonal DG(N)-representation and κharm∗ (M) and κharm∗ be the harmonic Hilbert
structures on H∗(M,M1; f ∗V ) and H∗(N,N1;V ). The following composition represents an
element ui ∈ K1(RG)Z/2

Hi(M,M1; f ∗V )
Hi(f,f1)−→ Hi(N,N1;V )

κharmi (N)
−→ Hi(N,N1;V )∗

Hi(f,f1)∗−→

Hi(M,M1; f ∗V )∗
κharmi (M)−1

−→ Hi(M,M1; f ∗V )

We have introduced the map ωG(N ;V ) : WhG(N) −→ K1(RG)Z/2 in Proposition 3.8. We
derive from Proposition 3.8, Proposition 2.12 and Proposition 2.18

Proposition 3.33 We have

a.) ρGpl(N,N1;V )− ρGpl(M,M1; f ∗V ) = ωG(N ;V )(τG(f, f1))−∑i≥0(−1)i · ui

b.) ρGpd(N,N1;V )− ρGpd(M,M1; f ∗V ) = ωG(N ;V )(τG(f, f1)) + (−1)m · ωG(N ;w V )(τG(f, f2))

Proposition 3.33 tells in particular how the PL-torsion varies under change of Riemannian
metric. Notice that the Poincaré torsion depends only on the simple G-homotopy type. This
is also true for the PL-torsion, if Hi(N,N1;V ) vanishes.

The following pairings are special cases of 2.14

⊗R : K1(RG)Z/2 ⊗Z RepR(Z/2) −→ K1(R[G× Z/2])Z/2

⊗R : RepR(G)⊗Z K1(R[Z/2])Z/2 −→ K1(R[G× Z/2])Z/2

Proposition 3.34 (Double Formula for Poincaré and PL-Torsion)
Let M be a Riemannian G-manifold and V be an orthogonal DG(M)-represention. Suppose
that ∂M is the disjoint union M1

∐
M2 and that the metric is a product near the boundary.

Then
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a.) ρ
G×Z/2
pl (M ∪M1 M ;V ∪M1 V ) =

ρGpl(M ;V )⊗R [R] + ρGpl(M,M1;V )⊗R [R−] + χG(M1;V )⊗R [2 · id : R −→ R]

b.) ρ
G×Z/2
pl (M ∪M1 M,∂(M ∪M1 M);V ∪M1 V ) =

ρGpl(M,M2;V )⊗R [R] + ρGpl(M,∂M ;V )⊗R [R−] + χG(M1;V )⊗R [2 · id : R −→ R]

c.) ρ
G×Z/2
pd (M ∪M1 M ;V ∪M1 V ) =

ρGpd(M ;V )⊗R [R] + ρGpd(M,M1;V )⊗R [R−] + χG(M1;V )⊗R [2 · id : R −→ R]−
χG(M1;V )⊗R [2 · id : R− −→ R−]

Proof : Let i : M −→M ∪M1 M be the inclusion onto the first summand. We obtain

from this map a R[DG(M ∪M1 M ]-chain map C∗(i) : i∗C∗(M̃) −→ C∗
˜(M ∪M1 M) for i∗ the

induction with the homomorphism DG(i) : DG(M) −→ DG(M ∪M1 M). As i∗(V ∪M1 V ) is
V , there is a RG-chain isomorphism j from i∗C∗(M̃)⊗R[DG(M∪M1

M)] V ∪M1 V to i∗C∗(M ;V ).

The composition of C∗(i)⊗R[DG(M∪M1
M)] V ∪M1 V and j−1 is denoted by

3.35 i∗ : i∗C(M ;V ) −→ C(M ∪M1 M ;V ∪M1 V )

Let τ : M ∪M1 M −→M ∪M1 M be the flip map. As τ ∗V ∪M1 V = V ∪M1 V holds, we also
obtain a RG-chain map

3.36 τ∗ : C∗(M ∪M1 M ;V ∪M1 V ) −→ C∗(M ∪M1 M ;V ∪M1 V )

Define a R[G× Z/2]-chain map

3.37 f∗ : (C∗(M ;V )⊗R R)⊕ (C∗(M ;M1;V )⊗R R−) −→ C∗(M ∪M1 M ;V ∪M1 V )

by

f∗(a⊗R 1 ⊕ b⊗R 1) =

√
2

2
· (i∗ + τ∗ ◦ i∗)(a) +

√
2

2
· (i∗ − τ∗ ◦ i∗)(b)

Counting the cellular bases we obtain isometric RG-isomorphisms for p ∈ Z

3.38 φ : Cp(M,M1;V )⊕ Cp(M1;V ) −→ Cp(M ;V )

Ψ : Cp(M,M1;V )⊕ Cp(M1;V )⊕ Cp(M,M1;V ) −→ Cp(M ∪M1 M ;V ∪M1 V )

35



The map ψ is a R[G × Z/2]-map if Z/2 acts trivially on Cp(M1;V ) and switches the two
summands Cp(M,M1;V ). We get from φ an isometric R[G× Z/2]-isomorphism

(φ⊗R id)⊕ id : (Cp(M,M1;V ))⊗R R)⊕ (Cp(M1;V )⊗R R)⊕ (Cp(M,M1;V )⊗R R−)

−→ C∗(M ;V )⊗R R ⊕ C∗(M ;M1;V )⊗R R−

Now the composition ψ−1 ◦ fp ◦ ((φ⊗R id)⊕ id) is given by


√

2/2 · id 0
√

2/2 · id
0

√
2 · id 0√

2/2 · id 0 −
√

2/2 · id

 : Cp(M,M1;V )⊕ Cp(M1;V )⊕ Cp(M,M1;V ) −→

(Cp(M,M1;V ))⊗R R)⊕ (Cp(M1;V )⊗R R)⊕ (Cp(M,M1;V )⊗R R−)

The Hilbert torsion of this R[G× Z/2]-isomorphism of R[G× Z/2]-Hilbert modules is eas-
ily computed as [Cp(M1;V )]⊗R [2 · id : R −→ R]. We get for the Hilbert torsion of the
R[G× Z/2]-chain map f∗ of R[G× Z/2]-Hilbert chain complexes

3.39 htG×Z/2(f∗) = χG(M1;V )⊗R [2 · id : R −→ R]

Next we compute on the homology level

3.40 htG×Z/2(H(f∗)) = 0

The following diagram commutes where A is given by the deRham map and the isomorphism
3.4 and l is the composition of 1.29 and 1.30.
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Hp(M ∪M1 M,V ∪M1 V )∗ (Hp(M ;V )⊗R R)∗ ⊕ (Hp(M,M1;V )⊗R R−)∗-
H(f∗)

∗

6
A

6
(A⊗R id)⊕ (A⊗R id)

E0(M ∪M1 M ;V ∪M1 V ) (E0(M ;V )⊗R R)⊕ (E0(M,M1;V )⊗R R−)-

√
2 · l

The lower vertical map is an isometry because of the following computation for ω, η ∈
E0(M ∪M1 M,V ∪M1 V )

<
√

2 · l(ω),
√

2 · l(η) >

=<
√

2/2 · i∗(ω+ τ ∗ω),
√

2/2 · i∗(η+ τ ∗η) >M + <
√

2/2 · i∗(ω− τ ∗ω),
√

2/2 · i∗(η− τ ∗η) >M

=< i∗ω, i∗η >M + < i∗τ ∗ω, i∗τ ∗η >M

=< ω, η >M∪M1
M

This implies 3.40. Now the claim a. follows from the Comparision formula 2.12 applied to
the R[G× Z/2]-chain isomorphism f∗ defined in 3.37 if we take 3.39 and 3.40 into account.
One proves b.) analogously. Then c.) follows from a.) and b.) and Poincaré duality 3.23
since the following R[G× Z/2]-representations are isomorphic

(w
G(M)V ∪M1

wG(M)V )⊗R− =wG×Z/2(M∪M1
M) (V ∪M1 V )

This finishes the proof of the Double Formula.

Remark 3.41 Notice that the double formulas for analytic torsion 1.27 and PL-torsion 3.34
differ by a Euler characteristic term depending only on the boundary. It appears in the PL-
case as the cells in the boundary do contribute to the Hilbert structures. This is not true
in the analytic situation where the Hilbert structures come from certain integrals and the
boundary does not contribute to them as it is a zero set. These observations indicate that
the Euler characteristic is the correction term in a formula relating analytic and PL-torsion
for manifolds with boundary.

Example 3.42 In this example we show how the general results above can be used to
compute the torsion invariants for S1 and D1. We will see that we get the same answers as
in examples 1.15 1.18 3.25 3.30 where we computed these invaraints directly. Equip D1 with
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the standard metric scaled my µ > 0. Then D1 has volume µ. The double D1 ∪∂D1 D1 is S1

with Z/2-action given by complex conjugation and the S1-invariant Riemannian metric for
which the volume of S1 is 2 · µ. We get from Poincaré duality 1.20 and 3.23 and Proposition
3.20

ρpl(D
1) = ρpl(D

1, ∂D1)

ρan(D1) = ρan(D1, ∂D1)

We derive from the double formulas 1.27 and 3.34

3.43 ρZ/2
an (S1; R) = ρan(D1) · ([R] + [R−])

ρ
Z/2
pl (S1; R) = ρpl(D

1) · ([R] + [R−]) + 2 · [2 · id : R −→ R]

ρ
Z/2
pd (S1; R) = ρpd(D

1) · ([R] + [R−]) + 2 · [2 · id : R −→ R]− 2 · [2 · id : R− −→ R−]

We know ρan(S1; R) = ln(ρpl(S
1; R)) from Cheeger (1979) [8] and Müller (1978) [26]. Hence

the restriction of 3.43 to the trivial subgroup shows

3.44 ρan(D1) = ln(ρpl(D
1)) + ln(2)

One easily checks that the generator of H0(D1; Z) has norm µ−1/2 with respect to the
harmonic Hilbert structure when considered in H0(D1; R). The projection D1 −→ {pt.} is
a simple homotopy equivalence. Hence we get from 3.8

3.45 ρpl(D
1) = µ

We get from 3.44

3.46 ρan(D1) = ln(2 · µ)

We conclude from 3.43 if ν = 2 · µ is the volume of S1

3.47 ρZ/2
an (S1; R) = ln(ν) · [R] + ln(ν) · [R−])

ρ
Z/2
pl (S1; R) = [2ν · id : R −→ R] + [ν/2 · id : R− −→ R−]

ρ
Z/2
pd (S1; R) = [4 · id : R −→ R]− [1/4 · id : R− −→ R−]

38



Let M resp. N be Riemannian G- resp. H-manifold with boundary. Some care is
necessary to put a G×H-manifold structure on M×N , one has to straighten the angle. There
seems to be no canonical Riemannian metric on M × N . If f : K −→M , g : L −→ N and
h : X −→M ×N are equivariant triangulations, h−1 ◦ (f × g) : K × L −→ X is a simple
G×H-homotopy equivalence. Hence we get from 3.8 and 3.13

Proposition 3.48 (Product Formula for Poincaré and PL-torsion)
Let (M ;M1,M2) resp. (N ;N1, N2) be a Riemannian G- resp. H-manifold triad and V
resp. W be an orthogonal DG(M)- resp. DH(N)-representation. Put on the G × H-
manifold (M ×N ;M ×N1 ∪M1 ×N,M ×N2 ∪M2 ×N) an invariant Riemannian met-
ric such that the Künneth R[G×H]-isomorphism from H∗(M,M1;V )⊗R H∗(N,N1;W ) to
H∗(M ×N ;M1 ×N ∪M ×N1;V ⊗R W ) becomes an isometry with respect to the harmonic
structures. Then we get

a.) ρG×Hpl (M ×N,M1 ×N ∪M ×N1;V ⊗R W ) =

χG(M,M1;V )⊗R ρHpl(N,N1;W ) + ρGpl(M,M1;V )⊗R χH(N,N1;W )

b.) ρG×Hpd (M ×N,M1 ×N ∪M ×N1;V ⊗R W ) =

χG(M,M1;V )⊗R ρHpd(N,N1;W ) + ρGpd(M,M1;V )⊗R χH(N,N1;W )

c.) χG×H(M ×N,M1 ×N ∪M ×N1;V ⊗R W ) = χG(M,M1;V )⊗R χH(N,N1;W )

Next we examine how the Poincaré and PL-torsion behave under glueing.

Proposition 3.49 (Sum Formula for Poincaré and PL-Torsion)
Let (M ;M1,M2) and (N ;N1, N2) be G-manifold triads with invariant Riemannian metric.
Let V and W be orthogonal DG(M)- and DG(N)-representations. Let f : M2 −→ N1 be
a G-diffeomorphism and f̄ : V |M2 −→ f ∗W | N1 an isometric R[DG(M2)]-isomorphism.
Put an invariant Riemannian metric on M ∪f N . Let M∗ be the acyclic finite RG-Hilbert
complex given by the long Mayer-Vietoris homology sequence and the harmonic RG-Hilbert
structures. Define P∗ analogously by the long homology sequence of the pair (M,M1). Then
we have:

a. ) ρGpl(M ∪f N, V ∪f̄ W ) = ρGpl(M ;V ) + ρGpl(N ;W )− ρGpl(M2;V )− hrG(M∗)

b.) ρGpd(M ∪f N, V ∪f̄ W ) = ρGpd(M ;V ) + ρGpd(N ;W )− ρGpd(M2;V )

c.) χG(M ∪f N, V ∪f̄ W ) = χG(M ;V ) + χG(N ;W )− χG(M2;V )

d.) ρGpl(M,M1;V ) = ρGpl(M ;V )− ρGpl(M1;V )− hrG(P∗)

e.) ρGpd(M,M1;V ) = ρGpd(M ;V )− ρGpd(M1;V )

f.) χG(M,M1;V ) = χG(M ;V )− χG(M1;V )
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Proof : a.) and d.) follow directly from Proposition 3.11.
e.) We have exact sequences of RG-chain complexes

3.50 0 −→ C∗(M1;V ) −→ C∗(M ;V ) −→ C∗(M,M1;V ) −→ 0

3.51 0 −→ C∗(M1, ∂M1;w V ) −→ C∗(M,M2;w V )
p−→ C∗(M,∂M ;w V ) −→ 0

We have the canonical exact sequences if Cyl(p) and Cone(p) are the mapping cylinder and
cone of p and P∗ and Q∗ are the mapping cones of C∗(M,∂M ;w V ) and C∗(M,M2;w V )

3.52 0 −→ C∗(M,M2;w V ) −→ Cyl(p) −→ Cone(p) −→ 0

0 −→ C∗(M,∂M ;w V ) −→ Cyl(p) −→ Q∗ −→ 0

0 −→ ∑
C∗(M1, ∂M1;w V ) −→ Cone(p) −→ P∗ −→ 0

As P∗ and Q∗ are contractible, the last two sequences in 3.52 split as exact sequences of
RG-chain complexes (see Cohen (1973) [9]). Choose such a splitting. Then we get from 3.52
by applying C∗ 7→ Cm−∗ the exact sequence

3.53 {0} −→ Cm−1−∗(M1, ∂M1;w V )⊕ Pm−∗ −→ Cm−∗(M,∂M ;w V )⊕Qm−∗

−→ Cm−∗(M,M2;w V ) −→ {0}

Now one constructs a commutative diagram of RG-Hilbert complexes with 3.50 and
3.53 as exact rows such that f resp. g resp. h represents ∩[M ] ◦ pr resp. ∩[M ] ◦ pr resp.
∩[M ] for pr the projection.

Cm−1−∗(M1, ∂M1;w V )⊕ Pm−∗ −→ Cm−∗(M,∂M ;w V )⊕Qm−∗ −→ Cm−∗(M,M2;wV )

C∗(M1;V ) −→ C∗(M ;V ) −→ C∗(M,M1;V )

?

f

?

g

?

h

Since prm−∗ : Pm−∗ −→ {0} and prm−∗ : Qm−∗ −→ {0} have vanishing Hilbert torsion, we
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get from Proposition 2.4 and Proposition 2.11

ρGpd(M1;V ) = htG(f)

ρGpd(M ;V ) = htG(g)

ρGpd(M,M1;V ) = htG(h)

Now the claim follows from 2.9.

b.) is proven analogously starting with

0 −→ C∗(M1;V ) −→ C∗(M ;V )⊕ C∗(N ;V ) −→ C∗(M ∪f N ;V ∪f̄ W ) −→ 0

{0} −→ C∗(M1; ∂M1;V ) −→ C∗(M,∂M ;V )⊕ C∗(N, ∂N ;V )
−→ C∗(M ∪f N, ∂(M ∪f N ;V ∪f̄ W ) −→ {0}

c.) and f.) are obvious. This finishes the proof of the Sum formula
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4. Comparision of Analytic and PL-Torsion

Let G be a finite group. Consider a Riemannian G-manifold M whose boundary ∂M is

M1
∐
M2. We have introduced an extension 0 −→ π1(M)

i−→ DG(p)
q−→ G −→ 0 in 1.2 and

an operation of DG(M) on the universal covering M̃ of M extending the π1(M)-action and
covering the G-action in 1.3 if π1(M) is identified with the group of deck transformations of
the universal covering. Let V be an orthogonal DG(M)-representation. We have introduced
analytic torsion

ρGan(M,M1;V ) ∈ R⊗Z RepR(G)

in 1.14, PL-torsion
ρGpl(M,M1;V ) ∈ K1(RG)Z/2

in 3.15 and Poincaré torsion

ρGpd(M,M1;V ) ∈ K1(RG)Z/2

in 3.19. In 2.25 we have defined an isomorphism

Γ1 ⊕ Γ2 : K1(RG)Z/2 −→ (R⊗Z RepR(G))⊕ (Z/2⊕Z R̂epR(G))

We want to relate these invariants by this isomorphism. One easily checks

Proposition 4.1 Γ2(ρGpl(M,M1;V )) = Γ2(ρGpd(M,M1;V )) = 0

Hence only the images of PL-torsion and Poincaré torsion under Γ1 are interesting. We need
the following technical condition. We call DG(M)-representations V and W coherent if for

any H ⊂ G, x ∈MH their restrictions to H by H = DH({pt.}) DH(j(x))−→ DH(M)
k−→ DG(M)

are RH-isomorphic, where j(x) : {pt.} −→M has {x} as image and k is the obvious in-
clusion. This is equivalent to the assumption that the G-vector bundles M ×π1(M) V and
M ×π1(M) W are locally isometrically isomorphic (cf. proof of Lemma 4.14).

Definition 4.2 We call a DG(M)-representation V coherent to a G-representation if V and
q∗W are coherent for an appropiate G-representation W .

Example 4.3 If MH is non-empty and connected for all H ⊂ G, then any G-representation
is coherent to a G-representationW . Namely, for a fixed element x ∈MG the homomorphism

s : G = DG({pt.}) DG(j(x))−→ DG(M) splits q : DG(M) −→ G. Put W = s∗V . For any y ∈MH

the H-maps j(x) and j(y) are H-homotopic. Hence the composition H ↪→ G
s−→ DG(M)

agrees with the composition H = DH({pt.}) DH(j(y))−→ DH(M)
k−→ DG(M).
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Example 4.4 Let Z/2 act on S1 by complex conjugation. For −1, 1 ∈ S1 we get different
sections s+, s− : Z/2 −→ DZ/2(S1) of q. Identify DZ/2(S1) with the semi direct product
Z×s Z/2 using s+. Then s− : Z/2 −→ Z×s Z/2 sends m̄ to ((−1)m, m̄). Consider the 1-
dimensional DZ/2(S1)-representation given by Z×s Z/2 −→ {±1} , (n, m̄) 7→ (−1)n+m. It
cannot be coherent to Z/2-representation since it restrictions with s+ and s− are not the
same.

Our main result is :

Theorem 4.5 (Torsion Formula for Manifolds with Boundary and Symmetry)
Let M be a Riemannian G-manifold whose boundary is the disjoint union M1

∐
M2. Let V

be an equivariant coefficient system which is coherent to a G-representation. Assume that
the metric is a product near the boundary. Then

ρGan(M,M1;V ) = Γ1(ρGpl(M,M1;V ))− 1

2
· Γ1(ρGpd(M,M1;V )) +

ln(2)

2
· χ(∂M ;V )

Recall that wV is the w-twisted DG(M)-representation given by V and the orientation ho-
momorphism w : DG(M) −→ {±1} defined in 1.4. We will give examples, computations and
applications in the next section. The remainder of this section is devoted to the proof of
Theorem 4.5.

We verify Theorem 4.5 under certain additional assumptions and remove these one
after the other. We will use the work of Lott-Rothenberg [19] where Theorem 4.5 is proved
following Müller (1978) [26], provided that ∂M is empty, M is orientable and V is the
trivial DG(M)-representation R. Their definitions still make sense when we remove the
last condition that V is trivial. Fix an orthogonal G-representation W and an orthogonal
DG(M)-representation V . Let σ : G −→ AutR(W ) be the G-structure on W . We extend the
basic definitions of Lott-Rothenberg [19]. One gets their definitions back if one puts V = R.
Notice that V plays the role of an equivariant coefficient system for M whereas W is a base
element for the representation ring when W is irreducible.

Let ∆p : Λp(M ;V ) −→ Λp(M ;V ) be the Laplacian and the harmonic projection onto
Hp
harm(M ;V ) be prpharm : Λp(M ;V ) −→ Λp(M ;V ). Let ∆p : Λp(M ;V ) −→ Λp(M ;V ) be the

sum ∆p + prpharm. Denote by pr : Λp(M ;V )⊗R W −→ (Λp(M ;V )⊗R W )G the projection
operator onto the fixed point set sending (ω ⊗R w to 1

|G| ·
∑
g∈G l(g

−1)∗ω ⊗R σ(g)(w), where

l(g−1)∗ is induced from left multiplication with g−1. In Lott-Rothenberg [19] a meromorphic
function µpW (s), analytic in 0, is constructed which is for s ∈ C with Real(s) > m/2 given
by
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4.6 µpW (s) = 1
Γ(s)
·
∫∞

0 ts−1 · trace (pr ◦ exp(−t(∆p ⊗R idW ))) dt−

dimR

(
(Hp

harm(M ;V )⊗R W )G
)

where the trace is taken for operators Λp(M ;V )⊗R W −→ Λp(M ;V )⊗R W . The existence
of the meromorphic extension is based on standard approximations of the heat kernel. We
recall the definition of analytic torsion in Lott-Rothenberg [19]

4.7 TW (M ;V ) = 1
2
·∑p≥0(−1)p · p · d

ds
µpW (s) |s=0 ∈ R

The PL-torsion τW (M ;V ) ∈ R∗ in Lott-Rothenberg [19] is defined in the following way.
They use on Cp(M ;V ) and Hp(M ;V ) the same RG-Hilbert structures as we and equip
(Cp(M ;V )⊗R W )G and H((Cp(M ;V )⊗R W )G) = (Hp(M ;V )⊗R W )G) with the RG-Hil-
bert structure induced by restriction from the product structures. They choose orthonormal
bases and define τW (M ;V ) by Milnor’s definition of torsion for the finitely generated based
free R-cochain complex (Cp(M ;V )⊗R W )G with based free cohomology. One easily checks
(cf. Example 2.6)

4.8 τW (M ;V )2 = hr((C∗(M ;V )⊗R W )G) ∈ R∗

Let I be a complete set of representatives of the isomorphism classes of irreducible G-
representations. Let m(W ) = dimR

(
W ⊗R W )G

)
= dimR (HomRG(W,W )) be the Schur

index of W ∈ I.

Lemma 4.9

a.) For s ∈ C with Real(s) > m/2 we have in C⊗Z RepR(G) for p > 0

ζp(M ;V )(s) = 2 ·∑W∈I m(W )−1 · µpW (M ;V )(s) · [W ]

b.) We have in R⊗Z RepR(G)

ρGan(M ;V ) = 2 ·∑W∈I m(W )−1 · TW (M ;V ) · [W ]

c.) We get in K1(RG)Z/2

ρGpl =
∑
W∈I m(W )−1 · [τW (M ;V )2 · id : W −→ W ]

Proof : We obtain in RepR(G) for any G-representation P from 2.21
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4.10 [P ] =
∑
W∈I m(W )−1 · dimR((P ⊗R W )G) · [W ]

As pr is the projection operator, we have

4.11 trace (pr ◦ exp(−t(∆p ⊗R idW )) : Λp(M ;V )⊗R W −→ Λp(M ;V )⊗R W ) =

trace
(
exp(−t(∆p ⊗R idW )G) : (Λp(M ;V )⊗R W )G −→ (Λp(M ;V )⊗R W )G

)

This implies

4.12 µpW (s) =

1
Γ(s)
·
∫∞

0 t−s · trace
(
exp(−t(∆p ⊗R idW )G)

)
dt − dimR

(
(Hp

harm(M ;V )⊗R W )G
)

=∑
λ>0 λ

−s · dimR

(
Eλ((∆

p ⊗R idW )G)
)

=∑
λ>0 λ

−s · dimR

(
(Eλ(∆

p)⊗R W )G
)

Now the claim a.) follows from 4.10 and 4.12. We derive b.) from a.) and c.) is proven
similiarly using 4.8

The main result in Lott-Rothenberg [19] is the following Theorem

Theorem 4.13 (Lott-Rothenberg) Let M be an odd-dimensional orientable Riemannian
G-manifold. Suppose that G acts orientation preserving and ∂M is empty, If W is an
orthogonal G-representation,we get

TW (M ; R) = ln(τW (M ; R))

Their proof is modelled upon the proof of Müller (1978) [26]. Notice that Müller allows
arbitrary coefficients. Lott and Rothenberg define an equivariant version of the combinatorial
torsion τ cW (M ;V ) based on Whitney’s map. They show that the estimates of the sections 1
to 5 in Müller (1978) [26] still hold in the equivariant setting. Then they define an equivariant
parametrix and generalize the estimates of section 8 in Müller (1978) [26]. Since Lott and
Rothenberg work with trivial coefficients V , they can leave out the first step in Müller (1978)
[26], where the difference between analytic and PL-torsion is shown to be independent of
V . Lott and Rothenberg carry out the second step equivariantly, where the difference is
examined under surgery, and thus get their result. We want to deal with Müller’s first step.
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Lemma 4.14 Let M be a closed odd-dimensional G-manifold with trivial orientation be-
haviour wG(M). Let U and V be coherent orthogonal DG(M)-representations and W an
orthogonal G-representation. Then

TW (M ;U)− ln(τW (M ;U)) = TW (M ;V ))− ln(τW (M ;V ))

Proof : For any x ∈M with isotropy group H = {g ∈ G | gx = x} there is an open neigh-
bourhood of the shape G×H S for a H-representation S (see Bredon (1972) [6], VI.2.4
Corollary). The key observation is that the restriction of the G-vector bundles with Rie-
mannian metric M̃ ×π U and M̃ ×π V to G×H S are isometrically isomorphic since then the
argument in Müller (1978) [26], section 9 goes through following the equivariant pattern of
Lott and Rothenberg. The inclusion G/H −→ G×H S sending gH to (g, 0) is a G-homotopy
equivalence so that it suffices to regard the restrictions to G/H. We must show for the inclu-

sion j : x −→M that the restrictions with H = DH(x)
DH(i)−→ DH(M)

k−→ DG(M) of U and
V for k the obvious inclusion agree. As RH-isomorphic implies isometically RH-isomorphic,
this follows from the condition that U and V are coherent.

Lemma 4.15 Theorem 4.5 is true if M is closed and wG(M) = 0.

Proof : If dim(M) is even, we get ρGan(M ;V ) = 0 from Poincaré duality 1.20. Analogously
we obtain 2 · ρGpl(M ;V ) = ρpd(M ;V ) from 3.23 and the claim follows. Suppose that M is
odd-dimensional. We may assume V = q∗U for some G-representation U by 4.14 and the
assumption that V is coherent to a G-representation. Because of 3.32 we may suppose
U = R. Now apply Lemma 4.9 and Theorem 4.13.

Next we want to drop the condition that G acts orientation preserving.

Lemma 4.16 Theorem 4.5 is true if M is closed and M is orientable

Proof : As M is orientable wG(M) : DG(M) −→ {±1} factorizes over q : DG(M) −→ G
into w̄ : G −→ {±1}. Let K be the kernel of G. Since K operates orientation preserving,
Lemma 4.15 applies to resGKM . It suffices to treat the case K 6= G. Because the maps
indGK ◦ resKG on K1(RG)Z/2 and on R⊗Z RepR(G) are given by ?⊗R ([R] + [w̄R]) and Γ1 is
compatible with restriction, we obtain

4.17
(
ρGan(M ;V )− Γ1(ρGpl(M ;V )) + 1

2
· Γ1(ρGpd(M ;V ))

)
⊗R ([R] + [w̄R]) = 0
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Let Z/2 act on S1 by complex conjugation. We derive from the poduct formulas 1.32
and 3.13

4.18 ρG×Z/2
an (M × S1, V ⊗R R)− Γ1(ρ

G×Z/2
pl (M × S1;V ⊗R R))

+ 1
2
· Γ1(ρ

G×Z/2
pd (M × S1;V ⊗R R)) =

χG(M ;V )⊗R

(
ρZ/2
an (S1; R)− Γ1(ρ

Z/2
pl (S1;V )) + 1

2
· Γ1(ρ

Z/2
pd (S1;V ))

)
+(

ρGan(M ;V )− Γ1(ρGpl(M ;V )) + 1
2
· Γ1(ρGpd(M ;V ))

)
⊗R χZ/2(S1; R)

We conclude from 1.16 , 3.26 and 3.29

4.19 ρZ/2
an (S1; R)− Γ1(ρ

Z/2
pl (S1;V )) + 1

2
· Γ1(ρ

Z/2
pd (S1;V )) = 0

Obviously we have

4.20 χZ/2(S1; R) = [R]− [R−]

If we restrict the G× Z/2 on M × S1 to G by id× w̄ : G −→ G× Z/2, we obtain an orien-
tation preserving action. Hence we can apply Lemma 4.15 and obtain from 4.18, 4.19 and
4.20

4.21
(
ρGan(M ;V )− Γ1(ρGpl(M ;V )) + 1

2
· Γ1(ρGpd(M ;V ))

)
⊗R ([R]− [w̄R]) = 0

Now add 4.17 and 4.21, divide by 2 and the claim follows.

Lemma 4.22 Theorem 4.5 is true if M is closed.

Proof : Assume that M is not orientable. Let p : M̂ −→M be the orientation covering.

There is a group extension 0 −→ Z/2 −→ Ĝ
q̂−→ G −→ 0 and a Ĝ-operation on M̂ extending

the Z/2-action on M̂ and covering the G-action on M . Since M̂ is orientable, the claim for
the Ĝ-manifold M̂ follows from Lemma 4.16. Applying induction with q̂ gives the assertion
also for M .
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Now we are ready to prove Theorem 4.5. Assume that M1 = ∅. Let the orthogonal
DG(M)-representation V be coherent to the G-representation W . Then V ∪∂M V is coherent
to W ∪M1 W as a G× Z/2-representation. Because of Lemma 4.22 we get for the closed
G× Z/2-manifold M ∪∂M M

4.23 ρG×Z/2
an (M ∪∂M M,V ∪∂M V ) =

Γ1(ρ
G×Z/2
pl (M ∪∂M M ;V ∪∂M V ))− 1

2
· Γ1(ρ

G×Z/2
pd (M ∪∂M M ;V ∪∂M V ))

Put the double formulas 1.27 and 3.34 into 4.23

4.24 ρGan(M ;V )⊗R [R] + ρGan(M,∂M ;V )⊗R [R−] =

Γ1(ρGpl(M ;V ))⊗R [R] + Γ1(ρGpl(M,∂M ;V ))⊗R [R−] + ln(2) · χG(∂M ;V )⊗R [R]−
1
2
· Γ1(ρGpd(M ;V ))⊗R [R]− 1

2
· Γ1(ρGpd(M,∂M ;V ))⊗R [R−]−

1
2
· ln(2) · χG(∂M ;V )⊗R [R] + 1

2
· ln(2) · χG(∂M ;V )⊗R [R−] =(

Γ1(ρGpl(M ;V ))− 1
2
· Γ1(ρGpd(M ;V )) + 1

2
· ln(2) · χG(∂M ;V )

)
⊗R [R] +(

Γ1(ρGpl(M,∂M ;V ))− 1
2
· Γ1(ρGpd(M,∂M ;V )) + 1

2
· ln(2) · χG(∂M ;V )

)
⊗R [R−]

Now the claim in the case M1 = ∅ follows from comparing the coefficients of [R] in 4.24. In
the general case we repeat this argument, but now we glue along M1 instead of ∂M . Then
the equation corresponding to 4.24 looks like

4.25 ρGan(M ;V )⊗R [R] + ρGan(M,M1;V )⊗R [R−] =

Γ1(ρGpl(M ;V ))⊗R [R] + Γ1(ρGpl(M,M1;V ))⊗R [R−] + ln(2) · χG(M1;V )⊗R [R]−
1
2
·Γ1(ρGpd(M ;V ))⊗R [R]− 1

2
·Γ1(ρGpd(M,M1;V ))⊗R [R−]− ln(2)

2
·χG(M1;V )⊗R [R] +

1
2
· ln(2) · χG(M1;V )⊗R [R−] + ln(2)

2
· χG×Z/2(∂(M ∪M1 M), V ∪M1 V ) =(

Γ1(ρGpl(M ;V ))− 1
2
· Γ1(ρGpd(M ;V )) + 1

2
· ln(2) · χG(∂M ;V )

)
⊗R [R] +(

Γ1(ρGpl(M,M1;V ))− 1
2
· Γ1(ρGpd(M,M1;V )) + 1

2
· ln(2) · χG(∂M ;V )

)
⊗R [R−]

Now Theorem 4.5 follows from comparing the coefficients of R−.
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We end this section by indicating the proof of Lemma 1.13 about the meromorphic
extension of the equivariant Zeta-function. As µpW (s) defined in 4.6 has a meromorphic
extension to the complex plane, analytic in 0, the same is true for ζ(M ;V )(s) by Lemma
4.9, povided that M is closed and wG(M) = 0. Since the product formula 1.32 and double
formula 1.27 give explicit identities of Zeta-functions for Real(s) > m/2, the arguments in
the proof of Theorem 4.5 can also be used to verify Lemma 1.13
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5. Some Computations

In this section we treat some special cases as an illustration. Firstly, suppose that
G is trivial. Then Γ1 ⊕ Γ2 : K1(RG)Z/2 −→ (R⊗Z RepR(G))⊕ (Z/2⊕Z R̂epR(G)) reduces
to R∗ −→ R, r 7→ ln(r/ | r |) and ρGpl(M,M1;V ) is just a positive real number. Moreover,
χG(∂M ;V ) is just dimR(V ) · χ(∂M),where χ(∂M) is the ordinary Euler characteristic. By
Lemma 3.20 ρGpd(M,M1;V ) vanishes. We get from Theorem 4.5 :

Corollary 5.1 Let M be a Riemannian manifold whose boundary is the disjoint union of
M1 and M2. Suppose that the metric is a product near the boundary. Let V be an orthogonal
π1(M)-representation. Then :

ρan(M,M1;V ) = ln(ρpl(M,M1;V )) + ln(2)
2
· χ(∂M) · dimR(V )

Notice that our definition of analytic torsion differs from those in Ray-Singer [29] by a factor
of 2 and our PL-torsion is the square of theirs. Corollary 5.1 for closed manifolds was
independently proved by Cheeger [8] and Müller [26].

For trivial G and V the PL-torsion can be computed as follows. Fix a dimension
p ≥ 0. Choose an orthonormal bases {ω1, ω2, . . . , ωβp} for the space of harmonic p-forms
Hp
harm(M,M1;V ). Let {σ1, σ2, . . . , σβp} be a set of cocycles in the singular (or cellular)

chain complex with integral coefficients of (M,M1) such that the set of their classes in
H(M,M1; Z)/Tors(H(M,M1; Z)) is an integral bases. Let rp be the determinant of the
following matrix

∫
σ1
ω1

∫
σ1
ω2 ...

∫
σ1
ωβp∫

σ2
ω1

∫
σ2
ω2 ...

∫
σ2
ωβp

.

.
.
.

... .
.∫

σβp
ω1

∫
σβp

ω2 ...
∫
σβp

ωβp


Define

5.2 r(M,M1) =
∏m
p=0 r

2·(−1)p+1

p

Define the multiplicative Euler characteristic to be

5.3 mχ(M,M1) =
∏m
p=0 | Tors(Hi(M,M1; Z)) |(−1)p
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The following result was proved in Cheeger [8] (0.1) and (1.4)

Proposition 5.4 Let (M,M1,M2) be a triad of Riemannian manifolds. Then

ρpl(M,M1;V ) = mχ(M,M1)2 · r(M,M1)

Proof : Let κinti be the Hilbert structure on Hi(M,M1; R) for which the bases given by
{σ1, σ2, ..., σβp} is an orthonormal bases.We derive from Proposition 3.8

ρpl(M,M1; R) = ρpl(M,M1, κharm) = ρpl(M,M1, κ
int
∗ ) · r(M,M1).

Hence it suffices to show
ρpl(M,M1, κint) = mχ(M,M1)

Its elementary proof can be found for example in Cheeger [8] (1.4) and in Lück [21] Lemma
18.34

Corollary 5.5 Let M be a m-dimensional Riemannian manifold.
a.) If M is a rational homology sphere, i.e. H∗(M ; Q) = H∗(S

m; Q),then :

ρan(M) = ln(ρpl(M)) = (1 + (−1)m+1) · ln(V ol(M)) + 2 ·∑m−1
p=1 (−1)p · ln(| Hp(M,Z) |)

b.) If M is a rational homology point, i.e. H∗(M ; Q) = H∗({point}; Q), then :

ρan(M ; R) = ln(V ol(M)) + (1 + (−1)m+1) · ln(2)
2

+ 2 ·∑m−1
p=1 (−1)p · ln(| Hp(M,Z) |)

Next we treat the case where M is orientable and G acts orientation preserving on M ,
or equivalently, where wG(M) is trivial. We derive from Theorem 4.5 and Poincaré duality
1.20 and 3.23 :

Corollary 5.6 Let M be a Riemannian G-manifold with invariant Riemannian metric which
is a product near the boundary. Suppose M is closed and wG(M) = 0. Let V be an orthogo-
nal DG(M)-representation coherent to a G-representation.

a.) If dim(M) is odd , we have :

ρGan(M ;V ) = Γ1(ρpl(M ;V ))

ρpd(M ;V ) = 0

b.) If dim(M) is even, we get :

ρan(M ;V ) = 0

ρGpl(M ;V ) = 1
2
ρGpd(M ;V )
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Remark 5.7 The assumption wG(M) = 0 is necessary in Corollary 5.6. We have already

shown ρ
Z/2
pd (S1; R) 6= 0 for Z/2 acting by complex conjugation in 3.29. Let Z/2 act on S2

by sending (x, y, z) to (−x, y, z). Then S2 is the double of D2 for appropiate Riemannian
metrics on S2. We derive from the Double formula 1.27, Poincaré duality 1.20 ,Proposition
3.8 and Corollary 5.1 that

ρZ/2
an (S2; R) = ρan(D2; R) · ([R]− [R−]) = ln(V ol(S2)/2) · ([R]− [R−])

Hence ρZ/2
an (S2) is not necessarily zero. Let RPn be the n-dimensional real projective space.

It is rationally a point if n is even. We get from Corollary 5.5

ρan(RP2n; R) = ln(V ol(RP2n))− 2n · ln(2)

Again this may be non-zero.

Next we analyse how the analytic torsion changes under variation of the metric and
under G-homotopy equivalence. We have just to combine Theorem 4.5 and Proposition
3.33. Suppose that (f ; f1, f2) : (M ;M1,M2) −→ (N ;N1, N2) and V and W satisfy the same
hypothesis as in Proposition 3.33 and assume additionally, that M1 ∩M2 and N1 ∩N2 are
empty. We get using the same notation as in Proposition 3.33

Proposition 5.8 ρGan(N,N1;V )− ρGan(M,M1; f ∗V ) =
1
2
· ωG(N ;V )(τG(f, f1)) + (−1)m−1 · 1

2
· ωG(N ;w V )(τG(f, f2))−∑i≥0(−1)i · ui

Consider an isometric G-diffeomorphism f : M2 −→ N1 and an isometric RDG(M2)-
isomorphism f̄ : V |M2−→ W |N1 . Denote by D∗(M ∪f N,M,N ;V,W ) resp. D∗(M,M1;V )
the acyclic finite RG-Hilbert chain complexes given by the long Mayer-Vietoris sequence
resp. the long homology sequence of the pair and the harmonic RG-Hilbert structures. We
derive from the Sum Formula 3.49 and Theorem 4.5 :

Theorem 5.9 (Sum Formula for Analytic Torsion)

a.) ρGan(M ∪f N ;V ∪f̄ W ) =

ρGan(M ;V )+ρGan(N ;W )−ρGan(M2;V )−Γ1(hr(D∗(M∪fN,M,N ;V,W )))−ln(2)·χG(M2;V )

b.) ρGan(M,M1;V ) = ρGan(M ;V )− ρGan(M1;V )− Γ1(hr(D∗(M,M1;V )))

Remark 5.10 The sum formula is very useful for computations. One may chop a manifold
into elementary peaces, compute the analytic torsion for each piece and use the Sum For-
mula to get the analytic torsion for the manifold itself. The existence of such a formula is
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remarkable from the analytic point of view since it is very hard to get information about the
spectrum of the Laplace operator on M ∪f N from the spectrum of the Laplace operator on
M , N and M1. We do not have a direct analytic proof of the sum formula, but such a proof
may be hidden in the paper of Müller [26] section 10. If one has a proof for the Sum Formula
not using Theorem 4.5 one can prove Theorem 4.5 by using induction over the number of
handles.

Next we compute the various torsion invariants for G-representations (cf. Ray [28]).
Define for a Riemannian G-manifold

5.11 ρ̂Gan(M) := ρGan(M) + ln(V ol(M)) ·
(
χG(M)− 2 · [R]

)
ρ̂Gpl(M) := ρGpl(M) + ln(V ol(M)) ·

(
χG(M)− 2 · [R]

)

Let V be a G-representation. Choose any orthogonal structure and any invariant Riemannian
metric on DV which is a product near the boundary SV . Then ρ̂Gan and ρ̂Gpl are defined for
SV and DV and depend only on the G-diffeomorphism type, but not on the other choices
by Proposition 5.8 since the equivariant Whitehead torsion of a G-diffeomorphism is zero.

Lemma 5.12

a.) ρGpd(D(V ⊕W )) = ρGpd(DV ) + ρGpd(DW )

b.) ρ̂Gpl(DV ) = 0

c.) ρ̂Gan(DV ) = −1
2
· Γ1

(
ρGpd(DV )

)
+ ln(2)

2
· χG(SV )

d.) ρGpd(SV ) = χG(SV )⊗R ρGpd(DV )

e.) ρ̂Gpl(SV ) = ρGpd(DV )⊗R

(
χG(SV )− [R]

)
f.) ρ̂Gan(SV ) = Γ1

(
ρGpd(DV )

)
⊗R

(
1
2
· χG(SV )− [R]

)

Proof : a.) is a consequence of the product formula for Poincaré torsion 3.48.
b.) As the projection from DV to a point is a simple G-homotopy equivalence, the claim
follows from Proposition 3.8.
c.) follows from Theorem 4.5 and b. )
d.) and e.) follow from Poincaré duality 3.23 and the Sum Formula 3.49
f.) is a consequence of Theorem 4.5 and d.) and e.)

Because of the Lemma 5.12 above we obtain a homomorphism
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5.13 RepR(G) −→ R⊗Z RepR(G) [V ] 7→ ρGpd(DV )

Hence it suffices to compute the torsion invariants for irreducible G-representations in order
to know it for all G-representations. Elements in R⊗Z RepR(G) and hence by Proposition
2.26 also elements in K1(RG)Z/2 are detected by restriction to cyclic subgroups so that it is
enough to compute the torsion elements of irreducible G-representations for cyclic G.

Let G be the cyclic group Z/n. Let d > 0 be a divisor of n. If d ≥ 3, let V (j, d)
for 1 ≤ j < d/2 be the (real) 2-dimensional G-representation given by multiplication with
primitive dth-root of unity exp(2πi j

d
) on C. Let V (d/2, d) be the unique 1-dimensional non-

trivial G-representation, if d is even, and R the trivial G-representation. Denote by I(d) the
set {j ∈ Z | 1 ≤ j ≤ d/2, (d, j) = (1)}. Then the set

{V (j, d) | d ≥ 2, d | n, 1 ≤ j ≤ d/2, (j, d) = (1)} ∪ {R}

is a complete set of representatives for the irreducibleG-representations. One easily computes
using Lemma 5.12 in the first case and the Double Formula 3.34 in the second case

5.14 ρGpd(DV (j, d)) = −ρGpl(SV (j, d)) =

[d2 · id : R −→ R]−∑1≤k≤d/2 [| exp(2πi jk
d

)− 1 |2 ·id : V (k, d) −→ V (k, d)]

for d | n, d ≥ 3, j ∈ I(d)

ρGpd(DV (1, 2)) = [2 · id : R −→ R]− [2 · id : V (1, 2) −→ V (1, 2)]

ρGpd(D(R)) = 0

Now one can describe the homorphism 5.13 above by characters

Lemma 5.15 (Character Formula) Let G be a finite group and V a G-representation
with character chV . Then ρGpd(DV ) ∈ R⊗Z RepR(G) can be viewed as a class function on G
with values in R. Let g ∈ G be an element. Let n be the order of the cyclic subgroup < g >
generated by g. Then the value of ρGpd(DV ) at g is 0, if n = 1 and otherwise :

ρGpd(DV )(g) =∑
d|n,d≥2

∑
j∈I(d) < chV |<g> , chV (j,d) > · < chV (j,d), chV (j,d) >

−1 ·ρGpd(DV (j, d))(g) =∑
1≤l≤n

1
n
· chV (gl) · (−1)l · ln(4) +∑

d|n,d≥3

∑
j∈I(d)

∑
1≤l≤n

1
n
chV (gl) · cos(2π jl

d
) ·(

ln(d2)−∑1≤k≤d/2 ln
(
(sin(2π kj

d
)2 + (cos(2π kj

d
)− 1)2

)
· 2 · cos(2π k

d
)
)
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Theorem 5.16 Let G be a finite group. There is an injective ring homomorphism

ρGR : RepR(G) −→ Z⊕
(
⊕(H)K1(R[WH])Z/2

)
[V ] 7→ dimR(V )⊕

(
ρWHpd (DV H)

)
(H)

Proof : This homomorphism is compatible with restriction to subgroups of G for an ap-
propiate restriction homomorphism on the right side, we do not explain here (see Lück [21]).
Hence it suffices to consider the case where G is cyclic.

Let RepfreeR (G) be the subgroup of RepR(G) generated by all free G-representations.
Let resGG/H : RepR(G/H) −→ RepR(G) be restriction with the projection G −→ G/H for a
subgroup H ⊂ G. Then we obtain an isomorphism, provided that G is cyclic

5.17 ⊕H⊂GresGG/H : ⊕H⊂GRepfreeR (G/H) −→ RepR(G)

With respect to this splitting of the representation ring ρGR is given by a upper triangle
matrix. Hence it suffices to show injectivity for the diagonal entrees, i.e. the injectivity of

RepfreeR (G) −→ K1(RG)Z/2 [V ] 7→ ρGpd(DV )

Consider the ring homomorphism

ψk : R[Z/n] −→ C∗

sending the generator to the root of unity exp(2πi k
n
). The set {V (j) | j ∈ I(n)} is a bases for

RepfreeR (G). The image of [V (j)] under ψk ◦ ρGR is | exp(2πi jk
n
− 1) |−2 for d ≥ 3, 1 ≤ k < d/2

and 1/2 for d = 2. Now an application of Franz’ Lemma finishes the proof (see Franz [13],
Cohen [9])

We get as immediate conclusion of Theorem 5.16 the celebrated result of deRham
[30] that two orthogonal G-representations V and W are isometrically RG-isomorphic if and
only if their unit spheres are G-diffeomorphic. Similar proofs using PL-torsion resp. analytic
torsion can be found in Rothenberg [31] and Lott-Rothenberg [19]. The result is an extension
of the classification of Lens spaces which is carried out for example in Cohen [9] and Milnor
[25].

The result of deRham does not hold in the topological category. Namely, there are non-
linearly isomorphic G-representations V and W whose unit spheres are G-homeomorphic (see
Cappell-Shaneson [7]). However, if G has odd order, G-homeomorphic implies G-diffeomor-
phic for unit spheres in G-representations as shown by Hsiang-Pardon [16] and Madsen-
Rothenberg [24].
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The Sum formula 3.11 implies a local formula for Poincaré torsion. For this purpose
we have to recall a different notion of equivariant Euler characteristic as defined in Lück
[20]. Given a G-space X, denote by {G/? −→ X} the set of all G-maps G/H −→ X for all
subgroups H of G. Call x : G/H −→ X and y : G/K −→ X equivalent if there is a G-iso-
morphism σ : G/H −→ G/K such that y ◦ σ and x are G-homotopic. Let {G/? −→ X}/ ∼
be the set of equivalence classes under this equivalence relation on {G/? −→ X}. Given
a G-map x : G/H −→ X, define XH(x) to be the component of XH containing the point
x(eH). There is a bijection

5.18 {G/? −→ X}/ ∼ −→ ∐
(H) π0(XH)/WH [x : G/H −→ X] 7→ [XH(x)]

where the coproduct runs over the set of conjugacy classes (H) of subgroups of G. Let
UG(X) be the free abelian group generated by {G/? −→ X}/ ∼. Let X>H be the subset
of those points in X, whose isotropy group Gx satisfies Gx ⊃ H,Gx 6= H, and WH(x) is the
isotropy group of [XH(x)] ∈ π0(XH) under the WH-action. Given a pair (X, Y ) of finite
G-CW -complexes, define its universal equivariant Euler characteristic in the sense of Lück
[20]

5.19 χGuniv(X) ∈ UG(X)

by assigning to x : G/H −→ X the integer which is given by the ordinary Euler characteristic
χ(XH(x)/WH(x), (XH(x) ∩ (X>H ∪ Y ))/WH(x)). It is connected to the equivariant Euler
characteristic, we have defined in 3.12, by the following map

5.20 θG(X) : UG(X) −→ RepR(G) [x : G/H −→ X] 7→ [R[G/H]]

We derive from the universal property of χGuniv and the Sum Formula 3.49 for χG (see Lück
[20]) :

Lemma 5.21 θG(X)(χGuniv(X, Y )) = χG(X, Y )

Let (M,M1,M2) be a G-manifold triad and V be an orthogonal DG(M)-representation.
Given x : G/H −→ X, we define the H-representation x∗V by restricting V to H by H =

EH({point} D
H(x|eH)−→ DH(resGH(X)) ↪→ DG(X). Let the homomorphism
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5.22 ΦG(M ;V ) : UG(M) −→ K1(RG)Z/2

send [x : G/H −→ X] to indGH
(
ρHpd(D(TMx))⊗R x∗V

)
, where TMx is the tangent space of

M at the point x(eH) and ⊗R the pairing defined in 2.14. Now we obtain a local formula
for the Poincaré torsion in terms of the various tangent representations of the components
of the fixed point sets.

Proposition 5.23 (Local Formula for Poincaré Torsion)

ΦG(M ;V )
(
χGuniv(M,M1)

)
= ρGpd(M,M1;V )

Proof : In the sequel we have not to worry about corners and straightening the angle because
ρGpd depends only on the simple homotopy type by Proposition 3.33. Moreover, we assume
V = R for simplicity, the general case is done similiarly. Let N1 and N2 be G-manifolds
and N0 ⊂ ∂N1 and N ′0 ⊂ ∂N2 be submanifolds of codimension 0. Let f : N0 −→ N ′0 be a
G-diffeomorphism and put N := N1 ∪f N2. Then we get from the Sum Formula 3.49

5.24 ρGpd(N) = ρGpd(N1) + ρGpd(N2)− ρGpd(N0)

Since the equivariant Euler characteristic is additive in the sense of Lück [20], we have

5.25 ΦG(N)
(
χGuniv(N)

)
=

ΦG(N1)
(
χGuniv(N1)

)
+ ΦG(N2)

(
χGuniv(N2)

)
− ΦG(N2)

(
χGuniv(N2)

)

We first verify the claim for empty M1. We begin with the special case M = Dξ where ξ ↓ B
is a G-vector bundle over a G-manifold X having precisely one orbit type, say G/H. Then
X/G is a manifold and we use induction over the number of handles. If X/G is empty the
claim is trivial. Suppose that X is obtained from Y by attaching an equivariant handle :

G/H × Sk−1 ×Dd−k Y-

? ?

G/H ×Dk ×Dd−k X-
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We may suppose that X is connected,otherwise treat each component seperately.Let H-
representation W be the typical fibre of ξ ↓ X.Then we obtain a G-push out :

G×H (Sk−1 ×Dd−k ×DW ) Dξ ↓ Y-

? ?

G×H (Dk ×Dd−k ×DW ) Dξ ↓ X-

By induction hypothesis the claim is true for Dξ ↓ Y .Because of 5.24 and 5.25 it suffices to
verify the claim for G-manifolds of the shape G×H (Z ×DW ) for Z a manifold with trivial
H-action.One easily computes

ρGpd(G×H (Z ×DW )) = indGH(ρHpd(Z ×DW )) =

indGH(ρHpd(Z)⊗R χH(DW ) + χH(Z)⊗R ρHpd(DW )) = χ(Z) · indGH(ρHpd(DW )) =

ΦG(G×H (Z ×DW ))(χG(G×H (Z ×DW )))

This finishes the proof in the case M = Dξ, M1 = ∅. Now the claim for M1 = ∅ follows
by induction over the orbit types of M . Namely, choose H ∈ Iso(M) such that H ⊂ K,
K ∈ Iso(M) implies H = K. Let ν be the normal bundle of M (H) = G ·MH in M . Define
M̄ := M − int(Dν). The induction hypothesis applies to M̄ and Sν and the considerations
above to Dν. Since M is M̄ ∪Sν Dν, the assertion follows from 5.24 and 5.25, provided that
M1 = ∅.

The claim in general follows from the relations

ρGpd(M,M1) = ρGpd(M)− ρGpd(M1)

ΦG(M)(χG(M,M1)) = ΦG(M)(χG(M))− ΦG(M1)(χG(M1))

Example 5.26 Suppose that the G-manifold M is modelled upon the G-representation V ,
i. e. there is a G-representation V such that for any x ∈M the Gx-representations resV
and TMx are linearly Gx-isomorphic. This is true for example if all fixed point sets of M
are connected and non-empty. Then the Local Formula for Poincaré torsion 5.23 reduces to

ρGpd(M,M1; R) = χG(M,M1)⊗R ρGpd(DV )

Let Lef(l(g)) be the Lefschetz index of the map l(g) : (M,M1) −→ (M,M1) given by mul-
tiplication with g ∈ G. Then we obtain in terms of class functions on G with values in R
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:
Γ1

(
ρGpd(M,M1; R)

)
(g) = Lef(l(g)) · Γ1

(
ρGpd(DV )

)
(g)

Remark 5.27 In Connolly-Lück [10] a duality formula is established for a G-homotopy
equivalence (f, ∂f) : (M,∂M) −→ (N, ∂N). A correction term appears which depends on
the universal Euler characteristic and the Gx-representations TMx for all x ∈M . It is
closely related to, firstly, the Local Formula for Poincaré torsion 5.23, and, secondly, to
Proposition 3.33 which says that the difference of the Poincaré torsion is an obstruction for
a duality formula for equivariant Whitehead torsion. The duality formula is important for
the proof of the equivariant π-π-theorem in the simple category (see Dovermann-Rothenberg
[12], Lück-Madsen [22] and [23])

Remark 5.28 The Euler characteristic term in our main Theorem 4.5 may also be inter-
preted as the index of the deRham complex. This leads to the following question.

Let P ∗ be an elliptic complex of partial differential operators. Denote by ∆(P )∗ the
associated Laplacian. It is an elliptic non-negative self-adjoint partial differential operator
in each dimension. Hence its analytic torsion ρan(∆(P )∗) can be defined as done before for
the ordinary Laplace operator. Suppose that the complex restricts on the boundary of M
to an elliptic complex ∂P ∗ in an appropiate sense. Can one find a more or less topological
invariant ρtop(P

∗) such that the following equation holds

ρan(P ∗) = ρtop(P
∗) +

ln(2)

2
· index(∂P ∗)

If we take P ∗ to be the deRham complex and put ρtop to be ρpl, the equation above becomes
just Corollary 5.1.
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