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The first algebraic K -group and the Whitehead group

Definition (K1-group K1(R))
Define the K1-group of a ring R to be the abelian group K1(R), whose
generators are conjugacy classes [f ] of automorphisms f : P → P of
finitely generated projective R-modules with the following relations:

Given an exact sequence 0→ (P0, f0)→ (P1, f1)→ (P2, f2)→ 0 of
automorphisms of finitely generated projective R-modules, we get

[f1] = [f0] + [f2];

Given two automorphisms f ,g of the same finitely generated
projective R-module, we get

[g ◦ f ] = [f ] + [g].
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K1(R) is isomorphic to GL(R)/[GL(R),GL(R)].

An invertible matrix A ∈ GL(R) can be reduced by elementary row
and column operations and (de-)stabilization to the trivial empty
matrix if and only if [A] = 0 holds in the reduced K1-group

K̃1(R) := K1(R)/{±1} = cok (K1(Z)→ K1(R)) .

If R is commutative, the determinant induces an epimorphism

det : K1(R)→ R×,

which in general is not bijective. It is bijective, if R is a field.

The assignment A 7→ [A] ∈ K1(R) can be thought of as the
universal determinant for R.
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Definition (Whitehead group)
The Whitehead group of a group G is defined to be

Wh(G) = K1(ZG)/{±g | g ∈ G}.

Lemma
We have Wh({1}) = {0}.

Proof.
The ring Z possesses an Euclidean algorithm.
Hence every invertible matrix over Z can be reduced via
elementary row and column operations and destabilization to a
(1,1)-matrix (±1).
This implies that any element in K1(Z) is represented by ±1.
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Let G be a finite group. Let F be Q, R or C.

Define rF (G) to be the number of irreducible F -representations of
G.

The Whitehead group Wh(G) is a finitely generated abelian group
of rank rR(G)− rQ(G).

The torsion subgroup of Wh(G) is the kernel of the map
K1(ZG)→ K1(QG).

In contrast to K̃0(ZG) the Whitehead group Wh(G) is computable.
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Example (Non-vanishing of Wh(Z/5))
The ring homomorphism f : Z[Z/5]→ C, which sends the
generator of Z/5 to exp(2πi/5), and the map C→ R>0 taking the
norm of a complex number, yield a homomorphism of abelian
groups

φ : Wh(Z/5)→ R>0.

Since (1− t − t−1) · (1− t2 − t3) = 1 in Z[Z/5], we get the unit
1− t − t−1 ∈ Z[Z/5]×. Its class in the Whitehead group is sent to
(1− 2 cos(2pi/5)) 6= 1 and hence is an element of infinite order.

Indeed, this element is a generator of the infinite cyclic group
Wh(Z/5).

Conjecture
If G is torsionfree, then Wh(G) is trivial.
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Torsion invariants for chain complex

Let R be an associative ring with unit, not necessarily
commutative.

R-modules are by default left R-modules.

An R-chain complex C∗ is called finite if there exists a natural
number N such that Cn = 0 for every n ∈ Z with |n| > N and Cn is
finitely generated for every n ∈ Z.

An R-chain complex C∗ is called free or projective if Cn is free or
projective for all n ∈ Z.

A free R-chain complex C∗ is called based free if Cn comes with a
(unordered) basis Bn for n ∈ Z.

An R-chain complex C∗ is called acyclic if Hn(C∗) vanishes for
every n ∈ Z.
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An chain contraction γ∗ for a R-chain complex C∗ = (C∗, c∗) is a
sequence of R-maps γn : Cn → Cn+1 satisfying
cn+1 ◦ γn + γn−1 ◦ cn = idCn for all n ∈ Z.

An R-chain complex C∗ is called contractible if it possesses a
chain contraction.

A contractible R-chain complex is acyclic.

The converse is not true in general, e.g., R = Z and C∗ is
concentrated in dimensions 0,1,2 and given there by the exact
sequence Z 2·idZ−−−→ Z pr−→ Z/2.

However, a projective R-chain complex C∗ is acyclic if and only if it
is contractible.
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Let C∗ be an acyclic finite projective R-chain complex.

Put Codd =
⊕

n∈Z C2n+1 and Cev =
⊕

n∈Z C2n.

Let γ∗ and δ∗ be two chain contractions. Put Θ∗ = γ∗+1 ◦ δ∗. Then
the composite

Codd
(c+γ)odd−−−−−→ Cev

(id +Θ)ev−−−−−→ Cev
(c+δ)ev−−−−→ Codd

is given by an upper triangular matrix whose entries on the
diagonal are identity morphisms. Also (id +Θ)ev is given by an
upper triangular matrix whose entries on the diagonal are identity
morphisms. The analogous statement holds if we interchange odd
and ev, and γ∗ and δ∗.

In particular we see that (c + γ)odd : Codd → Cev is an
isomorphism.
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Let f : M
∼=−→ N be an isomorphism of finitely generated based free

R-modules. Let A be the matrix describing f with respect to the
given bases. Then we define

τ(f ) ∈ K̃1(R)

by the class of A coming from the identification of K1(R) with
GL(R)/[GL(R),GL(R)], where

K̃1(R) := cok(K1(Z)→ K1(R)) = K1(R)/{(±1)}.

Equivalently, choose an isomorphism b : N → M which respects
the given bases. Then τ(f ) = [b ◦ f ].

The fact that the bases are only unordered does not affect the
definition of τ(f ) since we are working in K̃1(R).
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If we have a commutative diagram of finitely generated based free
R-modules

0 // M //

f
��

N //

g
��

P //

g
��

0

0 // M ′ // N ′ // P ′ // 0

such that the vertical arrows are bijective and the rows are based
exact, then we get in K̃1(R).

τ(g) = τ(f ) + τ(h).

If f : M → N and g : N → P are isomorphisms of finitely generated
based free R-modules, then we get in K̃1(R)

τ(g ◦ f ) = τ(g) + τ(f ).
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Let C∗ be an acyclic finite based free R-chain complex. Choose a
chain contraction γ∗. Define

τ(C∗) ∈ K̃1(R)

by τ
(
(c + γ)odd : Codd → Cev

)
.

This is independent of the choice of γ∗, since we get for any other
chain contraction δ∗ from the facts above and the observation that
an upper triangular matrix with identities on the diagonal
represents zero in K̃1(R) the equality in K̃1(R)

τ
(
(c + γ)odd

)
= −τ

(
(c + δ)ev

)
.
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Let f∗ : C∗ → D∗ be an R-chain homotopy equivalence of finite
based free R-chain complexes. Let cone(f∗) be its mapping cone

· · · → Cn ⊕ Dn+1

−cn 0
fn dn+1


−−−−−−−−−−−→ Cn−1 ⊕ Dn → · · ·

This is a contractible finite based free R-chain complex.

Definition (Whitehead torsion)
Define the Whitehead torsion of f∗ by

τ(f∗) := τ(cone(f∗)) ∈ K̃1(R).
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If we have a commutative diagram of finitely generated based free
R-chain complexes

0 // C∗ //

f∗
��

D∗ //

g∗
��

E∗ //

h∗
��

0

0 // C′∗ // D′∗ // E ′∗ // 0

such that the vertical arrows are R-chain homotopy equivalences
and the rows are based exact, then we get in K̃1(R)

τ(g∗) = τ(f∗) + τ(h∗).
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If f∗ : C∗ → D∗ and g∗ : D∗ → E∗ are R-chain homotopy
equivalences of finite based free R-chain complexes, then we get
in K̃1(R)

τ(g∗ ◦ f∗) = τ(g∗) + τ(f∗).

Let f∗,g∗ : C∗ → D∗ be R-chain homotopy equivalences of finite
based free R-chain complexes. If they are R-chain homotopic,
then we get in K̃1(R)

τ(f∗) = τ(g∗).

Let f∗ : C∗ → D∗ be an isomorphism of finite based free R-chain
complexes, not necessarily preserving the bases. Then

τ(f∗) =
∑
n∈Z

(−1)n · τ(fn).
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Example (1-dimensional case)
If the acyclic finite based free C∗ is concentrated in two consecutive
dimensions n and n − 1, then the n-th differential cn : Cn → Cn−1 is an
isomorphism of finitely generated based free R-modules and

τ(C∗) = (−1)n+1 · τ(cn).

since we get a chain contraction γ∗ by putting γn−1 = c−1
n and

[cn] = −[γn] holds in K̃1(R).
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Example (2-dimensional case)
Suppose that the acyclic based free R-chain complex C∗ is
concentrated in two dimensions. Then it is the same as a short
exact sequence of finitely generated based free R-modules

0→ C2
c2−→ C1

c1−→ C0 → 0

One easily checks that there exists a R-map γ1 : C1 → C2 with
γ1 ◦ c2 = idC2 . Moreover, for any such γ1, one can find a R-map
γ0 : C0 → C1, such that we get a chain contraction γ∗.

Hence τ(C∗) is represented by the isomorphism of finitely
generated based free R-modules

C1

c1
γ1


−−−−→ C0 ⊕ C2
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R-chain complexes

Example (R = R)
Taking the logarithm of the absolute value of the determinant of an
invertible matrix induces an isomorphism

K̃1(R)
∼=−→ R, [A] 7→ ln(|det(A)|).

Hence the Whitehead torsion is just a real number.

Consider the finite based free 1-dimensional R-chain complexes

C∗ and D∗ given by c1 : R2

1 2
2 4


−−−−−−→ R2 and d1 : R 0−→ R.
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Example (Continued)
Define a chain map f∗ : C∗ → D∗ by the commutative diagram

R2

1 2
2 4


//(

1 0
)
��

R2(
−8 4

)
��

R (
0
) // R

One easily checks that f∗ induces an isomorphism on homology
and hence is a R-chain homotopy equivalence
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Example (Continued)
Its mapping cone is the 2-dimensional finite acyclic based free
R-chain complex

R2


−1 −2
−2 −4
1 0


−−−−−−−−−−→ R2 ⊕ R

(
−8 4 0

)
−−−−−−−−−→ R

A retraction γ1 : R2 ⊕ R→ R2 of its second differential is given by(
0 0 1
−1/2 0 −1/2

)
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Example (Continued)
Hence (c + γ)odd is given by the isomorphism of finitely generated
based free R-modules

R3


0 0 1
−1/2 0 −1/2
−8 4 0


−−−−−−−−−−−−−−−→ R3

Since its determinant is −2, we get

τ(f∗) = ln(2).
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Notice that we do not need a R-basis, it suffices to have a Hilbert
space structure on each R-chain module.

Namely, then one can just choose an orthonormal basis and
define the torsion using this basis. If we choose another
orthonormal basis, then the change of bases matrix is an
orthogonal matrix and its determinant is ±1.

Hence we can define for any R-chain homotopy equivalence
f∗ : C∗ → D∗ of finite Hilbert R-chain complexes its Whitehead
torsion

τ(f∗) ∈ R.
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Definition (Laplace operator)
Let C∗ be a finite Hilbert R-chain complex. Define the n-th Laplace
operator

∆n = c∗n ◦ cn + cn+1 ◦ c∗n+1 : Cn → Cn.

∆n is a positive R-homomorphism, and we have the orthogonal
decomposition

Cn =
⊕
λ≥0

Eλ(∆n),

where Eλ(∆n) is the eigenspace of ∆n for the eigenvalue λ > 0.

Suppose that ∆n is invertible, or, equivalently, that 0 is no
eigenvalue. Then by functional calculus we get a R-map

ln(∆n) : Cn → Cn

This is the operator which is ln(λ) · id on Eλ(∆n).
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Obviously we get

ln(det(∆n)) = tr(ln(∆n)),

provided that ∆n is invertible.

Notice that both sides of the equation above are defined without
choosing any basis.

Lemma
Let C∗ be a finite Hilbert R-chain complex.

1 C∗ is acyclic if and only if ∆n is an isomorphism for each n ∈ Z;
2 If C∗ is acyclic, then we get

τ(C∗) = −1
2
·
∑
n∈Z

(−1)n · n · ln(det(∆n)) ∈ R.
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Proof.
We have for x ∈ Cn

〈∆n(x), x〉 = 〈c∗n ◦ cn(x) + cn+1 ◦ c∗n+1(x), x〉
= 〈c∗n ◦ cn(x), x〉+ 〈cn+1 ◦ c∗n+1(x), x〉
= 〈cn(x), cn(x)〉+ 〈c∗n+1(x), c∗n+1(x)〉
= ||cn(x)||2 + ||c∗n+1(x)||2.

This implies

ker(∆n) = ker(cn) ∩ ker(c∗n+1) = ker(cn) ∩ im(cn+1)⊥

∼=−→ ker(cn)/ im(cn+1) = Hn(C∗).

Wolfgang Lück (MI, Bonn) L2-torsion Bonn, 29. May & 12. June 26 / 78



Proof (Continued).
We explain the proof of the second assertion only in the special
case, where C∗ is concentrated in dimensions p and (p − 1).

We have
det(cp)2 = det(cp ◦ c∗p) = det(c∗p ◦ cp).

Hence we get

ln(|det(cp)|) =
1
2
· ln(det(∆p−1)) =

1
2
· ln(det(∆p)).
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Proof (Continued).
We compute

τ(C∗) = (−1)p+1 · ln(|det(cp)|)

= (−1)p+1 · 1
2
· ln(det(∆p))

= −1
2
·
(
(−1)p · p · ln(det(∆p))

+(−1)p−1 · (p − 1) · ln(det(∆p))
)

= −1
2
·
(
(−1)p · p · ln(det(∆p))

+(−1)p−1 · (p − 1) · ln(det(∆p−1))
)

= −1
2
·
∑
n∈Z

(−1)n · n · ln(det(∆n)).
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Change of rings

Often we will also consider the following situation, where
φ : R → S is a fixed ring homomorphism.

Let C∗ be a finite free R-chain complex, not necessarily based.
Suppose that φ∗C∗ := S ⊗R C∗ is acyclic.

Next we define an element

τ(C∗) ∈ cok
(
φ∗ : K1(R)→ K1(S)

)
.

Choose an R-basis B∗ for C∗. It induces an S-basis φ∗B for φ∗C∗
in the obvious way. Hence (C∗, φ∗B) is an acyclic finite based free
S-chain complex and τ(C∗, φ∗B) ∈ K̃1(S) is defined.

Let τ(C∗) ∈ cok
(
φ∗ : K1(R)→ K1(S)

)
be the class of τ(C∗;φ∗B).

One easily checks that τ(C∗) does not depend on the choice of B∗.
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Example (Milnor torsion)
Let φ : R → S be the inclusion Z→ Q.

Let C∗ be a finite free Z-chain complex such that Q⊗Z C∗ is
acyclic. The latter condition is equivalent to the requirement that
Hn(C∗) is a finite abelian group for every n ∈ Z.

The cokernel of K1(Z)→ K1(Q) is by definition K̃1(Q). Taking the
norm of the determinant of an invertible matrix yields an
isomorphism

K̃1(Q)
∼=−→ Q>0.

Hence τ(C∗) is a positive rational number.

It is not hard to check

τ(C∗) =
∏
n∈Z
|Hn(C∗)|(−1)n

.
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Whitehead torsion

Let f : X → Y be a homotopy equivalence of connected finite
CW -complexes.

If π = π1(X ) = π1(Y ) is the fundamental group, f lifts to a
π-homotopy equivalence f̃ : X̃ → Ỹ of the universal coverings
which are finite free π-CW -complexes.

By passing to the cellular chain complexes, we obtain a Zπ-chain
homotopy equivalence C∗(̃f ) : C∗(X̃ )→ C∗(Ỹ ).

After a choice of a lift of each open cell e in X to a open cell ẽ in X̃
and of an orientation on ẽ, we obtain a preferred Zπ-basis for
C∗(X̃ ), and analogously for C∗(Ỹ ).
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Hence we obtain an element τ(C∗(̃f )) ∈ K̃1(Zπ).

The class [τ(C∗(̃f ))] in Wh(π) is independent of the choices.

Definition (Whitehead torsion)
We define Whitehead torsion of the homotopy equivalence f : X → Y
of connected finite CW -complexes

τ(f ) := [τ(C∗(̃f ))] ∈Wh(π).
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The pair (Dn,Sn−1
+ ) carries an obvious relative CW -structure with

one (n − 1)-cell and one n-cell.

Define Y as the pushout X ∪f Dn for any map f : Sn−1
+ → X .

The inclusion j : X → Y is a homotopy equivalence and called an
elementary expansion.

There is a map r : Y → X with r ◦ j = idX . This map is unique up
to homotopy relative j(X ) and is called an elementary collapse.

Definition (Simple homotopy equivalence)
Let f : X → Y be a map of finite CW -complexes. We call it a simple
homotopy equivalence, if there is a sequence of maps

X = X [0]
f0−→ X [1]

f1−→ X [2]
f2−→ · · ·

fn−1−−→ X [n] = Y

such that each fi is an elementary expansion or elementary collapse
and f is homotopic to the composition of the maps fi .
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Theorem (Main properties of Whitehead torsion)
A homotopy equivalence of connected finite CW-complexes is a
simple homotopy equivalence if and only if τ(f ) ∈Wh(π) vanishes;

The Whitehead torsion τ(f ) is a homotopy invariant;

There are sum and product formulas for it;

If X and Y are finite CW-complexes and f : X → Y is a
homeomorphism, then f is a simple homotopy equivalence;

The Whitehead group Wh(π) and the Whitehead torsion of an
h-cobordism W over M0 defined in a previous lecture coincide
with the Whitehead group and the Whitehead torsion of the
inclusion M0 →W in the sense of this lecture.
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The notion of Reidemeister torsion for lens spaces, which led to
the classification of lens spaces L(V ) := SV/(Z/m) up to
isometric diffeomorphism, or diffeomorphism, or homeomorphism,
is a special case of the constructions above for the ring
homomorphism φ : Z[Z/m]→ Q[Z/m]→ Q(Z[Z/m])/(N), where
N is the norm element.

The point is that for a lens space L(V ) the Q(Z[Z/m])/(N)-chain
complex φ∗C∗(L̃V ) is acyclic, which is a direct consequence of the
fact that Z/m acts trivially on H∗(SV ) = H∗(L̃(V )).
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The Alexander polynomial

Definition (knot)

A knot K ⊆ S3 is a connected oriented 1-dimensional smooth
submanifold of S3.

We call two knots K ⊆ S3 and K ′ ⊆ S3 equivalent if there exists
an orientation preserving diffeomorphism f : S3 → S3 such that
f (K ) = K ′ and the induced diffeomorphism f |K : K → K ′ respects
the orientations.

One can define knots also as smooth embeddings S1 → S3 and
then equivalent means isotopy of embeddings.
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If (N, ∂N) is a tubular neighborhood of K , then define

MK = S3 \ int(N).

This is a compact 3-manifold MK whose boundary consists of one
component which is a 2-torus.

If (N ′, ∂N ′) is another tubular neighborhood, then there is a
diffeomorphism of compact 3-manifolds with boundary

S3 \ int(N)
∼=−→ S3 \ int(N ′).

Hence we write MK without taking the tubular neighborhood into
account.

Mk is homotopy equivalent to the knot complement M \ K .

The knot K is trivial if and only if MK is homeomorphic to S1 × D2.

If K is non-trivial, then Mk is an irreducible compact 3-manifold
with incompressible boundary.
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Consider a knot K ⊆ S3.

By Alexander-Lefschetz duality H1(MK ;Z) ∼= Z. Hence there is a
preferred infinite cyclic covering p : MK → Mk .

Consider the inclusion φ : Z[Z]→ Q[Z]→ Q[Z](0), where Q[Z](0) is
the quotient field of the integral principal ideal domain Q[Z]. Then
it turns out that φ∗C∗(MK ) is Q[Z](0)-acyclic.

We have defined above

τ(C∗(MK )) ∈ cok
(
K1(Z[Z])→ K1(Q[Z](0))

)
.

The determinant induces an isomorphism

K1(Q[Z](0))
∼=−→ (Q[Z](0))×.

Elements in (Q[Z](0))× are quotients p(t)/q(t) for p(t),q(t) ∈ Q[t ]
with q 6= 0. Hence we get an identification

cok
(
K1(Z[Z])→ K1(Q[Z](0))

) ∼=−→ (Q[Z](0))×/{±tn}.
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So we get a knot invariant

τ(C∗(MK )) ∈ (Q[Z](0))×/{±tn}.

One can assign to a knot K its Alexander polynomial ∆K which is
a symmetric finite Laurent series in Z[Z] such that its evaluation at
t = 1 is 1.

We have the following values of ∆K
K ∆K

unknot t0

trefoil t2 − t0 + t−2

figure eight knot −t + 3t0 − t−1
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Theorem (Alexander polynomial and torsion invariants, (Milnor))

If K ⊆ S3 is a knot, then we get in (Q[Z](0))×/{±tn} the equality

[(t − 1) ·∆K (t)] = τ(C∗(MK )).

In particular ∆K and τ(C∗(MK )) determine one another.

Question
Can we define an interesting torsion invariant for the universal covering
of MK which gives new information about K ?
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The definition of L2-torsion

We have defined for an acyclic finite Hilbert R-chain complex C∗
its torsion to be the real number

τ(C∗) :=
∑
n∈Z

(−1)n · n · ln(det(∆n)) ∈ R.

So one can try to make sense of the same expression when we
consider a finite N (G)-chain complex C(2)

∗ , and declare this to be
the L2-torsion of C(2)

∗ .

The condition acyclic should become the condition weakly acyclic,
i.e., b(2)

n (C(2)
∗ ) = 0, or, equivalently, H(2)

n (C(2)
∗ ) = 0 for all n ∈ Z.

The Laplace operator can be defined as before

∆
(2)
n := (c(2)

n )∗ ◦ c(2)
n + c(2)

n+1 ◦ (c(2)
n+1)∗ : C(2)

n → C(2)
n .
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The Laplace operator ∆
(2)
n is a weak isomorphism for all n ∈ Z if

and only if C(2)
∗ is acyclic.

The main problem is to make sense of ln(det(∆
(2)
n )). If this has

been solved, we can define

Definition (L2-torsion (Lück-Rothenberg))

Let X be a connected finite CW -complex. Then we define the
L2-torsion

ρ(2)(X̃ ) := −1
2
·
∑
n≥0

(−1)n · n · ln(det(∆
(2)
n )) ∈ R,

where ∆
(2)
n : C(2)

n (X̃ )→ C(2)
n (X̃ ) is the Laplace operator for the finite

Hilbert N (π)-chain complex C(2)
∗ (X̃ ) := L2(π)⊗Zπ C∗(X̃ ).

Wolfgang Lück (MI, Bonn) L2-torsion Bonn, 29. May & 12. June 42 / 78



The definition above extends to finite CW -complexes by taking the
sum of the L2-torsion for each path component.

There is also an analytic definition in terms of heat kernels of the
universal covering of a closed Riemannian manifold due to
Matthey and Lott. Both approaches have been identified by
Burghelea-Friedlander-Kappeler-Mc Donald.

Explicit computations and the proof of some general properties
are based on both approaches.
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The Fuglede-Kadison determinant

Here is more information about the term ln(det(∆
(2)
n )).

Consider a bijective positive operator f : V → V of
finite-dimensional Hilbert spaces with trivial kernel. Let
0 < λ1 < λ2 < λ3 < . . . be its eigenvalues and µi be the
multiplicity of λi . Then

ln(det(f )) =
∑
i≥1

µi · ln(λi) = tr(ln(f )).

Define the spectral density function F : [0,∞)→ [0,∞) to be the
right-continuous step function, which has a jump at each of the
eigenvalues of height its multiplicity, and which is zero for λ < 0.
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We can write

ln(det(f )) =
∑
i≥1

µi · ln(λi) =

∫ ∞
0+

ln(λ)dF

where dF is the measure on R associated to the monotone
increasing right-continuous function F which is given by
dF
(
(a,b]

)
:= F (b)− F (a).

If f : L2(G)k → L2(G)k is a positive bounded G-equivariant
operator, we define its spectral density function

F (f )(λ) := dimN (G)

(
im(E f

λ)
)

= trN (G)

(
E f
λ

)
where E f

λ : L2(G)k → L2(G)k is its spectral projection for λ ≥ 0.

Now the following expression makes sense:∫ ∞
0+

ln(λ)dF ∈ Rq {−∞}.
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We define the logarithm of the Fuglede-Kadison determinant

ln(det(f )) :=

∫ ∞
0+

ln(λ)dF ∈ R,

provided that
∫∞

0+ ln(λ)dF > −∞ holds.

We have
∫∞

0+ ln(λ)dF > −∞ if f is bijective, but there are weak
isomorphisms f with

∫∞
0+ ln(λ)dF = −∞.
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Now the observation comes into play that the Laplace operator
coming from a cellular structure lives already over the integers
and the following

Conjecture (Determinant Conjecture)
Let A ∈ Ma,b(ZG) be a matrix. It defines a bounded G-equivariant
operator r (2)

A : L2(G)m → L2(G)n. We have

ln
(

det
(
(r (2)

A )∗ ◦ r (2)
A

))
:=

∫ ∞
0+

ln(λ)dF ≥ 0.

This conjecture is known for a very large class of groups, for
instance for all sofic groups.

Therefore we will tacitly assume that this conjecture holds and
ln(det(∆

(2)
n )) is defined for the n-th Laplace operator ∆

(2)
n .
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Lehmer’s problem

Before we return to L2-torsion, here is a very interesting aside
concerning Fuglede-Kadison determinants and Mahler measures.

Definition (Mahler measure)

Let p(z) ∈ C[Z] = C[z, z−1] be a non-trivial element. Write it as
p(z) = c · zk ·

∏r
i=1(z − ai) for an integer r ≥ 0, non-zero complex

numbers c, a1, . . ., ar and an integer k . Define its Mahler measure

M(p) = |c| ·
∏

i=1,2,...,r
|ai |>1

|ai |.
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The following famous and open problem goes back to a question
of Lehmer [6].

Problem (Lehmer’s Problem)

Does there exist a constant Λ > 1 such that for all non-trivial elements
p(z) ∈ Z[Z] = Z[z, z−1] with M(p) 6= 1 we have

M(p) ≥ Λ.
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There is even a candidate for which the minimal Mahler measure
is attained, namely, Lehmer’s polynomial

L(z) := z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1.

It is actual −z5 ·∆(z) for the Alexander polynomial ∆(z) of a
bretzel knot given by (2,3,7).

It is conceivable that for any non-trivial element p ∈ Z[Z] with
M(p) > 1

M(p) ≥ M(L) = 1.17628 . . .

holds.

For a survey on Lehmer’s problem we refer for instance
to [1, 2, 4, 8].
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Lemma
The Mahler measure m(p) is the square root of the Fuglede-Kadison
determinant of the operator L2(Z)→ L2(Z) given by multiplication with
p(z) · p(z).

Definition (Lehmer’s constant of a group)
Define Lehmer’s constant of a group G

Λ(G) ∈ [1,∞)

to be the infimum of the set of Fuglede-Kadison determinants

det(2)
N (G)

(
r (2)
A : L2(G)r → L2(G)r),

where A runs through all (r , r)-matrices with coefficients in ZG for all
r ≥ 1, for which r (2)

A : L2(G)r → L2(G)r is a weak isomorphism and the
Fuglede-Kadison determinant satisfies det(2)

N (G)(r (2)
A ) > 1.
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We can show
Λ(Zn) ≥ M(L)

for all n ≥ 1, provided that Lehmer’s problem has a positive
answer.

We know 1 ≤ Λ(G) ≤ M(L) for torsionfree G.

Problem (Generalized Lehmer’s Problem)
For which torsionfree groups G does

Λ(G) = M(L)

hold?
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Basic properties of L2-torsion

Next we record the basic properties of L2-torsion. It behaves
similar to the Euler characteristic.

Theorem (Simple homotopy invariance)
Let f : X → Y be a homotopy equivalence of finite CW-complexes.
Suppose that X̃ and hence also Ỹ are L2-acyclic.

Then there is a homomorphism depending only on π

Φπ : Wh(π)→ R

sending τ(f ) to ρ(2)(Ỹ )− ρ(2)(X̃ ).

If Wh(π) vanishes, the L2-torsion is a homotopy invariant.
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Theorem (Sum formula)
Let X be a finite CW-complex with subcomplexes X0, X1 and X2

satisfying X = X1 ∪ X2 and X0 = X1 ∩ X2. Suppose X̃0, X̃1 and X̃2 are
L2-acyclic and the inclusions Xi → X are π-injective.

Then X̃ is L2-acyclic and we get

ρ(2)(X̃ ) = ρ(2)(X̃1) + ρ(2)(X̃2)− ρ(2)(X̃0).
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Theorem (Fibration formula)
Let F → E → B be a fibration of connected finite CW-complexes such
that F̃ is L2-acyclic and the inclusion F → E is π-injective.

Then Ẽ is L2-acyclic and we get

ρ(2)(Ẽ) = χ(B) · ρ(2)(F̃ ).
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By Poincaré duality we have ρ(2)(M̃) = 0 for every even
dimensional closed manifold M, provided that M̃ is L2-acyclic.

The L2-torsion is multiplicative under finite coverings, i.e., if
X → Y is a d-sheeted covering of connected finite
CW -complexes and X̃ is L2-acyclic, then Ỹ is L2-acyclic and

ρ(2)(X̃ ) = d · ρ(2)(Ỹ ).

In particular S̃1 is L2-acyclic and

ρ(2)(S̃1) = 0.
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Theorem (S1-actions on aspherical manifolds (Lück))

Let M be an aspherical closed manifold with non-trivial S1-action.

Then M̃ is L2-acyclic and

ρ(2)(M̃) = 0.

Theorem (L2-torsion and aspherical CW -complexes, Wegner)
Let X be an aspherical finite CW-complex. Suppose that its
fundamental group π1(X ) contains an elementary amenable infinite
normal subgroup.

Then X̃ is L2-acyclic and
ρ(2)(X̃ ) = 0.
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Theorem (Hyperbolic manifolds, (Hess-Schick, Olbrich))
There are (computable) rational numbers rn > 0 such that for every
hyperbolic closed manifold M of odd dimension 2n + 1 the universal
covering M̃ is L2-acyclic and

ρ(2)(M̃) = (−1)n · π−n · rn · vol(M).

Since for every hyperbolic manifold M we have Wh(π1(M)) = 0,
we rediscover the fact that the volume of an odd-dimensional
hyperbolic closed manifold depends only on π1(M).

We also rediscover the theorem that any S1-action on a closed
hyperbolic manifold is trivial.
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The proof is based on the fact that the analytic version of
L2-torsion is of the shape

ρ(2)(M̃) =

∫
F

f (x) dvolH2n+1

where F is a fundamental domain of the π-action on the
hyperbolic space H2n+1 and f (x) is an expression in terms of the
heat kernel k(x , x)(t).

By the symmetry of H2n+1 this function k(x , x)(t) is independent
of x and hence f (x) is independent of x .

If we take rn = (−1)n · πn · f (x) for any x ∈ H2n+1, we get∫
F

f (x) dvolH2n+1 = (−1)n ·π−n · rn ·vol(F) = (−1)n ·π−n · rn ·vol(M).

We have r1 = 1
6 , r2 = 31

45 , r7 = 221
70 .
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Theorem (Lott-Lück-,Lück-Schick)
Let M be an irreducible closed 3-manifold with infinite fundamental
group. Let M1, M2, . . . , Mm be the hyperbolic pieces in its Jaco-Shalen
decomposition.

Then M̃ is L2-acyclic and

ρ(2)(M̃) := − 1
6π
·

m∑
i=1

vol(Mi).

The proof of the result above is based on the meanwhile approved
Thurston Geometrization Conjecture. It reduces the claim to
Seifert manifolds with incompressible torus boundary and to
hyperbolic manifolds with incompressible torus boundary using
the sum formula. The Seifert pieces are treated analogously to
aspherical closed manifolds with S1-action. The hyperbolic pieces
require a careful analysis of the cusps.
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Combinatorial approach in low dimensions

Here is a recipe to read of the L2-torsion for an irreducible
3-manifold with incompressible toroidal boundary from its
fundamental group π, provided that π is infinite.

Let
π = 〈s1, s2, . . . sg | R1,R2, . . .Rr 〉

be a presentation of π.

Let the (r ,g)-matrix

F =


∂R1
∂s1

. . . ∂R1
∂sg

...
. . .

...
∂Rr
∂s1

. . . ∂Rr
∂sg


be the Fox matrix of the presentation (see [3, 9B on page 123],
[5], [7, page 84]).
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Now there are two cases:
1 Suppose ∂M is non-empty and g = r + 1. Define A to be the

(g − 1,g − 1)-matrix with entries in Zπ obtained from the Fox matrix
F by deleting one of the columns.

2 Suppose ∂M is empty and g = r . Define A to be the
(g − 1,g − 1)-matrix with entries in Zπ obtained from the Fox matrix
F by deleting one of the columns and one of the rows.

Let K be any positive real number satisfying K ≥ ‖R(2)
A ‖. A

possible choice for K is the product of (g − 1)2 and the maximum
over the word length of those relations Ri whose Fox derivatives
appear in A.
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Define for x =
∑

w∈π nw · w ∈ Zπ

trZπ(x) = λe ∈ Z.

Then the sum of non-negative rational numbers

L∑
p=1

1
2p
· trZπ

(
(1− K−2 · AA∗)p)

converges for L→∞ to ρ(2)(M̃) + (g − 1) · ln(K ).

More precisely, there is a constant C > 0 and a number α > 0
such that we get for all L ≥ 1

0 ≤ ρ(2)(M̃) + (g − 1) · ln(K )−
L∑

p=1

1
2p
· trZπ

(
(1− K−2 · AA∗)p)

≤ C
Lα
.
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Example (Figure eight knot)

Let K ⊆ S3 be the figure eight knot;

Its complement is a hyperbolic 3-manifold.

It fibers over S1 and the fiber is a surface whose fundamental
group is the free group F2 in two generators s1 and s2. The
automorphism of F2 is given by s1 7→ s2 and s2 7→ s3

2s−1
1 .

We get the presentation for π = π1(MK ) ∼= F2 o Z

π = 〈s1, s2, t | ts1t−1s−1
2 = ts2t−1s1s−3

2 = 1〉.
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Example (continued)
If we delete from the Fox matrix the column belonging to s2, we
obtain the matrix

A =

(
t 1− s2

s3
2s−1

1 1− s3
2s−1

1

)

The number K = 4 is greater or equal to the operator norm of the
bounded π-equivariant operator induced by A.
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Example (continued)
Define the (2,2)-matrix B = (bi,j) over Zπ by

b1,1 = 13 + s2 + s−1
2 ;

b1,2 = −1 + s2 + s1s3
2 − s2s1s−3

2 − ts1s−3
2 ;

b2,1 = −1 + s−1
2 + s3

2s−1
1 − s3

2s−1
1 s−1

2 − s3
2s−1

1 t−1;

b2,2 = 13 + s3
2s−1

1 + s1s−3
2 .

Since B = 16− AA∗, we get:

1
6π

vol(MK ) = − ln(ρ(K8)) = 8 · ln(2)−
∞∑

p=1

1
p · 16p · trZπ(Bp).

The volume of MK is about 2.02988.
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Group automorphisms

Let f : G→ G be an automorphism of a group G for which there
exists a finite CW -model X for BG.

Let f̂ : X → X be any selfhomotopy equivalence such that π1(̂f )
and f agree up to inner automorphisms of G.

Then the mapping torus Tf̂ is a connected finite CW -complex,
which is L2-acyclic. Hence its L2-torsion ρ(2)(T̃f ) ∈ R is defined.

It depends only on f and not on the choices of X and f̂ since the
simple homotopy type of Tf̂ is independent of these choices.

Hence we get a well-defined element

ρ(2)(f ) := ρ(2)(Tf̂ ) ∈ R.
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Theorem
Suppose that all groups appearing below have finite CW-models for
their classifying spaces.

Suppose that G is the amalgamated product G1 ∗G0 G2 for
subgroups Gi ⊂ G and the automorphism f : G→ G is the
amalgamated product f1 ∗f0 f2 for automorphisms fi : Gi → Gi .
Then

ρ(2)(f ) = ρ(2)(f1) + ρ(2)(f2)− ρ(2)(f0);

Let f : G→ H and g : H → G be isomorphisms of groups. Then

ρ(2)(f ◦ g) = ρ(2)(g ◦ f ).

In particular ρ(2)(f ) is invariant under conjugation with
automorphisms;
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Theorem (continued)
Suppose that the following diagram of groups

1 // G1

f1
��

i
// G2

f2
��

p
// G3

id
��

// 1

1 // G1
i
// G2

p
// G3 // 1

commutes, has exact rows and its vertical arrows are
automorphisms. Then

ρ(2)(f2) = χ(BG3) · ρ(2)(f1);

Let f : G→ G be a group automorphism. Then for all integers
n ≥ 1

ρ(2)(f n) = n · ρ(2)(f );
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Theorem (continued)
Suppose that G contains a subgroup G0 of finite index [G : G0].
Let f : G→ G be an automorphism with f (G0) = G0. Then

ρ(2)(f ) =
1

[G : G0]
· ρ(2)(f |G0);

We have ρ(2)(f ) = 0 if G satisfies one of the following conditions:

All L2-Betti numbers of the universal covering of BG vanish;
G contains an amenable infinite normal subgroup.

If h : S → S is a pseudo-Anosov selfhomeomorphism of a
connected orientable surface, and f : π1(S)

∼=−→ π1(S) is the
induced automorphism, then its mapping torus Th is a hyperbolic
3-manifold and

ρ(2)(f ) = − 1
6π
· vol(Th).
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Approximation

The following conjecture combines and generalizes Conjectures
by Bergeron-Venkatesh, Hopf, Singer, and Lück.

If G is a finitely generated group, we denote by d(G) the minimal
number of generators.

A chain for a group G is a sequence of in G normal subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · ·

such that [G : Gi ] <∞ and
⋂

i≥0 Gi = {1}.

We denote by RG the rank gradient introduced by Lackenby.

RG(G, {Gi}) = lim
i→∞

d(Gi)

[G : Gi ]
.
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Conjecture (Homological growth and L2-invariants for aspherical
closed manifolds)
Let M be an aspherical closed manifold of dimension d and
fundamental group G = π1(M). Let M̃ be its universal covering. Then

For any natural number n with 2n 6= d we get

b(2)
n (M̃) = 0.

If d = 2n, we have

(−1)n · χ(M) = b(2)
n (M̃) ≥ 0.

If d = 2n and M carries a Riemannian metric of negative sectional
curvature, then

(−1)n · χ(M) = b(2)
n (M̃) > 0;
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Conjecture (Continued)

Let (Gi)i≥0 be any chain. Put M[i] = Gi\M̃.
Then we get for any natural number n and any field F

b(2)
n (M̃) = lim

i→∞

bn(M[i]; F )

[G : Gi ]
= lim

i→∞

d
(
Hn(M[i];Z)

)
[G : Gi ]

;

and for n = 1

b(2)
1 (M̃) = lim

i→∞

b1(M[i]; F )

[G : Gi ]
= lim

i→∞

d
(
Gi/[Gi ,Gi ]

)
[G : Gi ]

= RG(G, (Gi)i≥0) =

{
0 d 6= 2;

−χ(M) d = 2;
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Conjecture (Continued)
If d = 2n + 1 is odd, we have

(−1)n · ρ(2)
(
M̃
)
≥ 0;

If d = 2n + 1 is odd and M carries a Riemannian metric with
negative sectional curvature, we have

(−1)n · ρ(2)
(
M̃
)
> 0;
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Conjecture (Continued)

Let (Gi)i≥0 be a chain. Put M[i] = Gi\M̃.
Then we get for any natural number n with 2n + 1 6= d

lim
i→∞

ln
(∣∣tors

(
Hn(M[i])

)∣∣)
[G : Gi ]

= 0,

and we get in the case d = 2n + 1

lim
i→∞

ln
(∣∣tors

(
Hn(M[i])

)∣∣)
[G : Gi ]

= (−1)n · ρ(2)
(
M̃
)
≥ 0.
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The conjecture above is very optimistic, but we do not know a
counterexample.
It is related to the Approximation Conjecture for the
Fuglede-Kadison determinant.
The main issue here are uniform estimates about the spectrum of
the n-th Laplace operators on M[i] which are independent of i .
Abert-Nikolov have settled the rank gradient part if G contains an
infinite normal amenable subgroup.
Kar-Kropholler-Nikolov have settled the part about the growth of
the torsion in the homology if G is infinite amenable.
Abert-Gelander-Nikolov deal with the rank gradient and the growth
of the torsion in the homology for right angled lattices.
Li-Thom deal with the vanishing of L2-torsion for amenable G.
Bridson-Kochloukova deal with limit groups, where the limits are
not necessarily zero.
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Theorem (Lück)
Let M be an aspherical closed manifold with fundamental group
G = π1(M). Suppose that M carries a non-trivial S1-action or suppose
that G contains a non-trivial elementary amenable normal subgroup.
Then we get for all n ≥ 0 and fields F and any chain (Gi)i≥0

lim
i→∞

bn(M[i]; F )

[G : Gi ]
= 0;

lim
i→∞

d
(
Hn(M[i];Z)

)
[G : Gi ]

= 0;

lim
i→∞

ln
(∣∣tors

(
Hn(M[i])

)∣∣)
[G : Gi ]

= 0;

b(2)
n (M̃) = 0;

ρ(2)(M̃) = 0.
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Let M be a closed hyperbolic 3-manifold. Then the conjecture
above predicts for any chain (Gi)i≥0

lim
i→∞

ln
(∣∣tors

(
H1(Gi)

)∣∣)
[G : Gi ]

=
1

6π
· vol(M).

Since the volume is always positive, the equation above implies
that | tors

(
H1(Gi)

)
| growth exponentially in [G : Gi ].

In particular this would allow to read of the volume from the
profinite completion of π1(M).
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