Introduction to surgery theory

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Bonn, 17. & 19. April 2018

- State the existence problem and uniqueness problem in surgery theory.
- Explain the notion of Poincaré complex and of Spivak normal fibration.
- Introduce the surgery problem, the surgery step and the surgery obstruction.
- Explain the surgery exact sequence and its applications to topological rigidity.

Problem (Existence)

Let X be a space. When is X homotopy equivalent to a closed manifold?

Problem (Uniqueness)

Let M and N be two closed manifolds. Are they isomorphic?

- For simplicity we will mostly work with orientable connected closed manifolds.
- We can consider topological manifolds, PL-manifolds or smooth manifolds and then isomorphic means homeomorphic, PL-homeomorphic or diffeomorphic.
- We will begin with the existence problem. We will later see that the uniqueness problem can be interpreted as a relative existence problem thanks to the s-Cobordism Theorem.

- A closed manifold carries the structure of a finite *CW*-complex. Hence we assume in the sequel in the existence problem that *X* itself is already a *CW*-complex.
- Fix a natural number n ≥ 4. Then every finitely presented group occurs as fundamental group of a closed n-dimensional manifold. Since the fundamental group of a finite CW-complex is finitely presented, we get no constraints on the fundamental group.
- We have already explained that not all finitely presented groups can occur as fundamental groups of closed 3-manifolds. For instance, the fundamental group π of a closed 3-manifold satisfies

$$\dim_{\mathbb{Q}}(H_{2}(\pi;\mathbb{Q})) \leq \dim_{\mathbb{Q}}(H_{1}(\pi;\mathbb{Q}))$$

 Let *M* be a (connected orientable) closed *n*-dimensional manifold. Then *H_n*(*M*; ℤ) is infinite cyclic. If [*M*] ∈ *H_n*(*M*; ℤ) is a generator, then the cap product with [*M*] yields for *k* ∈ ℤ isomorphisms

$$-\cap [M]\colon H^{n-k}(M;\mathbb{Z})\xrightarrow{\cong} H_k(M;\mathbb{Z}).$$

Obviously X has to satisfy the same property if it is homotopy equivalent to M.

- There is a much more sophisticated Poincaré duality behind the result above which we will explain next.
- Recall that a (not necessarily commutative) ring with involution *R* is ring *R* with an involution of rings

$$-: \mathbf{R} \to \mathbf{R}, \ \mathbf{r} \mapsto \overline{\mathbf{r}},$$

i.e., a map satisfying $\overline{\overline{r}} = r$, $\overline{r+s} = \overline{r} + \overline{s}$, $\overline{r \cdot s} = \overline{s} \cdot \overline{r}$ and $\overline{1} = 1$ for $r, s \in R$.

- Our main example is the involution on the group ring ZG for a group G defined by sending ∑_{g∈G} a_g · g to ∑_{g∈G} a_g · g⁻¹.
- Let *M* be a left *R*-module. Then $M^* := \hom_R(M, R)$ carries a canonical right *R*-module structure given by $(fr)(m) = f(m) \cdot r$ for a homomorphism of left *R*-modules $f : M \to R$ and $m \in M$. The involution allows us to view $M^* = \hom_R(M; R)$ as a left *R*-module, namely, define rf for $r \in R$ and $f \in M^*$ by $(rf)(m) := f(m) \cdot \overline{r}$ for $m \in M$.
- Given an *R*-chain complex of left *R*-modules *C*_{*} and *n* ∈ Z, we define its dual chain complex *C^{n-*}* to be the chain complex of left *R*-modules whose *p*-th chain module is hom_{*R*}(*C_{n-p}*, *R*) and whose *p*-th differential is given by

$$(-1)^{n-p+1} \cdot \hom_R(c_{n-p+1}, \operatorname{id}) \colon (C^{n-*})_p = \hom_R(C_{n-p}, R)$$

 $\rightarrow (C^{n-*})_{p-1} = \hom_R(C_{n-p+1}, R).$

Definition (Finite Poincaré complex)

A (connected) finite *n*-dimensional *CW*-complex *X* is a finite *n*-dimensional Poincaré complex if there is $[X] \in H_n(X; \mathbb{Z})$ such that the induced $\mathbb{Z}\pi$ -chain map

$$-\cap [X]\colon C^{n-*}(\widetilde{X})\to C_*(\widetilde{X})$$

is a $\mathbb{Z}\pi$ -chain homotopy equivalence.

• If we apply $id_{\mathbb{Z}} \otimes_{\mathbb{Z}\pi}$, we obtain a \mathbb{Z} -chain homotopy equivalence

$$C^{n-*}(X) o C_*(X)$$

which induces after taking homology the Poincaré duality isomorphism $- \cap [X]: H^{n-k}(M; \mathbb{Z}) \xrightarrow{\cong} H_k(M; \mathbb{Z})$ from above.

Theorem (Closed manifolds are Poincaré complexes)

A closed n-dimensional manifold M is a finite n-dimensional Poincaré complex.

• We conclude that a finite *n*-dimensional *CW*-complex *X* is homotopy equivalent to a closed *n*-dimensional manifold only if it is up to homotopy a finite *n*-dimensional Poincaré complex.

The Spivak normal fibration

- We briefly recall the Pontryagin-Thom construction for a closed *n*-dimensional manifold *M*.
- Choose an embedding $i: M \to S^{n+k}$ normal bundle $\nu(M)$.
- Choose a tubular neighborhood N ⊆ S^{n+k} of M. It comes with a diffeomorphism

$$f \colon (D\nu(M), S\nu(M)) \xrightarrow{\cong} (N, \partial N)$$

which is the identity on the zero section.

Let

$$c\colon S^{n+k} \to \operatorname{Th}(\nu(M)) := D\nu(M)/S\nu(M)$$

be the collaps map onto the Thom space, which is given by f^{-1} on int(N) and sends any point outside int(N) to the base point.

Wolfgang Lück (MI, Bonn)

Figure (Pontrjagin-Thom construction)

Wolfgang Lück (MI, Bonn)

Introduction to surgery theory

Bonn, 17. & 19. April 2018 11 / 52

New: The Hurewicz homomorphism

 $\pi_{n+k}(Th(M)) \rightarrow H_{n+k}(Th(M))$

sends [c] to a generator of the infinite cyclic group $H_{n+k}(Th(M))$.

- Since *DE* is a compact (*n* + *k*)-dimensional manifold with boundary *SE*, the group *H*_{n+k}(Th(*M*)) ≅ *H*_{n+k}(*DE*, *SE*) is infinite cyclic since it is isomorphic by Poincaré duality to *H*⁰(*DE*).
- The bijectivity of the Hurewicz homomorphisms above follows from the fact that *c* is a diffeomorphism on the interior of *N* by considering the preimage of a regular value.

- The normal bundle is stably independent of the choice of the embedding.
- Next we describe the homotopy theoretic analog of the normal bundle for a finite *n*-dimensional Poincaré complex *X*.

Definition (Spivak normal structure)

A Spivak normal (k-1)-structure is a pair (p, c) where $p: E \to X$ is a (k-1)-spherical fibration called the Spivak normal fibration, and $c: S^{n+k} \to Th(p)$ is a map such that the Hurewicz homomorphism $h: \pi_{n+k}(Th(p)) \to H_{n+k}(Th(p))$ sends [c] to a generator of the infinite cyclic group $H_{n+k}(Th(p))$.

Theorem (Existence and Uniqueness of Spivak Normal Fibrations)

- If k is a natural number satisfying k ≥ n + 1, then there exists a Spivak normal (k−1)-structure (p, c);
- For *i* = 0, 1 let *p_i*: *E_i* → *X* and *c_i*: *S^{n+k_i}* → Th(*p_i*) be Spivak normal (*k_i*−1)-structures for *X*. Then there exists an integer *k* with *k* ≥ *k*₀, *k*₁ such that there is up to strong fibre homotopy precisely one strong fibre homotopy equivalence

$$(\mathsf{id},\overline{f})\colon p_0*\underline{S^{k-k_0}}\to p_1*\underline{S^{k-k_1}}$$

for which $\pi_{n+k}(\text{Th}(\bar{f}))(\Sigma^{k-k_0}([c_0])) = \Sigma^{k-k_1}([c_1])$ holds.

- The Pontryagin-Thom construction yields a Spivak normal (k-1)-structure on a closed manifold M with the sphere bundle $S\nu(M)$ as the spherical (k-1) fibration.
- Hence a finite *n*-dimensional Poincaré complex is homotopy equivalent to a closed manifold only if the Spivak normal fibration has (stably) a vector bundle reduction.
- There exists a finite *n*-dimensional Poincaré complex whose Spivak normal fibration does not possess a vector bundle reduction and which therefore is not homotopy equivalent to a closed manifold.
- Hence we assume from now on that X is a (connected oriented) finite *n*-dimensional Poincaré complex which comes with a vector bundle reduction ξ of the Spivak normal fibration.

Normal maps

Definition (Normal map of degree one)

A normal map of degree one with target X consists of:

- A closed (oriented) *n*-dimensional manifold *M*;
- A map of degree one $f: M \to X$;
- A (k + n)-dimensional vector bundle ξ over X;
- A bundle map \overline{f} : $TM \oplus \mathbb{R}^k \to \xi$ covering f.

- A vector bundle reduction yields a normal map of degree one with *X* as target as explained next.
- Let η be a vector bundle reduction of the Spivak normal fibration.
- Let c: S^{n+k} → Th(p) be the associated collaps map. Make it transversal to the zero-section in Th(p).
- Let *M* be the preimage of the zero-section. This is a closed submanifold of S^{n+k} and comes with a map f: M → X of degree one covered by a bundle map ν(M ⊆ S^{n+k}) → η.
- Since *TM* ⊕ *ν*(*M* ⊆ *S^{n+k}*) is stably trivial, we can construct from these data a normal map of degree one from *M* to *X*.

Problem (Surgery Problem)

Let (f, \overline{f}) : $M \to X$ be a normal map of degree one. Can we modify it without changing the target such that f becomes a homotopy equivalence?

- Suppose that X is homotopy equivalent to a closed manifold M.
- Then there exists a normal map of degree one from *M* to *X* whose underlying map $f: M \to X$ is a homotopy equivalence. Just take $\xi = f^{-1}TM$ for some homotopy inverse f^{-1} of *f*.

The surgery step

Suppose that *M* is a closed manifold of dimension *n*, *X* is a *CW*-complex and *f* : *M* → *X* is a *k*-connected map. Consider ω ∈ π_{k+1}(*f*) represented by a diagram

We want to kill ω .

• In the category of *CW*-complexes this can be achieved by attaching cells. But attaching a cell destroys in general the structure of a closed manifold, so we have to do a more sophisticated modification.

• Suppose that the map $q: S^k \to M$ extends to an embedding

$$q^{\text{th}}: S^k \times D^{n-k} \hookrightarrow M.$$

- Let $int(im(q^{th}))$ be the interior of the image of q^{th} . Then $M int(im(q^{th}))$ is a manifold with boundary $im(q^{th}|_{S^k \times S^{n-k-1}})$.
- We can get rid of the boundary by attaching $D^{k+1} \times S^{n-k-1}$ along $q^{\text{th}}|_{S^k \times S^{n-k-1}}$. Denote the resulting manifold

$$M' := \left(D^{k+1} \times S^{n-k-1} \right) \cup_{q^{\text{th}}|_{S^k \times S^{n-k-1}}} \left(M - \operatorname{int}(\operatorname{im}(q^{\text{th}})) \right).$$

• The manifold M' is said to be obtained from M by surgery along q^{th} .

- Let $f: T^2 \to S^2$ be a Hopf collapse map. We fix $y_0 \in S^1$ so that $S^1 := S^1 \times \{y_0\} \subset T^2$ satisfies $f(S^1) = x_0$. We define $\omega \in \pi_2(f)$ by extending $f|_{S^1}$ to the constant map at x_0 on all of D^2 .
- The following figure illustrates the effect of surgery on the source.

Figure (Source of a surgery step for $M = T^2$)

Wolfgang Lück (MI, Bonn)

Introduction to surgery theory

Bonn, 17. & 19. April 2018 22 / 52

- The map f': S² → S² obtained by carrying out the surgery step on the Hopf collapse map f: T² → S² as described above is a homotopy equivalence since it is a map S² → S² of degree one.
- Consider a map *f*: *M* → *X* from a closed *n*-dimensional manifold *M* to a finite *CW*-complex *X*. Suppose that it can be converted by a finite sequence of surgery steps to a homotopy equivalence *f'*: *M'* → *X*. Then

$$\chi(M) - \chi(X) \equiv 0 \mod 2$$

by the additivity and homotopy invariance of the Euler characteristic.

• Hence in general there are obstructions to solve the Surgery Problem.

- It is important to notice that the maps *f* : *M* → *X* and *f'* : *M'* → *X* are bordant as manifolds with reference map to *X*.
- The relevant bordism is given by

$$W = \left(D^{k+1} \times D^{n-k}\right) \cup_{q^{\text{th}}} \left(M \times [0,1]\right),$$

where we think of q^{th} as an embedding $S^k \times D^{n-k} \to M \times \{1\}$. In other words, *W* is obtained from $M \times [0, 1]$ by attaching a handle $D^{k+1} \times D^{n-k}$ to $M \times \{1\}$.

 Then *M* appears in *W* as *M* × {0} and *M* as other component of the boundary of *W*.

- The manifold *W* is called the trace of surgery along the embedding *q*th.
- The next figure below gives a schematic representation of the trace of a surgery. For obvious reasons, this fundamental image in surgery theory is often called the surgeon's suitcase.

Figure (Surgeon's suitcase)

Wolfgang Lück (MI, Bonn)

The next figure displays the surgery step and its trace for the special case *M* = S¹ and *k* = 0, where we start from an embedding S⁰ × S¹ → S¹.

Figure (Surgery along $S^0 \times D^1 \hookrightarrow S^1$)

Wolfgang Lück (MI, Bonn)

- Notice that the inclusion $M \operatorname{int}(\operatorname{im}(q^{\operatorname{th}})) \to M$ is (n-k-1)-connected since $S^k \times S^{n-k-1} \to S^k \times D^{n-k}$ is (n-k-1)-connected. Hence $\pi_l(f) = \pi_l(f')$ for $l \leq k$ and there is an epimorphism $\pi_{k+1}(f) \to \pi_{k+1}(f')$ whose kernel contains ω , provided that $2(k+1) \leq n$.
- The condition 2(k+1) ≤ n can be viewed as a consequence of Poincaré duality. Roughly speaking, if we change something in a manifold in dimension *I*, Poincaré duality also forces a change in dimension (n-I). This phenomenon is the reason why there are surgery obstructions to converting any map f: M → X into a homotopy equivalence in a finite number of surgery steps for odd dimension n.
- The bundle data ensure that the thickening *q*th exists when we are doing surgery below the middle dimension. If one carries out the thickening in a specific way, the bundle data extend to the resulting normal map of degree one and we can continue the process.

Wolfgang Lück (MI, Bonn)

Introduction to surgery theory

Theorem (Making a normal map highly connected)

Given a normal map of degree one, we can carry out a finite sequence of surgery steps so that the resulting $f' : N \to X$ is k-connected, where n = 2k or n = 2k + 1.

Lemma

A normal map of degree one which is (k + 1)-connected, where n = 2k or n = 2k + 1, is a homotopy equivalence.

- Hence we have to make a normal map, which is already *k*-connected, (k + 1)-connected in order to achieve a homotopy equivalence, where n = 2k or n = 2k + 1. Exactly here the surgery obstruction occurs.
- In odd dimension n = 2k + 1 the surgery obstruction comes from the previous observation that by Poincare duality modifications in the (k + 1)-th homology cause automatically (undesired) changes in the k-th homology.
- In even dimension n = 2k one encounters the problem that the bundle data only guarantee that one can find an immersion with finitely many self-intersection points

$$q^{\text{th}}: S^k \times D^k \to M.$$

The surgery obstruction is the algebraic obstruction to get rid of the self-intersection points. If $n \ge 5$, its vanishing is indeed sufficient to convert q^{th} into an embedding.

Wolfgang Lück (MI, Bonn)

Introduction to surgery theory

- One prominent necessary surgery obstruction is given in the case n = 4k by the difference of the signatures sign(X) - sign(M) since the signature is a bordism invariant and a homotopy invariant.
- If π₁(M) is simply connected and n = 4k for k ≥ 2, then the vanishing of sign(X) − sign(M) is indeed sufficient.
- If π₁(M) is simply connected and n is odd and n ≥ 5, there are no surgery obstructions.

Theorem (Existence problem in the simply connected case)

Let X be a simply connected finite Poincaré complex of dimension n

- Suppose that n is odd and n ≥ 5. Then X is homotopy equivalent to a closed manifold if and only if the Spivak normal fibration has a reduction to a vector bundle.
- Suppose n = 4k ≥ 5. Then X is homotopy equivalent to a closed manifold if and only if the Spivak normal fibration has a reduction to a vector bundle ξ: E → X such that

 $\langle \mathcal{L}(\xi), [X] \rangle = \operatorname{sign}(X).$

Suppose that n = 4k + 2 ≥ 5. Then X is homotopy equivalent to a closed manifold if and only if the Spivak normal fibration has a reduction to a vector bundle such that the Arf invariant of the associated surgery problem, which takes values in Z/2, vanishes.

Algebraic L-groups

- In general there are surgery obstructions taking values in the so called *L*-groups *L_n*(ℤ[π₁(*M*)]).
- In even dimensions $L_n(R)$ is defined for a ring with involution in terms of quadratic forms over R, where the hyperbolic quadratic forms always represent zero. In odd dimensions $L_n(R)$ is defined in terms of automorphisms of hyperbolic quadratic forms, or, equivalently, in terms of so called formations.
- The *L*-groups are easier to compute than *K*-groups since they are 4-periodic, i.e., $L_n(R) \cong L_{n+4}(R)$.

We have

$$L_n(\mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } n = 4k; \\ \mathbb{Z}/2 & \text{if } n = 4k+2; \\ \{0\} & \text{if } n = 2k+1. \end{cases}$$

- The surgery obstruction is defined in all dimensions and is always a necessary condition to solve the surgery problem.
- In dimension n ≥ 5 the vanishing of the surgery obstruction is sufficient.
- In dimension 4 the methods of proof of sufficiency break down because the so called Whitney trick is not available anymore which relies in higher dimensions on the fact that two embedded 2-disks can be made disjoint by transversality.
- In dimension 3 problems occur concerning the effect of surgery on the fundamental group.

The Surgery Program

- The surgery Program addresses the uniqueness problem whether two closed manifolds *M* and *N* are diffeomorphic.
- The idea is to construct an *h*-cobordism (*W*; *M*, *N*) with vanishing Whitehead torsion. Then *W* is diffeomorphic to the trivial *h*-cobordism over *M* and hence *M* and *N* are diffeomorphic.
- So the Surgery Program due to Browder, Novikov, Sullivan and Wall is:
 - **()** Construct a homotopy equivalence $f: M \to N$;
 - Construct a cobordism (W; M, N) and a map
 - $(F, f, \mathsf{id}) \colon (W; M, N) \to (N \times [0, 1]; N \times \{0\}, N \times \{1\});$
 - Modify W and F relative boundary by surgery such that F becomes a homotopy equivalence and thus W becomes an h-cobordism;
 - Ouring these processes one should make certain that the Whitehead torsion of the resulting *h*-cobordism is trivial. Or one knows already that Wh(π₁(M)) vanishes.

Figure (Surgery Program)

Wolfgang Lück (MI, Bonn)

Definition (The structure set)

Let *N* be a closed topological manifold of dimension *n*. We call two simple homotopy equivalences $f_i : M_i \to N$ from closed topological manifolds M_i of dimension *n* to *N* for i = 0, 1 equivalent if there exists a homeomorphism $g : M_0 \to M_1$ such that $f_1 \circ g$ is homotopic to f_0 .

The structure set $S_n^{\text{top}}(N)$ of *N* is the set of equivalence classes of simple homotopy equivalences $M \to X$ from closed topological manifolds of dimension *n* to *N*. This set has a preferred base point, namely the class of the identity id : $N \to N$.

- If we assume Wh(π₁(N)) = 0, then every homotopy equivalence with target N is automatically simple.
- There is an obvious version, where topological and homeomorphism are replaced by smooth and diffeomorphism.

Wolfgang Lück (MI, Bonn)

Introduction to surgery theory

Definition (Topological rigid)

A closed topological manifold *N* is called topologically rigid if any homotopy equivalence $f: M \rightarrow N$ with a closed manifold *M* as source is homotopic to a homeomorphism.

Lemma

A closed topological manifold M is topologically rigid if and only if the structure set $S_n^{top}(M)$ consists of exactly one point.

Lemma

The Poincaré Conjecture implies that Sⁿ is topologically rigid.

Theorem (The topological Surgery Exact Sequence)

For a closed n-dimensional topological manifold N with $n \ge 5$, there is an exact sequence of abelian groups, called surgery exact sequence,

$$\cdots \xrightarrow{\eta} \mathcal{N}_{n+1}^{\text{top}}(N \times [0,1], N \times \{0,1\}) \xrightarrow{\sigma} L_{n+1}^{s}(\mathbb{Z}\pi) \xrightarrow{\partial} \mathcal{S}_{n}^{\text{top}}(N)$$
$$\xrightarrow{\eta} \mathcal{N}_{n}^{\text{top}}(N) \xrightarrow{\sigma} L_{n}^{s}(\mathbb{Z}\pi)$$

- L^s_n(ℤπ) is the algebraic *L*-group of the group ring ℤπ for pi = π₁(N) (with decoration s).
- *N*^{top}_n(*N*) is the set of normal bordism classes of normal maps of degree one with target *N*.
- *N*^{top}_{n+1}(*N*×[0,1], *N*×{0,1}) is the set of normal bordism classes of normal maps (*M*, ∂*M*) → (*N*×[0,1], *N*×{0,1}) of degree one with target *N*×[0,1] which are simple homotopy equivalences on the boundary.

- The map σ is given by the surgery obstruction.
- The map η sends f: M → N to the normal map of degree one for which ξ = (f⁻¹)*TN.
- The map ∂ sends an element $x \in L_{n+1}(\mathbb{Z}\pi)$ to $f: M \to N$ if there exists a normal map $F: (W, \partial W) \to (N \times [0, 1], N \times \{0, 1\})$ of degree one with target $N \times [0, 1]$ such that $\partial W = N \amalg M$, $F|_N = \mathrm{id}_N, F|_M = f$, and the surgery obstruction of F is x.
- There is a space G/TOP together with bijections

$$\begin{split} & [N, \mathsf{G}/\mathsf{TOP}] & \xrightarrow{\cong} & \mathcal{N}_n^{\mathsf{top}}(N); \\ & [N \times [0, 1]/N \times \{0, 1\}, \mathsf{G}/\mathsf{TOP}] & \xrightarrow{\cong} & \mathcal{N}_{n+1}^{\mathsf{top}}(N \times [0, 1], N \times \{0, 1\}). \end{split}$$

 There is an analog of the Surgery Exact Sequence in the smooth category except that it is only an exact sequence of pointed sets and not of abelian groups.

Corollary

A topological manifold of dimension $n \ge 5$ is topologically rigid if and only if the map $\mathcal{N}_{n+1}^{\text{top}}(N \times [0,1], N \times \{0,1\}) \to L_{n+1}^{s}(\mathbb{Z}\pi)$ is surjective and the map $\mathcal{N}_{n}^{\text{top}}(N) \to L_{n}^{s}(\mathbb{Z}\pi)$ is injective.

Conjecture (Borel Conjecture)

An aspherical closed manifold is topologically rigid.

- The Surgery Exact Sequence is the main tool for the classification of closed manifolds.
- The proof of the Borel Conjecture for a large class of groups and the classification of exotic spheres are prominent examples.
- For a certain class of fundamental groups called good fundamental groups, the Surgery Exact Sequence works also in dimension 4 by the work of Freedman.
- For more information about surgery theory we refer for instance to [1, 2, 3, 4].

The definition of the even dimensional *L*-groups

- Let *R* be a ring with involution. Fix $\epsilon \in \{\pm 1\}$.
- For a finitely generated projective *R*-module *P*, let

$$e(P)\colon P o (P^*)^*$$

be the canonical isomorphism sending $p \in P$ to the element in $(P^*)^*$ given by the homomorphism $P^* \to R$, $f \mapsto \overline{f(p)}$.

Definition (Symmetric form)

An ϵ -symmetric form (P, ϕ) is a finitely generated projective *R*-module *P* together with an *R*-homomorphism $\phi: P \to P^*$ such that the composition $P \xrightarrow{e(P)} (P^*)^* \xrightarrow{\phi^*} P^*$ agrees with $\epsilon \cdot \phi$. We call (P, ϕ) non-singular if ϕ is an isomorphism.

Wolfgang Lück (MI, Bonn)

Introduction to surgery theory

• We can rewrite (P, ϕ) as a pairing

$$\lambda \colon P \times P \to R, \quad (p,q) \mapsto \phi(p)(q).$$

• Then the condition that ϕ is *R*-linear becomes the conditions

$$\begin{array}{lll} \lambda(p,r_1\cdot q_1+r_2\cdot q_2,) & = & r_1\cdot\lambda(p,q_1)+r_2\cdot\lambda(p,q_2); \\ \lambda(r_1\cdot p_1+r_2\cdot p_2,q) & = & \lambda(p_1,q)\cdot\overline{r_1}+\lambda(p_2,q)\cdot\overline{r_2}. \end{array}$$

• The condition $\phi = \epsilon \cdot \phi^* \circ e(P)$ translates to $\lambda(q, p) = \epsilon \cdot \overline{\lambda(p, q)}$.

Example (Standard hyperbolic symmetric form)

- Let *P* be a finitely generated projective *R*-module.
- The standard hyperbolic ϵ -symmetric form $H^{\epsilon}(P)$ is given by the R-module $P \oplus P^*$ and the R-isomorphism

$$\phi \colon (\mathcal{P} \oplus \mathcal{P}^*) \xrightarrow{\begin{pmatrix} 0 & 1 \\ \epsilon & 0 \end{pmatrix}} \mathcal{P}^* \oplus \mathcal{P} \xrightarrow{\mathsf{id} \oplus e(\mathcal{P})} \mathcal{P}^* \oplus (\mathcal{P}^*)^* = (\mathcal{P} \oplus \mathcal{P}^*)^*.$$

If we write it as a pairing we obtain

 $(P \oplus P^*) \times (P \oplus P^*) \to R, \quad ((p, f), (p', f')) \mapsto f(p') + \epsilon \cdot f'(p).$

- Let P be a finitely generated projective R-module
- Define an involution of *R*-modules

 $\textbf{\textit{T}}: \ \mathsf{hom}_{B}(P,P^{*}) \to \mathsf{hom}(P,P^{*}), \quad f \mapsto f^{*} \circ \textbf{\textit{e}}(P).$

Define abelian groups

$$\begin{array}{lll} Q^{\epsilon}(P) & := & \ker\left((1-\epsilon \cdot T) \colon \hom_{R}(P,P^{*}) \to \hom_{R}(P,P^{*})\right); \\ Q_{\epsilon}(P) & := & \operatorname{coker}\left((1-\epsilon \cdot T) \colon \hom_{R}(P,P^{*}) \to \hom_{R}(P,P^{*})\right). \end{array}$$

Let

$$(1 + \epsilon \cdot T) \colon Q_{\epsilon}(P) o Q^{\epsilon}(P)$$

be the homomorphism which sends the class represented by $f: P \rightarrow P^*$ to the element $f + \epsilon \cdot T(f)$

Definition (Quadratic form)

An ϵ -quadratic form (P, ψ) is a finitely generated projective *R*-module *P* together with an element $\psi \in Q_{\epsilon}(P)$. It is called non-singular if the associated ϵ -symmetric form $(P, (1 + \epsilon \cdot T)(\psi))$ is non-singular, i.e., $(1 + \epsilon \cdot T)(\psi)$: $P \rightarrow P^*$ is bijective.

- There is an obvious notion of direct sum of two ϵ -quadratic forms.
- An isomorphism f: (P, ψ) → (P', ψ') of two ε-quadratic forms is an *R*-isomorphism f: P ≅→ P' such that the induced map Q_ε(f): Q_ε(P') → Q_ε(P) sends ψ' to ψ.

• We can rewrite (P, ψ) as a triple (P, λ, μ) consisting of a pairing $\lambda \colon P \times P \to R$

satisfying

$$\begin{split} \lambda(\boldsymbol{p},\boldsymbol{r}_{1}\cdot\boldsymbol{q}_{1}+\boldsymbol{r}_{2}\cdot\boldsymbol{q}_{2}) &= \boldsymbol{r}_{1}\cdot\lambda(\boldsymbol{p},\boldsymbol{q}_{1})+\boldsymbol{r}_{2}\cdot\lambda(\boldsymbol{p},\boldsymbol{q}_{2});\\ \lambda(\boldsymbol{r}_{1}\cdot\boldsymbol{p}_{1}+\boldsymbol{r}_{2}\cdot\boldsymbol{p}_{2},\boldsymbol{q}) &= \lambda(\boldsymbol{p}_{1},\boldsymbol{q})\cdot\overline{\boldsymbol{r}_{1}}+\lambda(\boldsymbol{p}_{2},\boldsymbol{q})\cdot\overline{\boldsymbol{r}_{2}};\\ \lambda(\boldsymbol{q},\boldsymbol{p}) &= \boldsymbol{\epsilon}\cdot\overline{\lambda(\boldsymbol{p},\boldsymbol{q})}, \end{split}$$

and a map

$$\mu \colon \mathcal{P} o \mathcal{Q}_{\epsilon}(\mathcal{R}) = \mathcal{R} / \{ r - \epsilon \cdot \overline{r} \mid r \in \mathcal{R} \}$$

satisfying

$$\mu(\mathbf{rp}) = \rho(\mathbf{r}, \mu(\mathbf{p}));$$

$$\mu(\mathbf{p} + \mathbf{q}) - \mu(\mathbf{p}) - \mu(\mathbf{q}) = \operatorname{pr}(\lambda(\mathbf{p}, \mathbf{q}));$$

$$\lambda(\mathbf{p}, \mathbf{p}) = (\mathbf{1} + \epsilon \cdot \mathbf{T})(\mu(\mathbf{p})),$$

where pr: $R \to Q_{\epsilon}(R)$ is the projection and $(1 + \epsilon \cdot T)$: $Q_{\epsilon}(R) \to R$ the map sending the class of *r* to $r + \epsilon \cdot \overline{r}$.

Wolfgang Lück (MI, Bonn)

Example (Standard hyperbolic quadratic form)

- Let *P* be a finitely generated projective *R*-module.
- The standard hyperbolic ϵ -quadratic form $H_{\epsilon}(P)$ is given by the $\mathbb{Z}\pi$ -module $P \oplus P^*$ and the class in $Q_{\epsilon}(P \oplus P^*)$ of the R-homomorphism

$$\phi \colon (P \oplus P^*) \xrightarrow{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}} P^* \oplus P \xrightarrow{\mathsf{id} \oplus e(P)} P^* \oplus (P^*)^* = (P \oplus P^*)^*.$$

- The ϵ -symmetric form associated to $H_{\epsilon}(P)$ is $H^{\epsilon}(P)$.
- If we rewrite it as a triple (P, λ, μ) , we get

$$(P \oplus P^*) imes (P \oplus P^*) \rightarrow R, \quad ((p, f), (p', f')) \mapsto f(p') + \epsilon \cdot f'(p);$$

 $\mu \colon P \oplus P^* \rightarrow Q_{\epsilon}(R), \quad (x, f) \mapsto [f(p)].$

 We call two non-singular (-1)^k-quadratic forms (P, ψ) and (P', ψ') equivalent if and only if there exists a finitely generated projective *R*-modules *Q* and *Q'* and and an isomorphism of non-singular ε-quadratic forms

$$(P,\psi)\oplus H_{\epsilon}(Q)\cong (P',\psi')\oplus H_{\epsilon}(Q').$$

Definition (Quadratic *L*-groups in even dimensions)

Define the abelian group $L_{2k}^{p}(R)$ called the projective 2*k*-th quadratic *L*-group to be the abelian group of equivalence classes $[(P, \psi)]$ of non-singular $(-1)^{k}$ -quadratic forms (P, ψ)

- Addition is given by the sum of two ε-quadratic forms. The zero element is represented by [*H*_ε(*Q*] for any finitely generated projective *R*-module *Q*. The inverse of [(*P*, ψ)] is given by [(*P*, -ψ)].
- If one takes P, P', Q and Q' above to be finitely generated free, one obtains the 2k-th quadratic L-group L^h_{2k}(R).

W. Browder.

Surgery on simply-connected manifolds. Springer-Verlag, New York, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65.

D. Crowley, W. Lück, and T. Macko. Surgery Theory: Foundations. book, in preparation, 2019.

📑 A. A. Ranicki.

Algebraic and geometric surgery.

Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford, 2002. Oxford Science Publications.

C. T. C. Wall.

Surgery on compact manifolds, volume 69 of Mathematical Surveys and Monographs.

American Mathematical Society, Providence, RI, second edition, 1999.

Edited and with a foreword by A. A. Ranicki.