Invariants of knots and 3-manifolds: Survey on 3-manifolds

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://131.220.77.52/lueck/

Bonn, 10. & 12. April 2018

Tentative plan of the course

title	date	lecturer
Introduction to 3-manifolds I & II	April, 10 & 12	Lück
Cobordism theory and the	April, 17	Lück
s-cobordism theorem		
Introduction to Surgery theory	April 19	Lück
L ² -Betti numbers	April, 24 & 26	Lück
Introduction to Knots and Links	May 3	Teichner
Knot invariants I	May, 8	Teichner
Knot invariants II	May,15	Teichner
Introduction to knot concordance I	May, 17	Teichner
Whitehead torsion and L^2 -torsion I	May 29th	Lück
L^2 -signatures I	June 5	Teichner
tba	June, 7	tba

title	date	lecturer
Whitehead torsion and L^2 -torsion II	June, 12	Lück
L^2 -invariants und 3-manifolds I	June, 14	Lück
L^2 -invariants und 3-manifolds II	June, 19	Lück
L^2 -signatures II	June, 21	Teichner
L^2 -signatures as knot concordance	June, 26 & 28	Teichner
invariants I & II		
tba	July, 3	tba
Further aspects of L^2 -invariants	July 10	Lück
tba	July 12	Teichner
Open problems in low-dimensional topology	July 17 & 19	Teichner

- No talks on May 1, May 10, May 22, May 24, May 31, July 5.
- On demand there can be a discussion session at the end of the Thursday lecture.

Outline

- We give an introduction and survey about 3-manifolds.
- We cover the following topics:
 - Review of surfaces
 - Prime decomposition and the Kneser Conjecture
 - Jaco-Shalen-Johannsen splitting
 - Thurston's Geometrization Conjecture
 - Fibering 3-manifolds
 - Fundamental groups of 3-manifolds

Some basic facts surfaces

- Surface will mean compact, connected, orientable 2-dimensional manifold possibly with boundary.
- Every surface has a preferred structure of a PL-manifold or smooth manifold which is unique up to PL-homeomorphism or diffeomorphism.
- Every surface is homeomorphic to the standard model F_g^d , which is obtained from S^2 by deleting the interior of d embedded D^2 and taking the connected sum with g-copies of $S^1 \times S^1$.
- The standard models F_g^d and $F_{g'}^{d'}$ are homeomorphic if and only if g=g' and d=d' holds.
- Any homotopy equivalence of closed surfaces is homotopic to a homeomorphism.

- The following assertions for two closed surfaces M and N are equivalent:
 - M and N are homeomorphic;
 - $\pi_1(M) \cong \pi_1(N)$;
 - $H_1(M) \cong H_1(N)$;
 - $\bullet \ \chi(M) = \chi(N).$
- A closed surface admits a complete Riemannian metric with constant sectional curvature 1, 0 or -1 depending on whether its genus g is 0,1 or \geq 2. For -1 there are infinitely many such structures on a given surface of genus \geq 2.
- A closed surface is either simply connected or aspherical.
- A simply connected closed surface is homeomorphic to S^2 .
- A closed surface carries a non-trivial S¹-action if and only if it is S² or T².

- The fundamental group of a compact surface F_g^d is explicitly known.
- ullet The fundamental group of a compact surface F_g^d has the following properties
 - It is either trivial, \mathbb{Z}^2 , a finitely generated one-relator group, or a finitely generated free group;
 - It is residually finite;
 - Its abelianization is a finitely generated free abelian group;
 - It has a solvable word problem, conjugacy problem and isomorphism problem.

Question

Which of these properties carry over to 3-manifolds?

Unique smooth or PL-structures on 3-manifolds

- 3-manifold will mean compact, connected, orientable
 3-dimensional manifold possibly with boundary.
- Every 3-manifold has a preferred structure of a PL-manifold or smooth manifold which is unique up to PL-homeomorphism or diffeomorphism.
- ullet This is not true in general for closed manifolds of dimension \geq 4.

Prime decomposition and the Kneser Conjecture

• Recall the connected sum of compact, connected, orientable n-dimensional manifolds $M_0 \sharp M_1$ and the fact that $M \sharp S^n$ is homeomorphic to M.

Definition (prime)

A 3-manifold M is called prime if for any decomposition as a connected sum $M_0 \sharp M_1$ one of the summands M_0 or M_1 is homeomorphic to S^3 .

Theorem (Prime decomposition)

Every 3-manifold M, which is not homeomorphic to S^3 , possesses a prime decomposition

$$M \cong M_1 \sharp M_2 \sharp \cdots \sharp M_r$$

where each M_i is prime and not homeomorphic to S^3 . This decomposition is unique up to permutation of the summands and

Definition (incompressible)

Given a 3-manifold M, a compact connected orientable surface F which is properly embedded in M, i.e., $\partial M \cap F = \partial F$, or embedded in ∂M , is called incompressible if the following holds:

- The inclusion $F \rightarrow M$ induces an injection on the fundamental groups;
- F is not homeomorphic to S^2 ;
- If $F = D^2$, we do not have $F \subseteq \partial M$ and there is no embedded $D^3 \subseteq M$ with $\partial D^3 \subseteq D^2 \cup \partial M$.

One says that ∂M is incompressible in M if and only if ∂M is empty or any component C of ∂M is incompressible in the sense above.

• $\partial M \subseteq M$ is incompressible if for every component C the inclusion induces an injection $\pi_1(C) \to \pi_1(M)$ and C is not homeomorphic to S^2 .

Theorem (The Kneser Conjecture is true)

Let M be a compact 3-manifold with incompressible boundary. Suppose that there are groups G_0 and G_1 together with an isomorphism $\alpha \colon G_0 \ast G_1 \xrightarrow{\cong} \pi_1(M)$.

Then there are 3-manifolds M_0 and M_1 coming with isomorphisms $u_i \colon G_i \xrightarrow{\cong} \pi_1(M_i)$ and a homeomorphism

$$h: M_0 \sharp M_1 \xrightarrow{\cong} M$$

such that the following diagram of group isomorphisms commutes up to inner automorphisms

Definition (irreducible)

A 3-manifold is called irreducible if every embedded two-sphere $S^2 \subseteq M$ bounds an embedded disk $D^3 \subseteq M$.

Theorem

A prime 3-manifold M is either homeomorphic to $S^1 \times S^2$ or is irreducible.

Theorem (Knot complement)

The complement of a non-trivial knot in S^3 is an irreducible 3-manifold with incompressible toroidal boundary.

The Sphere and the Loop Theorem

Theorem (Sphere Theorem)

Let M be a 3-manifold. Let $N \subseteq \pi_2(M)$ be a $\pi_1(M)$ -invariant subgroup of $\pi_2(M)$ with $\pi_2(M) \setminus N \neq \emptyset$.

Then there exists an embedding $g: S^2 \to M$ such that $[g] \in \pi_2(M) \setminus N$.

- Notice that $[g] \neq 0$.
- However, the Sphere Theorem does not say that one can realize a given element $u \in \pi_2(M) \setminus N$ to be u = [g].

Corollary

An irreducible 3-manifold is aspherical if and only if it is homeomorphic to D^3 or its fundamental group is infinite.

Theorem (Loop Theorem)

Let M be a 3-manifold and let $F \subseteq \partial M$ be an embedded connected surface. Let $N \subseteq \pi_1(F)$ be a normal subgroup such that $\ker(\pi_1(F) \to \pi_1(M)) \setminus N \neq \emptyset$.

Then there exists a proper embedding $(D^2, S^1) \to (M, F)$ such that $[g|_{S^1}]$ is contained in $\ker(\pi_1(F) \to \pi_1(M)) \setminus N$

- Notice that $[g] \neq 0$.
- However, the Loop Theorem does not say that one can realize a given element $u \in \ker(\pi_1(F) \to \pi_1(M)) \setminus N$ to be u = [g].

Haken manifolds

Definition (Haken manifold)

An irreducible 3-manifold is Haken if it contains an incompressible embedded surface.

Lemma

If the first Betti number $b_1(M)$ is non-zero, which is implied if ∂M contains a surface other than S^2 , and M is irreducible, then M is Haken.

 A lot of conjectures for 3-manifolds could be proved for Haken manifolds first using an inductive procedure which is based on cutting a Haken manifold into pieces of smaller complexity using the incompressible surface.

Conjecture (Waldhausen's Virtually Haken Conjecture)

Every irreducible 3-manifold with infinite fundamental group has a finite covering which is a Haken manifold.

Theorem (Agol, [1])

The Virtually Haken Conjecture is true.

 Agol shows that there is a finite covering with non-trivial first Betti number.

Seifert and hyperbolic 3-manifolds

 We use the definition of Seifert manifold given in the survey article by Scott [8], which we recommend as a reference on Seifert manifolds besides the book of Hempel [4].

Lemma

If a 3-manifold M has infinite fundamental group and empty or incompressible boundary, then it is Seifert if and only if it admits a finite covering \overline{M} which is the total space of a S^1 -principal bundle over a compact orientable surface.

Theorem (Gabai [3])

An irreducible 3-manifold M with infinite fundamental group π is Seifert if and only if π contains a normal infinite cyclic subgroup.

Definition (Hyperbolic)

A compact manifold (possible with boundary) is called hyperbolic if its interior admits a complete Riemannian metric whose sectional curvature is constant -1.

Lemma

Let M be a hyperbolic 3-manifold. Then its interior has finite volume if and only if ∂M is empty or a disjoint union of incompressible tori.

Geometries

Definition (Geometry)

A geometry on a 3-manifold M is a complete locally homogeneous Riemannian metric on its interior.

- Locally homogeneous means that for any two points there exist open neighbourhoods which are isometrically diffeomorphic.
- The universal cover of the interior has a complete homogeneous Riemannian metric, meaning that the isometry group acts transitively. This action is automatically proper.
- Thurston has shown that there are precisely eight maximal simply connected 3-dimensional geometries having compact quotients, which often come from left invariant Riemannian metrics on connected Lie groups.

- S^3 , Isom(S^3) = O(4);
- \mathbb{R}^3 , $1 \to \mathbb{R}^3 \to \text{Isom}(\mathbb{R}^3) \to O(3) \to 1$;
- $S^2 \times \mathbb{R}$, $Isom(S^2 \times \mathbb{R}) = Isom(S^2) \times Isom(\mathbb{R})$;
- $\mathbb{H}^2 \times \mathbb{R}$, $Isom(\mathbb{H}^2 \times \mathbb{R}) = Isom(\mathbb{H}^2) \times Isom(\mathbb{R})$;
- $\bullet \ \ \widetilde{SL_2(\mathbb{R})}, \ 1 \to \mathbb{R} \to Isom(\widetilde{SL_2(\mathbb{R})}) \to PSL_2(\mathbb{R}) \to 1;$
- $\bullet \ \mathsf{Nil} := \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}, \ 1 \to \mathbb{R} \to \mathsf{Isom}(\mathsf{Nil}) \to \mathsf{Isom}(\mathbb{R}^2) \to 1;$
- $\bullet \; \mathsf{Sol} := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}; \; 1 \to \mathsf{Sol} \to \mathsf{Isom}(\mathsf{Sol}) \to D_{2\cdot 4} \to 1;$
- \mathbb{H}^3 , $Isom(\mathbb{H}^3) = PSL_2(\mathbb{C})$.

- A geometry on a 3-manifold M modelled on S^3 , IR^3 or \mathbb{H}^3 is the same as a complete Riemannian metric on the interior of constant section curvature with value 1, 0 or -1.
- If a closed 3-manifold admits a geometric structure modelled on one of these eight geometries, then the geometry involved is unique.
- The geometric structure on a fixed 3-manifold is in general not unique. For instance, one can scale the standard flat Riemannian metric on the torus T³ by a real number and just gets a new geometry with different volume which of course still is a R³-geometry.

Theorem (Mostow Rigidity)

Let M and N be two hyperbolic n-manifolds with finite volume for $n \geq 3$. Then for any isomorphism $\alpha \colon \pi_1(M) \xrightarrow{\cong} \pi_1(N)$ there exists an isometric diffeomorphism $f \colon M \to N$ such that up to inner automorphism $\pi_1(f) = \alpha$ holds.

This is not true in dimension 2, see Teichmüller space.

• A 3-manifold is a Seifert manifold if and only if it carries one of the geometries $S^2 \times \mathbb{R}$, \mathbb{R}^3 , $H^2 \times \mathbb{R}$, S^3 , Nil, or $SL_2(\mathbb{R})$. In terms of the Euler class e of the Seifert bundle and the Euler characteristic χ of the base orbifold, the geometric structure of a closed Seifert manifold M is determined as follows

$$\begin{array}{c|cccc} & \chi > 0 & \chi = 0 & \chi < 0 \\ \hline e = 0 & S^2 \times \mathbb{R} & \mathbb{R}^3 & H^2 \times \mathbb{R} \\ e \neq 0 & S^3 & \text{Nil} & \widetilde{\text{SL}_2(\mathbb{R})} \end{array}$$

- Let M be a prime 3-manifold with empty boundary or incompressible boundary. Then it is a Seifert manifold if and only if it is finitely covered by the total space \overline{M} of an principal S^1 -bundle $S^1 \to \overline{M} \to F$ over a surface F.
- Moreover, e(M) = 0 if and only if this S^1 -principal bundle is trivial, and the Euler characteristic χ of the base orbifold of M is negative, zero or positive according to the same condition for $\chi(F)$.
- The boundary of a Seifert manifold is incompressible unless M is homeomorphic to $S^1 \times D^2$.
- A Seifert manifold is prime unless it is $\mathbb{RP}^3 \sharp \mathbb{RP}^3$.
- Let *M* be a Seifert manifold with finite fundamental group. Then *M* is closed and carries a *S*³-geometry.

- A 3-manifold admits an S¹-foliation if and only if it is a Seifert manifold.
- Every S^1 -action on a hyperbolic closed 3-manifold is trivial.
- A 3-manifold carries a Sol-structure if and only if it is finitely covered by the total space E of a locally trivial fiber bundle T² → E → S¹ with hyperbolic glueing map T² → T², where hyperbolic is equivalent to the condition that the absolute value of the trace of the automorphism of H₁(T²) is greater or equal to 3.

The JSJ-splitting

Theorem (Jaco-Shalen [5], Johannson [6])

Let M be an irreducible 3-manifold M with incompressible boundary.

- There is a finite family of disjoint, pairwise-nonisotopic incompressible tori in M which are not isotopic to boundary components and which split M into pieces that are Seifert manifolds or are geometrically atoroidal, i.e., they admit no embedded incompressible torus (except possibly parallel to the boundary).
- A minimal family of such tori is unique up to isotopy.

Definition (Toral splitting or JSJ-decomposition)

We will say that the minimal family of such tori gives a toral splitting or a JSJ-decomposition.

We call the toral splitting a geometric toral splitting if the geometrically atoroidal pieces which do not admit a Seifert structure are hyperbolic.

Thurston's Geometrization Conjecture

Conjecture (Thurston's Geometrization Conjecture)

- An irreducible 3-manifold with infinite fundamental group has a geometric toral splitting;
- For a closed 3-manifold with finite fundamental group, its universal covering is homeomorphic to S³, the fundamental group of M is a subgroup of SO(4) and the action of it on the universal covering is conjugated by a homeomorphism to the restriction of the obvious SO(4)-action on S³.

Theorem (Perelmann, see Morgan-Tian [7])

Thurston's Geometrization Conjecture is true.

- Thurston's Geometrization Conjecture implies the 3-dimensional Poincaré Conjecture.
- Thurston's Geometrization Conjecture implies:
 - The fundamental group of a 3-manifold M is residually finite,
 Hopfian and has a solvable word, conjugacy and membership problem.
 - If M is closed, $\pi_1(M)$ has a solvable isomorphism problem.
 - Every closed 3-manifold has a solvable homeomorphism problem.
- Thanks to the proof of the Geometrization Conjecture, there is a complete list of those finite groups which occur as fundamental groups of closed 3-manifolds. They all are subgroups of SO(4).
- Recall that, for every $n \ge 4$ and any finitely presented group G, there exists a closed n-dimensional smooth manifold M with $\pi_1(M) \cong G$.

- Thurston's Geometrization Conjecture implies the Borel Conjecture in dimension 3 stating that every homotopy equivalence of aspherical closed 3-manifolds is homotopic to a homeomorphism.
- There are irreducible 3-manifolds with finite fundamental group which are homotopy equivalent but not homeomorphic, namely the lens spaces L(7; 1, 1) and L(7; 1, 2).
- Thurston's Geometrization Conjecture is needed in the proof of the Full Farrell-Jones Conjecture for the fundamental group of a (not necessarily compact) 3-manifold (possibly with boundary).

- Thurston's Geometrization Conjecture is needed in the complete calculation of the L²-invariants of the universal covering of a 3-manifold.
- These calculations and calculations of other invariants follow the following pattern:
 - Use the prime decomposition to reduce it to irreducible manifolds.
 - Use the Thurston Geometrization Conjecture and glueing formulas to reduce it to Seifert manifolds or hyperbolic manifolds.
 - Treat Seifert manifolds with topological methods.
 - Treat hyperbolic manifolds with analytic methods.

Fibering

Theorem (Stallings [9])

The following assertions are equivalent for an irreducible 3-manifold M and an exact sequence $1 \to K \to \pi_1(M) \to \mathbb{Z} \to 1$:

- K is finitely generated;
- K is the fundamental group of a surface F;
- There is a locally trivial fiber bundle $F \to M \to S^1$ with a surface F as fiber such that the induced sequence

$$1 \rightarrow \pi_1(F) \rightarrow \pi_1(E) \rightarrow \pi_1(S^1) \rightarrow 1$$

can be identified with the given sequence.

Conjecture (Thurston's Virtual Fibering Conjecture)

Let M be a closed hyperbolic 3-manifold. Then a finite covering of M fibers over S^1 , i.e., is the total space of a surface bundle over S^1 .

- A locally compact surface bundle $F \to E \to S^1$ is the same as a selfhomeomorphism of the surface F by the mapping torus construction.
- Two surface homeomorphisms are isotopic if and only if they induce the same automorphism on $\pi_1(F)$ up to inner automorphisms.
- Therefore mapping class groups play an important role for 3-manifolds.

Theorem (Agol, [1])

The Virtually Fibering Conjecture is true.

Definition (Graph manifold)

An irreducible 3-manifold is called graph manifold if its JSJ-splitting contains no hyperbolic pieces.

- There are aspherical closed graph manifolds which do not virtually fiber over S¹.
- There are closed graph manifolds, which are aspherical, but do not admit a Riemannian metric of non-positive sectional curvature.
- Agol proved the Virtually Fibering Conjecture for any irreducible manifold with infinite fundamental group and empty or incompressible toral boundary which is not a closed graph manifold.

• Actually, Agol, based on work of Wise, showed much more, namely that the fundamental group of a hyperbolic 3-manifold is virtually compact special. This implies in particular that they occur as subgroups of RAAG-s (right Artin angled groups) and that they are linear over ℤ and LERF (locally extended residually finite). For the definition of these notions and much more information we refer for instance to Aschenbrenner-Friedl-Wilton [2].

On the fundamental groups of 3-manifolds

- The fundamental group plays a dominant role for 3-manifolds what we want to illustrate by many examples and theorems.
- A 3-manifold is prime if and only if $\pi_1(M)$ is prime in the sense that $\pi_1(M) \cong G_0 * G_1$ implies that G_0 or G_1 are trivial.
- A 3-manifold is irreducible if and only if $\pi_1(M)$ is prime and $\pi_1(M)$ is not infinite cyclic.
- A 3-manifold is aspherical if and only if its fundamental group is infinite, prime and not cyclic.
- A 3-manifold has infinite cyclic fundamental group if and only if it is homeomorphic to $S^1 \times S^2$.

- Let *M* and *N* be two prime closed 3-manifolds whose fundamental groups are infinite. Then:
 - M and N are homeomorphic if and only if $\pi_1(M)$ and $\pi_1(N)$ are isomorphic.
 - Any isomorphism $\pi_1(M) \xrightarrow{\cong} \pi_1(N)$ is induced by a homeomorphism.
- Let M be a closed irreducible 3-manifold with infinite fundamental group. Then M is hyperbolic if and only if $\pi_1(M)$ does not contain $\mathbb{Z} \oplus \mathbb{Z}$ as subgroup.
- Let M be a closed irreducible 3-manifold with infinite fundamental group. Then M is a Seifert manifold if and only if $\pi_1(M)$ contains a normal infinite subgroup.

- A closed Seifert 3-manifold carries precisely one geometry and one can read off from $\pi_1(M)$ which one it is:
 - S^3 $\pi_1(M)$ is finite.
 - \mathbb{R}^3 $\pi_1(M)$ contains \mathbb{Z}^3 as subgroup of finite index.
 - $S^2 \times \mathbb{R}$; $\pi_1(M)$ is virtually cyclic.
 - $\mathbb{H}^2 \times \mathbb{R}$ $\pi_1(M)$ contains a subgroup of finite index which is isomorphic to $\mathbb{Z} \times \pi_1(F)$ for some closed surface F of genus 2.
 - $\overline{\mathsf{SL}_2(\mathbb{R})}$; $\pi_1(M)$ contains a subgroup of finite index G which can be written as a non-trivial central extension $1 \to \mathbb{Z} \to G \to \pi_1(F) \to 1$ for a surface F of genus > 2.
 - NiI $\pi_1(M)$ contains a subgroup of finite index G which can be written as a non-trivial central extension $1 \to \mathbb{Z} \to G \to \mathbb{Z}^2 \to 1$.

Definition (deficiency)

The deficiency of a finite presentation $\langle g_1, \ldots, g_m \mid r_1, \ldots, r_n \rangle$ of a group G is defined to be m-n.

The deficiency of a finitely presented group is defined to be the supremum of the deficiencies of all its finite presentations.

Lemma

Let M be an irreducible 3-manifold. If its boundary is empty, its deficiency is 0. If its boundary is non-empty, its deficiency is $1 - \chi(M)$.

- We have already mentioned the following facts:
 - The fundamental group of a 3-manifold is residually finite, Hopfian and has a solvable word and conjugacy problem.
 - If M is closed, $\pi_1(M)$ has a solvable isomorphism problem.
 - There is a complete list of those finite groups which occur as fundamental groups of closed 3-manifolds. They all are subgroups of SO(4).
 - The fundamental group of a hyperbolic 3-manifold is virtually compact special and linear over \mathbb{Z} .

Some open problems

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

- G is of type FP;
- $H^{i}(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Conjecture (Wall)

Every Poincaré duality group is the fundamental group of an aspherical closed manifold.

Conjecture (Cannon's Conjecture in the torsionfree case)

A torsionfree hyperbolic group G has S^2 as boundary if and only if it is the fundamental group of a closed hyperbolic 3-manifold.

Conjecture (Bergeron-Venkatesh)

Suppose that M is a closed hyperbolic 3-manifold. Let

$$\pi_1(M) = G_0 \supseteq G_1 \supseteq G_2 \supseteq$$

be a nested sequence of normal subgroups G_i of finite index of $\pi_1(M)$ with $\bigcap_i G_i = \{1\}$. Let $M_i \to M$ be the finite covering associated to $G_i \subseteq \pi_1(M)$.

Then

$$\lim_{i\to\infty} \frac{\ln\left(\left|\operatorname{tors}(H_1(G_i))\right|\right)}{\left[G:G_i\right]} = \frac{1}{6\pi} \cdot \operatorname{vol}(M).$$

Questions (Aschenbrenner-Friedl-Wilton [2])

Let M be an aspherical 3-manifold with empty or toroidal boundary with fundamental group $G = \pi_1(M)$, which does not admit a non-positively curved metric.

- **1** Is G linear over \mathbb{C} ?
- 2 Is G linear over \mathbb{Z} ?
- If G is not solvable, does it have a subgroup of finite index which is for every prime p residually finite of p-power?
- Is G virtually bi-orderable?
- Does G satisfy the Atiyah Conjecture about the integrality of the L²-Betti numbers of universal coverings of closed Riemann manifolds of any dimension and fundamental group G?
- **1** Is the group ring $\mathbb{Z}G$ a domain?

Questions

- Does the isomorphism problem has a solution for the fundamental groups of (not necessarily closed) 3-manifolds?
- Does the homeomorphism problem has a solution for (not necessarily closed) 3-manifolds?

l. Agol.

The virtual Haken conjecture.

Doc. Math., 18:1045-1087, 2013.

With an appendix by Agol, Groves, and Manning.

M. Aschenbrenner, S. Friedl, and H. Wilton. 3-manifold groups.

Zürich: European Mathematical Society (EMS), 2015.

D. Gabai.

Convergence groups are Fuchsian groups.

Bull. Amer. Math. Soc. (N.S.), 25(2):395-402, 1991.

J. Hempel.

3-Manifolds.

Princeton University Press, Princeton, N. J., 1976. Ann. of Math. Studies, No. 86.

W. H. Jaco and P. B. Shalen.

Seifert fibered spaces in 3-manifolds.

Mem. Amer. Math. Soc., 21(220):viii+192, 1979.

K. Johannson.

Homotopy equivalences of 3-manifolds with boundaries. Springer-Verlag, Berlin, 1979.

J. Morgan and G. Tian.

The geometrization conjecture, volume 5 of Clay Mathematics Monographs.

American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014.

P. Scott.

The geometries of 3-manifolds.

Bull. London Math. Soc., 15(5):401-487, 1983.

J. Stallings.

On fibering certain 3-manifolds.

In *Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)*, pages 95–100. Prentice-Hall, Englewood Cliffs, N.J., 1962.