Introduction to 3-manifolds

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://www.him.uni-bonn.de/lueck/

Matrix Inst., Creswick, Australia

- We give an introduction and survey about 3-manifolds.
- We cover the following topics:
 - Review of surfaces
 - Prime decomposition and the Kneser Conjecture
 - Jaco-Shalen-Johannsen splitting
 - Thurston's Geometrization Conjecture
 - Fibering 3-manifolds
 - Fundamental groups of 3-manifolds

• Surface will mean compact, connected, orientable 2-dimensional manifold possibly with boundary.

- Every surface has a preferred structure of a PL-manifold or smooth manifold which is unique up to PL-homeomorphism or diffeomorphism.
- Every surface is homeomorphic to the standard model F_g^d , which is obtained from S^2 by deleting the interior of d embedded D^2 and taking the connected sum with g-copies of $S^1 \times S^1$.
- The standard models F_g^d and $F_{g'}^{d'}$ are homeomorphic if and only if g = g' and d = d' holds.
- Any homotopy equivalence of closed surfaces is homotopic to a homeomorphism.

- The following assertions for two closed surfaces *M* and *N* are equivalent:
 - *M* and *N* are homeomorphic;
 - $\pi_1(M) \cong \pi_1(N);$
 - $H_1(M) \cong H_1(N);$
 - $\chi(M) = \chi(N)$.
- A closed surface admits a complete Riemannian metric with constant sectional curvature 1, 0 or −1 depending on whether its genus g is 0,1 or ≥ 2. For −1 there are infinitely many such structures on a given surface of genus ≥ 2.
- A closed surface is either simply connected or aspherical.
- A simply connected closed surface is homeomorphic to S^2 .
- A closed surface carries a non-trivial S¹-action if and only if it is S² or T².

Wolfgang Lück (MI, Bonn)

3-manifolds

- The fundamental group of a compact surface F_g^d is explicitly known.
- The fundamental group of a compact surface F_g^d has the following properties
 - It is either trivial, \mathbb{Z}^2 , a finitely generated one-relator group, or a finitely generated free group;
 - It is residually finite;
 - Its abelianization is a finitely generated free abelian group;
 - It has a solvable word problem, conjugacy problem and isomorphism problem.

Question

Which of these properties carry over to 3-manifolds?

- 3-manifold will mean compact, connected, orientable 3-dimensional manifold possibly with boundary. We also exclude $I \times F$ for some surface F.
- Every 3-manifold has a preferred structure of a PL-manifold or smooth manifold which is unique up to PL-homeomorphism or diffeomorphism.
- This is not true in general for closed manifolds of dimension \geq 4.

Definition (Prime)

A 3-manifold *M* is called prime if for any decomposition as a connected sum $M_0 \# M_1$ one of the summands M_0 or M_1 is homeomorphic to S^3 .

Theorem (Prime decomposition)

Every 3-manifold M, which is not homeomorphic to S^3 , possesses a prime decomposition

 $M\cong M_1\sharp M_2\sharp\cdots \sharp M_r$

where each M_i is prime and not homeomorphic to S^3 . This decomposition is unique up to permutation of the summands and homeomorphism.

Definition (Incompressible)

Given a 3-manifold *M*, a compact connected orientable surface *F* which is properly embedded in *M*, i.e., $\partial M \cap F = \partial F$, or embedded in ∂M , is called incompressible if the following holds:

- The inclusion *F* → *M* induces an injection on the fundamental groups;
- *F* is not homeomorphic to S^2 ;
- If $F = D^2$, we do not have $F \subseteq \partial M$ and there is no embedded $D^3 \subseteq M$ with $\partial D^3 \subseteq D^2 \cup \partial M$.

One says that ∂M is incompressible in M if and only if ∂M is empty or any component C of ∂M is incompressible in the sense above.

• $\partial M \subseteq M$ is incompressible if for every component *C* the inclusion induces an injection $\pi_1(C) \to \pi_1(M)$ and *C* is not homeomorphic to S^2 .

Theorem (The Kneser Conjecture is true)

Let *M* be a compact 3-manifold with incompressible boundary. Suppose that there are groups G_0 and G_1 together with an isomorphism $\alpha \colon G_0 * G_1 \xrightarrow{\cong} \pi_1(M)$.

Then there are 3-manifolds M_0 and M_1 coming with isomorphisms $u_i : G_i \xrightarrow{\cong} \pi_1(M_i)$ and a homeomorphism

$$h: M_0 \sharp M_1 \xrightarrow{\cong} M$$

such that the following diagram of group isomorphisms commutes up to inner automorphisms

Definition (Irreducible)

A 3-manifold is called irreducible if every embedded two-sphere $S^2 \subseteq M$ bounds an embedded disk $D^3 \subseteq M$.

Theorem (Prime versus irreducible)

A prime 3-manifold M is either homeomorphic to $S^1 \times S^2$ or is irreducible.

Theorem (Knot complement)

The complement of a non-trivial knot in S^3 is an irreducible 3-manifold with incompressible toroidal boundary.

Theorem (Aspherical irreducible manifolds)

An irreducible 3-manifold is aspherical if and only if it is homeomorphic to D^3 or its fundamental group is infinite.

Wolfgang Lück (MI, Bonn)

3-manifolds

Definition (Haken manifold)

An irreducible 3-manifold is Haken if it contains an incompressible embedded surface.

Lemma

If the first Betti number $b_1(M)$ is non-zero, which is implied if ∂M contains a surface other than S^2 , and M is irreducible, then M is Haken.

 A lot of conjectures for 3-manifolds could be proved for Haken manifolds first using an inductive procedure which is based on cutting a Haken manifold into pieces of smaller complexity using the incompressible surface.

Conjecture (Waldhausen's Virtually Haken Conjecture)

Every irreducible 3-manifold with infinite fundamental group has a finite covering which is a Haken manifold.

Theorem (Agol, [1])

The Virtually Haken Conjecture is true.

• Agol shows that there is a finite covering with non-trivial first Betti number.

Seifert and hyperbolic 3-manifolds

• We use the definition of a Seifert manifold given in the survey article by Scott [8], which we recommend as a reference on Seifert manifolds besides the book of Hempel [4].

Lemma

If a 3-manifold M has infinite fundamental group and empty or incompressible boundary, then it is Seifert if and only if it admits a finite covering \overline{M} which is the total space of a S¹-principal bundle over a compact orientable surface.

Theorem (Gabai [3])

An irreducible 3-manifold M with infinite fundamental group π is Seifert if and only if π contains a normal infinite cyclic subgroup.

Wolfgang Lück (MI, Bonn)

Definition (Hyperbolic)

A compact manifold (possible with boundary) is called hyperbolic if its interior admits a complete Riemannian metric whose sectional curvature is constant -1.

Lemma

Let M be a hyperbolic 3-manifold. Then its interior has finite volume if and only if ∂M is empty or a disjoint union of incompressible tori.

Definition (Geometry)

A geometry on a 3-manifold M is a complete locally homogeneous Riemannian metric on its interior.

- Locally homogeneous means that for any two points there exist open neighbourhoods which are isometrically diffeomorphic.
- The universal cover of the interior has a complete homogeneous Riemannian metric, meaning that the isometry group acts transitively. This action is automatically proper.
- Thurston has shown that there are precisely eight maximal simply connected 3-dimensional geometries having compact quotients, which often come from left invariant Riemannian metrics on connected Lie groups.

Wolfgang Lück (MI, Bonn)

•
$$S^3$$
, $\operatorname{Isom}(S^3) = O(4)$;
• \mathbb{R}^3 , $1 \to \mathbb{R}^3 \to \operatorname{Isom}(\mathbb{R}^3) \to O(3) \to 1$;
• $S^2 \times \mathbb{R}$, $\operatorname{Isom}(S^2 \times \mathbb{R}) = \operatorname{Isom}(S^2) \times \operatorname{Isom}(\mathbb{R})$;
• $\mathbb{H}^2 \times \mathbb{R}$, $\operatorname{Isom}(\mathbb{H}^2 \times \mathbb{R}) = \operatorname{Isom}(\mathbb{H}^2) \times \operatorname{Isom}(\mathbb{R})$;
• $\widetilde{\operatorname{SL}_2(\mathbb{R})}$, $1 \to \mathbb{R} \to \operatorname{Isom}(\widetilde{\operatorname{SL}_2(\mathbb{R})}) \to \operatorname{PSL}_2(\mathbb{R}) \to 1$;
• $\operatorname{Nil} := \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}$, $1 \to \mathbb{R} \to \operatorname{Isom}(\operatorname{Nil}) \to \operatorname{Isom}(\mathbb{R}^2) \to 1$;
• $\operatorname{Sol} := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$; $1 \to \operatorname{Sol} \to \operatorname{Isom}(\operatorname{Sol}) \to D_{2\cdot 4} \to 1$;
• \mathbb{H}^3 , $\operatorname{Isom}(\mathbb{H}^3) = \operatorname{PSL}_2(\mathbb{C})$.

- A geometry on a 3-manifold *M* modelled on S³, *IR*³ or ℍ³ is the same as a complete Riemannian metric on the interior of constant section curvature with value 1, 0 or −1.
- If a closed 3-manifold admits a geometric structure modelled on one of these eight geometries, then the geometry involved is unique.
- The geometric structure on a fixed 3-manifold is in general not unique. For instance, one can scale the standard flat Riemannian metric on the torus T³ by a real number and just gets a new geometry with different volume which of course still is a R³-geometry.

Theorem (Mostow Rigidity)

Let M and N be two hyperbolic n-manifolds with finite volume for $n \ge 3$. Then for any isomorphism $\alpha \colon \pi_1(M) \xrightarrow{\cong} \pi_1(N)$ there exists an isometric diffeomorphism $f \colon M \to N$ such that up to inner automorphism $\pi_1(f) = \alpha$ holds.

• This is not true in dimension 2, see Teichmüller space.

A 3-manifold is a Seifert manifold if and only if it carries one of the geometries S² × ℝ, ℝ³, H² × ℝ, S³, Nil, or SL₂(ℝ). In terms of the Euler class *e* of the Seifert bundle and the Euler characteristic χ of the base orbifold, the geometric structure of a closed Seifert manifold *M* is determined as follows

$$\begin{array}{c|ccc} \chi > 0 & \chi = 0 & \chi < 0 \\ \hline e = 0 & S^2 \times \mathbb{R} & \mathbb{R}^3 & H^2 \times \mathbb{R} \\ e \neq 0 & S^3 & \text{Nil} & \widetilde{\text{SL}_2(\mathbb{R})} \end{array}$$

Theorem (Jaco-Shalen [5], Johannson [6])

Let M be an irreducible 3-manifold M with incompressible boundary.

There is a finite family of disjoint, pairwise-nonisotopic incompressible tori in M which are not isotopic to boundary components and which split M into pieces that are Seifert manifolds or are geometrically atoroidal, i.e., they admit no embedded incompressible torus (except possibly parallel to the boundary).

A minimal family of such tori is unique up to isotopy.

Definition (Toral splitting or JSJ-decomposition)

We will say that the minimal family of such tori gives a toral splitting or a JSJ-decomposition.

We call the toral splitting a geometric toral splitting if the geometrically atoroidal pieces which do not admit a Seifert structure are hyperbolic.

Conjecture (Thurston's Geometrization Conjecture)

- An irreducible 3-manifold with infinite fundamental group has a geometric toral splitting;
- For a closed 3-manifold with finite fundamental group, its universal covering is homeomorphic to S³, the fundamental group of M is a subgroup of SO(4) and the action of it on the universal covering is conjugated by a homeomorphism to the restriction of the obvious SO(4)-action on S³.

Theorem (Perelmann, see Morgan-Tian [7])

Thurston's Geometrization Conjecture is true.

- Thurston's Geometrization Conjecture implies the 3-dimensional Poincaré Conjecture.
- Thurston's Geometrization Conjecture implies:
 - The fundamental group of a 3-manifold *M* is residually finite, Hopfian and has a solvable word, conjugacy and membership problem.
 - If M is closed, $\pi_1(M)$ has a solvable isomorphism problem.
 - Every closed 3-manifold has a solvable homeomorphism problem.
- Thanks to the proof of the Geometrization Conjecture, there is a complete list of those finite groups which occur as fundamental groups of closed 3-manifolds. They all are subgroups of *SO*(4).
- Recall that, for every n ≥ 4 and any finitely presented group G, there exists a closed n-dimensional smooth manifold M with π₁(M) ≅ G.

- Thurston's Geometrization Conjecture implies the Borel Conjecture in dimension 3 stating that every homotopy equivalence of aspherical closed 3-manifolds is homotopic to a homeomorphism.
- There are irreducible 3-manifolds with finite fundamental group which are homotopy equivalent but not homeomorphic, namely the lens spaces L(7; 1, 1) and L(7; 1, 2).

Theorem (Stallings [9])

The following assertions are equivalent for an irreducible 3-manifold M and an exact sequence $1 \to K \to \pi_1(M) \to \mathbb{Z} \to 1$:

- *K* is finitely generated;
- K is the fundamental group of a surface F;
- There is a locally trivial fiber bundle $F \to M \to S^1$ with a surface F as fiber such that the induced sequence

$$1 \rightarrow \pi_1(F) \rightarrow \pi_1(E) \rightarrow \pi_1(S^1) \rightarrow 1$$

can be identified with the given sequence.

Conjecture (Thurston's Virtual Fibering Conjecture)

Let M be a closed hyperbolic 3-manifold. Then a finite covering of M fibers over S^1 , i.e., is the total space of a surface bundle over S^1 .

- A locally compact surface bundle *F* → *E* → *S*¹ is the same as a selfhomeomorphism of the surface *F* by the mapping torus construction.
- Two surface homeomorphisms are isotopic if and only if they induce the same automorphism on π₁(F) up to inner automorphisms.
- Therefore mapping class groups play an important role for 3-manifolds.

Theorem (Agol [1])

The Virtually Fibering Conjecture is true.

Definition (Graph manifold)

An irreducible 3-manifold is called graph manifold if its JSJ-splitting contains no hyperbolic pieces.

- There are aspherical closed graph manifolds which do not virtually fiber over *S*¹.
- There are closed graph manifolds, which are aspherical, but do not admit a Riemannian metric of non-positive sectional curvature.
- Agol proved the Virtually Fibering Conjecture for any irreducible manifold with infinite fundamental group and empty or incompressible toral boundary which is not a closed graph manifold.

Wolfgang Lück (MI, Bonn)

- Actually, Agol, based on work of Wise, showed much more, namely that the fundamental group of a hyperbolic 3-manifold is virtually compact special.
- This implies in particular that they occur as subgroups of RAAG-s (right Artin angled groups) and that they are linear over Z and LERF (locally extended residually finite).
- For the definition of these notions and much more information we refer for instance to Aschenbrenner-Friedl-Wilton [2].

On the fundamental groups of 3-manifolds

- The fundamental group plays a dominant role for 3-manifolds what we want to illustrate by many examples and theorems.
- A 3-manifold is prime if and only if $\pi_1(M)$ is prime in the sense that $\pi_1(M) \cong G_0 * G_1$ implies that G_0 or G_1 are trivial.
- A 3-manifold is irreducible if and only if π₁(M) is prime and π₁(M) is not infinite cyclic.
- A 3-manifold is aspherical if and only if its fundamental group is infinite, prime and not cyclic.
- A 3-manifold has infinite cyclic fundamental group if and only if it is homeomorphic to $S^1 \times S^2$.

- Let *M* and *N* be two prime closed 3-manifolds whose fundamental groups are infinite. Then:
 - *M* and *N* are homeomorphic if and only if $\pi_1(M)$ and $\pi_1(N)$ are isomorphic.
 - Any isomorphism $\pi_1(M) \xrightarrow{\cong} \pi_1(N)$ is induced by a homeomorphism.
- Let *M* be a closed irreducible 3-manifold with infinite fundamental group. Then *M* is hyperbolic if and only if π₁(*M*) does not contain ℤ ⊕ ℤ as subgroup.
- Let *M* be a closed irreducible 3-manifold with infinite fundamental group. Then *M* is a Seifert manifold if and only if $\pi_1(M)$ contains a normal infinite cyclic subgroup.

- A closed Seifert 3-manifold carries precisely one geometry and one can read off from π₁(M) which one it is:
 - *S*³
 - $\pi_1(M)$ is finite.
 - **R**³

 $\pi_1(M)$ contains \mathbb{Z}^3 as subgroup of finite index.

• $S^2 \times \mathbb{R}$

 $\pi_1(M)$ is virtually cyclic.

• $\mathbb{H}^2 \times \mathbb{R}$

 $\pi_1(M)$ contains a subgroup of finite index which is isomorphic to $\mathbb{Z} \times \pi_1(F)$ for some closed surface *F* of genus 2.

• $\widetilde{SL_2(\mathbb{R})}$

 $\pi_1(M)$ contains a subgroup of finite index *G* which can be written as a non-trivial central extension $1 \to \mathbb{Z} \to G \to \pi_1(F) \to 1$ for a surface *F* of genus ≥ 2 .

Nil

 $\pi_1(M)$ contains a subgroup of finite index *G* which can be written as a non-trivial central extension $1 \to \mathbb{Z} \to G \to \mathbb{Z}^2 \to 1$.

I. Agol.

The virtual Haken conjecture.

Doc. Math., 18:1045–1087, 2013. With an appendix by Agol, Groves, and Manning.

M. Aschenbrenner, S. Friedl, and H. Wilton. 3-manifold groups.

Zürich: European Mathematical Society (EMS), 2015.

D. Gabai.

Convergence groups are Fuchsian groups. Bull. Amer. Math. Soc. (N.S.), 25(2):395–402, 1991.

J. Hempel.

3-Manifolds. Princeton University Press, Princeton, N. J., 1976. Ann. of Math. Studies, No. 86.

W. H. Jaco and P. B. Shalen.
 Seifert fibered spaces in 3-manifolds.
 Mem. Amer. Math. Soc., 21(220):viii+192, 1979.

Wolfgang Lück (MI, Bonn)

3-manifolds

K. Johannson.

Homotopy equivalences of 3-manifolds with boundaries. Springer-Verlag, Berlin, 1979.

J. Morgan and G. Tian.

The geometrization conjecture, volume 5 of *Clay Mathematics Monographs*.

American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014.

P

P. Scott.

The geometries of 3-manifolds. Bull. London Math. Soc., 15(5):401–487, 1983.

J. Stallings.

On fibering certain 3-manifolds.

In *Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)*, pages 95–100. Prentice-Hall, Englewood Cliffs, N.J., 1962.