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Outline

We discuss some basic notions of geometric group theory which
are interesting in their own right and should be part of the general
education of a mathematician.

Parts of but not the entire material presented in this talk is relevant
for the forthcoming talks.

We will cover the following topics:

Quasi-isometry

Hyperbolic spaces

Hyperbolic groups

Some open problems about hyperbolic groups.
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Quasi-isometry

Definition (Quasi-isometry)
A map f : X → Y of metric spaces is called a quasi-isometry if there
exist real numbers λ,C > 0 satisfying:

The inequality

λ−1 · dX
(
x1, x2

)
− C ≤ dY

(
f (x1), f (x2)

)
≤ λ · dX (x1, x2) + C

holds for all x1, x2 ∈ X ;
For every y in Y there exists x ∈ X with dY

(
f (x), y

)
< C.

The quasi-isometry condition may be summarized as being
Lipschitz up to an additive constant.
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Remark (Quasi-Isometry is an equivalence relation)
If f : X1 → X2 is a quasi-isometry, then there exists a
quasi-isometry g : X2 → X1 such that both composites g ◦ f and
f ◦ g have bounded distance from the identity map.

The composite of two quasi-isometries is again a quasi-isometry.

Hence the notion of quasi-isometry is an equivalence relation on
the class of metric spaces.

The inclusion Z→ R is an quasi-isometry. An inverse
quasi-isometry R→ Z is given by sending a real number r to the
greatest integer which is less or equal to r .

Quasi-isometries are not necessarily continuous.
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Definition (Word-metric)
Let G be a finitely generated group. Let S be a finite set of generators.
The word metric

dS : G ×G→ R

assigns to (g,h) the minimum over all integers n ≥ 0 such that g−1h
can be written as a product sε1

1 sε2
2 . . . sεn

n for elements si ∈ S and
εi ∈ {±1}.
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Lemma
Let G be a finitely generated group. Let S1 and S2 be two finite sets of
generators. Then the identity id : (G,dS1)→ (G,dS2) is a
quasi-isometry.

Proof.
Choose λ such that for all s1 ∈ S1 we have dS2(s1,e),dS2(s−1

1 ,e) ≤ λ
and for s2 ∈ S2 we have dS1(s2,e),dS1(s−1

2 ,e) ≤ λ. Take C = 0.

Definition (Cayley graph)
Let G be a finitely generated group. Consider a finite set S of
generators. The Cayley graph CayS(G) is the graph whose set of
vertices is G and there is an edge joining g1 and g2 if and only if
g1 = g2s±1 for some s ∈ S.
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On the next two slides we show the Cayley graph of Z with respect
to the set of generators S = {1} and S = {2,3} and the Cayley
graph of the free groups with two generators a and b.
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A geodesic in a metric space (X ,d) is an isometric embedding
I → X , where I ⊂ R is an interval equipped with the metric
induced from the standard metric on R.

Definition (Geodesic space)
A metric space (X ,d) is called a geodesic space if for two points
x , y ∈ X there is a geodesic c : [0,d(x , y)]→ X with c(0) = x and
c(d(x , y)) = y .

Notice that we do not require the unique existence of a geodesic
joining two given points.
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Remark (Metric on the Cayley graph)
There is an obvious procedure to define a metric on CayS(G)
such that each edge is isometric to [0,1] and such that the
distance of two points in CayS(G) is the infimum over the length
over all piecewise linear paths joining these two points.

This metric restricted to G is just the word metric dS and turns
CayS(G) into a geodesic space.

Obviously the inclusion (G,dS)→ CayS(G) is a quasi-isometry. In
particular, the quasi-isometry class of the geodesic space
CayS(G) is independent of S.

The Cayley graph allows to translate properties of a finitely
generated group to properties of a geodesic metric space and
thus allows to use geometry to investigate groups.
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Definition (Proper G-action)
A G-space X is called proper if for each pair of points x and y in X
there are open neighborhoods Vx of x and Wy of y in X such that set
{g ∈ G | gVx ∩Wy 6= ∅} is finite.

Definition (Cocompact G-action)
A G-space X is called cocompact if X/G is compact.

Lemma (Švarc-Milnor Lemma)
Let X be a geodesic space. Suppose that the finitely generated group
G acts properly, cocompactly and isometrically on X. Choose a base
point x ∈ X. Then the map

f : G→ X , g 7→ gx

is a quasi-isometry.
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Definition (Commensurable)
Two groups G1 and G2 are commensurable if there are subgroups
H1 ⊆ G1 and H2 ⊆ G2 such that the indices [G1 : H1] and [G2 : H2] are
finite and H1 and H2 are isomorphic.

Lemma
Let G1 and G2 be finitely generated groups. Then:

A group homomorphism G1 → G2 is a quasi-isometry if and only if
its kernel is finite and its image has finite index in G2;
If G1 and G2 are commensurable, then they are quasi-isometric.
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Example (Quasi-Isometry does not imply commensurable)

Consider a semi-direct product Gφ = Z2 oφ Z for an isomorphism
φ : Z2 → Z2.

These groups act properly and cocompactly by isometries on
precisely one of the 3-dimensional simply connected geometries
R3, Nil or Sol.

If φ has finite order, then the geometry is R3.
If φ has infinite order and the eigenvalues of the induced C-linear
map C2 → C2 have absolute value 1, then the geometry is Nil.
If φ has infinite order and one of the eigenvalues of the induced
C-linear map C2 → C2 has absolute value > 1, then the geometry
is Sol.

These metric spaces given by the geometries R3, Nil or Sol are
mutually distinct under quasi-isometry.
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Example (Continued)
Two groups of the shape Gφ are quasi-isometric if and only if they
belong to the same geometry.

Two groups Gφ and Gφ′ belonging to the same geometry R3 or Nil
are always commensurable.

However, suppose that Gφ and Gφ′ belong to Sol. Then they are
commensurable if and only if the eigenvalues Λ and Λ′ with
absolute value > 1 of φ and φ′, respectively, have a common
power.

This obviously yields examples of groups Gφ and Gφ′ that belong
to the geometry Sol and are quasi-isometric but are not
commensurable.
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Theorem (Group properties invariant under quasi-isometry)
The following properties of a group are quasi-isometry invariants:

Finite;
Infinite virtually cyclic;
Finitely presented;
Virtually abelian;
Virtually nilpotent;
Virtually free;
Amenable;
Hyperbolic;
The existence of a model for the classifying space BG with finite
n-skeleton for given n ≥ 2;
The existence of a model for BG of finite type, i.e., all skeletons
are finite.
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Theorem (Invariants under quasi-isometry)
Let G1 and G2 be two finitely generated groups which are
quasi-isometric. Then:

They have the same number of ends;

Let R be a commutative ring. Then we get

cdR(G1) = cdR(G2)

if one of the following assumptions is satisfied:
The cohomological dimensions cdR(G1) and cdR(G2) are both
finite;
One of the groups G1 and G2 is amenable and Q ⊆ R;

If they are solvable, then they have the same Hirsch length;
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Theorem (Continued)
Suppose that G1 has polynomial growth of degree not greater
than d, intermediate growth, or exponential growth, respectively.
Then the same is true for G2;

Let G1 and G2 be nilpotent. Then their real cohomology rings
H∗(G1;R) and H∗(G2;R) are isomorphic as graded rings. In
particular the Betti numbers of G1 and G2 agree.
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Remark (Free products)
Let G1, G′1, G2 and G′2 be finitely generated groups. Suppose that
Gi and G′i are quasi-isometric for i = 1,2. Assume that none of
the groups G1, G′1, G2 and G′2 is trivial or Z/2.

Then the free products G1 ∗G2 and G′1 ∗G′2 are quasi-isometric.

The corresponding statement is false if one replaces
quasi-isometric by commensurable.

Remark (Property (T))
Kazhdan’s Property (T) is not a quasi-isometry invariant.
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Remark (The sign of the Euler characteristic)
The sign of the Euler characteristic of a group with a finite model for
BG is not a quasi-isometry invariant.

Remark (L2-Betti numbers)
If the finitely generated groups G1 and G2 are quasi-isometric and
there exist finite models for BG1 and BG2 then we have

b(2)
p (G1) = 0⇔ b(2)

p (G2) = 0.

However, it is general not true that in the situation above there
exists a constant C > 0 such that b(2)

p (G1) = C · b(2)
p (G2) holds for

all p ≥ 0.
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Hyperbolic spaces

Definition (Thin triangles)
A geodesic triangle in a geodesic space X is a configuration of three
points x1, x2 and x3 in X together with a choice of three geodesics g1,
g2 and g3 such that g1 joins x2 to x3, g2 joins x1 to x3 and g3 joins x1 to
x2. For δ > 0 a geodesic triangle is called δ-thin if each edge is
contained in the closed δ-neighborhood of the union of the other two
edges.

Definition (Hyperbolic space)
Consider δ ≥ 0. A δ-hyperbolic space is a geodesic space whose
geodesic triangles are all δ-thin.
A geodesic space is called hyperbolic it is δ-hyperbolic for some δ > 0.
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A geodesic space with bounded diameter is hyperbolic.

A tree is 0-hyperbolic.

The hyperbolic space Hn is hyperbolic.

More generally, a simply connected complete Riemannian
manifold M, whose sectional curvature satisfies sec(M) ≤ κ for
some κ < 0, is hyperbolic as a metric space.

Rn is hyperbolic if and only if n ≤ 1.
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Definition (Boundary of a hyperbolic space)
Let X be a hyperbolic space. Define its boundary ∂X to be the set of
equivalence classes of geodesic rays. Put

X := X q ∂X .

Two geodesic rays c1, c2 : [0,∞)→ X are called equivalent if there
exists C > 0 satisfying dX

(
c1(t), c2(t)

)
≤ C for t ∈ [0,∞).
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Lemma
There is a topology on X with the properties:

X is compact and metrizable;
The subspace topology X ⊆ X is the given one;
X is open and dense in X.

Let M be a simply connected complete Riemannian manifold M
with sec(M) ≤ κ for some κ < 0. Then M is hyperbolic as a metric
space and ∂M = Sdim(M)−1. The latter claim follows from the
Cartan-Hadamard Theorem.
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Lemma (Quasi-isometry invariance of being hyperbolic)
The property “hyperbolic” is a quasi-isometry invariant of geodesic
spaces.

Lemma (Quasi-isometry invariance of the boundary)
A quasi-isometry f : X1 → X2 of hyperbolic spaces induces a
homeomorphism

∂X1
∼=−→ ∂X2.
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Hyperbolic groups

Definition (Hyperbolic group)
A finitely generated group is called hyperbolic if its Cayley graph is
hyperbolic.

Definition (Boundary of a hyperbolic group)
Define the boundary ∂G of a hyperbolic group to be the boundary of its
Cayley graph.

Wolfgang Lück (MI, Bonn) Hyperbolic groups Matrix Inst., Creswick, Australia 27 / 38



Basic properties of hyperbolic groups

A group G is hyperbolic if and only if it acts properly, cocompactly
and isometrically on some hyperbolic space. In this case
∂G = ∂X .

Let M be a closed Riemannian manifold with sec(M) < 0. Then
π1(M) is hyperbolic with Sdim(M)−1 as boundary.

If G is virtually torsionfree and hyperbolic, then
vcd(G) = dim(∂G) + 1.

If the boundary of a hyperbolic group contains an open subset
homeomorphic to Rn, then the boundary is homeomorphic to Sn.
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The boundary of a free group is a Cantor set.
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A typical boundary of a hyperbolic group looks like a Menger
sponge which is a three-dimensional generalization of the
one-dimensional Cantor set.
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Remark (The boundary of a hyperbolic group)
The boundary ∂X of a hyperbolic space and in particular the
boundary ∂G of a hyperbolic group G are metrizable.

Any compact metric space can be realized as the boundary of a
hyperbolic space.

However, not every compact metrizable space can occur as the
boundary of a hyperbolic group.

Namely, exactly one of the following three cases occurs:

G is finite and ∂G is empty;

G is infinite virtually cyclic and ∂G consists of two points;

G contains a free group of rank two as subgroup and ∂G is an
infinite perfect, (i.e., without isolated points) compact metric space.
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A subgroup of a hyperbolic group is either virtually cyclic or
contains Z ∗ Z as subgroup. In particular Z2 is not a subgroup of a
hyperbolic group.

A free product of two hyperbolic groups is again hyperbolic.

A direct product of two finitely generated groups is hyperbolic if
and only if one of the two groups is finite and the other is
hyperbolic.
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Definition (Rips complex)
Let G be a finitely generated group generated by a finite set S of
generators. For any d ≥ 0 the simplicial complex Pd (G,S), called the
Rips complex, is defined as follows.

The vertices are elements of G. A finite collection of distinct elements
g0,g1, . . . ,gk in G spans a k -simplex if and only dS(gi ,gj) ≤ d holds
for all 0 ≤ i , j ≤ k .
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Theorem (Finiteness properties of hyperbolic groups)
Let G be a group with a finite set of generators.

Suppose that (G,S) is δ-hyperbolic for the real number δ ≥ 0. Let
d be a natural number with d ≥ 16δ + 8.
Then the barycentric subdivision of the Rips complex Pd (G,S)′ is
a finite G-CW-model for EG;

There is a model of finite type for BG, if G is hyperbolic;

There is a finite model for BG, if G is torsionfree hyperbolic.
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A finitely generated torsion group is hyperbolic if and only if it is
finite.

Given r elements g1, g2, . . . , gr in a hyperbolic group, then there
exists an integer n ≥ 1, such that {gn

1 ,g
n
2 , . . . ,g

n
r } generates a free

subgroup of rank at most r .

The word-problem and the conjugation-problem are solvable for a
hyperbolic group.

The isomorphism-problem is solvable for torsionfree hyperbolic
groups.
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Let G be a hyperbolic group. Let S be a finite set of generators.
For the integer n ≥ 0 let σ(n) be the number of elements g ∈ G
with dS(g,e) = n;
Then the formal power series

∑∞
n=0 σ(n) · tn is a rational function.

The same is true if one replaces σ(n) by the number β(n) of
elements g ∈ G with dS(g,e) ≤ n;

A random finitely presented group is hyperbolic.
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Remark (Construction of groups with exotic properties)
Colimits of directed systems of hyperbolic groups which come from
adding more and more relations have been used to construct exotic
groups. Here are two prominent examples:

Let G be a torsionfree hyperbolic group which is not virtually
cyclic. Then there exists a quotient of G which is an infinite
torsion-group whose proper subgroups are all finite (or cyclic).

There exist groups with expanders. They play a role in the
construction of counterexamples to the Baum-Connes Conjecture
with coefficients due to Higson, Lafforgue and Skandalis.
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Some open problems about hyperbolic groups

Is every hyperbolic group virtually torsionfree?

Is every hyperbolic group residually finite?

Cannon Conjecture: Suppose that the space at infinity of a
hyperbolic group is homeomorphic to S2. Does this imply that it
acts properly isometrically and cocompactly on the 3-dimensional
hyperbolic space?

Has the boundary of a hyperbolic group the integral Čech
cohomology of a sphere if and only if it occurs as the fundamental
group of an aspherical closed manifold M?

Is every hyperbolic group a CAT(0)-group?

Is the complex group ring CG of a torsionfree hyperbolic group an
integral domain?
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