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@ Introduce the group ring.

@ Introduce the projective class group Ky(R).

@ Discuss its algebraic and topological significance (e.g., finiteness
obstruction).

@ Introduce Ki(R) and the Whitehead group Wh(G).

@ Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).

@ Introduce briefly higher and negative K-theory and the
Bass-Heller-Swan decomposition.
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The group ring

@ Throughout these lectures G will be a (discrete) group and R be a
commutative associative ring with unit.

@ The group ring RG, sometimes also denoted by R[], is the
R-algebra, whose underlying R-module is the free R-module
generated by G and whose multiplication comes from the group
structure.

® Anelement x € RGis a formal sum 3, 7g - g such that only
finitely many of the coefficients ry € R are different from zero.

@ The multiplication comes from the tautological formula
g-h=g- h, more precisely

Srgeg] D sgrg| =) > msk|-g

geG geG geG \ h,keG,hk=g
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@ Group rings arise in representation theory and topology as follows.

@ A RG-module P is the same as G-representation with coefficients
in R, i.e., a R-modul P together with a G-action by R-linear maps.

@ Let X — X be a G-covering of the CW-complex X, i.e., a principal
G-bundle over X or, equivalently, a normal covering with G as
group of deck transformations. An example for connected X is the
universal covering X — X with G = 71(X).

@ Then the cellular Z-chain complex C.(X), which is a priori a free
Z-chain complex, inherits from the G-action on X the structure of
a free ZG-chain complex, where the set of n-cells in X determines
a ZG-basis for C.(X).
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If we consider the universal covering R — S, we get G = Z and
C.(R) becomes the 1-dimensional chain complex Z[Z]-chain

complex

= 0—-0-—2Z[Z] —> LGN

where t € Z is a generator.

z[z]

Group rings are in general very complicated. For instance, there is
the conjecture that the complex group ring CG is Noetherian if and
only if G is virtually poly-cyclic.

Let us figure out whether there are idempotents x in RG, i.e.,
elements with x® = x.

Here is the only known construction of an idempotent. Consider
an element g € G which has finite order n such that nis invertible
in R. Then we can take
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Conjecture (Idempotent Conjecture (Kaplansky))

Let R be an integral domain and let G be a torsionfree group. Then all
idempotents of RG are trivial, i.e., equal to 0 or 1.

@ If pis a prime and we additionally assume that p is not a unitin R,
then a reasonable version of the Idempotent Conjecture is
obtained by replacing the condition torsionfree by the weaker
condition that all finite subgroups of G are p-groups.

Exercise (Idempotent Conjecture for G=7 and G = Z/2)

Prove the Idempotent Conjecture for G =7 and G = Z/2. What
happens for F3[7Z /2] for F3 the field of three elements?
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Conjecture (Zero-Divisor-Conjecture)

Let R be an integral domain and G be a torsion free group. Then RG is
an integral domain, i.e., x,y € RG,xy =0 = x ory is0.

Exercise (Zero-Divisors versus idempotents)

Show that the Zero-Divisor Conjecture implies the Idempotent
Conjecture.

Conjecture (Unit-Conjecture)

Let R be an integral domain and G be a torsion free group. Then every
unitin RG is trivial, i.e., of the form r - g for some unitr € R* and
ge G
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Exercise (Unit Conjecture for G = Z)
Prove the Unit Conjecture for G = 7.

@ The Unit Conjecture implies the Zero-Divisor Conjecture.

Exercise (Non-trivial unit in Z[Z/5])

Lett € 7./5 be a generator. Show that1 — t — t=' is a unit in Z[Z/5].
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The projective class group

Definition (Projective R-module)
An R-module P is called projective if it satisfies one of the following
equivalent conditions:

@ Pis adirect summand in a free R-module;

@ The following lifting problem has always a solution

MLN—»O

N
N
e
N

P

@ If0 - My — My — My, — 0 is an exact sequence of R-modules,
then 0 — homg(P, My) — hompg(P, My) — homg(P, M>) — 0 is
exact.
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@ Over a field or, more generally, over a principal ideal domain every
projective module is free.

@ If Ris a principal ideal domain, then a finitely generated R-module
is projective (and hence free) if and only if it is torsionfree.
@ For instance Z/n is for n > 2 never projective as Z-module.

@ Let R and S be rings and R x S be their product. Then R x {0} is
a finitely generated projective R x S-module which is not free.

Exercise (The trivial FG-module F)

Let F be a field of characteristic p for p a prime number or Q.

Then F with the trivial G-action is a projective FG-module if and only if
i.) G is finite and ii.) p = 0 or p does not divide the order of G.

It is a free FG-module only if G is trivial.
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Definition (Projective class group Ko(R))
The projective class group

Ko(R)

is defined to be the abelian group whose generators are isomorphism
classes [P] of finitely generated projective R-modules P and whose
relations are [Py] + [P2] = [P1] for every exact sequence

0 — Py — P; — P> — 0 of finitely generated projective R-modules.

@ This is the same as the Grothendieck construction applied to the
abelian monoid of isomorphism classes of finitely generated
projective R-modules under direct sum.

@ The reduced projective class group Ko(R) is the quotient of Ko(R)
by the subgroup generated by the classes of finitely generated
free R-modules, or, equivalently, the cokernel of Ky(Z) — Ko(R).
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@ Let P be a finitely generated projective R-module. It is stably free,
i.e., P@® R™ = R" for appropriate m,n € Z, if and only if [P] = 0 in
Ko(R).

° RO(R) measures the deviation of finitely generated projective
R-modules from being stably finitely generated free.

@ The assignment P — [P] € Ky(R) is the universal additive
invariant or dimension function for finitely generated projective
R-modules.

@ Induction

Let f: R — S be a ring homomorphism.
Given an R-module M, let .M be the S-module S @z M.
We obtain a homomorphism of abelian groups

f.: Ko(R) = Ko(S), [P]— [F.P).
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@ Compatibility with products
The two projections from R x Sto R and S induce isomorphisms

Ko(R x 8) S5 Ko(R) x Ko(S).

@ Morita equivalence

Let R be a ring and M,(R) be the ring of (n, n)-matrices over R.
We can consider R" as a M,(R)-R-bimodule and as a
R-M,(R)-bimodule. Tensoring with these yields mutually inverse
isomorphisms

K(R) = Ko(Ma(R). [Pl = [um)R"s®r Pl
Ko(Mn(R)) — Ko(R), [Ql = [rRR"Mu(R) @my(R) Ql-
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Exercise (Principal ideal domains)

Let R be a principal ideal domain and let F be its quotient field.
Then we obtain mutually inverse isomorphisms

7 =N Ko(R), n — [R";
= 7z, [P] — dims(F ®g P).

Exercise (The complex representation ring of a finite group)

Let G be a finite group. Show that the complex representation ring
Rc(G) is the same as Ko(CG) and compute

where r is the number of irreducible complex G-representations.

A\
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Example (Dedekind domains)

@ Let R be a Dedekind domain, for instance the ring of integers in
an algebraic number field.

@ Call two ideals / and J in R equivalent if there exists non-zero
elements r and s in R with rl = sJ.

@ The ideal class group C(R) is the abelian group of equivalence
classes of ideals under multiplication of ideals.

@ Then we obtain an isomorphism
C(R) = Ko(R), [~ [1.
@ The structure of the finite abelian group
C(Z[exp(27i/p)]) = Ko(Zlexp(2i/p)]) = Ko(Z[Z/p))

is only known for small prime numbers p.
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Theorem (Swan (1960))
If G is finite, then Ko(ZG) is finite.

@ Topological K-theory
Let X be a compact space. Let K°(X) be the Grothendieck group
of isomorphism classes of finite-dimensional complex vector
bundles over X. This is the zero-th term of a generalized
cohomology theory K*(X) called topological K-theory. It is
2-periodic, i.e., K"(X) = K"2(X), and satisfies K°(pt) = Z and
K'(pt) = {0}.

Theorem (Swan (1962))
Let C(X) be the ring of continuous functions from X to C. Then there
is an isomorphism

KO(X) = Ko(C(X)).
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Wall’s finiteness obstruction

Definition (Finitely dominated)

A CW-complex X is called finitely dominated if there exists a finite (=
compact) CW-complex Y together withmapsi: X — Yandr: Y — X
satisfying r o i ~ idy.

@ A finite CW-complex is finitely dominated.

@ A closed manifold of dimension is homotopy equivalent to a finite
CW-complex.

Problem

Is a given finitely dominated CW -complex homotopy equivalent to a
finite CW-complex?

Wolfgang Lick (Bonn) Introduction to middle K-theory Oberwolfach, October 2017 17 /35



Definition (Wall’s finiteness obstruction)
A finitely dominated CW-complex X defines an element

o(X) € Ko(Z[m (X)])

called its finiteness obstruction as follows.

@ Let C.(X) be the cellular Z[r]-chain complex of its universal
covering. Since X is finitely dominated, there exists a finite
projective Zr-chain complex P, with P, ~z, C.(X).

@ Define

o(X) ==Y (—1)" [Pn] € Ko(Zn).

n

Exercise (Wall’s finiteness obstruction for finite X)

Show for a finite connected CW -complex X that o(X) = x(X) - [ZG]
holds in Ko(ZG) for G = m1(X).
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Theorem (Wall (1965))

A finitely dominated CW-complex X is homotopy equivalent to a finite
CW-complex if and only if its reduced finiteness obstruction
0o(X) € Ko(Z[m1(X)]) vanishes.

@ A finitely dominated simply connected CW-complex is always
homotopy equivalent to a finite CW-complex since Ky(Z) = {0}.

@ Given a finitely presented group G and ¢ € Ky(ZG), there exists a
finitely dominated CW-complex X with 71(X) = G and o(X) = &.
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Theorem (Geometric characterization of RO(ZG) = {0})

The following statements for a finitely presented group G are
equivalent:

@ Every finite dominated CW-complex with G = 71(X) is homotopy
equivalent to a finite CW-complex.

° Ky(ZG) = {0}.

Conijecture (Vanishing of RO(ZG) for torsionfree Q)
If G is torsionfree, then iN(o(ZG) = {0}.

@ The conjecture above makes also sense if we replace Z by a field
of characteristic zero F. Then conjecture above implies the
Idempotent Conjecture for FG.
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The Whitehead group

Definition (Ki-group Ki(R))
Define the Ki-group of aring R

Ki(R)

to be the abelian group whose generators are conjugacy classes [f] of
automorphisms f: P — P of finitely generated projective R-modules
with the following relations:
@ Given an exact sequence 0 — (Py, fy) — (P4, f1) — (P2, f2) — 0 of
automorphisms of finitely generated projective R-modules, we get
[fo] + [f2] = [A];
° [gof]l=[f]+[g] )
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@ Ki(R) is isomorphic to GL(R)/[GL(R), GL(R)].

@ An invertible matrix A € GL(R) can be reduced by elementary row
and column operations and (de-)stabilization to the trivial empty
matrix if and only if [A] = 0 holds in the reduced Ki-group

Ki(R) := Ki(R)/{£1} = cok (Ki(Z) — Ki(R)).

@ If R is commutative, the determinant induces an epimorphism
det: Ki(R) — R*,
which in general is not bijective.

@ The assignment A — [A] € Ki(R) can be thought of the universal
determinant for R.
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Definition (Whitehead group)
The Whitehead group of a group G is defined to be

Wh(G) = Ki(ZG)/{+g | g € G}.

We have Wh({1}) = {0}.

Proof.
@ The ring Z possesses an Euclidean algorithm.

@ Hence every invertible matrix over Z can be reduced via
elementary row and column operations and destabilization to a
(1,1)-matrix (£1).

@ This implies that any element in Ky(Z) is represented by +1.
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@ Let G be afinite group. Let F be Q, R or C.

@ Define re(G) to be the number of irreducible F-representations of
G.

@ The Whitehead group Wh(G) is a finitely generated abelian group
of rank rr(G) — ro(G).

@ The torsion subgroup of Wh(G) is the kernel of the map
Ki(2G) — K1(QQG).

@ In contrast to RO(ZG) the Whitehead group Wh(G) is computable.
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Exercise (Non-vanishing of Wh(Z/5))

Using the ring homomorphism f: 7Z[7/5] — C which sends the
generator of /5 to exp(2wi/5) and the norm of a complex number,
define a homomorphism of abelian groups

¢: Wh(Z/5) — R>C.

Show that the class of the unit1 —t — t=' in Wh(Z/5) is an element of
infinite order.

v
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Whitehead torsion

Definition (h-cobordism)

An h-cobordism over a closed manifold M, is a compact manifold W
whose boundary is the disjoint union Mg IT M; such that both inclusions
My — W and M; — W are homotopy equivalences.

Theorem (s-Cobordism Theorem, Barden, Mazur, Stallings,

Kirby-Siebenmann)

Let My be a closed (smooth) manifold of dimension > 5. Let

(W; My, My) be an h-cobordism over M.

Then W is homeomorphic (diffeomorphic) to My x [0, 1] relative My if
and only if its Whitehead torsion

(W, My) € Wh(my(Mp))

vanishes.

Wolfgang Lick (Bonn) Introduction to middle K-theory Oberwolfach, October 2017 26/35



Conjecture (Poincaré Conjecture)

Let M be an n-dimensional topological manifold which is a homotopy
sphere, i.e., homotopy equivalent to S".
Then M is homeomorphic to S".

For n > 5 the Poincaré Conjecture is true. \
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We sketch the proof for n > 6.

@ Let M be a n-dimensional homotopy sphere.

@ Let W be obtained from M by deleting the interior of two disjoint
embedded disks DY and D5. Then W is a simply connected
h-cobordism.

@ Since Wh({1}) is trivial, we can find a homeomorphism
f: W = aD7 x [0, 1] which is the identity on 8D} = D7 x {0}.

@ By the Alexander trick we can extend the homeomorphism
flopx(1y: OD§ = dD7 x {1} to a homeomorphism g: D — DJ.

@ The three homeomorphisms idDgw, f and g fit together to a
homeomorphism h: M — D7 Uapnx {0} 0D} x [0,1] Uapnx {1} Dy.
The target is obviously homeomorphic to S”.
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@ The argument above does not imply that for a smooth manifold M
we obtain a diffeomorphism g: M — S” since the Alexander trick
does not work smoothly.

@ Indeed, there exists so called exotic spheres, i.e., closed smooth
manifolds which are homeomorphic but not diffeomorphic to S”.

@ The s-cobordism theorem is a key ingredient in the surgery
program for the classification of closed manifolds due to
and

@ Given a finitely presented group G, an element £ € Wh(G) and a
closed manifold M of dimension n > 5 with G = 71(M), there
exists an h-cobordism W over M with 7(W, M) = ¢.

Wolfgang Lick (Bonn) Introduction to middle K-theory Oberwolfach, October 2017 29/35



Theorem (Geometric characterization of Wh(G) = {0})
The following statements are equivalent for a finitely presented group
G and a fixed integer n > 6
@ Every compact n-dimensional h-cobordism W with G = 71(W) is
trivial;
@ Wh(G) = {0}.

Conjecture (Vanishing of Wh(G) for torsionfree G)
If G is torsionfree, then

Wh(G) = {0}.
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Higher and negative K-theory

@ There are also higher algebraic K-groups K,(R) for n > 2 due to
Quillen (1973). They are defined as homotopy groups of certain
spaces or spectra.

@ There are also negative K-groups Kj(R) for n < —1 due to Bass;

@ Most of the well known features of Ky(R) and Kj(R) extend to
both negative and higher algebraic K-theory.

Definition (Bass-Nil-groups)
Define forne Z

NK,(R) := coker (Kn(R) — Kn(R[t])) .
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Theorem (Bass-Heller-Swan decomposition)
There is for every n € 7 an isomorphism, natural in R,

Kn(R) © Kn_1(R) & NKn(R) & NKn(R) = Kn(RIt,t""]) = Kn(RIZ]).

Definition (Regular ring)

A ring R is called regular if it is Noetherian and every finitely generated
R-module possesses a finite projective resolution.

@ Principal ideal domains are regular. In particular Z and any field
are regular.

e If Ris regular, then R[t] and R[t,t~'] = R[Z] are regular.
@ If Ris regular, then RG in general is not Noetherian or regular.
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Theorem (Bass-Heller-Swan decomposition for regular rings)

Suppose that R is regular. Then

Kn(R) = 0 forn< —1;
NKn(R) = 0 forneZ,

and the Bass-Heller-Swan decomposition reduces for n € Z to the
natural isomorphism

Kn(R) ® Kn_1(R) = Kn(R[t,t']) = Kn(R[Z]).
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@ Notice the following formulas for a regular ring R and a
generalized homology theory H., which look similar:

1%

Kn(RIZ]) Kn(R) ® Ky_1(R);
HH(BZ) = Hn(pt)@?‘-{n_1(pt).

@ If G and K are groups, then we have the following formulas, which
look similar:

Ka(Z[GxK]) = Kn(ZG)® Kn(ZK);
Ha(B(G*K)) = Ha(BG) ® Hn(BK).
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Question (K-theory of group rings and group homology)
Is there a relation between K,(RG) and group homology of G?

To be continued

Stay tuned

Wolfgang Lick (Bonn) Introduction to middle K-theory Oberwolfach, October 2017 35//35



