Introduction to middle K-theory (Lecture I)

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Oberwolfach, October 2017

Outline

- Introduce the group ring.
- Introduce the projective class group $K_{0}(R)$.
- Discuss its algebraic and topological significance (e.g., finiteness obstruction).
- Introduce $K_{1}(R)$ and the Whitehead group $\mathrm{Wh}(G)$.
- Discuss its algebraic and topological significance (e.g., s-cobordism theorem).
- Introduce briefly higher and negative K-theory and the Bass-Heller-Swan decomposition.

The group ring

- Throughout these lectures G will be a (discrete) group and R be a commutative associative ring with unit.
- The group ring $R G$, sometimes also denoted by $R[G]$, is the R-algebra, whose underlying R-module is the free R-module generated by G and whose multiplication comes from the group structure.
- An element $x \in R G$ is a formal sum $\sum_{g \in G} r_{g} \cdot g$ such that only finitely many of the coefficients $r_{g} \in R$ are different from zero.
- The multiplication comes from the tautological formula $g \cdot h=g \cdot h$, more precisely

$$
\left(\sum_{g \in G} r_{g} \cdot g\right) \cdot\left(\sum_{g \in G} s_{g} \cdot g\right):=\sum_{g \in G}\left(\sum_{h, k \in G, h k=g} r_{h} s_{k}\right) \cdot g .
$$

- Group rings arise in representation theory and topology as follows.
- A $R G$-module P is the same as G-representation with coefficients in R, i.e., a R-modul P together with a G-action by R-linear maps.
- Let $\bar{X} \rightarrow X$ be a G-covering of the $C W$-complex X, i.e., a principal G-bundle over X or, equivalently, a normal covering with G as group of deck transformations. An example for connected X is the universal covering $\widetilde{X} \rightarrow X$ with $G=\pi_{1}(X)$.
- Then the cellular \mathbb{Z}-chain complex $C_{*}(\bar{X})$, which is a priori a free \mathbb{Z}-chain complex, inherits from the G-action on \bar{X} the structure of a free $\mathbb{Z} G$-chain complex, where the set of n-cells in X determines a $\mathbb{Z} G$-basis for $C_{*}(\bar{X})$.
- If we consider the universal covering $\mathbb{R} \rightarrow S^{1}$, we get $G=\mathbb{Z}$ and $C_{*}(\mathbb{R})$ becomes the 1 -dimensional chain complex $\mathbb{Z}[\mathbb{Z}]$-chain complex

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z}[\mathbb{Z}] \xrightarrow{(t-1)} \mathbb{Z}[\mathbb{Z}]
$$

where $t \in \mathbb{Z}$ is a generator.

- Group rings are in general very complicated. For instance, there is the conjecture that the complex group ring $\mathbb{C} G$ is Noetherian if and only if G is virtually poly-cyclic.
- Let us figure out whether there are idempotents x in $R G$, i.e., elements with $x^{2}=x$.
- Here is the only known construction of an idempotent. Consider an element $g \in G$ which has finite order n such that n is invertible in R. Then we can take

$$
x=\frac{1}{n} \cdot \sum_{i=0}^{n-1} g^{i}
$$

Conjecture (Idempotent Conjecture (Kaplansky))

Let R be an integral domain and let G be a torsionfree group. Then all idempotents of $R G$ are trivial, i.e., equal to 0 or 1 .

- If p is a prime and we additionally assume that p is not a unit in R, then a reasonable version of the Idempotent Conjecture is obtained by replacing the condition torsionfree by the weaker condition that all finite subgroups of G are p-groups.

Exercise (Idempotent Conjecture for $G=\mathbb{Z}$ and $G=\mathbb{Z} / 2$)

Prove the Idempotent Conjecture for $G=\mathbb{Z}$ and $G=\mathbb{Z} / 2$. What happens for $\mathbb{F}_{3}[\mathbb{Z} / 2]$ for \mathbb{F}_{3} the field of three elements?

Conjecture (Zero-Divisor-Conjecture)

Let R be an integral domain and G be a torsion free group. Then $R G$ is an integral domain, i.e., $x, y \in R G, x y=0 \Longrightarrow x$ or y is 0 .

Exercise (Zero-Divisors versus idempotents)

Show that the Zero-Divisor Conjecture implies the Idempotent Conjecture.

Conjecture (Unit-Conjecture)

Let R be an integral domain and G be a torsion free group. Then every unit in $R G$ is trivial, i.e., of the form $r \cdot g$ for some unit $r \in R^{\times}$and $g \in G$.

Exercise (Unit Conjecture for $G=\mathbb{Z}$)

Prove the Unit Conjecture for $G=\mathbb{Z}$.

- The Unit Conjecture implies the Zero-Divisor Conjecture.

Exercise (Non-trivial unit in $\mathbb{Z}[\mathbb{Z} / 5]$)

Let $t \in \mathbb{Z} / 5$ be a generator. Show that $1-t-t^{-1}$ is a unit in $\mathbb{Z}[\mathbb{Z} / 5]$.

The projective class group

Definition (Projective R-module)

An R-module P is called projective if it satisfies one of the following equivalent conditions:

- P is a direct summand in a free R-module;
- The following lifting problem has always a solution

- If $0 \rightarrow M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow 0$ is an exact sequence of R-modules, then $0 \rightarrow \operatorname{hom}_{R}\left(P, M_{0}\right) \rightarrow \operatorname{hom}_{R}\left(P, M_{1}\right) \rightarrow \operatorname{hom}_{R}\left(P, M_{2}\right) \rightarrow 0$ is exact.
- Over a field or, more generally, over a principal ideal domain every projective module is free.
- If R is a principal ideal domain, then a finitely generated R-module is projective (and hence free) if and only if it is torsionfree.
- For instance \mathbb{Z} / n is for $n \geq 2$ never projective as \mathbb{Z}-module.
- Let R and S be rings and $R \times S$ be their product. Then $R \times\{0\}$ is a finitely generated projective $R \times S$-module which is not free.

Exercise (The trivial $F G$-module F)

Let F be a field of characteristic p for p a prime number or 0 .
Then F with the trivial G-action is a projective FG-module if and only if i.) G is finite and ii.) $p=0$ or p does not divide the order of G. It is a free FG-module only if G is trivial.

Definition (Projective class group $K_{0}(R)$)

The projective class group

$$
K_{0}(R)
$$

is defined to be the abelian group whose generators are isomorphism classes $[P]$ of finitely generated projective R-modules P and whose relations are $\left[P_{0}\right]+\left[P_{2}\right]=\left[P_{1}\right]$ for every exact sequence $0 \rightarrow P_{0} \rightarrow P_{1} \rightarrow P_{2} \rightarrow 0$ of finitely generated projective R-modules.

- This is the same as the Grothendieck construction applied to the abelian monoid of isomorphism classes of finitely generated projective R-modules under direct sum.
- The reduced projective class group $\widetilde{K}_{0}(R)$ is the quotient of $K_{0}(R)$ by the subgroup generated by the classes of finitely generated free R-modules, or, equivalently, the cokernel of $K_{0}(\mathbb{Z}) \rightarrow K_{0}(R)$.
- Let P be a finitely generated projective R-module. It is stably free, i.e., $P \oplus R^{m} \cong R^{n}$ for appropriate $m, n \in \mathbb{Z}$, if and only if $[P]=0$ in $\widetilde{K}_{0}(R)$.
- $\widetilde{K}_{0}(R)$ measures the deviation of finitely generated projective R-modules from being stably finitely generated free.
- The assignment $P \mapsto[P] \in K_{0}(R)$ is the universal additive invariant or dimension function for finitely generated projective R-modules.
- Induction

Let $f: R \rightarrow S$ be a ring homomorphism.
Given an R-module M, let $f_{*} M$ be the S-module $S \otimes_{R} M$. We obtain a homomorphism of abelian groups

$$
f_{*}: K_{0}(R) \rightarrow K_{0}(S), \quad[P] \mapsto\left[f_{*} P\right] .
$$

- Compatibility with products

The two projections from $R \times S$ to R and S induce isomorphisms

$$
K_{0}(R \times S) \stackrel{ }{\cong} K_{0}(R) \times K_{0}(S) .
$$

- Morita equivalence

Let R be a ring and $M_{n}(R)$ be the ring of (n, n)-matrices over R. We can consider R^{n} as a $M_{n}(R)$ - R-bimodule and as a $R-M_{n}(R)$-bimodule. Tensoring with these yields mutually inverse isomorphisms

$$
\begin{array}{lllll}
K_{0}(R) & \cong K_{0}\left(M_{n}(R)\right), & {[P]} & \mapsto\left[M_{n}(R) R^{n} \otimes_{R} P\right] \\
K_{0}\left(M_{n}(R)\right) & \cong & K_{0}(R), & {[Q]} & \mapsto\left[R_{R} R_{M_{n}(R)} \otimes_{M_{n}(R)} Q\right] .
\end{array}
$$

Exercise (Principal ideal domains)

Let R be a principal ideal domain and let F be its quotient field. Then we obtain mutually inverse isomorphisms

$$
\begin{array}{lllll}
\mathbb{Z} & \cong & \cong & K_{0}(R), & n \\
\mapsto & \left.\mapsto R^{n}\right] ; \\
K_{0}(R) & \cong & \mathbb{Z}, & {[P]} & \mapsto \\
\operatorname{dim}_{F}\left(F \otimes_{R} P\right) .
\end{array}
$$

Exercise (The complex representation ring of a finite group)

Let G be a finite group. Show that the complex representation ring $R_{\mathbb{C}}(G)$ is the same as $K_{0}(\mathbb{C} G)$ and compute

$$
R_{\mathbb{C}}(G) \cong \mathbb{Z}^{r}
$$

where r is the number of irreducible complex G-representations.

Example (Dedekind domains)

- Let R be a Dedekind domain, for instance the ring of integers in an algebraic number field.
- Call two ideals $/$ and J in R equivalent if there exists non-zero elements r and s in R with $r l=s J$.
- The ideal class group $C(R)$ is the abelian group of equivalence classes of ideals under multiplication of ideals.
- Then we obtain an isomorphism

$$
C(R) \xrightarrow{\leftrightarrows} \widetilde{K}_{0}(R), \quad[/] \mapsto[I] .
$$

- The structure of the finite abelian group

$$
C(\mathbb{Z}[\exp (2 \pi i / p)]) \cong \widetilde{K}_{0}(\mathbb{Z}[\exp (2 \pi i / p)]) \cong \widetilde{K}_{0}(\mathbb{Z}[\mathbb{Z} / p])
$$

is only known for small prime numbers p.

Theorem (Swan (1960))

If G is finite, then $\widetilde{K}_{0}(\mathbb{Z} G)$ is finite.

- Topological K-theory

Let X be a compact space. Let $K^{0}(X)$ be the Grothendieck group of isomorphism classes of finite-dimensional complex vector bundles over X. This is the zero-th term of a generalized cohomology theory $K^{*}(X)$ called topological K-theory. It is 2-periodic, i.e., $K^{n}(X)=K^{n+2}(X)$, and satisfies $K^{0}(p t)=\mathbb{Z}$ and $K^{1}(\mathrm{pt})=\{0\}$.

Theorem (Swan (1962))

Let $C(X)$ be the ring of continuous functions from X to \mathbb{C}. Then there is an isomorphism

$$
K^{0}(X) \xlongequal{\cong} K_{0}(C(X))
$$

Wall's finiteness obstruction

Definition (Finitely dominated)

A CW-complex X is called finitely dominated if there exists a finite (= compact) $C W$-complex Y together with maps $i: X \rightarrow Y$ and $r: Y \rightarrow X$ satisfying $r \circ i \simeq \mathrm{id}_{x}$.

- A finite $C W$-complex is finitely dominated.
- A closed manifold of dimension is homotopy equivalent to a finite CW-complex.

Problem

Is a given finitely dominated CW-complex homotopy equivalent to a finite CW-complex?

Definition (Wall's finiteness obstruction)

A finitely dominated $C W$-complex X defines an element

$$
o(X) \in K_{0}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)
$$

called its finiteness obstruction as follows.

- Let $C_{*}(\widetilde{X})$ be the cellular $\mathbb{Z}[\pi]$-chain complex of its universal covering. Since X is finitely dominated, there exists a finite projective $\mathbb{Z} \pi$-chain complex P_{*} with $P_{*} \simeq_{\mathbb{Z} \pi} C_{*}(\widetilde{X})$.
- Define

$$
o(X):=\sum_{n}(-1)^{n} \cdot\left[P_{n}\right] \in K_{0}(\mathbb{Z} \pi) .
$$

Exercise (Wall's finiteness obstruction for finite X)

Show for a finite connected $C W$-complex X that $o(X)=\chi(X) \cdot[\mathbb{Z} G]$ holds in $K_{0}(\mathbb{Z} G)$ for $G=\pi_{1}(X)$.

Theorem (Wall (1965))

A finitely dominated CW-complex X is homotopy equivalent to a finite CW-complex if and only if its reduced finiteness obstruction $\widetilde{o}(X) \in \widetilde{K}_{0}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ vanishes.

- A finitely dominated simply connected CW-complex is always homotopy equivalent to a finite $C W$-complex since $\widetilde{K}_{0}(\mathbb{Z})=\{0\}$.
- Given a finitely presented group G and $\xi \in K_{0}(\mathbb{Z} G)$, there exists a finitely dominated $C W$-complex X with $\pi_{1}(X) \cong G$ and $o(X)=\xi$.

Theorem (Geometric characterization of $\widetilde{K}_{0}(\mathbb{Z} G)=\{0\}$)

The following statements for a finitely presented group G are equivalent:

- Every finite dominated $C W$-complex with $G \cong \pi_{1}(X)$ is homotopy equivalent to a finite CW-complex.
- $\widetilde{K}_{0}(\mathbb{Z} G)=\{0\}$.

Conjecture (Vanishing of $\widetilde{K}_{0}(\mathbb{Z} G)$ for torsionfree G)

If G is torsionfree, then $\widetilde{K}_{0}(\mathbb{Z} G)=\{0\}$.

- The conjecture above makes also sense if we replace \mathbb{Z} by a field of characteristic zero F. Then conjecture above implies the Idempotent Conjecture for $F G$.

The Whitehead group

Definition (K_{1}-group $K_{1}(R)$)

Define the K_{1}-group of a ring R

$$
K_{1}(R)
$$

to be the abelian group whose generators are conjugacy classes [f] of automorphisms $f: P \rightarrow P$ of finitely generated projective R-modules with the following relations:

- Given an exact sequence $0 \rightarrow\left(P_{0}, f_{0}\right) \rightarrow\left(P_{1}, f_{1}\right) \rightarrow\left(P_{2}, f_{2}\right) \rightarrow 0$ of automorphisms of finitely generated projective R-modules, we get $\left[f_{0}\right]+\left[f_{2}\right]=\left[f_{1}\right] ;$
- $[g \circ f]=[f]+[g]$.
- $K_{1}(R)$ is isomorphic to $G L(R) /[G L(R), G L(R)]$.
- An invertible matrix $A \in G L(R)$ can be reduced by elementary row and column operations and (de-)stabilization to the trivial empty matrix if and only if $[A]=0$ holds in the reduced K_{1}-group

$$
\widetilde{K}_{1}(R):=K_{1}(R) /\{ \pm 1\}=\operatorname{cok}\left(K_{1}(\mathbb{Z}) \rightarrow K_{1}(R)\right)
$$

- If R is commutative, the determinant induces an epimorphism

$$
\operatorname{det}: K_{1}(R) \rightarrow R^{\times}
$$

which in general is not bijective.

- The assignment $A \mapsto[A] \in K_{1}(R)$ can be thought of the universal determinant for R.

Definition (Whitehead group)

The Whitehead group of a group G is defined to be

$$
\mathrm{Wh}(G)=K_{1}(\mathbb{Z} G) /\{ \pm g \mid g \in G\}
$$

Lemma

We have $\mathrm{Wh}(\{1\})=\{0\}$.

Proof.

- The ring \mathbb{Z} possesses an Euclidean algorithm.
- Hence every invertible matrix over \mathbb{Z} can be reduced via elementary row and column operations and destabilization to a (1,1)-matrix (± 1).
- This implies that any element in $K_{1}(\mathbb{Z})$ is represented by ± 1.
- Let G be a finite group. Let F be \mathbb{Q}, \mathbb{R} or \mathbb{C}.
- Define $r_{F}(G)$ to be the number of irreducible F-representations of G.
- The Whitehead group $\mathrm{Wh}(G)$ is a finitely generated abelian group of rank $r_{\mathbb{R}}(G)-r_{\mathbb{Q}}(G)$.
- The torsion subgroup of $\mathrm{Wh}(G)$ is the kernel of the map $K_{1}(\mathbb{Z} G) \rightarrow K_{1}(\mathbb{Q} G)$.
- In contrast to $\widetilde{K}_{0}(\mathbb{Z} G)$ the Whitehead group $\mathrm{Wh}(G)$ is computable.

Exercise (Non-vanishing of $\mathrm{Wh}(\mathbb{Z} / 5)$)

Using the ring homomorphism $f: \mathbb{Z}[\mathbb{Z} / 5] \rightarrow \mathbb{C}$ which sends the generator of $\mathbb{Z} / 5$ to $\exp (2 \pi i / 5)$ and the norm of a complex number, define a homomorphism of abelian groups

$$
\phi: \operatorname{Wh}(\mathbb{Z} / 5) \rightarrow \mathbb{R}^{>0}
$$

Show that the class of the unit $1-t-t^{-1}$ in $\mathrm{Wh}(\mathbb{Z} / 5)$ is an element of infinite order.

Whitehead torsion

Definition (h-cobordism)

An h-cobordism over a closed manifold M_{0} is a compact manifold W whose boundary is the disjoint union $M_{0} \amalg M_{1}$ such that both inclusions $M_{0} \rightarrow W$ and $M_{1} \rightarrow W$ are homotopy equivalences.

Theorem (s-Cobordism Theorem, Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_{0} be a closed (smooth) manifold of dimension ≥ 5. Let ($W ; M_{0}, M_{1}$) be an h-cobordism over M_{0}.
Then W is homeomorphic (diffeomorphic) to $M_{0} \times[0,1]$ relative M_{0} if and only if its Whitehead torsion

$$
\tau\left(W, M_{0}\right) \in \operatorname{Wh}\left(\pi_{1}\left(M_{0}\right)\right)
$$

vanishes.

Conjecture (Poincaré Conjecture)

Let M be an n-dimensional topological manifold which is a homotopy sphere, i.e., homotopy equivalent to S^{n}. Then M is homeomorphic to S^{n}.

Theorem

For $n \geq 5$ the Poincaré Conjecture is true.

Proof.

We sketch the proof for $n \geq 6$.

- Let M be a n-dimensional homotopy sphere.
- Let W be obtained from M by deleting the interior of two disjoint embedded disks D_{1}^{n} and D_{2}^{n}. Then W is a simply connected h-cobordism.
- Since $\mathrm{Wh}(\{1\})$ is trivial, we can find a homeomorphism $f: W \xlongequal{\cong} \partial D_{1}^{n} \times[0,1]$ which is the identity on $\partial D_{1}^{n}=D_{1}^{n} \times\{0\}$.
- By the Alexander trick we can extend the homeomorphism $\left.f\right|_{D_{1}^{n} \times\{1\}}: \partial D_{2}^{n} \xrightarrow{\cong} \partial D_{1}^{n} \times\{1\}$ to a homeomorphism $g: D_{1}^{n} \rightarrow D_{2}^{n}$.
- The three homeomorphisms $i d_{D_{1}^{n}}, f$ and g fit together to a homeomorphism $h: M \rightarrow D_{1}^{n} \cup_{\partial D_{1}^{n} \times\{0\}} \partial D_{1}^{n} \times[0,1] \cup_{\partial D_{1}^{n} \times\{1\}} D_{1}^{n}$. The target is obviously homeomorphic to S^{n}.
- The argument above does not imply that for a smooth manifold M we obtain a diffeomorphism $g: M \rightarrow S^{n}$ since the Alexander trick does not work smoothly.
- Indeed, there exists so called exotic spheres, i.e., closed smooth manifolds which are homeomorphic but not diffeomorphic to S^{n}.
- The s-cobordism theorem is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.
- Given a finitely presented group G, an element $\xi \in \mathrm{Wh}(G)$ and a closed manifold M of dimension $n \geq 5$ with $G \cong \pi_{1}(M)$, there exists an h-cobordism W over M with $\tau(W, M)=\xi$.

Theorem (Geometric characterization of $\mathrm{Wh}(G)=\{0\}$)

The following statements are equivalent for a finitely presented group G and a fixed integer $n \geq 6$

- Every compact n-dimensional h-cobordism W with $G \cong \pi_{1}(W)$ is trivial;
- $\operatorname{Wh}(G)=\{0\}$.

Conjecture (Vanishing of $\mathrm{Wh}(G)$ for torsionfree G)

If G is torsionfree, then

$$
W h(G)=\{0\} .
$$

Higher and negative K-theory

- There are also higher algebraic K-groups $K_{n}(R)$ for $n \geq 2$ due to Quillen (1973). They are defined as homotopy groups of certain spaces or spectra.
- There are also negative K-groups $K_{n}(R)$ for $n \leq-1$ due to Bass;
- Most of the well known features of $K_{0}(R)$ and $K_{1}(R)$ extend to both negative and higher algebraic K-theory.

Definition (Bass-Nil-groups)

Define for $n \in \mathbb{Z}$

$$
\mathrm{NK}_{n}(R):=\operatorname{coker}\left(K_{n}(R) \rightarrow K_{n}(R[t])\right) .
$$

Theorem (Bass-Heller-Swan decomposition)

There is for every $n \in \mathbb{Z}$ an isomorphism, natural in R,

$$
K_{n}(R) \oplus K_{n-1}(R) \oplus \mathrm{NK}_{n}(R) \oplus \mathrm{NK}_{n}(R) \stackrel{\cong}{\rightarrow} K_{n}\left(R\left[t, t^{-1}\right]\right)=K_{n}(R[\mathbb{Z}]) .
$$

Definition (Regular ring)

A ring R is called regular if it is Noetherian and every finitely generated R-module possesses a finite projective resolution.

- Principal ideal domains are regular. In particular \mathbb{Z} and any field are regular.
- If R is regular, then $R[t]$ and $R\left[t, t^{-1}\right]=R[\mathbb{Z}]$ are regular.
- If R is regular, then $R G$ in general is not Noetherian or regular.

Theorem (Bass-Heller-Swan decomposition for regular rings)

Suppose that R is regular. Then

$$
\begin{aligned}
K_{n}(R) & =0 \quad \text { for } n \leq-1 \\
\mathrm{NK}_{n}(R) & =0 \quad \text { for } n \in \mathbb{Z}
\end{aligned}
$$

and the Bass-Heller-Swan decomposition reduces for $n \in \mathbb{Z}$ to the natural isomorphism

$$
K_{n}(R) \oplus K_{n-1}(R) \stackrel{\cong}{\rightrightarrows} K_{n}\left(R\left[t, t^{-1}\right]\right)=K_{n}(R[\mathbb{Z}]) .
$$

- Notice the following formulas for a regular ring R and a generalized homology theory \mathcal{H}_{*}, which look similar:

$$
\begin{aligned}
K_{n}(R[\mathbb{Z}]) & \cong K_{n}(R) \oplus K_{n-1}(R) \\
\mathcal{H}_{n}(B \mathbb{Z}) & \cong \mathcal{H}_{n}(\mathrm{pt}) \oplus \mathcal{H}_{n-1}(\mathrm{pt})
\end{aligned}
$$

- If G and K are groups, then we have the following formulas, which look similar:

$$
\begin{aligned}
\widetilde{K}_{n}(\mathbb{Z}[G * K]) & \cong \widetilde{K}_{n}(\mathbb{Z} G) \oplus \widetilde{K}_{n}(\mathbb{Z} K) \\
\widetilde{\mathcal{H}}_{n}(B(G * K)) & \cong \widetilde{\mathcal{H}}_{n}(B G) \oplus \widetilde{\mathcal{H}}_{n}(B K)
\end{aligned}
$$

Question (K-theory of group rings and group homology)

Is there a relation between $K_{n}(R G)$ and group homology of G ?

To be continued

Stay tuned

