Introduction to middle K-theory (Lecture I)

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Oberwolfach, October 2017

- Introduce the group ring.
- Introduce the projective class group $K_0(R)$.
- Discuss its algebraic and topological significance (e.g., finiteness obstruction).
- Introduce $K_1(R)$ and the Whitehead group Wh(G).
- Discuss its algebraic and topological significance (e.g., s-cobordism theorem).
- Introduce briefly higher and negative *K*-theory and the Bass-Heller-Swan decomposition.

The group ring

- Throughout these lectures *G* will be a (discrete) group and *R* be a commutative associative ring with unit.
- The group ring *RG*, sometimes also denoted by *R*[*G*], is the *R*-algebra, whose underlying *R*-module is the free *R*-module generated by *G* and whose multiplication comes from the group structure.
- An element x ∈ RG is a formal sum ∑_{g∈G} r_g · g such that only finitely many of the coefficients r_g ∈ R are different from zero.
- The multiplication comes from the tautological formula $g \cdot h = g \cdot h$, more precisely

$$\left(\sum_{g\in G} r_g \cdot g\right) \cdot \left(\sum_{g\in G} s_g \cdot g\right) := \sum_{g\in G} \left(\sum_{h,k\in G,hk=g} r_h s_k\right) \cdot g.$$

- Group rings arise in representation theory and topology as follows.
- A *RG*-module *P* is the same as *G*-representation with coefficients in *R*, i.e., a *R*-modul *P* together with a *G*-action by *R*-linear maps.
- Let X → X be a G-covering of the CW-complex X, i.e., a principal G-bundle over X or, equivalently, a normal covering with G as group of deck transformations. An example for connected X is the universal covering X → X with G = π₁(X).
- Then the cellular Z-chain complex C_{*}(X), which is a priori a free Z-chain complex, inherits from the G-action on X the structure of a free ZG-chain complex, where the set of *n*-cells in X determines a ZG-basis for C_{*}(X).

If we consider the universal covering ℝ → S¹, we get G = ℤ and C_{*}(ℝ) becomes the 1-dimensional chain complex ℤ[ℤ]-chain complex

$$\cdots \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z}[\mathbb{Z}] \xrightarrow{(t-1)} \mathbb{Z}[\mathbb{Z}]$$

where $t \in \mathbb{Z}$ is a generator.

- Group rings are in general very complicated. For instance, there is the conjecture that the complex group ring CG is Noetherian if and only if G is virtually poly-cyclic.
- Let us figure out whether there are idempotents x in RG, i.e., elements with $x^2 = x$.
- Here is the only known construction of an idempotent. Consider an element g ∈ G which has finite order n such that n is invertible in R. Then we can take

$$x=\frac{1}{n}\cdot\sum_{i=0}^{n-1}g^i.$$

Conjecture (Idempotent Conjecture (Kaplansky))

Let R be an integral domain and let G be a torsionfree group. Then all idempotents of RG are trivial, i.e., equal to 0 or 1.

 If p is a prime and we additionally assume that p is not a unit in R, then a reasonable version of the Idempotent Conjecture is obtained by replacing the condition torsionfree by the weaker condition that all finite subgroups of G are p-groups.

Exercise (Idempotent Conjecture for $G = \mathbb{Z}$ and $G = \mathbb{Z}/2$)

Prove the Idempotent Conjecture for $G = \mathbb{Z}$ and $G = \mathbb{Z}/2$. What happens for $\mathbb{F}_3[\mathbb{Z}/2]$ for \mathbb{F}_3 the field of three elements?

Conjecture (Zero-Divisor-Conjecture)

Let *R* be an integral domain and *G* be a torsion free group. Then *RG* is an integral domain, i.e., $x, y \in RG, xy = 0 \implies x$ or *y* is 0.

Exercise (Zero-Divisors versus idempotents)

Show that the Zero-Divisor Conjecture implies the Idempotent Conjecture.

Conjecture (Unit-Conjecture)

Let R be an integral domain and G be a torsion free group. Then every unit in RG is trivial, i.e., of the form $r \cdot g$ for some unit $r \in R^{\times}$ and $g \in G$.

Exercise (Unit Conjecture for $G = \mathbb{Z}$)

Prove the Unit Conjecture for $G = \mathbb{Z}$.

• The Unit Conjecture implies the Zero-Divisor Conjecture.

Exercise (Non-trivial unit in $\mathbb{Z}[\mathbb{Z}/5]$)

Let $t \in \mathbb{Z}/5$ be a generator. Show that $1 - t - t^{-1}$ is a unit in $\mathbb{Z}[\mathbb{Z}/5]$.

Definition (Projective R-module)

An *R*-module *P* is called **projective** if it satisfies one of the following equivalent conditions:

- *P* is a direct summand in a free *R*-module;
- The following lifting problem has always a solution

$$\begin{array}{cccc}
M & \xrightarrow{\rho} & N & \longrightarrow & 0 \\
& & & & & \uparrow & \\
& & & & & \uparrow & \\
& & & & & & F
\end{array}$$

• If $0 \to M_0 \to M_1 \to M_2 \to 0$ is an exact sequence of *R*-modules, then $0 \to \hom_R(P, M_0) \to \hom_R(P, M_1) \to \hom_R(P, M_2) \to 0$ is exact.

- Over a field or, more generally, over a principal ideal domain every projective module is free.
- If *R* is a principal ideal domain, then a finitely generated *R*-module is projective (and hence free) if and only if it is torsionfree.
- For instance \mathbb{Z}/n is for $n \ge 2$ never projective as \mathbb{Z} -module.
- Let *R* and *S* be rings and *R* × *S* be their product. Then *R* × {0} is a finitely generated projective *R* × *S*-module which is not free.

Exercise (The trivial FG-module F)

Let F be a field of characteristic p for p a prime number or 0. Then F with the trivial G-action is a projective FG-module if and only if i.) G is finite and ii.) p = 0 or p does not divide the order of G. It is a free FG-module only if G is trivial.

Definition (Projective class group $K_0(R)$)

The projective class group

$K_0(R)$

is defined to be the abelian group whose generators are isomorphism classes [*P*] of finitely generated projective *R*-modules *P* and whose relations are $[P_0] + [P_2] = [P_1]$ for every exact sequence $0 \rightarrow P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow 0$ of finitely generated projective *R*-modules.

- This is the same as the Grothendieck construction applied to the abelian monoid of isomorphism classes of finitely generated projective *R*-modules under direct sum.
- The reduced projective class group $\widetilde{K}_0(R)$ is the quotient of $K_0(R)$ by the subgroup generated by the classes of finitely generated free *R*-modules, or, equivalently, the cokernel of $K_0(\mathbb{Z}) \to K_0(R)$.

- Let *P* be a finitely generated projective *R*-module. It is stably free, i.e., *P* ⊕ *R^m* ≅ *Rⁿ* for appropriate *m*, *n* ∈ ℤ, if and only if [*P*] = 0 in *K*₀(*R*).
- $\widetilde{K}_0(R)$ measures the deviation of finitely generated projective *R*-modules from being stably finitely generated free.
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective *R*-modules.

Induction

Let $f: R \to S$ be a ring homomorphism. Given an *R*-module *M*, let f_*M be the *S*-module $S \otimes_R M$. We obtain a homomorphism of abelian groups

$$f_* \colon \mathcal{K}_0(\mathcal{R}) \to \mathcal{K}_0(\mathcal{S}), \quad [\mathcal{P}] \mapsto [f_*\mathcal{P}].$$

• Compatibility with products

The two projections from $R \times S$ to R and S induce isomorphisms

$$\mathcal{K}_0(\mathcal{R} \times \mathcal{S}) \xrightarrow{\cong} \mathcal{K}_0(\mathcal{R}) \times \mathcal{K}_0(\mathcal{S}).$$

Morita equivalence

Let *R* be a ring and $M_n(R)$ be the ring of (n, n)-matrices over *R*. We can consider R^n as a $M_n(R)$ -*R*-bimodule and as a R- $M_n(R)$ -bimodule. Tensoring with these yields mutually inverse isomorphisms

$$\begin{array}{rcl} \mathcal{K}_{0}(R) & \xrightarrow{\cong} & \mathcal{K}_{0}(\mathcal{M}_{n}(R)), & [P] & \mapsto & [_{\mathcal{M}_{n}(R)}R^{n}{}_{R}\otimes_{R}P]; \\ \mathcal{K}_{0}(\mathcal{M}_{n}(R)) & \xrightarrow{\cong} & \mathcal{K}_{0}(R), & [Q] & \mapsto & [_{R}R^{n}{}_{\mathcal{M}_{n}(R)}\otimes_{\mathcal{M}_{n}(R)}Q]. \end{array}$$

Exercise (Principal ideal domains)

Let R be a principal ideal domain and let F be its quotient field. Then we obtain mutually inverse isomorphisms

Exercise (The complex representation ring of a finite group)

Let G be a finite group. Show that the complex representation ring $R_{\mathbb{C}}(G)$ is the same as $K_0(\mathbb{C}G)$ and compute

 $R_{\mathbb{C}}(G)\cong \mathbb{Z}^r$

where r is the number of irreducible complex G-representations.

Example (Dedekind domains)

- Let *R* be a Dedekind domain, for instance the ring of integers in an algebraic number field.
- Call two ideals *I* and *J* in *R* equivalent if there exists non-zero elements *r* and *s* in *R* with rI = sJ.
- The ideal class group C(R) is the abelian group of equivalence classes of ideals under multiplication of ideals.
- Then we obtain an isomorphism

$$C(R) \xrightarrow{\cong} \widetilde{K}_0(R), \quad [I] \mapsto [I].$$

The structure of the finite abelian group

 $C(\mathbb{Z}[\exp(2\pi i/p)]) \cong \widetilde{K}_0(\mathbb{Z}[\exp(2\pi i/p)]) \cong \widetilde{K}_0(\mathbb{Z}[\mathbb{Z}/p])$

is only known for small prime numbers *p*.

Theorem (Swan (1960))

If G is finite, then $\widetilde{K}_0(\mathbb{Z}G)$ is finite.

• Topological K-theory

Let *X* be a compact space. Let $K^0(X)$ be the Grothendieck group of isomorphism classes of finite-dimensional complex vector bundles over *X*. This is the zero-th term of a generalized cohomology theory $K^*(X)$ called topological *K*-theory. It is 2-periodic, i.e., $K^n(X) = K^{n+2}(X)$, and satisfies $K^0(\text{pt}) = \mathbb{Z}$ and $K^1(\text{pt}) = \{0\}$.

Theorem (Swan (1962))

Let C(X) be the ring of continuous functions from X to \mathbb{C} . Then there is an isomorphism

$$K^0(X) \xrightarrow{\cong} K_0(C(X)).$$

Definition (Finitely dominated)

A *CW*-complex *X* is called finitely dominated if there exists a finite (= compact) *CW*-complex *Y* together with maps $i: X \to Y$ and $r: Y \to X$ satisfying $r \circ i \simeq id_X$.

- A finite CW-complex is finitely dominated.
- A closed manifold of dimension is homotopy equivalent to a finite *CW*-complex.

Problem

Is a given finitely dominated CW-complex homotopy equivalent to a finite CW-complex?

Definition (Wall's finiteness obstruction)

A finitely dominated CW-complex X defines an element

 $o(X) \in K_0(\mathbb{Z}[\pi_1(X)])$

called its finiteness obstruction as follows.

- Let C_{*}(X̃) be the cellular Z[π]-chain complex of its universal covering. Since X is finitely dominated, there exists a finite projective Zπ-chain complex P_{*} with P_{*} ≃_{Zπ} C_{*}(X̃).
- Define

$$o(X) := \sum_n (-1)^n \cdot [P_n] \in K_0(\mathbb{Z}\pi).$$

Exercise (Wall's finiteness obstruction for finite *X*)

Show for a finite connected CW-complex X that $o(X) = \chi(X) \cdot [\mathbb{Z}G]$ holds in $K_0(\mathbb{Z}G)$ for $G = \pi_1(X)$.

Theorem (Wall (1965))

A finitely dominated CW-complex X is homotopy equivalent to a finite CW-complex if and only if its reduced finiteness obstruction $\tilde{o}(X) \in \tilde{K}_0(\mathbb{Z}[\pi_1(X)])$ vanishes.

- A finitely dominated simply connected CW-complex is always homotopy equivalent to a finite CW-complex since K₀(Z) = {0}.
- Given a finitely presented group G and ξ ∈ K₀(ℤG), there exists a finitely dominated CW-complex X with π₁(X) ≅ G and o(X) = ξ.

Theorem (Geometric characterization of $K_0(\mathbb{Z}G) = \{0\}$)

The following statements for a finitely presented group G are equivalent:

- Every finite dominated CW-complex with $G \cong \pi_1(X)$ is homotopy equivalent to a finite CW-complex.
- $\widetilde{K}_0(\mathbb{Z}G) = \{0\}.$

Conjecture (Vanishing of $\widetilde{K}_0(\mathbb{Z}G)$ for torsionfree G)

If G is torsionfree, then $\widetilde{K}_0(\mathbb{Z}G) = \{0\}$.

 The conjecture above makes also sense if we replace ℤ by a field of characteristic zero *F*. Then conjecture above implies the Idempotent Conjecture for *FG*.

Definition (K_1 -group $K_1(R)$)

```
Define the K_1-group of a ring R
```

$K_1(R)$

to be the abelian group whose generators are conjugacy classes [*f*] of automorphisms $f: P \rightarrow P$ of finitely generated projective *R*-modules with the following relations:

Given an exact sequence 0 → (P₀, f₀) → (P₁, f₁) → (P₂, f₂) → 0 of automorphisms of finitely generated projective *R*-modules, we get [f₀] + [f₂] = [f₁];

•
$$[g \circ f] = [f] + [g].$$

- $K_1(R)$ is isomorphic to GL(R)/[GL(R), GL(R)].
- An invertible matrix A ∈ GL(R) can be reduced by elementary row and column operations and (de-)stabilization to the trivial empty matrix if and only if [A] = 0 holds in the reduced K₁-group

$$\widetilde{\mathcal{K}}_1(R) := \mathcal{K}_1(R)/\{\pm 1\} = \operatorname{cok}\left(\mathcal{K}_1(\mathbb{Z}) o \mathcal{K}_1(R)
ight).$$

• If *R* is commutative, the determinant induces an epimorphism

det: $K_1(R) \rightarrow R^{\times}$,

which in general is not bijective.

The assignment A → [A] ∈ K₁(R) can be thought of the universal determinant for R.

Definition (Whitehead group)

The Whitehead group of a group G is defined to be

$$\mathsf{Wh}({m G})={m K}_1({\mathbb Z}{m G})/\{\pm g\mid g\in {m G}\}.$$

Lemma

We have $Wh(\{1\}) = \{0\}.$

Proof.

- The ring \mathbb{Z} possesses an Euclidean algorithm.
- Hence every invertible matrix over Z can be reduced via elementary row and column operations and destabilization to a (1, 1)-matrix (±1).
- This implies that any element in K₁(ℤ) is represented by ±1.

- Let G be a finite group. Let F be \mathbb{Q} , \mathbb{R} or \mathbb{C} .
- Define r_F(G) to be the number of irreducible F-representations of G.
- The Whitehead group Wh(G) is a finitely generated abelian group of rank r_ℝ(G) − r_Q(G).
- The torsion subgroup of Wh(G) is the kernel of the map K₁(ℤG) → K₁(ℚG).
- In contrast to $\widetilde{K}_0(\mathbb{Z}G)$ the Whitehead group Wh(G) is computable.

Exercise (Non-vanishing of $Wh(\mathbb{Z}/5)$)

Using the ring homomorphism $f: \mathbb{Z}[\mathbb{Z}/5] \to \mathbb{C}$ which sends the generator of $\mathbb{Z}/5$ to $\exp(2\pi i/5)$ and the norm of a complex number, define a homomorphism of abelian groups

 $\phi: \operatorname{Wh}(\mathbb{Z}/5) \to \mathbb{R}^{>0}.$

Show that the class of the unit $1 - t - t^{-1}$ in Wh($\mathbb{Z}/5$) is an element of infinite order.

Definition (*h*-cobordism)

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem, Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed (smooth) manifold of dimension ≥ 5 . Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is homeomorphic (diffeomorphic) to $M_0 \times [0, 1]$ relative M_0 if and only if its Whitehead torsion

 $\tau(W, M_0) \in Wh(\pi_1(M_0))$

vanishes.

Conjecture (Poincaré Conjecture)

Let M be an n-dimensional topological manifold which is a homotopy sphere, i.e., homotopy equivalent to S^n . Then M is homeomorphic to S^n .

Theorem

For $n \ge 5$ the Poincaré Conjecture is true.

Proof.

We sketch the proof for $n \ge 6$.

- Let *M* be a *n*-dimensional homotopy sphere.
- Let *W* be obtained from *M* by deleting the interior of two disjoint embedded disks D_1^n and D_2^n . Then *W* is a simply connected *h*-cobordism.
- Since Wh({1}) is trivial, we can find a homeomorphism $f: W \xrightarrow{\cong} \partial D_1^n \times [0, 1]$ which is the identity on $\partial D_1^n = D_1^n \times \{0\}$.
- By the Alexander trick we can extend the homeomorphism $f|_{D_1^n \times \{1\}} : \partial D_2^n \xrightarrow{\cong} \partial D_1^n \times \{1\}$ to a homeomorphism $g : D_1^n \to D_2^n$.
- The three homeomorphisms $id_{D_1^n}$, f and g fit together to a homeomorphism $h: M \to D_1^n \cup_{\partial D_1^n \times \{0\}} \partial D_1^n \times [0, 1] \cup_{\partial D_1^n \times \{1\}} D_1^n$. The target is obviously homeomorphic to S^n .

- The argument above does not imply that for a smooth manifold M we obtain a diffeomorphism $g: M \to S^n$ since the Alexander trick does not work smoothly.
- Indeed, there exists so called exotic spheres, i.e., closed smooth manifolds which are homeomorphic but not diffeomorphic to Sⁿ.
- The *s*-cobordism theorem is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.
- Given a finitely presented group G, an element ξ ∈ Wh(G) and a closed manifold M of dimension n ≥ 5 with G ≅ π₁(M), there exists an h-cobordism W over M with τ(W, M) = ξ.

Theorem (Geometric characterization of $Wh(G) = \{0\}$)

The following statements are equivalent for a finitely presented group G and a fixed integer $n \ge 6$

 Every compact n-dimensional h-cobordism W with G ≅ π₁(W) is trivial;

•
$$Wh(G) = \{0\}.$$

Conjecture (Vanishing of Wh(*G*) for torsionfree *G*)

If G is torsionfree, then

 $\mathsf{Wh}(G) = \{0\}.$

- There are also higher algebraic *K*-groups $K_n(R)$ for $n \ge 2$ due to Quillen (1973). They are defined as homotopy groups of certain spaces or spectra.
- There are also negative *K*-groups $K_n(R)$ for $n \le -1$ due to Bass;
- Most of the well known features of K₀(R) and K₁(R) extend to both negative and higher algebraic K-theory.

Definition (Bass-Nil-groups)

Define for $n \in \mathbb{Z}$

```
\mathsf{NK}_n(R) := \operatorname{coker} (K_n(R) \to K_n(R[t])).
```

Theorem (Bass-Heller-Swan decomposition)

There is for every $n \in \mathbb{Z}$ an isomorphism, natural in R,

 $K_n(R) \oplus K_{n-1}(R) \oplus \mathsf{NK}_n(R) \oplus \mathsf{NK}_n(R) \xrightarrow{\cong} K_n(R[t, t^{-1}]) = K_n(R[\mathbb{Z}]).$

Definition (Regular ring)

A ring *R* is called regular if it is Noetherian and every finitely generated *R*-module possesses a finite projective resolution.

- Principal ideal domains are regular. In particular \mathbb{Z} and any field are regular.
- If *R* is regular, then R[t] and $R[t, t^{-1}] = R[\mathbb{Z}]$ are regular.
- If *R* is regular, then *RG* in general is not Noetherian or regular.

Theorem (Bass-Heller-Swan decomposition for regular rings)

Suppose that R is regular. Then

$$egin{array}{rcl} \mathcal{K}_n(R) &=& 0 & \mbox{for } n \leq -1; \ \mathcal{N}\mathcal{K}_n(R) &=& 0 & \mbox{for } n \in \mathbb{Z}, \end{array}$$

and the Bass-Heller-Swan decomposition reduces for $n \in \mathbb{Z}$ to the natural isomorphism

$$K_n(R) \oplus K_{n-1}(R) \xrightarrow{\cong} K_n(R[t, t^{-1}]) = K_n(R[\mathbb{Z}]).$$

Wolfgang Lück (Bonn)

• Notice the following formulas for a regular ring *R* and a generalized homology theory \mathcal{H}_* , which look similar:

$$\begin{array}{lll} \mathcal{K}_n(R[\mathbb{Z}]) &\cong & \mathcal{K}_n(R) \oplus \mathcal{K}_{n-1}(R); \\ \mathcal{H}_n(B\mathbb{Z}) &\cong & \mathcal{H}_n(\mathrm{pt}) \oplus \mathcal{H}_{n-1}(\mathrm{pt}). \end{array}$$

• If *G* and *K* are groups, then we have the following formulas, which look similar:

$$\begin{array}{lll} \widetilde{K}_n(\mathbb{Z}[G \ast K]) &\cong & \widetilde{K}_n(\mathbb{Z}G) \oplus \widetilde{K}_n(\mathbb{Z}K); \\ \widetilde{\mathcal{H}}_n(B(G \ast K)) &\cong & \widetilde{\mathcal{H}}_n(BG) \oplus \widetilde{\mathcal{H}}_n(BK). \end{array}$$

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and group homology of G?

To be continued Stay tuned