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Outline

Introduce the group ring.
Introduce the projective class group K0(R).
Discuss its algebraic and topological significance (e.g., finiteness
obstruction).
Introduce K1(R) and the Whitehead group Wh(G).
Discuss its algebraic and topological significance (e.g.,
s-cobordism theorem).
Introduce briefly higher and negative K -theory and the
Bass-Heller-Swan decomposition.
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The group ring

Throughout these lectures G will be a (discrete) group and R be a
commutative associative ring with unit.

The group ring RG, sometimes also denoted by R[G], is the
R-algebra, whose underlying R-module is the free R-module
generated by G and whose multiplication comes from the group
structure.

An element x ∈ RG is a formal sum
∑

g∈G rg · g such that only
finitely many of the coefficients rg ∈ R are different from zero.

The multiplication comes from the tautological formula
g · h = g · h, more precisely∑

g∈G

rg · g

 ·
∑

g∈G

sg · g

 :=
∑
g∈G

 ∑
h,k∈G,hk=g

rhsk

 · g.
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Group rings arise in representation theory and topology as follows.

A RG-module P is the same as G-representation with coefficients
in R, i.e., a R-modul P together with a G-action by R-linear maps.

Let X → X be a G-covering of the CW -complex X , i.e., a principal
G-bundle over X or, equivalently, a normal covering with G as
group of deck transformations. An example for connected X is the
universal covering X̃ → X with G = π1(X ).

Then the cellular Z-chain complex C∗(X ), which is a priori a free
Z-chain complex, inherits from the G-action on X the structure of
a free ZG-chain complex, where the set of n-cells in X determines
a ZG-basis for C∗(X ).
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If we consider the universal covering R→ S1, we get G = Z and
C∗(R) becomes the 1-dimensional chain complex Z[Z]-chain
complex

· · · → 0→ 0→ Z[Z] (t−1)−−−→ Z[Z]
where t ∈ Z is a generator.

Group rings are in general very complicated. For instance, there is
the conjecture that the complex group ring CG is Noetherian if and
only if G is virtually poly-cyclic.

Let us figure out whether there are idempotents x in RG, i.e.,
elements with x2 = x .

Here is the only known construction of an idempotent. Consider
an element g ∈ G which has finite order n such that n is invertible
in R. Then we can take

x =
1
n
·

n−1∑
i=0

g i .
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Conjecture (Idempotent Conjecture (Kaplansky))
Let R be an integral domain and let G be a torsionfree group. Then all
idempotents of RG are trivial, i.e., equal to 0 or 1.

If p is a prime and we additionally assume that p is not a unit in R,
then a reasonable version of the Idempotent Conjecture is
obtained by replacing the condition torsionfree by the weaker
condition that all finite subgroups of G are p-groups.

Exercise (Idempotent Conjecture for G = Z and G = Z/2)
Prove the Idempotent Conjecture for G = Z and G = Z/2. What
happens for F3[Z/2] for F3 the field of three elements?
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Conjecture (Zero-Divisor-Conjecture)
Let R be an integral domain and G be a torsion free group. Then RG is
an integral domain, i.e., x , y ∈ RG, xy = 0 =⇒ x or y is 0.

Exercise (Zero-Divisors versus idempotents)
Show that the Zero-Divisor Conjecture implies the Idempotent
Conjecture.

Conjecture (Unit-Conjecture)
Let R be an integral domain and G be a torsion free group. Then every
unit in RG is trivial, i.e., of the form r · g for some unit r ∈ R× and
g ∈ G.
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Exercise (Unit Conjecture for G = Z)
Prove the Unit Conjecture for G = Z.

The Unit Conjecture implies the Zero-Divisor Conjecture.

Exercise (Non-trivial unit in Z[Z/5])

Let t ∈ Z/5 be a generator. Show that 1− t − t−1 is a unit in Z[Z/5].
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The projective class group

Definition (Projective R-module)
An R-module P is called projective if it satisfies one of the following
equivalent conditions:

P is a direct summand in a free R-module;
The following lifting problem has always a solution

M
p
// N // 0

P
f

``

f

OO

If 0→ M0 → M1 → M2 → 0 is an exact sequence of R-modules,
then 0→ homR(P,M0)→ homR(P,M1)→ homR(P,M2)→ 0 is
exact.
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Over a field or, more generally, over a principal ideal domain every
projective module is free.
If R is a principal ideal domain, then a finitely generated R-module
is projective (and hence free) if and only if it is torsionfree.
For instance Z/n is for n ≥ 2 never projective as Z-module.
Let R and S be rings and R × S be their product. Then R × {0} is
a finitely generated projective R × S-module which is not free.

Exercise (The trivial FG-module F )
Let F be a field of characteristic p for p a prime number or 0.
Then F with the trivial G-action is a projective FG-module if and only if
i.) G is finite and ii.) p = 0 or p does not divide the order of G.
It is a free FG-module only if G is trivial.
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Definition (Projective class group K0(R))
The projective class group

K0(R)

is defined to be the abelian group whose generators are isomorphism
classes [P] of finitely generated projective R-modules P and whose
relations are [P0] + [P2] = [P1] for every exact sequence
0→ P0 → P1 → P2 → 0 of finitely generated projective R-modules.

This is the same as the Grothendieck construction applied to the
abelian monoid of isomorphism classes of finitely generated
projective R-modules under direct sum.

The reduced projective class group K̃0(R) is the quotient of K0(R)
by the subgroup generated by the classes of finitely generated
free R-modules, or, equivalently, the cokernel of K0(Z)→ K0(R).
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Let P be a finitely generated projective R-module. It is stably free,
i.e., P ⊕ Rm ∼= Rn for appropriate m,n ∈ Z, if and only if [P] = 0 in
K̃0(R).

K̃0(R) measures the deviation of finitely generated projective
R-modules from being stably finitely generated free.

The assignment P 7→ [P] ∈ K0(R) is the universal additive
invariant or dimension function for finitely generated projective
R-modules.

Induction
Let f : R → S be a ring homomorphism.
Given an R-module M, let f∗M be the S-module S ⊗R M.
We obtain a homomorphism of abelian groups

f∗ : K0(R)→ K0(S), [P] 7→ [f∗P].
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Compatibility with products
The two projections from R × S to R and S induce isomorphisms

K0(R × S)
∼=−→ K0(R)× K0(S).

Morita equivalence
Let R be a ring and Mn(R) be the ring of (n,n)-matrices over R.
We can consider Rn as a Mn(R)-R-bimodule and as a
R-Mn(R)-bimodule. Tensoring with these yields mutually inverse
isomorphisms

K0(R)
∼=−→ K0(Mn(R)), [P] 7→ [Mn(R)Rn

R ⊗R P];

K0(Mn(R))
∼=−→ K0(R), [Q] 7→ [RRn

Mn(R) ⊗Mn(R) Q].
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Exercise (Principal ideal domains)
Let R be a principal ideal domain and let F be its quotient field.
Then we obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Exercise (The complex representation ring of a finite group)
Let G be a finite group. Show that the complex representation ring
RC(G) is the same as K0(CG) and compute

RC(G) ∼= Zr

where r is the number of irreducible complex G-representations.
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Example (Dedekind domains)
Let R be a Dedekind domain, for instance the ring of integers in
an algebraic number field.
Call two ideals I and J in R equivalent if there exists non-zero
elements r and s in R with rI = sJ.
The ideal class group C(R) is the abelian group of equivalence
classes of ideals under multiplication of ideals.
Then we obtain an isomorphism

C(R)
∼=−→ K̃0(R), [I] 7→ [I].

The structure of the finite abelian group

C(Z[exp(2πi/p)]) ∼= K̃0(Z[exp(2πi/p)]) ∼= K̃0(Z[Z/p])

is only known for small prime numbers p.
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Theorem (Swan (1960))

If G is finite, then K̃0(ZG) is finite.

Topological K -theory
Let X be a compact space. Let K 0(X ) be the Grothendieck group
of isomorphism classes of finite-dimensional complex vector
bundles over X . This is the zero-th term of a generalized
cohomology theory K ∗(X ) called topological K -theory. It is
2-periodic, i.e., K n(X ) = K n+2(X ), and satisfies K 0(pt) = Z and
K 1(pt) = {0}.

Theorem (Swan (1962))
Let C(X ) be the ring of continuous functions from X to C. Then there
is an isomorphism

K 0(X )
∼=−→ K0(C(X )).
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Wall’s finiteness obstruction

Definition (Finitely dominated)
A CW -complex X is called finitely dominated if there exists a finite (=
compact) CW -complex Y together with maps i : X → Y and r : Y → X
satisfying r ◦ i ' idX .

A finite CW -complex is finitely dominated.
A closed manifold of dimension is homotopy equivalent to a finite
CW -complex.

Problem
Is a given finitely dominated CW-complex homotopy equivalent to a
finite CW-complex?
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Definition (Wall’s finiteness obstruction)
A finitely dominated CW -complex X defines an element

o(X ) ∈ K0(Z[π1(X )])

called its finiteness obstruction as follows.

Let C∗(X̃ ) be the cellular Z[π]-chain complex of its universal
covering. Since X is finitely dominated, there exists a finite
projective Zπ-chain complex P∗ with P∗ 'Zπ C∗(X̃ ).
Define

o(X ) :=
∑

n

(−1)n · [Pn] ∈ K0(Zπ).

Exercise (Wall’s finiteness obstruction for finite X )
Show for a finite connected CW-complex X that o(X ) = χ(X ) · [ZG]
holds in K0(ZG) for G = π1(X ).
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Theorem (Wall (1965))
A finitely dominated CW-complex X is homotopy equivalent to a finite
CW-complex if and only if its reduced finiteness obstruction
õ(X ) ∈ K̃0(Z[π1(X )]) vanishes.

A finitely dominated simply connected CW -complex is always
homotopy equivalent to a finite CW -complex since K̃0(Z) = {0}.

Given a finitely presented group G and ξ ∈ K0(ZG), there exists a
finitely dominated CW -complex X with π1(X ) ∼= G and o(X ) = ξ.
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Theorem (Geometric characterization of K̃0(ZG) = {0})
The following statements for a finitely presented group G are
equivalent:

Every finite dominated CW-complex with G ∼= π1(X ) is homotopy
equivalent to a finite CW-complex.
K̃0(ZG) = {0}.

Conjecture (Vanishing of K̃0(ZG) for torsionfree G)

If G is torsionfree, then K̃0(ZG) = {0}.

The conjecture above makes also sense if we replace Z by a field
of characteristic zero F . Then conjecture above implies the
Idempotent Conjecture for FG.
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The Whitehead group

Definition (K1-group K1(R))
Define the K1-group of a ring R

K1(R)

to be the abelian group whose generators are conjugacy classes [f ] of
automorphisms f : P → P of finitely generated projective R-modules
with the following relations:

Given an exact sequence 0→ (P0, f0)→ (P1, f1)→ (P2, f2)→ 0 of
automorphisms of finitely generated projective R-modules, we get
[f0] + [f2] = [f1];
[g ◦ f ] = [f ] + [g].
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K1(R) is isomorphic to GL(R)/[GL(R),GL(R)].

An invertible matrix A ∈ GL(R) can be reduced by elementary row
and column operations and (de-)stabilization to the trivial empty
matrix if and only if [A] = 0 holds in the reduced K1-group

K̃1(R) := K1(R)/{±1} = cok (K1(Z)→ K1(R)) .

If R is commutative, the determinant induces an epimorphism

det : K1(R)→ R×,

which in general is not bijective.

The assignment A 7→ [A] ∈ K1(R) can be thought of the universal
determinant for R.
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Definition (Whitehead group)
The Whitehead group of a group G is defined to be

Wh(G) = K1(ZG)/{±g | g ∈ G}.

Lemma
We have Wh({1}) = {0}.

Proof.
The ring Z possesses an Euclidean algorithm.
Hence every invertible matrix over Z can be reduced via
elementary row and column operations and destabilization to a
(1,1)-matrix (±1).
This implies that any element in K1(Z) is represented by ±1.
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Let G be a finite group. Let F be Q, R or C.

Define rF (G) to be the number of irreducible F -representations of
G.

The Whitehead group Wh(G) is a finitely generated abelian group
of rank rR(G)− rQ(G).

The torsion subgroup of Wh(G) is the kernel of the map
K1(ZG)→ K1(QG).

In contrast to K̃0(ZG) the Whitehead group Wh(G) is computable.
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Exercise (Non-vanishing of Wh(Z/5))
Using the ring homomorphism f : Z[Z/5]→ C which sends the
generator of Z/5 to exp(2πi/5) and the norm of a complex number,
define a homomorphism of abelian groups

φ : Wh(Z/5)→ R>0.

Show that the class of the unit 1− t − t−1 in Wh(Z/5) is an element of
infinite order.
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Whitehead torsion

Definition (h-cobordism)
An h-cobordism over a closed manifold M0 is a compact manifold W
whose boundary is the disjoint union M0 qM1 such that both inclusions
M0 →W and M1 →W are homotopy equivalences.

Theorem (s-Cobordism Theorem, Barden, Mazur, Stallings,
Kirby-Siebenmann)
Let M0 be a closed (smooth) manifold of dimension ≥ 5. Let
(W ;M0,M1) be an h-cobordism over M0.
Then W is homeomorphic (diffeomorphic) to M0 × [0,1] relative M0 if
and only if its Whitehead torsion

τ(W ,M0) ∈Wh(π1(M0))

vanishes.
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Conjecture (Poincaré Conjecture)
Let M be an n-dimensional topological manifold which is a homotopy
sphere, i.e., homotopy equivalent to Sn.
Then M is homeomorphic to Sn.

Theorem
For n ≥ 5 the Poincaré Conjecture is true.
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Proof.
We sketch the proof for n ≥ 6.

Let M be a n-dimensional homotopy sphere.
Let W be obtained from M by deleting the interior of two disjoint
embedded disks Dn

1 and Dn
2 . Then W is a simply connected

h-cobordism.
Since Wh({1}) is trivial, we can find a homeomorphism
f : W

∼=−→ ∂Dn
1 × [0,1] which is the identity on ∂Dn

1 = Dn
1 × {0}.

By the Alexander trick we can extend the homeomorphism
f |Dn

1×{1} : ∂Dn
2
∼=−→ ∂Dn

1 × {1} to a homeomorphism g : Dn
1 → Dn

2 .
The three homeomorphisms idDn

1
, f and g fit together to a

homeomorphism h : M → Dn
1 ∪∂Dn

1×{0} ∂Dn
1 × [0,1] ∪∂Dn

1×{1} Dn
1 .

The target is obviously homeomorphic to Sn.
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The argument above does not imply that for a smooth manifold M
we obtain a diffeomorphism g : M → Sn since the Alexander trick
does not work smoothly.

Indeed, there exists so called exotic spheres, i.e., closed smooth
manifolds which are homeomorphic but not diffeomorphic to Sn.

The s-cobordism theorem is a key ingredient in the surgery
program for the classification of closed manifolds due to Browder,
Novikov, Sullivan and Wall.

Given a finitely presented group G, an element ξ ∈Wh(G) and a
closed manifold M of dimension n ≥ 5 with G ∼= π1(M), there
exists an h-cobordism W over M with τ(W ,M) = ξ.

Wolfgang Lück (Bonn) Introduction to middle K-theory Oberwolfach, October 2017 29 / 35



Theorem (Geometric characterization of Wh(G) = {0})
The following statements are equivalent for a finitely presented group
G and a fixed integer n ≥ 6

Every compact n-dimensional h-cobordism W with G ∼= π1(W ) is
trivial;
Wh(G) = {0}.

Conjecture (Vanishing of Wh(G) for torsionfree G)
If G is torsionfree, then

Wh(G) = {0}.
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Higher and negative K -theory

There are also higher algebraic K -groups Kn(R) for n ≥ 2 due to
Quillen (1973). They are defined as homotopy groups of certain
spaces or spectra.
There are also negative K -groups Kn(R) for n ≤ −1 due to Bass;
Most of the well known features of K0(R) and K1(R) extend to
both negative and higher algebraic K -theory.

Definition (Bass-Nil-groups)
Define for n ∈ Z

NKn(R) := coker (Kn(R)→ Kn(R[t ])) .
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Theorem (Bass-Heller-Swan decomposition)
There is for every n ∈ Z an isomorphism, natural in R,

Kn(R)⊕ Kn−1(R)⊕ NKn(R)⊕ NKn(R)
∼=−→ Kn(R[t , t−1]) = Kn(R[Z]).

Definition (Regular ring)
A ring R is called regular if it is Noetherian and every finitely generated
R-module possesses a finite projective resolution.

Principal ideal domains are regular. In particular Z and any field
are regular.
If R is regular, then R[t ] and R[t , t−1] = R[Z] are regular.
If R is regular, then RG in general is not Noetherian or regular.
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Theorem (Bass-Heller-Swan decomposition for regular rings)
Suppose that R is regular. Then

Kn(R) = 0 for n ≤ −1;
NKn(R) = 0 for n ∈ Z,

and the Bass-Heller-Swan decomposition reduces for n ∈ Z to the
natural isomorphism

Kn(R)⊕ Kn−1(R)
∼=−→ Kn(R[t , t−1]) = Kn(R[Z]).
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Notice the following formulas for a regular ring R and a
generalized homology theory H∗, which look similar:

Kn(R[Z]) ∼= Kn(R)⊕ Kn−1(R);

Hn(BZ) ∼= Hn(pt)⊕Hn−1(pt).

If G and K are groups, then we have the following formulas, which
look similar:

K̃n(Z[G ∗ K ]) ∼= K̃n(ZG)⊕ K̃n(ZK );

H̃n(B(G ∗ K )) ∼= H̃n(BG)⊕ H̃n(BK ).
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Question (K -theory of group rings and group homology)
Is there a relation between Kn(RG) and group homology of G?

To be continued

Stay tuned
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