Introduction to surgery theory (Lecture II)

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://131.220.77.52/lueck/

Oberwolfach, October 2017

Outline

- State the existence problem and uniqueness problem in surgery theory.
- Explain the notion of Poincaré complex and of Spivak normal fibration.
- Introduce the surgery problem, the surgery step and the surgery obstruction.
- Explain the surgery exact sequence and its applications to topological rigidity.

The goal of surgery theory

Problem (Existence)

Let X be a space. When is X homotopy equivalent to a closed manifold?

Problem (Uniqueness)

Let M and N be two closed manifolds. Are they isomorphic?

- For simplicity we will mostly work with orientable connected closed manifolds.
- We can work with topological manifolds, PL-manifolds or smooth manifolds and then isomorphic means homeomorphic, PL-homeomorphic or diffeomorphic.
- We will begin with the existence problem. We will later see that the uniqueness problem can be interpreted as a relative existence problem thanks to the s-Cobordism Theorem.

Poincaré complexes

- A closed manifold carries the structure of a finite CW-complex.
 Hence we assume in the sequel in the existence problem that X itself is already a CW-complex.
- Fix a natural number $n \ge 4$. Then every finitely presented group occurs as fundamental group of a closed n-dimensional manifold. Since the fundamental group of a finite CW-complex is finitely presented, we get no constraints on the fundamental group.

Exercise (Fundamental groups of closed 3-manifolds)

Let G be the fundamental group of a closed 3-manifold. Show that then $\dim_{\mathbb{Q}}(H_2(G;\mathbb{Q})) \leq \dim_{\mathbb{Q}}(H_1(G;\mathbb{Q}))$ holds.

• Let M be a (connected orientable) closed n-dimensional manifold. Then $H_n(M; \mathbb{Z})$ is infinite cyclic. If $[M] \in H_n(M; \mathbb{Z})$ is a generator, then the cap product with [M] yields for $k \in \mathbb{Z}$ isomorphisms

$$-\cap [M]\colon H^{n-k}(M;\mathbb{Z})\xrightarrow{\cong} H_k(M;\mathbb{Z}).$$

Obviously X has to satisfy the same property if it is homotopy equivalent to M.

- There is a much more sophisticated Poincaré duality behind the result above which we will explain next.
- Recall that a (not necessarily commutative) ring with involution R is ring R with an involution of rings

$$-: R \to R, r \mapsto \overline{r},$$

i.e., a map satisfying $\overline{\overline{r}} = r$, $\overline{r+\overline{s}} = \overline{r} + \overline{s}$, $\overline{r\cdot s} = \overline{s}\cdot \overline{r}$ and $\overline{1} = 1$ for $r, s \in R$.

- Our main example is the involution on the group ring $\mathbb{Z}G$ for a group G defined by sending $\sum_{g \in G} a_g \cdot g$ to $\sum_{g \in G} a_g \cdot g^{-1}$.
- Let M be a left R-module. Then $M^* := \hom_R(M, R)$ carries a canonical right R-module structure given by $(fr)(m) = f(m) \cdot r$ for a homomorphism of left R-modules $f \colon M \to R$ and $m \in M$. The involution allows us to view $M^* = \hom_R(M; R)$ as a left R-module, namely, define rf for $r \in R$ and $f \in M^*$ by $(rf)(m) := f(m) \cdot \overline{r}$ for $m \in M$.
- Given an R-chain complex of left R-modules C_* and $n \in \mathbb{Z}$, we define its dual chain complex C^{n-*} to be the chain complex of left R-modules whose p-th chain module is $hom_R(C_{n-p}, R)$ and whose p-th differential is given by

$$(-1)^{n-p+1} \cdot \mathsf{hom}_R(c_{n-p+1}, \mathsf{id}) \colon (C^{n-*})_p = \mathsf{hom}_R(C_{n-p}, R) \\ o (C^{n-*})_{p-1} = \mathsf{hom}_R(C_{n-p+1}, R).$$

Definition (Finite Poincaré complex)

A (connected) finite n-dimensional CW-complex X is a finite n-dimensional Poincaré complex if there is $[X] \in H_n(X; \mathbb{Z})$ such that the induced $\mathbb{Z}\pi$ -chain map

$$-\cap [X]\colon \mathit{C}^{n-*}(\widetilde{X}) \to \mathit{C}_*(\widetilde{X})$$

is a $\mathbb{Z}\pi$ -chain homotopy equivalence.

• If we apply $id_{\mathbb{Z}} \otimes_{\mathbb{Z}\pi} -$, we obtain a \mathbb{Z} -chain homotopy equivalence

$$C^{n-*}(X) \rightarrow C_*(X)$$

which induces after taking homology the Poincaré duality isomorphism $-\cap [X]\colon H^{n-k}(M;\mathbb{Z})\stackrel{\cong}{\to} H_k(M;\mathbb{Z})$ from above.

Theorem (Closed manifolds are Poincaré complexes)

A closed n-dimensional manifold M is a finite n-dimensional Poincaré complex.

 We conclude that a finite n-dimensional CW-complex X is homotopy equivalent to a closed n-dimensional manifold only if it is up to homotopy a finite n-dimensional Poincaré complex.

Exercise (Poincaré chain homotopy equivalence for S^1)

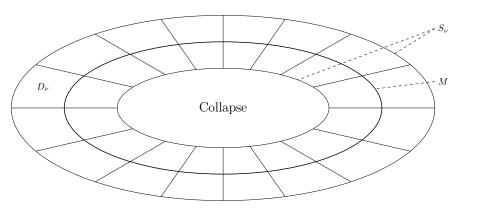
Equip S^1 with the CW-structure with two cells. Write down explicitly a $\mathbb{Z}[\pi_1(S^1)]$ -chain homotopy equivalence

$$C^{1-*}(\widetilde{S^1}) o C_*(\widetilde{S^1})$$

after appropriate identifications of the chain modules with $\mathbb{Z}[\pi_1(S^1)]$.

The Spivak normal fibration

- We briefly recall the Pontryagin-Thom construction for a closed n-dimensional manifold M.
- Choose an embedding $i: M \to S^{n+k}$ normal bundle $\nu(M)$.
- Choose a tubular neighborhood $N \subseteq S^{n+k}$ of M. This is a compact manifold with boundary ∂N with $M \subseteq \operatorname{int}(N)$ and comes with a diffeomorphism $f : (D\nu(M), S\nu(M)) \xrightarrow{\cong} (N, \partial N)$ which is the identity on the zero section.
- Let $c \colon S^{n+k} \to \operatorname{Th}(\nu(M))$ be the collaps map onto the Thom space $\operatorname{Th}(\nu(M)) := D\nu(M)/S\nu(M)$ which is given by f^{-1} on $\operatorname{int}(N)$ and sends any point outside $\operatorname{int}(N)$ to the base point.
- Then the Hurewicz homomorphism $\pi_{n+k}(Th(M)) \to H_{n+k}(Th(M))$ sends [c] to a generator of the infinite cyclic group $H_{n+k}(Th(M))$.



- The normal bundle is stably independent of the choice of the embedding.
- Next we describe the homotopy theoretic analog of the normal bundle for a finite n-dimensional Poincaré complex X.

Definition (Spivak normal structure)

A Spivak normal (k-1)-structure is a pair (p,c) where $p: E \to X$ is a (k-1)-spherical fibration called the Spivak normal fibration, and $c: S^{n+k} \to \operatorname{Th}(p)$ is a map such that the Hurewicz homomorphism $h: \pi_{n+k}(\operatorname{Th}(p)) \to H_{n+k}(\operatorname{Th}(p))$ sends [c] to a generator of the infinite cyclic group $H_{n+k}(\operatorname{Th}(p))$.

Theorem (Existence and Uniqueness of Spivak Normal Fibrations)

- If k is a natural number satisfying $k \ge n + 1$, then there exists a Spivak normal (k-1)-structure (p, c);
- For i = 0, 1 let p_i: E_i → X and c_i: S^{n+k_i} → Th(p_i) be Spivak normal (k_i-1)-structures for X.
 Then there exists an integer k with k ≥ k₀, k₁ such that there is up to strong fibre homotopy precisely one strong fibre homotopy equivalence

$$(id, \overline{f}): p_0 * \underline{S^{k-k_0}} \rightarrow p_1 * \underline{S^{k-k_1}}$$

for which $\pi_{n+k}(\mathsf{Th}(\bar{f}))(\Sigma^{k-k_0}([c_0])) = \Sigma^{k-k_1}([c_1])$ holds.

- The Pontryagin-Thom construction yields a Spivak normal (k-1)-structure on a closed manifold M with the sphere bundle $S\nu(M)$ as the spherical (k-1) fibration.
- Hence a finite n-dimensional Poincaré complex is homotopy equivalent to a closed manifold only if the Spivak normal fibration has (stably) a vector bundle reduction.
- There exists a finite n-dimensional Poincaré complex whose Spivak normal fibration does not possess a vector bundle reduction and which therefore is not homotopy equivalent to a closed manifold.
- Hence we assume from now on that X is a (connected oriented) finite n-dimensional Poincaré complex which comes with a vector bundle reduction ξ of the Spivak normal fibration.

Normal maps

Definition (Normal map of degree one)

A normal map of degree one with target *X* consists of:

- A closed (oriented) n-dimensional manifold M;
- A map of degree one $f: M \to X$;
- A (k + n)-dimensional vector bundle ξ over X;
- A bundle map \bar{f} : $TM \oplus \mathbb{R}^k \to \xi$ covering f.

- A vector bundle reduction yields a normal map of degree one with X as target as explained next.
- ullet Let η be a vector bundle reduction of the Spivak normal fibration.
- Let $c: S^{n+k} \to \text{Th}(p)$ be the associated collaps map. Make it transversal to the zero-section in Th(p).
- Let M be the preimage of the zero-section. This is a closed submanifold of S^{n+k} and comes with a map $f: M \to X$ of degree one covered by a bundle map $\nu(M \subseteq S^{n+k}) \to \eta$.
- Since $TM \oplus \nu(M \subseteq S^{n+k})$ is stably trivial, we can construct from these data a normal map of degree one from M to X.

Problem (Surgery problem)

Let (f, \overline{f}) : $M \to X$ be a normal map of degree one. Can we modify it without changing the target such that f becomes a homotopy equivalence?

Exercise (Existence of normal maps)

Suppose that X is homotopy equivalent to a closed manifold M. Show that then there exists a normal map of degree one from M to X whose underlying map $f: M \to X$ is a homotopy equivalence.

The surgery step

 Suppose that M is a closed manifold of dimension n, X is a CW-complex and f: M → X is a k-connected map. Consider ω ∈ π_{k+1}(f) represented by a diagram

$$S^{k} \xrightarrow{q} M$$

$$\downarrow_{j} \qquad \downarrow_{f}$$

$$D^{k+1} \xrightarrow{Q} X.$$

We want to kill ω .

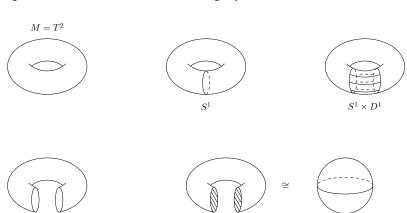
 In the category of CW-complexes this can be achieved by attaching cells. But attaching a cell destroys in general the structure of a closed manifold, so we have to do a more sophisticated modification. • Suppose that the map $q: S^k \to M$ extends to an embedding

$$q^{\mathsf{th}} \colon \mathcal{S}^k \times \mathcal{D}^{n-k} \hookrightarrow \mathcal{M}.$$

- Let $\operatorname{int}(\operatorname{im}(q^{\operatorname{th}}))$ be the interior of the image of q^{th} . Then $M \operatorname{int}(\operatorname{im}(q^{\operatorname{th}}))$ is a manifold with boundary $\operatorname{im}(q^{\operatorname{th}}|_{S^k \times S^{n-k-1}})$.
- We can get rid of the boundary by attaching $D^{k+1} \times S^{n-k-1}$ along $q^{\text{th}}|_{S^k \times S^{n-k-1}}$. Denote the resulting manifold

$$extbf{ extit{M}}' := \left(extbf{ extit{D}}^{k+1} imes extbf{ extit{S}}^{n-k-1}
ight) \cup_{q^{ ext{th}}|_{ extbf{ extit{S}}^k imes extbf{ extit{S}}^{n-k-1}} \left(extbf{ extit{M}} - ext{int}(ext{im}(q^{ ext{th}}))
ight).$$

 The manifold M' is said to be obtained from M by surgery along qth. • Let $f: T^2 \to S^2$ be a Hopf collapse map. We fix $y_0 \in S^1$ so that $S^1 := S^1 \times \{y_0\} \subset T^2$ satisfies $f(S^1) = x_0$. We define $\omega \in \pi_2(f)$ by extending $f|_{S^1}$ to the constant map at x_0 on all of D^2 . The following diagram illustrates the effect of surgery on the source.



 $M \setminus (S^1 \times D^1)$

 $M \setminus (S^1 \times D^1) \cup_{S^1 \times S^1} D^2 \times S^0$

Exercise (Surgery on $T^2 \rightarrow S^2$)

Show that the map $f': S^2 \to S^2$ obtained by carrying out the surgery step on the Hopf collapse map $f: T^2 \to S^2$ as described above is a homotopy equivalence.

Exercise (Euler characteristic as surgery obstruction)

Consider a map $f: M \to X$ from a closed n-dimensional manifold M to a finite CW-complex X. Suppose that it can be converted by a finite sequence of surgery steps to a homotopy equivalence $f': M' \to X$. Show that then $\chi(M) - \chi(X) \equiv 0 \mod 2$.

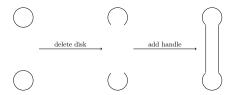
- It is important to notice that the maps $f: M \to X$ and $f': M' \to X$ are bordant as manifolds with reference map to X.
- The relevant bordism is given by

$$\mathbf{\textit{W}} = \left(\textit{D}^{k+1} \times \textit{D}^{n-k} \right) \cup_{\textit{q}^{\text{th}}} \left(\textit{M} \times [0,1] \right),$$

where we think of q^{th} as an embedding $S^k \times D^{n-k} \to M \times \{1\}$. In other words, W is obtained from $M \times [0, 1]$ by attaching a handle $D^{k+1} \times D^{n-k}$ to $M \times \{1\}$.

- Then M appears in W as $M \times \{0\}$ and M' as other component of the boundary of W.
- The manifold W is called the trace of surgery along the embedding qth.

Surgery step



Normal bordism

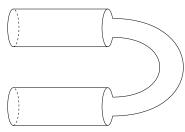


Figure 1: normal bordism

Introduction to surgery theory

- Notice that the inclusion $M-\operatorname{int}(\operatorname{im}(q^{\operatorname{th}}))\to M$ is (n-k-1)-connected since $S^k\times S^{n-k-1}\to S^k\times D^{n-k}$ is (n-k-1)-connected. Hence $\pi_I(f)=\pi_I(f')$ for $I\le k$ and there is an epimorphism $\pi_{k+1}(f)\to\pi_{k+1}(f')$ whose kernel contains ω , provided that 2(k+1)< n.
- The condition $2(k+1) \le n$ can be viewed as a consequence of Poincaré duality. Roughly speaking, if we change something in a manifold in dimension I, Poincaré duality also forces a change in dimension (n-I). This phenomenon is the reason why there are surgery obstructions to converting any map $f: M \to X$ into a homotopy equivalence in a finite number of surgery steps for odd dimension n.
- The bundle data ensure that the thickening q^{th} exists when we are doing surgery below the middle dimension. If one carries out the thickening in a specific way, the bundle data extend to the resulting normal map of degree one and we can continue the process.

Theorem (Making a normal map highly connected)

Given a normal map of degree one, we can carry out a finite sequence of surgery steps so that the resulting $f': N \to X$ is k-connected, where n = 2k or n = 2k + 1.

Exercise (Criterion for homotopy equivalence)

Show that a normal map of degree one which is k + 1-connected, where n = 2k or n = 2k + 1, is a homotopy equivalence.

- Hence we have to make a normal map, which is already k-connected, k+1-connected in order to achieve a homotopy equivalence, where n=2k or n=2k+1. Exactly here the surgery obstruction occurs.
- In odd dimension n = 2k + 1 the surgery obstruction comes from the previous observation that by Poincare duality modifications in the (k + 1)-th homology cause automatically (undesired) changes in the k-th homology.
- In even dimension n = 2k one encounters the problem that the bundle data only guarantee that one can find an immersion with finitely many self-intersection points

$$q^{\mathsf{th}} \colon \mathcal{S}^k \times \mathcal{D}^k \to M.$$

The surgery obstruction is the algebraic obstruction to get rid of the self-intersection points. If $n \ge 5$, its vanishing is indeed sufficient to convert q^{th} into an embedding.

- One prominent necessary surgery obstruction is given in the case n = 4k by the difference of the signatures sign(X) sign(M) since the signature is a bordism invariant and a homotopy invariant.
- If $\pi_1(M)$ is simply connected and n = 4k for $k \ge 2$, then the vanishing of sign(X) sign(M) is indeed sufficient.
- If $\pi_1(M)$ is simply connected and n is odd and $n \ge 5$, there are no surgery obstructions.

Theorem (Existence problem in the simply connected case)

Let X be a simply connected finite Poincaré complex of dimension n

- Suppose that n is odd and $n \ge 5$. Then X is homotopy equivalent to a closed manifold if and only if the Spivak normal fibration has a reduction to a vector bundle.
- ② Suppose $n = 4k \ge 5$. Then X is homotopy equivalent to a closed manifold if and only if the Spivak normal fibration has a reduction to a vector bundle $\xi \colon E \to X$ such that

$$\langle \mathcal{L}(\xi), [X] \rangle = \operatorname{sign}(X).$$

■ Suppose that $n = 4k + 2 \ge 5$. Then X is homotopy equivalent to a closed manifold if and only if the Spivak normal fibration has a reduction to a vector bundle such that the Arf invariant of the associated surgery problem, which takes values in $\mathbb{Z}/2$, vanishes.

Algebraic L-groups

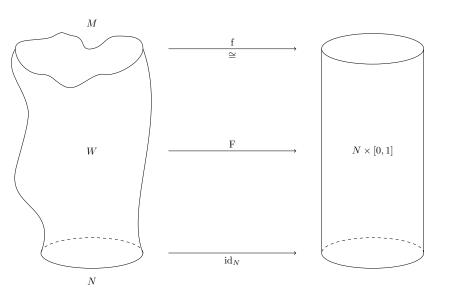
- In general there are surgery obstructions taking values in the so called L-groups $L_n(\mathbb{Z}[\pi_1(M)])$.
- In even dimensions $L_n(R)$ is defined for a ring with involution in terms of quadratic forms over R, where the hyperbolic quadratic forms always represent zero. In odd dimensions $L_n(R)$ is defined in terms of automorphisms of hyperbolic quadratic forms, or, equivalently, in terms of so called formations.
- The *L*-groups are easier to compute than *K*-groups since they are 4-periodic, i.e., $L_n(R) \cong L_{n+4}(R)$.
- We have

$$L_n(\mathbb{Z}) \cong egin{cases} \mathbb{Z} & \text{if } n = 4k; \ \mathbb{Z}/2 & \text{if } n = 4k+2; \ \{0\} & \text{if } n = 2k+1. \end{cases}$$

- The surgery obstruction is defined in all dimensions and is always a necessary condition to solve the surgery problem.
- In dimension $n \ge 5$ the vanishing of the surgery obstruction is sufficient.
- In dimension 4 the methods of proof of sufficiency break down because the so called Whitney trick is not available anymore which relies in higher dimensions on the fact that two embedded 2-disks can be made disjoint by transversality.
- In dimension 3 problems occur concerning the effect of surgery on the fundamental group.

The surgery program

- The surgery program addresses the uniqueness problem whether two closed manifolds M and N are diffeomorphic.
- The idea is to construct an h-cobordism (W; M, N) with vanishing Whitehead torsion. Then W is diffeomorphic to the trivial h-cobordism over M and hence M and N are diffeomorphic.
- So the surgery program is:
 - **①** Construct a homotopy equivalence $f: M \rightarrow N$;
 - Construct a cobordism (W; M, N) and a map $(F, f, id): (W; M, N) \rightarrow (N \times [0, 1]; N \times \{0\}, N \times \{1\});$
 - Modify W and F relative boundary by surgery such that F becomes a homotopy equivalence and thus W becomes an h-cobordism.
 - ① During these processes one should make certain that the Whitehead torsion of the resulting h-cobordism is trivial. Or one knows already that $Wh(\pi_1(M))$ vanishes.



The surgery exact sequence

Definition (The structure set)

Let N be a closed topological manifold of dimension n. We call two simple homotopy equivalences $f_i \colon M_i \to N$ from closed topological manifolds M_i of dimension n to N for i=0,1 equivalent if there exists a homeomorphism $g \colon M_0 \to M_1$ such that $f_1 \circ g$ is homotopic to f_0 .

The structure set $S_n^{\text{top}}(N)$ of N is the set of equivalence classes of simple homotopy equivalences $M \to X$ from closed topological manifolds of dimension n to N. This set has a preferred base point, namely the class of the identity id: $N \to N$.

- If we assume $Wh(\pi_1(N)) = 0$, then every homotopy equivalence with target N is automatically simple.
- There is an obvious version, where topological and homeomorphism are replaced by smooth and diffeomorphism.

Definition (Topological rigid)

A closed topological manifold N is called topologically rigid if any homotopy equivalence $f: M \to N$ with a closed manifold M as source is homotopic to a homeomorphism.

Exercise (Topological rigidity)

Show for a closed topological manifold M that it is topologically rigid if and only if the structure set $S_n^{top}(M)$ consists of exactly one point.

Exercise (The sphere is topological rigidity)

Show that the Poincaré Conjecture implies that Sⁿ is topologically rigid.

Theorem (The topological Surgery Exact Sequence)

For a closed n-dimensional topological manifold N with $n \ge 5$, there is an exact sequence of abelian groups, called surgery exact sequence,

$$\cdots \xrightarrow{\eta} \mathcal{N}_{n+1}^{\mathsf{top}}(N \times [0,1], N \times \{0,1\}) \xrightarrow{\sigma} L_{n+1}^{\mathsf{s}}(\mathbb{Z}\pi) \xrightarrow{\partial} \mathcal{S}_{n}^{\mathsf{top}}(N) \\ \xrightarrow{\eta} \mathcal{N}_{n}^{\mathsf{top}}(N) \xrightarrow{\sigma} L_{n}^{\mathsf{s}}(\mathbb{Z}\pi)$$

- $L_n^s(\mathbb{Z}\pi)$ is the algebraic L-group of the group ring $\mathbb{Z}\pi$ for $pi=\pi_1(N)$ (with decoration s).
- $\mathcal{N}_n^{\mathsf{top}}(N)$ is the set of normal bordism classes of normal maps of degree one with target N.
- $\mathcal{N}_{n+1}^{\text{top}}(N \times [0,1], N \times \{0,1\})$ is the set of normal bordism classes of normal maps $(M, \partial M) \to (N \times [0,1], N \times \{0,1\})$ of degree one with target $N \times [0,1]$ which are simple homotopy equivalences on the boundary.

- The map σ is given by the surgery obstruction.
- The map η sends $f: M \to N$ to the normal map of degree one for which $\xi = (f^{-1})^* TN$.
- The map ∂ sends an element $x \in L_{n+1}(\mathbb{Z}\pi)$ to $f \colon M \to N$ if there exists a normal map $F \colon (W, \partial W) \to (N \times [0, 1], N \times \{0, 1\})$ of degree one with target $N \times [0, 1]$ such that $\partial W = N \coprod M$, $F|_{N} = \mathrm{id}_{N}$, $F|_{M} = f$, and the surgery obstruction of F is x.
- There is a space G/TOP together with bijections

$$\begin{array}{ccc} [N,\mathsf{G/TOP}] & \xrightarrow{\cong} & \mathcal{N}_n^{\mathsf{top}}(N); \\ [N\times[0,1]/N\times\{0,1\},\mathsf{G/TOP}] & \xrightarrow{\cong} & \mathcal{N}_{n+1}^{\mathsf{top}}(N\times[0,1],N\times\{0,1\}). \end{array}$$

 There is an analog of the surgery exact sequence in the smooth category except that it is only an exact sequence of pointed sets and not of abelian groups.

Corollary

A topological manifold of dimension $n \ge 5$ is topologically rigid if and only if the map $\mathcal{N}_{n+1}^{\text{top}}(N \times [0,1], N \times \{0,1\}) \to L_{n+1}^{s}(\mathbb{Z}\pi)$ is surjective and the map $\mathcal{N}_{n}^{\text{top}}(N) \to L_{n}^{s}(\mathbb{Z}\pi)$ is injective.

Notice the following formulas which look similar:

$$L_n(\mathbb{Z}[\mathbb{Z}]) \cong L_n(\mathbb{Z}) \oplus L_{n-1}(\mathbb{Z});$$

 $\mathcal{H}_n(B\mathbb{Z}) \cong \mathcal{H}_n(\mathsf{pt}) \oplus \mathcal{H}_{n-1}(\mathsf{pt}).$

Question (L-theory of group rings and group homology)

Is there a relation between $L_n(RG)$ and group homology of G?

To be continued Stay tuned