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Outline

We formulate the Farrell-Jones Conjecture for torsionfree groups
and discuss some applications.
We introduce the notion of a classifying space for a family of
subgroups and explain its relevance for group theory and topology.
We present some nice models for EG.
We discuss finiteness properties of EG, EG and EG.
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The Farrell-Jones Conjectures for torsionfree groups

Recall the following formulas for a regular ring R and a
generalized homology theory H∗, which look similar:

Kn(R[Z]) ∼= Kn(R)⊕ Kn−1(R);

Hn(BZ) ∼= Hn(pt)⊕Hn−1(pt).

If G and K are groups, then we have the following formulas, which
look similar:

K̃n(Z[G ∗ K ]) ∼= K̃n(ZG)⊕ K̃n(ZK );

H̃n(B(G ∗ K )) ∼= H̃n(BG)⊕ H̃n(BK ).
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This raises the question whether there is a generalized homology
theory H∗ such that Hn(BG) ∼= Kn(RG) holds for n ∈ Z.

If this is true, we would get for the trivial group such that
Hn(pt) ∼= Kn(R) holds for n ∈ Z.

Notice that there is a spectrum KR satisfying πn(KR) ∼= Kn(R) for
n ∈ Z and for any spectrum E there is a generalized homology
theory H∗(−,E) satisfying Hn(pt; E) ∼= πn(E) for n ∈ Z.
Hence the obvious candidate for H∗ is H∗(−; KR).

Moreover, there exists a natural map Hn(BG; KR)→ Kn(RG),
called assembly map.
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Conjecture (K -theoretic Farrell-Jones Conjecture for torsionfree
groups and regular rings)
The K -theoretic Farrell-Jones Conjecture with coefficients in the
regular ring R for the torsionfree group G predicts that the assembly
map

Hn(BG; KR)→ Kn(RG)

is bijective for every n ∈ Z.

The condition that R is regular is necessary. Recall that the
Bass-Heller-Swan Theorem gives an isomorphism

Kn(RZ) ∼= Kn(R)⊕ Kn−1(R)⊕ NKn(R)⊕ NKn(R)

whereas the conjecture above predicts

Kn(RZ) ∼= Kn(R)⊕ Kn−1(R).
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Also the condition that G is torsionfree is necessary.
If G is finite, the conjecture above implies that the change of rings
map for R → RG induces an isomorphism

Kn(R)⊗Z Q
∼=−→ Kn(RG)⊗Z Q.

This is not true in general. Take for instance R = Z, n = 1 and
G = Z/5. Then K1(Z)⊗Z Q is zero, whereas
Kn(Z[Z/5])⊗Z Q ∼= Wh(Z/5)⊗Z Q ∼= Q.

Exercise (Failure for finite G)
Let G be a finite group G and F be a field F of characteristic zero.
Show that the map K0(R)⊗Z Q

∼=−→ K0(RG)⊗Z Q is bijective if and only
if G is trivial.
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Lemma
Let R be a regular ring. Suppose that G is torsionfree and satisfies the
K -theoretic Farrell-Jones Conjecture for torsionfree groups and regular
rings. Then

Kn(RG) = 0 for n ≤ −1;
The change of rings map K0(R)→ K0(RG) is bijective. In
particular K̃0(RG) is trivial if and only if K̃0(R) is trivial.

Lemma
Suppose that G is torsionfree and satisfies the K -theoretic
Farrell-Jones Conjecture for torsionfree groups and regular rings. Then
the Whitehead group Wh(G) is trivial.
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Proof.
The idea of the proof is to study the Atiyah-Hirzebruch spectral
sequence converging to Hn(BG; KR) whose E2-term is given by

E2
p,q = Hp(BG,Kq(R)).

Since R is regular by assumption, we get Kq(R) = 0 for q ≤ −1.

Hence the edge homomorphism yields an isomorphism

K0(R) = H0(pt,K0(R))
∼=−→ H0(BG; KR) ∼= K0(RG).
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Proof (continued).
We have K0(Z) = Z and K1(Z) = {±1}.

We get an exact sequence

0→ H0(BG; KZ) = {±1} → H1(BG; KZ) ∼= K1(ZG)

→ H1(BG; K0(Z)) = G/[G,G]→ 1.

This implies

Wh(G) := K1(ZG)/{±g | g ∈ G} ∼= 0.
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In particular, we get for a torsionfree group G satisfying the K -theoretic
Farrell-Jones Conjecture for torsionfree groups and regular rings:

Kn(ZG) = 0 for n ≤ −1.

K̃0(ZG) = 0.
Wh(G) = 0.
Every finitely dominated CW -complex X with G = π1(X ) is
homotopy equivalent to a finite CW -complex.
Every compact h-cobordism W of dimension ≥ 6 with π1(W ) ∼= G
is trivial.

Exercise (Serre’s Conjecture)
Suppose that the torsionfree group G satisfies the K -theoretic
Farrell-Jones Conjecture for torsionfree groups. Then G is of type FF if
and only if it is of type FP.
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Conjecture (L-theoretic Farrell-Jones Conjecture for torsionfree
groups)
The L-theoretic Farrell-Jones Conjecture with coefficients in the ring
with involution R for the torsionfree group G predicts that the assembly
map

Hn(BG; L〈−∞〉R )→ L〈−∞〉n (RG)

is bijective for every n ∈ Z.

L〈−∞〉n (RG) is the algebraic L-theory of RG with decoration 〈−∞〉.
L〈−∞〉R is the algebraic L-theory spectrum of R.

Hn(pt; L〈−∞〉R ) ∼= πn(L〈−∞〉R ) ∼= L〈−∞〉n (R) for n ∈ Z.

If K̃n(ZG) = 0 for n ≤ 0 and Wh(G) = 0, then the decoration
〈−∞〉 does not matter for Ln(ZG).
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We want to formulate a version of the Farrell-Jones Conjecture
which works for all groups and rings.

This requires as input the theory of classifying spaces for families
of subgroups.

These spaces are interesting in the own right for group theory and
topology, and hence we spend the rest of this lecture about them.
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Classifying spaces for families of subgroups

Definition (G-CW -complex)
A G-CW -complex X is a G-space together with a G-invariant filtration

∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration,
and Xn is obtained from Xn−1 for each n ≥ 0 by attaching equivariant
n-dimensional cells, i.e., there exists a G-pushout

∐
i∈In G/Hi × Sn−1

∐
i∈In qn

i
//

��

Xn−1

��∐
i∈In G/Hi × Dn

∐
i∈In Qn

i
// Xn
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Exercise (G-CW in terms of CW )
A G-CW-complex X is the same as a G-CW-complex together with a
cellular G-action such that for every open cell e and g ∈ G satisfying
g · e ∩ e 6= ∅ we have gx = x for every x ∈ e.

Example (Simplicial actions)
Let X be a simplicial complex. Suppose that G acts simplicially on X .
Then G acts simplicially also on the barycentric subdivision X ′, and the
G-space X ′ inherits the structure of a G-CW -complex.

Example (Smooth actions)
Let G act properly and smoothly on a smooth manifold M.
Then M inherits the structure of G-CW -complex.
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The obvious G-equivariant analogs of the Cellular Approximation
Theorem and the Whitehead Theorem hold.

Definition (Proper G-action)
A G-space X is called proper if for each pair of points x and y in X
there are open neighborhoods Vx of x and Wy of y in X such that set
{g ∈ G | gVx ∩Wy 6= ∅} is finite.

Lemma

1 A proper G-space has always finite isotropy groups.
2 A G-CW-complex X is proper if and only if all its isotropy groups

are compact.

Exercise (Non-proper action)
Construct a closed manifold with a free Z-action which is not proper.
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Definition (Family of subgroups)
A family F of subgroups of G is a set of subgroups of G which is
closed under conjugation and taking subgroups

A group G is called virtually cyclic if it is finite or contains Z as a
subgroup of finite index.

Examples for F are:
T R = {trivial subgroup};
FIN = {finite subgroups};
VCYC = {virtually cyclic subgroups};
ALL = {all subgroups}.
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Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW -complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → EF (G).

We abbreviate EG := EFIN (G) and call it the universal
G-CW -complex for proper G-actions.

We also write EG = ET R(G) and EG := EVCYC(G).
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Theorem (Homotopy characterization of EF(G))
Let F be a family of subgroups.

There exists a model for EF (G);
Two models for EF (G) are G-homotopy equivalent;
A G-CW-complex X is a model for EF (G) if and only if the H-fixed
point set X H is contractible for each H ∈ F and X H is empty for
H /∈ F .

Exercise ((Another) Homotopy characterisation of EF(G))
Let X be a G-CW-complex whose isotropy groups belong to F . Then
X is a model for EF (G) if and only if the two projections X × X → X to
the first and to the second factor are G-homotopic and for each H ∈ F
there exists x ∈ Gx with H ⊆ Gx .
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Exercise (Some models for EF(G))
Show

1 The G-spaces G/G is model for EF (G) if and only if F = ALL.
2 EG→ BG := G\EG is a model for the universal G-principal

bundle for G-principal bundles over CW-complexes.
3 A free G-CW-complex X is a model for EG if and only if X/G is an

Eilenberg MacLane space of type (G,1).

Example (Infinite dihedral group)

Let D∞ = Z o Z/2 = Z/2 ∗ Z/2 be the infinite dihedral group.
A model for ED∞ is the universal covering of RP∞ ∨ RP∞.
A model for ED∞ is R with the obvious D∞-action.
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Exercise (Contractible EG/G)
Construct an infinite group G such that EG/G is contractible. Can
such a group G be torsionfree?

Exercise (Maps between classifying spaces for families)
Let F and G be two families of subgroups of G. Show that the following
assertions are equivalent

1 There is a G-map EF (G)→ EG(G);
2 The set [EF (G),EG(G)]G consists of precisely one element;
3 The projection EF (G)× EG(G)→ EF (G) is a G-homotopy

equivalence;
4 F ⊆ G.
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Special models for EG

We want to illustrate that the G-space EG often has very nice
geometric models and appears naturally in many interesting
situations.

Theorem (Simplicial Model)
Let P∞(G) be the geometric realization of the full simplicial on G.
This is a model for EG.
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Theorem
Consider the G-space

XG =

{
f : G→ [0,1]

∣∣∣∣ f has finite support,
∑
g∈G

f (g) = 1
}

with the topology coming from the supremum norm. It is G-homotopy
equivalent to EG.

The spaces XG and P∞(G) have the same underlying sets but in
general they have different topologies.

The identity map induces a G-map P∞(G)→ XG which is a
G-homotopy equivalence, but in general not a G-homeomorphism.

Wolfgang Lück (Bonn) Classifying spaces for families Oberwolfach, October 2017 22 / 47



Theorem (Discrete subgroups of almost connected Lie groups)
Let L be a Lie group with finitely many path components. Let G ⊆ L be
a discrete subgroup of L.
Then L contains a maximal compact subgroup K , which is unique up
to conjugation, and L/K with the obvious left G-action is a finite
dimensional G-CW-model for EG.

Theorem (Actions on CAT(0)-spaces)
Let X be a proper G-CW-complex. Suppose that X has the structure
of a complete simply connected CAT(0)-space for which G acts by
isometries. Then X is a model for EG.

The result above contains as special case proper isometric
G-actions on simply-connected complete Riemannian manifolds
with non-positive sectional curvature and proper G-actions on
trees.
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The Rips complex Pd (G,S) of a group G with a symmetric finite
set S of generators for a natural number d is the geometric
realization of the simplicial set whose set of k -simplices consists
of (k + 1)-tuples (g0,g1, . . .gk ) of pairwise distinct elements
gi ∈ G satisfying dS(gi ,gj) ≤ d for all i , j ∈ {0,1, . . . , k}.

The obvious G-action by simplicial automorphisms on Pd (G,S)
induces a G-action by simplicial automorphisms on the
barycentric subdivision Pd (G,S)′.
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Theorem (Rips complex)
Let G be a discrete group with a finite symmetric set of generators.
Suppose that (G,S) is δ-hyperbolic for the real number δ > 0. Let d be
a natural number with d ≥ 16δ + 8.
Then the barycentric subdivision of the Rips complex Pd (G,S)′ is a
finite G-CW-model for EG.

Exercise (Rational homology of hyperbolic groups)
Let G be a hyperbolic group. Show that there exists a natural number
N such that Hn(G;Q) = 0 holds for n ≥ N.
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Let Γs
g,r be the mapping class group of an orientable compact

surface F of genus g with s punctures and r boundary
components.

We will always assume that 2g + s + r > 2, or, equivalently, that
the Euler characteristic of the punctured surface F is negative.

It is well-known that the associated Teichmüller space T s
g,r is a

contractible space on which Γs
g,r acts properly.

Theorem (Teichmüller space)
The Γs

g,r -space T s
g,r is a model for EΓs

g,r .
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Let Fn be the free group of rank n.

Denote by Out(Fn) the group of outer automorphisms.

Culler-Vogtmann have constructed a space Xn called outer space
on which Out(Fn) acts with finite isotropy groups. It is analogous
to the Teichmüller space of a surface with the action of the
mapping class group of the surface.

The space Xn contains a spine Kn which is an Out(Fn)-equivariant
deformation retraction.
This space Kn is a simplicial complex of dimension (2n − 3) on
which the Out(Fn)-action is by simplicial automorphisms and
cocompact.

Theorem (Spine of outer space)
The barycentric subdivision K ′n is a finite (2n − 3)-dimensional model
of E Out(Fn).
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Example (SL2(Z))
In order to illustrate some of the general statements above we
consider the special example SL2(Z).

The group SL2(R) is a connected Lie group and SO(2) ⊆ SL2(R)
is a maximal compact subgroup. Hence SL2(R)/SO(2) is a model
for ESL2(Z).

Since the 2-dimensional hyperbolic space H2 is a
simply-connected Riemannian manifold, whose sectional
curvature is constant −1 and SL2(Z) acts proper on it by Moebius
transformations, the SL2(Z)-space H2 is a model for ESL2(R).

The group SL2(R) acts by isometric diffeomorphisms on H2 by
Moebius transformations. This action is proper and transitive. The
isotropy group of z = i is SO(2). Hence the SL2(Z)-spaces
SL2(R)/SO(2) and H2 are SL2(Z)-diffeomorphic.
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Example (continued)
The group SL2(Z) is isomorphic to the amalgamated product
Z/4 ∗Z/2 Z/6. This implies that there is a tree on which SL2(Z)
acts with finite stabilizers. The tree has alternately two and three
edges emanating from each vertex.
This is a 1-dimensional model for ESL2(Z).

The tree model and the other model given by H2 must be
SL2(Z)-homotopy equivalent. Here is a concrete description of
such a SL2(Z)-homotopy equivalence.
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Example (continued)
Divide the Poincaré disk into fundamental domains for the
SL2(Z)-action.
Each fundamental domain is a geodesic triangle with one vertex
at infinity, i.e., a vertex on the boundary sphere, and two vertices
in the interior.
Then the union of the edges, whose end points lie in the interior of
the Poincaré disk, is a tree T with SL2(Z)-action which is the tree
model above.
The tree is a SL2(Z)-equivariant deformation retraction of the
Poincaré disk. A retraction is given by moving a point p in the
Poincaré disk along a geodesic starting at the vertex at infinity,
which belongs to the triangle containing p, through p to the first
intersection point of this geodesic with T .
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Finiteness properties

Finiteness properties of the spaces EG and EG have been
intensively studied in the literature. We mention a few examples
and results.

If EG has a finite-dimensional model, the group G must be
torsionfree. There are often finite models for EG for groups G with
torsion.

Often geometry provides small models for EG in cases, where the
models for EG are huge. These small models can be useful for
computations concerning BG itself.
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Exercise (Models of finite type)
Show: If there is a model for EG of finite type, then the same is true for
EG and BG.

Exercise (Finitely generated homology)
Suppose that G is a hyperbolic group, a mapping class group, Out(Fn)
or a cocompact discrete subgroup of a connected Lie group.
Show that then G is finitely presented and that Hi(G;Z) is finitely
generated for all i ≥ 0.
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Theorem (Discrete subgroups of Lie groups)
Let L be a Lie group with finitely many path components. Let K ⊆ L be
a maximal compact subgroup K . Let G ⊆ L be a discrete subgroup.

1 Then L/K with the left G-action is a model for EG.

2 Suppose additionally that G is virtually torsionfree, i.e., contains a
torsionfree subgroup ∆ ⊆ G of finite index.
Then we have for its virtual cohomological dimension

vcd(G) ≤ dim(L/K ).

Equality holds if and only if G\L is compact.
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Theorem (A criterion for 1-dimensional models for BG, Stallings,
Swan)
The following statements are equivalent:

There exists a 1-dimensional model for EG;
There exists a 1-dimensional model for BG;
The cohomological dimension of G is less or equal to one;
G is a free group.
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Theorem (A criterion for 1-dimensional models for EG,
Dunwoody, Karras-Pietrowsky-Solitar)

There exists a 1-dimensional model for EG if and only if the
cohomological dimension of G over the rationals Q is less or equal
to one.

Suppose that G is finitely generated. Then there exists a
1-dimensional model for EG if and only if B is virtually finitely
generated free.
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Theorem (Virtual cohomological dimension and dim(EG), Lück)
Let G be virtually torsionfree.

Then
vcd(G) ≤ dim(EG)

for any model for EG.
Let l ≥ 0 be an integer such that for any chain of finite subgroups
H0 ( H1 ( . . . ( Hr we have r ≤ l .
Then there is a model for EG of dimension max{3, vcd(G)}+ l .
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Problem (Brown)
For which groups G, which are virtually torsionfree, does there exist a
G-CW-model for EG of dimension vcd(G)?

The results above do give some evidence for a positive answer.

However, Leary-Nucinkis have constructed groups, where the
answer is negative.

Theorem ( Leary-Nucinkis)
Let X be a CW-complex. Then there exists a group G with X ' G\EG.
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Groups with special maximal finite subgroups

LetMFIN be the subset of FIN consisting of elements in FIN
which are maximal in FIN .
Assume that G satisfies the following assertions:

(M) Every non-trivial finite subgroup of G is contained in a unique
maximal finite subgroup;

(NM) M ∈MFIN ,M 6= {1} ⇒ NGM = M.

Here are some examples of groups G which satisfy conditions (M)
and (NM):

Extensions 1→ Zn → G→ F → 1 for finite F such that the
conjugation action of F on Zn is free outside 0 ∈ Zn;
Fuchsian groups;
One-relator groups G.
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For such a group there is a nice model for EG with as few
non-free cells as possible.
Let {(Mi) | i ∈ I} be the set of conjugacy classes of maximal finite
subgroups of Mi ⊆ G.
By attaching free G-cells we get an inclusion of G-CW -complexes
j1 :
∐

i∈I G ×Mi EMi → EG.
Define X as the G-pushout

∐
i∈I G ×Mi EMi

j1
//

u1
��

EG

f1
��∐

i∈I G/Mi
k1

// X

where u1 is the obvious G-map obtained by collapsing each EMi
to a point.
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Theorem
The G-space X is a model for EG.

Proof.
Obviously X is a G-CW -complex with finite isotropy groups.

We have to show for H ⊆ G finite that EGH contractible.

We begin with the case H 6= {1}.

Because of conditions (M) and (NM) there is precisely one index
i0 ∈ I such that H is subconjugated to Mi0 and is not
subconjugated to Mi for i 6= i0 and we get(∐

i∈I

G/Mi

)H

=
(
G/Mi0

)H
= pt.

Hence EGH = pt.
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Proof continued.
It remains to treat H = {1}. Since u1 is a non-equivariant
homotopy equivalence and j1 is a cofibration, f1 is a
non-equivariant homotopy equivalence. Hence EG is contractible.

This small model is very useful for computation of all kind of K -
and L-groups of RG, provided that the Farrell-Jones Conjecture is
true. These computations have interesting applications to
questions about the classification of manifolds and of certain
C∗-algebras.

The potential of these models is already interesting for ordinary
group (co-)homology as illustrated next.
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Consider the pushout obtained from the G-pushout above by
dividing out the G-action∐

i∈I BMi //

��

BG

��∐
i∈I pt // G\EG

The associated Mayer-Vietoris sequence yields

. . .→ H̃p+1(G\EG)→
⊕
i∈I

H̃p(BMi)→ H̃p(BG)

→ H̃p(G\EG)→ . . .
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In particular we obtain an isomorphism for p ≥ dim(EG) + 1⊕
i∈I

Hp(Mi)
∼=−→ Hp(G).

Let G be one relator-group. Then G has a model for EG of
dimension 2, contains up to conjugacy precisely one maximal
subgroup M, and M is isomorphic to Z/m for some m ≥ 1. Hence
we get for n ≥ 3

Hn(Z/m)
∼=−→ Hn(G).
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Information about EG

We will be forced when dealing with the Farrell-Jones Conjecture
to deal with EG instead of EG. In general EG is much more
complicated and does not have such nice models as EG.

The following conjecture is known to be true for many groups, e.g.,
hyperbolic groups.

Conjecture (Finite models for EG)

There is a model of finite type for EG if and only if G is virtually cyclic.
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Theorem (Lück-Weiermann)
1 mindimG(EG) ≤ 1 + mindimG(EG);
2 If G is virtually Zn for n ≥ 2, then mindimG(EG) = n + 1 and

mindimG(EG) = n;
3 There exists an extension 1→ Z→ H → Zn → 1 and an

automorphism φ of H such that the semidirect product
G = H oφ Z satisfies

mindimG(EG) = n + 1;

mindimG(EG) = n + 2.

In particular we get

mindimG(EG) < mindimG(EG).
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To be continued

Stay tuned
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