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What is an aspherical manifold?

Manifold means connected closed topological manifold unless
stated explicitly differently.

Definition (Aspherical manifold)
An aspherical manifold is a manifold such that one of the following
equivalent conditions is satisfied:

M is a model for Bπ1(M);
πk (M) is trivial for k ≥ 2;

The universal covering M̃ is contractible.

The homotopy type type and the homology of an aspherical
manifold and of maps between them depends only on the
fundamental group.
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What are examples of aspherical manifolds?

A smooth Riemannian manifold with non-positive sectional
curvature is aspherical;

Let G be connected Lie group with maximal compact subgroup
K ⊆ G. Let L ⊆ G be a torsionfree cocompact lattice.

Then M = L\G/K is aspherical;

A surface, which is different from S2 and RP2, is aspherical;

A prime 3-manifold, which is not an S1-bundle over S2 and has
infinite fundamental group, is aspherical.
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The Farrell-Jones Conjecture

Conjecture (K -theoretic Farrell-Jones Conjecture for torsionfree
groups and regular rings)
The K -theoretic Farrell-Jones Conjecture with coefficients in the
regular ring R for the torsionfree group G predicts that the assembly
map

Hn(BG; KR)→ Kn(RG)

is bijective for every n ∈ Z.

There is also an L-theory version.
There is also a version, the Full Farrell-Jones Conjecture, which
works for all groups and rings and where one can even allow
twisted group rings and non-trivial orientation homomorphisms in
the L-theory case.
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Theorem (Bartels, Farrell, Kammeyer, Lück, Reich, Rüping,
Wegner)
Let FJ be the class of groups for which the Full Farrell-Jones
Conjecture holds. Then FJ contains the following groups:

Hyperbolic groups;
CAT(0)-groups;
Solvable groups,
(Not necessarily uniform) lattices in almost connected Lie groups;
Fundamental groups of (not necessarily compact) d-dimensional
manifolds (possibly with boundary) for d ≤ 3.
Subgroups of GLn(Q) and of GLn(F [t ]) for a finite field F .
All S-arithmetic groups.
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Theorem (continued)
Moreover, FJ has the following inheritance properties:

If G1 and G2 belong to FJ , then G1 ×G2 and G1 ∗G2 belong to
FJ ;
If H is a subgroup of G and G ∈ FJ , then H ∈ FJ ;
If H ⊆ G is a subgroup of G with [G : H] <∞ and H ∈ FJ , then
G ∈ FJ ;
Let {Gi | i ∈ I} be a directed system of groups (with not
necessarily injective structure maps) such that Gi ∈ FJ for i ∈ I.
Then colimi∈I Gi belongs to FJ ;
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To which extend does the fundamental group
determine an aspherical manifold?

Conjecture (Borel Conjecture)
The Borel Conjecture for a group G predicts that for two aspherical
manifolds M and N with π1(M) ∼= π1(N) ∼= G any homotopy
equivalence M → N is homotopic to a homeomorphism.

In particular the Borel Conjecture predicts that two aspherical
manifolds are homeomorphic if and only if their fundamental
groups are isomorphic.
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The Borel Conjecture can be viewed as the topological version of
Mostow rigidity.

A special case of Mostow rigidity says that any homotopy
equivalence between hyperbolic manifolds of dimension ≥ 3 is
homotopic to an isometric diffeomorphism.

The Borel Conjecture is not true in the smooth category. Namely,
Farrell-Jones show that for any ε > 0 and n ≥ 5 there exists a
hyperbolic n-manifold N and a Riemannian n-manifold M with
−1− ε ≤ sec(M) ≤ −1 such that M and N are homeomorphic, but
not diffeomorphic.

The Borel Conjecture implies the Novikov Conjecture about the
homotopy invariance of higher signatures, which in turns implies
the conjecture that an aspherical smooth manifold does not carry
a Riemannian metric with positive scalar curvature.

The Borel Conjecture is true in dimensions ≤ 3.
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Theorem (Farrell-Jones implies Borel)
Let G be a group for which there exists an aspherical manifold M with
G ∼= π1(M) and dim(M) ≥ 5 and which belongs to FJ .

Then the Borel Conjecture holds for G.

Question
Do the Farrell-Jones Conjecture, the Borel Conjecture and the Novikov
Conjecture hold in general?
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Theorem (Projections of block bundles, Farrell-Lück-Steimle)
Let B be an aspherical triangulable manifold with hyperbolic
fundamental group. Let M be a manifold. Assume that
dim(M)− dim(B) is greater or equal to 5. Suppose π1(M) is
torsionfree and belongs to FJ .

Then a map M → B is homotopic to the projection of a block bundle if
and only if the homotopy fiber of p is finitely dominated.
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Which groups occur as fundamental groups of
aspherical manifolds?

Definition (Poincaré duality group)
A Poincaré duality group G of dimension n is a finitely presented group
satisfying:

G is of type FP;

H i(G;ZG) ∼=

{
0 i 6= n;

Z i = n.

Lemma
Let X be an aspherical ANR-homology manifold of dimension n. Then
its fundamental group is a Poincaré duality group of dimension n.
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Theorem (Poincaré duality groups and ANR-homology
manifolds, Bartels-Lück-Weinberger)
Let G be a torsionfree group. Suppose that it belongs to FJ . Consider
n ≥ 6.
Then the following statements are equivalent:

1 G is a Poincaré duality group of dimension n;
2 There exists an aspherical n-dimensional ANR-homology manifold

M with π1(M) ∼= G;
3 There exists an aspherical n-dimensional ANR-homology manifold

M with π1(M) ∼= G which has the DDP (Disjoint Disk Property).

If the first statements holds, then the homology ANR-manifold M
appearing above is unique up to s-cobordism of ANR-homology
manifolds.
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Theorem (Quinn (1987))
There is an invariant ι(M) ∈ 1 + 8Z for (not necessarily compact)
homology ANR-manifolds with the following properties:

if U ⊂ M is an open subset, then ι(U) = ι(M);
i(M × N) = i(M) · i(N);
Let M be a homology ANR-manifold of dimension ≥ 5. Then M is
a topological manifold if and only if M has the DDP and ι(M) = 1.
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Question
Does the Quinn obstruction always vanish for aspherical homology
ANR-manifolds?

If the answer is yes, we can replace “ANR-homology manifold”by
“manifold” in the theorem above.
In general the Quinn obstruction is not a homotopy invariant but it
is a homotopy invariant for aspherical ANR-homology manifolds,
provided that the Farrell-Jones Conjecture holds.
However, some experts expect the answer no.
I am not an expert and hope that the answer is yes.
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Conjecture (Gromov (1994))

Let G be a hyperbolic group whose boundary is a sphere Sn−1. Then
there is an aspherical manifold M with π1(M) ∼= G.

Theorem (Bartels-Lück-Weinberger)
Let G be a torsionfree hyperbolic group and let n be an integer ≥ 6.

Then following statements are equivalent:

The boundary ∂G is homeomorphic to Sn−1;

There is an aspherical manifold M such that G ∼= π1(M), its
universal covering M̃ is homeomorphic to Rn and the
compactification of M̃ by ∂G is homeomorphic to Dn.

The manifold above is unique up to homeomorphism.
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Theorem (Casson-Jungreis, Freden, Gabai)

A hyperbolic group has S1 as boundary if and only if it acts properly,
cocompactly and isometrically on H2.

Conjecture (Cannon’s Conjecture)

A hyperbolic group G has S2 as boundary if and only if it acts properly,
cocompactly and isometrically on H3.
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How exotic can aspherical manifolds be?

By hyperbolization techniques due to Charney, Davis,Januskiewicz
one can find the following examples:

Examples (Exotic universal coverings)
Given n ≥ 5, there are aspherical manifolds M of dimension n with
hyperbolic fundamental group G = π1(M) satisfying:

The universal covering M̃ is not homeomorphic to Rn and ∂G is
not homeomorphic to Sn−1.
M is smooth and M̃ is homeomorphic to Rn but ∂G is not Sn−1.

Example (No smooth structures)
For every k ≥ 2 there exists a torsionfree hyperbolic group G with
∂G ∼= S4k−1 such that there is no aspherical closed smooth manifold
M with π1(M) ∼= G. In particular G is not the fundamental group of a
closed smooth Riemannian manifold with sec(M) < 0.
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Theorem (Davis-Fowler-Lafont, based on Manolescu)
For every n ≥ 6 there exists an aspherical manifold with hyperbolic
fundamental group which is not triangulable.

Theorem (Bartels-Lück)
For every n ≥ 5 aspherical topological manifolds with hyperbolic
fundamental groups are topologically rigid.

Corollary
For any n ≥ 6 there exists a hyperbolic group which is the fundamental
group of an aspherical topological manifold but not the fundamental
group of an aspherical triangulable topological manifold.
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Theorem (Exotic fundamental groups, Belegradek, Mess,
Weinberger)

1 For every n ≥ 4 there is an aspherical manifold of dimension n
whose fundamental group contains an infinite divisible abelian
group;

2 For every n ≥ 4 there is an aspherical manifold of dimension n
whose fundamental group has an unsolvable word problem.

A finitely presented group with unsolvable word problem is not a
CAT(0)-group, not hyperbolic, not automatic, not asynchronously
automatic, not residually finite and not linear over any
commutative ring.
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What can be said about the automorphism groups of
an aspherical manifold?

Theorem (Homotopy groups of automorphism groups of
aspherical manifolds)
Let M be an orientable aspherical (smooth) manifold of dimension
> 10 with fundamental group G. Suppose G ∈ FJ .

Then for 1 ≤ i ≤ (dim M − 7)/3 one has

πi(Top(M))⊗Z Q =

{
center(G)⊗Z Q if i = 1;
0 if i > 1,

and

πi(Diff(M))⊗Z Q =


center(G)⊗Z Q if i = 1;⊕∞

j=1 H(i+1)−4j(M;Q) if i > 1, dim M odd ;

0 if i > 1, dim M even .
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There is a canoncial map

π1(Top(M), id)→ G1(M) ⊆ π1(M).

Suppose from now on that M is an orientable aspherical manifold
of dimension > 10 with G := π1(M) ∈ FJ .
Then G1(M) = center(G) and the induced map

B Top(M)◦ → K (center(G),2)

is a map of simply connected spaces inducing isomorphism on
the rationalized homotopy groups in a range.
This implies that in this range we get an isomorphism

H∗(K (center(G),2);Q)
∼=−→ H∗(B Top(M)◦;Q).

Notice the canonical epimorphism which is rationally bijective

π0(Top(M))→ Out(G).
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What can be said about the L2-invariants of the
universal covering of an aspherical manifold?

Given a smooth Riemannian manifold M, Atiyah gave an analytic
definition of the nth L2-Betti number of its universal covering

b(2)
n (M̃) = lim

t→∞

∫
F

tr
(
et∆n(x̃ ,x̃)

)
dvolM̃ .

Dodziuk gave an equivalent definition in terms of Hilbert
N (π)-chain complexes associated to cellular chain complexes.

Lück gave a definition for arbitrary G-spaces in terms of the
generalized Murray-von Neumann dimension function.
In this form they had surprizing applications to questions in
geometry, topology, group theory and von Neumann algebras.
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Daniel Wise, Bonn, August 2015:
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Daniel Wise, Bonn, August 2015:

L2-Betti numbers are VOODOO!!
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The following conjecture combines and generalizes Conjectures
by Bergeron-Venkatesh, Hopf, Singer, Lück, and Lück-Shalen.

Conjecture (Homological growth and L2-invariants for aspherical
manifolds)
Let M be an aspherical manifold of dimension d and fundamental
group G = π1(M). Let M̃ be its universal covering. Then

1.) For any natural number n with 2n 6= d we get

b(2)
n (M̃) = 0.

If d = 2n, we have

(−1)n · χ(M) = b(2)
n (M̃) ≥ 0.

If d = 2n and sec(M) < 0, then

(−1)n · χ(M) = b(2)
n (M̃) > 0;
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Conjecture (Continued)
2.) Let (Gi)i≥0 be a chain, i.e., a sequence of in G normal subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · ·

such that [G : Gi ] <∞ and
⋂

i≥0 Gi = {1}. Put M[i] = Gi\M̃.
Then we get for any natural number n and any field F

b(2)
n (M̃) = lim

i→∞

bn(M[i]; F )

[G : Gi ]
;
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Conjecture (Continued)

3.) Let (Gi)i≥0 be any chain. Put M[i] = Gi\M̃. Then we get for any
natural number n with 2n + 1 6= d

lim
i→∞

ln
(∣∣tors

(
Hn(M[i])

)∣∣)
[G : Gi ]

= 0,

and we get in the case d = 2n + 1

lim
i→∞

ln
(∣∣tors

(
Hn(M[i])

)∣∣)
[G : Gi ]

= (−1)n · ρ(2)
(
M̃
)
≥ 0.

If M is hyperbolic of dimension 3, this boils down to

lim
i→∞

ln
(∣∣tors

(
H1(Gi)

)∣∣)
[G : Gi ]

=
vol(M)

6π
.
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How many aspherical manifolds are there?

Slogan
A random manifold is aspherical and topologically rigid (and
asymmetric).

Question
What is a random manifold?

Such a notion exists for finite presented groups and had many
application, in particular to find groups which have exotic
properties or are counterexamples to prominent conjecture and
questions.

A random finitely presented group is hyperbolic and torsionfree, is
not a free product, and has trivial center.
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A manifold M is called asymmetric if every finite group which acts
effectively on M is trivial. This is equivalent to the statement that
for any choice of Riemannian metric on M the group of isometries
is trivial.

Here is some mild evidence for the slogan above.

In dimensions ≤ 2 we can count.

A a random 3-manifold is expected to be prime and to have infinite
fundamental group which implies asphericity and topologically
rigidity.
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The condition aspherical does not impose any restrictions on the
characteristic numbers of a manifold.

Consider a bordism theory Ω∗ for PL-manifolds or smooth
manifolds which is given by imposing conditions on the stable
tangent bundle. Examples are unoriented bordism, oriented
bordism, framed bordism. Then any bordism class can be
represented by an aspherical manifold. If two aspherical manifolds
represent the same bordism class, then one can find an
aspherical bordism between them.

Borel has shown that an aspherical manifold is asymmetric, if its
fundamental group is centerless and its outer automorphism
group is torsionfree.

If S1 acts non-trivially on the aspherical manifold M, then π1(M)
has infinite center.
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The universe of manifolds and our universe

The slogan above is — at least on the first glance — surprising
since often our favorite manifolds are not asymmetric and not
determined by their fundamental group, e.g., lens spaces and
simply connected manifolds.

So why do human beings may have the feeling that the universe of
manifolds described above is different from the expectation
mentioned in the slogan above?
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If one asks people for the most prominent manifold, most people
name the standard sphere.

It is interesting that the n-dimensional standard sphere Sn can be
characterized among (simply connected) Riemannian manifolds of
dimension n by the property that its isometry group has maximal
dimension.

It is likely that the human taste whether a geometric object is
beautiful is closely related to the question how many symmetries it
admits. In general it seems to be the case that a human being is
attracted by unusual representatives among mathematical objects.
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Here is an interesting parallel to our actual universe.

If you materialize at a random point in the universe, it will be very
cold and nothing will be there. There is no interaction between
different random points, i.e., it is rigid.

A human being will not like this place, actually even worse, it
cannot exist at such a random place.

But there are unusual rare non-generic points in the universe,
where human beings can exist such as the surface of our planet
and there a lot of things and interactions are happening.
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And human beings tend to think that the rest of the universe looks
like the place they are living in and cannot really comprehend the
rest of the universe.
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