Universal torsion, *L*²-invariants, polytopes and the Thurston norm

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Münster, December, 2015

Review of classical L²-invariants

- Let $G \to \overline{X} \to X$ be a *G*-covering of a connected finite *CW*-complex *X*.
- The cellular chain complex of \overline{X} is a finitely generated free $\mathbb{Z}G$ -chain complex:

$$\cdots \xrightarrow{c_{n-1}} \bigoplus_{l_n} \mathbb{Z}G \xrightarrow{c_n} \bigoplus_{i_{n-1}} \mathbb{Z}G \xrightarrow{c_{n-1}} \cdots$$

• The associated *L*²-chain complex

$$C^{(2)}_*(\overline{X}) := L^2(G) \otimes_{\mathbb{Z}G} C_*(\overline{X})$$

has Hilbert spaces with isometric linear *G*-action as chain modules and bounded *G*-equivariant operators as differentials

$$\cdots \xrightarrow{c_{n-1}^{(2)}} \bigoplus_{l_n} L^2(G) \xrightarrow{c_n^{(2)}} \bigoplus_{i_{n-1}} L^2(G) \xrightarrow{c_{n-1}^{(2)}} \cdots$$

< ロ > < 同 > < 回 > < 回 >

Review of classical L^2 -invariants

- Let G → X → X be a G-covering of a connected finite CW-complex X.
- The cellular chain complex of \overline{X} is a finitely generated free $\mathbb{Z}G$ -chain complex:

$$\cdots \xrightarrow{c_{n-1}} \bigoplus_{I_n} \mathbb{Z}G \xrightarrow{c_n} \bigoplus_{i_{n-1}} \mathbb{Z}G \xrightarrow{c_{n-1}} \cdots$$

• The associated *L*²-chain complex

$$C^{(2)}_*(\overline{X}) := L^2(G) \otimes_{\mathbb{Z}G} C_*(\overline{X})$$

has Hilbert spaces with isometric linear *G*-action as chain modules and bounded *G*-equivariant operators as differentials

$$\cdots \xrightarrow{c_{n-1}^{(2)}} \bigoplus_{I_n} L^2(G) \xrightarrow{c_n^{(2)}} \bigoplus_{i_{n-1}} L^2(G) \xrightarrow{c_{n-1}^{(2)}} \cdots$$

Definition (L^2 -homology and L^2 -Betti numbers)

Define the *n*-th *L*²-homology to be the Hilbert space

$$H_n^{(2)}(\overline{X}) := \operatorname{ker}(c_n^{(2)}) / \overline{\operatorname{im}(c_{n+1}^{(2)})}.$$

Define the *n*-th *L*²-Betti number

$$b_n^{(2)}(\overline{X}) := \dim_{\mathcal{N}(G)} \left(H_n^{(2)}(\overline{X}) \right) \in \mathbb{R}^{\geq 0}.$$

Wolfgang Lück (HIM, Bonn)

Universal torsion and the Thurston norm

Münster, December, 2015 3 / 44

• The original notion is due to *Atiyah* and was motivated by index theory. He defined for a *G*-covering $\overline{M} \to M$ of a closed Riemannian manifold

$$b_n^{(2)}(\overline{M}) := \lim_{t \to \infty} \int_{\mathcal{F}} tr(e^{-t \cdot \overline{\Delta}_n}(\overline{x}, \overline{x})) d\mathrm{vol}_{\overline{M}}.$$

If G is finite, we have

$$b_n^{(2)}(\overline{X}) = \frac{1}{|G|} \cdot b_n(\overline{X}).$$

• If $G = \mathbb{Z}$, we have

 $b_n^{(2)}(\overline{X}) = \dim_{\mathbb{C}[\mathbb{Z}]_{(0)}} \big(\mathbb{C}[\mathbb{Z}]_{(0)} \otimes_{\mathbb{C}[\mathbb{Z}]} H_n(\overline{X};\mathbb{C})\big) \in \mathbb{Z}.$

Wolfgang Lück (HIM, Bonn)

< ロ > < 同 > < 回 > < 回 >

• The original notion is due to *Atiyah* and was motivated by index theory. He defined for a *G*-covering $\overline{M} \to M$ of a closed Riemannian manifold

$$b_n^{(2)}(\overline{M}) := \lim_{t \to \infty} \int_{\mathcal{F}} tr(e^{-t \cdot \overline{\Delta}_n}(\overline{x}, \overline{x})) d\mathrm{vol}_{\overline{M}}.$$

• If G is finite, we have

$$b_n^{(2)}(\overline{X}) = \frac{1}{|G|} \cdot b_n(\overline{X}).$$

• If $G = \mathbb{Z}$, we have

 $b_n^{(2)}(\overline{X}) = \dim_{\mathbb{C}[\mathbb{Z}]_{(0)}} \big(\mathbb{C}[\mathbb{Z}]_{(0)} \otimes_{\mathbb{C}[\mathbb{Z}]} H_n(\overline{X};\mathbb{C})\big) \quad \in \mathbb{Z}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The original notion is due to *Atiyah* and was motivated by index theory. He defined for a *G*-covering $\overline{M} \to M$ of a closed Riemannian manifold

$$b_n^{(2)}(\overline{M}) := \lim_{t \to \infty} \int_{\mathcal{F}} tr(e^{-t \cdot \overline{\Delta}_n}(\overline{x}, \overline{x})) d\mathrm{vol}_{\overline{M}}.$$

• If G is finite, we have

$$b_n^{(2)}(\overline{X}) = \frac{1}{|G|} \cdot b_n(\overline{X}).$$

• If $G = \mathbb{Z}$, we have

 $b_n^{(2)}(\overline{X}) = \dim_{\mathbb{C}[\mathbb{Z}]_{(0)}} (\mathbb{C}[\mathbb{Z}]_{(0)} \otimes_{\mathbb{C}[\mathbb{Z}]} H_n(\overline{X};\mathbb{C})) \quad \in \mathbb{Z}.$

< ロ > < 同 > < 回 > < 回 >

• In the sequel 3-manifold means a prime connected compact orientable 3-manifold with infinite fundamental group whose boundary is empty or a union of tori and which is not $S^1 \times D^2$ or $S^1 \times S^2$.

Theorem (Lott-Lück)

For every 3-manifold M all L^2 -Betti numbers $b_n^{(2)}(\widetilde{M})$ vanish.

• We are interested in the case where all L^2 -Betti numbers vanish, since then a very powerful secondary invariant comes into play, the so called L^2 -torsion.

• In the sequel 3-manifold means a prime connected compact orientable 3-manifold with infinite fundamental group whose boundary is empty or a union of tori and which is not $S^1 \times D^2$ or $S^1 \times S^2$.

Theorem (Lott-Lück)

For every 3-manifold M all L^2 -Betti numbers $b_n^{(2)}(\widetilde{M})$ vanish.

• We are interested in the case where all L^2 -Betti numbers vanish, since then a very powerful secondary invariant comes into play, the so called L^2 -torsion.

• In the sequel 3-manifold means a prime connected compact orientable 3-manifold with infinite fundamental group whose boundary is empty or a union of tori and which is not $S^1 \times D^2$ or $S^1 \times S^2$.

Theorem (Lott-Lück)

For every 3-manifold M all L^2 -Betti numbers $b_n^{(2)}(\widetilde{M})$ vanish.

• We are interested in the case where all L^2 -Betti numbers vanish, since then a very powerful secondary invariant comes into play, the so called L^2 -torsion.

- L²-torsion can be defined analytical in terms of the spectrum of the Laplace operator, generalizing analytic Ray-Singer torsion. It can also be defined in terms of the cellular ℤG-chain complex, generalizing Reidemeister torsion.
- The definition of L^2 -torsion is based on the notion of the Fuglede-Kadison determinant which is a generalization of the classical determinant to the infinite-dimensional setting. It is defined for a bounded *G*-equivariant operator $f: L^2(G)^m \to L^2(G)^n$ to be the non-negative real number

$$\mathsf{det}^{(2)}(f) = \exp\left(rac{1}{2}\cdot\int\mathsf{ln}(\lambda)\,d
u_{f^*f}
ight)\in\mathbb{R}^{>0}$$

where ν_{f^*f} is the spectral measure of the positive operator f^*f .

• If G is finite and m = n, then $det^{(2)}(f) = |det(f)|^{1/|G|}$.

4 D N 4 B N 4 B N 4 B

- L²-torsion can be defined analytical in terms of the spectrum of the Laplace operator, generalizing analytic Ray-Singer torsion. It can also be defined in terms of the cellular ZG-chain complex, generalizing Reidemeister torsion.
- The definition of L^2 -torsion is based on the notion of the Fuglede-Kadison determinant which is a generalization of the classical determinant to the infinite-dimensional setting. It is defined for a bounded *G*-equivariant operator $f: L^2(G)^m \to L^2(G)^n$ to be the non-negative real number

$$\mathsf{det}^{(2)}(f) = \exp\left(rac{1}{2} \cdot \int \mathsf{ln}(\lambda) \, d
u_{f^*f}
ight) \in \mathbb{R}^{>0}$$

where ν_{f^*f} is the spectral measure of the positive operator f^*f .

• If G is finite and m = n, then $det^{(2)}(f) = |det(f)|^{1/|G|}$.

- L²-torsion can be defined analytical in terms of the spectrum of the Laplace operator, generalizing analytic Ray-Singer torsion. It can also be defined in terms of the cellular ℤG-chain complex, generalizing Reidemeister torsion.
- The definition of L^2 -torsion is based on the notion of the Fuglede-Kadison determinant which is a generalization of the classical determinant to the infinite-dimensional setting. It is defined for a bounded *G*-equivariant operator $f: L^2(G)^m \to L^2(G)^n$ to be the non-negative real number

$$\mathsf{det}^{(2)}(f) = \exp\left(rac{1}{2} \cdot \int \mathsf{ln}(\lambda) \, d
u_{f^*f}
ight) \in \mathbb{R}^{>0}$$

where ν_{f^*f} is the spectral measure of the positive operator f^*f .

• If G is finite and m = n, then $det^{(2)}(f) = |det(f)|^{1/|G|}$.

Definition (*L*²-torsion)

Suppose that \overline{X} is L^2 -acyclic, i.e., all L^2 -Betti numbers $b_n^{(2)}(\overline{X})$ vanish. Let $\Delta_n^{(2)} : C_n^{(2)}(\overline{X}) \to C_n^{(2)}(\overline{X})$ be the *n*-Laplace operator given by $c_{n+1}^{(2)} \circ (c_n^{(2)})^* + (c_{n-1}^{(2)})^* \circ c_n^{(2)}$.

Define the *L*²-torsion

$$ho^{(2)}(\overline{X}):=rac{1}{2}\cdot\sum_{n\geq 0}(-1)^n\cdot n\cdot \lnig(\det^{(2)}(\Delta^{(2)}_n)ig)\in\mathbb{R}.$$

Theorem (Lück-Schick)

Let M be a 3-manifold. Let M_1, M_2, \ldots, M_m be the hyperbolic pieces in its Jaco-Shalen decomposition.

Then

$$\rho^{(2)}(\widetilde{M}) := -\frac{1}{6\pi} \cdot \sum_{i=1}^{m} \operatorname{vol}(M_i).$$

→ ∃ →

4 A N

Universal L²-torsion

Definition $(K_1^w(\mathbb{Z}G))$

Let $K_1^w(\mathbb{Z}G)$ be the abelian group given by:

• generators

If $f: \mathbb{Z}G^m \to \mathbb{Z}G^m$ is a $\mathbb{Z}G$ -map such that the induced bounded G-equivariant $L^2(G)^m \to L^2(G)^m$ map is a weak isomorphism, i.e., the dimensions of its kernel and cokernel are trivial, then it determines a generator [f] in $K_1^w(\mathbb{Z}G)$.

relations

$$\begin{bmatrix} \begin{pmatrix} f_1 & * \\ 0 & f_2 \end{pmatrix} \end{bmatrix} = [f_1] + [f_2]; \\ [g \circ f] = [f] + [g].$$

Define $Wh^{w}(G) := K_{1}^{w}(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition $(K_1^w(\mathbb{Z}G))$

Let $K_1^w(\mathbb{Z}G)$ be the abelian group given by:

generators

If $f: \mathbb{Z}G^m \to \mathbb{Z}G^m$ is a $\mathbb{Z}G$ -map such that the induced bounded *G*-equivariant $L^2(G)^m \to L^2(G)^m$ map is a weak isomorphism, i.e., the dimensions of its kernel and cokernel are trivial, then it determines a generator [f] in $K_1^w(\mathbb{Z}G)$.

relations

$$\begin{bmatrix} \begin{pmatrix} f_1 & * \\ 0 & f_2 \end{pmatrix} \end{bmatrix} = [f_1] + [f_2];$$
$$[g \circ f] = [f] + [g].$$

Define $Wh^{w}(G) := K_{1}^{w}(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$

3

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Definition (Weak chain contraction)

Consider a $\mathbb{Z}G$ -chain complex C_* . A weak chain contraction (γ_*, u_*) for C_* consists of a $\mathbb{Z}G$ -chain map $u_* \colon C_* \to C_*$ and a $\mathbb{Z}G$ -chain homotopy $\gamma_* \colon u_* \simeq 0_*$ such that $u_*^{(2)} \colon C_*^{(2)} \to C_*^{(2)}$ is a weak isomorphism for all $n \in \mathbb{Z}$ and $\gamma_n \circ u_n = u_{n+1} \circ \gamma_n$ holds for all $n \in \mathbb{Z}$.

Definition (Universal *L*²-torsion)

Let C_* be a finite based free $\mathbb{Z}G$ -chain complex such that $C_*^{(2)}$ is L^2 -acyclic. Define its universal L^2 -torsion

 $\rho_u^{(2)}(C_*) \in \widetilde{K}_1^w(\mathbb{Z}G)$

by

$$\rho_u^{(2)}(C_*) = [(uc + \gamma)_{\text{odd}}] - [u_{\text{odd}}],$$

where (γ_*, u_*) is any weak chain contraction of C_* .

Wolfgang Lück (HIM, Bonn)

Definition (Weak chain contraction)

Consider a $\mathbb{Z}G$ -chain complex C_* . A weak chain contraction (γ_*, u_*) for C_* consists of a $\mathbb{Z}G$ -chain map $u_* \colon C_* \to C_*$ and a $\mathbb{Z}G$ -chain homotopy $\gamma_* \colon u_* \simeq 0_*$ such that $u_*^{(2)} \colon C_*^{(2)} \to C_*^{(2)}$ is a weak isomorphism for all $n \in \mathbb{Z}$ and $\gamma_n \circ u_n = u_{n+1} \circ \gamma_n$ holds for all $n \in \mathbb{Z}$.

Definition (Universal *L*²-torsion)

Let C_* be a finite based free $\mathbb{Z}G$ -chain complex such that $C_*^{(2)}$ is L^2 -acyclic. Define its universal L^2 -torsion

 $\rho_u^{(2)}(\mathcal{C}_*) \in \widetilde{K}_1^w(\mathbb{Z}G)$

by

$$\rho_u^{(2)}(C_*) = [(uc + \gamma)_{\text{odd}}] - [u_{\text{odd}}],$$

where (γ_*, u_*) is any weak chain contraction of C_* .

Wolfgang Lück (HIM, Bonn)

10/44

ヘロマ ヘビマ ヘビマ ヘロマ

• An additive L^2 -torsion invariant (A, a) consists of an abelian group A and an assignment which associates to a finite based free $\mathbb{Z}G$ -chain complex C_* , for which $C_*^{(2)}$ is L^2 -acyclic, an element $a(C_*) \in A$ such that for any based exact short sequence of such $\mathbb{Z}G$ -chain complexes $0 \to C_* \to D_* \to E_* \to 0$ we get

$$a(D_*)=a(C_*)+a(E_*),$$

and we have
$$a(\dots \to 0 \to \mathbb{Z}G \xrightarrow{\pm id} \mathbb{Z}G \to 0 \to \dots) = 0.$$

We call an additive L²-torsion invariant (U, u) universal if for every additive L²-torsion invariant (A, a) there is precisely one group homomorphism f: U → A satisfying f(u(C_{*})) = a(C_{*}) for any such ZG-chain complex.

• Then $(K_1^w(\mathbb{Z}G), \rho_u^{(2)})$ is the universal additive L^2 -torsion invariant.

< 日 > < 同 > < 回 > < 回 > < □ > <

• An additive L^2 -torsion invariant (A, a) consists of an abelian group A and an assignment which associates to a finite based free $\mathbb{Z}G$ -chain complex C_* , for which $C_*^{(2)}$ is L^2 -acyclic, an element $a(C_*) \in A$ such that for any based exact short sequence of such $\mathbb{Z}G$ -chain complexes $0 \to C_* \to D_* \to E_* \to 0$ we get

$$a(D_*)=a(C_*)+a(E_*),$$

and we have $a(\dots \to 0 \to \mathbb{Z}G \xrightarrow{\pm id} \mathbb{Z}G \to 0 \to \dots) = 0.$

We call an additive L²-torsion invariant (U, u) universal if for every additive L²-torsion invariant (A, a) there is precisely one group homomorphism f: U → A satisfying f(u(C_{*})) = a(C_{*}) for any such ZG-chain complex.

• Then $(K_1^w(\mathbb{Z}G), \rho_u^{(2)})$ is the universal additive L^2 -torsion invariant.

< 日 > < 同 > < 回 > < 回 > < □ > <

• An additive L^2 -torsion invariant (A, a) consists of an abelian group A and an assignment which associates to a finite based free $\mathbb{Z}G$ -chain complex C_* , for which $C_*^{(2)}$ is L^2 -acyclic, an element $a(C_*) \in A$ such that for any based exact short sequence of such $\mathbb{Z}G$ -chain complexes $0 \to C_* \to D_* \to E_* \to 0$ we get

$$a(D_*)=a(C_*)+a(E_*),$$

and we have $a(\dots \to 0 \to \mathbb{Z}G \xrightarrow{\pm id} \mathbb{Z}G \to 0 \to \dots) = 0.$

We call an additive L²-torsion invariant (U, u) universal if for every additive L²-torsion invariant (A, a) there is precisely one group homomorphism f: U → A satisfying f(u(C_{*})) = a(C_{*}) for any such ZG-chain complex.

• Then $(K_1^w(\mathbb{Z}G), \rho_u^{(2)})$ is the universal additive L^2 -torsion invariant.

- The universal L^2 -torsion is a simple homotopy invariant.
- It satisfies useful sum formulas and product formulas. There are also formulas for appropriate fibrations and S¹-actions.
- If *G* is finite, we rediscover essentially the classical Reidemeister torsion.
- We have $\rho^{(2}(\widetilde{S}^1) = (z-1)$ in $Wh^w(\mathbb{Z}) \cong \mathbb{Q}(z^{\pm 1})^{\times}/\{\pm z^n \mid n \in \mathbb{Z}\}.$

• We have $\rho^{(2}(\widetilde{T^n}) = 0$ for $n \ge 2$.

伺下 イヨト イヨ

12/44

- The universal L^2 -torsion is a simple homotopy invariant.
- It satisfies useful sum formulas and product formulas. There are also formulas for appropriate fibrations and S¹-actions.
- If *G* is finite, we rediscover essentially the classical Reidemeister torsion.

• We have
$$\rho^{(2}(\widetilde{S^1}) = (z-1)$$
 in $Wh^w(\mathbb{Z}) \cong \mathbb{Q}(z^{\pm 1})^{\times}/\{\pm z^n \mid n \in \mathbb{Z}\}.$

• We have $\rho^{(2}(\widetilde{T^n}) = 0$ for $n \ge 2$.

- The universal L^2 -torsion is a simple homotopy invariant.
- It satisfies useful sum formulas and product formulas. There are also formulas for appropriate fibrations and S¹-actions.
- If *G* is finite, we rediscover essentially the classical Reidemeister torsion.

• We have
$$\rho^{(2}(\widetilde{S^1}) = (z-1)$$
 in $Wh^w(\mathbb{Z}) \cong \mathbb{Q}(z^{\pm 1})^{\times}/\{\pm z^n \mid n \in \mathbb{Z}\}.$

• We have
$$\rho^{(2}(\widetilde{T^n}) = 0$$
 for $n \ge 2$.

Theorem (Jaco-Shalen-Johannson decomposition)

Let *M* be a compact connected orientable irreducible 3-manifold with infinite fundamental group whose boundary is empty or toroidal. Let M_1, M_2, \ldots, M_r be its pieces in the Jaco-Shalen-Johannson decomposition. Let $j_i : \pi_1(M_i) \to \pi_1(M)$ be the injection induced by the inclusion $M_i \to M$.

Then each M_i and M are L^2 -acyclic and we have

$$\rho_u^{(2)}(\widetilde{M}) = \sum_{i=1}^r (j_i)_* \big(\rho_u^{(2)}(\widetilde{M}_i)\big).$$

A THE A THE

13/44

- Many other invariants come from the universal L²-torsion by applying a homomorphism K^w₁(ℤG) → A of abelian groups.
- For instance, the Fuglede-Kadison determinant defines a homomorphism

 $det^{(2)}$: $Wh^{w}(\mathbb{Z}G) \to \mathbb{R}$

which maps the universal L^2 -torsion $\rho_u^{(2)}(\overline{X})$ to the (classical) L^2 -torsion $\rho^{(2)}(\overline{X})$.

The fundamental square and the Atiyah Conjecture

 The fundamental square is given by the following inclusions of rings

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- D(G) is the division closure of ZG in U(G), i.e., the smallest subring of U(G) containing ZG such that every element in D(G), which is a unit in U(G), is already a unit in D(G) itself.

The fundamental square and the Atiyah Conjecture

 The fundamental square is given by the following inclusions of rings

 $\mathbb{Z}G \longrightarrow \mathcal{N}(G)$ $\downarrow \qquad \qquad \qquad \downarrow$ $\mathcal{D}(G) \longrightarrow \mathcal{U}(G)$

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- D(G) is the division closure of ZG in U(G), i.e., the smallest subring of U(G) containing ZG such that every element in D(G), which is a unit in U(G), is already a unit in D(G) itself.

The fundamental square and the Atiyah Conjecture

 The fundamental square is given by the following inclusions of rings

 $\mathbb{Z}G \longrightarrow \mathcal{N}(G)$ $\downarrow \qquad \qquad \qquad \downarrow$ $\mathcal{D}(G) \longrightarrow \mathcal{U}(G)$

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- D(G) is the division closure of ZG in U(G), i.e., the smallest subring of U(G) containing ZG such that every element in D(G), which is a unit in U(G), is already a unit in D(G) itself.

• If G is finite, its is given by

• If $G = \mathbb{Z}$, it is given by

Wolfgang Lück (HIM, Bonn)

Universal torsion and the Thurston norm

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 Münster, December, 2015

16/44

• If G is finite, its is given by

• If $G = \mathbb{Z}$, it is given by

Münster, December, 2015

16/44

- If G is elementary amenable torsionfree, then D(G) can be identified with the Ore localization of ZG with respect to the multiplicatively closed subset of non-zero elements.
- In general the Ore localization does not exist and in these cases
 D(G) is the right replacement.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- Fix a natural number $d \ge 5$. Then a finitely generated torsionfree group *G* satisfies the Atiyah Conjecture if and only if for any *G*-covering $\overline{M} \to M$ of a closed Riemannian manifold of dimension d we have $b_n^{(2)}(\overline{M}) \in \mathbb{Z}$ for every $n \ge 0$.
- The Atiyah Conjecture implies for a torsionfree group *G* that the rational group ring has no non-trivial zero-divisors.
- Notice that the Farrell-Jones Conjecture implies for a torsionfree group *G* that the group ring over any field of characteristic zero has no non-trivial idempotents.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- Fix a natural number d ≥ 5. Then a finitely generated torsionfree group G satisfies the Atiyah Conjecture if and only if for any G-covering M→ M of a closed Riemannian manifold of dimension d we have b_n⁽²⁾(M) ∈ Z for every n ≥ 0.
- The Atiyah Conjecture implies for a torsionfree group *G* that the rational group ring has no non-trivial zero-divisors.
- Notice that the Farrell-Jones Conjecture implies for a torsionfree group *G* that the group ring over any field of characteristic zero has no non-trivial idempotents.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- Fix a natural number d ≥ 5. Then a finitely generated torsionfree group G satisfies the Atiyah Conjecture if and only if for any G-covering M→ M of a closed Riemannian manifold of dimension d we have b_n⁽²⁾(M) ∈ Z for every n ≥ 0.
- The Atiyah Conjecture implies for a torsionfree group *G* that the rational group ring has no non-trivial zero-divisors.
- Notice that the Farrell-Jones Conjecture implies for a torsionfree group *G* that the group ring over any field of characteristic zero has no non-trivial idempotents.

18/44

< ロ > < 同 > < 回 > < 回 >
Theorem (Linnell, Schick)

- Let C be the smallest class of groups which contains all free groups, is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to C satisfies the Atiyah Conjecture, actually even over C.
- If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

 This theorem and results by Waldhausen show for the fundamental group π of a 3-manifold (with the exception of some graph manifolds) that it satisfies the Atiyah Conjecture and that Wh(π) vanishes.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Linnell, Schick)

- Let C be the smallest class of groups which contains all free groups, is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to C satisfies the Atiyah Conjecture, actually even over C.
- If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

 This theorem and results by Waldhausen show for the fundamental group π of a 3-manifold (with the exception of some graph manifolds) that it satisfies the Atiyah Conjecture and that Wh(π) vanishes.

19/44

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Linnell-Lück)

If G belongs to C, then the natural map

$$K_1^w(\mathbb{Z}G) \xrightarrow{\cong} K_1(\mathcal{D}(G))$$

is an isomorphism.

 Its proof is based on identifying D(G) as an appropriate Cohn localization of ZG and the investigating localization sequences in algebraic K-theory.

• There is a Dieudonné determinant which induces an isomorphism

$det_{\mathcal{D}} \colon K_1(\mathcal{D}(G)) \xrightarrow{\cong} \mathcal{D}(G)^{\times} / [\mathcal{D}(G)^{\times}, \mathcal{D}(G)^{\times}].$

伺 ト イ ヨ ト イ ヨ

Theorem (Linnell-Lück)

If G belongs to C, then the natural map

$$K_1^w(\mathbb{Z}G) \xrightarrow{\cong} K_1(\mathcal{D}(G))$$

is an isomorphism.

 Its proof is based on identifying D(G) as an appropriate Cohn localization of ZG and the investigating localization sequences in algebraic K-theory.

• There is a Dieudonné determinant which induces an isomorphism

 $det_{\mathcal{D}} \colon K_1(\mathcal{D}(G)) \xrightarrow{\cong} \mathcal{D}(G)^{\times} / [\mathcal{D}(G)^{\times}, \mathcal{D}(G)^{\times}].$

伺 ト イ ヨ ト イ ヨ

Theorem (Linnell-Lück)

If G belongs to C, then the natural map

$$K_1^w(\mathbb{Z}G) \xrightarrow{\cong} K_1(\mathcal{D}(G))$$

is an isomorphism.

 Its proof is based on identifying D(G) as an appropriate Cohn localization of ZG and the investigating localization sequences in algebraic K-theory.

• There is a Dieudonné determinant which induces an isomorphism

$det_{\mathcal{D}} \colon K_1(\mathcal{D}(G)) \xrightarrow{\cong} \mathcal{D}(G)^{\times} / [\mathcal{D}(G)^{\times}, \mathcal{D}(G)^{\times}].$

一日

Theorem (Linnell-Lück)

If G belongs to C, then the natural map

$$K_1^w(\mathbb{Z}G) \xrightarrow{\cong} K_1(\mathcal{D}(G))$$

is an isomorphism.

- Its proof is based on identifying D(G) as an appropriate Cohn localization of ZG and the investigating localization sequences in algebraic K-theory.
- There is a Dieudonné determinant which induces an isomorphism

$$\mathsf{det}_{\mathcal{D}} \colon \mathcal{K}_1(\mathcal{D}(\mathcal{G})) \xrightarrow{\cong} \mathcal{D}(\mathcal{G})^{\times} / [\mathcal{D}(\mathcal{G})^{\times}, \mathcal{D}(\mathcal{G})^{\times}].$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• In particular we get for $G = \mathbb{Z}$

$$K_1^w(\mathbb{Z}[\mathbb{Z}]) \cong \mathbb{Q}(z^{\pm 1})^{\times}$$

• It turns out that in the case $G = \mathbb{Z}$ the universal torsion is the same as the Alexander polynomial of an infinite cyclic covering, as it occurs for instance in knot theory.

- Consider a *CW*-complex *X* with $\pi = \pi_1(M)$. Fix an element $\phi \in H^1(X; \mathbb{Z}) = \hom(\pi; \mathbb{Z})$.
- For t ∈ (0,∞), let φ*Ct be the 1-dimensional π-representation given by

$$w \cdot \lambda := t^{\phi(w)} \cdot \lambda$$
 for $w \in \pi, \lambda \in \mathbb{C}$.

 One can twist the L²-chain complex of X with this representation, or, equivalently, apply the following ring homomorphism to the cellular ZG-chain complex before passing to the Hilbert space completion

$$\mathbb{C}G o \mathbb{C}G, \quad \sum_{g\in G} \lambda_g \cdot g \mapsto \sum_{g\in G} \lambda \cdot t^{\phi(g)} \cdot g.$$

 Notice that for irrational *t* the relevant chain complexes do not have coefficients in QG anymore and the Determinant Conjecture does not apply. Moreover, the Fuglede-Kadison determinant is in general not continuous.

Wolfgang Lück (HIM, Bonn)

Münster, December, 2015 22 / 44

- Consider a *CW*-complex *X* with $\pi = \pi_1(M)$. Fix an element $\phi \in H^1(X; \mathbb{Z}) = \hom(\pi; \mathbb{Z})$.
- For t ∈ (0,∞), let φ^{*}C_t be the 1-dimensional π-representation given by

$$w \cdot \lambda := t^{\phi(w)} \cdot \lambda$$
 for $w \in \pi, \lambda \in \mathbb{C}$.

 One can twist the L²-chain complex of X with this representation, or, equivalently, apply the following ring homomorphism to the cellular ZG-chain complex before passing to the Hilbert space completion

$$\mathbb{C}G o \mathbb{C}G, \quad \sum_{g\in G} \lambda_g \cdot g \mapsto \sum_{g\in G} \lambda \cdot t^{\phi(g)} \cdot g.$$

 Notice that for irrational *t* the relevant chain complexes do not have coefficients in QG anymore and the Determinant Conjecture does not apply. Moreover, the Fuglede-Kadison determinant is in general not continuous.

Wolfgang Lück (HIM, Bonn)

- Consider a *CW*-complex *X* with $\pi = \pi_1(M)$. Fix an element $\phi \in H^1(X; \mathbb{Z}) = \hom(\pi; \mathbb{Z})$.
- For t ∈ (0,∞), let φ*Ct be the 1-dimensional π-representation given by

$$w \cdot \lambda := t^{\phi(w)} \cdot \lambda$$
 for $w \in \pi, \lambda \in \mathbb{C}$.

 One can twist the L²-chain complex of X with this representation, or, equivalently, apply the following ring homomorphism to the cellular ZG-chain complex before passing to the Hilbert space completion

$$\mathbb{C} G o \mathbb{C} G, \quad \sum_{g \in G} \lambda_g \cdot g \mapsto \sum_{g \in G} \lambda \cdot t^{\phi(g)} \cdot g.$$

 Notice that for irrational *t* the relevant chain complexes do not have coefficients in QG anymore and the Determinant Conjecture does not apply. Moreover, the Fuglede-Kadison determinant is in general not continuous.

Wolfgang Lück (HIM, Bonn)

Münster, December, 2015 22 / 44

- Consider a *CW*-complex *X* with $\pi = \pi_1(M)$. Fix an element $\phi \in H^1(X; \mathbb{Z}) = \hom(\pi; \mathbb{Z})$.
- For t ∈ (0,∞), let φ*Ct be the 1-dimensional π-representation given by

$$\boldsymbol{w} \cdot \boldsymbol{\lambda} := \boldsymbol{t}^{\phi(\boldsymbol{w})} \cdot \boldsymbol{\lambda} \text{ for } \boldsymbol{w} \in \pi, \boldsymbol{\lambda} \in \mathbb{C}.$$

 One can twist the L²-chain complex of X with this representation, or, equivalently, apply the following ring homomorphism to the cellular ZG-chain complex before passing to the Hilbert space completion

$$\mathbb{C} oldsymbol{G} o \mathbb{C} oldsymbol{G}, \quad \sum_{oldsymbol{g} \in oldsymbol{G}} \lambda_{oldsymbol{g}} \cdot oldsymbol{g} \mapsto \sum_{oldsymbol{g} \in oldsymbol{G}} \lambda \cdot t^{\phi(oldsymbol{g})} \cdot oldsymbol{g}.$$

 Notice that for irrational *t* the relevant chain complexes do not have coefficients in QG anymore and the Determinant Conjecture does not apply. Moreover, the Fuglede-Kadison determinant is in general not continuous.

Wolfgang Lück (HIM, Bonn)

Münster, December, 2015 22 / 44

- Consider a *CW*-complex *X* with $\pi = \pi_1(M)$. Fix an element $\phi \in H^1(X; \mathbb{Z}) = \hom(\pi; \mathbb{Z})$.
- For t ∈ (0,∞), let φ*Ct be the 1-dimensional π-representation given by

$$\boldsymbol{w} \cdot \boldsymbol{\lambda} := \boldsymbol{t}^{\phi(\boldsymbol{w})} \cdot \boldsymbol{\lambda} \text{ for } \boldsymbol{w} \in \pi, \boldsymbol{\lambda} \in \mathbb{C}.$$

 One can twist the L²-chain complex of X with this representation, or, equivalently, apply the following ring homomorphism to the cellular ZG-chain complex before passing to the Hilbert space completion

$$\mathbb{C} oldsymbol{G} o \mathbb{C} oldsymbol{G}, \quad \sum_{oldsymbol{g} \in oldsymbol{G}} \lambda_{oldsymbol{g}} \cdot oldsymbol{g} \mapsto \sum_{oldsymbol{g} \in oldsymbol{G}} \lambda \cdot t^{\phi(oldsymbol{g})} \cdot oldsymbol{g}.$$

 Notice that for irrational *t* the relevant chain complexes do not have coefficients in QG anymore and the Determinant Conjecture does not apply. Moreover, the Fuglede-Kadison determinant is in general not continuous.

Wolfgang Lück (HIM, Bonn) Universal torsion and the Thurston norm Münster, December, 2015 22 / 44

• Define ϕ -twisted L^2 -torsion function

 $\rho(\widetilde{X};\phi)\colon (0,\infty)\to\mathbb{R}$

by sending *t* to the \mathbb{C}_t -twisted L^2 -torsion.

- Its value at t = 1 is just the L^2 -torsion.
- On the analytic side this corresponds for closed Riemannian manifold *M* to twisting with the flat line bundle *M̃* ×_π C_t → *M*. It is obvious that some work is necessary to show that this is a well-defined invariant since the π-action on C_t is not isometric.

• Define ϕ -twisted L^2 -torsion function

 $\rho(\widetilde{X};\phi)\colon (0,\infty)\to\mathbb{R}$

by sending *t* to the \mathbb{C}_t -twisted L^2 -torsion.

- Its value at t = 1 is just the L^2 -torsion.
- On the analytic side this corresponds for closed Riemannian manifold M to twisting with the flat line bundle $\widetilde{M} \times_{\pi} \mathbb{C}_t \to M$. It is obvious that some work is necessary to show that this is a well-defined invariant since the π -action on \mathbb{C}_t is not isometric.

23/44

• Define ϕ -twisted L^2 -torsion function

 $\rho(\widetilde{X};\phi)$: $(0,\infty) \to \mathbb{R}$

by sending *t* to the \mathbb{C}_t -twisted L^2 -torsion.

- Its value at t = 1 is just the L^2 -torsion.
- On the analytic side this corresponds for closed Riemannian manifold *M* to twisting with the flat line bundle *M* ×_π C_t → *M*. It is obvious that some work is necessary to show that this is a well-defined invariant since the π-action on C_t is not isometric.

Theorem (Lück)

Suppose that \widetilde{X} is L^2 -acyclic.

- The L² torsion function $\rho^{(2)} := \rho^{(2)}(\widetilde{X}; \phi) \colon (0, \infty) \to \mathbb{R}$ is well-defined.

 $\mathsf{deg}(X;\phi) \in \mathbb{R}$

to be their difference.

There is a \u03c6-twisted Fuglede-Kadison determinant

$$\mathsf{det}^{(2)}_{\mathsf{tw},\phi} \colon K^w_1(\mathbb{Z}G) o \mathsf{map}((0,\infty),\mathbb{R})$$

which sends
$$\rho_u^{(2)}(\widetilde{X})$$
 to $\rho^{(2)}(\widetilde{X};\phi)$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition (Thurston norm)

Let *M* be a 3-manifold and $\phi \in H^1(M; \mathbb{Z})$ be a class. Define its Thurston norm

 $x_M(\phi) = \min\{\chi_-(F) \mid F \text{ embedded surface in } M \text{ dual to } \phi\}$

where

$$\chi_{-}(\mathcal{F}) = \sum_{\mathcal{C} \in \pi_{0}(\mathcal{M})} \max\{-\chi(\mathcal{C}), \mathbf{0}\}.$$

- Thurston showed that this definition extends to the real vector space H¹(M; ℝ) and defines a seminorm on it.
- If $F \to M \xrightarrow{p} S^1$ is a fiber bundle with connected closed surface $F \not\cong S^2$ and $\phi = \pi_1(p)$, then

$$x_M(\phi) = -\chi(F).$$

Definition (Thurston norm)

Let *M* be a 3-manifold and $\phi \in H^1(M; \mathbb{Z})$ be a class. Define its Thurston norm

 $x_M(\phi) = \min\{\chi_-(F) \mid F \text{ embedded surface in } M \text{ dual to } \phi\}$

where

$$\chi_{-}(F) = \sum_{C \in \pi_{0}(M)} \max\{-\chi(C), \mathbf{0}\}.$$

- Thurston showed that this definition extends to the real vector space H¹(M; ℝ) and defines a seminorm on it.
- If $F \to M \xrightarrow{p} S^1$ is a fiber bundle with connected closed surface $F \ncong S^2$ and $\phi = \pi_1(p)$, then

$$x_{\mathcal{M}}(\phi) = -\chi(F).$$

Theorem (Friedl-Lück, Liu)

Let M be a 3-manifold. Then for every $\phi \in H^1(M; \mathbb{Z})$ we get the equality

 $\deg(M;\phi)=x_M(\phi).$

- Consider a finitely generated abelian free abelian group *A*. Let
 *A*_ℝ := ℝ ⊗_ℤ *A* be the real vector space containing *A* as a spanning
 lattice;
- A polytope P ⊆ A_ℝ is a convex bounded subset which is the convex hull of a finite subset S;
- It is called integral, if S is contained in A;
- The Minkowski sum of two polytopes *P* and *Q* is defined by

$$P+Q=\{p+q\mid p\in P,q\in Q\};$$

- Consider a finitely generated abelian free abelian group A. Let
 A_ℝ := ℝ ⊗_ℤ A be the real vector space containing A as a spanning
 lattice;
- A polytope P ⊆ A_ℝ is a convex bounded subset which is the convex hull of a finite subset S;
- It is called integral, if S is contained in A;
- The Minkowski sum of two polytopes *P* and *Q* is defined by

$$P+Q=\{p+q\mid p\in P,q\in Q\};$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Consider a finitely generated abelian free abelian group A. Let
 A_ℝ := ℝ ⊗_ℤ A be the real vector space containing A as a spanning
 lattice;
- A polytope P ⊆ A_ℝ is a convex bounded subset which is the convex hull of a finite subset S;
- It is called integral, if S is contained in A;
- The Minkowski sum of two polytopes P and Q is defined by

$$P+Q=\{p+q\mid p\in P,q\in Q\};$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Consider a finitely generated abelian free abelian group A. Let
 A_ℝ := ℝ ⊗_ℤ A be the real vector space containing A as a spanning
 lattice;
- A polytope P ⊆ A_ℝ is a convex bounded subset which is the convex hull of a finite subset S;
- It is called integral, if S is contained in A;
- The Minkowski sum of two polytopes P and Q is defined by

$$P+Q=\{p+q\mid p\in P,q\in Q\};$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Consider a finitely generated abelian free abelian group A. Let
 A_ℝ := ℝ ⊗_ℤ A be the real vector space containing A as a spanning
 lattice;
- A polytope P ⊆ A_ℝ is a convex bounded subset which is the convex hull of a finite subset S;
- It is called integral, if S is contained in A;
- The Minkowski sum of two polytopes P and Q is defined by

$$P + Q = \{p + q \mid p \in P, q \in Q\};$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Consider a finitely generated abelian free abelian group *A*. Let
 *A*_ℝ := ℝ ⊗_ℤ *A* be the real vector space containing *A* as a spanning
 lattice;
- A polytope P ⊆ A_ℝ is a convex bounded subset which is the convex hull of a finite subset S;
- It is called integral, if S is contained in A;
- The Minkowski sum of two polytopes P and Q is defined by

$$P + Q = \{p + q \mid p \in P, q \in Q\};$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

The Newton polytope

 $N(p) \subseteq \mathbb{R}^n$

of a polynomial

$$\rho(t_1, t_2, \ldots, t_n) = \sum_{i_1, \ldots, i_n} a_{i_1, i_2, \ldots, i_n} \cdot t_1^{i_1} t_2^{i_2} \cdots t_n^{i_n}$$

in *n* variables t_1, t_2, \ldots, t_n is defined to be the convex hull of the elements $\{(i_1, i_2, \ldots, i_n) \in \mathbb{Z}^n \mid a_{i_1, i_2, \ldots, i_n} \neq 0\}$;

One has

$$N(p \cdot q) = N(p) + N(q).$$

Münster, December, 2015

28/44

The Newton polytope

 $N(p) \subseteq \mathbb{R}^n$

of a polynomial

$$\rho(t_1, t_2, \ldots, t_n) = \sum_{i_1, \ldots, i_n} a_{i_1, i_2, \ldots, i_n} \cdot t_1^{i_1} t_2^{i_2} \cdots t_n^{i_n}$$

in *n* variables t_1, t_2, \ldots, t_n is defined to be the convex hull of the elements $\{(i_1, i_2, \ldots, i_n) \in \mathbb{Z}^n \mid a_{i_1, i_2, \ldots, i_n} \neq 0\};$

One has

$$N(p \cdot q) = N(p) + N(q).$$

- Let P_ℤ(A) be the Grothendieck group of the abelian monoid of integral polytopes in A_ℝ.
- Denote by P_{Z,Wh}(A) the quotient of P_Z(A) by the canonical homomorphism A → P_Z(A) sending a to the class of the polytope {a}.
- In P_{ℤ,Wh}(A) we consider polytopes up to translation with an element in A.
- Given a homomorphism of finitely generated abelian groups $f: A \rightarrow A'$, we obtain a homomorphisms of abelian groups

 $\mathcal{P}_{\mathbb{Z}}(f)\colon \mathcal{P}_{\mathbb{Z}}(A)\to \mathcal{P}_{\mathbb{Z}}(A'), \quad [P]\mapsto [\mathsf{id}_{\mathbb{R}}\otimes_{\mathbb{Z}} f(P)];$

and analogously for $\mathcal{P}_{\mathbb{Z},Wh}(A)$.

• • • • • • • • • • • •

- Let P_Z(A) be the Grothendieck group of the abelian monoid of integral polytopes in A_ℝ.
- Denote by *P*_{Z,Wh}(*A*) the quotient of *P*_Z(*A*) by the canonical homomorphism *A* → *P*_Z(*A*) sending *a* to the class of the polytope {*a*}.
- In P_{ℤ,Wh}(A) we consider polytopes up to translation with an element in A.
- Given a homomorphism of finitely generated abelian groups $f: A \rightarrow A'$, we obtain a homomorphisms of abelian groups

 $\mathcal{P}_{\mathbb{Z}}(f)\colon \mathcal{P}_{\mathbb{Z}}(A)\to \mathcal{P}_{\mathbb{Z}}(A'), \quad [P]\mapsto [\mathsf{id}_{\mathbb{R}}\otimes_{\mathbb{Z}} f(P)];$

and analogously for $\mathcal{P}_{\mathbb{Z},Wh}(A)$.

(a)

- Let P_Z(A) be the Grothendieck group of the abelian monoid of integral polytopes in A_ℝ.
- Denote by *P*_{Z,Wh}(*A*) the quotient of *P*_Z(*A*) by the canonical homomorphism *A* → *P*_Z(*A*) sending *a* to the class of the polytope {*a*}.
- In P_{ℤ,Wh}(A) we consider polytopes up to translation with an element in A.
- Given a homomorphism of finitely generated abelian groups $f: A \rightarrow A'$, we obtain a homomorphisms of abelian groups

 $\mathcal{P}_{\mathbb{Z}}(f) \colon \mathcal{P}_{\mathbb{Z}}(A) \to \mathcal{P}_{\mathbb{Z}}(A'), \quad [P] \mapsto [\mathrm{id}_{\mathbb{R}} \otimes_{\mathbb{Z}} f(P)];$

and analogously for $\mathcal{P}_{\mathbb{Z},Wh}(A)$.

(a)

- Let P_ℤ(A) be the Grothendieck group of the abelian monoid of integral polytopes in A_ℝ.
- Denote by *P*_{Z,Wh}(*A*) the quotient of *P*_Z(*A*) by the canonical homomorphism *A* → *P*_Z(*A*) sending *a* to the class of the polytope {*a*}.
- In P_{ℤ,Wh}(A) we consider polytopes up to translation with an element in A.
- Given a homomorphism of finitely generated abelian groups $f: A \rightarrow A'$, we obtain a homomorphisms of abelian groups

$$\mathcal{P}_{\mathbb{Z}}(f) \colon \mathcal{P}_{\mathbb{Z}}(A) \to \mathcal{P}_{\mathbb{Z}}(A'), \quad [P] \mapsto [\mathsf{id}_{\mathbb{R}} \otimes_{\mathbb{Z}} f(P)];$$

and analogously for $\mathcal{P}_{\mathbb{Z},Wh}(A)$.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example ($\overline{A} = \overline{\mathbb{Z}}$)

- An integral polytope in $\mathbb{Z}_{\mathbb{R}}$ is just an interval [m, n] for $m, n \in \mathbb{Z}$ satisfying m < n.
- The Minkowski sum becomes $[m_1, n_1] + [m_2, n_2] = [m_1 + m_2, n_1 + n_2].$
- One obtains isomorphisms of abelian groups

$$\begin{array}{lll} \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}) & \xrightarrow{\cong} & \mathbb{Z}^2 & [[m,n]] \mapsto (n-m,m). \\ \\ \mathcal{P}_{\mathbb{Z},\mathsf{Wh}}(\mathbb{Z}) & \xrightarrow{\cong} & \mathbb{Z}, & [[m,n]] \mapsto n-m. \end{array}$$

A D b 4 A b

30/44

$$\mathcal{P}_{\mathbb{Z}}(\mathcal{A}) o \prod_{\phi \in \mathsf{hom}_{\mathbb{Z}}(\mathcal{A},\mathbb{Z})} \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}), \quad \mathbf{x} \mapsto \big(\phi(\mathbf{x})\big)_{\phi}.$$

• It implies that $\mathcal{P}_{\mathbb{Z}}(A)$ is torsionfree and not divisible.

• Conjecturally $\mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n)$ is always a free abelian group.

• We obtain a well-defined homomorphism of abelian groups

$$\left(\mathbb{Q}[\mathbb{Z}^n]_{(0)}\right)^{ imes} o \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n), \quad \frac{p}{q} \mapsto [N(p)] - [N(q)].$$

We want to generalize it to the so called polytope homomorphism.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$\mathcal{P}_{\mathbb{Z}}(\mathcal{A}) o \prod_{\phi \in \mathsf{hom}_{\mathbb{Z}}(\mathcal{A}, \mathbb{Z})} \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}), \quad \mathbf{x} \mapsto \big(\phi(\mathbf{x})\big)_{\phi}.$$

- It implies that $\mathcal{P}_{\mathbb{Z}}(A)$ is torsionfree and not divisible.
- Conjecturally $\mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n)$ is always a free abelian group.

• We obtain a well-defined homomorphism of abelian groups

$$\left(\mathbb{Q}[\mathbb{Z}^n]_{(0)}\right)^{\times} o \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n), \quad \frac{p}{q} \mapsto [N(p)] - [N(q)].$$

We want to generalize it to the so called polytope homomorphism.

$$\mathcal{P}_{\mathbb{Z}}(\mathcal{A}) o \prod_{\phi \in \mathsf{hom}_{\mathbb{Z}}(\mathcal{A}, \mathbb{Z})} \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}), \quad \pmb{x} \mapsto ig(\phi(\pmb{x})ig)_{\phi}.$$

- It implies that $\mathcal{P}_{\mathbb{Z}}(A)$ is torsionfree and not divisible.
- Conjecturally $\mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n)$ is always a free abelian group.

We obtain a well-defined homomorphism of abelian groups

$$\left(\mathbb{Q}[\mathbb{Z}^n]_{(0)}
ight)^{ imes} o \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n), \quad rac{p}{q} \mapsto [N(p)] - [N(q)].$$

We want to generalize it to the so called polytope homomorphism.

$$\mathcal{P}_{\mathbb{Z}}(\mathcal{A}) o \prod_{\phi \in \mathsf{hom}_{\mathbb{Z}}(\mathcal{A},\mathbb{Z})} \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}), \quad \mathbf{x} \mapsto \big(\phi(\mathbf{x})\big)_{\phi}.$$

- It implies that $\mathcal{P}_{\mathbb{Z}}(A)$ is torsionfree and not divisible.
- Conjecturally $\mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n)$ is always a free abelian group.
- We obtain a well-defined homomorphism of abelian groups

$$\left(\mathbb{Q}[\mathbb{Z}^n]_{(0)}\right)^{\times} \to \mathcal{P}_{\mathbb{Z}}(\mathbb{Z}^n), \quad \frac{p}{q} \mapsto [N(p)] - [N(q)].$$

We want to generalize it to the so called polytope homomorphism.
• Consider the projection

$$\operatorname{pr}: G \to H_1(G)_f := H_1(G)/\operatorname{tors}(H_1(G)).$$

Let *K* be its kernel.

After a choice of a set-theoretic section of pr we get isomorphisms

$$\mathbb{Z}K * H_1(G)_f \stackrel{\cong}{\to} \mathbb{Z}G;$$

$$S^{-1}(\mathcal{D}(K) * H_1(G)_f) \stackrel{\cong}{\to} \mathcal{D}(G),$$

where here and in the sequel S^{-1} denotes Ore localization with respect to the multiplicative closed set of non-trivial elements.

周レイモレイモ

Consider the projection

$$\text{pr}\colon G\to H_1(G)_f:=H_1(G)/\operatorname{tors}(H_1(G)).$$

Let K be its kernel.

After a choice of a set-theoretic section of pr we get isomorphisms

$$\mathbb{Z}K * H_1(G)_f \stackrel{\cong}{\to} \mathbb{Z}G;$$

$$S^{-1}(\mathcal{D}(K) * H_1(G)_f) \stackrel{\cong}{\to} \mathcal{D}(G),$$

where here and in the sequel S^{-1} denotes Ore localization with respect to the multiplicative closed set of non-trivial elements.

32/44

Consider the projection

$$\operatorname{pr}: G \to H_1(G)_f := H_1(G)/\operatorname{tors}(H_1(G)).$$

Let *K* be its kernel.

After a choice of a set-theoretic section of pr we get isomorphisms

$$\begin{aligned} \mathbb{Z}K * H_1(G)_f & \xrightarrow{\cong} & \mathbb{Z}G; \\ S^{-1}\big(\mathcal{D}(K) * H_1(G)_f\big) & \xrightarrow{\cong} & \mathcal{D}(G), \end{aligned}$$

where here and in the sequel S^{-1} denotes Ore localization with respect to the multiplicative closed set of non-trivial elements.

32/44

• The convex hull of supp(x) defines a polytope

 $P(x) \subseteq \mathbb{R} \otimes_{\mathbb{Z}} H_1(G)_f = H_1(M; \mathbb{R}).$

• We have $P(x \cdot y) = P(x) + P(y)$ for $x, y \in (\mathcal{D}(K) * H_1(G)_f$.

Hence we can define a homomorphism of abelian groups

$$P': \left(S^{-1}(\mathcal{D}(K) * H_1(G)_f)\right)^{\times} \to \mathcal{P}_{\mathbb{Z}}(H_1(G)_f),$$

by sending $x \cdot y^{-1}$ to [P(x)] - [P(y)].

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The convex hull of supp(x) defines a polytope

$$P(x) \subseteq \mathbb{R} \otimes_{\mathbb{Z}} H_1(G)_f = H_1(M; \mathbb{R}).$$

• We have $P(x \cdot y) = P(x) + P(y)$ for $x, y \in (\mathcal{D}(K) * H_1(G)_f$.

Hence we can define a homomorphism of abelian groups

$$P': \left(S^{-1}(\mathcal{D}(K) * H_1(G)_f)\right)^{\times} \to \mathcal{P}_{\mathbb{Z}}(H_1(G)_f),$$

by sending $x \cdot y^{-1}$ to [P(x)] - [P(y)].

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The convex hull of supp(x) defines a polytope

 $P(x) \subseteq \mathbb{R} \otimes_{\mathbb{Z}} H_1(G)_f = H_1(M; \mathbb{R}).$

• We have $P(x \cdot y) = P(x) + P(y)$ for $x, y \in (\mathcal{D}(K) * H_1(G)_f$.

Hence we can define a homomorphism of abelian groups

$$P': \left(S^{-1}(\mathcal{D}(K) * H_1(G)_f)\right)^{\times} \to \mathcal{P}_{\mathbb{Z}}(H_1(G)_f),$$

by sending $x \cdot y^{-1}$ to [P(x)] - [P(y)].

-

• The convex hull of supp(x) defines a polytope

$$P(x) \subseteq \mathbb{R} \otimes_{\mathbb{Z}} H_1(G)_f = H_1(M; \mathbb{R}).$$

• We have $P(x \cdot y) = P(x) + P(y)$ for $x, y \in (\mathcal{D}(K) * H_1(G)_f$.

Hence we can define a homomorphism of abelian groups

$$P' \colon \left(S^{-1} \left(\mathcal{D}(K) * H_1(G)_f \right) \right)^{\times} \to \mathcal{P}_{\mathbb{Z}}(H_1(G)_f),$$

by sending $x \cdot y^{-1}$ to [P(x)] - [P(y)].

• The composite

$$\begin{array}{c} \mathcal{K}_{1}^{w}(\mathbb{Z}G) \xrightarrow{\cong} \mathcal{K}_{1}(\mathcal{D}(G)) \xrightarrow{\cong} \mathcal{D}(G)^{\times} \xrightarrow{\cong} \left(S^{-1} \left(\mathcal{D}(K) \ast \mathcal{H}_{1}(G)_{f} \right) \right)^{\times} \\ \xrightarrow{P'} \mathcal{P}_{\mathbb{Z}}(\mathcal{H}_{1}(G)_{f}) \end{array}$$

factories to the polytope homomorphism

P: Wh^w(G) $\rightarrow \mathcal{P}_{\mathbb{Z},Wh}(H_1(G)_f)$.

Wolfgang Lück (HIM, Bonn)

Universal torsion and the Thurston norm

Münster, December, 2015

34/44

Let *M* be a 3-manifold. Define the dual Thurston polytope to be subset of $H_1(M; \mathbb{R})$

 $T(M) := \{ v \in H_1(M; \mathbb{R}) \mid \phi(v) \le x_M(\phi) \text{ for all } \phi \in H^1(M; \mathbb{R}) \}.$

- Thurston has shown that the dual Thurston polytope is always an integral polytope.
- The Thurston seminorm x_M obviously determines the dual Thurston polytope.
- The converse is also true, namely, we have

$$x_M(\phi) := \frac{1}{2} \cdot \sup\{\phi(x_0) - \phi(x_1) \mid x_0, x_1 \in T(M)\}.$$

35/44

< □ > < 同 > < 回 > < 回

Let *M* be a 3-manifold. Define the dual Thurston polytope to be subset of $H_1(M; \mathbb{R})$

 $T(M) := \{ v \in H_1(M; \mathbb{R}) \mid \phi(v) \le x_M(\phi) \text{ for all } \phi \in H^1(M; \mathbb{R}) \}.$

- Thurston has shown that the dual Thurston polytope is always an integral polytope.
- The Thurston seminorm x_M obviously determines the dual Thurston polytope.
- The converse is also true, namely, we have

$$x_M(\phi) := \frac{1}{2} \cdot \sup\{\phi(x_0) - \phi(x_1) \mid x_0, x_1 \in T(M)\}.$$

35/44

• • • • • • • • • • • • •

Let *M* be a 3-manifold. Define the dual Thurston polytope to be subset of $H_1(M; \mathbb{R})$

 $T(M) := \{ v \in H_1(M; \mathbb{R}) \mid \phi(v) \le x_M(\phi) \text{ for all } \phi \in H^1(M; \mathbb{R}) \}.$

- Thurston has shown that the dual Thurston polytope is always an integral polytope.
- The Thurston seminorm *x_M* obviously determines the dual Thurston polytope.
- The converse is also true, namely, we have

$$x_M(\phi) := \frac{1}{2} \cdot \sup\{\phi(x_0) - \phi(x_1) \mid x_0, x_1 \in T(M)\}.$$

Let *M* be a 3-manifold. Define the dual Thurston polytope to be subset of $H_1(M; \mathbb{R})$

 $T(M) := \{ v \in H_1(M; \mathbb{R}) \mid \phi(v) \le x_M(\phi) \text{ for all } \phi \in H^1(M; \mathbb{R}) \}.$

- Thurston has shown that the dual Thurston polytope is always an integral polytope.
- The Thurston seminorm *x*_M obviously determines the dual Thurston polytope.
- The converse is also true, namely, we have

$$x_{M}(\phi) := \frac{1}{2} \cdot \sup\{\phi(x_{0}) - \phi(x_{1}) \mid x_{0}, x_{1} \in T(M)\}.$$

14 E 5 4

Theorem (Friedl-Lück)

Let M be a 3-manifold. Then the image of the universal L²-torsion $\rho_u^{(2)}(\widetilde{M})$ under the polytope homomorphism

$$P: \operatorname{Wh}^{w}(\pi_{1}(M)) \to \mathcal{P}_{\mathbb{Z},\operatorname{Wh}}(H_{1}(\pi_{1}(M))_{f})$$

is represented by the dual of the Thurston polytope.

A D b 4 A b

- Higher order Alexander polynomials were introduced for a covering G → M̄ → M of a 3-manifold by Harvey and Cochran, provided that G occurs in the rational derived series of π₁(M).
- At least the degree of these polynomials is a well-defined invariant of *M* and *G*.
- We can extend this notion of degree also to the universal covering of *M* and can prove the conjecture that the degree coincides with the Thurston norm.

37/44

- Higher order Alexander polynomials were introduced for a covering $G \to \overline{M} \to M$ of a 3-manifold by Harvey and Cochran, provided that *G* occurs in the rational derived series of $\pi_1(M)$.
- At least the degree of these polynomials is a well-defined invariant of *M* and *G*.
- We can extend this notion of degree also to the universal covering of *M* and can prove the conjecture that the degree coincides with the Thurston norm.

Theorem (Lück)

Let $f: X \rightarrow X$ be a self homotopy equivalence of a finite connected CW-complex. Let T_f be its mapping torus.

Then all L^2 -Betti numbers $b_n^{(2)}(\widetilde{T}_f)$ vanish.

Definition (Universal torsion for group automorphisms)

Let $f: G \to G$ be a group automorphism of the group *G*. Suppose that there is a finite model for *BG*, the Whitehead group Wh(*G*) vanishes, and *G* satisfies the Atiyah Conjecture. Then we can define the universal L^2 -torsion of *f* by

$\rho_u^{(2)}(f) := \rho^{(2)}(\widetilde{T}_f; \mathcal{N}(G \rtimes_f \mathbb{Z})) \in \mathsf{Wh}^w(G \rtimes_f \mathbb{Z})$

< ロ > < 同 > < 回 > < 回 >

Theorem (Lück)

Let $f: X \to X$ be a self homotopy equivalence of a finite connected CW-complex. Let T_f be its mapping torus.

Then all L^2 -Betti numbers $b_n^{(2)}(\widetilde{T}_f)$ vanish.

Definition (Universal torsion for group automorphisms)

Let $f: G \to G$ be a group automorphism of the group *G*. Suppose that there is a finite model for *BG*, the Whitehead group Wh(*G*) vanishes, and *G* satisfies the Atiyah Conjecture. Then we can define the universal L^2 -torsion of *f* by

$$\rho_u^{(2)}(f) := \rho^{(2)}(\widetilde{T}_f; \mathcal{N}(G \rtimes_f \mathbb{Z})) \in \mathsf{Wh}^w(G \rtimes_f \mathbb{Z})$$

Theorem (Lück)

Let $f: X \to X$ be a self homotopy equivalence of a finite connected CW-complex. Let T_f be its mapping torus.

Then all L^2 -Betti numbers $b_n^{(2)}(\widetilde{T}_f)$ vanish.

Definition (Universal torsion for group automorphisms)

Let $f: G \to G$ be a group automorphism of the group *G*. Suppose that there is a finite model for *BG*, the Whitehead group Wh(*G*) vanishes, and *G* satisfies the Atiyah Conjecture. Then we can define the universal L^2 -torsion of *f* by

$$ho_u^{(2)}(f) :=
ho^{(2)}(\widetilde{T}_f; \mathcal{N}(G \rtimes_f \mathbb{Z})) \in \mathsf{Wh}^w(G \rtimes_f \mathbb{Z})$$

- This seems to be a very powerful invariant which needs to be investigated further.
- It has nice properties, e.g., it depends only on the conjugacy class of *f*, satisfies a sum formula and a formula for exact sequences.
- If G is amenable, it vanishes.
- If *G* is the fundamental group of a compact surface *F* and *f* comes from an automorphism $a: F \to F$, then T_f is a 3-manifold and a lot of the material above applies.
- For instance, if *a* is irreducible, $\rho_u^{(2)}(f)$ detects whether *a* is pseudo-Anosov since we can read off the sum of the volumes of the hyperbolic pieces in the Jaco-Shalen decomposition of T_f .

• Suppose that $H_1(f) = id$. Then there is an obvious projection

$$\operatorname{pr} \colon H_1(G \rtimes_f \mathbb{Z})_f = H_1(G)_f \times \mathbb{Z} \to H_1(G)_f.$$

Let

$$\boldsymbol{P}(f) \in \mathcal{P}_{\mathbb{Z}}(\mathbb{R} \otimes_{\mathbb{Z}} H_1(G)_f)$$

be the image of $\rho_u^{(2)}(f)$ under the composite

$$\mathsf{Wh}^{w}(G \rtimes \mathbb{Z}) \xrightarrow{P} \mathcal{P}_{\mathbb{Z},\mathsf{Wh}}(\mathbb{R} \otimes_{\mathbb{Z}} H_{1}(G \rtimes_{f} \mathbb{Z})) \xrightarrow{\mathcal{P}_{\mathbb{Z}}(\mathsf{pr})} \mathcal{P}_{\mathbb{Z},\mathsf{Wh}}(\mathbb{R} \otimes_{\mathbb{Z}} H_{1}(G)_{f})$$

• What are the main properties of this polytope? In which situations can it be explicitly computed? The case, where *F* is a finitely generated free group, is of particular interest.

• Suppose that $H_1(f) = id$. Then there is an obvious projection

$$\mathsf{pr}\colon H_1(G\rtimes_f\mathbb{Z})_f=H_1(G)_f\times\mathbb{Z}\to H_1(G)_f.$$

Let

$$\boldsymbol{P}(f) \in \mathcal{P}_{\mathbb{Z}}(\mathbb{R} \otimes_{\mathbb{Z}} H_1(G)_f)$$

be the image of $\rho_u^{(2)}(f)$ under the composite

$$\mathsf{Wh}^{\mathsf{w}}(G \rtimes \mathbb{Z}) \xrightarrow{P} \mathcal{P}_{\mathbb{Z},\mathsf{Wh}}(\mathbb{R} \otimes_{\mathbb{Z}} H_1(G \rtimes_f \mathbb{Z})) \xrightarrow{\mathcal{P}_{\mathbb{Z}}(\mathsf{pr})} \mathcal{P}_{\mathbb{Z},\mathsf{Wh}}(\mathbb{R} \otimes_{\mathbb{Z}} H_1(G)_f)$$

 What are the main properties of this polytope? In which situations can it be explicitly computed? The case, where F is a finitely generated free group, is of particular interest. Definition (L^2 -Euler characteristic)

Let *Y* be a *G*-space. Suppose that

$$h^{(2)}(Y;\mathcal{N}(G)):=\sum_{n\geq 0}b_n^{(2)}(Y;\mathcal{N}(G))<\infty.$$

Then we define its L^2 -Euler characteristic

$$\chi^{(2)}(Y;\mathcal{N}(G)):=\sum_{n\geq 0}(-1)^n\cdot b_n^{(2)}(Y;\mathcal{N}(G))\quad\in\mathbb{R}.$$

Wolfgang Lück (HIM, Bonn)

Münster, December, 2015

41/44

・ 同 ト ・ ヨ ト ・ ヨ

Definition (L²-Euler characteristic)

Let Y be a G-space. Suppose that

$$h^{(2)}(Y;\mathcal{N}(G)):=\sum_{n\geq 0}b^{(2)}_n(Y;\mathcal{N}(G))<\infty.$$

Then we define its L^2 -Euler characteristic

$$\chi^{(2)}(\mathbf{Y};\mathcal{N}(\mathbf{G})):=\sum_{n\geq 0}(-1)^n\cdot b_n^{(2)}(\mathbf{Y};\mathcal{N}(\mathbf{G}))\quad\in\mathbb{R}.$$

Wolfgang Lück (HIM, Bonn)

Münster, December, 2015 41 / 44

Definition (ϕ - L^2 -Euler characteristic)

Let *X* be a connected *CW*-complex. Suppose that \widetilde{X} is L^2 -acyclic. Consider an epimorphism $\phi: \pi = \pi_1(M) \to \mathbb{Z}$. Let *K* be its kernel. Suppose that *G* is torsionfree and satisfies the Atiyah Conjecture.

Define the ϕ -L²-Euler characteristic

$$\chi^{(2)}(\widetilde{X};\phi):=\chi^{(2)}(\widetilde{X};\mathcal{N}(\mathcal{K}))\in\mathbb{R}.$$

- The φ-L²-Euler characteristic has a bunch of good properties, it satisfies for instance a sum formula, product formula and is multiplicative under finite coverings.
- It turns out that the ϕ - L^2 -Euler characteristic is always an integer.

Definition (ϕ -L²-Euler characteristic)

Let *X* be a connected *CW*-complex. Suppose that \widetilde{X} is L^2 -acyclic. Consider an epimorphism $\phi: \pi = \pi_1(M) \to \mathbb{Z}$. Let *K* be its kernel. Suppose that *G* is torsionfree and satisfies the Atiyah Conjecture.

Define the ϕ -L²-Euler characteristic

$$\chi^{(2)}(\widetilde{X};\phi) := \chi^{(2)}(\widetilde{X};\mathcal{N}(\mathcal{K})) \in \mathbb{R}.$$

- Notice that X̃/K is not a finite CW-complex. Hence it is not obvious but true that h⁽²⁾(X̃; N(K)) < ∞ and χ⁽²⁾(X̃; φ) is a well-defined real number.
- The ϕ - L^2 -Euler characteristic has a bunch of good properties, it satisfies for instance a sum formula, product formula and is multiplicative under finite coverings.
- It turns out that the ϕ - L^2 -Euler characteristic is always an integer.

Definition (ϕ -L²-Euler characteristic)

Let *X* be a connected *CW*-complex. Suppose that \widetilde{X} is L^2 -acyclic. Consider an epimorphism $\phi: \pi = \pi_1(M) \to \mathbb{Z}$. Let *K* be its kernel. Suppose that *G* is torsionfree and satisfies the Atiyah Conjecture.

Define the ϕ -L²-Euler characteristic

$$\chi^{(2)}(\widetilde{X};\phi) := \chi^{(2)}(\widetilde{X};\mathcal{N}(\mathcal{K})) \in \mathbb{R}.$$

- Notice that X̃/K is not a finite CW-complex. Hence it is not obvious but true that h⁽²⁾(X̃; N(K)) < ∞ and χ⁽²⁾(X̃; φ) is a well-defined real number.
- The φ-L²-Euler characteristic has a bunch of good properties, it satisfies for instance a sum formula, product formula and is multiplicative under finite coverings.
- It turns out that the ϕ - L^2 -Euler characteristic is always an integer.

Wolfgang Lück (HIM, Bonn)

Definition (ϕ -L²-Euler characteristic)

Let *X* be a connected *CW*-complex. Suppose that \widetilde{X} is L^2 -acyclic. Consider an epimorphism $\phi \colon \pi = \pi_1(M) \to \mathbb{Z}$. Let *K* be its kernel. Suppose that *G* is torsionfree and satisfies the Atiyah Conjecture.

Define the ϕ - L^2 -Euler characteristic

$$\chi^{(2)}(\widetilde{X};\phi) := \chi^{(2)}(\widetilde{X};\mathcal{N}(K)) \in \mathbb{R}.$$

- Notice that X̃/K is not a finite CW-complex. Hence it is not obvious but true that h⁽²⁾(X̃; N(K)) < ∞ and χ⁽²⁾(X̃; φ) is a well-defined real number.
- The φ-L²-Euler characteristic has a bunch of good properties, it satisfies for instance a sum formula, product formula and is multiplicative under finite coverings.
- It turns out that the ϕ - L^2 -Euler characteristic is always an integer.

 Let f: X → X be a selfhomotopy equivalence of a connected finite CW-complex. Let T_f be its mapping torus. The projection T_f → S¹ induces an epimorphism φ: π₁(T_f) → Z = π₁(S¹).

Then \widetilde{T}_f is L^2 -acyclic and we get

$$\chi^{(2)}(\widetilde{T}_f;\phi)=\chi(X).$$

Theorem (Friedl-Lück)

Let M be a 3-manifold and $\phi: \pi_1(M) \to \mathbb{Z}$ be an epimorphism. Then

$$-\chi^{(2)}(\widetilde{M};\phi)=X_M(\phi).$$

 ▲
 ■
 ▲
 ■
 ■

 Münster, December, 2015

43/44

 Let f: X → X be a selfhomotopy equivalence of a connected finite CW-complex. Let T_f be its mapping torus. The projection T_f → S¹ induces an epimorphism φ: π₁(T_f) → Z = π₁(S¹).

Then \widetilde{T}_f is L^2 -acyclic and we get

$$\chi^{(2)}(\widetilde{T}_f;\phi)=\chi(X).$$

Theorem (Friedl-Lück)

Let M be a 3-manifold and $\phi \colon \pi_1(M) \to \mathbb{Z}$ be an epimorphism. Then

$$-\chi^{(2)}(\widetilde{M};\phi)=X_{M}(\phi).$$

Münster, December, 2015

43/44

 Suppose that G is torsionfree and satisfies the Atiyah Conjecture. Consider φ: G → Z.

Then there is a homomorphism

$$\chi_{\phi}^{(2)} \colon Wh^{w}(G) \to \mathbb{Z}$$

which sends the universal L^2 -torsion $\rho_u^{(2)}(\widetilde{X})$ to $\chi^{(2)}(\widetilde{X};\phi)$.