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Abstract. Let G be a discrete group which acts properly and isometrically on a complete
CAT(0)-space X. Consider an integer d with d = 1 or d ≥ 3 such that the topological
dimension of X is bounded by d. We show the existence of a G-CW -model EG for the
classifying space for proper G-actions with dim(EG) ≤ d. Provided that the action is also
cocompact, we prove the existence of a G-CW -model EG for the classifying space of the

family of virtually cyclic subgroups satisfying dim(EG) ≤ d + 1.

1. Introduction

Given a group G, denote by EG a G-CW -model for the classifying space for
proper G-actions and by EG = EVCY(G) a G-CW -model for the classifying
space of the family of virtually cyclic subgroups. Our main theorem which will
be proved in Section 4 is

Theorem 1.1. Let G be a discrete group which acts properly and isometri-
cally on a complete proper CAT(0)-space X. Let top-dim(X) be the topological
dimension of X. Let d be an integer satisfying d = 1 or d ≥ 3 such that
top-dim(X) ≤ d.

(i) Then there is G-CW -model EG with dim(EG) ≤ d;
(ii) Suppose that G acts by semisimple isometries. (This is the case if we

additionally assume that the G-action is cocompact.)
Then there is G-CW -model EG with dim(EG) ≤ d+ 1.
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There is the question whether for any group G the inequality

(1.2) hdimG(EG) − 1 ≤ hdimG(EG) ≤ hdimG(EG) + 1

holds, where hdimG(EG) is the minimum of the dimensions of all possible

G-CW -models for EG and hdimG(EG) is defined analogously (see [15, Intro-

duction]). Since hdim(EG) ≤ 1 + hdim(EG) holds for all groups G (see [15,
Corollary 5.4]), Theorem 1.1 implies

Corollary 1.3. Let G be a discrete group and let X be complete CAT(0)-space
X with finite topological dimension top-dim(X). Suppose that G acts properly
and isometrically on X. Assume that the G-action is by semisimple isometries.
(The last condition is automatically satisfied if we additionally assume that the

G-action is cocompact.) Suppose that top-dim(X) = hdimG(EG) 6= 2.
Then inequality (1.2) is true.

We will prove at the end of Section 4

Corollary 1.4. Suppose that G is virtually torsionfree. Let M be a simply
connected complete Riemannian manifold of dimension n with non-negative
sectional curvature. Suppose that G acts on M properly, isometrically and
cocompactly. Then

hdim(EG) = n;
n− 1 ≤ hdim(EG) ≤ n+ 1.

In particular (1.2) holds.

If G is the fundamental group of an n-dimensional closed hyperbolic man-
ifold, then hdim(EG) = hdim(EG) = n by [15, Example 5.12]. If G is vir-

tually Zn for n ≥ 2, then hdim(EG) = n and hdim(EG) = n + 1 by [15,

Example 5.21]. Hence the cases hdim(EG) = hdim(EG) and hdim(EG) =

hdim(EG) + 1 do occur in the situation of Corollary 1.4. There exists groups
G with hdim(EG) = hdim(EG) − 1 (see [15, Example 5.29]). But we do not
believe that this is possible in the situation of Corollary 1.3 or Corollary 1.4.

In the preprint by Farley [9] constructions for EG are given for a group G
acting by semisimple isometries on a proper CAT(0)-space under the assump-
tion that there are some G-well-behaved spaces of axes.

The author wants to thank the referee for his valuable suggestions.

2. Classifying Spaces for Families

We briefly recall the notions of a family of subgroups and the associated
classifying space. For more information, we refer for instance to the original
source [18] or to the survey article [13].
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A family F of subgroups of G is a set of subgroups of G which is closed
under conjugation and taking subgroups. Examples for F are

{1} = {trivial subgroup};

FIN = {finite subgroups};

VCY = {virtually cyclic subgroups};

ALL = {all subgroups}.

Let F be a family of subgroups of G. A model for the classifying space
EF (G) of the family F is a G-CW -complex X all of whose isotropy groups
belong to F such that for any G-CW -complex Y with isotropy groups in F
there exists a G-map Y → X and any two G-maps Y → X are G-homotopic.
In other words, X is a terminal object in the G-homotopy category of G-CW -
complexes whose isotropy groups belong to F . In particular, two models for
EF (G) are G-homotopy equivalent.

There exists a model for EF (G) for any group G and any family F of sub-
groups. There is even a functorial construction (see [6, page 223 and Lemma 7.6
(ii)]).

A G-CW -complex X is a model for EF (G) if and only if the H-fixed point
set XH is contractible for H ∈ F and is empty for H 6∈ F .

We abbreviate EG := EFIN (G) and call it the universal G-CW -complex
for proper G-actions. We also abbreviate EG := EVCY(G).

A model for EALL(G) is G/G. A model for E{1}(G) is the same as a model
for EG, which denotes the total space of the universal G-principal bundle
EG→ BG.

One can also define a numerable version of the space for proper G-actions
to G which is denoted by JG. It is not necessarily a G-CW -complex. A
metric space X on which G acts isometrically and properly is a model for JG
if and only if the two projections X ×X → X onto the first and second factor
are G-homotopic to one another. If X is a complete CAT(0)-space on which
G-acts properly and isometrically, then X is a model for JG, the desired G-
homotopy is constructed using the geodesics joining two points in X (see [4,
Proposition 1.4 in II.1 on page 160]).

One motivation for studying the spaces EG and EG comes from the Baum-
Connes Conjecture and the Farrell-Jones Conjecture. For more information
about these conjectures we refer for instance to [2, 10, 14, 16].

3. Topological and CW -dimension

Let X be a topological space. Let U be an open covering. Its dimension
dim(U) ∈ {0, 1, 2, . . .}∐{∞} is the infimum over all integers d ≥ 0 such that for
any collection U0, U1, . . . , Ud of pairwise distinct elements in U the intersection
⋂d

i=0 Ui is empty. An open covering V is a refinement of U if for every V ∈ V
there is U ∈ U with V ⊆ U .

Münster Journal of Mathematics Vol. 2 (2009), 201–214
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Definition 3.1 (Topological dimension). The topological dimension (some-
times also called covering dimension) of a topological space X

top-dim(X) ∈ {0, 1, 2, . . .} ∐ {∞}

is the infimum over all integers d ≥ 0 such that any open covering U possesses
a refinement V with dim(V) ≤ d.

Let Z be a metric space. We will denote for z ∈ Z and r ≥ 0 by Br(z)
and Br(z) respectively the open ball and closed ball respectively around z with
radius r. We call Z proper if for each z ∈ Z and r ≥ 0 the closed ball Br(z) is
compact. A group G acts properly on the topological space Z if for any z ∈ Z
there is an open neighborhood U such that the set {g ∈ G | g · U ∩ U 6= ∅} is
finite. In particular every isotropy group is finite. If Z is a G-CW -complex,
then Z is a proper G-space if and only if the isotropy group of any point in Z
is finite (see [12, Theorem 1.23]).

Lemma 3.2. Let Z be a proper metric space. Suppose that G acts on Z
isometrically and properly. Then we get for the topological dimensions of X
and G\X

top-dim(G\X) ≤ top-dim(X).

Proof. Since G acts properly and isometrically, we can find for every z ∈ Z a
real number ǫ(z) > 0 such that we have for all g ∈ G

g ·B7ǫ(z)(z) ∩B7ǫ(z) 6= ∅ ⇐⇒ g ·B7ǫ(z)(z) = B7ǫ(z)(z) ⇐⇒ g ∈ Gz.

We can arrange that ǫ(gz) = ǫ(z) holds for z ∈ Z and g ∈ G. Consider
G · Bǫ(z). We claim that this set is closed in Z. We have to show for a
sequence (zn)n≥0 of elements in Bǫ(z) and (gn)n≥0 of elements in G and x ∈ Z

with limn→∞ gnzn = x that x belongs to G · Bǫ(z). Since X is proper, we
can find y ∈ Bǫ(z) such that limn→∞ zn = y. Choose N = N(ǫ) such that
dX(gnzn, x) ≤ ǫ and dX(zn, y) ≤ ǫ holds for n ≥ N . We conclude for n ≥ N

dx(gny, x) ≤ dX(gny, gnzn) + dX(gnzn, x)

= dX(y, zn) + dX(gnzn, x)

≤ ǫ+ ǫ

= 2ǫ.

This implies for n ≥ N

dX(g−1
n gNz, z) = dX(gNz, gnz)

≤ dX(gNz, gNy) + dX(gNy, x) + dX(x, gny) + dX(gny, gnz)

= dX(z, y) + dX(gNy, x) + dX(gny, x) + dX(y, z)

≤ ǫ+ 2ǫ+ 2ǫ+ ǫ

= 6ǫ.
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Hence g−1
n gN ∈ Gz for n ≥ N . Since Gz is finite, we can arrange by passing

to subsequences that g0 = gn holds for n ≥ 0. Hence

x = lim
n→∞

gnzn = lim
n→∞

g0zn = g0 · lim
n→∞

zn = g0 · y ∈ G ·Bǫ(z).

Choose a set-theoretic section s : G/Gz → G of the projection G → G/Gz.
The map

G/Gz ×B7ǫ(z)(z)
∼=
−→ G · B7ǫ(z)(z), (gGz , x) 7→ s(gGz) · x

is bijective, continuous and open and hence a homeomorphism. It induces a
homeomorphism

G/Gz ×Bǫ(z)(z)
∼=
−→ G · Bǫ(z)(z).

This implies

(3.3) top-dim
(

Bǫ(z)(z)
)

= top-dim
(

G · Bǫ(z)(z)
)

.

Let pr : Z → G\Z be the projection. It induces a bijective continuous map

Gz\Bǫ(z)(z)
∼=
−→ pr

(

Bǫ(z)(z)
)

which is a homeomorphism since Bǫ(z)(z) and

hence Gz\Bǫ(z)(z) is compact. Hence we get

(3.4) top-dim
(

pr(Bǫ(z)(z))
)

= top-dim
(

Gz\Bǫ(z)(z)
)

.

Since the metric space Bǫ(z)(z) is compact and hence contains a countable
dense set and Gz is finite, we conclude from [3, Exercise in Chapter II on
page 112]

(3.5) top-dim
(

Gz\Bǫ(z)(z)
)

≤ top-dim
(

Bǫ(z)(z)
)

.

From (3.3), (3.4) and (3.5) we conclude thatG·Bǫ(z)(z) ⊆ Z and pr
(

Bǫ(z)(z)
)

⊆
G\Z are closed and satisfy

(3.6) top-dim
(

pr(Bǫ(z)(z))
)

≤ top-dim
(

G ·Bǫ(z)(z)
)

.

Since Z is proper, it is the countable union of compact subspaces and hence
contains a countable dense subset. This is equivalent to the condition that Z
has a countable basis for its topology. Obviously the same is true for G\Z. We
conclude from [17, Theorem 9.1 in in Chapter 7.9 on page 302 and Exercise 9
in Chapter 7.9 on page 315]

top-dim(Z) = sup
{

top-dim
(

G ·Bǫ(z)(z)
)}

;(3.7)

top-dim(G\Z) = sup
{

top-dim
(

pr(Bǫ(z)(z))
)}

.(3.8)

Now Lemma 3.2 follows from (3.6), (3.7) and (3.8). �

In the sequel we will equip a simplicial complex with the weak topology,
i.e., a subset is closed if and only if its intersection with any simplex σ is a
closed subset of σ. With this topology a simplicial complex carries a canonical
CW -structure.

Let X be a G-space. We call a subset U ⊆ X a FIN -set if we have
gU ∩ U 6= ∅ =⇒ gU = U for every g ∈ G and GU := {g ∈ G | g · U = U}
is finite. Let U be a covering of X by open FIN -subset. Suppose that U is
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G-invariant, i.e., we have g · U ∈ U for g ∈ G and U ∈ U . Define its nerve
N (U) to be the simplicial complex whose vertices are the elements in U and
for which the pairwise distinct vertices U0, U1, . . . , Ud span a d-simplex if and

only if
⋂d

i=0 Ui 6= ∅. The action of G on X induces an action on U and hence
a simplicial action on N (U). The isotropy group of any vertex is finite and
hence the isotropy group of any simplex is finite. Let N (U)′ be the barycentric
subdivision. It inherits a simplicial G-action from N (U) such that for any
g ∈ G and any simplex σ whose interior is denoted by σ◦ and which satisfies
g · σ◦ ∩ σ◦ 6= ∅ we have gx = x for all x ∈ σ◦. In particular N (U)′ is a
G-CW -complex and agrees as a G-space with N (U).

Lemma 3.9. Let n be an integer with n ≥ 0. Let X be a proper metric space
whose topological dimension satisfies top-dim(X) ≤ n. Suppose that G acts
properly and isometrically on X.

Then there exists a proper n-dimensional G-CW -complex Y together with a
G-map f : X → Y .

Proof. Since the G-action is proper we can find for every x ∈ X an ǫ(x) > 0
such that for every g ∈ G we have

g · B2ǫ(x)(x) ∩B2ǫ(x)(x) 6= ∅ ⇔ g ·B2ǫ(x)(x) = B2ǫ(x)(x)

⇔ g ·B2ǫ(x)(x) = B2ǫ(x)(x) ⇔ g ·Bǫ(x)(x) = Bǫ(x)(x) ⇔ g ∈ Gx.

We can arrange that ǫ(gx) = ǫ(x) for g ∈ G and x ∈ X holds. We obtain
a covering of X by open FIN -subsets

{

Bǫ(x)(x) | x ∈ X
}

. Let pr : X →
G\X be the canonical projection. We obtain an open covering of G\X by
{

pr
(

Bǫ(x)(x)
)

| x ∈ X
}

. Since top-dim(X) ≤ n by assumption and G acts
properly on X , we get top-dim(G\X) ≤ n from Lemma 3.2. Since G acts
properly and isometrically on X , the quotient G\X inherits a metric from
X . Hence G\X is paracompact by Stone’s theorem (see [17, Theorem 4.3
in Chap. 6.3 on page 256]) and in particular normal. By [7, Theorem 3.5
on page 211] we can find a locally finite open covering U of G\X such that
dim(U) ≤ n and U is a refinement of

{

pr(Bǫ(x)(x)) | x ∈ X
}

. For each U ∈ U

choose x(U) ∈ X with U ⊆ pr
(

Bǫ(U)(x(U)
)

. Define the index set

J =
{

(U, g) | U ∈ U , g ∈ G/Gx(U)

}

.

For (U, g) ∈ J define an open FIN -subset of X by

VU,g := pr−1(U) ∩ g ·B2ǫ(x(U))

(

x(U)
)

.

Obviously this is well-defined, i.e., the choice of g ∈ g does not matter, and we
have pr(VU,g) ⊆ U and VU,g ⊆ g · B2ǫ(x(U))

(

x(U)
)

.
Consider the collection of subsets of X

V =
{

VU,g | (U, g) ∈ J}.

This is a G-invariant covering of X by open FIN -subsets. Its dimension
satisfies

dim(V) ≤ dim(U) ≤ n

Münster Journal of Mathematics Vol. 2 (2009), 201–214
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since for U ∈ U , g1, g2 ∈ G/Gx(U) we have

VU,g1 ∩VU,g2 6= ∅ =⇒ g1 ·B2ǫ(x(U))

(

x(U)
)

∩g2 ·B2ǫ(x(U))

(

x(U)
)

=⇒ g1 = g2.

Since U is locally finite and G\X is paracompact, we can find a locally finite
partition of unity

{

eU : G\X → [0, 1] | U ∈ U
}

which is subordinate to U , i.e.,
∑

U∈U eU = 1 and supp(eU ) ⊂ U for every U ∈ U . Fix a map χ : [0,∞) → [0, 1]

satisfying χ−1(0) = [1,∞). Define for (U, g) ∈ J a function

φU,g : X → [0, 1], y 7→ eU (pr(y)) · χ
(

dX(y, gx(U))/ǫ(x(U))
)

.

Consider y ∈ X . Since U is locally finite and G\X is locally compact, we
can find an open neighborhood T of pr(y) such that T meets only finitely many
elements of U . Choose an open neighborhoodW0 of y such that W0 is compact.
Define an open neighborhood of y by

W := W0 ∩ pr−1(T ).

Since W0 is compact, W is compact. Since G acts properly, there exists for a
given U ∈ U only finitely many elements g ∈ G with W∩g ·Bǫ(x(U))(x(U)) 6= ∅.

Since T meets only finitely elements of U , the set

JW :=
{

(U, g) ∈ J |W ∩ g ·Bǫ(x(U))(x(U)) ∩ pr−1(U) 6= ∅
}

is finite. Suppose φU,g(z) > 0 for (U, g) ∈ J and z ∈ W . We conclude
z ∈ pr−1(U) ∩ g · Bǫ(x(U))(x(U)) and hence (U, g) ∈ JW . Thus we have shown

that the collection
{

φU,g | (U, g) ∈ J
}

is locally finite.
We conclude that the map
∑

(U,g)∈J

φU,g : X → [0, 1], y 7→
∑

(U,g)∈J

eU (pr(y)) · χ
(

dX(y, gx(U))/ǫ(x(U))
)

is well-defined and continuous. It has always a value greater than zero since
for every y ∈ X there exists U ∈ U with eU (pr(y)) > 0, the set pr−1(U) is
contained in

⋃

g∈G g · Bǫ(U)(x(U)) and χ−1(0) = [1,∞). Define for (U, g) ∈ J
a map

ψU,g : X → [0, 1], y 7→
φU,g(y)

∑

(U,g)∈J φU,g(y)
.

We conclude that
∑

(U,g)∈J ψU,g(y) = 1 for y ∈ X ;

ψU,g(hy) = ψ
U,h−1g

(y) for h ∈ G, y ∈ Y and (U, g) ∈ J ;

supp(ψU,g) ⊆ VU,g for (U, g) ∈ J,

and the collection
{

ψU,g | (U, g) ∈ J
}

is locally finite. Define the desired
proper n-dimensional G-CW -complex to be the nerve Y := N (V). Define a
map by

f : X → N (V), y 7→
∑

(U,g)∈J

ψU,g(y) · VU,g.

It is well-defined since for y ∈ X the simplices VU,g for which ψU,g(y) 6= 0 holds
span a simplex because y ∈ X with ψU,g(y) 6= 0 belongs to VU,g and hence the
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intersection of the sets VU,g for which ψU,g(y) 6= 0 holds contains y and hence is
nonempty. The map f is continuous since

{

ψU,g | (U, g) ∈ J
}

is locally finite.
It is G-equivariant by the following calculation for h ∈ G and y ∈ Y :

f(hy) =
∑

(U,g)∈J

ψU,g(hy) · VU,g

=
∑

(U,g)∈J

ψU,hg(hy) · VU,hg

=
∑

(U,g)∈J

ψ
U,h−1hg

(y) · VU,hg

=
∑

(U,g)∈J

ψU,g(y) · h · VU,g

= h ·
∑

(U,g)∈J

ψU,g(y) · VU,g

= h · f(y).

�

Lemma 3.10. Let X and Y be G-CW -complexes. Let i : X → Y and r : Y →
X be G-maps such that r◦i is G-homotopic to the identity map on X. Consider
an integer d ≥ 3. Suppose that Y has dimension ≤ d.

Then X is G-homotopy equivalent to a G-CW -complex Z of dimension ≤ d.

Proof. By the Equivariant Cellular Approximation Theorem (see [19, Theo-
rem II.2.1 on page 104]) we can assume without loss of generality that i and
r are cellular. Let cyl(r) be the mapping cylinder. Let k : Y → cyl(r) be the
canonical inclusion and p : cyl(r) → X be the canonical projection. Then p
is a G-homotopy equivalence and p ◦ k = r. Let Z be the union of the 2-
skeleton of cyl(r) and Y . This is a G-CW -subcomplex of cyl(r) and cyl(r) is
obtained from Z by attaching equivariant cells of dimension ≥ 3. Hence the
map p|Z : Z → X has the property that it induces on every fixed point set
a 2-connected map. Let j : X → Z be the composite of i : X → Y with the
obvious inclusion Y → Z. Then p|Z ◦ j = p ◦ k ◦ i = r ◦ i is G-homotopy
equivalent to the identity and the dimension of Z is still bounded by d since
we assume d ≥ 3. Hence we can assume in the sequel that rH : Y H → XH is
2-connected for all H ⊆ G, otherwise replace Y by Z, i by j and r by p|Z .

We want to apply [12, Proposition 14.9 on page 282]. (We will use the
notation of this reference that for a category C a ZC-module or a ZC-chain
complex respectively is a contravariant functor from C to the category of Z-
modules or of Z-chain complexes respectively.) Here the assumption d ≥ 3
enters. Hence it suffices to show that the cellular ZΠ(G,X)-chain complex
Cc

∗(X) is ZΠ(G,X)-chain homotopy equivalent to a d-dimensional ZΠ(G,X)-
chain complex. By [12, Proposition 11.10 on page 221] it suffices to show that
the cellular ZΠ(G,X)-chain complex Cc

∗(X) is dominated by a d-dimensional
ZΠ(G,X)-chain complex. This follows from the geometric domination (Y, i, r)

Münster Journal of Mathematics Vol. 2 (2009), 201–214
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by passing to the cellular chain complexes over the fundamental categories since
r and hence also i induce equivalences between the fundamental categories
because rH : Y H → XH is 2-connected for all H ⊆ G and r ◦ i ≃G idX .

�

The condition d ≥ 3 is needed since we want to argue first with the cellular
ZOr(G)-chain complex and then transfer the statement that it is d-dimensional
to the statement that the underlying G-CW -complex is d-dimensional. The
condition d ≥ 3 enters for analogous reasons in the classical proof of the the-
orem that the existence of a d-dimensional ZG-projective resolution for the
trivial ZG-module Z implies the existence of a d-dimensional model for BG
(see [5, Theorem 7.1 in Chapter VIII.7 on page 205]).

Theorem 3.11. Let G be a discrete group. Then

(i) There is a G-homotopy equivalence JG→ EG;
(ii) Suppose that there is a model for JG which is a metric space such that

the action of G on JG is isometric. Consider an integer d with d = 1
or d ≥ 3. Suppose that the topological dimension top-dim(JG) ≤ d.

Then there is a G-CW -model for EG of dimension ≤ d;
(iii) Let d be an integer d ≥ 0. Suppose that there is a G-CW -model for

EG with dim(EG) ≤ d such that EG after forgetting the group action
has countably many cells.

Then there exists a model for JG with top-dim(JG) ≤ d.
Proof. (i) This is proved in [13, Lemma 3.3 on page 278].

(ii) Choose a G-homotopy equivalence i : EG → JG. From Lemma 3.9 we
obtain a G-map f : JG → Y to a proper G-CW -complex of dimension ≤ d.
By the universal properly of EG we can find a G-map h : Y → EG and the
composite h ◦ f ◦ i is G-homotopic to the identity on EG.

Suppose d ≥ 3. We conclude from Lemma 3.10 that EG is G-homotopy
equivalent to a G-CW -complex of dimension ≤ d.

Suppose d = 1. By Dunwoody [8, Theorem 1.1] it suffices to show that the
rational cohomological dimension of G satisfies cdQ(G) ≤ 1. Hence we have
to show for any QG-module M that ExtnQG(Q,M

)

= 0 for n ≥ 2, where Q

is the trivial QG-module. Since all isotropy groups of EG and Y are finite,
their cellular QG-chain complexes are projective. Since EG is contractible,
C∗(EG; Q) is a projective QG-resolution and hence

Extn
QG(Q,M

)

∼= Hn
(

homQG(C∗(EG; Q),M)
)

.

Since h ◦ f ◦ i ≃G idEG, the Q-module Hn
(

homQG(C∗(EG; Q),M)
)

is a di-

rect summand in the Q-module Hn
(

homQG(C∗(Y ; Q),M)
)

. Since Y is 1-

dimensional by assumption, Hn
(

homQG(C∗(Y ; Q),M)
)

vanishes for n ≥ 2.

This implies that Extn
QG(Q,M

)

vanishes for n ≥ 2.

(iii) Using the equivariant version of the simplicial approximation theorem and
the fact that changing the G-homotopy class of attaching maps does not change
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the G-homotopy type, one can find a simplicial complex X with simplicial G-
action which is G-homotopy equivalent to EG, satisfies dim(X) = dim(EG)
and has only countably many simplices. Hence the barycentric subdivision
X ′ is a simplicial complex of dimension ≤ d with countably many simplices
and carries a G-CW -structure. The latter implies that X ′ is a G-CW -model
for EG and hence also a model for JG. Since the dimension of a simplicial
complex with countably many simplices is equal to its topological dimension,
we conclude top-dim(X ′) = dim(X) = dim(EG) ≤ d. �

Remark 3.12. The referee has pointed out to the author that one can give
a simplified and improved version of assertion (iii) of Theorem 3.11. Namely,
one can replace the hypothesis just by the hypothesis that G is countable.

If there is a G-CW -model for EG such that EG after forgetting the group
action has countably many 0-cells, then G is countable.

By inspecting the proof one realizes that the condition that G is countable
suffices to conclude the existence of a model for JG with top-dim(JG) ≤ d
which has only countably many cells after forgetting the group action.

4. The passage from finite to virtually cyclic groups

In [15] it is described how one can construct EG from EG. In this section
we want to make this description more explicit under the following condition

Condition 4.1. We say that G satisfies condition (C) if for every g, h ∈ G
with |h| = ∞ and k, l ∈ Z we have

ghkg−1 = hl =⇒ |k| = |l|.

Let ICY be the set of infinite cyclic subgroup C of G. This is not a family
since it does not contain the trivial subgroup. We call C,D ∈ ICY equivalent
if |C ∩D| = ∞. One easily checks that this is an equivalence relation on ICY .
Denote by [ICY] the set of equivalence classes and for C ∈ ICY by [C] its
equivalence class. Denote by

NGC := {g ∈ G | gCg−1 = C}

the normalizer of C in G. Define for [C] ∈ [ICY] a subgroup of G by

NG[C] :=
{

g ∈ G
∣

∣ |gCg−1 ∩ C| = ∞
}

.

This is the same the commensurator of the subgroup C ⊆ G, i.e., the set of
elements g ∈ G for which H ∩ gHg−1 has finite index in both H and gHg−1.
One easily checks that this is independent of the choice of C ∈ [C]. Actually
NG[C] is the isotropy of [C] under the action of G induced on [ICY] by the
conjugation action of G on ICY.

Lemma 4.2. Suppose that G satisfies Condition (C) (see 4.1). Consider C ∈
ICY.

Then obtain a nested sequence of subgroups

NGC ⊆ NG2!C ⊆ NG3!C ⊆ NG4!C ⊆ · · ·
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where k!C is the subgroup of C given by {hk! | h ∈ C}, and we have

NG[C] =
⋃

k≥1

NGk!C.

Proof. Since every subgroup of a cyclic group is characteristic, we obtain the
nested sequence of normalizers NGC ⊆ NG2!C ⊆ NG3!C ⊆ NG4!C ⊆ · · · .

Consider g ∈ NG[C]. Let h be a generator of C. Then there are k, l ∈ Z

with ghkg−1 = hl and k, l 6= 0. Condition (C) implies k = ±l. Hence g ∈
NG〈hk〉 ⊆ NGk!C. This implies NG[C] ⊆

⋃

k≥1NGk!C. The other inclusion

follows from the fact that for g ∈ NGk!C we have k!C ⊆ gCg−1 ∩C. �

Fix C ∈ ICY . Define a family of subgroups of NG[C] by

(4.3) GG(C) :=
{

H ⊆ NG[C] | [H : (H ∩ C)] <∞
}

∪
{

H ⊆ NG[C] | |H | <∞
}

.

Notice that GG(C) consists of all finite subgroups of NG[C] and of all virtually
cyclic subgroups of NG[C] which have an infinite intersection with C. Define
a quotient group of NGC by

WGC := NGC/C.

Lemma 4.4. Let n be an integer. Suppose that G satisfies Condition (C)
(see 4.1). Suppose that there exists a G-CW -model for EG with dim(EG) ≤
n and for every C ∈ ICY there exists a WGC-CW -model for EWGC with
dim(EWGC) ≤ n.

Then there exists a G-CW -model for EG with dim(EG) ≤ n+ 1.

Proof. Because of [15, Theorem 2.3 and Remark 2.5] it suffices to show for
every C ∈ ICY that there is a NG[C]-model for EGG(C)(NG[C]) with

(4.5) dim(EGG(C)(NG[C])) ≤ n+ 1.

Because of Lemma 4.2 we have

NG[C] = colimk→∞NGk!C.

We conclude (4.5) from [15, Lemma 4.2 and Theorem 4.3] since every element
H ∈ GG(C) is finitely generated and hence lies already in NGk!C for some
k > 0, by assumption there exists a WGk!C-CW -model for EWGk!C with
dim(EWGk!C) ≤ n, and resNGk!C→WGk!C EWGk!C is EGG(C)|NGk!C)

(NGk!C).

�

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. (i) Consider an integer d ∈ Z with d = 1 or d ≥ 3 such
that d ≥ top-dim(X). The space X is a model for JG by [4, Corollary 2.8
in II.2. on page 178]. We conclude from Theorem 3.11 (ii) that there is a
d-dimensional model for EG.

(ii) We will use in the proof some basic facts and notions about isometries of
proper complete CAT(0)-spaces which can be found in [4, Chapter II.6].
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The group G satisfies condition (C) by the following argument. Suppose
that ghkg−1 = hl for g, h ∈ G with |h| = ∞ and k, l ∈ Z. The isometry
lh : X → X given by multiplication with h is a hyperbolic isometry since it has
no fixed point and is by assumption semisimple. We obtain for the translation
length L(h) which is a real number satisfying L(h) > 0

|k| · L(h) = L(hk) = L(ghkg−1) = L(hl) = |l| · L(h).

This implies |k| = |l|.
Let C ⊆ G be any infinite cyclic subgroup. Choose a generator g ∈ C. The

isometry lg : X → X given by multiplication with g is a hyperbolic isometry.
Let Min(g) ⊂ X be the the union of all axes of g. Then Min(g) is a closed
convex subset of X . There exists a closed convex subset Y (g) ⊆ X and an
isometry

α : Min(g)
∼=
−→ Y (g) × R.

The space Min(G) isNGC-invariant since for each h ∈ NGC we have hgh−1 = g
or hgh−1 = g−1 and hence multiplication with h sends an axis of g to an axis
of g. The NGC-action induces a proper isometric WGC-action on Y (g). These
claims follow from [4, Theorem 6.8 in II.6 on page 231 and Proposition 6.10
in II.6 on page 233]. The space Y (g) inherits fromX the structure of a CAT(0)-
space and satisfies top-dim(Y (g)) ≤ top-dim(X). Hence Y (g) is a model for
JWGC with top-dim(Y (g)) ≤ top-dim(X) by [4, Corollary 2.8 in II.2. on
page 178]. We conclude from Theorem 3.11 (ii) that there is a d-dimensional
model for EWGC for every infinite cyclic subgroup C ⊆ G. Now Theorem 1.1
follows from Lemma 4.4. �

Finally we prove Corollary 1.4.

Proof of Corollary 1.4. A complete Riemannian manifoldM with non-negative
sectional curvature is a CAT(0)-space (see [4, Theorem IA.6 on page 173 and
Theorem II.4.1 on page 193].) Since G is virtually torsionfree, we can find a
subgroupG0 of finite index in G such that G0 is torsionfree and acts orientation
preserving on M . Hence G0\M is a closed orientable manifold of dimension n.
Hence Hn(M ; Z) = Hn(BG; Z) 6= 0. This implies that every CW -model BG0

has at least dimension n. Since the restriction of EG to G0 is a G0-CW -model
for EG0, we conclude hdim(EG) ≥ n. Since M with the given G0-action is a
G-CW -model for EG (see [1, Theorem 4.15]), we conclude

hdim(EG) = n = top-dim(M).

If n 6= 2, we conclude hdim(EG) ≤ n+1 from Theorem 1.1. Since hdim(EG) ≤
1 + hdim(EG) holds for all groups G (see [15, Corollary 5.4]), we get

n− 1 ≤ hdim(EG) ≤ n+ 1

provided that n 6= 2.
Suppose n = 2. If G0 is a torsionfree subgroup of finite index in G, then

G0\X is a closed 2-dimensional manifold with non-negative sectional curvature.
Hence G0 is Z2 or hyperbolic. This implies that G is virtually Z2 or hyperbolic.
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Hence hdim(EG) ∈ {2, 3} by [15, Example 5.21] in the first case and by [15,

Theorem 3.1, Example 3.6, Theorem 5.8 (ii)] or [11, Proposition 6, Remark 7
and Proposition 8] in the second case.

�
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