Introduction to L^2 -invariants

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Fort Worth, June, 2015

Basic motivation

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- Examples:

Classical notion	generalized version
Homology with coeffi-	Homology with coefficients in
cients in \mathbb{Z}	representations
Euler characteristic $\in \mathbb{Z}$	Walls finiteness obstruction in
	$K_0(\mathbb{Z}\pi)$
Lefschetz numbers $\in \mathbb{Z}$	Generalized Lefschetz invari-
	ants in $\mathbb{Z}\pi_\phi$
Signature $\in \mathbb{Z}$	Surgery invariants in $L_*(\mathbb{Z}G)$
	torsion invariants

We want to apply this principle to (classical) Betti numbers

 $b_n(X) := \dim_{\mathbb{C}}(H_n(X;\mathbb{C})).$

- Here are two naive attempts which fail:
 - dim_{\mathbb{C}}($H_n(\widetilde{X};\mathbb{C})$)
 - dim_{Cπ}(H_n(X̃; C)), where dim_{Cπ}(M) for a C[π]-module could be chosen for instance as dim_C(C ⊗_{CG} M).
- The problem is that Cπ is in general not Noetherian and dim_{Cπ}(M) is in general not additive under exact sequences.
- We will use the following successful approach which is essentially due to Atiyah.

- Throughout these lectures let *G* be a discrete group.
- Given a ring *R* and a group *G*, denote by *RG* or *R*[*G*] the group ring.
- Elements are formal sums $\sum_{g \in G} r_g \cdot g$, where $r_g \in R$ and only finitely many of the coefficients r_g are non-zero.
- Addition is given by adding the coefficients.
- Multiplication is given by the expression *g* ⋅ *h* := *g* ⋅ *h* for *g*, *h* ∈ *G* (with two different meanings of ·).
- In general *RG* is a very complicated ring.

Denote by L²(G) the Hilbert space of (formal) sums ∑_{g∈G} λ_g ⋅ g such that λ_g ∈ C and ∑_{g∈G} |λ_g|² < ∞.

Definition

Define the group von Neumann algebra

$$\mathcal{N}(G) := \mathcal{B}(L^2(G), L^2(G)^G = \overline{\mathbb{C}G}^{\mathsf{weak}}$$

to be the algebra of bounded *G*-equivariant operators $L^2(G) \rightarrow L^2(G)$. The von Neumann trace is defined by

$$\operatorname{tr}_{\mathcal{N}(G)} \colon \mathcal{N}(G) \to \mathbb{C}, \quad f \mapsto \langle f(e), e \rangle_{L^2(G)}.$$

Example (Finite G)

If *G* is finite, then $\mathbb{C}G = L^2(G) = \mathcal{N}(G)$. The trace tr_{$\mathcal{N}(G)$} assigns to $\sum_{g \in G} \lambda_g \cdot g$ the coefficient λ_e .

Wolfgang Lück (HIM, Bonn)

Introduction to L²-invariants

Example ($G = \mathbb{Z}^n$)

Let *G* be \mathbb{Z}^n . Let $L^2(T^n)$ be the Hilbert space of L^2 -integrable functions $T^n \to \mathbb{C}$. Fourier transform yields an isometric \mathbb{Z}^n -equivariant isomorphism

$$L^2(\mathbb{Z}^n) \xrightarrow{\cong} L^2(T^n).$$

Let $L^{\infty}(T^n)$ be the Banach space of essentially bounded measurable functions $f: T^n \to \mathbb{C}$. We obtain an isomorphism

$$L^{\infty}(T^n) \xrightarrow{\cong} \mathcal{N}(\mathbb{Z}^n), \quad f \mapsto M_f$$

where $M_f \colon L^2(T^n) \to L^2(T^n)$ is the bounded \mathbb{Z}^n -operator $g \mapsto g \cdot f$.

Under this identification the trace becomes

$$\operatorname{tr}_{\mathcal{N}(\mathbb{Z}^n)} \colon L^{\infty}(T^n) \to \mathbb{C}, \quad f \mapsto \int_{T^n} f d\mu.$$

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$ -module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^2(G)^n$ for some $n \ge 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$ -modules $f: V \to W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let *V* be a finitely generated Hilbert $\mathcal{N}(G)$ -module. Choose a *G*-equivariant projection $p: L^2(G)^n \to L^2(G)^n$ with $\operatorname{im}(p) \cong_{\mathcal{N}(G)} V$. Define the von Neumann dimension of *V* by

$$\dim_{\mathcal{N}(G)}(V) := \operatorname{tr}_{\mathcal{N}(G)}(p) := \sum_{i=1}^{n} \operatorname{tr}_{\mathcal{N}(G)}(p_{i,i}) \quad \in [0,\infty).$$

Example (Finite G)

For finite *G* a finitely generated Hilbert $\mathcal{N}(G)$ -module *V* is the same as a unitary finite dimensional *G*-representation and

$$\dim_{\mathcal{N}(G)}(V) = rac{1}{|G|} \cdot \dim_{\mathbb{C}}(V).$$

Example ($G = \mathbb{Z}^n$)

Let *G* be \mathbb{Z}^n . Let $X \subset T^n$ be any measurable set with characteristic function $\chi_X \in L^{\infty}(T^n)$. Let $M_{\chi_X} \colon L^2(T^n) \to L^2(T^n)$ be the \mathbb{Z}^n -equivariant unitary projection given by multiplication with χ_X . Its image *V* is a Hilbert $\mathcal{N}(\mathbb{Z}^n)$ -module with

$$\dim_{\mathcal{N}(\mathbb{Z}^n)}(V) = \operatorname{vol}(X).$$

In particular each $r \in [0, \infty)$ occurs as $r = \dim_{\mathcal{N}(\mathbb{Z}^n)}(V)$.

Definition (Weakly exact)

A sequence of Hilbert $\mathcal{N}(G)$ -modules $U \xrightarrow{i} V \xrightarrow{p} W$ is weakly exact at V if the kernel ker(p) of p and the closure $\overline{(im(i))}$ of the image im(i) of i agree.

A map of Hilbert $\mathcal{N}(G)$ -modules $f: V \to W$ is a weak isomorphism if it is injective and has dense image.

Example

The morphism of $\mathcal{N}(\mathbb{Z})$ -Hilbert modules

$$M_{z-1}$$
: $L^2(\mathbb{Z}) = L^2(S^1) \rightarrow L^2(\mathbb{Z}) = L^2(S^1), \quad u(z) \mapsto (z-1) \cdot u(z)$

is a weak isomorphism, but not an isomorphism.

Theorem (Main properties of the von Neumann dimension)

Faithfulness

We have for a finitely generated Hilbert $\mathcal{N}(G)$ -module V

$$V = 0 \iff \dim_{\mathcal{N}(G)}(V) = 0;$$

2 Additivity

If $0 \to U \to V \to W \to 0$ is a weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$ -modules, then

$$\dim_{\mathcal{N}(G)}(U) + \dim_{\mathcal{N}(G)}(W) = \dim_{\mathcal{N}(G)}(V);$$

Cofinality

Let $\{V_i \mid i \in I\}$ be a directed system of Hilbert $\mathcal{N}(G)$ - submodules of V, directed by inclusion. Then

$$\dim_{\mathcal{N}(G)}\left(\overline{\bigcup_{i\in I}V_i}\right) = \sup\{\dim_{\mathcal{N}(G)}(V_i) \mid i\in I\}.$$

Wolfgang Lück (HIM, Bonn)

Definition (L^2 -homology and L^2 -Betti numbers)

Let X be a connected CW-complex of finite type. Let \widetilde{X} be its universal covering and $\pi = \pi_1(M)$. Denote by $C_*(\widetilde{X})$ its cellular $\mathbb{Z}\pi$ -chain complex.

Define its cellular L^2 -chain complex to be the Hilbert $\mathcal{N}(\pi)$ -chain complex

$$\mathcal{C}^{(2)}_*(\widetilde{X}) := L^2(\pi) \otimes_{\mathbb{Z}\pi} \mathcal{C}_*(\widetilde{X}) = \overline{\mathcal{C}_*(\widetilde{X})}.$$

Define its *n*-th L^2 -homology to be the finitely generated Hilbert $\mathcal{N}(G)$ -module

$$H_n^{(2)}(\widetilde{X}) := \ker(c_n^{(2)}) / \overline{\operatorname{im}(c_{n+1}^{(2)})}.$$

Define its *n*-th *L*²-Betti number

$$b^{(2)}_n(\widetilde{X}):=\dim_{\mathcal{N}(\pi)}ig(H^{(2)}_n(\widetilde{X})ig) \in \mathbb{R}^{\geq 0}.$$

Theorem (Main properties of L^2 -Betti numbers)

Let X and Y be connected CW-complexes of finite type.

Homotopy invariance

If X and Y are homotopy equivalent, then

$$b_n^{(2)}(\widetilde{X}) = b_n^{(2)}(\widetilde{Y});$$

• Euler-Poincaré formula We have

$$\chi(X) = \sum_{n \ge 0} (-1)^n \cdot b_n^{(2)}(\widetilde{X});$$

Poincaré duality

Let M be a closed manifold of dimension d. Then

$$b_n^{(2)}(\widetilde{M}) = b_{d-n}^{(2)}(\widetilde{M});$$

Theorem (Continued)

• Künneth formula

$$b_n^{(2)}(\widetilde{X \times Y}) = \sum_{p+q=n} b_p^{(2)}(\widetilde{X}) \cdot b_q^{(2)}(\widetilde{Y});$$

$$b_0^{(2)}(\widetilde{X})=\frac{1}{|\pi|};$$

• Finite coverings
If
$$X \to Y$$
 is a finite covering with d sheets, then
 $b_n^{(2)}(\widetilde{X}) = d \cdot b_n^{(2)}(\widetilde{Y}).$

Example (Finite π)

If π is finite then

$$b_n^{(2)}(\widetilde{X}) = rac{b_n(\widetilde{X})}{|\pi|}.$$

Example (S^1)

Consider the \mathbb{Z} -*CW*-complex $\widetilde{S^1}$. We get for $C^{(2)}_*(\widetilde{S^1})$

$$\ldots \to 0 \to L^2(\mathbb{Z}) \xrightarrow{M_{Z-1}} L^2(\mathbb{Z}) \to 0 \to \ldots$$

and hence $H_n^{(2)}(\widetilde{S^1}) = 0$ and $b_n^{(2)}(\widetilde{S^1}) = 0$ for all ≥ 0 .

Wolfgang Lück (HIM, Bonn)

Example $(\pi = \mathbb{Z}^d)$

Let *X* be a connected *CW*-complex of finite type with fundamental group \mathbb{Z}^d . Let $\mathbb{C}[\mathbb{Z}^d]^{(0)}$ be the quotient field of the commutative integral domain $\mathbb{C}[\mathbb{Z}^d]$. Then

$$b_n^{(2)}(\widetilde{X}) = \dim_{\mathbb{C}[\mathbb{Z}^d]^{(0)}} \left(\mathbb{C}[\mathbb{Z}^d]^{(0)} \otimes_{\mathbb{Z}[\mathbb{Z}^d]} H_n(\widetilde{X}) \right)$$

Obviously this implies

$$b_n^{(2)}(\widetilde{X})\in\mathbb{Z}.$$

Example (Finite self coverings)

We get for a connected *CW*-complex *X* of finite type, for which there is a selfcovering $X \rightarrow X$ with *d*-sheets for some integer $d \ge 2$,

$$b_n^{(2)}(\widetilde{X}) = 0$$
 for $n \ge 0$.

This implies for each connected CW-complex Y of finite type

$$b_n^{(2)}(\widetilde{S^1 \times Y}) = 0$$
 for $n \ge 0$.

Theorem (S¹-actions, Lück)

Let M be a connected compact manifold with S¹-action. Suppose that for one (and hence all) $x \in X$ the map $S^1 \to M$, $z \mapsto zx$ is π_1 -injective. Then we get for all $n \ge 0$

$$b_n^{(2)}(\widetilde{M})=0.$$

Theorem (*S*¹-actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S¹-action. Then

The action has no fixed points;

2 The map
$$S^1 \to M$$
, $z \mapsto zx$ is π_1 -injective for $x \in M$;

3
$$b_n^{(2)}(\widetilde{M}) = 0$$
 for $n \ge 0$ and $\chi(M) = 0$.

Example (L²-Betti number of surfaces)

- Let F_g be the orientable closed surface of genus $g \ge 1$.
- Then $|\pi_1(F_g)| = \infty$ and hence $b_0^{(2)}(\widetilde{F_g}) = 0$.
- By Poincaré duality $b_2^{(2)}(\widetilde{F_g}) = 0$.
- dim $(F_g) = 2$, we get $b_n^{(2)}(\widetilde{F_g}) = 0$ for $n \ge 3$.
- The Euler-Poincaré formula shows

$$b_1^{(2)}(\widetilde{F_g}) = -\chi(F_g) = 2g - 2;$$

 $b_n^{(2)}(\widetilde{F_0}) = 0 \text{ for } n \neq 1.$

Theorem (L²-Hodge - de Rham Theorem, Dodziuk)

Let M be a closed Riemannian manifold. Put

$$\mathcal{H}^n_{(2)}(\widetilde{M}) = \{ \widetilde{\omega} \in \Omega^n(\widetilde{M}) \mid \widetilde{\Delta}_n(\widetilde{\omega}) = \mathbf{0}, \; ||\widetilde{\omega}||_{L^2} < \infty \}$$

Then integration defines an isomorphism of finitely generated Hilbert $\mathcal{N}(\pi)$ -modules

$$\mathcal{H}^{n}_{(2)}(\widetilde{M}) \xrightarrow{\cong} \mathcal{H}^{n}_{(2)}(\widetilde{M}).$$

Corollary (*L*²-Betti numbers and heat kernels)

$$b_n^{(2)}(\widetilde{M}) = \lim_{t \to \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}(e^{-t\widetilde{\Delta}_n}(\widetilde{x},\widetilde{x})) d\operatorname{vol}.$$

where $e^{-t\Delta_n}(\tilde{x}, \tilde{y})$ is the heat kernel on \widetilde{M} and \mathcal{F} is a fundamental domain for the π -action.

Wolfgang Lück (HIM, Bonn)

Theorem (hyperbolic manifolds, Dodziuk)

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$b_n^{(2)}(\widetilde{M}) = \begin{cases} = 0 & \text{, if } 2n \neq d; \\ > 0 & \text{, if } 2n = d. \end{cases}$$

Proof.

A direct computation shows that $\mathcal{H}_{(2)}^{p}(\mathbb{H}^{d})$ is not zero if and only if 2n = d. Notice that M is hyperbolic if and only if \widetilde{M} is isometrically diffeomorphic to the standard hyperbolic space \mathbb{H}^{d} .

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then

• If d = 2m is even, then

 $(-1)^m \cdot \chi(M) > 0;$

M carries no non-trivial S¹-action.

Proof.

(1) We get from the Euler-Poincaré formula and the last result

$$(-1)^m \cdot \chi(M) = b_m^{(2)}(\widetilde{M}) > 0.$$

(2) We give the proof only for d = 2m even. Then $b_m^{(2)}(\widetilde{M}) > 0$. Since $\widetilde{M} = \mathbb{H}^d$ is contractible, M is aspherical. Now apply a previous result about S^1 -actions.

Wolfgang Lück (HIM, Bonn)

Theorem (3-manifolds, Lott-Lück)

Let the 3-manifold M be the connected sum $M_1 \sharp \dots \sharp M_r$ of (compact connected orientable) prime 3-manifolds M_j . Assume that $\pi_1(M)$ is infinite. Then

$$b_{1}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} - \chi(M) \\ + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|; \\ b_{2}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} \\ + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|; \\ b_{n}^{(2)}(\widetilde{M}) = 0 \quad \text{for } n \neq 1, 2.$$

Theorem (mapping tori, Lück)

Let $f: X \to X$ be a cellular selfhomotopy equivalence of a connected CW-complex X of finite type. Let T_f be the mapping torus. Then

$$b_n^{(2)}(\widetilde{T}_f)=0$$
 for $n\geq 0$.

Proof:

• As $T_{f^d} \rightarrow T_f$ is a *d*-sheeted covering, we get

$$b_n^{(2)}(\widetilde{T}_f) = rac{b_n^{(2)}(\widetilde{T_{f^d}})}{d}.$$

• If $\beta_n(X)$ is the number of *n*-cells, then there is up to homotopy equivalence a *CW*-structure on T_{f^d} with $\beta_n(T_{f^d}) = \beta_n(X) + \beta_{n-1}(X)$. We have

$$\begin{split} b_n^{(2)}(\widetilde{T_{f^d}}) \ &= \ \dim_{\mathcal{N}(G)} \left(H_n^{(2)}(C_n^{(2)}(\widetilde{T_{f^d}}) \right) \\ &\leq \ \dim_{\mathcal{N}(G)} \left(C_n^{(2)}(\widetilde{T_{f^d}}) \right) = \beta_n(T_{f^d}). \end{split}$$

• This implies for all $d \ge 1$

$$b_n^{(2)}(\widetilde{T}_f) \leq \frac{\beta_n(X) + \beta_{n-1}(X)}{d}.$$

• Taking the limit for $d \to \infty$ yields the claim.

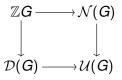
Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_1(M) \cong G$ we have for every $n \ge 0$

 $b_n^{(2)}(\widetilde{M}) \in \mathbb{Z}.$

• All computations presented above support the Atiyah Conjecture.

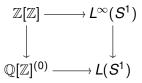
 The fundamental square is given by the following inclusions of rings



- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- D(G) is the division closure of ZG in U(G), i.e., the smallest subring of U(G) containing ZG such that every element in D(G), which is a unit in U(G), is already a unit in D(G) itself.

• If *G* is finite, its is given by

• If $G = \mathbb{Z}$, it is given by



- If G is elementary amenable torsionfree, then D(G) can be identified with the Ore localization of ZG with respect to the multiplicatively closed subset of non-zero elements.
- In general the Ore localization does not exist and in these cases
 D(G) is the right replacement.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

 A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix A ∈ M_{m,n}(ℤG) the von Neumann dimension

$$\dim_{\mathcal{N}(G)} \left(\ker \left(r_{\mathcal{A}} \colon \mathcal{N}(G)^m \to \mathcal{N}(G)^n \right) \right)$$

is an integer. In this case this dimension agrees with

$$\dim_{\mathcal{D}(G)}(r_{\mathcal{A}}\colon \mathcal{D}(G)^m\to \mathcal{D}(G)^n).$$

• The general version above is equivalent to the one stated before if *G* is finitely presented.

- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero *F* the group ring *FG* has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an *L*²-Betti number which is irrational, see Austin, Grabowski.

Theorem (Linnell, Schick)

- Let C be the smallest class of groups which contains all free groups, is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to C satisfies the Atiyah Conjecture.
- If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

Strategy to prove the Atiyah Conjecture

- Show that K₀(ℂ) → K₀(ℂG) is surjective
 (This is implied by the Farrell-Jones Conjecture)
- **2** Show that $K_0(\mathbb{C}G) \to K_0(\mathcal{D}(G))$ is surjective.
- Show that $\mathcal{D}(G)$ is semisimple.

In general there are no relations between the Betti numbers b_n(X) and the L²-Betti numbers b_n⁽²⁾(X̃) for a connected CW-complex X of finite type except for the Euler Poincaré formula

$$\chi(X) = \sum_{n \ge 0} (-1)^n \cdot b_n^{(2)}(\widetilde{X}) = \sum_{n \ge 0} (-1)^n \cdot b_n(X).$$

 Given an integer *I* ≥ 1 and a sequence *r*₁, *r*₂, ..., *r*_{*I*} of non-negative rational numbers, we can construct a group *G* such that *BG* is of finite type and

$$b_n^{(2)}(BG) = r_n$$
 for $1 \le n \le l$;
 $b_n^{(2)}(BG) = 0$ for $l+1 \le n$;
 $b_n(BG) = 0$ for $n \ge 1$.

For any sequence s₁, s₂, ... of non-negative integers there is a CW-complex X of finite type such that for n ≥ 1

$$b_n(X) = s_n;$$

$$b_n^{(2)}(\widetilde{X}) = 0.$$

Theorem (Approximation Theorem, Lück)

Let X be a connected CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$\pi = G_0 \supset G_1 \supset G_2 \supset \ldots$$

of normal subgroups of finite index with $\cap_{i\geq 1}G_i = \{1\}$. Let X_i be the finite $[\pi : G_i]$ -sheeted covering of X associated to G_i .

Then for any such sequence $(G_i)_{i\geq 1}$

$$b_n^{(2)}(\widetilde{X}) = \lim_{i \to \infty} \frac{b_n(X_i)}{[G:G_i]}.$$

 Ordinary Betti numbers are not multiplicative under finite coverings, whereas the L²-Betti numbers are. With the expression

$$\lim_{i\to\infty}\frac{b_n(X_i)}{[G:G_i]},$$

we try to force the Betti numbers to be multiplicative by a limit process.

• The theorem above says that *L*²-Betti numbers are asymptotic Betti numbers. It was conjectured by Gromov.

Definition (Deficiency)

Let G be a finitely presented group. Define its deficiency

$$\operatorname{\mathsf{defi}}(G) := \max\{g(P) - r(P)\}$$

where *P* runs over all presentations *P* of *G* and g(P) is the number of generators and r(P) is the number of relations of a presentation *P*.

Example

- The free group F_g has the obvious presentation $\langle s_1, s_2, \dots s_g | \emptyset \rangle$ and its deficiency is realized by this presentation, namely defi $(F_g) = g$.
- If G is a finite group, $defi(G) \le 0$.
- The deficiency of a cyclic group \mathbb{Z}/n is 0, the obvious presentation $\langle s \mid s^n \rangle$ realizes the deficiency.
- The deficiency of $\mathbb{Z}/n \times \mathbb{Z}/n$ is -1, the obvious presentation $\langle s, t | s^n, t^n, [s, t] \rangle$ realizes the deficiency.

Example (deficiency and free products)

The deficiency is not additive under free products by the following example due to Hog-Lustig-Metzler. The group

 $(\mathbb{Z}/2\times\mathbb{Z}/2)*(\mathbb{Z}/3\times\mathbb{Z}/3)$

has the obvious presentation

$$\langle s_0, t_0, s_1, t_1 \mid s_0^2 = t_0^2 = [s_0, t_0] = s_1^3 = t_1^3 = [s_1, t_1] = 1 \rangle$$

One may think that its deficiency is -2. However, it turns out that its deficiency is -1 realized by the following presentation

$$\langle s_0, t_0, s_1, t_1 \mid s_0^2 = 1, [s_0, t_0] = t_0^2, s_1^3 = 1, [s_1, t_1] = t_1^3, t_0^2 = t_1^3 \rangle.$$

Lemma

Let G be a finitely presented group. Then

$$\mathsf{defi}(G) \ \le \ 1 - |G|^{-1} + b_1^{(2)}(G) - b_2^{(2)}(G).$$

Proof.

We have to show for any presentation P that

$$g(P) - r(P) \leq 1 - b_0^{(2)}(G) + b_1^{(2)}(G) - b_2^{(2)}(G).$$

Let X be a CW-complex realizing P. Then

$$\chi(X) = 1 - g(P) + r(P) = b_0^{(2)}(\widetilde{X}) + b_1^{(2)}(\widetilde{X}) - b_2^{(2)}(\widetilde{X})$$

Since the classifying map $X \rightarrow BG$ is 2-connected, we get

$$egin{array}{rcl} b_n^{(2)}(\widetilde{X}) &=& b_n^{(2)}(G) & ext{ for } n=0,1; \ b_2^{(2)}(\widetilde{X}) &\geq& b_2^{(2)}(G). \end{array}$$

Wolfgang Lück (HIM, Bonn)

Theorem (Deficiency and extensions, Lück)

Let $1 \rightarrow H \xrightarrow{i} G \xrightarrow{q} K \rightarrow 1$ be an exact sequence of infinite groups. Suppose that G is finitely presented H is finitely generated. Then:

•
$$b_1^{(2)}(G) = 0;$$

- 2 defi(G) \leq 1;
- Let M be a closed oriented 4-manifold with G as fundamental group. Then

 $\operatorname{sign}(M) \leq \chi(M).$

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$b_n^{(2)}(\widetilde{M}) = 0$$
 if $2n \neq \dim(M)$.

If M is a closed Riemannian manifold with negative sectional curvature, then

$$b_n^{(2)}(\widetilde{M}) \begin{cases} = 0 & \text{if } 2n \neq \dim(M); \\ > 0 & \text{if } 2n = \dim(M). \end{cases}$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.

Because of the Euler-Poincaré formula

$$\chi(M) = \sum_{n \ge 0} (-1)^n \cdot b_n^{(2)}(\widetilde{M})$$

the Singer Conjecture implies the following conjecture provided that M has non-positive sectional curvature.

Conjecture (Hopf Conjecture)

If M is a closed Riemannian manifold of even dimension with sectional curvature sec(M), then

Definition (Kähler hyperbolic manifold)

A Kähler hyperbolic manifold is a closed connected Kähler manifold M whose fundamental form ω is \tilde{d} (bounded), i.e. its lift $\tilde{\omega} \in \Omega^2(\tilde{M})$ to the universal covering can be written as $d(\eta)$ holds for some bounded 1-form $\eta \in \Omega^1(\tilde{M})$.

Theorem (Gromov)

Let M be a closed Kähler hyperbolic manifold of complex dimension c. Then

$$b_n^{(2)}(\widetilde{M}) = 0 \quad \text{if } n \neq c;$$

$$b_n^{(2)}(\widetilde{M}) > 0;$$

$$(-1)^m \cdot \chi(M) > 0;$$

- Let *M* be a closed Kähler manifold. It is Kähler hyperbolic if it admits some Riemannian metric with negative sectional curvature, or, if, generally $\pi_1(M)$ is word-hyperbolic and $\pi_2(M)$ is trivial.
- A consequence of the theorem above is that any Kähler hyperbolic manifold is a projective algebraic variety.