Introduction to L^{2}-Betti numbers

Wolfgang Lück Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Düsseldorf, November 2015

Basic motivation

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers

$$
b_{n}(X):=\operatorname{dim}\left(H_{n}(X ; \mathbb{C})\right)
$$

- We will use the following successful approach which is essentially due to Atiyah.

Basic motivation

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers $D_{n}(X):=\operatorname{dim}\left(H_{n}(X ; \mathbb{C})\right)$.
- We will use the following successful approach which is essentially due to

Basic motivation

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers

$$
b_{n}(X):=\operatorname{dim}_{\mathbb{C}}\left(H_{n}(X ; \mathbb{C})\right)
$$

- We will use the following successful approach which is essentially due to

Basic motivation

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers

$$
b_{n}(X):=\operatorname{dim}_{\mathbb{C}}\left(H_{n}(X ; \mathbb{C})\right)
$$

- We will use the following successful approach which is essentially due to Atiyah.

Group von Neumann algebras

Definition

Define the aroup von Neumann algebra

$$
\mathcal{N}(G):=\mathcal{B}\left(L^{2}(G), L^{2}(G)\right)^{G}=\overline{\mathbb{C}}^{\text {weak }}
$$

to be the algebra of bounded G-equivariant operators $L^{2}(G) \rightarrow L^{2}(G)$.
The von Neumann trace is defined by

$$
\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \rightarrow \mathbb{C}, \quad f \mapsto\langle f(e), e\rangle_{L^{2}(G)}
$$

Example (Finite G)
 If G is finite, then $\mathbb{C} G=L^{2}(G)=\mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_{g} \cdot g$ the coefficient λ_{e}.

Group von Neumann algebras

Definition

Define the group von Neumann algebra

$$
\mathcal{N}(G):=\mathcal{B}\left(L^{2}(G), L^{2}(G)\right)^{G}={\overline{\mathbb{C}} G^{\text {weak }}}^{\text {and }}
$$

to be the algebra of bounded G-equivariant operators $L^{2}(G) \rightarrow L^{2}(G)$. The von Neumann trace is defined by

$$
\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \rightarrow \mathbb{C}, \quad f \mapsto\langle f(e), e\rangle_{L^{2}(G)} .
$$

Group von Neumann algebras

Definition

Define the group von Neumann algebra

$$
\mathcal{N}(G):=\mathcal{B}\left(L^{2}(G), L^{2}(G)\right)^{G}=\overline{\mathbb{C}}^{\text {weak }}
$$

to be the algebra of bounded G-equivariant operators $L^{2}(G) \rightarrow L^{2}(G)$. The von Neumann trace is defined by

$$
\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \rightarrow \mathbb{C}, \quad f \mapsto\langle f(e), e\rangle_{L^{2}(G)}
$$

Example (Finite G)

If G is finite, then $\mathbb{C} G=L^{2}(G)=\mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_{g} \cdot g$ the coefficient λ_{e}.

Example $\left(G=\mathbb{Z}^{n}\right)$

Let G be \mathbb{Z}^{n}. Let $L^{2}\left(T^{n}\right)$ be the Hilbert space of L^{2}-integrable functions $T^{n} \rightarrow \mathbb{C}$. Fourier transform yields an isometric \mathbb{Z}^{n}-equivariant isomorphism

$$
L^{2}\left(\mathbb{Z}^{n}\right) \xlongequal{\cong} L^{2}\left(T^{n}\right) .
$$

Let $L^{\infty}\left(T^{n}\right)$ be the Banach space of essentially bounded measurable functions $f: T^{n} \rightarrow \mathbb{C}$. We obtain an isomorphism

$$
L^{\infty}\left(T^{n}\right) \xlongequal{\rightrightarrows} \mathcal{N}\left(\mathbb{Z}^{n}\right), \quad f \mapsto M_{f}
$$

where $M_{f}: L^{2}\left(T^{n}\right) \rightarrow L^{2}\left(T^{n}\right)$ is the bounded \mathbb{Z}^{n}-operator $g \mapsto g \cdot f$.
Under this identification the trace becomes

$$
\operatorname{tr}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}: L^{\infty}\left(T^{n}\right) \rightarrow \mathbb{C}, \quad f \mapsto \int_{T^{n}} f d \mu
$$

von Neumann dimension

Definition (Finitely generated Fibert module)

A finitely generated Hilbert $\mathcal{N}(G)$-module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^{2}(G)^{n}$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$-modules $f: V \rightarrow W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$-module. Choose a G-equivariant projection $p: L^{2}(G)^{n} \rightarrow L^{2}(G)^{n}$ with $\operatorname{im}(p) \cong_{\mathcal{N}(G)} V$. Define the von Neumann dimension of V by

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$-module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^{2}(G)^{n}$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$-modules $f: V \rightarrow W$ is a bounded G-equivariant operator.
\square
Let V be a finitely generated Hilbert $\mathcal{N}(G)$-module. Choose a G-equivariant projection $p: L^{2}(G)^{n} \rightarrow L^{2}(G)^{n}$ with im $(p) \cong_{\mathcal{N}(G)} V$ Define the von Neumann dimension of V by

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$-module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^{2}(G)^{n}$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$-modules $f: V \rightarrow W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$-module. Choose a G-equivariant projection $p: L^{2}(G)^{n} \rightarrow L^{2}(G)^{n}$ with $\operatorname{im}(p) \cong_{\mathcal{N}(G)} V$. Define the von Neumann dimension of V by

$$
\operatorname{dim}_{\mathcal{N}(G)}(V):=\operatorname{tr}_{\mathcal{N}(G)}(p):=\sum_{i=1}^{n} \operatorname{tr}_{\mathcal{N}(G)}\left(p_{i, i}\right) \quad \in[0, \infty)
$$

Example (Finite G)

For finite G a finitely generated Hilbert $\mathcal{N}(G)$-module V is the same as a unitary finite dimensional G-representation and

$$
\operatorname{dim}_{\mathcal{N}(G)}(V)=\frac{1}{|G|} \cdot \operatorname{dim}_{\mathbb{C}}(V)
$$

Example (Finite G)

For finite G a finitely generated Hilbert $\mathcal{N}(G)$-module V is the same as a unitary finite dimensional G-representation and

$$
\operatorname{dim}_{\mathcal{N}(G)}(V)=\frac{1}{|G|} \cdot \operatorname{dim}_{\mathbb{C}}(V)
$$

Example $\left(G=\mathbb{Z}^{n}\right)$

Let G be \mathbb{Z}^{n}. Let $X \subset T^{n}$ be any measurable set with characteristic function $\chi_{x} \in L^{\infty}\left(T^{n}\right)$. Let $M_{\chi x}: L^{2}\left(T^{n}\right) \rightarrow L^{2}\left(T^{n}\right)$ be the \mathbb{Z}^{n}-equivariant unitary projection given by multiplication with χ_{x}. Its image V is a Hilbert $\mathcal{N}\left(\mathbb{Z}^{n}\right)$-module with

$$
\operatorname{dim}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}(V)=\operatorname{vol}(X)
$$

In particular each $r \in[0, \infty)$ occurs as $r=\operatorname{dim}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}(V)$.

L^{2}-homology and L^{2}-Betti numbers

Definition (L^{2}-homology and L^{2}-Betti numbers)

Let X be a connected $C W$-complex of finite type. Let \widetilde{X} be its universal covering and $\pi=\pi_{1}(M)$. Denote by $C_{*}(\widetilde{X})$ its cellular $\mathbb{Z} \pi$-chain complex.
Define its cellular L^{2}-chain complex to be the Hilbert $\mathcal{N}(\pi)$-chain complex

$$
C^{(2)}(\tilde{X}):=L^{2}(\pi) \otimes_{\mathbb{Z} \pi} C_{*}(\tilde{X})=\overline{C_{*}(\tilde{X})}
$$

Define its n-th L^{2}-homology to be the finitely generated Hilbert $\mathcal{N}(G)$-module

$$
H_{n}^{(2)}(\tilde{X}):=\operatorname{ker}\left(c_{n}^{(2)}\right) / \overline{\operatorname{im}\left(c_{n+1}^{(2)}\right)}
$$

Define its n-th L^{2}-Betti number

$$
b_{n}^{(2)}(\tilde{X}):=\operatorname{dim}_{\mathcal{N}(\pi)}\left(H_{n}^{(2)}(\tilde{X})\right) \quad \in \mathbb{R}^{\geq 0} .
$$

L^{2}-homology and L^{2}-Betti numbers

Definition (L^{2}-homology and L^{2}-Betti numbers)

Let X be a connected $C W$-complex of finite type. Let \widetilde{X} be its universal covering and $\pi=\pi_{1}(M)$. Denote by $C_{*}(\widetilde{X})$ its cellular $\mathbb{Z} \pi$-chain complex.
Define its cellular L^{2}-chain complex to be the Hilbert $\mathcal{N}(\pi)$-chain complex

$$
C_{*}^{(2)}(\widetilde{X}):=L^{2}(\pi) \otimes_{\mathbb{Z} \pi} C_{*}(\widetilde{X})=\overline{C_{*}(\widetilde{X})} .
$$

Define its n-th L^{2}-homology to be the finitely generated Hilbert $\mathcal{N}(G)$-module

$$
H_{n}^{(2)}(\widetilde{X}):=\operatorname{ker}\left(c_{n}^{(2)}\right) / \overline{\operatorname{im}\left(c_{n+1}^{(2)}\right)} .
$$

Define its n-th L^{2}-Betti number

$$
b_{n}^{(2)}(\widetilde{X}):=\operatorname{dim}_{\mathcal{N}(\pi)}\left(H_{n}^{(2)}(\widetilde{X})\right) \quad \in \mathbb{R}^{\geq 0} .
$$

Theorem (Main properties of Betti numbers)

Let X and Y be connected CW-complexes of finite type.

- Homotopy invariance

If X and Y are homotopy equivalent, then

$$
b_{n}(X)=b_{n}(Y)
$$

- Euler-Poincaré formula

If X is finite, we have

$$
\chi(X)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}(X)
$$

- Poincaré duality

Let M be an oriented closed manifold of dimension d. Then

$$
b_{n}(M)=b_{d-n}(M)
$$

Theorem (Main properties of L^{2}-Betti numbers)

Let X and Y be connected CW-complexes of finite type.

- Homotopy invariance

If X and Y are homotopy equivalent, then

$$
b_{n}^{(2)}(\widetilde{X})=b_{n}^{(2)}(\widetilde{Y}) ;
$$

- Euler-Poincaré formula

If X is finite, we have

$$
\chi(X)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{X}) ;
$$

- Poincaré duality

Let M be an oriented closed manifold of dimension d. Then

$$
b_{n}^{(2)}(\widetilde{M})=b_{d-n}^{(2)}(\widetilde{M}) ;
$$

Theorem (Continued)

- Künneth formula

$$
b_{n}(X \times Y)=\sum_{p+q=n} b_{p}(X) \cdot b_{q}(Y)
$$

- Zero-th L^{2}-Betti number

We have

$$
b_{0}(X)=1 ;
$$

Theorem (Continued)

- Künneth formula

$$
b_{n}^{(2)}(\widetilde{X \times Y})=\sum_{p+q=n} b_{p}^{(2)}(\widetilde{X}) \cdot b_{q}^{(2)}(\widetilde{Y})
$$

- Zero-th L^{2}-Betti number

We have

$$
b_{0}^{(2)}(\widetilde{X})=\frac{1}{|\pi|}
$$

Theorem (Continued)

- Künneth formula

$$
b_{n}^{(2)}(\widetilde{X \times Y})=\sum_{p+q=n} b_{p}(X) \cdot b_{q}(Y) ;
$$

- Zero-th L²-Betti number

We have

$$
b_{0}^{(2)}(\widetilde{X})=\frac{1}{|\pi|} ;
$$

- Finite coverings

If $X \rightarrow Y$ is a finite covering with d sheets, then

$$
b_{n}^{(2)}(\tilde{X})=d \cdot b_{n}^{(2)}(\tilde{Y}) .
$$

Some computations and results

Example (Finite π)

If π is finite then

$$
b_{n}^{(2)}(\widetilde{X})=\frac{b_{n}(\widetilde{X})}{|\pi|}
$$

Example (Finite self coverings)

We get for a connected CW-comple $\times X$ of finite type, for which there is a selfcovering $X \rightarrow X$ with d-sheets for some integer $d \geq 2$,

$$
b_{n}^{(2)}(\widetilde{X})=0 \quad \text { for } n \geq 0
$$

This implies for each connected $C W$-complex Y of finite type

$$
\left.b_{n}^{(2)} \widetilde{S^{T} \times Y}\right)=0 \text { for } n \geq 0
$$

Some computations and results

Example (Finite π)

If π is finite then

$$
b_{n}^{(2)}(\tilde{X})=\frac{b_{n}(\tilde{X})}{|\pi|}
$$

Example (Finite self coverings)

We get for a connected $C W$-complex X of finite type, for which there is a selfcovering $X \rightarrow X$ with d-sheets for some integer $d \geq 2$,

This implies for each connected CW-complex Y of finite type

Some computations and results

Example (Finite π)

If π is finite then

$$
b_{n}^{(2)}(\widetilde{X})=\frac{b_{n}(\widetilde{X})}{|\pi|}
$$

Example (Finite self coverings)

We get for a connected $C W$-complex X of finite type, for which there is a selfcovering $X \rightarrow X$ with d-sheets for some integer $d \geq 2$,

$$
b_{n}^{(2)}(\widetilde{X})=0 \quad \text { for } n \geq 0
$$

This implies for each connected $C W$-complex Y of finite type

$$
b_{n}^{(2)}\left(\widetilde{S^{1} \times Y}\right)=0 \quad \text { for } n \geq 0
$$

Theorem (S^{1}-actions, Lück)

Let M be a connected compact manifold with S^{1}-action. Suppose that for one (and hence all) $x \in X$ the map $S^{1} \rightarrow M, z \mapsto z x$ is π_{1}-injective. Then we get for all $n \geq 0$

$$
b_{n}^{(2)}(\widetilde{M})=0 .
$$

Theorem (S¹-actions, Lück)

Let M be a connected compact manifold with S^{1}-action. Suppose that for one (and hence all) $x \in X$ the map $S^{1} \rightarrow M, \quad z \mapsto z x$ is π_{1}-injective. Then we get for all $n \geq 0$

$$
b_{n}^{(2)}(\widetilde{M})=0
$$

Theorem (S^{1}-actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S^{1}-action. Then
(1) The action has no fixed points;
(2) The map $S^{1} \rightarrow M, \quad z \mapsto z x$ is π_{1}-injective for $x \in M$;
(3) $b_{n}^{(2)}(\widetilde{M})=0$ for $n \geq 0$ and $\chi(M)=0$.

Example (L^{2}-Betti number of surfaces)

- Let F_{g} be the orientable closed surface of genus $g \geq 1$.
- Then $\left|\pi_{1}\left(F_{g}\right)\right|=\infty$ and hence $b_{0}^{(2)}\left(\widetilde{F_{g}}\right)=0$.
- By Poincaré duality $b_{2}^{(2)}\left(\widetilde{F_{g}}\right)=0$.
- $\operatorname{dim}\left(F_{g}\right)=2$, we get $b_{n}^{(2)}\left(\widetilde{F_{g}}\right)=0$ for $n \geq 3$.
- The Euler-Poincaré formula shows

$$
\begin{aligned}
& b_{1}^{(2)}\left(\widetilde{F_{g}}\right)=-\chi\left(F_{g}\right)=2 g-2 ; \\
& b_{n}^{(2)}\left(\widetilde{F_{0}}\right)=0 \quad \text { for } n \neq 1 .
\end{aligned}
$$

Theorem (Hodge - de Rham Theorem)

Let M be an oriented closed Riemannian manifold. Put

$$
\mathcal{H}^{n}(M)=\left\{\omega \in \Omega^{n}(M) \mid \Delta_{n}(\omega)=0\right\}
$$

Then integration defines an isomorphism of real vector spaces

$$
\mathcal{H}^{n}(M) \stackrel{\cong}{\rightrightarrows} H^{n}(M ; \mathbb{R})
$$

Corollary (Betti numbers and heat kernels)

$$
b_{n}(M)=\lim _{t \rightarrow \infty} \int_{M} \operatorname{tr}_{\mathbb{R}}\left(e^{-t \Delta_{n}}(x, x)\right) d \text { vol }
$$

where $e^{-t \Delta_{n}}(x, y)$ is the heat kernel on M.

Theorem (L^{2}-Hodge - de Rham Theorem, Dodziuk)

Let M be an oriented closed Riemannian manifold. Put

$$
\mathcal{H}_{(2)}^{n}(\widetilde{M})=\left\{\widetilde{\omega} \in \Omega^{n}(\widetilde{M}) \mid \widetilde{\Delta}_{n}(\widetilde{\omega})=0,\|\widetilde{\omega}\|_{L^{2}}<\infty\right\}
$$

Then integration defines an isomorphism of finitely generated Hilbert $\mathcal{N}(\pi)$-modules

$$
\mathcal{H}_{(2)}^{n}(\widetilde{M}) \stackrel{\cong}{\Rightarrow} H_{(2)}^{n}(\widetilde{M}) .
$$

Corollary (L^{2}-Betti numbers and heat kernels)

$$
b_{n}^{(2)}(\widetilde{M})=\lim _{t \rightarrow \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}\left(e^{-t \widetilde{\Delta}_{n}}(\tilde{x}, \tilde{x})\right) d \mathrm{vol} .
$$

where $e^{-t \tilde{\Delta}_{n}}(\tilde{X}, \tilde{y})$ is the heat kernel on \widetilde{M} and \mathcal{F} is a fundamental domain for the π-action.

Theorem (Hyperbolic manifolds, Dodziuk)

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$
b_{n}^{(2)}(\widetilde{M})= \begin{cases}=0 & , \text { if } 2 n \neq d ; \\ >0 & , \text { if } 2 n=d .\end{cases}
$$

Proof.
 A direct computation shows that $\mathcal{H}_{(2)}^{\rho}\left(\mathbb{H}^{d}\right)$ is not zero if and only if $2 n=d$. Notice that M is hyperbolic if and only if M is isometrically diffeomorphic to the standard hyperbolic space \mathbb{H}^{d}

Theorem (Hyperbolic manifolds, Dodziuk)

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$
b_{n}^{(2)}(\widetilde{M})= \begin{cases}=0 & , \text { if } 2 n \neq d \\ >0 & , \text { if } 2 n=d\end{cases}
$$

Proof.

A direct computation shows that $\mathcal{H}_{(2)}^{p}\left(\mathbb{H}^{d}\right)$ is not zero if and only if $2 n=d$. Notice that M is hyperbolic if and only if \widetilde{M} is isometrically diffeomorphic to the standard hyperbolic space \mathbb{H}^{d}.

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then
(1) If $d=2 m$ is even, then

$$
(-1)^{m} \cdot \chi(M)>0 ;
$$

(2) M carries no non-trivial S^{1}-action.

Proof.
 (1) We get from the Euler-Poincaré formula and the last result
 $$
(-1)^{m} \cdot \chi(M)=b_{m}^{(2)}(\widetilde{M})>0 .
$$
 (2) We give the proof only for $d=2 m$ even. Then $b_{m}^{(2)}(\widetilde{M})>0$. Since $\widetilde{M}=\mathbb{H}^{d}$ is contractible, M is aspherical. Now apply a previous result about S^{11}-actions.

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then
(1) If $d=2 m$ is even, then

$$
(-1)^{m} \cdot \chi(M)>0 ;
$$

(2) M carries no non-trivial S^{1}-action.

Proof.

(1) We get from the Euler-Poincaré formula and the last result

$$
(-1)^{m} \cdot \chi(M)=b_{m}^{(2)}(\widetilde{M})>0 .
$$

(2) We give the proof only for $d=2 m$ even. Then $b_{m}^{(2)}(\widetilde{M})>0$. Since $\widetilde{M}=\mathbb{H}^{d}$ is contractible, M is aspherical. Now apply a previous result about S^{1}-actions.

Theorem (3-manifolds, Lott-Lück)

Let the 3-manifold M be the connected sum $M_{1} \sharp \ldots \sharp M_{r}$ of (compact connected orientable) prime 3-manifolds M_{j}. Assume that $\pi_{1}(M)$ is infinite. Then

$$
\begin{aligned}
b_{1}^{(2)}(\widetilde{M})= & (r-1)-\sum_{j=1}^{r} \frac{1}{\left|\pi_{1}\left(M_{j}\right)\right|}-\chi(M) \\
& \quad+\left|\left\{C \in \pi_{0}(\partial M) \mid C \cong S^{2}\right\}\right| ; \\
b_{2}^{(2)}(\widetilde{M})= & (r-1)-\sum_{j=1}^{r} \frac{1}{\left|\pi_{1}\left(M_{j}\right)\right|} \\
& \quad+\left|\left\{C \in \pi_{0}(\partial M) \mid C \cong S^{2}\right\}\right| ; \\
b_{n}^{(2)}(\widetilde{M})= & 0 \text { for } n \neq 1,2 .
\end{aligned}
$$

Theorem (Mapping tori, Lück)

Let $f: X \rightarrow X$ be a cellular selfhomotopy equivalence of a connected CW-complex X of finite type. Let T_{f} be the mapping torus. Then

$$
b_{n}^{(2)}\left(\widetilde{T}_{f}\right)=0 \quad \text { for } n \geq 0
$$

Proof:

- As $T_{f d} \rightarrow T_{f}$ is a d-sheeted covering (up to homotopy), we get

$$
b_{n}^{(2)}\left(\widetilde{T}_{f}\right)=\frac{b_{n}^{(2)}\left(\widetilde{T_{f^{d}}}\right)}{d}
$$

- If $\beta_{n}(X)$ is the number of n-cells, then there is a $C W$-structure on $T_{f^{d}}$ with $\beta_{n}\left(T_{f^{d}}\right)=\beta_{n}(X)+\beta_{n-1}(X)$.
- We have

$$
b_{n}^{(2)}\left(\widetilde{T_{f^{d}}}\right) \leq \beta_{n}\left(T_{f^{d}}\right)
$$

- This implies for all $d \geq 1$

$$
b_{n}^{(2)}\left(\widetilde{T}_{f}\right) \leq \frac{\beta_{n}(X)+\beta_{n-1}(X)}{d}
$$

- Taking the limit for $d \rightarrow \infty$ yields the claim.

The fundamental square and the Atiyah Conjecture

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)
 Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_{1}(M) \cong G$ we have for every $n \geq 0$

$$
b_{n}^{(2)}(\widetilde{M}) \in \mathbb{Z}
$$

- All computations presented above support the Atiyah Conjecture.

The fundamental square and the Atiyah Conjecture

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_{1}(M) \cong G$ we have for every $n \geq 0$

$$
b_{n}^{(2)}(\widetilde{M}) \in \mathbb{Z} .
$$

- All computations presented above support the Atiyah Conjecture.

The fundamental square and the Atiyah Conjecture

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_{1}(M) \cong G$ we have for every $n \geq 0$

$$
b_{n}^{(2)}(\widetilde{M}) \in \mathbb{Z} .
$$

- All computations presented above support the Atiyah Conjecture.
- The fundamental square is given by the following inclusions of rings

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- $\mathcal{D}(G)$ is the division closure of $\mathbb{Z} G$ in $\mathcal{U}(G)$, i.e., the smallest subring of $\mathcal{U}(G)$ containing $\mathbb{Z} G$ such that every element in $\mathcal{D}(G)$, which is a unit in $\mathcal{U}(G)$, is already a unit in $\mathcal{D}(G)$ itself.
- The fundamental square is given by the following inclusions of rings

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- $\mathcal{D}(G)$ is the division closure of $\mathbb{Z} G$ in $\mathcal{U}(G)$, i.e., the smallest subring of $\mathcal{U}(G)$ containing $\mathbb{Z} G$ such that every element in $\mathcal{D}(G)$, which is a unit in $\mathcal{U}(G)$, is already a unit in $\mathcal{D}(G)$ itself.
- If G is finite, its is given by

- If $G=\mathbb{Z}$, it is given by

- If G is finite, its is given by

- If $G=\mathbb{Z}$, it is given by

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m, n}(\mathbb{Z} G)$ the von Neumann dimension $\operatorname{dim}_{\mathcal{N}(G)}\left(\operatorname{ker}\left(r_{A}: \mathcal{N}(G)^{m} \rightarrow \mathcal{N}(G)^{n}\right)\right)$ is an integer. In this case this dimension agrees with

$$
\operatorname{dim}_{\mathcal{D}(G)}\left(r_{A}: \mathcal{D}(G)^{m} \rightarrow \mathcal{D}(G)^{n}\right)
$$

- The general version above is equivalent to the one stated before if G is finitely presented.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m, n}(\mathbb{Z} G)$ the von Neumann dimension

$$
\operatorname{dim}_{\mathcal{N}(G)}\left(\operatorname{ker}\left(r_{A}: \mathcal{N}(G)^{m} \rightarrow \mathcal{N}(G)^{n}\right)\right)
$$

is an integer. In this case this dimension agrees with

$$
\operatorname{dim}_{\mathcal{D}(G)}\left(r_{A}: \mathcal{D}(G)^{m} \rightarrow \mathcal{D}(G)^{n}\right)
$$

- The general version above is equivalent to the one stated before if G is finitely presented.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m, n}(\mathbb{Z} G)$ the von Neumann dimension

$$
\operatorname{dim}_{\mathcal{N}(G)}\left(\operatorname{ker}\left(r_{A}: \mathcal{N}(G)^{m} \rightarrow \mathcal{N}(G)^{n}\right)\right)
$$

is an integer. In this case this dimension agrees with

$$
\operatorname{dim}_{\mathcal{D}(G)}\left(r_{A}: \mathcal{D}(G)^{m} \rightarrow \mathcal{D}(G)^{n}\right)
$$

- The general version above is equivalent to the one stated before if G is finitely presented.
- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring $F G$ has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L^{2}-Betti number which is irrational, see
- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring $F G$ has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L^{2}-Betti number which is irrational, see
- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring $F G$ has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L^{2}-Betti number which is irrational, see Austin, Grabowski.

Theorem (Linnell, Schick)

(1) Let \mathcal{C} be the smallest class of groups which contains all free groups and is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to \mathcal{C} satisfies the Atiyah Conjecture.
(2) If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

Theorem (Linnell, Schick)

- Let \mathcal{C} be the smallest class of groups which contains all free groups and is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to \mathcal{C} satisfies the Atiyah Conjecture.
(2) If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

Approximation

Theorem (Approximation Theorem, Lück)

Let X be a connected CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$
\pi=G_{0} \supset G_{1} \supset G_{2} \supset \ldots
$$

of normal subgroups of finite index with $\cap_{i \geq 1} G_{i}=\{1\}$. Let X_{i} be the finite $\left[\pi\right.$: $\left.G_{i}\right]$-sheeted covering of X associated to G_{i}.

Then for any such sequence $\left(G_{i}\right)_{i \geq 1}$

$$
b_{n}^{(2)}(\widetilde{X})=\lim _{i \rightarrow \infty} \frac{b_{n}\left(X_{i}\right)}{\left[G: G_{i}\right]}
$$

- Ordinary Betti numbers are not multiplicative under finite coverings, whereas the L^{2}-Betti numbers are. With the expression

$$
\lim _{i \rightarrow \infty} \frac{b_{n}\left(X_{i}\right)}{\left[G: G_{i}\right]},
$$

we try to force the Betti numbers to be multiplicative by a limit process.

- The theorem above says that L^{2}-Betti numbers are asymptotic Betti numbers. It was conjectured by Gromov.

Applications to deficiency and signature

Definition (Deficiency)

Let G be a finitely presented group. Define its deficiency

$$
\operatorname{defi}(G):=\max \{g(P)-r(P)\}
$$

where P runs over all presentations P of G and $g(P)$ is the number of generators and $r(P)$ is the number of relations of a presentation P.

Applications to deficiency and signature

Definition (Deficiency)

Let G be a finitely presented group. Define its deficiency

$$
\operatorname{defi}(G):=\max \{g(P)-r(P)\}
$$

where P runs over all presentations P of G and $g(P)$ is the number of generators and $r(P)$ is the number of relations of a presentation P.

Lemma

Let G be a finitely presented group. Then

$$
\operatorname{defi}(G) \leq 1-|G|^{-1}+b_{1}^{(2)}(G)-b_{2}^{(2)}(G) .
$$

Proof.

We have to show for any presentation P that

Let X be a $C W$-complex realizing P. Then

Since the classifying map $X \rightarrow B G$ is 2-connected, we get

Lemma

Let G be a finitely presented group. Then

$$
\operatorname{defi}(G) \leq 1-|G|^{-1}+b_{1}^{(2)}(G)-b_{2}^{(2)}(G)
$$

Proof.

We have to show for any presentation P that

$$
g(P)-r(P) \leq 1-b_{0}^{(2)}(G)+b_{1}^{(2)}(G)-b_{2}^{(2)}(G)
$$

Let X be a $C W$-complex realizing P. Then

$$
\chi(X)=1-g(P)+r(P)=b_{0}^{(2)}(\widetilde{X})+b_{1}^{(2)}(\widetilde{X})-b_{2}^{(2)}(\widetilde{X})
$$

Since the classifying map $X \rightarrow B G$ is 2-connected, we get

$$
\begin{aligned}
& b_{n}^{(2)}(\widetilde{X})=b_{n}^{(2)}(G) \quad \text { for } n=0,1 \\
& b_{2}^{(2)}(\widetilde{X}) \geq b_{2}^{(2)}(G) .
\end{aligned}
$$

Theorem (Deficiency and extensions, Lück)

Let $1 \rightarrow H \xrightarrow{i} G \xrightarrow{q} K \rightarrow 1$ be an exact sequence of infinite groups. Suppose that G is finitely presented H is finitely generated. Then:
(1) $b_{1}^{(2)}(G)=0$;
(2) defi $(G) \leq 1$;
(3) Let M be a closed oriented 4-manifold with G as fundamental group. Then

$$
|\operatorname{sign}(M)| \leq \chi(M) .
$$

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$
b_{n}^{(2)}(\tilde{M})=0 \quad \text { if } 2 n \neq \operatorname{dim}(M)
$$

If M is a closed Riemannian manifold with negative sectional curvature, then

$$
b_{n}^{(2)}(\widetilde{M}) \begin{cases}=0 & \text { if } 2 n \neq \operatorname{dim}(M) \\ >0 & \text { if } 2 n=\operatorname{dim}(M)\end{cases}
$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$
b_{n}^{(2)}(\widetilde{M})=0 \quad \text { if } 2 n \neq \operatorname{dim}(M)
$$

If M is a closed Riemannian manifold with negative sectional curvature, then

$$
b_{n}^{(2)}(\widetilde{M}) \begin{cases}=0 & \text { if } 2 n \neq \operatorname{dim}(M) \\ >0 & \text { if } 2 n=\operatorname{dim}(M)\end{cases}
$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$
b_{n}^{(2)}(\widetilde{M})=0 \quad \text { if } 2 n \neq \operatorname{dim}(M)
$$

If M is a closed Riemannian manifold with negative sectional curvature, then

$$
b_{n}^{(2)}(\tilde{M}) \begin{cases}=0 & \text { if } 2 n \neq \operatorname{dim}(M) \\ >0 & \text { if } 2 n=\operatorname{dim}(M)\end{cases}
$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.
- Because of the Euler-Poincaré formula

$$
\chi(M)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{M})
$$

the Singer Conjecture implies the following conjecture provided that M has non-positive sectional curvature.

Conjecture (Hopf Conjecture)

If M is a closed Riemannian manifold of even dimension with sectional curvature $\sec (M)$, then

$$
\begin{array}{rlll}
(-1)^{\operatorname{dim}(M) / 2} \cdot \chi(M) & >0 & \text { if } \sec (M) & <0 ; \\
(-1)^{\operatorname{dim}(M) / 2} \cdot \chi(M) & \geq 0 & \text { if } \sec (M) \leq 0 ; \\
\chi(M) & =0 & \text { if } \sec (M)=0 ; \\
\chi(M) & \geq 0 & \text { if } \sec (M) \geq 0 ; \\
\chi(M) & >0 & \text { if } \sec (M)>0 .
\end{array}
$$

