Introduction to L²-Betti numbers

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://131.220.77.52/lueck/

Düsseldorf, November 2015

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers

$$b_n(X) := \dim_{\mathbb{C}}(H_n(X; \mathbb{C})).$$

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers

$$b_n(X) := \dim_{\mathbb{C}}(H_n(X; \mathbb{C})).$$

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers

$$b_n(X) := \dim_{\mathbb{C}}(H_n(X; \mathbb{C})).$$

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group into account.
- We want to apply this principle to (classical) Betti numbers

$$b_n(X) := \dim_{\mathbb{C}}(H_n(X; \mathbb{C})).$$

Group von Neumann algebras

Definition

Define the group von Neumann algebra

$$\mathcal{N}(G) := \mathcal{B}(L^2(G), L^2(G))^G = \overline{\mathbb{C}G}^{\mathsf{weak}}$$

to be the algebra of bounded G-equivariant operators $L^2(G) \to L^2(G)$. The von Neumann trace is defined by

$$\operatorname{\mathsf{tr}}_{\mathcal{N}(G)} \colon \mathcal{N}(G) o \mathbb{C}, \quad f \mapsto \langle f(e), e \rangle_{L^2(G)}.$$

Example (Finite G)

If G is finite, then $\mathbb{C}G = L^2(G) = \mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_g \cdot g$ the coefficient λ_e .

Group von Neumann algebras

Definition

Define the group von Neumann algebra

$$\mathcal{N}(G) := \mathcal{B}(L^2(G), L^2(G))^G = \overline{\mathbb{C}G}^{\text{weak}}$$

to be the algebra of bounded *G*-equivariant operators $L^2(G) \to L^2(G)$. The von Neumann trace is defined by

$$\operatorname{tr}_{\mathcal{N}(G)} \colon \mathcal{N}(G) o \mathbb{C}, \quad f \mapsto \langle f(e), e \rangle_{L^2(G)}.$$

Example (Finite G)

If G is finite, then $\mathbb{C}G = L^2(G) = \mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_g \cdot g$ the coefficient λ_e .

Group von Neumann algebras

Definition

Define the group von Neumann algebra

$$\mathcal{N}(G) := \mathcal{B}(L^2(G), L^2(G))^G = \overline{\mathbb{C}G}^{\text{weak}}$$

to be the algebra of bounded G-equivariant operators $L^2(G) \to L^2(G)$. The von Neumann trace is defined by

$$\operatorname{tr}_{\mathcal{N}(G)} \colon \mathcal{N}(G) o \mathbb{C}, \quad f \mapsto \langle f(e), e \rangle_{L^2(G)}.$$

Example (Finite G)

If G is finite, then $\mathbb{C}G = L^2(G) = \mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_g \cdot g$ the coefficient λ_e .

Example ($G = \mathbb{Z}^n$)

Let G be \mathbb{Z}^n . Let $L^2(T^n)$ be the Hilbert space of L^2 -integrable functions $T^n \to \mathbb{C}$. Fourier transform yields an isometric \mathbb{Z}^n -equivariant isomorphism

$$L^2(\mathbb{Z}^n) \xrightarrow{\cong} L^2(T^n).$$

Let $L^{\infty}(T^n)$ be the Banach space of essentially bounded measurable functions $f \colon T^n \to \mathbb{C}$. We obtain an isomorphism

$$L^{\infty}(T^n) \xrightarrow{\cong} \mathcal{N}(\mathbb{Z}^n), \quad f \mapsto M_f$$

where $M_f \colon L^2(T^n) \to L^2(T^n)$ is the bounded \mathbb{Z}^n -operator $g \mapsto g \cdot f$.

Under this identification the trace becomes

$$\operatorname{tr}_{\mathcal{N}(\mathbb{Z}^n)}\colon L^\infty(\mathcal{T}^n) o \mathbb{C}, \quad f\mapsto \int_{\mathcal{T}^n} f d\mu.$$

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$ -module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^2(G)^n$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$ -modules $f: V \to W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$ -module. Choose a G-equivariant projection $p\colon L^2(G)^n\to L^2(G)^n$ with $\mathrm{im}(p)\cong_{\mathcal{N}(G)}V$. Define the von Neumann dimension of V by

$$\mathsf{dim}_{\mathcal{N}(G)}(V) := \mathsf{tr}_{\mathcal{N}(G)}(p) := \sum_{i=1}^n \mathsf{tr}_{\mathcal{N}(G)}(p_{i,i}) \in [0,\infty).$$

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$ -module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^2(G)^n$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$ -modules $f: V \to W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$ -module. Choose a G-equivariant projection $p\colon L^2(G)^n\to L^2(G)^n$ with $\mathrm{im}(p)\cong_{\mathcal{N}(G)}V$. Define the von Neumann dimension of V by

$$\dim_{\mathcal{N}(G)}(V) := \operatorname{tr}_{\mathcal{N}(G)}(\rho) := \sum_{i=1}^n \operatorname{tr}_{\mathcal{N}(G)}(\rho_{i,i}) \quad \in [0,\infty).$$

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$ -module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^2(G)^n$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$ -modules $f: V \to W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$ -module. Choose a G-equivariant projection $p\colon L^2(G)^n\to L^2(G)^n$ with $\mathrm{im}(p)\cong_{\mathcal{N}(G)}V$. Define the von Neumann dimension of V by

$$\dim_{\mathcal{N}(G)}(V) := \operatorname{tr}_{\mathcal{N}(G)}(p) := \sum_{i=1}^{n} \operatorname{tr}_{\mathcal{N}(G)}(p_{i,i}) \in [0,\infty).$$

Example (Finite G)

For finite G a finitely generated Hilbert $\mathcal{N}(G)$ -module V is the same as a unitary finite dimensional G-representation and

$$\dim_{\mathcal{N}(G)}(V) = \frac{1}{|G|} \cdot \dim_{\mathbb{C}}(V).$$

Example ($G = \mathbb{Z}^n$)

Let G be \mathbb{Z}^n . Let $X \subset T^n$ be any measurable set with characteristic function $\chi_X \in L^\infty(T^n)$. Let $M_{\chi_X} \colon L^2(T^n) \to L^2(T^n)$ be the \mathbb{Z}^n -equivariant unitary projection given by multiplication with χ_X . Its image V is a Hilbert $\mathcal{N}(\mathbb{Z}^n)$ -module with

$$\dim_{\mathcal{N}(\mathbb{Z}^n)}(V) = \operatorname{vol}(X).$$

In particular each $r \in [0, \infty)$ occurs as $r = \dim_{\mathcal{N}(\mathbb{Z}^n)}(V)$.

Example (Finite G)

For finite G a finitely generated Hilbert $\mathcal{N}(G)$ -module V is the same as a unitary finite dimensional G-representation and

$$\dim_{\mathcal{N}(G)}(V) = \frac{1}{|G|} \cdot \dim_{\mathbb{C}}(V).$$

Example ($G = \mathbb{Z}^n$)

Let G be \mathbb{Z}^n . Let $X\subset T^n$ be any measurable set with characteristic function $\chi_X\in L^\infty(T^n)$. Let $M_{\chi_X}\colon L^2(T^n)\to L^2(T^n)$ be the \mathbb{Z}^n -equivariant unitary projection given by multiplication with χ_X . Its image V is a Hilbert $\mathcal{N}(\mathbb{Z}^n)$ -module with

$$\dim_{\mathcal{N}(\mathbb{Z}^n)}(V) = \operatorname{vol}(X).$$

In particular each $r \in [0, \infty)$ occurs as $r = \dim_{\mathcal{N}(\mathbb{Z}^n)}(V)$.

L^2 -homology and L^2 -Betti numbers

Definition (L^2 -homology and L^2 -Betti numbers)

Let X be a connected GW-complex of finite type. Let \widetilde{X} be its universa covering and $\pi = \pi_1(M)$. Denote by $C_*(\widetilde{X})$ its cellular $\mathbb{Z}\pi$ -chain complex.

Define its cellular L^2 -chain complex to be the Hilbert $\mathcal{N}(\pi)$ -chain complex

$$C_*^{(2)}(\widetilde{X}) := L^2(\pi) \otimes_{\mathbb{Z}\pi} C_*(\widetilde{X}) = C_*(\widetilde{X}).$$

Define its *n*-th L^2 -homology to be the finitely generated Hilbert $\mathcal{N}(G)$ -module

$$H_n^{(2)}(\widetilde{X}) := \ker(c_n^{(2)})/\operatorname{im}(c_{n+1}^{(2)}).$$

Define its *n*-th *L*²-Betti number

$$b_n^{(2)}(\widetilde{X}) := \dim_{\mathcal{N}(\pi)} \big(H_n^{(2)}(\widetilde{X}) \big) \quad \in \mathbb{R}^{\geq 0}$$

L²-homology and L²-Betti numbers

Definition (L^2 -homology and L^2 -Betti numbers)

Let X be a connected CW-complex of finite type. Let \widetilde{X} be its universal covering and $\pi=\pi_1(M)$. Denote by $C_*(\widetilde{X})$ its cellular $\mathbb{Z}\pi$ -chain complex.

Define its cellular L^2 -chain complex to be the Hilbert $\mathcal{N}(\pi)$ -chain complex

$$C_*^{(2)}(\widetilde{X}) := L^2(\pi) \otimes_{\mathbb{Z}\pi} C_*(\widetilde{X}) = C_*(\widetilde{X}).$$

Define its n-th L^2 -homology to be the finitely generated Hilbert $\mathcal{N}(G)$ -module

$$H_n^{(2)}(\widetilde{X}) := \ker(c_n^{(2)}) / \overline{\operatorname{im}(c_{n+1}^{(2)})}.$$

Define its *n*-th *L*²-Betti number

$$b_n^{(2)}(\widetilde{X}) := \dim_{\mathcal{N}(\pi)} \left(H_n^{(2)}(\widetilde{X})
ight) \quad \in \mathbb{R}^{\geq 0}.$$

Theorem (Main properties of Betti numbers)

Let X and Y be connected CW-complexes of finite type.

Homotopy invariance
 If X and Y are homotopy equivalent, then

$$b_n(X) = b_n(Y);$$

• Euler-Poincaré formula If X is finite, we have

$$\chi(X) = \sum_{n>0} (-1)^n \cdot b_n(X);$$

Poincaré duality
 Let M be an oriented closed manifold of dimension d. Then

$$b_n(M)=b_{d-n}(M);$$

Theorem (Main properties of L^2 -Betti numbers)

Let X and Y be connected CW-complexes of finite type.

Homotopy invariance
 If X and Y are homotopy equivalent, then

$$b_n^{(2)}(\widetilde{X})=b_n^{(2)}(\widetilde{Y});$$

• Euler-Poincaré formula If X is finite, we have

$$\chi(X) = \sum_{n\geq 0} (-1)^n \cdot b_n^{(2)}(\widetilde{X});$$

Poincaré duality
 Let M be an oriented closed manifold of dimension d. Then

$$b_n^{(2)}(\widetilde{M}) = b_{d-n}^{(2)}(\widetilde{M});$$

Theorem (Continued)

Künneth formula

$$b_n(X \times Y) = \sum_{p+q=n} b_p(X) \cdot b_q(Y);$$

Zero-th L²-Betti number
 We have

$$b_0(X) = 1;$$

Theorem (Continued)

Künneth formula

$$b_n^{(2)}(\widetilde{X\times Y}) = \sum_{p+q=n} b_p^{(2)}(\widetilde{X}) \cdot b_q^{(2)}(\widetilde{Y});$$

Zero-th L²-Betti number
 We have

$$b_0^{(2)}(\widetilde{X}) = \frac{1}{|\pi|};$$

Theorem (Continued)

Künneth formula

$$b_n^{(2)}(\widetilde{X\times Y}) = \sum_{p+q=n} b_p(X)\cdot b_q(Y);$$

Zero-th L²-Betti number
 We have

$$b_0^{(2)}(\widetilde{X}) = \frac{1}{|\pi|};$$

Finite coverings

If $X \rightarrow Y$ is a finite covering with d sheets, then

$$b_n^{(2)}(\widetilde{X}) = d \cdot b_n^{(2)}(\widetilde{Y}).$$

Some computations and results

Example (Finite π)

If π is finite then

$$b_n^{(2)}(\widetilde{X}) = \frac{b_n(\widetilde{X})}{|\pi|}$$

Example (Finite self coverings)

We get for a connected CW-complex X of finite type, for which there is a selfcovering $X \to X$ with d-sheets for some integer $d \ge 2$,

$$b_n^{(2)}(\widetilde{X}) = 0$$
 for $n \ge 0$.

This implies for each connected CW-complex Y of finite type

$$b_n^{(2)}(\widetilde{S^1 \times Y}) = 0$$
 for $n \ge 0$.

Some computations and results

Example (Finite π)

If π is finite then

$$b_n^{(2)}(\widetilde{X})=\frac{b_n(\widetilde{X})}{|\pi|}.$$

Example (Finite self coverings)

We get for a connected *CW*-complex *X* of finite type, for which there is a selfcovering $X \to X$ with *d*-sheets for some integer $d \ge 2$,

$$b_n^{(2)}(\widetilde{X}) = 0$$
 for $n \ge 0$.

This implies for each connected CW-complex Y of finite type

$$b_n^{(2)}(\widetilde{S^1\times Y})=0\quad \text{for } n\geq 0.$$

Some computations and results

Example (Finite π)

If π is finite then

$$b_n^{(2)}(\widetilde{X}) = \frac{b_n(\widetilde{X})}{|\pi|}.$$

Example (Finite self coverings)

We get for a connected CW-complex X of finite type, for which there is a selfcovering $X \to X$ with d-sheets for some integer $d \ge 2$,

$$b_n^{(2)}(\widetilde{X})=0$$
 for $n\geq 0$.

This implies for each connected *CW*-complex *Y* of finite type

$$b_n^{(2)}(\widetilde{S^1\times Y})=0\quad \text{for } n\geq 0.$$

Theorem (S1-actions, Lück)

Let M be a connected compact manifold with S^1 -action. Suppose that for one (and hence all) $x \in X$ the map $S^1 \to M$, $z \mapsto zx$ is π_1 -injective. Then we get for all $n \ge 0$

$$b_n^{(2)}(\widetilde{M})=0.$$

Theorem (S^1 -actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S^1 -action. Then

- The action has no fixed points;
- ② The map $S^1 \to M$, $z \mapsto zx$ is π_1 -injective for $x \in M$;
- ③ $b_n^{(2)}(\widetilde{M}) = 0$ for $n \ge 0$ and $\chi(M) = 0$.

Theorem (S1-actions, Lück)

Let M be a connected compact manifold with S^1 -action. Suppose that for one (and hence all) $x \in X$ the map $S^1 \to M$, $z \mapsto zx$ is π_1 -injective. Then we get for all $n \ge 0$

$$b_n^{(2)}(\widetilde{M})=0.$$

Theorem (S¹-actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S^1 -action. Then

- The action has no fixed points;
- ② The map $S^1 \to M$, $z \mapsto zx$ is π_1 -injective for $x \in M$;
- **3** $b_n^{(2)}(\widetilde{M}) = 0$ for $n \ge 0$ and $\chi(M) = 0$.

Example (L^2 -Betti number of surfaces)

- Let F_g be the orientable closed surface of genus $g \ge 1$.
- Then $|\pi_1(F_g)| = \infty$ and hence $b_0^{(2)}(\widetilde{F_g}) = 0$.
- By Poincaré duality $b_2^{(2)}(\widetilde{F_g})=0$.
- $\dim(F_g) = 2$, we get $b_n^{(2)}(\widetilde{F_g}) = 0$ for $n \ge 3$.
- The Euler-Poincaré formula shows

$$b_1^{(2)}(\widetilde{F_g}) = -\chi(F_g) = 2g - 2;$$

 $b_n^{(2)}(\widetilde{F_0}) = 0 \text{ for } n \neq 1.$

Theorem (Hodge - de Rham Theorem)

Let M be an oriented closed Riemannian manifold. Put

$$\mathcal{H}^n(M) = \{ \omega \in \Omega^n(M) \mid \Delta_n(\omega) = 0 \}$$

Then integration defines an isomorphism of real vector spaces

$$\mathcal{H}^n(M) \xrightarrow{\cong} H^n(M; \mathbb{R}).$$

Corollary (Betti numbers and heat kernels)

$$b_n(M) = \lim_{t \to \infty} \int_M \operatorname{tr}_{\mathbb{R}}(e^{-t\Delta_n}(x,x)) \ d\text{vol} \,.$$

where $e^{-t\Delta_n}(x, y)$ is the heat kernel on M.

Theorem (L²-Hodge - de Rham Theorem, Dodziuk)

Let M be an oriented closed Riemannian manifold. Put

$$\mathcal{H}^n_{(2)}(\widetilde{M}) = \{\widetilde{\omega} \in \Omega^n(\widetilde{M}) \mid \widetilde{\Delta}_n(\widetilde{\omega}) = 0, \ ||\widetilde{\omega}||_{L^2} < \infty \}$$

Then integration defines an isomorphism of finitely generated Hilbert $\mathcal{N}(\pi)$ -modules

$$\mathcal{H}^n_{(2)}(\widetilde{M}) \xrightarrow{\cong} H^n_{(2)}(\widetilde{M}).$$

Corollary (L²-Betti numbers and heat kernels)

$$b_n^{(2)}(\widetilde{M}) = \lim_{t \to \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}(e^{-t\widetilde{\Delta}_n}(\widetilde{x},\widetilde{x})) \ d\text{vol} \ .$$

where $e^{-t\widetilde{\Delta}_n}(\tilde{x}, \tilde{y})$ is the heat kernel on \widetilde{M} and \mathcal{F} is a fundamental domain for the π -action.

Theorem (Hyperbolic manifolds, Dodziuk)

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$b_n^{(2)}(\widetilde{M}) = \begin{cases} = 0 & \text{, if } 2n \neq d; \\ > 0 & \text{, if } 2n = d. \end{cases}$$

Proof.

A direct computation shows that $\mathcal{H}^p_{(2)}(\mathbb{H}^d)$ is not zero if and only if 2n = d. Notice that M is hyperbolic if and only if \widetilde{M} is isometrically diffeomorphic to the standard hyperbolic space \mathbb{H}^d .

Theorem (Hyperbolic manifolds, Dodziuk)

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$b_n^{(2)}(\widetilde{M}) = \begin{cases} = 0 & \text{, if } 2n \neq d; \\ > 0 & \text{, if } 2n = d. \end{cases}$$

Proof.

A direct computation shows that $\mathcal{H}^p_{(2)}(\mathbb{H}^d)$ is not zero if and only if 2n=d. Notice that M is hyperbolic if and only if \widetilde{M} is isometrically diffeomorphic to the standard hyperbolic space \mathbb{H}^d .

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then

• If d = 2m is even, then

$$(-1)^m \cdot \chi(M) > 0;$$

M carries no non-trivial S¹-action.

Proof

(1) We get from the Euler-Poincaré formula and the last result

$$(-1)^m \cdot \chi(M) = b_m^{(2)}(\widetilde{M}) > 0.$$

(2) We give the proof only for d=2m even. Then $b_m^{(2)}(\widetilde{M})>0$. Since $\widetilde{M}=\mathbb{H}^d$ is contractible, M is aspherical. Now apply a previous result about S^1 -actions.

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then

• If d = 2m is even, then

$$(-1)^m \cdot \chi(M) > 0;$$

M carries no non-trivial S¹-action.

Proof.

(1) We get from the Euler-Poincaré formula and the last result

$$(-1)^m \cdot \chi(M) = b_m^{(2)}(\widetilde{M}) > 0.$$

(2) We give the proof only for d=2m even. Then $b_m^{(2)}(\widetilde{M})>0$. Since $\widetilde{M}=\mathbb{H}^d$ is contractible, M is aspherical. Now apply a previous result about S^1 -actions.

Theorem (3-manifolds, Lott-Lück)

Let the 3-manifold M be the connected sum $M_1 \sharp \dots \sharp M_r$ of (compact connected orientable) prime 3-manifolds M_j . Assume that $\pi_1(M)$ is infinite. Then

$$b_{1}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} - \chi(M) + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|;$$

$$b_{2}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|;$$

$$b_{n}^{(2)}(\widetilde{M}) = 0 \quad \text{for } n \neq 1, 2.$$

Theorem (Mapping tori, Lück)

Let $f: X \to X$ be a cellular selfhomotopy equivalence of a connected CW-complex X of finite type. Let T_f be the mapping torus. Then

$$b_n^{(2)}(\widetilde{T}_f)=0$$
 for $n\geq 0$.

Proof:

• As $T_{f^d} \to T_f$ is a *d*-sheeted covering (up to homotopy), we get

$$b_n^{(2)}(\widetilde{T}_f)=\frac{b_n^{(2)}(\widetilde{T}_{f^d})}{d}.$$

- If $\beta_n(X)$ is the number of n-cells, then there is a CW-structure on T_{f^d} with $\beta_n(T_{f^d}) = \beta_n(X) + \beta_{n-1}(X)$.
- We have

$$b_n^{(2)}(\widetilde{T_{f^d}}) \leq \beta_n(T_{f^d}).$$

• This implies for all $d \ge 1$

$$b_n^{(2)}(\widetilde{T}_f) \leq \frac{\beta_n(X) + \beta_{n-1}(X)}{d}.$$

• Taking the limit for $d \to \infty$ yields the claim.

The fundamental square and the Atiyah Conjecture

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_1(M) \cong G$ we have for every $n \geq 0$

$$b_n^{(2)}(\widetilde{M}) \in \mathbb{Z}.$$

• All computations presented above support the Atiyah Conjecture.

The fundamental square and the Atiyah Conjecture

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_1(M) \cong G$ we have for every $n \geq 0$

$$b_n^{(2)}(\widetilde{M}) \in \mathbb{Z}.$$

All computations presented above support the Atiyah Conjecture.

The fundamental square and the Atiyah Conjecture

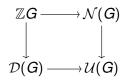
Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_1(M) \cong G$ we have for every $n \geq 0$

$$b_n^{(2)}(\widetilde{M}) \in \mathbb{Z}.$$

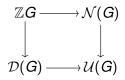
All computations presented above support the Atiyah Conjecture.

 The fundamental square is given by the following inclusions of rings



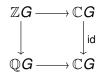
- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- $\mathcal{D}(G)$ is the division closure of $\mathbb{Z}G$ in $\mathcal{U}(G)$, i.e., the smallest subring of $\mathcal{U}(G)$ containing $\mathbb{Z}G$ such that every element in $\mathcal{D}(G)$, which is a unit in $\mathcal{U}(G)$, is already a unit in $\mathcal{D}(G)$ itself.

 The fundamental square is given by the following inclusions of rings



- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- $\mathcal{D}(G)$ is the division closure of $\mathbb{Z}G$ in $\mathcal{U}(G)$, i.e., the smallest subring of $\mathcal{U}(G)$ containing $\mathbb{Z}G$ such that every element in $\mathcal{D}(G)$, which is a unit in $\mathcal{U}(G)$, is already a unit in $\mathcal{D}(G)$ itself.

• If G is finite, its is given by



• If $G = \mathbb{Z}$, it is given by

$$\mathbb{Z}[\mathbb{Z}] \longrightarrow L^{\infty}(S^1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Q}[\mathbb{Z}]^{(0)} \longrightarrow L(S^1)$$

• If G is finite, its is given by

$$\mathbb{Z}G \longrightarrow \mathbb{C}G$$
 \downarrow id
 $\mathbb{Q}G \longrightarrow \mathbb{C}G$

• If $G = \mathbb{Z}$, it is given by

$$egin{aligned} \mathbb{Z}[\mathbb{Z}] & \longrightarrow L^{\infty}(\mathcal{S}^1) \ & & & \downarrow \ \mathbb{Q}[\mathbb{Z}]^{(0)} & \longrightarrow L(\mathcal{S}^1) \end{aligned}$$

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

• A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m,n}(\mathbb{Z}G)$ the von Neumann dimension

$$\dim_{\mathcal{N}(G)} \left(\ker \left(r_A \colon \mathcal{N}(G)^m \to \mathcal{N}(G)^n \right) \right)$$

is an integer. In this case this dimension agrees with

$$\dim_{\mathcal{D}(G)}(r_A\colon \mathcal{D}(G)^m\to \mathcal{D}(G)^n).$$

 The general version above is equivalent to the one stated before if G is finitely presented.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

• A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m,n}(\mathbb{Z}G)$ the von Neumann dimension

$$\dim_{\mathcal{N}(G)} \left(\ker \left(r_{\mathcal{A}} \colon \mathcal{N}(G)^m \to \mathcal{N}(G)^n \right) \right)$$

is an integer. In this case this dimension agrees with

$$\dim_{\mathcal{D}(G)}(r_A \colon \mathcal{D}(G)^m \to \mathcal{D}(G)^n).$$

 The general version above is equivalent to the one stated before if G is finitely presented.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

• A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m,n}(\mathbb{Z}G)$ the von Neumann dimension

$$\dim_{\mathcal{N}(G)} \left(\ker \left(r_{\mathcal{A}} \colon \mathcal{N}(G)^m \to \mathcal{N}(G)^n \right) \right)$$

is an integer. In this case this dimension agrees with

$$\dim_{\mathcal{D}(G)}(r_A \colon \mathcal{D}(G)^m \to \mathcal{D}(G)^n).$$

 The general version above is equivalent to the one stated before if G is finitely presented.

- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring FG has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L²-Betti number which is irrational, see Austin, Grabowski.

- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring FG has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L²-Betti number which is irrational, see Austin, Grabowski.

- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring FG has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L²-Betti number which is irrational, see Austin, Grabowski.

Theorem (Linnell, Schick)

- ① Let \mathcal{C} be the smallest class of groups which contains all free groups and is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to \mathcal{C} satisfies the Atiyah Conjecture.
- ② If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

Theorem (Linnell, Schick)

- Let C be the smallest class of groups which contains all free groups and is closed under extensions with elementary amenable groups as quotients and directed unions. Then every torsionfree group G which belongs to C satisfies the Atiyah Conjecture.
- ② If G is residually torsionfree elementary amenable, then it satisfies the Atiyah Conjecture.

Approximation

Theorem (Approximation Theorem, Lück)

Let X be a connected CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$\pi = G_0 \supset G_1 \supset G_2 \supset \dots$$

of normal subgroups of finite index with $\cap_{i\geq 1} G_i = \{1\}$. Let X_i be the finite $[\pi:G_i]$ -sheeted covering of X associated to G_i .

Then for any such sequence $(G_i)_{i\geq 1}$

$$b_n^{(2)}(\widetilde{X}) = \lim_{i \to \infty} \frac{b_n(X_i)}{[G:G_i]}.$$

 Ordinary Betti numbers are not multiplicative under finite coverings, whereas the L²-Betti numbers are. With the expression

$$\lim_{i\to\infty}\frac{b_n(X_i)}{[G:G_i]},$$

we try to force the Betti numbers to be multiplicative by a limit process.

 The theorem above says that L²-Betti numbers are asymptotic Betti numbers. It was conjectured by Gromov.

Applications to deficiency and signature

Definition (Deficiency)

Let G be a finitely presented group. Define its deficiency

$$\mathsf{defi}(G) := \max\{g(P) - r(P)\}\$$

where P runs over all presentations P of G and g(P) is the number of generators and r(P) is the number of relations of a presentation P.

Applications to deficiency and signature

Definition (Deficiency)

Let G be a finitely presented group. Define its deficiency

$$\mathsf{defi}(G) := \mathsf{max}\{g(P) - r(P)\}\$$

where P runs over all presentations P of G and g(P) is the number of generators and r(P) is the number of relations of a presentation P.

Lemma

Let G be a finitely presented group. Then

$$defi(G) \leq 1 - |G|^{-1} + b_1^{(2)}(G) - b_2^{(2)}(G).$$

Proof.

We have to show for any presentation *P* that

$$g(P) - r(P) \le 1 - b_0^{(2)}(G) + b_1^{(2)}(G) - b_2^{(2)}(G)$$

Let X be a CW-complex realizing P. Then

$$\chi(X) = 1 - g(P) + r(P) = b_0^{(2)}(\widetilde{X}) + b_1^{(2)}(\widetilde{X}) - b_2^{(2)}(\widetilde{X}).$$

Since the classifying map $X \to BG$ is 2-connected, we get

$$b_n^{(2)}(\widetilde{X}) = b_n^{(2)}(G)$$
 for $n = 0, 1$;
 $b_2^{(2)}(\widetilde{X}) \ge b_2^{(2)}(G)$.

Lemma

Let G be a finitely presented group. Then

$$defi(G) \leq 1 - |G|^{-1} + b_1^{(2)}(G) - b_2^{(2)}(G).$$

Proof.

We have to show for any presentation P that

$$g(P) - r(P) \leq 1 - b_0^{(2)}(G) + b_1^{(2)}(G) - b_2^{(2)}(G).$$

Let X be a CW-complex realizing P. Then

$$\chi(X) = 1 - g(P) + r(P) = b_0^{(2)}(\widetilde{X}) + b_1^{(2)}(\widetilde{X}) - b_2^{(2)}(\widetilde{X}).$$

Since the classifying map $X \to BG$ is 2-connected, we get

$$b_n^{(2)}(\widetilde{X}) = b_n^{(2)}(G)$$
 for $n = 0, 1$;
 $b_2^{(2)}(\widetilde{X}) \ge b_2^{(2)}(G)$.

Theorem (Deficiency and extensions, Lück)

Let $1 \to H \xrightarrow{i} G \xrightarrow{q} K \to 1$ be an exact sequence of infinite groups. Suppose that G is finitely presented H is finitely generated. Then:

- $b_1^{(2)}(G) = 0;$
- ② $defi(G) \leq 1$;
- Let M be a closed oriented 4-manifold with G as fundamental group. Then

$$|\operatorname{sign}(M)| \leq \chi(M).$$

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$b_n^{(2)}(\widetilde{M}) = 0$$
 if $2n \neq \dim(M)$.

If M is a closed Riemannian manifold with negative sectional curvature, then

$$b_n^{(2)}(\widetilde{M}) \left\{ \begin{array}{ll} = 0 & \text{if } 2n \neq \dim(M); \\ > 0 & \text{if } 2n = \dim(M). \end{array} \right.$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$b_n^{(2)}(\widetilde{M}) = 0$$
 if $2n \neq \dim(M)$.

If M is a closed Riemannian manifold with negative sectional curvature, then

$$b_n^{(2)}(\widetilde{M})$$
 $\begin{cases} = 0 & \text{if } 2n \neq \dim(M); \\ > 0 & \text{if } 2n = \dim(M). \end{cases}$

- The computations presented above do support the Singer
- Under certain negative pinching conditions the Singer Conjecture

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$b_n^{(2)}(\widetilde{M})=0$$
 if $2n\neq \dim(M)$.

If M is a closed Riemannian manifold with negative sectional curvature, then

$$b_n^{(2)}(\widetilde{M})$$
 $\begin{cases} = 0 & \text{if } 2n \neq \dim(M); \\ > 0 & \text{if } 2n = \dim(M). \end{cases}$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.

Because of the Euler-Poincaré formula

$$\chi(M) = \sum_{n \geq 0} (-1)^n \cdot b_n^{(2)}(\widetilde{M})$$

the Singer Conjecture implies the following conjecture provided that M has non-positive sectional curvature.

Conjecture (Hopf Conjecture)

If M is a closed Riemannian manifold of even dimension with sectional curvature sec(M), then