The Burnside Ring, Equivariant Stable Cohomotopy and the Segal Conjecture for Infinite Groups

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

March 2008

- Long term goal: Extend notions about equivariant (co-)homotopy and (co-)homology for finite groups to infinite groups.
- Review for finite groups.
- Motivation and basic questions
- The notion of the Burnside ring for infinite groups.
- Stable cohomotopy for infinite groups.
- The Segal Conjecture for infinite groups.
- Rational computations of $K^*(BG)$.
- Outlook.

Definition (Burnside ring of a finite group)

The isomorphism classes of finite *G*-sets form a commutative associative semi-ring with unit under disjoint union and cartesian product. The Burnside ring A(G) is the Grothendieck ring associated to this semi-ring.

Definition (Stable cohomotopy)

Let X be a G-CW-complex. Define for $n \in \mathbb{Z}$ its *n*-th stable cohomotopy group by

$$\pi^n_G(X) = \begin{cases} \operatorname{colim}_V [S^V \wedge S^{-n} \wedge X_+, S^V]^G & n \leq 0; \\ \operatorname{colim}_V [S^V \wedge X_+, S^n \wedge S^V]^G & n \geq 0. \end{cases}$$

where V runs through the orthogonal G-representations of G and $X_+ = X \amalg \{\bullet\}.$

Theorem (

Let G be a finite group. Then we obtain an isomorphism of rings

$\pi^0_G(\{\bullet\}) \xrightarrow{\cong} \mathcal{A}(G)$

Theorem (

Let G be a finite group and let X be a finite G-CW-complex. Then there is an isomorphism

 $K^n_G(X)_I \xrightarrow{\cong} K^n(EG \times_G X)$

where $I \subseteq R_{\mathbb{C}}(G)$ is the augmentation ideal. In particular we obtain an isomorphism

 $R_{\mathbb{C}}(G)_{I}^{\widehat{}} \xrightarrow{\cong} K^{0}(BG).$

Theorem (Segal Conjecture, proved by Carlsson (1984))

The Segal Conjecture is true, i.e., for every finite group G and every finite G-CW-complex X there is an isomorphism

 $\pi^n_G(X)_I^{\widehat{}} \xrightarrow{\cong} \pi^n(EG \times_G X),$

where $I \subseteq A(G)$ is the augmentation ideal. In particular we obtain an isomorphism

 $A(G)_{I}^{\widehat{}} \xrightarrow{\cong} \pi_{G}^{0}(BG).$

- Baum-Connes Conjecture and Farrell-Jones Conjecture.
- Computations of algebraic *K* and *L*-groups of group rings or of topological *K*-theory of reduced *C**-algebras of infinite groups.
- Computations of (co)-homology or topological *K*-theory of the classifying space *BG* of an infinite group *G*.
- Can one extend classical results to this setting?
- Can one get new useful information in this new setting (here for infinite groups and their actions)?
- Are there interesting and promising open problems?

- In the case of infinite groups on needs for geometric constructions the condition that the *G-CW*-complexes are proper, i.e., all isotropy groups are finite.
- Hence we cannot consider the one-point-space {•} and cannot assume that *G*-*CW*-complex has a base point which is fixed under the *G*-action if *G* is infinite.
- So we must find a replacement for $\{\bullet\}$.

Definition (Classifying space of proper G-actions)

A model for the classifying space for proper *G*-actions is a *G*-*CW*-complex $\underline{E}G$ such that $\underline{E}G^H$ is contractible if $H \subseteq G$ is finite and is empty if $H \subseteq G$ is infinite.

Theorem (

- A model for <u>E</u>G exists;
- Two models are G-homotopy equivalent;
- The G-CW-complex $\underline{E}G$ is characterized uniquely up to G-homotopy by the property that for every proper G-CW-complex X there is up to G-homotopy precisely one G-map $X \rightarrow \underline{E}G$.

- Obviously $\{\bullet\}$ is a model for <u>E</u>G if and only if G is finite.
- We have $EG = \underline{E}G$ if and only if G is torsionfree.
- The spaces <u>E</u>G are interesting in their own right and have often very nice geometric models which are rather small. For instance:
- Rips complex for word hyperbolic groups;
- Teichmüller space for mapping class groups;
- Outer space for the group of outer automorphisms of free groups;
- L/K for a connected Lie group L, a maximal compact subgroup $K \subseteq L$ and $G \subseteq L$ a discrete subgroup;
- CAT(0)-spaces with proper isometric *G*-actions, e.g., Riemannian manifolds with non-positive sectional curvature or trees.

• Before we try to extend the notion of the Burnside ring to finite group, we review the possible generalizations of the representation ring over a field *F* of characteristic zero to infinite groups. This will be a guide line.

Definition (Generalizations of the representation ring)

- Let $Sw^{f}(G; F)$ be the Grothendieck group of finite-dimensional *F*-vector spaces with linear *G*-action. (This is word by word the classical definition).
- Let $K_0(FG)$ be the projective class group.

• Put

• Let $K_G^0(\underline{E}G)$ and $K_0^G(\underline{E}G)$ respectively be the zero-th equivariant topological K-theory group and equivariant topological K-homology group of $\underline{E}G$.

- Notice that for a finite group all the notions in the definition above reduce to $R_F(G)$.
- For infinite groups all of these notions are different.
- One cannot say which is the right one. The possible choice depends on the problem one is studying. All of these notions have been studied and applied to various problems.
- The definitions above suggest the following definitions for possible generalizations of the Burnside ring.
- The dictionary between the generalizations for the Burnside ring and for the representation ring come from the passage from a *G*-set *S* to its permutation module, i.e., the *F*-vector space *FS* with *S* as basis.

Definition (Generalizations of the Burnside ring)

- Define $\overline{A}(G)$ to be the Grothendieck group of finite sets with G-action. (This is word by word the classical definition.)
- Define $\underline{A}(G)$ to be the Grothendieck group of proper cofinite *G*-sets.
- Put

• Let $\pi_G^0(\underline{E}G)$ and $\pi_0^G(\underline{E}G)$ respectively be the zero-th equivariant stable cohomotopy and homotopy group respectively of the classifying space for proper *G*-actions $\underline{E}G$.

We have the following dictionary

$R_F(G)$	A(G)	key words
$Sw^{f}(G; F)$	$\overline{A}(G)$	induction theory, Green functors, pro-
		finite groups
$K_0(FG)$	<u>A</u> (G)	universal additive invariant, equiv-
		ariant Euler characteristic, <i>L</i> ² -Euler
		characteristic
$R_{\text{cov},F}(G)$	$A_{\rm cov}(G)$	collecting all values for finite sub-
		groups with respect to induction
$R_{inv,F}(G)$	$A_{inv}(G)$	collecting all values for finite sub-
		groups with respect to restriction
$K_G^0(\underline{E}G)$	$\pi_G^0(\underline{E}G)$	completion theorems, equivariant vec-
		tor bundles,
$K_0^G(\underline{E}G)$	$\pi_0^G(\underline{E}G)$	representation theory, Baum-Connes
		Conjecture

Definition (*G*-cohomology theory)

A *G*-cohomology theory \mathcal{H}_{G}^{*} is a contravariant functor \mathcal{H}_{G}^{*} from the category of *G*-*CW*-pairs to the category of \mathbb{Z} -graded *R*-modules together with natural transformations

$$\delta^n_G(X,A):\mathcal{H}^n_G(A)\to\mathcal{H}^{n+1}_G(X,A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Definition (Equivariant cohomology theory)

An equivariant cohomology theory $\mathcal{H}^{?}_{*}$ consists of a *G*-cohomology theory \mathcal{H}^{*}_{G} for every group *G* together with the following so called induction structure: given a group homomorphism $\alpha \colon H \to G$ and a *H*-*CW*-pair (X, A) there are for all $n \in \mathbb{Z}$ natural homomorphisms

 $\operatorname{ind}_{\alpha} \colon \mathcal{H}^n_H(X, A) \to \mathcal{H}^n_G(\operatorname{ind}_{\alpha}(X, A))$

satisfying:

Bijectivity

If ker(α) acts freely on X, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms
- Functoriality in α
- Compatibility with conjugation

• Here are some examples for equivariant cohomology theories \mathcal{H}_2^*

• Quotients

Let \mathcal{K}^* be a non-equivariant cohomology theory. Define $\mathcal{H}_?^*$ by

$$\mathcal{H}^*_G(X) := \mathcal{K}^*(G \setminus X).$$

• Borel homology

Let \mathcal{K}^* be a non-equivariant homology theory. Define $\mathcal{H}_?^*$ by

$$\mathcal{H}^*_G(X) := \mathcal{K}^*(EG \times_G X).$$

Equivariant topological K-theory K^{*}_G for proper G-CW-complexes is constructed by Lück-Oliver (2001) in terms of equivariant spectra. Let H ⊆ G be a finite group. Then K^G_n(G/H) = Kⁿ_H({●}) is R_C({●}) for even n and {0} for odd n. It agrees with the construction of Kasparov in terms of Kasparov cycles.

An Ω-spectrum E defines a cohomology theory by sending a space X to π^s_{*}(map(X₊, E)). This generalizes to the equivariant setting as follows.

Theorem (Equivariant cohomology theories and spectra

Consider a contravariant functor

 $\textbf{E} : \ \textbf{GROUPOIDS} \rightarrow \Omega - \textbf{SPECTRA}$

sending equivalences of groupoids to weak equivalences of spectra. Then there exists an equivariant cohomology theory $\mathcal{H}_{?}^{*}(-; \mathsf{E})$ with the property that for every group G, subgroup $H \subseteq G$ and $n \in \mathbb{Z}$

 $\mathcal{H}^n_G(G/H) = \mathcal{H}^n_H(\{\bullet\}) = \pi_{-n}(\mathbf{E}(H)).$

Theorem (Equivariant stable cohomotopy in terms of equivariant vector bundles, Lueck(2005))

Equivariant stable cohomotopy $\pi_{?}^{*}$ is defined and yields an equivariant cohomology theory with multiplicative structure for finite proper equivariant CW-complexes. In particular for every finite subgroup H of the group G we have

 $\pi_G^n(G/H) \cong \pi_H^n(\{\bullet\})$

and there are isomorphisms of rings

 $\pi^0_G(G/H) \cong \pi^0_H(\{\bullet\}) \cong A(H).$

If G is finite, this definition coincides with the classical one.

- Here is a sketch of its construction.
- Let X be a finite proper G-CW-complex.
- An element in $\pi_G^n(X)$ is represented by a fiber preserving and fiberwise basepoint preserving *G*-map

$$u\colon S^{\xi\oplus\underline{\mathbb{R}}^k}\to S^{\xi\oplus\underline{\mathbb{R}}^{k+n}}$$

where ξ is a *G*-vector bundle over *X*, we denote by \mathbb{R}^k is the trivial *G*-vector bundle $X \times \mathbb{R}^k \to X$ for the trivial *G*-representation \mathbb{R}^k and *k* is some integer satisfying $k + n \ge 0$.

• Addition comes from a fiberwise pinching construction. The multiplicative structure can be defined by a fiberwise smash product or by composition.

- The class $[u] \in \pi^n_G(X)$ of u does not change if
- We alter *u* by a homotopy of such maps;
- We replace u by the following stabilization with a G-vector bundle μ

$$S^{(\xi\oplus\mu)\oplus\underline{\mathbb{R}}^k} = S^{\xi\oplus\underline{\mathbb{R}}^k} \wedge_X S^\mu \xrightarrow{u\wedge_X \mathsf{id}} S^{\xi\oplus\underline{\mathbb{R}}^{k+n}} \wedge_X S^\mu = S^{(\xi\oplus\mu)\oplus\underline{\mathbb{R}}^{k+n}};$$

• We conjugate *u* by an isomorphism of *G*-vector bundle $v: \xi \to \xi'$, i.e., we replace *u* by the composition

$$S^{\xi' \oplus \underline{\mathbb{R}}^k} \xrightarrow{S^{\nu^{-1} \oplus \mathsf{id}}} S^{\xi \oplus \underline{\mathbb{R}}^k} \xrightarrow{u} S^{\xi \oplus \underline{\mathbb{R}}^{k+n}} \xrightarrow{S^{\nu \oplus \mathsf{id}}} S^{\xi' \oplus \underline{\mathbb{R}}^{k+n}}$$

- Obvious question: Why do we consider G-vector bundles ξ instead of G-representations V?
- Why we cannot just use the word by word extensions of the classical definition?
- The proof that π_G^* is a *G*-cohomology theory with a multiplicative structure would go through and for finite groups we would get the classical notion.
- The problem is that the induction structure does not exists anymore as the following example will show.
- So a key idea is to replace representations or, equivalently, trivial *G*-vector bundles by arbitrary *G*-vector bundles.
- For infinite groups there are not enough representations but enough equivariant vector bundles.

Example (Groups without non-trivial representations)

- The exists infinite simple groups G.
- For such a group every (finite-dimensional) G-representation is trivial.
- Then the word by word extension of the classical definition to a proper G-CW-complex X would just lead to πⁿ(G\X).
- In particular πⁿ_G(G/H) is the non-equivariant stable cohomotopy group πⁿ_s({●}) for all finite subgroups H ⊆ G.
- On the other hand the existence of an induction structure would predict for X = G/H that $\pi_G^n(G/H)$ is isomorphic to $\pi_H^n(\{\bullet\})$, which is in general different from $\pi_s^n(\{\bullet\})$.

- There is a spectrum version of equivariant stable cohomotopy for arbitrary proper *G-CW*-complexes which reduces to the one above for finite proper *G-CW*-complexes Barcenaz (2008).
- Rationally stable cohomotopy is singular cohomology with rational coefficients. This result extends to the equivariant setting as follows.

Theorem (Rational Computation of $\pi_*^{\mathcal{G}}$, Lueck(2005))

There are isomorphisms

$$\pi_G^n(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} \prod_{(H), H \subseteq G} H^n\left(W_G H \setminus X^H; \mathbb{Q}\right)$$

for all $n \in \mathbb{Z}$ and all finite proper G-CW-complexes X. They are compatible with the obvious multiplicative structures and induction structures.

Theorem (Segal Conjecture for infinite groups,

Let X be a finite proper G-CW-complex and let L be a proper finite dimensional G-CW-complex such that there is an upper bound on the order of its isotropy groups. Let $f: X \to L$ be a G-map. Then there is an isomorphism of pro- \mathbb{Z} -modules

 $\{\pi_G^m(X)/\mathbb{I}_G(L)^n\cdot\pi_G^m(X)\}_{n\geq 1}\to \{\pi_s^m\left((EG\times_G X)_{(n-1)}\right)\}_{n\geq 1}.$

In particular we obtain an isomorphism

$$\pi^m_s(EG imes_G X) \cong \pi^m_G(X)^{\widehat{l}_G(L)}.$$

Corollary

Suppose that there is a finite G-CW-model for $\underline{E}G$. We define the homotopy theoretic Burnside ring $A_{ho}(G)$ by $\pi^0_G(\underline{E}G)$. Let $I \subseteq A_{ho}(G)$ be the augmentation ideal. It is the kernel of the map sending [u] to the degree of u_x for any $x \in \underline{E}G$. Then we obtain an isomorphism

 $\pi_s^m(BG) \cong \pi_G^m(\underline{E}G)_I^{\widehat{}}.$

In dimension zero we get an isomorphism

 $\pi_s^0(BG) \cong A_{ho}(G)_I^{\widehat{}}.$

Theorem (Atiyah-Segal Completion Theorem for infinite groups, Linck-Oliver (2001))

The analogue of all these results for the Atiyah-Segal Completion

- The proofs of these completion theorems use the fact that they have already been proved for finite groups.
- In the Atiyah-Segal case the main problem is to construct a certain family of elements in the various representation rings of the finite subgroups of *G* which satisfy certain compatibility conditions coming from inclusion and conjugation of finite subgroups. The prime deal structure of the representation rings do play an important role
- In the Segal case an analogous problem arises but one has to replace the representation rings by Burnside rings.
- However, the methods of proofs are rather different as already the proofs of the Atyah-Segal Completion Theorem and of the Segal Conjecture for finite groups are rather different.

- A good theory of equivariant Chern characters has been developed and has been applied to several instances.
- In particular they play an important role in the computation of algebraic K- and L-groups of group rings and the topological K-theory of the reduced group C*-algebra based on the Baum-Connes Conjecture and the Farrel-Jones Conjecture.
- As an illustration we mention the following result which aims in a different direction, namely, the topological *K*-theory of *BG*.
- It is a typical example of the successful method to make computations about *BG* using <u>*E*</u>*G*.

Theorem (Rational computation of $K^*(BG)$,

Suppose that there is a cocompact G-CW-model for the classifying space $\underline{E}G$ for proper G-actions. Then there is a \mathbb{Q} -isomorphism

$$\overline{\mathrm{ch}}_{G,\mathbb{Q}}^{n} \colon \mathcal{K}^{n}(BG) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} \left(\prod_{i \in \mathbb{Z}} H^{2i+n}(BG;\mathbb{Q}) \right) \times \prod_{p \text{ prime}} \prod_{(g) \in \mathrm{con}_{p}(G)} \left(\prod_{i \in \mathbb{Z}} H^{2i+n}(BC_{G}\langle g \rangle;\mathbb{Q}_{p}^{\widehat{}}) \right),$$

where $\operatorname{con}_p(G)$ is the set of conjugacy classes (g) of elements $g \in G$ of order p^d for some integer $d \ge 1$ and $C_G\langle g \rangle$ is the centralizer of the cyclic subgroup $\langle g \rangle$ generated by g.

- The map above is in general not compatible with the obvious multiplicative structures. If we complexify, we obtain isomorphisms compatible with the multiplicative structures.
- There is a formula for $K^*(BG)$ for finite groups

$$\begin{split} \mathcal{K}^0(BG) &\cong & \mathbb{Z} \times \prod_{p \text{ prime}} \mathbb{I}_p(G) \otimes_{\mathbb{Z}} \mathbb{Z}_p^{\widehat{p}} \\ &\cong & \mathbb{Z} \times \prod_{p \text{ prime}} (\mathbb{Z}_p^{\widehat{p}})^{|\operatorname{con}_p(G)|}; \\ \mathcal{K}^1(BG) &\cong & 0. \end{split}$$

 For infinite groups on cannot expect a general integral answer. The main new input is the topological K-theory of the orbifold G\<u>E</u>G.
Certain computations will appear in a paper joint with Joachim.

Theorem (Multiplicative structure,

Suppose that there is a cocompact G-CW-model for the classifying space $\underline{E}G$ for proper G-actions. Then there is a \mathbb{C} -isomorphism

$$\overline{\mathrm{ch}}_{G,\mathbb{C}}^{n} \colon K^{n}(BG) \otimes_{\mathbb{Z}} \mathbb{C} \xrightarrow{\cong} \left(\prod_{i \in \mathbb{Z}} H^{2i+n}(BG;\mathbb{C}) \right) \times \prod_{p \text{ prime}} \prod_{(g) \in \mathrm{con}_{p}(G)} \left(\prod_{i \in \mathbb{Z}} H^{2i+n}(BC_{G}\langle g \rangle;\mathbb{Q}_{p}^{\widehat{}} \otimes_{\mathbb{Q}} \mathbb{C}) \right)$$

It is compatible with the standard multiplicative structure on $K^*(BG)$ and the natural one on the target which is given by

$$(a, u_{p,(g)}) \cdot (b, v_{p,(g)}) = (a \cdot b, (a \cdot v_{p,(g)} + b \cdot u_{p,(g)} + u_{p,(g)} \cdot v_{p,(g)}))$$

Open problems

- Construction of a stable homotopy category including a Quillen model structure and smash products (joint project with Schwede)
- Extend the theory to Lie groups.
- At last some wild speculation:
- There are examples of topological groups which are not locally compact (and in particular not Lie groups) but which have a Lie-compact-subgroup-structure, i.e., every compact subgroup is a Lie group.
- Examples are diffeomorphism groups of closed smooth manifolds, loop groups and Kac-Moody groups.
- These often have interesting models for the space <u>E</u>G for proper G-actions.
- For instance for a closed smooth manifold *M* the space of Riemannian metrics is a model for <u>E</u>*G* for the diffeomorphism group of *M* acting in the obvious way.

- One should give precise definition of the equivariant *K*-homology of proper *G*-*CW*-complexes for topological groups with a Lie-compact-subgroup-structure.
- This would yield a precise definition of the source of the Baum-Connes Conjecture in this setting.
- However since the groups G are not necessarily locally compact, there exists no Haar measure and we cannot make sense of $L^2(G)$ or $C_r^*(G)$. So we have no definition for the target of the Baum-Connes assembly map.
- Nevertheless there is some vague indication that such a Baum-Connes Conjecture may make sense.

- Kitchloo (2008) computed K^G_{*}(<u>E</u>G) using a nice model for <u>E</u>G and assuming the existence of the homology theory K^G_{*} for some loop groups. The answer is in terms of the representation theory of the loop group.
- Notice that $K_*(C_r^*(G))$ is designed to capture the representation theory of a topologial group G.