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RELATIVE ASSEMBLY MAPS AND THE K-THEORY OF

HECKE ALGEBRAS IN PRIME CHARACTERISTIC

LÜCK, W.

Abstract. We investigate the relative assembly map from the family of finite
subgroups to the family of virtually cyclic subgroups for the algebraic K-
theory of twisted group rings of a group G with coefficients in a regular ring
R or, more generally, with coefficients in a regular additive category. They
are known to be isomorphisms rationally. We show that it suffices to invert
only those primes p for which G contains a non-trivial finite p-group and p

is not invertible in R. The key ingredient is the detection of Nil-terms of a
twisted group ring of a finite group F after localizing at p in terms of the
p-subgroups of F using Verschiebungs and Frobenius operators. We construct
and exploit the structure of a module over the ring of big Witt vectors on
the Nil-terms. We analyze the algebraic K-theory of the Hecke algebras of
subgroups of reductive p-adic groups in prime characteristic.

1. Introduction

We first state and discuss the main results of this paper. In this introduction we
only consider rings as coefficients for simplicity. Many of the results will extend to
additive categories as coefficients. Moreover, in all cases one can allow a twisting
by a G-action on R or a G-action on the additive category. Groups are understood
to be discrete, unless explicitly stated otherwise.

1.a. On the K-theoretic relative assembly map from F in to Vcyc for regu-

lar coefficient rings. If P is a set of primes and f : A→ B is a homomorphisms of
abelian groups, we call f a P-isomorphism if the map idZ[P−1] ⊗Zf : Z[P−1]⊗ZA→
Z[P−1] ⊗Z B is bijective, where the ring Z[P−1] satisfies Z ⊆ Z[P−1] ⊆ Q and is
obtained from Z by inverting all primes in P .

Notation 1.1. For a group G and a ring R, let P(G,R) be the set of primes, which
are not invertible in R and for which G contains a non-trivial finite p-subgroup.

If G is torsionfree or, more generally, the order of any finite subgroup of G is
invertible in R, then P(G,R) is empty and P-isomorphism means just isomorphism.
If R = Z, then P(G,Z) is the set of primes p for which G contains an element of
order p.

Theorem 1.2. Let R be a regular ring coming with a group homomorphism ρ : G→
aut(R) to the group of ring automorphisms of R. Then the relative assembly map

HG
n (EF in(G);KR) → HG

n (EVcyc(G);KR)

is a P(G,R)-isomorphism for all n ∈ Z.
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Theorem 1.2 improves [28, Theorem 0.3], where P(G,R) is required to be the
set of all primes. See also [20, Theorem 5.11] for R = Z. If the order of any finite
subgroup of G is invertible in R and the action ρ is trivial, then Theorem 1.2 has
already been proved in [26, Proposition 2.6 on page 686]. Theorem 1.2 is a special
case of Theorem 9.1. Note that the relative assembly map appearing in Theorem 1.2
is always split injective, see [10, Theorem 1.3], [28, Theorem 0.1].

For more information about the relative assembly map appearing in Theorem 1.2
and the K-theoretic Farrell-Jones Conjecture, we refer to Remark 6.4 and [25].

The subgroup category of G for the family F in of finite subgroups SubF in(G) has
as objects finite subgroups H of G. For finite subgroups H and K of G, denote
by conhomG(H,K) the set of group homomorphisms f : H → K, for which there
exists an element g ∈ G with gHg−1 ⊂ K such that f is given by conjugation
with g, i.e. f = c(g) : H → K, h 7→ ghg−1. Note that c(g) = c(g′) holds for
two elements g, g′ ∈ G with gHg−1 ⊂ K and g′Hg′−1 ⊂ K if and only if g−1g′

lies in the centralizer CGH = {g ∈ G | gh = hg for all h ∈ H} of H in G. The
group of inner automorphisms Inn(K) of K acts on conhomG(H,K) from the left
by composition. Define the set of morphisms

morSubFin(G)(H,K) := Inn(K)\ conhomG(H,K).

Equivalently, morSubCop(H,K) is the double cosetK\{g ∈ G | gHg−1 ⊆ K}/CG(H)
where the left K-action and the right CG(H)-action come from the multiplication
in G.

Remark 1.3 (The Full Farrell-Jones Conjecture). The Full Farrell-Jones Conjec-
ture is stated in [25, Conjecture 13.27]. Here we only need to know that it implies
that the assembly map

(1.4) HG
n (EVcyc(G);KR) → Kn(Rρ[G])

is bijective for all n ∈ Z and any ring R coming with a group homomorphism
ρ : G→ aut(R), see [25, Theorem 13.61 (i)].

Note that the Full Farrell-Jones Conjecture is known to be true for a large class
of groups including hyperbolic groups, CAT(0)-groups, lattices in locally compact
second countable Hausdorff groups, and fundamental groups of manifolds of di-
mension ≤ 3 and has useful inheritance properties, e.g., passing to subgroups and
overgroups of finite index, see for instance [25, Chapter 15].

Theorem 1.5. Suppose G satisfies the Full Farrell-Jones Conjecture, Let R be a
regular ring coming with a group homomorphism ρ : G→ aut(R) such that the order
of any finite subgroup of G is invertible in R.

Then the canonical map

colim
H∈SubFin(G)

K0(Rρ|H [H ]) → K0(Rρ[G])

is an isomorphism and

Kn(Rρ[G]) = 0 for n ≤ −1.

where Rρ[G] denotes the ρ-twisted group ring.

1.b. On the K-theoretic relative assembly map from F in to Vcyc for Ar-

tinian coefficient rings. In the case that R is an Artinian ring, we get even an
integral result in degree n ≤ 0 without the assumption that the order of any finite
subgroup of G is invertible in R.

Theorem 1.6. Let G be a discrete group which satisfies the Full Farrell-Jones
Conjecture. Let R be an Artinian ring coming with a group homomorphism ρ : G→
aut(R).
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Then the canoncial map

colim
H∈SubFin(G)

K0(Rρ|H [H ]) → K0(Rρ[G])

is an isomorphism and

Kn(Rρ[G]) = 0 for n ≤ −1.

Proof. This is proved in [25, Theorem 13.61 (v)] for trivial ρ. It directly extends
to the case where ρ is non-trivial. �

Note that the prototype of results such as Theorem 1.6 is due to Moody [31], who
proved the bijectivity of the canonical map colimH∈SubFin(G)K0(RH) → K0(RG)
for R a field of characteristic zero and G a virtually polycyclic group.

1.c. On the K-theoretic relative assembly map from F in to Vcyc for fields

as coefficients. For the reader’s convenience we summarize what happens in the
special case, where R is a skew-field F . Note that a skew-field of characteristic zero
is regular and satisfies P(G,F ) = ∅ and any skew-field is an Artinian ring. Hence
we conclude from Theorem 1.2, Theorem 1.5, and Theorem 1.6

Theorem 1.7. Let G be a group and F be a skew-field coming with a group homo-
morphism ρ : G→ aut(F ) into the group of field automorphism of F . Then:

(i) The relative assembly map

HG
n (EF in(G);KF ) → HG

n (EVcyc(G);KF )

is bijective for every n ∈ Z if one of the following condition holds:
• F has characteristic zero;
• There exists a prime p such that F has characteristic p and G contains
no non-trivial finite p-group;

(ii) If p is a prime and F is a skew-field of characteristic p, then the map

HG
n (EF in(G);KF )[1/p] → HG

n (EVcyc(G);KF )[1/p]

is bijective for every n ∈ Z;
(iii) The canonical map

colim
H∈SubFin(G)

K0(Fρ|H [H ]) → K0(Fρ[G])

is bijective if G satisfies the Full Farrell-Jones Conjecture;
(iv) We have Kn(Fρ[G]) for n ≤ −1, if G satisfies the Full Farrell-Jones Con-

jecture.

1.d. On the K-theoretic relative assembly map from F in to Vcyc for Z

as coefficients. For the reader’s convenience we summarize what is known in the
special case where R is the ring Z of integers.

Theorem 1.8. Let G be a group. Then

(i) The relative assembly map

HG
n (EF in(G);KZ) → HG

n (EVcyc(G);KZ)

is a P(G;Z)-isomorphism for every n ∈ Z, where P(G,Z) is the set of
primes p, for which G contains a non-trivial finite p-group;

(ii) The canonical map

colim
H∈SubFin(G)

K−1(Zρ|H [H ]) → K−1(Zρ[G])

is bijective and Kn(Z[G]) = 0 for n ≤ −2 if G satisfies the Full Farrell-
Jones Conjecture;
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(iii) Suppose that G is torsionsfree and satisfies the Full Farrell-Jones Con-
jecture. Then Kn(ZG) for n ≤ −1, the reduced projective class group

K̃0(ZG), and the Whitehead group Wh(G) are trivial.
Proof. (i) This follows directly from Theorem 1.2.

(ii) See [25, Theorem 13.61 (vi)].

(iii) See [25, Theorem 13.61 (iii) and (iv)]. �

1.e. Totally disconnected groups. So far G has been a discrete group. Now
we want to deal with td-groups, i.e., locally compact second countable totally dis-
connected topological Hausdorff groups, and the algebraic K-theory of their Hecke
algebras. In some special cases or in a weaker form, we extend the main results
of [5] from characteristic zero to prime characteristic

Let R be a (not necessarily commutative) ring. We will need the following
assumption to make sense of the notion of a Hecke algebra. It is taken from [14,
page 9].

Assumption 1.9. There exists a compact open subgroup Ũ of G such that for any

compact open subgroup Ũ ′ ⊆ Ũ of Ũ the index [Ũ : Ũ ′] is invertible in R.

This assumption is empty if G is discrete, since then we can take Ũ = {1}, or
if Q ⊆ R. If p is a prime number which is invertible in R, then Assumption 1.9 is
satisfied for any subgroup of a reductive p-adic group G by [30, Lemma 1.1] and
Lemma 11.2.

Suppose that Assumption 1.9 is satisfied. Then the Hecke algebra H(G;R) is
defined as the algebra of locally constant functions G → R with compact support
and multiplication given by convolution, see for instance [7, Section 11].

One may consider the K-groups Kn(H(G;R)) of H(G;R) for n ∈ Z. There is
an assembly map

(1.10) HG
n (ECop(G);KR) → HG

n (G/G;KR) = Kn(H(G;R)).

Here HG
∗ is a G-homology theory digesting smooth G-CW -complexes, which sat-

isfies HG
n (G/U ;KR) ∼= Kn(H(U ;R)) for every open subgroup U of G, the G-CW -

complex ECop(G) is any model for the classifying space for proper smooth G-actions
of G, and the map (1.10) is induced by the projection ECop(G) → G/G. We say
that R is l-uniformly regular for the natural number l if R is noetherian and every
R-module admits a projective resolution of length at most l. We call R uniformly
regular if R is l-uniformly regular for some natural number l. If G is modulo a com-
pact subgroup isomorphic to a closed subgroup of a reductive p-adic group and R is
uniformly regular and satisfies Q ⊆ R, e.g., R is a field of characteristic zero, then
we conclude from [5, Corollary 1.18] that the map (1.10) is bijective, Kn(H(G;R))
vanishes for n ≤ −1, and the canonical map

(1.11) colim
U∈SubCop(G)

K0(H(U ;R)) → K0(H(G;R))

is bijective. Here SubCop(G) is analogously defined as SubF in(G) but now for Cop
the family of compact open subgroups of G.

Next we want to explain what we can say in the case, where the condition that
R is uniformly regular and satisfies Q ⊆ R is weakened to the condition that R
is uniformly regular and only certain primes have to be invertible in R or to the
condition that N · 1R = 0 holds in R for some natural number N .

Theorem 1.12. Let p be a prime. Assume that G is modulo a compact subgroup
isomorphic to a closed subgroup of a reductive p-adic group. Let N be a natural
number and let R a be ring with unit 1R.
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(i) Suppose that N · 1R = 0 and that Assumption 1.9 is satisfied. Then the
assembly map (1.10) induces an isomorphism

HG
n (ECop(G);KR)[1/N ] → Kn

(
H(G;R)

)
[1/N ]

for every n ∈ Z;
(ii) Suppose that N ·1R = 0, and that R is Artinian, e.g., R is a field of prime

characteristic q for p 6= q and we take N = q. Suppose that Assumption 1.9
is satisfied. Then

Kn(H(G;R))[1/N ] = 0 for n ≤ −1

and the map induced by (1.11)

colim
U∈SubCop(G)

K0(H(U ;R))[1/N ] → K0(H(G;R))[1/N ]

is bijective;
(iii) Suppose that R is uniformly regular and for any two compact open sub-

groups U0 and U1 of G with U0 ⊆ U1 the index [U1 : U0] is invertible in R.
Then:
(a) Assumption 1.9 is satisfied;
(b) The map (1.10) is bijective for all n ∈ Z;
(c) We have Kn(H(G;R)) = 0 for n ≤ 1;
(d) The canoncial map

colim
U∈SubCop(G)

K0(H(U ;R)) → K0(H(G;R))

is bijective.

One can define more general Hecke algebras H(G,R, ρ, ω) allowing a G-action
ρ on R and central character ω and everything carries over to this more general
setting, see Remark 11.6.

The proof of Theorem 1.12 will be given in Subsection 11.d and is based on a ver-
sion of the Farrell-Jones Conjecture for totally disconnected groups with categories
with G-support as coefficients.

1.f. On the twisted Nil-terms of finite groups. The proof of some of the
results above relies on the following theorem.

Let F be a finite group and α : F → F be a group automorphism. Let F ⋊αZ be
the semidirect product associated to α, where for the standard generator t ∈ Z we
have tft−1 = α(f) for f ∈ F . Let R be a ring coming with a group homomorphism
µ : F ⋊α Z → aut(R). Let ρ : F → aut(R) be the restriction of µ to F . Our goal is
to get information about the structure of the Nil-groups

NKn(Rρ[F ],Ψ) = Kn−1(Nil(Rρ[F ],Ψ))

with respect to the ring automorphism ψ : Rρ[F ]
∼=
−→ Rρ[F ] sending r · f for r ∈ R

and f ∈ F to µ(t)(r) · α(f), where Kn−1(Nil(Rρ[F ],Ψ)) is defined in Notation 4.6
taking A = Rρ[F ] for the Z-category Rρ[F ], which has precisely one object and

whose Z-module of endomorphisms is Rρ[F ]. These Nil-groups appear in the twisted
Bass-Heller-Swan decomposition for Rµ[F ⋊α Z] = (Rρ[F ])ψ [Z], see (4.5).

Fix a prime number p. Let Tp be the set of triples (P, k, y) consisting of a
p-subgroup P of F , an integer k with k ≥ 1, and an element y ∈ F such that
cy ◦ αk(P ) = P holds for the automorphism cy : F → F sending z to yzy−1. Let

ψ(P,k,y) : Rρ|P [P ]
∼=
−→ Rρ|P [P ] be the ring automorphism sending r · p for r ∈ R and

p ∈ P to µ(ytk)(r) · cy ◦ αk(p).
Given a triple (P, k, y) ∈ Tp, define a functor of Nil-categories

γ(P, k, y) : Nil(Rρ|P [P ], ψ(P,k,y)) → Nil(Rρ[F ];ψ)
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by sending an object in Nil(R[P ], ψ|P ) given by a nilpotent R[P ]-endomorphism
ϕ : (cy ◦ αk)∗Q = RP ⊗cy◦αk Q → Q for a finitely generated projective R[P ]-

module Q to the object in Nil(R[F ];αk) given by the nilpotent R[F ]-endomorphism
(αk)∗

(
R[F ]⊗R[P ]Q

)
= RF⊗αk

(
R[F ]⊗R[P ]Q

)
→ R[F ]⊗R[P ]Q sending f0⊗(f1⊗q)

to (α−k(f0)f1t
−ky−1)⊗ ϕ(1 ⊗ q). It induces for every n ∈ Z a homomorphism

γ(P, k, y)m : NKn(R[P ], cy ◦ α
k) → NKn(R[F ];α

k).

Let

(Vk)n : NKn(R[F ];α
k) → NKn(R[F ];α)

be the homomorphism induced by the Verschiebungs operator Vk, see (3.2).

Theorem 1.13. The homomorphism
⊕

(P,k,y)∈Tp

(
(VK)n◦γ(P, k, y)n

)
(p)

:
⊕

(P,k,y)∈Tp

NKn(R[P ], cy◦α
k)(p) → NKn(R[F ];α)(p)

is surjective for every n ∈ Z, where the subscript (p) stands for localization at the
prime p.

The untwisted version of Theorem 1.13, i.e., α = idF and trivial µ, appears
already in [21, Theorem A].

Note that this does not mean that the Nil-groups are computable after localiz-
ing at p by p-subgroups groups, since the maps γ(P, k, y)n are not given just by
induction with the inclusion P → F . One can check by inspecting Lemma 7.5 and
Lemma 8.11 that the Nil-groups are computable by p-elementary groups.

Corollary 1.14. Let R be a regular ring. Then Z[P(F,R)−1] ⊗Z NKn(R[F ];α)
vanishes for P(F,R) defined in Notation 1.1.

We mention that the second second Nil-group of F2[Z/2] is non-trivial, see [40].
So one needs to invert certain primes in Corollary 1.14.

On the other hand, given a prime p, we get NKn(Z[Z/p]) = 0 for n ≤ 1, see [11,
Theorem 10.6 on page 695], [12], [25, Theorem 6.21]. So Theorem 1.13 implies
that for a finite group G, for which p2 does not divide the order of G, we have
NKn(ZG)(p) = 0 for n ≤ 1. As an application we get a new proof of the result of
Harmon [22] that NKn(ZG) = 0 for n ≤ 1 if the order of G is square-free.

Remark 1.15. We mention without giving the details that the proof appearing
in [25, Theorem 6.21] can be generalized to the twisted setting showing that Har-
mon’s result extends to twisted group rings and that in Theorem 1.13 the terms
NKn(R[P ], cy ◦ αk)(p) vanish if |P | ≤ p, R = Z, and n ≤ 1 hold. This implies that
for a group G for which the order of any finite subgroup is squarefree the relative
assembly map

HG
n (EF in(G);KZ) → HG

n (EVcyc(G);KZ)

is an isomorphism for every n ∈ Z with n ≤ 1. If G satisfies the Full Farrell-Jones
Conjecture and the order of any finite subgroup is squarefree, then the assembly
map

HG
n (EF in(G);KZ) → HG

n (G/G;KZ) = Kn(Z[G])

is an isomorphism for every n ∈ Z with n ≤ 1. Examples for such G are given by
extensions 1 → Zn → G→ Z/m→ 1 for a squarefree natural number m.

Remark 1.16 (K-theory of stable ∞-categories). One my ask whether the re-
sults of this paper can be extended from the K-theory of additive categories to the
K-theory of stable ∞-categories. For the extension of the statement and proofs
in some cases of the Full Farrell-Jones Conjecture, we refer to Bunke-Kasprowski-
Winges [15]. Dominik Kirstein and Christian Kremer are working on a twisted
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Bass-Heller-Swan decomposition in this setting generalizing [29] and [33]. Efimov
has announced that the Nil-terms are modules over TR on the spectrum level, which
would yield a module structure of Nil-groups over the ring of big Witt vectors also
for stable ∞-categories. However, algebraic K-theory for additive categories can be
viewed as a Mackey functor over the Green functor given by the Swan ring, see Sub-
section 5.d. This is very unlikely to be the case for the algebraic K-theory of stable
∞-categories, where an A-theoretic version of the Swan group is needed, see [39].
Therefore the induction theorems, which we use here for instance to prove Theo-
rem 1.13, are not available in the setting of stable ∞-categories. It is completely
unclear in the setting of stable ∞-categories whether Theorem 1.2 or Theorem 1.13
are still true and how one can formulate the statement of Theorem 1.12.

1.g. Acknowledgments. The paper is funded by the ERC Advanced Grant
“KL2MG-interactions” (no. 662400) granted by the European Research Council
and by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy – GZ 2047/1, Projekt-ID 390685813,
Hausdorff Center for Mathematics at Bonn. The author thanks Ian Hambleton,
Dominik Kirstein, and Christian Kremer for helpful conversations.
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2. Basics about (additive) Λ-categories

Consider a commutative ring Λ and a group G. A Λ-category is a small category
A enriched over the category of Λ-modules, i.e., for every two objects A and A′

in A the set of morphisms morA(A,A
′) has the structure of a Λ-module such that

composition is a Λ-bilinear map. A G-Λ-category is a Λ-category, which comes with
a G-action by automorphisms of Λ-categories.

If a Λ-category comes with an appropriate notion of a finite direct sums, it is
called an additive Λ-category. An additive G-Λ-category is an additive Λ-category,
which comes with a G-action by automorphisms of additive Λ-categories. If Λ is Z,
we often omit Λ and talk just about an additive category or additive G-category.

One can associate to a Λ-category category A an additive Λ-category A⊕ as
follows. Objects inA⊕ are pairs (S,A) consisting of a finite set S and a mapA : S →
ob(A) and a morphism ψ : (S,A) → (S′,A′) is given by a collection ψs,s′ : A(s) →
A(s′) of morphisms in A for s ∈ S and s′ ∈ S′. The direct sum (S,A)⊕ (S′,A′) is
given by (S ∐ S′,A∐A′).

Note that a Λ-category and an additive Λ-category respectively is in particular
a Z-category and an additive category respectively thanks to the canonical ring
homomorphism Z → Λ.

One can assign to an additive category A its non-connective K-theory spectrum
K(A). We denote Kn(A) = πn(K(A)) for n ∈ Z.

Given a ring R, define R to be the Z-category, which has precisely one object
∗R and whose Z-module of endomorphisms is R. Composition is given by the
multiplication in R.

For a ring R let Kn(R) for n ∈ Z be its n-algebraic K-group, which can be
defined for instance as the (non-connective) K-theory of the exact category of
finitely generated projective R-module. It can be identified with Kn(R⊕). Note
that we do not have to pass to the idempotent completion of R⊕, as we are working
with non-connective K-theory.

All these classical notions are summarized with references to the relevant papers
in [4, Section 2 and 3].

We fix some conventions concerning matrices of morphisms. For an object A in
A we denote by Am the direct sum

⊕m
i=1 A. For a two finite direct sums

⊕m
i=1 Ai
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and
⊕n

j=1 Bj a morphism U :
⊕m

i=1 Ai →
⊕n

j=1 Bj is the same as a (m,n)-matrix

U =




u1,1 u1,2 u1,3 · · · u1,n−2 u1,n−1 u1,m
u2,1 u2,2 u2,3 · · · u2,n−2 u2,n−2 u1,m
u3,1 u3,2 u3,3 · · · u3,n−3 u3,n−2 u3,m
...

...
...

. . .
...

...
...

un,1 un,2 un,3 · · · un,n−3 un,n−2 un,m
un,1 un,2 un,3 · · · un,n−3 un,n−2 un,m




of morphisms ui,j : Ai → Bj . Note that m is the number of columns and n is the
number of rows with these conventions. If V :

⊕n
j=1 Bj →

⊕o
k=1 Bk is another

morphisms given by the (n, o)-matrix V , then the composite V ◦ U :
⊕m

i=1Ai →⊕o
k=1 Bk is given by the (m, o) matrix W whose (i, k)-entry is

wi,k =

n∑

j=1

vj,k ◦ ui,j

So W corresponds to the product of matrices V · U .

3. Frobenius and Verschiebungs operators

Let A be an additive category and Φ be an automorphism of A.

Definition 3.1 (Nilpotent morphisms and Nil-categories).

(i) A morphism ϕ : Φ(A) → A of A is called Φ-nilpotent, if for some n ≥ 1
the n-fold composite

ϕ(n) := ϕ ◦ Φ(ϕ) ◦ · · · ◦ Φn−1(ϕ) : Φn(A) → A.

is trivial;
(ii) The category Nil(A,Φ) has as objects pairs (A,ϕ), where ϕ : Φ(A) → A

is a Φ-nilpotent morphism in A. A morphism from (A,ϕ) to (A′, ϕ′) is a
morphism u : A→ A′ in A such that the diagram

Φ(A)
ϕ

//

Φ(u)

��

A

u

��

Φ(A′)
ϕ′

// A′

is commutative.

The category Nil(A,Φ) inherits the structure of an exact category from A, a
sequence in Nil(A,Φ) is declared to be exact if the underlying sequence in A is
(split) exact.

Next we define for k ∈ {1, 2, . . .} the Verschiebung operator Vk and the Frobenius
operator Fk

Vk : Nil(A,Φk) → Nil(A,Φ);(3.2)

Fk : Nil(A,Φ) → Nil(A,Φk).(3.3)



10 LÜCK, W.

Given an object (A,ϕ) in Nil(A,Φk), define Vk(A,ϕ) to be the object in Nil(A,Φ)

that is given by the object
⊕k−1

i=0 Φi(A) in A together with the Φ-nilpotent mor-
phism




0 0 0 0 0 · · · 0 0 ϕ
idΦ(A) 0 0 0 0 · · · 0 0 0

0 idΦ2(A) 0 0 0 · · · 0 0 0
0 0 idΦ3(A) 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · idΦk−2(A) 0 0
0 0 0 0 0 · · · 0 idΦk−1(A) 0




:

Φ

(
k−1⊕

i=0

Φi(A)

)
=

k⊕

i=1

Φi(A) →
k−1⊕

i=0

Φi(A).

A morphisms u : (A,ϕ) → (A′, ϕ′) in Nil(A,Φk) given by a morphism u : A→ A′ in
A is sent to the morphism Vk(A,ϕ) → Vk(A,ϕ) in Nil(A,Φ) given by the morphism⊕k−1

i=0 Φi(u) :
⊕k−1

i=0 Φi(A) →
⊕k−1

i=0 Φi(A).

Given an object (A,ϕ) in Nil(A,Φ), define Fk(A,ϕ) to be (A,ϕ(k)), see Defi-
nition 3.1. A morphism u : (A,ϕ) → (A′, ϕ′) in Nil(A,Φ) given by a morphism
u : A → A′ in A is sent to the morphism u : (A,ϕ(k)) → (A′, ϕ′(k)) in Nil(A,Φk)
given by u again.

The elementary proof of the next lemma is left to the reader.

Lemma 3.4. The composite

Fk ◦ Vk : Nil(A,Φk) → Nil(A,Φk)

sends an object (A,ϕ) to the object given by

k−1⊕

i=0

Φi(ϕ) : Φk

(
k−1⊕

i=0

Φi(A)

)
=

k−1⊕

i=0

Φi+k(A) →
k−1⊕

i=0

Φi(A).

It sends a morphism u : (A,ϕ) → (A′, ϕ′) in Nil(A,Φk) given by a morphism
u : A → A′ in A to the morphism Fk ◦ Vk(A,ϕ) → Fk ◦ Vk(A,ϕ) in Nil(A,Φk)

given by the morphism
⊕k−1

i=0 Φi(u) :
⊕k−1

i=0 Φi(A) →
⊕k−1

i=0 Φi(A′) in A.

4. Frobenius and Verschiebungs operators and induction and
restriction

Let A be an additive category with an action ρ : G → aut(A) of the (discrete)
group G by automorphisms of additive categories. Then we obtain a new additive
category

(4.1) Aρ[G]

as follows. The set of objects of Aρ[G] is the set of objects of A. A morphism
f : A→ A′ in Aρ[G] is a finite formal

∑
g∈G(fg : gA→ A) ·g, where fg : gA→ A′ is

a morphism inA from gA to A′ and finite means that for only finitely many elements
g in G the morphism fg is different from the zero-homomorphism. If f ′ : A′ → A′′

is a morphism in Aρ[G] given by the finite formal sum
∑

g′∈G(fg′ : g
′A′ → A′′) · g′,

then define their composite f ′ ◦ f : A→ A′′ by the finite formal sum

f ′ ◦ f =
∑

g′′∈G

∑

g,g′∈G,
g′′=g′g

(fg′ ◦ g
′fg : g

′′A = g′gA→ A′′) · g′′.
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If R is a unital ring coming with a G-action ρR : G → aut(R) and we take A
to be the category of finitely generated free R-modules with the obvious G-action
ρ : G → aut(A) coming from ρR by induction, then Aρ[G] is equivalent to the
additive category of finitely generated modules over the twisted group ring Rρ[G].

If Φ: A
∼=
−→ A is an automorphism of an additive category A, then we define

(4.2) AΦ[Z] = AρΦ [Z]

for the Z-action ρΦ : Z → aut(A), n 7→ Φn.
Let ik : Z → Z be the group homomorphism given by multiplication with k. Next

we define functors of additive categories

(ik)∗ : AΦk [Z] → AΦ[Z];(4.3)

i∗k : AΦk [Z] → AΦ[Z].(4.4)

The functor (ik)∗ sends an object A in AΦk [Z], which is given by an object A in A,
to the object in AΦ[Z] given by A again. Consider a morphism

f =
∑

l∈Z

(
fl : Φ

kl(A) → A′
)
· tl : A→ A′

in AΦk [Z]. It is sent by (ik)∗ to the morphism

(ik)∗(f) :=
∑

l∈Z

(
fl : Φ

kl(A) → A′
)
· tlk : A→ A′

in AΦ[Z].
The functor i∗k sends a object A in AΦ[Z], which is given by an object A in A,

to the object i∗k(A) in AΦk [Z] given by the object
⊕k−1

i=0 Φi(A) in A. Consider a

morphism f =
∑

l∈Z

(
fl : Φ

l(A) → A′
)
· tl : A→ A′ in AΦ[Z]. It is sent by i

∗
k to the

morphism

i∗k(f) :

k−1⊕

i=0

Φi(A) →
k−1⊕

j=0

Φj(A′)

in AΦ[Z] defined as follows. By additivity we have only to specify i∗k(fl · t
l). For

this purpose we have to define for every i, j ∈ {0, 1, . . . , (k − 1)} a morphisms
i∗k(fl · t

l)i,j : Φ
i(A) → Φj(A′) in AΦk [Z]. It is given by

(
Φj(fl) : Φ

i+mk(A) →

Φj(A′)
)
· tm if there exists an integer m with i+mk+ l = j, and by zero otherwise.

If A is given by R for a ring R coming with a ring automorphism Φ: R
∼=−→ R,

(ik)∗ and i∗k corresponds to induction and restriction with respect to the change of
ring homomorphism of twisted group rings RΦk [Z] → RΦ[Z] associated to ik.

In the sequel we use the notation of [29]. We get by taking homotopy groups
from [29, Theorem 0.1] for n ∈ Z an isomorphism
(4.5)

an ⊕ c+n ⊕ c−n : πn(TK(Φ−1))⊕Kn−1(Nil(A,Φ)) ⊕Kn−1(Nil(A,Φ))
∼=
−→ Kn(AΦ[Z]).

Here TK(Φ−1) is the mapping torus of the map induced on non-connectiveK-theory

spectra K(Φ−1) : K(A) → K(A). There is a long exact Wang sequence

· · ·
∂n+1
−−−→ Kn(A)

Kn(Φ)−id
−−−−−−→ Kn(A)

Kn(j)
−−−−→ πn(TK(Φ−1))

∂n−→ Kn−1(A)
Kn−1(Φ)−id
−−−−−−−−→ Kn−1(A)

Kn−1(ι)
−−−−−→ Kn−1(AΦ[Z])

∂n−1
−−−→ · · ·

where ι : A → AΦ[Z] is the inclusion. If φ = idA, this boils down to an isomorphism

πn(TK(Φ−1)) ∼= Kn(A) ⊕Kn−1(A).

We define Kn(Nil(A,Φ
k)) = πn(K

∞
Nil(A,Φ)) for n ∈ Z, where the non-connective

K-theory spectrumK∞
Nil(A,Φ) is constructed in [27, Remark 6.3 and Lemma 6.5]. It
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is likely but we have no detailed proof that the groupKn(Nil(A,Φ)) can be identified
for n ≤ −1 with the K-groups associated to the exact category Nil(A,Φ) in the
sense of Schlichting [34] see [27, Remark 6.11]. Fortunately, we do not need this
identification for our purposes. There is the inclusion functor I : A → Nil(A,Φ) that
sends an object A to the object (A,ϕ) and the projection functor P : Nil(A,Φ) → A
that sends an object (A,ϕ) to A. Obviously P ◦ I = idA.

Notation 4.6. We define Kn(Nil(A,Φ)) to be the cokernel of the split injective
homomorphism Kn(I) : Kn(A) → Kn(Nil(A,Φ)) for n ∈ Z.

Let TK(Φ−1),k be the k-fold mapping torus of K(Φ): K(A) → K(A), which is a
Z/k-spectrum. There is a k-fold covering pk : TK(Φ−1),k → TK(Φ−1) and a homotopy
equivalence f : TK(Φ−1),k → TK(Φ). These correspond to the following construction
on the level of spaces for a map Φ: X → X . Namely, pk : TΦ,k → TΦ is the k-sheeted
covering obtained by the pull back of the k-sheeted covering S1 → S1 sending z to zk

with the canonical map TΦ → S1. Explicitly TΦ,k is obtained from
∐k
i=1X×[i−1, i]

by identifying (x, i) ∈ X× [i−1, i] with (Φ(x), i) in X× [i, i+1] for i = 1, 2 . . . k−1
and (x, k) ∈ X × [k − 1, k] with (Φ(x), 0) in X × [0, 1]. Obviously TΦ,1 = TΦ.
The map pk : TΦ,k → TΦ sends the class of (x, j) ∈ X × [i − 1, i] to the class of
(x, j−i−1) ∈ X×[0, 1] for i = 1, 2, . . . , k. The homotopy equivalence f : TΦ,k → TΦk

sends the class of (x, j) ∈ X × [i− 1, i] to the class of (Φk−i(x), jk ) ∈ X × [0, 1] for
i = 1, 2, . . . , k. On homotopy groups we obtain an isomorphism

(4.7) πn(f) : πn(TΦ−1,k)
∼=−→ πn(TΦ−k)

and a homomorphism induced by pk

(4.8) πn(pk) : πn(TΦ−1,k)
∼=−→ πn(TΦ−1).

Since pk is a k-sheeted covering, there is a transfer homomorphism

(4.9) trfn(pk) : πn(TΦ−1) → πn(TΦ−1,k).

Note that the Frobenius and the Verschiebungs operator are functors of exact cat-
egories and hence induces homomorphism

Kn(Vk) : Kn(Nil(A,Φ
k)) → Kn(Nil(A,Φ));(4.10)

Kn(Fk) : Kn(Nil(A,Φ)) → Kn(Nil(A,Φ
k)).(4.11)

Since Kn(Fk) ◦ Kn(I) = Kn(I) and Kn(Vk) ◦ Kn(I) = Kn(I) holds, they induce
homomorphisms

Kn(Vk) : Kn(Nil(A,Φ
k)) → Kn(Nil(A,Φ));(4.12)

Kn(Fk) : Kn(Nil(A,Φ)) → Kn(Nil(A,Φ
k)).(4.13)

The functors (ik)∗ and i∗k are functor of additive categories and induce homo-
morphisms

Kn((ik)∗) : Kn(AΦk [Z]) → Kn(AΦ[Z]);(4.14)

Kn(i
∗
k) : Kn(AΦ[Z]) → Kn(AΦk [Z]).(4.15)

The main result of this section is

Theorem 4.16. Let k ≥ 1 be a natural number and Φ: A
∼=
−→ A be an automor-

phism of an additive category A. Then:
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(i) The following diagram commutes for n ∈ Z

πn(TK(Φ−k))⊕Kn−1(Nil(A,Φk))⊕Kn−1(Nil(A,Φk))
an⊕c

+
n⊕c−n
∼=

//

(πn(pk)◦πn(f)
−1)⊕Kn−1(Vk)⊕Kn−1(Vk)

��

Kn(AΦk [Z])

Kn((ik)∗)

��

πn(TK(Φ−1))⊕Kn−1(Nil(A,Φ))⊕Kn−1(Nil(A,Φ))
an⊕c

+
n⊕c−n

∼=
// Kn(AΦ[Z])

where the upper horizontal isomorphisms is the one defined in (4.5) for Φk,
the lower horizontal isomorphisms is the one defined in (4.5) for Φ, and
the vertical arrows have been defined in (4.7), (4.8), (4.12), and (4.14);

(ii) The following diagram commutes for n ∈ Z

πn(TK(Φ−1))⊕Kn−1(Nil(A,Φ)) ⊕Kn−1(Nil(A,Φ))
an⊕c

+
n⊕c−n
∼=

//

(πn(f)◦trfn(pk))⊕Kn−1(Fk)⊕Kn−1(Fk)

��

Kn(Aφ[Z])

Kn(i
∗
k)

��

πn(TK(Φ−k))⊕Kn−1(Nil(A,Φk))⊕Kn−1(Nil(A,Φk))
an⊕c

+
n⊕c−n

∼=
// Kn(AΦk [Z])

where the upper isomorphisms is the one defined in (4.5) for Φ, the lower
isomorphisms is the one defined in (4.5) for Φk, and the horizontal arrows
have been defined in (4.7), (4.9), (4.13), and (4.15).

Proof. (i) We give only an outline of the proof and leave some details to the reader.
In the sequel we use the notation of [29].

We obtain from [29, Theorem 0.1 (i)] for n ∈ Z an isomorphism

(4.17) an⊕ b+n ⊕ b−n : πn(TK(Φ−1))⊕NKn(AΦ[t])⊕NKn(AΦ[t
−1])

∼=
−→ Kn(AΦ[Z]),

where NKn(AΦ[t
±]) is the kernel of the map Kn(AΦ[t

±]) → Kn(A) coming from
the functor AΦ[t

±] → A given taking the coefficient of t0. One easily checks that
the functors (ik)∗ and i∗k of (4.3) and (4.4) induce homomorphisms

NKn((ik)∗)± : NKn(AΦk [t±1]) → NKn(AΦ[t
±1]);(4.18)

NKn(i
∗
k)± : NKn(AΦ[t

±1]) → NKn(AΦk [t±1]).(4.19)

Then following diagram commutes for n ∈ Z

πn(TK(Φ−k))⊕NKn(AΦk [t])⊕NKn(AΦk [t−1])
an⊕b

+
n⊕b−n
∼=

//

(πn(pk)◦πn(f)
−1)⊕NKn((ik)∗)+⊕NKn((ik)∗)−

��

Kn(Aφk [Z])

Kn((ik)∗)

��

πn(TK(Φ−1))⊕NKn(AΦ[t])⊕NKn(AΦ[t
−1])

an⊕b
+
n⊕b−n

∼=
// Kn(AΦ[Z])

where the upper horizontal arrow is the isomorphism (4.17) for Φk, the lower hor-
izontal arrow is the isomorphism (4.17) for Φ and the vertical homomorphism
have been defined in (4.7), (4.8), (4.14) and (4.18). The proof of commutativ-
ity for the terms NKn(AΦk [t]) and NKn(AΦk [t−1]) is obvious, the one for the term
πn(TK(Φ−k)) is left to the reader.

We obtain from [29, Theorem 0.1 (ii)] for n ∈ Z an isomorphism

α(Φ,±)n : Kn(A)⊕NKn(AΦ[t
±])

∼=
−→ Kn−1(Nil(A,Φ)).(4.20)

and hence an isomorphism

α̃(Φ,±)n : NKn(AΦ[t
±])

∼=
−→ Kn−1(Nil(A,Φ)).(4.21)
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Therefore it remains to show that the diagram

(4.22) NKn(AΦk [t±]) ∼=

α̃(Φk,±)n
//

NKn((ik)∗)±

��

Kn−1(Nil(A,Φk))

Kn−1(Vk)

��

NKn(AΦk [t±])
∼=

α̃(Φ,±)n

// Kn−1(Nil(A,Φ))

commutes for n ∈ Z. Fix a natural number m. Then the diagram (4.22) is a retract
of the corresponding diagram

NKn+m(A[Zm]Φ[Zm]k [t
±]) ∼=

α̃(Φ[Zm]k,±)n+m
//

NKn+m((ik)∗)±

��

Kn+m−1(Nil(A[Zm],Φ[Zm]k))

Kn+m−1(Vk)

��

NKn+m(A[Zm]Φ[Zm]k [t
±])

∼=

α̃(Φ[Zm],±)n+m

// Kn+m−1(Nil(A[Zm],Φ)[Zm])

where we have replaced A by A[Zm] and Φ by Φ[Zm], see [27, Lemma 2.2, Theo-
rem 6.2, Remark 6.3]. Hence we can assume without loss of generality that n ≥ 1
when proving the commutativity of (4.22), since our result shall be true for any
additive categoryA. So we can use the connectiveK-theory spectrum when dealing
with the commutativity of (4.22). By inspecting [29] one sees that this boils down
to show that the following diagram commutes for n ≥ 1,

(4.23) Kn(Nil(A,Φ
k))

Kn(χΦk )
//

Kn(Vk)

��

Kn(Ch(AΦk [t−1])w)

K(Chcat((ik)∗)
w)

��

Kn(Nil(A,Φ))
Kn(χΦ)

// Kn(Ch(AΦ[t
−1])w)

where the upper and the lower homomorphism are induced by the functors

χΦk : Nil(A,Φk) → Ch(AΦk [t−1])w;(4.24)

χΦ : Nil(A,Φ) → Ch(AΦ[t
−1])w,(4.25)

introduced in [29, Section 8], the left horizontal arrow has been introduced in (4.10)
and the right vertical arrow is induced by the functor (ik)∗ of (4.3). Recall that
Ch(AΦ[t

−1])w is the category of bounded chain complexes over AΦ[t
−1], which are

contractible as chain complexes over AΦ[t, t
−1], and that the lower horizontal arrow

sends an object (A,ϕ) in Nil(A,Φ) to the AΦ[t
−1]-chain complex concentrated in

dimensions 0 and 1, whose first differential is idA ·t−1 − ϕ · t0 : Φ(A) → A.
Next we explain the key ingredients in the proof of the commutativity of (4.23)

and leave it to the reader to figure out the routine to fill in the details based
on standard fact about connective K-theory such as the Additivity Theorem for
Waldhausen categories.

Consider an object ϕ : Φk(A) → A in Nil(A,Φk) given by a nilpotent endomor-
phism ϕ : Φk(A) → A in A. We have defined its Verschiebung Vk(ϕ) as an object
in Nil(A,Φ) given by a specific nilpotent endomorphism

Vk(ϕ) : Φ
(k−1⊕

j=0

Φj(A)
)
=

k⊕

i=1

Φi(A) →
k−1⊕

j=0

Φj(A)

in A, see (3.2). To it we can assign the morphism

id⊕k−1
j=0 Φj(A) ·t

−1 − Vk(ϕ) · t
0 : Φ

(k−1⊕

j=0

Φj(A)
)
=

k⊕

i=1

Φi(A) →
k−1⊕

j=0

Φj(A)
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in AΦ[Z]. It is given by the following (k, k)-matrix



idA ·t−1 0 0 · · · 0 0 −ϕ · t0

− idΦ(A) ·t
0 idΦ(A) ·t

−1 0 · · · 0 0 0
0 − idΦ2(A) ·t

0 idΦ2(A) ·t
−1 · · · 0 0 0

...
...

...
...

...
...

...
0 0 0 · · · − idΦk−3(A) ·t

−1 0 0
0 0 0 · · · − idΦk−2(A) ·t

0 − idΦk−2(A) ·t
−1 0

0 0 0 · · · 0 − idΦk−1(A) ·t
0 − idΦk−1(A) ·t

−1




of morphisms in AΦ[Z].
On the other hand we can assign to ϕ : Φk(A) → A in A the morphism in AΦk [Z]

given

idA ·t−1 − ϕ · t0 : Φk(A) → A.

Its image under the induction functor (ik)∗ is the morphism in AΦ[Z] given by

idA ·t−k − ϕ · t0 : Φk(A) → A.

Consider the morphism w :
⊕k

i=1 Φ
i(A)

∼=
−→

⊕k
i=1 Φ

i(A) in AΦ[Z] given by the
(k, k)-matrix



idΦ(A) ·t
0 idΦ(A) ·t

−1 idΦ(A) ·t
−2 · · · idΦ(A) ·t

−k+3 idΦ(A) ·t
−k+2 idΦ(A) ·t

−k+1

0 idΦ2(A) ·t
0 idΦ2(A) ·t

−1 · · · idΦ2(A) ·t
−k+4 idΦ2(A) ·t

−k+3 idΦ2(A) ·t
−k+2

0 0 idΦ3(A) ·t
0 · · · idΦ3(A) ·t

−k+5 idΦ3(A) ·t
−k+4 idΦ3(A) ·t

−k+3

...
...

...
...

...
...

...
0 0 0 · · · idΦk−2(A) ·t

0 idΦk−2(A) ·t
−1 idΦk−2(A) ·t

−2

0 0 0 · · · 0 idΦk−1(A) ·t
0 idΦk−1(A) ·t

−1

0 0 0 · · · 0 0 idφk(A) ·t
0




of morphisms in AΦ[Z]. Note that w is the same as the identity (k, k)-matrix from
the K-theoretic point of view by its block structure. Then the composite

(
id⊕k−1

j=0 Φj(A) ·t
−1 − Vk(ϕ) · t

0
)
◦ w : Φ

(k−1⊕

j=0

Φj(A)
)
=

k⊕

i=1

Φi(A) →
k−1⊕

j=0

Φj(A)

is given by the (k, k)-matrix



idA ·t−1 idA ·t−2 idA ·t−3 · · · idA ·t−k+2 idA ·t−k+1 idA ·t−k − ϕ · t0

− idΦ(A) ·t
0 0 0 · · · 0 0 0

0 − idΦ2(A) ·t
0 0 · · · 0 0 0

...
...

...
...

...
...

...
0 0 0 · · · 0 0 0
0 0 0 · · · − idΦk−2(A) ·t

0 0 0
0 0 0 · · · 0 − idΦk−1(A) ·t

0 0




of morphisms in AΦ[Z]. Note that this composite looks like idA ·t−k − ϕ · t0 from
the K-theoretic point of view by its block structure. This finishes the proof of
assertion (i).

(ii) The following diagram commutes for n ∈ Z

πn(TK(Φ−1))⊕NKn(AΦ1 [t])⊕NKn(AΦ1 [t−1])
an⊕b

+
n⊕b−n
∼=

//

(πn(f)◦trfn(pk))⊕NKn(i
∗
k)+⊕NKn(i

∗
k)−

��

Kn(AΦ[Z])

Kn(i
∗
k)

��

πn(TK(Φ−k))⊕NKn(AΦk [t])⊕NKn(AΦk [t−1])
an⊕b

+
n⊕b−n

∼=
// Kn(A

k
Φ[Z])
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where the upper horizontal arrow is the isomorphism (4.17) for Φ, the lower hor-
izontal arrow is the isomorphism (4.17) for Φk and the vertical homomorphism
have been defined in (4.7), (4.9), (4.15) and (4.19). The proof of commutativity
for the terms NKn(AΦk [t]) and NKn(AΦk [t−1]) is obvious, the one for the term
πn(TK(Φ−k)) is left to the reader.

Therefore it remains to show that the diagram

(4.26) NKn(AΦ[t
±]) ∼=

α̃(Φ,±)n
//

NKn(i
∗
k)±

��

Kn−1(Nil(A,Φ))

Kn−1(Fk)

��

NKn(AΦk [t±])
∼=

α̃(Φk,±)n

// Kn−1(Nil(A,Φ
k))

commutes for n ∈ Z. By the same argument as it appears in the commutativity
of the diagram (4.22), one can show that it suffices to prove the commutativity
of (4.26) for n ≥ 1, or, in other words for connective K-theory. By inspecting [29]
one sees that this boils down to show that the following diagram

(4.27) Kn(Nil(A,Φ))
Kn(χΦ)

//

Kn(Fk)

��

Kn(Ch(AΦk [t−1])w)

K(Chcat(i∗k)
w)

��

Kn(Nil(A,Φ
k))

Kn(χΦk )
// Kn(Ch(AΦk [t−1])w)

commutes for n ≥ 1.
Next we explain the key ingredients in the proof of the commutativity of (4.27)

for connective K-theory and leave it to the reader to figure out the routine to fill in
the details based on standard fact about K-theory such as the Additivity Theorem
for Waldhausen categories.

Let Φ: A
∼=
−→ A be an automorphism of an additive category. Consider a nilpo-

tent endomorphism ϕ : Φ(A) → A representing an element in Nil(A,Φ). Consider
the morphism idA ·t−1 − ϕ · t0 : Φ(A) → A in AΦ[Z]. The functor i∗k : AΦ[Z] →

AΦk [Z] sends it to the morphism
⊕k

i=1 Φ
i(A) →

⊕k−1
j=0 Φ

j(A) in AΦk [Z] that is

given by the (k, k)-matrix




−ϕ · t0 0 0 · · · 0 0 idΦk(A) ·t
−1

idΦ(A) ·t
0 −Φ(ϕ) · t0 0 · · · 0 0 0

0 idΦ2(A) ·t
0 −Φ2(ϕ) · t0 · · · 0 0 0

...
...

...
...

...
...

...
0 0 0 · · · idΦk−2(A) ·t

0 −Φk−2(ϕ) · t0 0
0 0 0 · · · 0 idΦk−1(A) ·t

0 −Φk−1(ϕ) · t0




of morphisms in AΦ[Z].
If we apply the Frobenius Fk operator to the object ϕ : Φ(A) → A of Nil(A,Φ),

we obtain the object ϕ(k) : Φk(A)
Φk−1(ϕ)
−−−−−→ Φk−1(A)

Φk−2(ϕ)
−−−−−→ · · ·

ϕ
−→ A of Nil(A,Φk).

To it we can assign the morphism idA ·t−1 − ϕ(k) · t0 : Φk(A) → A in AΦk [Z].
Consider the morphism

u :
k⊕

i=1

Φi(A) →
k−1⊕

j=0

Φj(A)
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in AΦk [Z] that is given by the (k, k)-matrix



−ϕ · t0 −ϕ(2) · t0 −ϕ(3) · t0 · · · −ϕ(k−2) · t0 −ϕ(k−1) · t0 idA ·t−1 − ϕ(k) · t0

idΦ(A) ·t
0 0 0 · · · 0 0 0

0 idΦ2(A) ·t
0 0 · · · 0 0 0

0 0 idΦ3(A) ·t
0 · · · 0 0 0

...
...

...
...

...
...

...
0 0 0 · · · idΦk−2(A) ·t

0 0 0
0 0 0 · · · 0 idΦk−1(A) ·t

0 0




of morphisms in AΦk [Z]. Note that from a K-theoretic point of view this mor-
phism should give the same element in K-theory as the morphisms idA ·t−1 −ϕ(k) ·
t0 : Φk(A) → A in AΦk [Z], just view its special block structure.

We also have the automorphism

v :

k⊕

i=1

Φj(A)
∼=
−→

k⊕

j=1

Φj(A)

in AΦk [Z] given by the (k, k)-matrix



idΦ(A) ·t
0 −Φ(ϕ) · t0 0 · · · 0 0 0

0 idΦ2(A) ·t
0 −Φ2(ϕ) · t0 · · · 0 0 0

0 0 − idΦ3(A) ·t
0 · · · 0 0 0

...
...

...
...

...
...

...
0 0 0 · · · idΦk−2(A) ·t

0 −Φk−2(ϕ) · t0 0
0 0 0 · · · 0 idΦk−1(A) ·t

0 Φk−1(ϕ) · t0

0 0 0 · · · 0 0 idΦk(A) ·t
0




of morphisms in AΦk [Z]. Note that v is the same as the identity (k, k)-matrix from
the K-theoretic point of view by its block structure.

Now one easily check the equality of morphisms
⊕k

i=1 Φ
i(A) →

⊕k
i=0 Φ

j(A) in
AΦk [Z]

u ◦ v = i∗k
(
idA ·t−1 − ϕ · t0

)
.

Now Theorem 4.16 follows. �

Let

sn : Kn(Nil(A,Φ)) → Kn(AΦ[Z])(4.28)

be the homomorphism coming from the Bass-Heller Swan homomorphism, see (4.5),
and the inclusion of the first Nil-term. Let

rn : Kn(AΦ[Z]); → Kn(Nil(A,Φ))(4.29)

be the homomorphisms coming from the Bass-Heller Swan homomorphism, see (4.5),
and the projection onto the first Nil-term. Obviously we have rn ◦ sn = id.

Theorem 4.16 implies

Corollary 4.30.

(i) We have for every n ∈ Z the commutative diagram

Kn(AΦk [Z])
Kn((ik)∗)

//

sn(A,Φ
k)

��

Kn(AΦ[Z])

sn(A,Φ)

��

Kn−1(Nil(A,Φk))
Kn−1(Vk)

// Kn−1(Nil(A,Φ))
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where the vertical arrows have been defined n (4.28) and the horizontal
arrows have been defined in (4.12) and (4.14);

(ii) We have for every n ∈ Z the commutative diagram

Kn(AΦ[Z])
Kn(i

∗
k)

//

rn(A,Φ)

��

Kn(AΦk [Z])

rn(A,Φ
k)

��

Kn−1(Nil(A,Φ))
Kn−1(Fk)

// Kn−1(Nil(A,Φ
k))

where the vertical arrows have been defined in (4.29) and the horizontal
arrows have been defined in (4.13) and (4.15).

Corollary 4.30 has already been proved for commutative rings as coefficients in
the untwisted case by Stienstra [35, Theorem 4.7].

For a natural number integer D, let Nil(A,Φ)D be the full subcategory of
Nil(A,Φ) consisting of objects (P, ϕ) satisfying ϕ(D) = 0. Obviously Nil(A,Φ) =⋃
d≥0 Nil(A,Φ)d. Hence the canonical maps

colimD→∞Kn(Nil(A,Φ)D)
∼=
−→ Kn(Nil(A,Φ));(4.31)

colimD→∞Kn(Nil(A,Φ)D)
∼=
−→ Kn(Nil(A,Φ)),(4.32)

are bijective. Given an element z ∈ Kn(Nil(A,Φ)) and a natural number D, we
say that z is of nilpotence degree ≤ D if z lies in the image of Kn(Nil(A,Φ)D) →
Kn(Nil(A,Φ)).

The next result is known for rings as coefficient in the untwisted case, see Far-
rell [19, Lemma 3] for n = 1, Grunewald [20, Prop. 4.6], Stienstra [35, p. 90], and
Weibel [41, p. 479].

Lemma 4.33. Fix an integer n ∈ Z Consider an element z ∈ Kn(Nil(A,Φ)) of
nilpotence degree ≤ D.

Then the composite

Kn(Nil(A,Φ))
sn−→ Kn(AΦ[Z])

Kn(i
∗
k)−−−−→ Kn(AΦk [Z])

sends z for every k ≥ D to zero, where sn and Kn(i
∗
k) have been defined in (4.28)

and (4.15).

Proof. Since the composite Nil(A,Φ)D → Nil(A,Φ)
Fk−−→ Nil(A,Φk) sends an object

(P, φ) to (P, 0) for k ≥ D, the composite Kn(Nil(A,Φ))
Kn(Fk)
−−−−−→ Kn(Nil(A,Φ

k))
sends z to zero for k ≥ D. Now Lemma 4.33 follows from Corollary 4.30 (i). �

5. Mackey and Green functors for finite groups

For the reader’s convenience we recall some basics about Mackey and Green
functors and Dress induction following [3, Section 2 and 3]. Throughout this section
F is a finite group.

5.a. Mackey functors. Let F -SETSf be the category, whose objects are finite
F -sets and whose morphisms are F -maps.

Let Λ be an associative commutative ring with unit. Denote by Λ-Mod the
abelian category of Λ-modules. A bi-functor M = (M∗,M

∗) from F -SETSf to
Λ-Mod consists of a covariant functor

M∗ : F -SETSf → Λ-Mod

and a contravariant functor

M∗ : F -SETSf → Λ-Mod
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that agree on objects. We often write M(X) = M∗(X) = M∗(X) for an object
X in F -SETSf and f∗ = M∗(f) and f∗ = M∗(f) for a morphism f : X → Y in
F -SETSf

Definition 5.1 (Mackey functor). A Mackey functor M for F with values in Λ-
modules is a bifunctor from F -SETS to Λ-Mod such that

• Double Coset formula

For any cartesian square in F -SETSf

X
v

//

u

��

X1

u

��

X2 v
// X0

the following diagram of functors of abelian groups commutes

M(X)
v∗

// M(X1)

M(X2) v∗
//

u∗

OO

M(X0);

u∗

OO

• Additivity

Consider two objects X and Y in F -SETSf . Let i : X → X ∐ Y and
j : Y → X ∐ Y be the inclusions. Then the map

i∗ × j∗ : M(X ∐ Y ) →M(X)×M(Y )

is bijective;

Remark 5.2. One easily checks that the condition Additivity implies M(∅) =
0 and is equivalent to the requirement that M∗(i) ⊕ M∗(j) : M(X) ⊕ M(Y ) →
M(X∐Y ) is bijective, since the double coset formula implies that id× id : M(∅) →
M(∅)×M(∅) is an isomorphism and that (M∗(i)×M∗(j))◦ (M∗(i)⊕M∗(j)) is the
identity.

Let M , N and L be bi-functors from F -SETSf values in Λ-modules. A pairing

(5.3) M ×N → L

is a family of Λ-bilinear maps

µ(X) : M(X)×N(X) → L(X), (m,n) 7→ µ(m,n) = m · n

indexed by the objects X of F -SETSf such that for every morphism f : X → Y in
F -SETSf we have

L∗(f)(x · y) = M∗(f)(x) ·N∗(f)(y), x ∈M(Y ), y ∈ N(Y );
x ·N∗(f)(y) = L∗(f)(M

∗(f)(x) · y), x ∈M(Y ), y ∈ N(X);
M∗(f)(x) · y = L∗(f)(x ·N∗(f)(y)), x ∈M(X), y ∈ N(Y ).

(5.4)

5.b. Green functors.

Definition 5.5 (Green functor). A Green functor for the finite group F with values
in Λ-modules is a Mackey functor U together with a pairing

µ : U × U → U

and a choice of elements 1X ∈ U(X) for each object X in F -SETSf such that for
every object X in F -SETSf the pairing µ(X) : U(X) × U(X) → U(X) and the
element 1X determine the structure of an associative Λ-algebra with unit on U(X).
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Moreover, it is required that U∗(f)(1Y ) = 1X for every morphism f : X → Y in
F -SETSf .

A (left) U -module M is a Mackey functor for the group F with values in Λ-
modules together with a pairing

ν : U ×M →M

such that for every object X in F -SETSf the pairing ν(X) : U(X)×M(X) →M(X)
defines the structure of a U(X)-module on M(X), where 1X acts as idM(X).

5.c. Dress induction. Let F be a finite group. Let F be a family of subgroups of
F that is closed under taking subgroups and conjugation. An example for F is the
family Hp of p-hyperelementary subgroups of F for any prime p. A Green functor
U over F is called F-computable if the canonical Λ-map

⊕

H∈F

U∗(prH) :
⊕

H∈F

U(F/H) → U(F/F )

is surjective, where prH : F/H → F/F is the projection. The next result is a mild
generalization of the fundamental work of Dress on induction, see [17, 18].

Lemma 5.6. Let U be a Green functor over F that is F-computable. Consider
any U-module M. Then for every element z ∈ M(F/F ) we can find elements
uH ∈ U(F/H) for H ∈ F satisfying

z =
∑

H∈F

M∗(prH)
(
uH ·M∗(prH)(z)

)
,

where prH : F/H → F/F is the projection.

Proof. By assumption we can write the unit 1F/F ∈ U(F/F ) as the sum

1F/F =
∑

H∈F

U∗(prH)(uH).

for appropriate elements uH ∈M(F/H). Now we compute using the various axioms
for the structure of a Green functor and a module over a Green functor

z = 1F/F · x

=

(∑

H∈F

U∗(prH)(uH)

)
· z

=
∑

H∈F

U∗(prH)(uH) · z

=
∑

H∈F

M∗(prH)
(
uH ·M∗(prH)(z)

)
.

�

5.d. The Green functor SwF . Let G be a group. Next we define the Swan ring
Sw(G) associated to G. As an abelian group Sw(G) is defined in terms of generators
and relations as follows. Generators [M ] are given by ZG-isomorphism classes of
ZG-modulesM , which are finitely generated free as Z-modules. If we have an exact
sequence 0 → M0 → M1 → M2 → 0 of such modules, then we require the relation
[M1] = [M0] + [M2]. The multiplication in the Swan ring is given by the tensor
product over Z with the diagonal G-action. Note that Sw(G) is a commutative
ring, whose unit is given by Z equipped with the trivial G-action.

In [3, Section 3] the definition of Sw(G) is extended from groups to small
groupoids. For a small groupoid G an element in Sw(G) is given by a covariant
functor from G to the category of finitely generated free abelian groups. Actually,
Sw(G) is the Grothendieck group of such functors under the obvious objectwise
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notion of a short exact sequence of such functors. The structure of a commutative
ring comes from the tensor product of abelian groups applied objectwise. The unit
is represented by the constant functor, which sends every object in G to Z and every
morphism in G to idZ.

Given a G-set X , denote by T (X) its transport groupoid. Its set of objects is X ,
its set of morphism from x0 → x1 is Gx0,x1 = {g ∈ G | x1 = gx0}, and composition
comes from the multiplication in G. Now we can consider Sw(T G(X)) for a G-set
X . For every subgroup H of G there is an obvious isomorphism

(5.7) Sw(H)
∼=−→ Sw(T G(G/H))

coming from the facts that T G(G/H) is a connected groupoid and the automor-
phism group of eH is H .

The elementary proof that we get for a finite group F a Green functor SwF ,
which is given for a finite F -set X by SwF (X) = Sw(T F (X)), can be found in [3,
Section 3].

Lemma 5.8. Let F be a finite group. Then the Green functor with values in
Z(p)-modules Z(p) ⊗Z SwF is computable for Hp.

Proof. See for instance [3, Proof of Lemma 4.1 (c)] which is based on [38, 6.3.3], [36,
Lemma 4.1] and [37, Section 12]. �

Let p be a prime and denote by Hp be the family of p-hyperelementary subgroups
of the finite group F . We get from Lemma 5.6 and Lemma 5.8

Lemma 5.9. Let F be a finite group. Consider any SwF -module M. Then for
every element z ∈ M(F/F ) we can find elements aH ∈ Z(p) and uH ∈ Sw(H) for
every H ∈ F such that

z =
∑

H∈F

aH · M∗(prH)
(
uH ·M∗(prH)(z)

)

holds in M(F/F )(p) = Z(p)⊗ZM(F/F ), where prH : F/H → F/F is the projection.

Remark 5.10. There is also a version of Sw(H) for groups H and Sw(G) for
groupoids G, where one replaces finitely generated free abelian group by finitely
generated abelian group. These two versions are isomorphic, see [32, page 890]
and [3, Section 3] for groupoids.

It is more convenient to work with the version for finitely generated free abelian
groups, since for finitely generated free abelian groups M the functor M ⊗Z − is
exact.

6. K-theoretic functors associated to G-Z-categories

Let G be a group and let Λ be a commutative ring.

6.a. The K-theoretic covariant Or(G)-spectrum associated to a G-Z-cate-
gory. Let A be a G-Z-category. For a G-set X we define a Λ-category A(X)
as follows. Objects are pairs (A, x) with A ∈ ob(A) and x ∈ X . A morphism
ϕ : (A, x) → (A′, x′) is a formal finite sum ϕ =

∑
g∈Gx,x′

ϕg · g, where Gx,x′ =

{g ∈ G | x′ = gx} and ϕg is a morphism in A from gA to A′. For a morphism
ϕ′ : (A′, x) → (A′, x′) given by the formal finite sum ϕ′ =

∑
g′∈Gx′,x′′

ϕ′
g · g

′, we

define the composite ϕ′ ◦ ϕ : (A;x) → (A′′, x′′) by the finite formal sum ϕ′ ◦ ϕ =∑
g′′∈Gx,x′′

(ϕ′ ◦ ϕ)g′′ · g′′, where for g′′ ∈ Gx,x′′ we put

(ϕ′ ◦ ϕ)g′′ =
∑

g∈Gx,x′ ,g′∈Gx′,x′′

g′′=g′g

ϕ′
g′ ◦ g

′ϕg.
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Given aG-map f : X → Y , define a functor of Λ-categoriesA(f) : A(X) → A(Y ) by
sending an object (A, x) to the object (A, f(x)) and a morphism ϕ : (A, x) → (A′, x′)
given by the formal sum ϕ =

∑
g∈Gx,x′

ϕg · g to the morphism given the same finite

formal sum. This makes sense because of Gx,x′ ⊆ Gf(x),f(x′). Hence we get a
covariant functor

(6.1) ZA : G-SETS → Add-Cat, X 7→ A(X)⊕.

It induces the covariant functor

(6.2) KA : G-SETS → Spectra, X 7→ K(A(X)⊕).

In particular we get a covariant functor called the K-theoretic covariant Or(G)-
spectrum associated to A

(6.3) KA : Or(G) → Spectra, G/H 7→ K(A(G/H)⊕).

Remark 6.4. Let HG
∗ (−KA) be the G-homology theory associated to KA. It has

the property that HG
n (G/H ;KA) = πn(KA(G/H)) holds for any subgroup H of G.

Denote by EF in(G) and EVcyc(G) respectively the classifying space for the family
F in of finite subgroups and of the family Vcyc of virtually cyclic subgroups of G,
see for instance [23]. The projection EVcyc(G) → G/G induces the assembly map
for n ∈ Z

HG
n (EVcyc(G);KA) → HG

n (G/G;KA) = πn(KA(G/G)).

The Farrell-Jones Conjecture predicts that it is bijective for all n ∈ Z. If R is a
ring and we take for A the additive category R⊕, then this assembly map can be
identified with the assembly map 1.4.

The canoncial map EF in(G) → EVcyc(G) induces the relative assembly map

HG
n (EF in(G);KA) → HG

n (EVcyc(G);KA).

If R is a ring and we take for A the additive category R⊕, then this assembly map
can be identified with the relative assembly map appearing in Theorem 1.2.

For more information about assembly maps and the Farrell-Jones Conjecture we
refer for instance to [24, 25, 26].

6.b. Restriction. For aG-map f : X → Y , we think ofKn(A(f)⊕) : Kn(A(X)⊕) →
Kn(A(Y )⊕) as induction. We can define a kind of restriction, if we assume that
f−1(y) is finite for every y ∈ Y , as follows. Next we define a functor of Λ-categories

res(f) : A(Y ) → A(X)⊕.

It sends an object (A, y) to
⊕

x∈f−1(y)(A, x). Consider a morphism ϕ : (A, y) →

(A′, y′) given by a formal sum
∑

g∈Gy,y′
ϕg ·g. Then res(f)(ϕ) :

⊕
x∈f−1(y)(A, x) →⊕

x′∈f−1(y′)(A
′, x′) is given by the collection of morphisms res(f)(ϕ)x,x′ : (A, x) →

(A′, x′) for x ∈ f−1(y) and x′ ∈ f−1(y′) if we put res(f)(ϕ)x,x′ =
∑
g∈Gx,x′

ϕg · g.

This makes sense because of Gx,x′ ⊆ Gy,y′ . The functor res(f) induces a functor
of additive Λ-categories res(f)⊕ : A(Y )⊕ → (A(X)⊕)⊕. Composing it with the

obvious equivalence of additive Λ-categories (A(X)⊕)⊕
≃
−→ A(X)⊕ yields a functor

of additive Λ-categories, denoted in the same way

(6.5) res(f)⊕ : A(Y )⊕ → A(X)⊕.



RELATIVE ASSEMBLY MAPS AND THE K-THEORY OF HECKE ALGEBRAS . . . 23

6.c. The pairing with the Swan group. In this section we construct a bilinear
pairing for a G-set X and n ∈ Z

(6.6) PGX : Sw(T G(X))×Kn(A(X)⊕) → Kn(A(X)⊕).

We have to construct for any covariant functor M from T G(X) to the category
of finitely generated free abelian groups a functor of Z-categories F (M) : A(X) →
A(X)⊕, since then we can define for the element [M ] ∈ Sw(T G(X)) represented by
M the homomorphism P ([M ],−) : Kn(A(X)⊕) → Kn(A(X)⊕) to be Kn(F (M)⊕).
For x ∈ X let r(x) be the rank of the finitely generated free abelian groupM(x) and
choose an ordered basis {b1(x), . . . , br(x)} ofM(x). Consider x, x′ ∈ X with Gx,x′ 6=
0. Then r(x) = r(x′) and for g ∈ Gx,x′ we get an invertible (r(x), r(x))-matrix with
entry ρ(g)i,i′ ∈ Z for i ∈ {1, . . . , r(x)} and i′ ∈ {1, . . . , r(x′)}, which describes the
homomorphism of finitely generated free abelian groups M(g) : M(x) →M(x′) for
the morphism g : x → x′ in τG(X) with respect to the chosen ordered bases. Now

F (M) sends an object (A, x) to
⊕r(x)

i=1 A(x). A morphism
∑

g∈G fg · g : (A, x) →

(A′, x′) is sent to the morphism
⊕r(x)

i=1 A(x) →
⊕r(x′)

i′=1 A
′(x′), whose component for

i ∈ {1, . . . , r(x)} and i′ ∈ {1, . . . , r(x′)} is given by
∑

g∈G ρ(g)i,i′ · fg · g : (A, x) →

(A′, x′). Note that the choice of basis does not matter, since it does not change
the equivalence class of F (M). We leave it to the reader to check that we get a
well-defined bilinear pairing (6.6).

6.d. The special case of a ring as coefficients. The following example is illu-
minating and the most important one.

Let Λ be a commutative ring and let R be a Λ-algebra, where we tacitly always
require that λr = rλ holds for every λ ∈ Λ and r ∈ R. Consider a group homo-
morphism ρ : G → autΛ(R) to the group of automorphisms of the Λ-algebra R.
The twisted group ring with R-coefficients Rρ[G] is defined as follows. Elements are
finite formal sums

∑
g∈G rg · g for rg ∈ R. The multiplication in Rρ[G] is given by


∑

g∈G

rg · g


 ·


∑

g′∈G

r′g′ · g
′


 =

∑

g′′∈G



∑

g,g′∈G
g′′=g′g

rg · ρ(g)(r
′
g′ )


 · g′′.

Note that Rρ[G] inherits the structure of Λ-algebra from R.
Define R to be the Λ-category, which has precisely one object ∗R and whose

Λ-module of endomorphisms is R. Composition is given by the multiplication in
R and the Λ-structure on the endomorphisms comes from the structure of a Λ-
algebra. From ρ we obtain the structure of G-Λ-category on R and we can consider
the Λ-category R(X) for any G-set X .

Consider a subgroup H ⊆ G. There is an equivalence of Λ-categories

(6.7) T (H) : Rρ|H [H ]
≃
−→ R(G/H),

that sends the object ∗Rρ|H
[H] to the object (∗R, eH) and a morphism in Rρ|H [H ],

which is given by the element
∑

h∈H rh ·h in Rρ|H [H ], to the morphism (∗R, eH) →
(∗R, eH) in R(G/H) given by

∑
h∈H rh · h again. Obviously T (H) is fully faithful.

Every object in R(G/H) is isomorphic to an object in the image of T (H), namely,

for any object (∗R, gH) we get an isomorphism (∗R, eH)
∼=
−→ (∗R, gH) by 1R · g.

Hence TH is an equivalence of Λ-categories. From (6.7) we obtain an equivalence
of additive Λ-categories

(6.8) T (H)⊕ : Rρ|H [H ]
⊕

≃
−→ R(G/H)⊕.
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and hence for every n ∈ Z an isomorphism

(6.9) Kn(T (H)⊕) : Kn(Rρ|H [H ])
∼=
−→ Kn(R(G/H)⊕).

Consider subgroups H ⊆ K ⊆ G with [K : H ] < ∞. Let pr : G/H → G/K be
the projection and i : H → K be the inclusion. Then Kn(R(pr)) : Kn(R(G/H)) →
Kn(R(G/K)) corresponds under the isomorphism (6.9) to the induction homomor-
phism i∗ : Kn(Rρ|H [H ]) → Kn(Rρ|K [K]), whereasKn(res(pr)⊕) : Kn(R(G/K)⊕) →
Kn(R(G/K)⊕) corresponds under the isomorphism (6.9) to the restriction homo-
morphism i∗ : Kn(Rρ|K [K]) → Kn(Rρ|H [H ]). The pairing P of (6.6) corresponds
under the isomorphisms (5.7) and (6.9) to the pairing Sw(H) × Kn(Rρ|H [H ]) →
Kn(Rρ|H [H ]) coming from the fact that, for a ZH-module M , whose underlying
abelian group is finitely generated free, and a finitely generated projective Rρ|H [H ]-
module P , we can equip M ⊗Z P with the Rρ|H [H ]-module structure given by


∑

g∈G

rh · h


 · (m⊗ p) =

∑

h∈H

(
hm⊗ (rh · h · p)

)

for
∑

h∈H rh ·h ∈ Rρ|H [H ], m ∈M , and p ∈ P and thus obtain a finitely generated
projective Rρ|H [H ]-module.

6.e. The Green and Mackey structure of a finite quotient group. Fix a
(not necessarily finite) group G and a surjective group homomorphism ν : G → F
onto a finite group F . Let A be a G-Z-category. Fix n ∈ Z. Then we can define
a module over the Green functor SwF for F as follows. The underlying Mackey
functor M(Z, n) = (M(Z, n)∗,M(Z, n)∗) is on an object X which is a finite F -set
X , given by

M(Z, n)∗(X) =M(Z, n)∗(X) = Kn(A(ν∗X)⊕),

where ν∗X is the G-set obtained from the F -set X by restriction with ν. The
covariant functor M(Z, n)∗ sends an F -map f : X → Y to the homomorphism
Kn(A(ν∗f)⊕) : Kn(A(ν∗X)⊕) → Kn(A[ν∗Y ]⊕) defined in (6.2). The contravariant
functor M(Z, n)∗ sends an F -map f : X → Y to Kn(res(ν

∗f)⊕) : Kn(A[ν∗Y ]⊕) →
Kn(A(ν∗X)⊕) for the functor of additive categories res(ν

∗f)⊕ defined in (6.5). For
a finite F -set X we get a map of abelian groups

(6.10) ν∗ : SwF (X) → SwG(ν
∗X)

by precomposing a covariant functorM(Z, n) from τF (X) to the category of finitely
generated free abelian groups with the obvious functor τG(ν∗X) → τF (X) induced
by ν. Now we obtain from (6.6) and (6.10) for all finite F -sets X a pairing

SwF (X)⊗Kn(A(ν∗X)⊕) → Kn(A(ν∗X)⊕).

We leave the lengthy but straightforward proof to the reader that these data define
a Mackey functor M for F and the structure of a Green-module over SwF on it.
This fact is not surprising in view of Subsection 6.d, since the proof in this special
case is well-known.

7. Infinite covirtually cyclic groups and their finite quotients

7.a. Basics about infinite covirtually cyclic subgroups. A group V is called
covirtually cyclic, if it contains a normal finite subgroup K ⊆ V such that V/K is
cyclic. Equivalently, V is either a finite group or there is an extension 1 → K →
V

πV−−→ C → 1 of groups such that K is finite and C is infinite cyclic. An infinite
covirtually cyclic group is the same as a infinite virtually cyclic group of type I.
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Let V be a covirtually cyclic subgroup of G which is infinite. Then it contains
a finite subgroup K = KV with the property such that any finite subgroup of
G is contained in K. Note that K is uniquely determined by this property, is a
characteristic and in particular normal subgroup of V , and the quotient CV :=
V/KV is infinite cyclic.

Definition 7.1 (Polarization). A polarization of V is a choice of an element t ∈ V
whose image under the projection π = πV : V → CV is a generator.

7.b. Basic definitions and notation. Fix an integerM ≥ 1. Let m be the order

of the automorphism ct : K
∼=
−→ K given by conjugation with t. Then tmkt−m = k

holds for all k ∈ KV . Hence the infinite cyclic subgroups 〈tMm〉 and 〈tm〉 of V are
normal and their intersection with KV is trivial. Define finite groups

F = V/〈tMm〉;

F̂ = V/〈tm〉.

Denote by ν : V → F and β : F → F̂ the canonical projections. We have the exact

sequence 1 → ker(β)
j
−→ F

β
−→ F̂ → 1.

Note that the following square commutes

(7.2) KV ⋊ct Z
∼=

//
∼=

//

idF ⋊pMm

��

V

ν

��

KV ⋊ct Z/Mm
∼=

//

idF ⋊pM

��

F

β
��

KV ⋊ct Z/m
∼=

// F̂

where the horizontal maps are the obvious isomorphism given by the elements t ∈ V

and ν(t) ∈ F , and β ◦ ν(t) ∈ F̂ , and pMm : Z → Z/Mm and pM : Z/Mm → Z/m
are the obvious projections.

7.c. Some properties of subgroups. Consider a subgroup H of F and a prime
q. We compute

[F : H ] =
|F |

|H |
=
M ·m · |KV |

|H |
=

M ·m · |KV |

|β(H)| · |j−1(H)|
=
M ·m · |KV | · [F̂ : β(H)]

|F̂ | · |j−1(H)|

=
M ·m · |KV | · [F̂ : β(H)]

m · |KV | · |j−1(H)|
=
M · [F̂ : β(H)]

|j−1(H)|
.

This implies

logq([F : H ]) = logq

(
M · [F̂ : β(H)]

|j−1(H)|

)
(7.3)

= logq(M) + logq([F̂ : β(H)])− logq(|j
−1(H)|)

≥ logq(M)− logq(|j
−1(H)|).

Given a prime p, a finite groupH is called p-hyperelementary, if it can be written
as an extension 1 → C → H → P → 1 for a cyclic group C and a p-group P , and
and is called p-elementary if it is isomorphic to C × P or a cyclic group C and a
p-group P . One can always arrange that the order of C is prime to p.
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Lemma 7.4. Let p be a prime with p 6= q. Let i : K → F be the injective group
homomorphism given by restricting ν : V → F to K. Suppose that q divides i−1(H)
and that H is a p-hyperelementary group. Then

logq([F : H ]) ≥ logq(M).

Proof. Note that for k ∈ KV and y ∈ ker(β) we have ν(k) · j(y) = j(y) · ν(k). This
implies that we get a well-defined group homomorphism

i−1(H)× j−1(H) → H, (k, y) 7→ i(k) · j(y).

It is injective by the following calculation for (k, y) ∈ (ν−1(H)∩K)× j−1(H) using
the fact that β ◦ i is injective

eH = i(k) · j(y)

=⇒ eF̂ = β(eH) = β(i(k) · j(y)) = β(i(k)) · β(j(y)) = β(i(k)) · eF̂ = β(i(k))

=⇒ β ◦ i(k) = eF̂ =⇒ k = eK =⇒ k = eK and j(y) = eH

=⇒ k = eK and y = eker(β).

Since H is p-hyperelementary and p 6= q, the q-Sylow subgroup of H is cyclic.
Hence the q-Sylow subgroup of i−1(H) × j−1(H) is cyclic. Since q divides i−1(H)
by assumption, q does not divide j−1(H) and we get logq(|j

−1(H)|) = 0. Now
apply (7.3). �

Lemma 7.5. Suppose that H is p-hyperelementary and that i−1(H) is a p-group.
Then H is p-elementary.

Proof. By [21, Lemma 3.1] it suffices to show that for every prime q with q | |H |
and q 6= p there exists an epimorphism from H onto a non-trivial finite cyclic group
of q-power order. Let α : F → CV /(Mm · CV ) be the canonical projection, whose
kernel is K. Since α induces an epimorphism H → α(H) onto a finite cyclic group
α(H), it suffices to show that the q-Sylow subgroup of α(H) is non-trivial for any
prime q with q | |H | and q 6= p. Choose an element h ∈ H and an integer a ≥ 1 with
h 6= eH and hq

a

= eH . It suffices to show that α(h) is not the the unit element.
Suppose the contrary. Then we can find x ∈ i−1(H) with i(x) = h. Since i−1(H)

is a finite p-group, we can choose an integer b ≥ 1 satisfying xp
b

= eK . As p 6= q,
we can find integers λ, µ with λqa + µ · pb = 1. We compute

i(x) = i(xλq
a+µpb) = (i(x)q

a

)λ · i((xp
b

)µ) = (hq
a

)λ · i(eµ) = eF · eF = eF .

Hence x = eK which implies h = eH , a contradiction. �

8. On Nil-terms for infinite covirtually cyclic subgroups

For the remainder of this section we fix an infinite covirtually cyclic group V
with a polarization t ∈ V and a V -Z-category A. Let the covariant functor

(8.1) Z = ZA : V -SETS → Add-Cat

be the functor coming from the functor in (6.1) for G = V and ν : V → F taken
from Subsection 7.b.

8.a. The basic diagram 8.7. In the sequel we denote for two subgroups H0 and
H1 of V with H0 ⊆ H1 by pr : V/H0 → V/H1 the V -map given by the canonical
projection. Given subgroups H0 and H1 of V and v ∈ V in with v−1H0v ⊆ H1,
we denote by Rv : V/H0 → V/H1 the V -map sending v′H0 to v′vH1. Note that
for v0, v1 ∈ V with v−1

i H0vi ⊆ H1 for i = 0, 1 we have Rv0 = Rv1 if and only if

v−1
1 v0 ∈ H1 holds.
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Given d ∈ Z≥1 = {n ∈ Z | n ≥ 1}, let C[d] = d · C ⊆ C be the subgroup of
index d in C and V [d] be the preimage of C[d] under the projection π : V → C. In
particular we get V [1] = V .

Let W ⊆ V be a subgroup of V of finite index. Then W itself is an infinite
covirtually cyclic group. Its maximal finite subgroup is KW = KV ∩ W . Let
d = d(W ) ∈ Z≥1 be the natural number given by the index d of πV (W ) in the
infinite cyclic group C. Then W ⊆ V [d] and we have W = V [d] if and only if
KV ⊆W , or, equivalently, KW = KV holds.

Fix a polarization tW ∈ W . Since the following diagram of V -spaces commutes

V/KW

RtW
//

pr
$$
❍❍

❍❍
❍❍

❍❍
❍

V/KW

pr
zz✈✈
✈✈
✈✈
✈✈
✈

V/W

we get from Z(pr) : Z(V/KW ) → Z(V/W ) a functor of additive categories

(8.2) U(W, tW ) : Z(V/KW )Z(RtW
)[Z] → Z(V/W ).

Lemma 8.3. The functor U(W, tW ) is for any choice of polarization tW ∈ W
an equivalence of additive categories and induces in particular for every n ∈ Z an
isomorphism

Kn(U(W, tW )) : Kn(Z(V/KW )Z(RtW
)[Z]) → Kn(Z(V/W )).

Proof. This follows from the isomorphism (6.9) and the obvious fact that the canon-
ical map KW ⋊ctW Z →W is an isomorphism. �

We get for n ∈ Z from the isomorphism appearing in Lemma 8.3, the twisted
Bass-Heller Swan decomposition applied to A = Z(V/KW ) and Φ = Z(RtW ), see
Theorem 4.16, and the projection onto and the inclusion of the first Nil-term maps

s(W, tW )n : Kn−1(Nil(Z(V/KW ), Z(RtW ))) → Kn(Z(V/W ));

r(W, tW )n : Kn(Z(V/W )) → Kn−1(Nil(Z(V/KW ), Z(RtW ))),

satisfying r(W, tW )n ◦ s(W, tW )n = idKn−1(Nil(Z(V/KW ),Z(RtW
))).

Fix a polarization t ∈ V of V . The following diagram commutes by Theorem 4.16

(8.4) Kn−1(Nil(Z(V/K), Z(Rtd)))
Kn−1(Vd)

//

s(V [d],td)n

��

Kn−1(Nil(Z(V/K), Z(Rt)))

s(V,t)n

��

Kn(Z(V/V [d]))
Kn(Z(pr))

//

r(V [d],td)n
��

Kn(Z(V/V ))

r(V,t)n
��

Kn−1(Nil(Z(V/K), Z(Rtd)))
Kn−1(Vd)

// Kn−1(Nil(Z(V/K), Z(Rt)))

where Vd is the Verschiebungs operator, see (3.2).
Let W ⊆ V be a subgroup of V of finite index. Fix a polarization t of V . Then

there is y ∈ K = KV with ytd ∈ W . Fix y = y(W ) ∈ K with ytd ∈ W . Then the

element ytd is a polarization of W . As the composites V/KW
pr
−→ V/K

R
td−−→ V/K

and V/KW

R
ytd

−−−→ V/KW
pr
−→ V/K agree, Z(pr) : Z(V/KW ) → Z(V/K) induces a

map

Kn−1(Z(pr)) : Kn−1(Nil(Z(V/KW ), Z(Rytd))) → Kn−1(Nil(Z(V/K), Z(Rtd)))
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for every n ∈ Z. One easily easily checks that the following diagram commutes
(8.5)

Kn−1(Nil(Z(V/KW ), Z(Rytd)))
Kn−1(Z(pr))

//

s(W,ytd)n

��

Kn−1(Nil(Z(V/K), Z(Rtd)))

s(t,d)n

��

Kn(Z(V/W ))
Kn(Z(pr))

//

r(W,ytd)n
��

Kn(Z(V/V [d]))

r(t,d)n
��

Kn−1(Nil(Z(V/KW ), Z(Rytd)))
Kn−1(Z(pr))

// Kn−1(Nil(Z(V/K), Z(Rtd))).

Define

(8.6) Ξn−1(W, y(W )td(W )) : Kn−1(Nil(Z(V/KW ), Z(Ry(W )td(W ))))

→ Kn−1(Nil(Z(V/K), Z(Rt)))

to be the composite

Kn−1(Nil(Z(V/KW ), Z(Ry(W )td(W ))))
Kn(Z(pr))
−−−−−−−→ Kn−1(Nil(Z/K), Z(Rtd(W )))

Kn−1(Vd)
−−−−−−→ Kn−1(Nil(Z(V/K), Z(Rt))).

Then we obtain by concatenating (8.4) and (8.5) the commutative diagram
(8.7)

Kn−1(Nil(Z(V/KW )), Z(Ry(W )td(W )))
Ξn−1(W,y(W )td(W ))

//

s(W,y(W )td(W ))n

��

Kn−1(Nil(Z(V/K), Z(Rt)))

s(V,t)n

��

Kn(Z(V/W ))
Kn(Z(pr))

//

r(W,y(W )td(W ))n
��

Kn(Z(V/V ))

r(V,t)n
��

Kn−1(Nil(Z(V/KW ), Z(Ry(W )td(W ))))
Ξn−1(W,y(W )td(W ))

// Kn−1(Nil(Z(V/K), Z(Rt))).

8.b. Improving the induction results. For the remainder of this section con-
sider the setup of Subsection 7.b. In particular we have fixed a natural number M
and a surjective group homomorphism ν : V → F onto a finite group F . Moreover,
we fix n ∈ Z and letM(Z, n) be the module over the Green functor SwF associated
to Z in Subsection 6.e with respect to the epimorphism ν : V → F .

Lemma 8.8. Consider any element z in Kn(Z(V/V )) = M(Z, n)(F/F ). Let p be
a prime number. Let Hp be the family of p-hyperelementary subgroups of F .

Then there are elements aH ∈ Z(p) and uH for each H ∈ Hp such that

z =
∑

H∈Hp

aH · M(Z, n)∗(prH)
(
uH · M(Z, n)∗(prH)(z)

)

holds in Kn(Z(V/V ))(p), where prH : F/H → F/F is the projection.

Proof. This follows from Lemma 5.9. �

Lemma 8.9. Consider an element z ∈ Kn−1(Nil(Z(V/KV ), Z(Rt))) of nilpotence
degree ≤ D.

Then for every H ⊆ F satisfying [F : H ] ≥ D the composite

Kn−1(Nil(Z(V/KV ), Z(Rt)))
sn(V,t)
−−−−→ Kn(Z(V/V ))

M(Z,n)∗(pr)
−−−−−−−−→ Kn(Z(V/ν

−1(H)))

sends z to zero.
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Proof. Put d = [F : H ] = [V : ν−1(H)]. Then we have ν−1(H) ⊆ V [d] and the ho-
momorphism M(Z, n)∗(pr) : Kn(Z(V/V )) → Kn(Z(V/ν

−1(H))) is the composite

Kn(Z(V/V ))
M(Z,n)∗(pr)
−−−−−−−−→ Kn(Z(V/V [d]))

M(Z,n)∗(pr)
−−−−−−−−→ Kn(Z(V/ν

−1(H))).

The following diagram commutes

Kn(Z(V/KV )Z(Rt)[Z])
Kn(U(V,t))

∼=
//

Kn(i
∗
d)

��

Kn(Z(V/V ))

M(Z,n)∗(pr)

��

Kn(Z(V/KV )Z(Rt)d [Z])
Kn(U(V,td))

∼=
// Kn(Z(V/V [d]))

where the bijective horizontal arrows have been defined in (8.2). Now the claim
follows from Lemma 4.33, since the map sn(V, t) is by definition the composite

Kn−1(Nil(Z(V/K), Z(Rt)))
sn−→ Kn(Z(V/K)Z(Rt)[Z])

Kn(U(V,t))
−−−−−−−→ Kn(Z(V/V )).

�

Lemma 8.8 and Lemma 8.9 imply

Lemma 8.10. Consider an element z in z ∈ Kn−1(Nil(Z(V/KV ), Z(Rt))) of
nilpotence degree ≤ D. Let p be a prime number. Let Hp be the family of p-
hyperelementary subgroups of F .

Then there are elements aH ∈ Z(p) and uH for each H ∈ Hp such that

sn(V, t)(z) =
∑

H∈Hp

[F :H]<D

aH ·M(Z, n)∗(prH)
(
uH ·M(Z, n)∗(prH) ◦ sn(V, t)(z)

)

holds in Kn(Z(V/V ))(p).

Define Hp to be the family p-hyperelementary subgroups H of F , for which
i−1(H) = H ∩ F ⊆ F is a p-group.

Lemma 8.11. Consider an element z in Kn−1(Nil(Z(V/KV ), Z(Rt))) of nilpo-
tence degree ≤ D. Let p be a prime number. Assume that logq(l) < logq(M)
holds for every natural number l with l < D and every prime q that satisfies

q ≤ max{D, |F̂ |} and is different from p.
Then there are elements aH ∈ Z(p) and uH for each H ∈ Hp such that

sn(V, t)(z) =
∑

H∈Hp

aH · M(Z, n)∗(prH)
(
uH · M(Z, n)∗(prH) ◦ sn(V, t)(z)

)

holds in Kn(Z(V/V ))(p).

Proof. In view of Lemma 8.10 it suffices to show under the assumptions above that
i−1(H) = H∩F is a p-group for H ∈ Hp, provided that [F : H ] < D holds. Because
of Lemma 7.4 it remains to show logq([F : H ]) < logq(M) for every every H ∈ Hp

and every prime q that divides |i−1(H)| = |H ∩F | and is different from p, provided

that [F : H ] < D holds. If q satisfies q ≤ max{D, |F̂ |}, then logq([F : H ]) <

logq(M) follows from the assumptions. Suppose q that satisfies q > max{D, |F̂ |}.

Then q does divide neither [F : H ] nor F̂ . Since q divides |H ∩ F | and hence |F |

and |F | =M · |F̂ | holds, q divides |M | and hence logq(M) ≥ 1. As q does not divide
[F : H ], we have logq([F : H ]) = 0 and hence logq([F : H ]) < logq(M). �

Notation 8.12. Let Vp(V ) be the set of infinite covirtually cyclic subgroups W ⊆
V such that KW =W ∩KV is a p-group.
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Note that W ∩ K is indeed the maximal finite subgroup KW of W . For W ∈
Vp(V ) define the natural number d(W ) to be the index [C : πV (W )], where
πV : V → V/KV = CV is the projection onto the infinite cyclic subgroup CV .
For every W ∈ Vp(V ) choose an element y(W ) ∈ KV such that y(W )td(W ) is a
polarization of W . We have defined in (8.6) the map

Ξn−1(W, y(W )td(W )) : Kn−1

(
Nil(Z(V/KW ), Z(Ry(W )td(W )))

)

→ Kn−1

(
Nil(Z(V/KV ), Z(Rt))

)
.

The isomorphism type of the abelian group Kn−1

(
Nil(Z(V/KW ), Z(Ry(W )td(W )))

)

and the image of Ξn−1(W, y(W )td(W )) are independent of the choice of y(W ), since
for any other choice y(W )′ we have the commutative diagram

Kn−1

(
Nil(Z(V/KW ), Z(Ry(W )td(W )))

)

Kn−1(Nil(R
y(W )′y(W )−1 ))∼=

��

Ξn−1(W,y(W )td(W ))

,,❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳

Kn−1

(
Nil(Z(V/KV ), Z(Rt))

)

Kn−1

(
Nil(Z(V/KW ), Z(Ry(W )′td(W )))

)Ξn−1(W,y(W )′td(W ))

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

with an isomorphisms as vertical arrow.

Theorem 8.13. The map

⊕

W∈Vp(V )

Ξn−1(W, y(W )td(W ))(p) :
⊕

W∈Vp(V )

Kn−1

(
Nil(Z(V/KW ), Z(RyW td(W )))

)
(p)

→ Kn−1

(
Nil(Z(V/K), Z(Rt))

)
(p)

is surjective.

Proof. Consider z ∈ Kn−1(Nil(Z(V/K), Z(Rt))). Choose D such that the nilpo-
tence degree of z is ≤ D. Now choose a natural number M such that logq(l) <
logq(M) holds for every natural number l with l < D and every prime q that sat-

isfies q ≤ max{D, |F̂ |} and is different from p. From Lemma 8.11 we get elements
aH ∈ Z(p) and uH for each H ∈ Hp such that

(8.14) s(V, t)n(z) =
∑

H∈Hp

aH · M(Z, n)∗(prH)
(
uH · M(Z, n)∗(prH) ◦ sn(V, t)(z)

)

holds in Kn(Z(V/V ))(p). Define for H ∈ Hp the subgroup WH of V by WH :=

ν−1(H). For H ∈ Hp the following diagram
(8.15)

Kn(Z(V/WH))
r(WH ,y(WH)td(WH ))n

//

M(Z,n)∗(prH)

��

Kn−1(Nil(Z(V/KWH
), Z(Ry(WH )td(WH ))))

Ξn−1(WH ,yWH
td(WH ))

��

Kn(Z(V/V ))
r(V,t)n

// Kn−1(Nil(Z(V/K), Z(Rt))).

commutes because of the commutative diagram (8.7). Define the element in zH ∈
Kn−1

(
Nil(Z(V/KW ), Z(RyW td(W )))

)
(p)

by

(8.16) zH = r(WH , yWH
td(WH ))n ◦

(
uH ·M(Z, n)∗(prH) ◦ s(V, t)n(z)

)
.
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Recall that we have r(V, t)n ◦ s(V, T )n = id. Now we compute

z = r(V, t)n ◦ s(V, T )n(z)

(8.14)
= r(V, T )n ◦

( ∑

H∈Hp

aH ·M(Z, n)∗(prH)
(
uH ·M(Z, n)∗(prH) ◦ s(V, t)n(z)

))

=
∑

H∈Hp

aH · r(V, T )n ◦M(Z, n)∗(prH)
(
uH · M(Z, n)∗(prH) ◦ s(V, t)n(z)

)

(8.15)
=

∑

H∈Hp

aH · Ξn−1(WH , yWH
td(WH)) ◦ r(WH , y(WH)td(WH))n

◦
(
uH ·M(Z, n)∗(prH) ◦ s(V, t)n(z)

)

(8.16)
=

∑

H∈Hp

aH · Ξn−1(WH , y(WH)td(WH))(zH).

Note that for H ∈ Hp the subgroup WH := ν−1(H) of V belongs to Vp(V ) intro-
duced in Notation 8.12. This finishes the proof of Theorem 8.13. �

Corollary 8.17. If Kn−1

(
Nil(Z(V/KW ), Z(RyW td(W )))

)
(p)

= 0 holds for every

W ∈ Vp(V ), then we get

Kn−1

(
Nil(Z(V/K), Z(Rt))

)
(p)

= 0.

9. Proof of Theorem 1.2 and Theorem 1.5 for additive categories

Let G be a group and Λ be a commutative ring. Let A be an additive G-Λ-
category. We have defined P(G,Λ) in Notation 1.1.

Theorem 9.1. Suppose that the additive category A is regular in the sense of [4,
Definition 6.2]. Then the canonical map

HG
n (EF in(G);KA) → HG

n (EVcyc(G);KA)

is a P(G,Λ)-isomorphism for all n ∈ Z;

Proof. The relative assembly map

HG
n (ECvcy(G);KA) → HG

n (EVcyc(G);KA)

is an isomorphism for all n ∈ Z by [16, Remark 1.6], see also [25, Theorem 13.44].
Hence it suffices to show that the relative assembly map

HG
n (EF in(G);KA) → HG

n (ECvcy(G);KA)

is a P(G,Λ)-isomorphism for all n ∈ Z. By the Transitivity Principle appearing
in [2, Theorem 3.3], see also [25, Theorem 15.12], we can assume without loss of
generality that G itself is an infinite covirtually cyclic group V . Hence we have to
show for any covirtually cyclic group V that the assembly map

(9.2) HV
n (EF in(V );KA) → HV

n (ECvcy(V );KA) = HV
n (V/V ;KA) = πn(KA(V ))

is a P(G,Λ)-isomorphism, where we view A as a V -Λ-category by restriction from
G to V . Write V = K ⋊ct Z. The twisted Bass-Heller-Swan isomorphism of (4.5)
applied to V = K ⋊ct Z yields an isomorphism

πn(TK(ct))×Kn−1

(
Nil(ZA(V/K), Z(Rt))

)
×Kn−1

(
Nil(ZA(V/K), Z(Rt))

)

∼=
−→ πn(KA(V )).

There is an identification

πn(TK(ct))
∼=
−→ HV

n (EF in(V );KA)
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coming from the fact that a model for EF in(V ) is R with respect to the V -action
given by v · r = pr(v)+ r for r ∈ R and the canonical projection pr : V → Z. Under
these identifications the map (9.2) becomes the obvious inclusion. Hence map (9.2)
is a P(G,Λ)-isomorphism if we can show

Z[P(G,Λ)−1]⊗Z Kn−1

(
Nil(ZA(V/K), Z(Rt))

)
= 0

for every n ∈ Z. Because of Corollary 8.17 it suffices to show that for any p 6∈
P(G,Λ) and any W ∈ Vp(V ) we have Kn−1

(
Nil(ZA(G/KW ), Z(RyW td(W )))

)
= 0.

Because of [4, Lemma 7.7 and Theorem 8.1] it suffices to show that the additive
category ZA(G/KW ) is regular. Since it is equivalent to A|KW

[KW ] and KW is a
p-group, it suffices to show for any p-subgroup P of V that A|P [P ] is regular. If
the p-subgroup P is trivial, then A|P [P ] = A and hence by assumption regular. If
P is non-trivial, then by definition of P(V,Λ) the prime p is invertible in Λ. We
leave it to the reader to check that then A|P [P ] is regular, as A is regular. It is
not hard to extend the proof for rings in [7, Lemma 7.4 (2)] to additive categories.
This finishes the proof of Theorem 9.1. �

Corollary 9.3. Suppose G satisfies the Full Farrell-Jones Conjecture. Assume
that the additive Λ-category A is regular in the sense of [4, Definition 6.2] and that
the order of any finite subgroup of G is invertible in Λ.

Then the canonical map

colim
H∈SubFin(G)

K0(A(G/H)) → K0(A[G/G])

is an isomorphism and

Kn(A[G/G]) = 0 for n ≤ −1.

where A[G/G] has been defined in Subsection 6.a.

Proof. This follows from Theorem 9.1 using the equivariant Atiyah-Hirzebruch
spectra sequence and the fact that A(G/H) is equivalent to the regular additive
category A|H [H ] for finite H ⊆ G, which implies Ki(A(G/H)) = 0 for i ≤ −1 and
|H | <∞, see for instance [25, Proof of Proposition 13.48 (iv)], [8, Section 4]. �

10. Nil-terms as modules over the ring of big Witt vectors

We extend the result of Weibel [41, Corollary 3.2], which is based on work by
Stienstra [35], that for a ring R of characteristic N for some natural number N
we have NKn(RG)[1/N ] = {0} for every group G and every n ∈ Z, to additive
categories allowing twisting by an automorphism.

10.a. Review of the ring of big Witt vectors. Let Λ be a commutative ring.
Let W (Λ) be the commutative ring of big Witt vectors. The underlying abelian
group is the multiplicative group 1+ tΛ[[t]] of formal power series 1+λ1t+λ2t+ . . .
in t with coefficients in Λ and leading term 1. We do not give the details of the
multiplicative structure ∗ but at least mention that it is the unique continuous
functional with the property that (1−λt) ∗ (1− µt) = (1− λµt) holds for λ, µ ∈ Λ.
We mention that it satisfies for m,n ∈ Z≥1 and λ, µ ∈ Λ

(10.1) (1− λtm) ∗ (1 − µtn) =
(
(1− λn/dµm/dtmn/d

)d
,

where d is greatest common divisor of m and n. The unit for the addition is 1,
whereas the unit for the multiplication is (1− t).

For N ∈ Z≥1 the subgroup IN = 1 + tNΛ[[t]] is actually an ideal in W (Λ). We
haveW (Λ) = I1 ⊃ I2 ⊃ I3 ⊃ · · · and

⋂
N≥1 IN = {1}. Thus we obtain the so called

t-adic topology on W (Λ). Then W (Λ) is separated and complete in this topology.
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The quotient rings WN (Λ) =W (Λ)/IN+1 are called the rings of N -truncated Witt
vectors. For more information we refer to [13, Section I.1].

10.b. Endomorphisms rings. Let End(Λ) be the exact category of endomor-
phism of finitely generated projective Λ-modules. Objects are pairs (P, f) consist-
ing of a finitely generated projective Λ-module P together with a Λ-endomorphism
f : P → P . A morphisms g : (P0, f0) → (P1, f1) is a Λ-homomorphism g : P0 → P1

satisfying f1 ◦ g = g ◦ f0. We have the inclusion i : Λ-Modfgf → End(Λ) sending a
finitely generated projective Λ-module P , to (P, 0). It has a retraction r : End(Λ) →
Λ-Modfgf sending (P, f) to P . Let K0(End(Λ)) andK0(Λ) = K0(Λ-Modfgf) be the
projective class groups associated to the exact categories End(Λ) and Λ-Modfgf .
Define the reduced projective class group

(10.2) K0(End(Λ)) := cok
(
K0(i) : K0(Λ-Modfgf)) → K0(End(Λ))

)
.

Note that then we get from i and r a natural isomorphism

(10.3) K0(End(Λ))
∼=−→ K0(Λ)⊕K0(End(Λ)).

Note that the tensor product over Λ induces the structure of a commutative ring
on K0(End(Λ)). Since the image of K0(i) is an ideal, the quotient K0(End(Λ))
inherits the structure of a commutative ring.

There is a well-defined map η : K0(End(Λ)) → W (Λ), which sends the class
of (P, f) for an endomorphisms f : P → P of a finitely generated projective Λ-
module P to its characteristic polynomial detΛ(1 − tf). The next result is due to
Almkvist [1].

Theorem 10.4. We obtain a well-defined injective ring homomorphism

η : K0(End(Λ)) → W (Λ)

whose image consists of all rational functions, i.e., quotients x/x′ of polynomials
x, x′ in 1 + tΛ[t] ⊆ 1 + tΛ[[t]].

The t-adic topology on K0(End(Λ)) is given by the filtration K0(End(A)) =
η−1(I1) ⊃ η−1(I2) ⊃ η−1(I3) ⊃ · · · . Let K0(End(A))̂ be the completion of
K0(End(A)) with respect to the t-adic topology. Since W (Λ) is separated and
complete in the t-adic topology and the image of η is dense in W (Λ), we conclude
from Theorem 10.4 that η induces an isomorphism of topological rings

(10.5) η̂ : K0(End(A))̂
∼=
−→W (R).

10.c. The action on Nil-groups. Let A be an additive Λ-category, i.e., a small
category enriched over the category of Λ-modules coming with a direct sum ⊕

compatible with the Λ-module structures. Let Φ: A
∼=−→ A be an automorphism

of additive Λ-categories of A. Denote by Nil(A; Φ) the associated Nil-category,
which inherits the structure of an exact category. Recall that then the K-groups
Ks(Nil(A; Φ)) and Ks(Nil(A; Φ)) are defined for s ∈ Z.

Let Λ⊕ be the additive Λ-category obtained from the obvious Λ-category having

precisely one object by adding finite sums. More precisely, for every m ∈ Z≥ we
have the object [m] in Λ. A morphism C : [m] → [n] for m,n ≥ 1 is a (m,n)-matrix
C = (ci,j) over Λ. The object [0] is declared to be the zero object. Composition
is given by matrix multiplication, whereas the direct sum is given on objects by
assigning to two object [m] and [n] the object [m + n] and on morphisms by the
block sum of matrices.

We define a bilinear functor of additive Λ-categories

(10.6) F : Λ×A → A
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as follows. On objects it is defined by sending ([m], A) to
⊕m

i=1A. Consider
morphisms C : [m] → [n] and f : A→ B in Λ and A. Define the morphism

(C ⊗ f) = (C ⊕ f)i,j : C([m], A) =

m⊕

i=1

A→ C([n], B) =

n⊕

j=1

B

by (C ⊕ f)i,j = ci,j · f : A → B for (i, j) ∈ {1, . . . ,m} × {1, . . . , n}. If we fix an
object ([n], C) in End(Λ), we get a functor of exact categories F([n],C) : Nil(A; Φ) →
Nil(A; Φ) by sending an object (A,ϕ) that is given by the nilpotent endomorphism
ϕ : Φ(A) → A to the object that is given by the nilpotent endomorphism defined
by the composite

Φ

(
n⊕

i=1

A

)
σ(n,A)−1

−−−−−−→ C([n],Φ(A)) =
n⊕

i=1

Φ(A)
F (C,ϕ)
−−−−→ C([n], A) =

n⊕

i=1

A

for the canonical isomorphism σ(n,A) :
⊕n

i=1 Φ(A)
∼=
−→ Φ (

⊕n
i=1 A). It induces

a homomorphism Kn(F([n],C)) : Kn(Nil(A; Φ)) → Kn(Nil(A; Φ)) for every n ∈ Z.
Now one easily checks that the collection of these homomorphisms defines a bilinear
pairing of abelian groups for every s ∈ Z

(10.7) Ts : K0(End(Λ))×Ks(Nil(A; Φ)) → Ks(Nil(A; Φ)).

Lemma 10.8. The pairing Ts of (10.7) extends uniquely to continuous pairing

T̂s : W (Λ)×Ks(Nil(A; Φ)) → Ks(Nil(A; Φ))

for s ∈ Z, where we equip Ks(Nil(A; Φ)) with the discrete topology and W (R) with
the t-adic topology.

Moreover, this pairing turns Ks(Nil(A; Φ)) into a W (Λ)-module.

Proof. Because of the isomorphism of topological rings (10.5), the existence of the

extension T̂s follows if we can show for every element y ∈ Ks(Nil(A; Φ)) that there
exists an integer N such that for every x ∈ η−1(IN ) we have Ts(x, y) = y. This is
done as follows.

In the first step we reduce the claim to the special case s ≥ 1.
From [27, Definition 2.1, Theorem 3.4 and Lemma 6.5] applied to the functor

sending (A,Φ) to the connectiveK-theory spectrum K(Nil(A,Φ)), we get a natural
(untwisted) Bass-Heller-Swan isomorphisms for s ∈ Z

Ks−1(Nil(A,Φ))⊕Ks(Nil(A,Φ))⊕NKs(Nil(A,Φ))⊕NKs(Nil(A,Φ))
∼=−→ Ks(Nil(A[Z],Φ[Z])).

Restricting this isomorphism to Ks−1(Nil(A,Φ)) yields a (split) injective homomor-
phisms σs : Ks−1(Nil(A,Φ)) → Ks(Nil(A[Z],Φ[Z])), natural in (A,Φ). It induces a
(split) injective homomorphism σs : Ks−1(Nil(A,Φ)) → Ks(Nil(A[Z],Φ[Z])), natu-
ral in (A,Φ), since we also have the (untwisted) Bass-Heller-Swan isomorphism

Ks−1(A)⊕Ks(A)⊕NKs(A) ⊕NKs(A)
∼=
−→ Ks(A[Z]).

Now we obtain for every s ∈ Z a commutative diagram

K0(End(Λ))×Ks−1(Nil(A; Φ))
Ts−1(A,Φ)

//

id
K0(End(Λ)) ⊗σs

��

Ks(Nil(A; Φ))

σs

��

K0(End(Λ))×Ks(Nil(A[Z]; Φ[Z]))
Ts(A[Z],Φ[Z])

// Ks(Nil(A[Z]; Φ[Z])).

Since for every integer s we can find a natural number k with s+ k ≥ 1 and we can
iterate the construction of the diagram above k-times, it suffices to show for every
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element y ∈ Ks(Nil(A; Φ)) for s ≥ 1 that there exists an integer N such that for
every x ∈ η−1(IN ) we have Ts(x, y) = y. Moreover, we can work for the rest of the
proof with the connective K-theory spectrum of Waldhausen categories.

Let Nil(A; Φ)N be the full exact subcategory of Nil(A; Φ) consisting of those
objects (A,ϕ), whose nilpotence degree is less or equal to N , i.e., ϕ(N) : ΦN(A) → A
is trivial. For every natural number N the construction of the pairing Ts of (10.7)
yields also a pairing

(10.9) T [N ]s : K0(End(Λ))×Ks(Nil(A; Φ)N ) → Ks(Nil(A; Φ)).

These pairings T [N ]s and Ts are compatible with the map Ks(Nil(A; Φ)N ) →
Ks(Nil(A; Φ)) coming from the obvious inclusions of full subcategories. In view of
the isomorphism (4.31), it suffices to show for very natural number N and s ≥ 1
that T [N ]s(x, y) = 0 holds for x ∈ η−1(IN ) and y ∈ Kn(Nil(A; Φ)N ).

For a natural number n ≥ 1 and λ1, λ2, . . . , λn in Λ, define the automorphism
Cn(λ1, λ2, . . . , λr;ϕ) : [n] → [n] in End(Λ) by the (n, n)-matrix over Λ

Cn(λ1, λ2, . . . , λn) =




0 0 0 · · · 0 0 λn
1 0 0 · · · 0 0 λn−1

0 1 0 · · · 0 0 λn−2

0 0 1 · · · 0 0 λn−2

0 0 0 · · · 0 0 λn−3

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 λ3
0 0 0 · · · 1 0 λ2
0 0 0 · · · 0 1 λ1




.

Then η
(
[Cn(−λ1,−λ2, . . . − λn)]

)
= 1 + λ1t + λ · t2 + · · · + λn · tn. Because of

Theorem 10.4 it suffices to prove T [N ]n([Cn(λ1, λ2, . . . λn)], y) = 0 for every s,N ≥
1, elements λ1, λ2, . . . , λn in Λ and y ∈ Ks(Nil(A; Φ)N ), provided that λi = 0 holds
for i = 1, 2 . . . , N − 1.

Fix s,N ≥ 1 and λ1, λ2, . . . , λn in Λ such that λi = 0 holds for i = 1, 2 . . . , N−1.
In the sequel we use the notation of [29, Section 8]. We have defined the functor of
Walhausen categories

χΦ : Nil(A; Φ) → Ch(AΦ[t
−1])w,

in (4.25). It induces an isomorphism

(10.10) Ks(χΦ) : Ks(Nil(A,Φ))
∼=−→ Ks(Ch(AΦ[t

−1])w)

for s ≥ 1, see [29, Theorem 8.1]. Note that in [29, Theorem 8.1] the cate-
gory A is assumed to be idempotent complete but this does not matter, since
the maps Ks(Nil(A,Φ)) → Ks(Nil(Idem(A), Idem(Φ))) and Ks(Ch(AΦ[t

−1])w) →
Ks(Ch(Idem(A)Idem(Φ)[t−1])

w) induced by the inclusions are isomorphisms for s ≥ 1
by the usual cofinality argument, see for instance [27, page 225], where Idem denotes
idempotent completion.

Given a natural number n ≥ 1, elements λ1, λ1, . . . , λn ∈ Λ, and a nilpotent
endomorphism ϕ : Φ(A) → A in A, define the morphism in AΦ[t

−1]

Uλ1,λ2,...,λn
(ϕ) : Φ(A)n → An
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by the (n, n)-matrix



idA ·t−1 0 0 · · · 0 0 0 −(λn · ϕ) · t0

−ϕ · t0 idA ·t−1 0 · · · 0 0 0 −(λn−1 · ϕ) · t0

0 −ϕ · t0 idA ·t−1 · · · 0 0 0 −(λn−2 · ϕ) · t0

...
...

...
. . .

...
...

...
...

0 0 0 · · · −ϕ · t0 idA ·t−1 0 −(λ3 · ϕ) · t0

0 0 0 · · · 0 −ϕ · t0 idA ·t−1 −(λ2 · ϕ) · t0

0 0 0 · · · 0 0 −ϕ · t0 idA ·t−1 − (λ1 · ϕ) · t
0




.

Thus we obtain a functor of Waldhausen categories

Uλ1,λ2,...,λn
: Nil(A,Φ) → Ch(AΦ[t

−1])w,

which induces a homomorphism

Ks(Uλ1,λ2,...,λn
) : Ks(Nil(A,Φ)) → Ks(Ch(AΦ[t

−1])w).

This map can easily be identified with the map sending y ∈ Ks(Nil(A,Φ)) to the
image of Ts([Cn(λ1, λ2, . . . λn)], y) = 0 under the injective homomorphism (10.10).
Hence it suffices to show that the image of the composite

Ks(Nil(A,Φ)N )
Ks(J)
−−−−→ Ks(Nil(A,Φ))

Ks(Uλ1,λ2,...,λn )
−−−−−−−−−−−→ Ks(Ch(AΦ[t

−1])w)

is contained in the image of

Ks(A)
Ks(I)
−−−−→ Ks(Nil(A,Φ))

Ks(χΦ)
−−−−−→ Ks(Ch(AΦ[t

−1])w),

where J is the obvious inclusion, and I sends an object A to (A, 0).
Given a natural number n ≥ 1 and a nilpotent endomorphism ϕ : Φ(A) → A in

A, define the automorphism in AΦ[t, t
−1]

En(ϕ) : A
n ∼=
−→ An

by the (n, n)-matrix



idΦ(A) ·t
0 0 0 · · · 0 0 0 0

ϕ · t idΦ(A) idΦ(A) ·t
0 0 · · · 0 0 0 0

(ϕ · t)2 ϕ · t idΦ(A) ·t
0 · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

(ϕ · t)n−3 (ϕ · t)n−4 (ϕ · t)n−5 · · · ϕ · t idΦ(A) ·t
0 0 0

(ϕ · t)n−2 (ϕ · t)n−3 (ϕ · t)n−4 · · · (ϕ · t)2 ϕ · t idΦ(A) ·t
0 0

(ϕ · t)n−1 (ϕ · t)n−2 (ϕ · t)n−3 · · · (ϕ · t)3 (ϕ · t)2 ϕ · t idΦ(A) ·t
0




.

Then we get inAΦ[t, t
−1] that the composite Fn(ϕ) := En(ϕ)◦Uλ1,λ2,...,λn

(ϕ) : Φ(A)n →
An is given by the matrix



idA ·t−1 0 0 · · · 0 0 0 v1(ϕ)
0 idA ·t−1 0 · · · 0 0 0 v2(ϕ)
0 0 idA ·t−1 · · · 0 0 0 v3(ϕ)
...

...
...

. . .
...

...
...

...
0 0 0 · · · 0 idA ·t−1 0 vn−2(ϕ)
0 0 0 · · · 0 0 idA ·t−1 vn−1(ϕ)
0 0 0 · · · 0 0 0 idA ·t−1 − vn(ϕ)




where we define for k = 1, 2, , . . . n

vn(ϕ) =

k−1∑

i=0

(ϕ · t)i ◦
(
(λn+1−k+i · ϕ) · t

0
)
.
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Note that En(ϕ) does not necessarily live in AΦ[t
−1]. However the composite

Ên(ϕ) := (idΦ1−n(A) ·t
1−n)n ◦ En(ϕ) : A

n → Φ1−n(A)

does, where for any morphisms ψ : A→ B inAΦ[t
−1] we denote by ψn the morphism⊕n

j=1 ψ : An =
⊕n

j=1 A → Bn =
⊕n

j=1 B and idΦ1−n(A) ·t
1−n is a morphism from

A→ Φ1−n(A) in AΦ[t
−1]. So the composite

Fn(ϕ) := Ên(ϕ) ◦ Uλ1,λ2,...,λn
(ϕ) : Φ(A)n → Φ1−n(A)n

of morphisms in AΦ[t
−1] is given by the matrix




idΦ1−n(A) ·t
−n 0 · · · 0 w1(ϕ)

0 idΦ1−n(A) ·t
−n · · · 0 w2(ϕ)

...
...

. . .
...

...
0 0 · · · idΦ1−n(A) ·t

−n wn−1(ϕ)
0 0 · · · 0 idΦ1−n(A) ·t

−n − wn(ϕ)




where we define for k = 1, 2, , . . . n

wk(ϕ) = idΦ1−n(A) ·t
1−n ◦ vn =

k−1∑

i=0

λn+1−k+i · (idΦ1−n(A) ·t
i+1−n) ◦ (Φ−i(ϕ(i)) · t0)

for the morphism ϕ(i) = ϕ ◦ Φ(ϕ) ◦ · · · ◦ Φi(ϕ) : Φi+1(A) → A in A.
Note that we get functors of Waldhausen categories

Ên : Nil(A,Φ) → Ch(AΦ[t
−1])w

sending an object (A,ϕ) to Ên(ϕ) and

F̂n : Nil(A,Φ) → Ch(AΦ[t
−1])w

sending an object (A,ϕ) to F̂n(ϕ). One easily checks using Additivity and suitable
exact sequences ofAΦ[t, t

−1]- chain complexes that we get the equality of morphisms
Ks(Nil(A,Φ)) → Ks(Ch(AΦ[t

−1])w)

Ks(F̂n) = Ks(Uλ1,λ2,...,λn
) +Ks(Ên).

Note that wn(ϕ) = 0 if ϕ(N) = 0, since λ1 = λN−1 = 0 is assumed. Hence F̂n ◦ J is
given by a lower triangular matrix, all whose entries on the diagonal are given by

idΦ1−n(A) ·t
−n. The matrix Ên(ϕ) is given by a lower triangular matrix, all whose

entries on the diagonal are given by idΦ−n(A) ·t
−n. This implies that the image of

both Ks(Ên) ◦Ks(J) and Ks(F̂n) ◦Ks(J) lie in the image of

Ks(A)
Ks(I)
−−−−→ Ks(Nil(A,Φ))

Ks(χΦ)
−−−−−→ Ks(Ch(AΦ[t

−1])w).

Hence the same statement is true for Ks(Uλ1,λ2,...,λn
) ◦ Ks(J). This finishes the

proof that the pairing Ts of (10.7) extends to a continuous pairing

T̂s : W (Λ)×Ks(Nil(A; Φ)) → Ks(Nil(A; Φ))

for s ∈ Z.
Since the image of η is dense in W (R), this continuous extension is unique.
Obviously the pairing Tn turns Kn(Nil(A; Φ)) into a module over the commuta-

tive ring K0(End(Λ)). We conclude from the uniqueness of the extension T̂n that
it turns Kn(Nil(A; Φ)) into a module over the commutative ring W (Λ).

This finishes the proof of Lemma 10.8. �
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10.d. Consequences of the W (Λ)-module structure on the Nil-terms.

Theorem 10.11. Let N be a natural number. Let Λ be a commutative ring
with unit 1Λ. Consider an additive Λ-category A together with an automorphism

Φ: A
∼=
−→ A of additive Λ-categories. Let P be a set of primes. Then we get for

every n ∈ Z:

(i) If Λ is an Z[P−1]-algebra, then Kn(Nil(A; Φ)) is an Z[P−1]-module;
(ii) If Λ is a Zp-algebra, then Kn(Nil(A; Φ)) is a Zp-module;

(iii) If N · 1Λ is zero in Λ, then Kn(Nil(A; Φ))[1/N ] vanishes.

Proof. Using Lemma 10.8 the proof in Weibel [41, Corollary 3.3] extends to our
setting, see also [9, Lemma 3.10]. �

11. The Farrell-Jones Conjecture for totally disconnected groups
at the prime p

The goal of this section is to prove Theorem 1.12. It will follow from Theo-
rem 11.11, which confirms a version of the Cop-Farrell-Jones Conjecture that is
more general than the one already treated in [5].

Throughout this section G is a td-group, i.e., a locally compact second countable
totally disconnected topological Hausdorff group.

11.a. Various sets of primes. We need the following sets of primes.

Notation 11.1 (P(G)). Let G be a td-group. Define P(G) to be the set of primes
q, for which there exist compact open subgroups U ′ and U of G such that U ′ ⊆ U
holds and q divides the index [U : U ′].

If G is a compact td-group, then P(G) is the set of all primes q for which there
exists a compact open subgroup U of G such that q divides [G : U ]. We have

P(Ũ) = {p} for the compact open subgroup Ũ ⊆ Q appearing in Assumption 1.9,

provided that Ũ is non-trivial.

Lemma 11.2. Let G′ be a (not necessarily open or compact) subgroup of the td-
group G. Then P(G′) ⊆ P(G).

Proof. Consider compact open subgroups L′ and L of G′ satisfying L′ ⊆ L. Since
L is a compact subgroup of G, we can find a compact open subgroup L0 ⊆ G with
L ⊆ L0, see [5, Lemma 2.3]. Since L′ is open in L, we can find an open subset
V ⊆ L0 with L′ = V ∩ L. Since L′ is a compact subgroup of L0 and contained in
V , we can find a compact open subgroup L′

0 of L0 such that L′ ⊆ L′
0 ⊆ V holds,

see [5, Lemma 2.3]. Hence we get L′
0 ∩ L = L′. This implies that the obvious map

L/L′ → L0/L
′
0 is injective and hence [L : L′] divides [L0 : L′

0]. Since L0 and L′
0 are

compact open subgroups of G, any prime q that divides [L : L′] divides [L0 : L′
0]

and hence belongs to P(G). This implies P(G′) ⊆ P(G). �

Remark 11.3. Suppose that G has up to conjugacy only finitely many maximal
compact open subgroups K1, K2, . . . , Kn. (This assumption is satisfied for every

reductive p-adic group.) Suppose that Assumption 1.9 is satisfied and let Ũ be
the compact open subgroup appearing in Assumption 1.9. For i = 1, 2, . . . n the

subgroupKi∩Ũ has finite index inKi and we define Pi to be the finite set consisting
of those primes that divide the index [Ki : (Ki ∩ Ũ)]. One easily checks that

P(Ki) ⊆ P(Ki ∩ Ũ) ∪ Pi holds. Since P(Ũ) ⊆ {p}, we conclude from Lemma 11.2

P(G) ⊆
n⋃

i=1

P(Ki) ⊆ {p} ∪
n⋃

i=1

Pi.

In particular P(G) is a finite set.
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The notion of a Hecke category with G-support is introduced in [6, Definition 5.1].
Given a Hecke category with G-support and a open subgroup U ⊆ G, one obtains
by restriction to U the Hecke category with U -support B|U , see [6, Notation 5.4].
For the notions of a uniform regular or l-uniform regular additive category we refer
to [4, Definition 6.2].

Notation 11.4 (P(B)). Let B be Hecke category with G-support. Let P(B) be
the largest set of primes with the property that for any d ∈ Z with d ≥ 0 there is
l(d) ∈ Z with l(d) ≥ 0 such that for every compact open subgroup U of G with
P(U) ⊆ P(B) the category (BU )⊕[Zd] is l(d)-uniformly regular coherent.

Notation 11.5 (P(R)). For a ring R let P(R) be the set of primes which are
invertible in R.

Remark 11.6. If the ring R satisfies Q ⊆ R, or, equivalently, that P(R) consists
of all primes, then the Hecke algebra H(G,R, ρ, ω) and the Hecke category with
Q-support B(Q,R, ρ, ω) are introduced in [7, Section 2.2] and [6, Sections 6.B and
6.C] for any G, N , pr : G→ Q, ρ, and ω as appearing in [7, Section 2.1] and in [6,
Section 6.A]. We will assume that N ⊆ G is locally central, i.e., its centralizer in G
is an open subgroup of G. If we replace the condition Q ⊆ R by Assumption 1.9
applied in the case where G is replaced by Q, then H(G,R, ρ, ω) and B(G,R, ρ, ω)
are still defined. Recall that Assumption 1.9 is satisfied if there exists a prime p
such that p is invertible in R and Q is a subgroup of a reductive p-adic group,
see [30, Lemma 1.1] and Lemma 11.2.

Now suppose that R is uniformly regular and that Assumption 1.9, is satisfied.
Then P(R) is contained in P(B(G,R, ρ, ω)). The proof of this fact is the same as
the one of [7, Theorem 7.2], one just has to observe that [7, Lemma 7.4 (3)] still
holds if one replaces the condition Q ⊆ R by the condition that the order of the
finite group |D| is invertible in R, and that Idem(B(G,R, ρ, ω)⊕) is equivalent to
Idem(H(G,R, ρ, ω)

⊕
), see [6, Lemma 6.6].

Given a set P of primes, a map of abelian groups is called a P-isomorphism if
it becomes an isomorphism after inverting every element in P . A map of spectra
f : E → F is called a weak P-homotopy equivalence if πn(F ) : πn(E) → πn(F) is a
P-isomorphism for all n ∈ Z. If P is empty, this is of course the same as a weak
homotopy equivalence.

11.b. The Farrell-Jones Conjecture in prime characteristic. The construc-
tions of the following two assembly maps can be found in [5, Definitions 3.8 and 5.10].
Since the following proofs are rather formal, the reader does not need to know the
definitions and constructions of B, B[G/U ], B[G/U ], B|U , B[G/U ]⊕, B[G/U ]⊕[Z

d],

C
+

G(P ), and C
+,0,♯
G (M) and of the following two assembly maps to understand the

assertions and proofs of this subsection.

Definition 11.7 (Cop-assembly map). Let G be a td-group and let B be a Hecke
category with G-support. The projections G/U → G/G induce a map

(11.8) hocolim
G/U∈OrCop(G)

K
(
B[G/U ]

)
→ K

(
B[G/G]

)
≃ K(B).

We call this the Cop-assembly map for B.

Definition 11.9 (Cvcy-assembly map). Let G be a td-group and let B be a Hecke
category with G-support. The maps P → ∗ for P ∈ PCvcy(G) induce a map

(11.10) hocolim
P∈PCvcy(G)

K
(
CG(P ;B)

)
→ K

(
CG(∗;B)

)
.

This is the Cvcy-assembly map for B.
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We want to prove

Theorem 11.11. Let p be a prime. Assume that G is modulo a compact subgroup
isomorphic to a closed subgroup of a reductive p-adic group. Let B be a category
with G-support.

(i) Let N be a natural number such that for the category B with G-support
the underlying Z-category B is obtained by restriction with the projection
Z → Z/N from a Z/N -category B′. Then the Cop-assembly map of (11.8)
is a PN -equivalence for every n ∈ Z, where PN is the set of primes dividing
N ;

(ii) The Cop-assembly map (11.8) is a weak homotopy equivalence, if P(G) ⊆
P(B) holds.

If P(B) consists all primes, then Theorem 11.11 (ii) has already been proved
in [5, Theorem 1.11 and Theorem 1.15].

In Subsection 11.c the proof of Theorem 11.11 will be obtained by inspecting
the proof in [5, Theorem 1.11 and Theorem 1.15] taking Theorem 10.11 (iii) into
account.

11.c. Reduction from Cop to Cvcy. In this subsection we give the proof of The-
orem 11.11.

We conclude from by [5, Theorem 5.15],

Theorem 11.12. The Cvcy-assembly map (11.9) is a weak homotopy equivalence
for any Hecke category with G-support B if G is a reductive p-adic group.

So in order to prove Theorem 11.11 in the special case where G is a reductive
p-adic group, we only need to analyse the reduction from Cvcy to Cop which has
been carried out in [5, Theorem 14.1] in the case that every prime number lies in
P(B). In the sequel we often omit B from the notation.

Theorem 11.13. Let P be a (possibly empty) set of primes. Suppose that the
Cvcy-assembly map (11.10)

hocolim
P∈PCvcy(G)

K
(
CG(P )

)
→ K

(
CG(∗)

)

is a P-equivalence and that for every P ∈ PCvcy(G) the canonical map

hocolim
(Q,f)∈POrCom(G)↓P

K
(
C

+

G(Q)
)
→ K

(
C

+

G(P )
)

is a P-equivalence.
Then the Cop-assembly map (11.8)

hocolim
G/U∈OrCop(G)

K
(
B[G/U ]

)
→ K

(
B[G/G]

)
≃ K(B)

is also P-equivalence.

Proof. The arguments on the proof that [5, Theorem 14.7] implies [5, Theorem 14.1]
presented in [5, Section 14.B] carry directly over to our setting and lead directly to
a proof of Theorem 11.13. Namely, in the diagram appearing [5, Section 14.B] the
maps α1 and α̂1 are P-equivalences and the other four maps labeled by ≃ are also
weak homotopy equivalences in our setting. �

Fix P = (G/V1, . . . , G/Vn) with Vi ∈ Cvcy. LetKi ⊆ Vi be the maximal compact
open subgroup of Vi. Set M := (G/K1, . . . , G/Kn). The quotients Γi := Vi/Ki

are either infinite cyclic or trivial. Let Γ := Γ1 × · · · × Γn. Then Γ is a finitely
generated free abelian group of rank at most n. There are canonical maps hi : Γi →
endOr(G)(G/Ki), sending γ ∈ Γi to G/Ki → G/Ki, gKi 7→ gγ̂Ki for any choice
γ̂ ∈ Vi which is mapped to γ under the projection Vi → Γi. These combine to
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an action of Γ on M by morphisms in POr(G)(M). We write Γ for the category
with exactly one object ∗Γ whose endomorphisms are given by Γ. The action of Γ
on M determines a functor h : Γ → POrCom(G) ↓ P that sends ∗Γ to π : M → P .

Now h induces a map K
(
C

+,0,♯
G (M)

)
→ K

(
C

+,0,♯
G (M)[Γ]

)
, where C

+,0,♯
G (M)[Γ] is

the additive category of twisted Laurent series with respect to the Γ-action on

C
+,0,♯
G (M).

Lemma 11.14. Let P be a set of primes (which may be empty). Then the following
assertions are equivalent

(i) For all P ∈ PCvcy(G) the canonical map appearing in Theorem 11.13

hocolim
(Q,f)∈POrCom(G)↓P

K
(
C

+

G(Q)
) ∼
−→ K

(
C

+

G(P )
)

is a P-equivalence;
(ii) The canonical map

hocolim
Γ

K
(
C

+,0,♯
G (M)

)
→ K

(
C

+,0,♯
G (M)[Γ]

)

is a P-equivalence.

Proof. This follows from [5, Proposition 14.9] and the commutative diagram [5,
14.10] since the proof of [5, Proposition 14.9], the construction of the commutative
diagram [5, 14.10] and the fact that the map (1) to (9) appearing there are weak
homotopy equivalences presented in [5, Subsections 14.C, 14.E, and 14.F] carry
directly over to our setting, since no assumptions about B are used. �

Lemma 11.15. Let N be a natural number such that for the category B with G-
support the underlying Z-category B is obtained by restriction with the projection
Z → Z/N from a Z/N -category B′. Then the

hocolim
Γ

K
(
C

+,0,♯
G (M)

)
→ K

(
C

+,0,♯
G (M)[Γ]

)

is a P-homotopy equivalence for P the set of primes dividing N .

Proof. By inspecting the definitions the additive category C
+,0,♯
G (M) inherits the

structure of an additive Z/N -category. Now one proceeds by induction over the
rank for Γ using the isomorphism (4.5) and Theorem 10.11 (iii). �

Lemma 11.16. If P(G) ⊆ P(B) holds, then then canonical map

hocolim
Γ

K
(
C

+,0,♯
G (M)

)
→ K

(
C

+,0,♯
G (M)[Γ]

)

is a weak homotopy equivalence.

Proof. The proof that the map appearing in Lemma 11.16 is a weak homotopy
equivalence is a variation of the one appearing in [5, Section 14.H]. By the argu-
ments in [5, Section 14.H] it suffices to check that the map [5, (14.14)] is a weak
homotopy equivalence, since the map appearing in Lemma 11.16 is the map (7)
appearing at the very bottom of the diagram [5, (14.10)]. Hence it suffices to
check that the argument appearing [5, Lemma 14.16] carries over if we assume
P(G) ⊆ P(B) and do not use not the stronger [5, Assumption 3.11], which is
equivalent to requiring that we can choose P(B) to be the set of all primes, since
then we can apply [4, Theorem. 14.1], exactly as we did in [5, Section 14.H] after
the proof of [5, Lemma 14.16].

Let (Ur,i)r=1,...,n,i∈N≥1
be the system of compact open subgroups of G as they

appear in [5, Section 14.H]. In view of the proof of [5, Lemma 14.16], it remains
to explain why for every i ∈ {1, 2, . . . , n} and every element λ ∈ |Qi| the category(
(B|Gλ

)⊕
)
[Zd] is l-uniformly regular coherent, where |Qi| = G/U1,i × · · · ×G/Un,i.
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In the proof of [5, Lemma 14.16] we had used [5, Assumption 3.11] precisely at this
place, but nowhere else in the proof of [5, Theorem 14.7], and we do not want to
use this assumption here. In the situation here it suffices to show P(Gλ) ⊆ P(B).
This follows from the assumption P(G) ⊆ P(B) and Lemma 11.2. This finishes the
proof of Lemma 11.16. �

Proof of Theorem 11.11. Theorem 11.11 follows from Theorem 11.12, Theorem 11.13,
Lemma 11.14, Lemma 11.15, and Lemma 11.16, provided that G is a reductive
p-adic group. Now the general case, where G is modulo a compact subgroup iso-
morphic to a closed subgroup of a reductive p-adic group, follows from the proof
of [6, Theorem 1.5], which directly carries over to our setting. �

We state the following version of the Cop-Farrell-Jones Conjecture.

Notation 11.17 (P(B, G)). Let B be Hecke category with G-support. Define
P(B, G) to be the set of primes q that belong to P(G) but not to P(B).

Conjecture 11.18 ((Generalized) Cop-Farrell-Jones Conjecture). The td-group G
satisfies the (Generalized) Cop-Farrell-Jones Conjecture, if for every Hecke category
with G-support the Cop-assembly map (11.8)

hocolim
G/U∈OrCop(G)

K
(
B[G/U ]

)
→ K

(
B[G/G]

)
≃ K(B)

is a P(B, G)-equivalence.

If P(G) ⊆ P(B), then Theorem 11.11 (ii) confirms Conjecture 11.18 if G is
modulo a compact subgroup isomorphic to a closed subgroup of a reductive p-adic
group.

11.d. Proof of Theorem 1.12.

Proof of Theorem 1.12. (i) We conclude from Lemma 11.15 that the canonical map

hocolim
Γ

K
(
C

+,0,♯
G (M)

)
→ K

(
C

+,0,♯
G (M)[Γ]

)

is a PN -homotopy equivalence for PN the set of primes dividing N provided that
N is a natural number such that for the category B with G-support the underlying
Z-category B is obtained by restriction with the projection Z → Z/N from a Z/N -
category B′.

Assertion (i) of Theorem 1.12 follows from Theorem 11.11 (ii), as for the specific
choice of B = B(G,R, ρ, ω) appearing in Remark 11.6 the map assembly (1.10) is
obtained from the Cop-assembly map (11.8) by applying πn, see [6, Section 6.D] and
B(G,R, ρ, ω) has the required property above because of the assumption N ·1R = 0.

(ii) In view of the arguments appearing in the proof of [8, Theorem 2.16] based on
the equivariant Atyiah-Hirzebruch spectra sequence of [8, Theorem 2.1], it suf-
fices to show that Kn(H(p−1(U), R, ρ|p−1(U), ω)) ∼= HG

n (G/U ;KB(G,R,ρ;ω)) van-
ishes for every n ≤ −1 and every compact open subgroup U ⊆ Q. The argu-
ments in the proof of [7, Lemma 8.1] apply also to our setting and imply that
it suffices to show for any compact normal subgroup K ⊆ p−1(U) with K ∈ P
that Kn(H(p−1(U)//K,R, ρ|p−1(U), ω)) = 0 holds for n ≤ −1 The proof of [7,

Lemma 7.5] carries over to our setting and implies thatH(p−1(U)//K,R, ρ|p−1(U), ω)
can be identified as a crossed product ring R ∗D for some group D invertible in R.
As R is Artinian, R ∗D and hence are H(p−1(U)//K,R, ρ|p−1(U), ω) are Artinian.
Now we conclude from [25, Theorem 4.15 (ii)] applied in the case of a trivial group
and k = 0 that Kn(H(p−1(U)//K,R, ρ|p−1(U), ω)) = 0 holds for n ≤ −1. This
finishes the proof of assertion (ii). K ⊆ Q.
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(iii) The proof that the assembly (1.10) is bijective is analogous to the proof of
assertion (i) but now using Lemma 11.16 instead of Lemma 11.15. �

Remark 11.19. It is conceivable that assertion (ii) appearing in Theorem 1.12
is still true if we do not invert N . (We have no proof.) For instance it may be
true that, for a prime p, an Artinian ring R for which p is invertible in R, and a
subgroup G of a reductive p-adic group,

Kn

(
H(G;R)

)
= 0 for n ≤ −1

holds and the map

colim
U∈SubCop(G)

K0(H(U ;R)) → K0(H(G;R))

is bijective, or, equivalently, that the assembly map (1.10) is bijective for n ≤ 0.
(The latter is not true in general under the assumptions above for n ≥ 1.)
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