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INHERITANCE PROPERTIES OF THE FARRELL-JONES

CONJECTURE FOR TOTALLY DISCONNECTED GROUPS

BARTELS, A. AND LÜCK, W.

Abstract. In this paper we formulate and lay the foundations for the K-
theoretic Farrell-Jones Conjecture for the Hecke algebra of totally disconnected
groups. The main result of this paper is the proof that it passes to closed
subgroups. Moreover, we carry out some constructions such as the diagonal
tensor product and prove some results that will be used in the actual proof of
the Farrell-Jones Conjecture for reductive p-adic groups, which will appear in

a different paper.

1. Introduction

1.a. The Cop-Farrell-Jones Conjecture for Hecke algebras of td-groups.

Let R be a (not necessarily commutative) associative unital ring with Q ⊆ R.
Let G be a td-group i.e., locally compact second countable totally disconnected
topological Hausdorff group. Let H(G;R) be the associated Hecke algebra. We
are interested in the algebraic K-groups Kn(H(G;R)). In particular the projective
class group K0(H(G;R)) is important for the theory of smooth representations of
G with coefficients in R.

The following Conjecture 1.1 was stated in [11, Conjecture 119 on page 773] for
R = C. A ring is called uniformly regular, if it is Noetherian and there exists a
natural number l such that any finitely generated projective R-module admits a
resolution by projective R-modules of length at most l. We write Q ⊆ R, if for any
integer n the element n · 1R is a unit in R. Examples for uniformly regular rings R
with Q ⊆ R are fields of characteristic zero.

Conjecture 1.1 (Cop-Farrell-Jones Conjecture for Hecke algebras). A td-group G
satisfies the Cop-Farrell-Jones Conjecture for Hecke algebras if for every uniformly
regular ring R with Q ⊆ R the map induced by the projection ECop(G) → G/G
induces for every n ∈ Z an isomorphism

HG
n (ECop(G);KR)

∼=
−→ HG

n (G/G;KR) = Kn(H(G;R)).

Here HG
n (−;KR) is a smooth G-homology theory satisfying HG

n (G/U ;KR) ∼=
Kn(H(U ;R)) for every open subgroup U of G and n ∈ Z, see Subsection 2.c, and
ECop(G) is the classifying space for proper smooth G-actions, see Section 3.

The isomorphism above yields a computation of the K-theory of H(G;R) in
terms of the K-theory of the compact open subgroups of G. In particular it implies
that the canonical map induced by the various inclusions K ⊆ G for the set Cop of
compact open subgroups of G

(1.2)
⊕

K∈Cop

K0(H(K;R)) → K0(H(G;R))
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is surjective. This and further consequences of Conjecture 1.1 will be discussed in
Theorem 6.11.

We will show in [3, Cor. 1.8] that Conjecture 1.1 is true if G is a reductive p-adic
group.

Dat [6] has shown that the map (1.2) is rationally surjective for G a reductive
p-adic group and R = C. In particular, the cokernel of it is a torsion group.
Dat [5, Conj. 1.11] conjectured that this cokernel is w̃G-torsion. Here w̃G is a
certain multiple of the order of the Weyl group of G. Dat proved this conjecture for
G = GLn(F ) [5, Prop. 1.13] and asked about the integral version, see the comment
following [5, Prop. 1.10]. A consequence of the proof of Conjecture 1.1 is that the
integral version is true.

1.b. The Cop-Farrell-Jones Conjecture for Hecke categories with G-support.
The Farrell-Jones Conjecture 1.1 for Hecke algebras does not pass to subgroups.
Note that subgroups are always understood to be closed. It is interesting to have
this inheritance to subgroups, since important subgroups of a reductive p-adic group
such that the Borel subgroup are not necessarily reductive p-adic groups again.
Therefore we develop in this paper a more general version of the Farrell-Jones Con-
jecture 1.1, which has the inheritance to closed subgroups more or less built in and
for which the proof of the Farrell-Jones Conjecture for reductive p-adic groups in [3]
carries over. The idea is to allow more general coefficients than just a ring R.

We will introduce in Definition 2.1 the notion of a category with G-support B
and associate to it a G-homology theory HG

n (−;K∞
B ) in Section 2. Then one can

consider the assembly map

HG
n (ECop(G);K

∞
B ) → HG

n (G/G;K
∞
B ) = πn(K

∞(B⊕))

and ask whether it is bijective for all n ∈ Z. In this generality this is not true.
However, if one uses the stronger notion of a Hecke category with G-support of
Definition 5.1 and requires a regularity assumption, then the following version is
realistic.

Conjecture 1.3 (The Cop-Farrell-Jones Conjecture). A td-group G satisfies the
Cop-Farrell-Jones Conjecture if for every Hecke category with G-support B satisfying
condition (Reg), see Definition 3.2, the Cop-assembly map induced by the projection
ECop(G) → G/G

HG
n (ECop(G);K

∞
B ) → HG

n (G/G;K
∞
B ) = πn(K

∞(B⊕))

is bijective for all n ∈ Z.

We will show in [3, Thm. 1.11].

Theorem 1.4. Every reductive p-adic group satisfies the Cop-Farrell-Jones Con-
jecture 1.3.

Given a uniformly regular ring R with Q ⊆ R, one can construct a Hecke cate-
gory with G-support B satisfying the condition (Reg), see Definition 3.2, such that
the assembly map appearing in Conjecture 1.3 is the assembly map appearing in
Conjecture 1.1. Hence Conjecture 1.3 implies Conjecture 1.1. All this is explained
in Section 6.c.

1.c. The main theorem about inheritance to subgroups. The main theorem
of this papers is

Theorem 1.5. Suppose that the Cop-Farrell-Jones Conjecture 1.3 holds for the
td-group G.



INHERITANCE PROPERTIES OF THE FARRELL-JONES CONJECTURE 3

Then it also holds for every td-group G′ that contains a (not necessarily open)
normal compact subgroup K ′ ⊆ G′ such that G′/K ′ is isomorphic to some subgroup
of G.

Theorem 1.5 will follow from Theorem 4.1 and Lemma 5.3.

1.d. Some input for the proof of the Cop-Farrell-Jones Conjecture for

Hecke algebras of td-groups. In Section 7 we present some constructions and
results which will be needed in the proof of Conjecture 1.3 for every reductive p-adic
group in [3]. There we mainly deal with the construction and the main properties
of the so called diagonal tensor product.

1.e. Acknowledgments. The paper is funded by the ERC Advanced Grant
“KL2MG-interactions” (no. 662400) of the second author granted by the Euro-
pean Research Council, by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – GZ 2047/1, Projekt-
ID 390685813, Hausdorff Center for Mathematics at Bonn, and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics –
Geometry – Structure.
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2. The smooth K-theory spectrum and the associated smooth

G-homology theory

2.a. The definition of a category with G-support. A Z-category is a small
category A enriched over the category of Z-modules, i.e., for every two objects A
and A′ in A the set of morphisms morA(A,A

′) has the structure of a Z-module
such that composition is a Z-bilinear map.

Definition 2.1. Let G be a td-group. A category with G-support is a Z-category
B together with a map that assigns to every morphism ϕ in B a compact subset
suppB(ϕ) of G, often denoted by supp(ϕ) for short. For B ∈ B we set supp(B) :=
supp(idB).

We require the following axioms for any objectB, and any morphisms ϕ, ϕ′ : B →
B′:

(i) supp(ϕ) = ∅ ⇐⇒ ϕ = 0;
(ii) supp(ϕ′ ◦ ϕ) ⊆ supp(ϕ′) · supp(ϕ);
(iii) supp(ϕ+ ϕ′) ⊆ supp(ϕ) ∪ supp(ϕ′) and supp(− idB) = supp(B).

We are not requiring that supp(s) ⊆ G is open, since later we want to allow not
necessarily open group homomorphism α : G→ G′ in Theorem 4.1.

2.b. The smooth K-theory spectrum associated to a category with G-
support. Let B be a category with G-support in the sense of Definition 2.1. Let
S be a smooth G-set, i.e., a G-set such that the isotropy group of each point
in S is an open subgroup of G. Define the Z-category B[S] as follows. Objects
are pairs (x,B) consisting of an element x ∈ S and an object B ∈ B such that
supp(B) ⊆ Gx. A morphism ϕ : (x,B) → (x′, B′) is a morphism ϕ : B → B′ in
B satisfying supp(ϕ) ⊆ Gx,x′ := {g ∈ G | x′ = gx}. Composition is given by
the composition in B. The identity morphism idB yields the identity morphism
(x,B) → (x,B) in B[S]. The structure of a Z-category on B induces the structure
of a Z-category on B[S].

Let f : S → S′ be a G-map. It induces a functor of Z-categories B[f ] : B[S] →
B[S′] by sending (x,B) to (f(x), B) and a morphism ϕ : (x,B) → (x′, B′) given by
a morphism ϕ : B → B′ in B to the morphism ϕ : (f(x), B) → (f(x′), B′) given by
ϕ : B → B′ in B again.

Given a Z-category A, one can associate to it an additive Z category A⊕ with
functorial finite sums. One can assign to any additive categoryA its non-connective
K-theory spectrum K∞(A). All these classical notions are summarized with refer-
ences to the relevant papers in [1, Section 2 and 3].

Definition 2.2 (The smooth K-theory spectrum). We obtain a functor called the
smooth K-theory spectrum associated to the category with G-support B with the
category of smooth G-sets as source

K∞
B : G-SETSsm → Spectra, S 7→ K∞(B[S]⊕).

Lemma 2.3. Let S be a smooth G-set. For an orbit O ⊆ G\S, let jO : O → S be
the inclusion of G-sets.

Then the induced map
∨

O∈G\S

K∞
B (jO) :

∨

O∈G\S

K∞
B (O) → K∞

B (S)

is a weak homotopy equivalence of spectra.
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Proof. Let (x,B) and (x′, B′) be objects in B[S]. Then morB[S]((x,B), (x′, B)) 6=
{0} holds only, if x and x′ belong to the same G-orbit in S. Therefore we obtain
an equivalence of additive categories

(2.4)
⊕

O∈G\S

B[jO]⊕ :
⊕

O∈G\S

B[O]⊕ → B[S]⊕.

Now the claim follows from the fact that algebraic K-theory of additive categories
is compatible with direct sums over arbitrary index sets, see [12, Corollary 7.2]. �

Remark 2.5. All the definitions and results of this Subsection 2.b do make sense,
if one drops the condition smooth. However, then the resulting spectrum over the
orbit category Or(G) will turn out not to be the appropriate one, when we will
give proofs of the Farrell-Jones Conjecture and will have to consider homogeneous
spaces, which are not necessarily smooth, in forthcoming papers, e.g. [3]. This will
actually be one of the main technical difficulties. To avoid such problems, we will
consider in this paper only smooth spaces and the smooth orbit category. This
will be sufficient to state the Farrell-Jones Conjecture and prove some inheritance
properties.

2.c. Smooth G-homology theories. Let Orsm(G) be the smooth orbit category.
Objects are homogeneous spaces G/H for H ⊆ G open and morphisms are G-maps.

Note that G/H ′ is for any open subgroup H ′ ⊆ G a discrete space and hence
mapG(G/H,G/H

′) carries the discrete topology for any subgroup H ⊆ G. Hence
we can view Orsm(G) just as a category without taking any topology on the set of
objects or set of morphisms between two objects into account. So in particular all
the material of Davis-Lück [7] applies, if we take the category C to be Orsm(G).

Let X be a smooth G-CW -complex, i.e., a G-CW -complex, all whose isotropy
groups are open. For an introduction to G-CW -complexes we refer for instance
to [8, Chapter 1 and 2]. We can assign to X a contravariant Orsm(G)-space

(2.6) OG(X) : Orsm(G) → Spaces, G/H 7→ mapG(G/H,X).

Remark 2.7 (OG(X) is a Orsm(G)-CW -complex). If X a smooth G-CW -complex,
then OG(X) is a free Orsm(G)-CW -complex in the sense of [7, Definition 3.8].
In the sequel we will just talk about a Orsm(G)-CW -complex instead of a free
Orsm(G)-CW -complex. Note that in (2.6) we consider mapG(G/H,X) as a topo-

logical space in order to ensure that the canonical bijection mapG(G/H,X)
∼=
−→ XH

sending f to f(eH) is a homeomorphism. If G/L is an object in Orsm(G), then
G/L is a discrete space and the topology on mapG(G/H,G/L) is the discrete one.
Hence the topological space mapG(G/H,G/L) agrees with the set of morphisms
morOrsm(G)(G/H,G/L) equipped with the discrete topology. This is one key ingre-

dient in the proof that OG(X) is a Orsm(G)-CW -complex. The other two ingredi-
ents are that for a G-pushout

∐
i∈I G/Li × Sn−1 //

��

Xn−1

��∐
i∈I G/Li ×Dn // Xn−1

and a subgroup H ⊆ G, we obtain after applying mapG(G/H,−) the pushout
∐
i∈I mapG(G/H,G/Li)× Sn−1 //

��

mapG(G/H,Xn−1)

��∐
i∈I mapG(G/H,G/Li)×Dn // mapG(G/H,Xn)
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and that mapG(G/H ;X) carries the weak topology with respect to the filtration
by the subspaces mapG(G/H,Xn).

Let E : Orsm(G) → Spectra be any covariant Orsm(G)-spectrum. Given a
smooth G-CW -complex X , we obtain a spectrum E(X) := OG(X)+ ∧Orsm(G) E.
The smash product ∧Orsm(G) is defined for instance in [7, Section 1] and denoted by
⊗Orsm(G) there. Given a pair (X,A) of smooth G-CW -complexes, let E(X,A) be
the cofiber of the maps of spectra E(A) → E(X) induced by the inclusion A→ X .
Define

(2.8) HG
n (X,A;E) := πn(E(X,A)).

Then we obtain a G-homology theory HG
∗ (−,E) on the category of smooth

G-CW -complexes, i.e., we obtain a covariant functor from the category of pairs
of smooth G-CW -complexes to the category of Z-graded abelian groups sending
(X,A) to H∗(X,A;E) satisfying the obvious axioms, namely, G-homotopy invari-
ance, the long exact sequence of a pair, excision, and the disjoint union axiom. We
get for every object G/H in Orsm(G) and every n ∈ Z an isomorphism

(2.9) πn(E(G/H))
∼=−→ Hn(G/H ;E),

which is natural in G/H and E. We leave it to the reader to figure out the straight-
forward proof that all these claims follow from [7, Sections 4 and 7].

3. The Cop-assembly map for categories with G-support

Let G be a td-group. We denote by ECop(G) its classifying G-CW -complex
for the family Cop of compact open subgroups. This is a proper smooth G-CW -
complex such that the H-fixed point set ECop(G)

H is weakly contractible for every
compact open subgroup H ⊆ G. A G-CW -complex X is proper and smooth if
and only if each of its isotropy group is compact and open, see [8, Theorem 1.23
on page 18]. Two models for ECop(G) are G-homotopy equivalent. This follows
from the universal property that for any proper smooth G-CW -complex X there
is up to G-homotopy precisely one G-map from X to ECop(G). We mention that
the canonical G-map ECop(G) → JCop(G) is a G-homotopy equivalence, if JCop(G)
denotes the numerable version of the classifying space for the family Cop, see [9,
Lemma 3.5]. For more information about classifying spaces for families, we refer
for instance to [9].

Problem 3.1. For which categories B with G-support is the Cop-assembly map
induced by the projection ECop(G) → G/G

HG
n (ECop(G);K

∞
B ) → HG

n (G/G;K
∞
B ) = πn(K

∞(B⊕))

bijective for all n ∈ Z?

Given an additive category A, we have defined in [1, Definition 6.2 (iii)] the
notion l-uniformly regular coherent for a natural number l. The additive categoryA
is l-uniformly regular coherent, if and only if its idempotent completion Idem(A) is
l-uniformly regular coherent, see [1, Lemma 6.4 (vi)]. Intrinsic equivalent definitions
of the notion l-uniformly regular coherent for idempotent categories are presented
in [1, Lemma 6.6]. For instance, if l ≥ 2 and A is idempotent complete, A is l-
uniformly regular coherent, if and only if for every morphism f1 : A1 → A0 we can
find a sequence of length l in A

0 → Al
fl−→ Al−1

fl−1
−−−→ · · ·

f2
−→ A1

f1
−→ A0,
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which is exact at Ai for i = 1, 2, . . . , n in the sense that for any object B in A

the induced sequence homA(B,Ai+1)
(fi+1)∗
−−−−−→ homA(B,Ai)

(fi)∗
−−−→ homA(B,Ai−1)

is exact.
Given an additive categoryA, we define by A[Z] the associated additive category

of finite Laurent series over A as follows. It has the same objects as A. Given two
objects A and B, a morphism f : A → B in A[Z] is a formal sum f =

∑
i∈Z

fi · ti,
where fi : A → B is a morphism in A from A to B and only finitely many of the
morphisms fi are non-trivial. If g =

∑
j∈Z

gj · tj is a morphism in A[Z] from B to
C, we define the composite g ◦ f : A→ C by

g ◦ f :=
∑

k∈Z

( ∑

i,j∈Z,
i+j=k

gj ◦ fi

)
· tk.

For a natural number d we define inductively A[Zd] = (A[Zd−1])[Z].
Without some regularity assumptions the answer to Problem 3.1 is in general not

positive, as the example G = Z and R = Z[t]/t2 together with the Bass-Heller-Swan
decomposition shows, see [13, Theorem 3.2.22 on page 149 and Exercise 3.2.23 on
page 151]

Definition 3.2 (Reg). A category B be with G-support in the sense of Defini-
tion 2.1 satisfies the condition (Reg), if for every natural number d there is a nat-
ural number l(d) such that for every compact open subgroup K ⊆ G the additive
category B[G/K]⊕[Z

d] is l(d)-uniformly regular coherent.

Remark 3.3. The Farrell-Jones Conjecture formulated for categories with G-
support would predict that the answer to Problem 3.1 is positive for every td-group
G and every category B with G-support that satisfies condition (Reg) of Defini-
tion (3.2).

However, this is already for discrete groupsG a far too optimistic statement, since
the notion of a category with G-support is very general and the actual proofs of the
Farrell-Jones Conjecture for certain classes of discrete groups have no chance to go
through in this general setting, the problem is the construction of certain transfer,
see [3, Section 13]. The adequate formulation of the Farrell-Jones Conjecture has
been given in Conjecture 1.3.

4. Inheritance to subgroups modulo normal compact subgroups

The main results of this section is

Theorem 4.1 (Inheritance to closed subgroups modulo normal compact groups).
Let α : G → G′ be a (not necessarily open) group homomorphism with compact
kernel. Let B be a category with G-support.

Then there exists a category with G′-support indα B with the following properties:

(i) If B satisfies condition (Reg), see Definition 3.2, then indα B also satisfies
condition (Reg);

(ii) There is a a commutative diagram

HG
n (ECop(G);KB)

∼=
��

// HG
n (G/G;KB)

∼=
��

HG′

n (ECop(G
′);Kindα B) // HG′

n (G′/G′;Kindα B)

whose vertical arrows are bijective.

Its proof needs some preparation. The notion of categories with G-support has
been designed to with Theorem 4.1 in mind. Its proof needs some preparation.
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4.a. The definition of the induced category with G′-support. Fix a (not
necessarily open) group homomorphism of td-groups α : G→ G′. We always require
for α that im(α) ⊆ G′ is closed and that the induced group homomorphism G →
im(α) is an identification, or equivalently, is open. We want to assign to a category
with G-support B a category with G′-support indα B as follows.

We first define a Z-category indα B. An object (B0, g
′
0) in indα B is a pair

consisting of elements B0 ∈ ob(B) and g′0 ∈ G′. Given two objects (B0, g
′
0) and

(B1, g
′
1) in indα B, define the Z-module of morphisms between them by

(4.2) morindα B

(
(B0, g

′
0), (B1, g

′
1)
)
= morB(B0, B1).

Composition and the identity elements in indα B are given by the corresponding
ones in B.

The support function for indα B assigs to a morphism ϕ : (B0, g
′
0) → (B1, g1) the

compact subset of G′ given by

(4.3) suppindα B(ϕ) := g′1α(suppB(ϕ))g
′−1
0 .

In particular we get

(4.4) suppindα B

(
(B0, g

′
0)
)
= g′0α(suppB(B0))g

′−1
0

for an object (B0, g
′
0). This finishes the definition of the category with G′-support

indα B.

4.b. The smooth K-theory spectrum is compatible with induction. The
smooth K-theory spectrum K∞

B of Definition 2.2 induces a covariant Orsm(G)-
spectrum denoted in the same way

K∞
B : Orsm(G) → Spectra, G/H 7→ K∞(B[G/H ]⊕).

Given any covariant Orsm(G)-spectrum E : Orsm(G) → Spectra, define the covari-
ant Orsm(G

′)-spectrum α∗E,

(4.5) α∗E : Orsm(G
′) → Spectra,

G′/H ′ 7→ mapG′(α∗G/?, G
′/H ′)+ ∧Orsm(G) E(G/?).

Note that for an open subgroup H ⊆ G the subgroup α(H) of G′ is automatically
closed, since im(α) ⊆ G′ is closed and α(H) ⊆ im(α) is an open and hence a closed
subgroup of im(α) as α : G → im(α) is an identification. It does not matter that
α∗(G/H) = G′/α(H) is not necessarily a smooth G′-space, since G′/H ′ is discrete
and hence mapG′(α∗G/H,G

′/H ′) ∼= (G′/H ′)α(H) carries the discrete topology. In
particular we get the covariant Orsm(G

′)-spectrum α∗K
∞
B . The construction above

applied to indα B instead of B yields another covariant Orsm(G
′)-spectrum K∞

indα B.

Proposition 4.6. There is a weak homotopy equivalence of covariant Orsm(G
′)-

spectra, natural in B,

U : α∗K
∞
B

≃
−→ K∞

indα B.

Its proof needs some preparation.
Given a smooth G′-set S′, we construct a functor of Z-categories

(4.7) W : B[α∗S′] → indα B[S
′]

as follows. It sends an object (x,B) in B[α∗S′], which consists of an element x ∈ S′

and an object B in B to the object
(
x, (B, e′)

)
in indα B[S′] given by x ∈ S′ and

the object (B, e′) in indα B for e′ ∈ G′ the unit. This makes sense, since the object
(x,B) satisfies suppB(B) ⊆ Gx, we have Gx = α−1(G′

x) and we compute

suppindα B[S′](B, e
′)

(4.4)
= e′α(suppB(B))e′−1 = α(suppB(B)) ⊆ α(Gx) ⊆ G′

x.
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Consider two objects (x0, B0) and (x1, B1). From the definitions we get identifica-
tions

morB[α∗S′]

(
(x0, B0), (x1, B1)

)
= {ϕ ∈ morB(B0, B1) | suppB(ϕ) ⊆ Gx0,x1},

and

morindα B[S′]

(
W (x0, B0),W (x1, B1)

)

= morindα B[S′]

(
(x0, (B0, e

′)), (x1, (B1, e
′))

)

= {ϕ ∈ morindα B

(
(B0, e

′), (B1, e
′)
)
| suppindα B(ϕ) ⊆ G′

x0,x1
}

(4.2), (4.3)
= {ϕ ∈ morB(B0, B1) | e

′α(suppB(ϕ))e
′−1 ⊆ G′

x0,x1
}

= {ϕ ∈ morB(B0, B1) | α(suppB(ϕ)) ⊆ G′
x0,x1

}

= {ϕ ∈ morB(B0, B1) | suppB(ϕ) ⊆ α−1(G′
x0,x1

)}

= {ϕ ∈ morB(B0, B1) | suppB(ϕ) ⊆ Gx0,x1}.

Under these identification we define

W : morB[α∗S′]

(
(x0, B0), (x1, B1)

)
→ morindα B[S′]

(
W (x0, B0),W (x1, B1)

)

by the identity on {ϕ ∈ morB(B0, B1) | suppB(ϕ) ⊆ Gx0,x1}. One easily checks
that W is a well-defined functor of Z-categories.

Lemma 4.8. The functor W : B[α∗S′] → indα B[S′] of (4.7) is an equivalence of
Z-categories and is natural in S′ and B.

Proof. The naturality statements are obvious. In view of the definition of W
on morphisms, it remains to show that for any object

(
x, (B, g′)

)
in indα B[S′]

there is an object of the shape
(
x′, (B′, e′)

)
in indα B[S′] such that

(
x, (B, g′)

)
and(

x′, (B′, e′)
)
are isomorphic. Since

(
x, (B, g′)

)
belongs to indα B[S′], we have

(4.9) g′α(suppB(B))g′−1 (4.3)
= suppindα B(g

′, B) ⊆ G′
x.

The identity idB : B → B in B determines an isomorphism ϕ : (B, e′α(suppB(B)))
∼=
−→

(B, g′α(suppB(B))) in indα B. We compute

suppindα B(ϕ)
(4.3)
= g′α(suppB(B))e′−1 = g′α(suppB(B))g′−1g′

(4.9)

⊆ G′
xg

′ = G′
g′−1x,x.

Analogously we get suppindα B(ϕ
−1) ⊆ G′

x,g′−1x. Hence we obtain an isomorphism

ϕ :
(
g′−1x, (B, e′α(suppB(B)))

) ∼=
−→

(
x, (B, g′α(suppB(B)))

)

in indα B[S′]. This finishes the proof of Lemma 4.8. �

Given a smooth G-set S, we define a map of spectra

(4.10) V (S) : mapG(G/?, S)+ ∧Orsm(G) K
∞
B (G/?) → KB(S)

by sending f ⊗ z for f ∈ mapG(G/H, S)+, z ∈ K∞
B (G/H) and an open subgroup

H ⊆ G to K∞
B (f)(x).

Lemma 4.11. The map of spectra V (S) is a weak homotopy equivalence
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Proof. This follows from Lemma 2.3, since under the obvious identifications

mapG(G/?, S)+ ∧Or(G) K
∞
B (G/?)

= mapG

(
G/?,

∐

O∈G\S

O

)

+

∧Or(G) K
∞
B (G/?)

=

( ∐

O∈G\S

mapG(G/?, O)

)

+

∧Or(G) K
∞
B (G/?)

=

( ∨

O∈G\S

mapG(G/?, O)+

)
∧Or(G) K

∞
B (G/?)

=
∨

O∈G\S

(
mapG(G/?, O)+ ∧Or(G) K

∞
B (G/?)

)

=
∨

O∈G\S

K∞
B (O),

the map V (S) becomes the map appearing in Lemma 2.3. �

Now we are ready to give the proof of Proposition 4.6.

Proof. Given a smooth G′-set S′, we have the natural adjunction isomorphism of
discrete Orsm(G)-sets

(4.12) a : mapG′(α∗G/?, S
′)

∼=
−→ mapG(G/?, α

∗S′).

If we precompose V (α∗S′) defined in (4.10) with the induced isomorphism

a+ ∧Orsm(G) id : mapG′(α∗G/?, S
′)+ ∧Orsm(G) K

∞
B (G/?)

∼=
−→ mapG(G/?, α

∗S′)+ ∧Orsm(G) K
∞
B (G/?),

we obtain a weak homotopy equivalence of spectra, natural in S′,

V ′(S′) : mapG′(α∗G/?, S
′)+ ∧Orsm(G) K

∞
B (G/?)

≃
−→ K∞

B [α∗S′].

If we compose V ′(S′) with the weak homotopy equivalenceK∞(W⊕) induced on the
K-theory spectrum by the equivalence of Z-categoriesW , see (4.7) and Lemma 4.8,
we obtain a weak homotopy equivalence of spectra, natural in S′,

U(S′) : mapG′(α∗G/?, S
′)+ ∧Orsm(G) K

∞
B (G/?)

≃
−→ K∞

indα B(S
′).

If we let S′ run through the objects of Orsm(G
′), we get from the collection of the

U(S′)-s the desired functor U. This finishes the proof of Proposition 4.6. �

4.c. The Adjunction Theorem for spectra and categories with G-support.
Let α : G→ G′ be a (not necessarily open) group homomorphism. LetE : Orsm(G) →
Spectra be a covariantOrsm(G)-spectrum. We have defined the covariantOrsm(G

′)
spectrum α∗E in (4.5).

Theorem 4.13 (Adjunction Theorem for spectra). Let (X ′, A′) be a pair of smooth
G′-CW -complexes. Then:

(i) The G′-pair α∗(X ′, A′) obtained from (X ′, A′) by restriction with α is a
pair of smooth G-CW -complexes;

(ii) We obtain an isomorphism of Z-graded abelian groups

αsm
∗ (X ′, A′) : HG

n (α
∗(X ′, A′);E)

∼=
−→ HG′

n (X ′, A′;α∗E),

which is natural in (X ′, A′) and E;
(iii) The collection of the isomorphisms αsm

∗ (X ′, A′) yield an isomorphism of
smooth G′-homology theories.
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Proof. For simplicity we consider only the case A′ = ∅.

(i) The functor sending a G′-space X ′ to the G-space α∗X ′ obtained from X ′ by
restriction with α is compatible with pushouts and directed colimits. If H ′ ⊆ G′

is an open subgroup, then α∗G′/H ′ is G-homeomorphic to the disjoint union of
its G-orbits and each of these G-orbit is G-homeomorphic to G/H for some open
subgroup H ⊆ G. This implies that α∗X ′ is a smooth G-CW -complex, if X ′ is a
smooth G-CW -complex, the n-skeleton (α∗X)n of α∗X is defined to be α∗(Xn).

(ii) and (iii) Given a smooth G′-CW -complex X ′, we construct a map of spectra

a(X ′) : (α∗E)(X ′) → E(α∗X ′).

We get from the definitions, the adjunction (α∗, α
∗), and the associativity of the

smash products over the smooth orbit categories identifications

(α∗E)(X ′) =
(
mapG′(G′/?′, X ′)×Orsm(G′)mapG′(α∗G/?, G

′/?′)
)
+
∧Orsm(G)E(G/?),

and

E(α∗X ′) = mapG′(α∗G/?, X
′)+ ∧Orsm(G) E(G/?).

Hence it suffices to construct for every objectG/H inOrsm(G) a map of (unpointed)
spaces

mapG‘(G
′/?′, X ′)×Orsm(G′) mapG′(α∗G/H,G

′/?′) → mapG′(α∗G/H,X
′),

which is natural in G/H . It is given by (u, v) 7→ u ◦ v.
The collection of the maps of spectra a(X ′) defines a transformation of smooth

G′-homology theories

αsm
∗ (−) : HG

∗ (α∗(−);E) → HG′

n (−;α∗E),

where the left hand side is indeed a smooth G′-homology theory because of asser-
tion (i).

It remains to show that αsm
∗ (X ′) is an isomorphism for every smooth G′-CW -

complex X ′. Since the G′-homology theories satisfy the disjoint union axiom, the
canonical maps

colimn→∞HG
∗ (α∗X ′

n;E)
∼=
−→ HG

∗ (α∗X ′;E);

colimn→∞HG′

∗ (X ′
n;α∗E)

∼=
−→ HG′

∗ (X ′;α∗E),

are isomorphisms, since the non-equivariant proof in [14, Proposition 7.53 on page 121]
carries directly over to the equivariant setting. Hence we can assume without loss of
generality that X ′ is n-dimensional. Now using the Mayer-Vietoris sequences, the
disjoint union axiom, G-homotopy invariance and the Five-Lemma, one reduces the
proof to the special case X ′ = G′/H ′ for H ′ ⊆ G′ an open subgroup. This special
case follows from the definition (4.5) and the adjunction (4.12). This finishes the
proof of Theorem 4.13. �

We conclude from Proposition 4.6 and Theorem 4.13 using the obvious version
of [7, Theorem 3.11].

Theorem 4.14 (Adjunction Theorem for categories with G-support). Let (X ′, A′)
be a pair of smooth G′-CW -complexes. Let B be a category with G-support. Then:

(i) We obtain an isomorphism of Z-graded abelian groups

αsm
∗ (X ′, A′) : HG

n (α∗(X ′, A′);K∞
B )

∼=
−→ HG′

n (X ′, A′;K∞
indα B),

which is natural in in (X ′, A′) and B;
(ii) The collection of the isomorphisms αsm

∗ (X ′, A′) yields an isomorphism of
smooth G′-homology theories.
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4.d. Proof of Theorem 4.1. We begin with assertion (i). Consider a compact
open subgroup K ′ ⊆ G′. We obtain from (2.4) and Lemma 4.8 an equivalence of
additive categories

⊕

O′∈G\α∗(G′/K′)

B[O′]⊕[Z
d]

≃
−→ indα B[G

′/K ′]⊕[Z
d].

Since the kernel of α is compact, each O′ is a proper smooth G-orbit. We conclude
from condition (Reg) that B(O′) is l(d)- uniformly regular coherent. Since the direct
sum (over an arbitrary index set) of l(d)-uniformly regular coherent categories is
again l(d)-uniformly regular coherent, see [1, Lemma 11.3 (ii)], indα B[G′/K ′]⊕[Z

d]
is l(d)- uniformly regular coherent.

Finally we prove assertion (ii). If Com is the family of compact subgroups,
then the canonical map ECop(G) → ECom(G) is a G-homotopy equivalence and
the canonical map ECop(G

′) → ECom(G
′) is a G′-homotopy equivalence, see [9,

Lemma 3.5]. Since the kernel of α is compact, α∗ECom(G
′) is a model for ECom(G).

We conclude that α∗ECop(G
′) is a model for ECop(G). Obviously α∗G′/G′ = G/G

holds. Hence we get from the Adjunction Theorem 4.14 for categories with G-
support a commutative diagram

HG
n (ECop(G);KB)

∼=
��

// HG
n (G/G;KB)

∼=
��

HG′

n (ECop(G
′);Kindα B) // HG′

n (G′/G′;Kindα B)

whose vertical arrows are bijective. This finishes the proof of Theorem 4.1.

5. Hecke categories with G-support

Next we enrich the notion of category with G-support in the sense of Defini-
tion 2.1 so that with this new notion one can hope that the answer to Problem 3.1
has a chance to be positive.

Recall that for two subsets A,B ⊆ G we put A ·B = {a · b | a ∈ A, b ∈ B} ⊆ G.

Definition 5.1 (Hecke categories with G-support). A Hecke category with G-
support is a category B with G-support such that the following holds.

(i) Subgroups
suppB is a compact subgroup of G for all objects B. For any mor-
phism ϕ : B → B′ we have suppϕ = suppB′ · suppϕ · suppB′. The
sets suppB′\ suppϕ and suppϕ/ suppB are both finite;

(ii) Translation
For every object B in B and element g ∈ G there exists an object B′

together with an isomorphism ψ : B
∼=
−→ B′ in B such that supp(B′) =

g supp(B)g−1, supp(ψ) = g supp(B), and supp(ψ−1) ⊆ g−1 supp(B′′)
holds;

(iii) Morphism Additivity
For any finite disjoint decomposition

supp(ϕ) =

m∐

i=1

Li

for closed subsets Li ⊆ supp(ϕ) satisfying supp(B′) · Li · supp(B) = Li
for i = 1, 2, . . . ,m, there is a collection of morphisms ϕi : B → B′ for
i = 1, 2, . . . ,m such that ϕ =

∑m
i=1 ϕi and supp(ϕi) = Li hold;



INHERITANCE PROPERTIES OF THE FARRELL-JONES CONJECTURE 13

(iv) Support cofinality
For any objectB and any subgroup L ⊆ supp(B) of finite index, there is an
object B|L and morphisms iB,L : B → B|L and rB,L : B|L → B such that
supp(B|L) = L, supp(iB,L) = supp(rB,L) = supp(B), and rB;L ◦ iB,L =
idB hold.

Moreover, for any object B and any subgroups L′ ⊆ L ⊆ supp(B)
of finite index we require (B|L)L′ = B|L′ , iB,L′ = iB|L,L′ ◦ iB,L, and
rB,L′ = rB,L ◦ rB|L,L′ and for L = supp(B) we require B|L = B and
iB,L = rB,L = idB.

One can view condition Morphism Additivity as a kind of sheaf-condition. Note
that Translation and Support cofinality are not just conditions, an additional datum
is required.

Lemma 5.2.

(i) Let ϕi : B → B′ be a collection of morphisms for i = 1, . . . , r such that
supp(ϕi) ∩ supp(ϕj) = ∅ holds for i 6= j and we have

∑r
i=1 ϕi = 0. Then

ϕi = 0 for i = 1, . . . , r;
(ii) The collection of morphisms ϕi appearing in the axiom Morphism Addi-

tivity is unique.
Proof. (i) We use induction over r. The induction r = 1 beginning is trivial, the
induction step from r to r+1 done as follows. Put ϕ′ =

∑r
i=1 ϕi. Then supp(ϕ′) ⊆⋃r

i=1 supp(ϕi) and hence supp(ϕ′) ∩ supp(ϕr+1) = ∅. Since 0 =
∑r+1
i=1 ϕi = 0, we

have ϕr+1 = −ϕ′. Since

supp(−ϕ′) = supp((− idB′) ◦ ϕ′) ⊆ supp(− idB′) · supp(ϕ′)

= supp(B′) · supp(ϕ′) = supp(ϕ′)

holds, we get supp(ϕr+1) = supp(−ϕ′) = supp(ϕ′). We conclude supp(ϕr+1) =
supp(ϕ′) = ∅ which implies ϕr+1 = 0 and ϕ′ = 0. We get ϕi = 0 for i = 1, 2, . . . , r
from the induction hypothesis applied to ϕ′ =

∑r
i=1 ϕi.

(ii) This follows directly from assertion (i) �

One easily checks

Lemma 5.3. Let α : G → G′ be a group homomorphism of td-groups. Consider a
Hecke category B with G-support in the sense of Definition 5.1

Then the category with G′-support indα B associated to the underlying category
with G-support B defined in Subsection 4.a inherits the structure of a Hecke category
with G′-support.

Proof. We leave the elementary proof that all the axioms appearing in Definition 2.1
are satisfied for indα B to the reader except for Translation. Given an object (B, g′)
in indα B and an element g′0 ∈ G′, we consider the object (B, g′0g

′). Its support
satisfies

suppindα B(B, g
′
0g

′)
(4.4)
= g′0g

′α(suppB(B))(g′0g)
−1

= g′0
(
g′α(suppB(B)g−1)

)
g′−1
0

(4.4)
= g′0 suppindα B

(
B, g′)g′−1

0 .

Let ψ : (B, g′) → (B, g′0g
′) be the morphism in indα B given by idB in B. Its support

satisfies

suppindα B(ψ)
(4.3)
= g′0g

′α(suppB(idB))g
′−1 = g′0g

′α(suppB(B))g′−1

(4.4)
= g′0 suppindα B(B, g

′).
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Let ψ′ : (B, g′0g
′) → (B, g′) be the morphism in indα B given by idB in B. Its

support satisfies

suppindα B(ψ
′)

(4.3)
= g′α(suppB(idB))(g

′
0g

′)−1 = g′α(suppB(B))g′−1g′0

= g′−1
0

(
(g′0g

′)α(suppB(B))(g′0g
′)−1

) (4.4)
= g′−1

0 suppindα B(B, g0g
′).

The morphisms ψ and ψ′ in indα B are inverse to one another. �

Notation 5.4 (B|H). For a subgroup H ⊆ G, define B|H to be Z-subcategory of
B consisting of objects B and morphisms ϕ : B → B′ in B for which suppB(B) and
suppB(ϕ) are contained in H .

The main benefit of the axiom Translation appearing in Definition 5.1 is the
following lemma

Lemma 5.5. There is an equivalence of Z-categories

F : B|H
≃
−→ B[G/H ].

Proof. The functor F sends an object B to the object (B, eH) and a morphism
ϕ : B → B′ to the morphism (B, eH) → (B, eH) given by ϕ again. Obviously F is
faithfull and full. In order to show that it is an equivalence of Z-categories, it suffices
to show that any object (B, gH) in B[G/H ] is isomorphic to an object in the image

of F . This follows from the fact that we obtain an isomorphism ψ : (B, gH)
∼=
−→

(B′, eH) in B[G/H ], if B′ is an object and ψ′ : B
∼=
−→ B′ is an isomorphism in B with

supp(B′) = g−1 supp(B)g, supp(ψ) = g−1 supp(B), and supp(ψ−1) = g supp(B).
The existence of the pair (B′, ψ) is guaranteed by Translation. �

In particular we get for every subgroup H ⊆ G and n ∈ Z an isomorphism

(5.6) Kn((B|H)⊕) ∼= πn(KB(G/H)).

Our main example of a Hecke category with G-support coming from Hecke al-
gebras will be discussed in Section 6.

Remark 5.7 (Discrete group G). Suppose that the td-group G is discrete.
Then the Cop-Farrell-Jones Conjecture for Hecke algebras 1.1 is the same as the

K-theoretic Farrell-Jones Conjecture with coefficients in the ring R and the family
F in of finite subgroups for a uniformly regular ring R, see [10, Conjecture 12.1
and Theorem 12.39]. Moreover, the Cvcy-Farrell-Jones Conjecture of [3, Conjec-
ture 5.12] agrees with K-theoretic Farrell-Jones Conjecture with coefficients in ad-
ditive categories, see [10, Conjecture 12.11]. This follows from the following con-
siderations concerning Hecke categories with G-support and additive G-categories.

Let A be a G-Z-category, i..e, a Z-category with G-action by automorphisms of
Z-categories. Then we can consider the Z-category A[G]. It has the same set of
objects as A. A morphism

∑
g∈G fg · g : A→ A′ is a finite sum of morphisms in A,

where fg has gA as source and A′ as target. The composition is given by
( ∑

g′′∈G

f ′
g′′ · g

′′

)
◦

(∑

g′∈G

fg′ · g
′

)
:=

∑

g∈G

( ∑

g′g′′∈G
g′′g′=g

f ′
g′′ ◦ g

′′fg′

)
.

It becomes a Hecke category with G-support in the sense of Definition 5.1, if we
define the support of every object A to be {e} and the support of a morphism∑

g∈G fg · g to be {g ∈ G | fg 6= 0}.
Now let B be a Hecke category with G support. Let Be be the subcategory

of B consisting of all morphisms and objects with support {e}. Thanks to the
axiom Translation we can choose for g0 ∈ G and A0 ∈ ob(Be) an isomorphism
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ψ(g0, A0) : A0

∼=
−→ B(g0, A0) in B with B(g0, A0) ∈ ob(Be) and supp(ψ(g0, A0)) =

{g0}. We require B(e, A0) = A0 and ψ(e, A0) = idA0 .
Let A be the following G-Z-category. Objects are pairs (g0, A0) with g0 ∈ G

and A0 ∈ ob(Be). Morphisms (g0, A0) → (g1, A1) are morphisms ϕ : B(g0, A0) →
B(g1, A1) in Be. We define a G-action on A as follows. For g ∈ G and (g0, A0) ∈
ob(A) we set g · (g0, A0) := (gg0, A0). To define the G-action on morphisms, let
ϕ : (g0, A0) → (g0, A1) be a morphism in A, i.e., ϕ : B(g0, A0) → B(g1, A1) is a
morphism in Be. Then g · ϕ : (gg0, A0) → (gg1, A)1 is the morphism B(gg0, A0) →
B(gg1, A1) in Be defined by requiring that the following diagram in B commutes

B(gg0, A0)

Ψ(gg0,A)−1

��

g·ϕ
// B(gg1, A1)

A

ψ(g0,A0)

��

A′

ψ(gg1,A1)

OO

B(g0, A0)
ϕ

// B(g1, A1)

ψ(g1,A1)
−1

OO

Now consider A[G]. It is a Hecke category with G-support as described above. The
point is that there is a functor of Z-categories

(5.8) F : A[G] → B

such that F respects the supports and induces for every G-set S an equivalence of
additive categories

Idem(F [S]⊕) : Idem((A[G])[S]⊕) → Idem(B[S]⊕),

where (A[G])[S] and B[S] have been defined in Subsection 2.b.
The construction of F is as follows. Set F (g0, A0) := B(g0, A0). Recall that

a morphism ϕ : (g0, A0) → (g1, A1) in A[G] is of the form ϕ =
∑

g0∈G
ϕg · g,

where ϕg : B(gg1, A1) → B(g1, A1) is a morphism in Be. Now we put F (ϕ) =∑
g F (ϕg · g) : B(g0A0) → B(g1, A1), where F (ϕg · g) is the composite

B(g0, A0)
Ψ(g0,A0)

−1

−−−−−−−→ A0
ψ(gg0,A0)
−−−−−−→ B(gg0, A0)

ϕg

−−→ B(g1, A1).

One easily checks that F respects the support of objects and morphisms and the
Z-structures. Moreover, F is full and faithful by the following consideration. Con-
sider two objects (g0, A0) and (g1, A1) in A[G]. Let µ : F (g0A0) = B(g0, A0) →
F (g1A1) = B(g1, A1) be any morphisms in B from F (g0A0) to F (g1, A1). Be-
cause of the axiom Morphism Additivity and Lemma 5.2 (ii) there is precisely one
collection of morphisms {µg : B(g0, A0) → B(g1, A1) | g ∈ supp(ψ)} such that
supp(µg) = {g} holds for g ∈ supp(µ) and we have µ =

∑
g∈G µg. Define a mor-

phisms ϕg in Be by the composite

ϕg : B(gg0, A0)
ψ(gg0,A0)

−1

−−−−−−−−→ A0
ψ(g0,A0)
−−−−−−→ B(g0, A0)

ϕg

−−→ B(g1, A1).

Define a morphism in A[G] by φ =
∑

g∈supp(µ) ϕg : (g0, A0) → (g1, A1). One easily

checks that F (ϕ) = µ and any other morphism φ′ : (g0, A0) → (g1, A1) in A[G] with
F (ϕ′) = µ satisfies ϕ = ϕ′.

Consider any object B in B. By the axiom Support Cofinality we can find an

object B0 ∈ Be and morphisms B
i
−→ B0

r
−→ B in B such that supp(i) = supp(r) =

supp(B) and r ◦ i = idB holds. Now one easily checks that Idem(F [S]⊕) is an
equivalence of additive categories for every G-set S.
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6. The example coming from Hecke algebras

6.a. The basic setup for Hecke algebras. We briefly recall the basic setup
of [2, Section 2.A].

LetR be a (not necessarily commutative) associative unital ring with Q ⊆ R. Let
G be a td-group with a normal (not necessarily open or central) subgroup N ⊆ G.

Put Q = G/N . Then we obtain an extension of td-groups 1 → N → G
pr
−→ Q→ 1.

Consider a group homomorphism ρ : G → aut(R), where aut(R) is the group of
automorphism of the unital ring R. We will assume that the kernel of ρ is open, in
other words, G acts smoothly on R.

A normal character is a locally constant group homomorphism

ω : N → cent(R)×

to the multiplicative group of central units of R satisfying ω(gng−1) = ω(n) for all
n ∈ N and g ∈ G. We will need the following compatibility condition between the
normal character and the G-action ρ on R, namely for n ∈ N , g ∈ G, and r ∈ R
we require ρ(g)(ω(n)) = ω(n) and ρ(n)(r) = r.

Let µ be a Q-valued Haar measure on Q, i.e., a Haar measure µ on Q such that
for every compact open subgroup K ⊆ Q we have µ(K) ∈ Q>0. Given any Haar
measure µ on Q, we can normalize it to a Q-valued Haar measure by choosing a
compact open subgroup L0 ⊆ Q and defining µ′ = 1

µ(L0)
· µ.

6.b. The construction of the Hecke algebra. An element s in the Hecke algebra
H(G;R, ρ, ω) is given by a map s : G→ R with the following properties

• The map s : G→ R is locally constant;
• The image of its support supp(s) := {g ∈ G | s(g) 6= 0} ⊆ G under
pr: G→ Q is a compact subset of Q;

• For n ∈ N and g ∈ G we have s(ng) = ω(n) · s(g) and s(gn) = s(g) · ω(n).

Let Pρ,ω the set of compact open subgroups K ⊆ G satisfying ρ(k)(r) = r for
k ∈ K, r ∈ R and ω(n) = 1 for n ∈ N ∩K. We call an element K ∈ Pρ,ω admissible
for s : G → R, if for all g ∈ G and k ∈ K we have s(kg) = s(g) and s(gk) = s(g).
Note that the existence of an admissible element K ∈ Pρ,ω is equivalent to the
condition that s is locally constant.

For two elements s, s′ in H(G;R, ρ, ω), define (s + s′)(g) = s(g) + s′(g) and
(−s)(g) = −s(g) for g ∈ G. In order to define the product, choose K ∈ Pρ,ω which
is admissible for s and admissible for s′, and a transversal T for the projection
p : G → G/NK, where NK is the subgroup of G given by {nk | n ∈ N, k ∈ K}.
Define the product s · s′ by

(s · s′)(g) := µ(pr(K)) ·
∑

g′∈T

s(gg′) · ρ(gg′)(s′(g′−1)).(6.1)

It is not hard to check that this definition is independent of the choice of K and
T . One may think of this as an integral (s · s′)(g) =

∫
G s(gx) · ρ(gx)(s

′(x−1))dµ(x),
where µ is a left invariant Haar measure. More information and details can be
found in [2, Section 2.B].

If ρ is trivial and N = {1} and hence G = Q, then we write

(6.2) H(G;R) = H(G;R, ρ, ω).

6.c. The Hecke category with Q-support associated to Hecke algebras.

Next we define a Hecke category B = B(G;R, ρ, ω) with Q-support.
The set of objects in B is the set Pρ,ω defined in Subsection 6.b. A morphism

s : K → K ′ is a function s : G→ R satisfying

• the image of {g ∈ G | s(g) 6= 0} under pr : G→ Q is compact;
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• s(gk) = s(g) for g ∈ G and k ∈ K;
• s(k′g) = s(g) for g ∈ G and k′ ∈ K ′;
• s(ng) = ω(n) · s(g) for n ∈ N and g ∈ G;
• s(gn) = s(g) · ω(n) for n ∈ N and g ∈ G.

Note that s defines an element in H(G;R, ρ, ω). The composition in B is given by
the multiplication in H(G;R, ρ, ω), see (6.1). The identity idK of an object K is
defined by

idK(g) =

{
1

µ(pr(K)) · ω(n) if g = nk for n ∈ N, k ∈ K;

0 otherwise.

The support of a morphism s is defined by suppB(s) = pr({g ∈ G | s(g) 6= 0}). In
particular the support of an object K is pr(K).

Next we define a G-action on B. For an object K and an element g ∈ G we
define g ·K := gKg−1. For a morphism s : K → K ′ define g · s : gKg−1 → gK ′g−1

by

(g · s)(g′) :=
µ(pr(K))

µ(pr(gKg−1))
· s(g−1g′g) for g′ ∈ G.

Define for an object K and g ∈ G an isomorphism Ωg(K) : K
∼=−→ gKg−1 by

Ωg(K)(g′) =

{
1

µ(pr(gKg−1))ω(n) if g′ = gnk for n ∈ N, k ∈ K;

0 otherwise.

It inverse is given by Ωg−1(gKg−1) : gKg−1 → K.
We leave the elementary proof to the reader that B satisfies all the axioms ap-

pearing in Definition 5.1 except for the axioms Translation and Support cofinality.
Translation follows from the G-action and the isomorphisms Ωg−1(gKg−1) con-
structed above, since pr : G → Q is surjective. For Support cofinality, consider an
object K of B and a compact open subgroup L ⊆ suppB(K) = pr(K). We define
the object K|L in B to be K ∩ pr−1(L). We have to define morphisms i : K → K|L
and r : K|L → K in B such that r ◦ i = idK holds and both suppB(i) and suppB(r)
agree with suppB(K) := pr(K). This is done by putting for g′ ∈ G

(6.3) i(g′) = r(g′) =

{
1

µ(pr(K)) · 1R if g′ = nk for n ∈ N, k ∈ K;

0 otherwise,

Let H(G;R, ρ, ω)[Zd] be the group ring of Zd with coefficients in H(G;R, ρ, ω).
Denote by H(G;R, ρ, ω)[Zd] the Z-category which has precisely one object whose

endomorphisms are given by elements in H(G;R, ρ, ω)[Zd]. The Z-structure comes
from the additive structure of H(G;R, ρ, ω)[Zd], while composition comes from the
multiplicative structure of H(G;R, ρ, ω)[Zd]. Since H(G;R, ρ, ω) is a ring without
unit in general, H(G;R, ρ, ω)[Zd] is in general non-unital in the sense that there
may be no identity morphisms for objects.

For a (not necessarily unital) Z-category B, let B⊕ be the Z-category whose
objects B are n-tupels (B1, . . . , Bn) consisting of objects B1, . . . , Bn in B for n ≥ 1
or the object 0, which will be an initial and terminal object in B. A morphism
ϕ : B = (B1, . . . , Bn) → B′ = (B′

1, . . . , B
′
n′) is a collection of morphisms ϕ : Bi →

Bi′ in B for i ∈ {1, . . . , n} and i′ ∈ {1, . . . , n′}. Composition is given by matrix
multiplication. The direct sum is defined by concatenation. For any objects B and
B′ and C there is a natural isomorphism of Z-modules

morB⊕
(B,C)⊕morB⊕

(B,C)
∼=
−→ morB⊕

(B ⊕B′, C).

If B is unital, this agrees with the earlier definition introduced before Definition 2.2.
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Note that in the idempotent completion Idem(B⊕) every object has an identity
and the direct sum in B⊕ induces the structure of an additive category on Idem(B⊕).

Remark 6.4. The algebraic K-groups of the (non-unital) ring H(G;R, ρ, ω)[Zd]
are defined by

(6.5) Kn(H(G;R, ρ, ω)[Zd]) := Kn

(
Idem(H(G;R, ρ, ω)[Zd]

⊕
)
)
.

This agrees with the usual definition Kn(R) := cok(Kn(Z) → Kn(R+)) for a non-
unital ring R, where R+ is the unitalization of R, if R has an approximate unit,
which is the case for H(G;R, ρ, ω)[Zd].

Lemma 6.6. Consider any natural number d. Then there exists an equivalence of
additive categories

Idem(F ) : Idem(B(G;R, ρ, ω)⊕[Z
d])

≃
−→ Idem(H(G;R, ρ, ω)[Zd]

⊕
).

Proof. We begin with defining a functor

F : B(G;R, ρ, ω)⊕[Z
d] → Idem(H(G;R, ρ, ω)[Zd]

⊕
),

It assigns to an object K = (K1, . . . ,Kn) in B(G;R, ρ, ω)⊕[Zd] the object in
Idem(H(G;R, ρ, ω)[Zd]

⊕
) given by idK1 ⊕ · · · ⊕ idKn

. Consider a morphism s =

(si,i′) : (K1, . . . ,Kn) → (K ′
1, . . . ,K

′
n′) in B(G;R, ρ, ω)⊕. It is sent to the mor-

phism s′ = (s′i,i′) : idK1 ⊕ · · ·⊕ idKn
to idK′

1
⊕ · · · ⊕ idK′

n′
given by the same collec-

tion (si,i′ ) having in mind that each si,i′ is an element in H(G;R, ρ, ω) satisfying
idKi′

◦si,i′ ◦ idKi
= si,i′ .

Next we show that

Idem(F ) : Idem(B(G;R, ρ, ω)⊕[Z
d])

≃
−→ Idem

(
Idem(H(G;R, ρ, ω[Zd])

⊕
)
)

is an equivalence of additive categories. One easily checks that F and hence
Idem(F ) is faithful and full. Hence it suffices to show that the image of F is
cofinal in Idem(H(G;R, ρ, ω[Zd])

⊕
). Consider an object p = (pi,i′ ) : ∗n → ∗n in

Idem(H(G;R, ρ, ω[Zd])
⊕
), where ∗n is the n-tuple (∗, . . . , ∗). For each pi,i′ there

exists elements Ki and K
′
i in Pρ,ω such that idKi′

◦pi,i′ ◦ idKi
= pi,i′ holds. Put

K =
n⋂

i=1

Ki ∩
n⋂

i′=1

K ′
i′ .

Then idK ◦pi,i′ ◦ idK = pi,i′ holds for every i and i
′. Consider the object idnK : ∗n →

∗n in Idem(H(G;R, ρ, ω)
⊕
) which is given by the n-fold direct sums of copies of

idK : ∗ → ∗. Let i : p→ idnK and r : idnK → p be the morphisms in Idem(H(G;R, ρ, ω)
⊕
)

that are in both cases given by the morphism p in H(G;R, ρ, ω)
⊕
. One easily checks

r◦i = idp. Since id
n
K is in the image of F , the image of F is cofinal. Hence Idem(F )

is an equivalence of additive categories.
We obtain an equivalences of additive categories,

Idem(H(G;R, ρ, ω)[Zd]
⊕
)

≃
−→ Idem

(
Idem(H(G;R, ρ, ω[Zd])

⊕
)
)

from [2, Lemma 5.6]. Since there is an obvious isomorphism

H(G;R, ρ, ω)[Zd]
⊕

∼=
−→ H(G;R, ρ, ω)

⊕
[Zd],

Lemma 6.6 follows. �

Remark 6.7. Let U ⊆ Q be an open subgroup of Q. Then we get the equality

B(G;R, ρ, ω)|U = B(pr−1(U);R, ρ|pr−1(U), ω),

where the source has been defined in Notation 5.4.
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6.d. Consequences of the Cop-Farrell-Jones Conjecture for Hecke alge-

bras. Let KB(G;R,ρ,ω) : Orsm(G) → Spectra be the covariant Orsm(G)-spectrum
of Definition 2.2 associated to the Hecke category with Q-support B(G;R, ρ, ω),
see Subsection 6.c. We conclude from (5.6) and Remark 6.7 that for every open
subgroup U ⊆ Q and n ∈ Z there is an isomorphism

(6.8) πn
(
KB(G;R,ρ,ω)(G/U)

)
= Kn

(
H(pr−1(U);R, ρ|pr−1(U), ω)

)
.

The smooth subgroup category Subsm(G) has as objects the open subgroups H
of G. For subgroups H and K of G, denote by conhomG(H,K) the set of group
homomorphisms f : H → K, for which there exists an element g ∈ G with gHg−1 ⊂
K such that f is given by conjugation with g, i.e. f = c(g) : H → K, h 7→ ghg−1.
Note that c(g) = c(g′) holds for two elements g, g′ ∈ G with gHg−1 ⊂ K and
g′Hg′−1 ⊂ K, if and only if g−1g′ lies in the centralizer CGH = {g ∈ G | gh =
hg for all h ∈ H} of H in G. The group of inner automorphisms Inn(K) of K acts
on conhomG(H,K) from the left by composition. Define the set of morphisms

morSubCop(G)(H,K) := Inn(K)\ conhomG(H,K).

There is an obvious bijection

(6.9) K\{g ∈ G | gHg−1 ⊆ K}/CGH
∼=−→ Inn(K)\ conhomG(H,K),

KgCGH 7→ [c(g)],

where [c(g)] ∈ Inn(K)\ conhomG(H,K) is the class represented by the element
c(g) : H → K, h 7→ ghg−1 in conhomG(H,K) and K acts from the left and CGH
from the right on {g ∈ G | gHg−1 ⊆ K} by the multiplication in G.

Lemma 6.10. The (Hecke) category with Q-support B(G;R, ρ, ω) satisfies condi-
tion (Reg), see Definition 3.2, if R is uniformly regular.

Proof. This follows from [2, Theorem 7.2] and Lemma 6.6. �

Theorem 6.11. Suppose that the td-group Q satisfies the Cop-Farrell-Jones Con-
jecture 1.3, e.g., Q is modulo a normal compact subgroup a subgroup of some re-
ductive p-adic group. Let R be a uniformly regular ring with Q ⊆ R. Suppose that
N ⊆ G is locally central, i.e., its centralizer CGN in G is an open subgroup of G.
Then:

(i) The assembly map induced by the projection ECop(Q) → Q/Q

HG
n (ECop(G);KB(G;R,ρ,ω)) → HG

n (G/G;KB(G;R,ρ,ω)) = Kn(H(G;R, ρ, ω))

is an isomorphism for n ∈ Z;
(ii) The canonical map induced by the various inclusions U ⊆ Q

colim
U∈SubCop(G)

K0(H(U ;R; ρ|U , ω)) → K0(H(G;R, ρ, ω))

can be identified with the assembly map of assertion (i) in degree n = 0
and hence is bijective;

(iii) We have Kn(H(G;R, ρ, ω)) = 0 for n ≤ −1.

Proof. (i) This follows from Theorem 1.4, Theorem 1.5, and Lemma 6.10.

(ii) See [4, Theorem 1.1 (iii)].

(iii) See [4, Theorem 1.1 (iv)]. �

7. Some input for the proof of the Farrell-Jones Conjecture

In this section we provided some technical input for the proof of the Cop-Farrell-
Jones Conjecture 1.3 for reductive p-adic groups, which we will present in [3].
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7.a. The category SG(Ω). Throughout this section we fix a G-set Ω.

Definition 7.1. We define the additive category SG(Ω) as follows. Objects are
pairs V = (Σ, c) where Σ is a smooth G-set and c : Σ → Ω is a G-map. A morphism

ρ : V = (Σ, c) → V′ = (Σ′, c′) is an Σ× Σ′-matrix (ρσ
′

σ )σ∈Σ,σ′∈Σ′ over Z satisfying
the following two conditions

(7.1a) for all σ ∈ Σ the set {σ′ ∈ Σ′ | ρσ
′

σ 6= 0} is finite;

(7.1b) for all g ∈ G, σ ∈ Σ, σ′ ∈ Σ′ we have ρgσ
′

gσ = ρσ
′

σ .

The support of ρ is

supp2(ρ) :=
{(

c′(σ′)
c(σ)

) ∣∣∣ ρσ′

σ 6= 0
}
⊆ Ω× Ω.

Composition is matrix multiplication

(ρ′ ◦ ρ)σ
′′

σ :=
∑

σ′

ρ′
σ′′

σ′ ◦ ρσ
′

σ .

The identity of V = (Σ, c) is given by the morphism ρ with ρσ
′

σ = 1 for σ = σ′ and

ρσ
′

σ = 0 for σ 6= σ′.

7.b. The category BG(Ω).

Definition 7.2. Let B be a category with G-support. We define the additive
category BG(Ω) as follows. Objects are triples B = (S, π,B), where

(7.2a) S is a set,
(7.2b) π : S → Ω is a map,
(7.2c) B : S → ob(B) is a map.

MorphismsB = (S, π,B) → B′ = (S′, π′, B′) in BG(Ω) are matrices ϕ = (ϕs
′

s : B(s) →
B′(s′))s∈S,s′∈S′ of morphisms in B. Morphisms are required to be column finite:

for each s ∈ S there are only finitely many s′ ∈ S′ with ϕs
′

s 6= 0. Composition is
matrix multiplication (using the composition in B)

(ϕ′ ◦ ϕ)s
′′

s :=
∑

s′

ϕ′s
′′

s′ ◦ ϕs
′

s .

The identity of an object B = (S, π,B) is given by the morphisms ϕ with ϕσ
′

σ =

idB(σ) for σ′ = σ and ϕσ
′

σ = 0 for σ′ 6= σ. The direct sum in BG(Ω) comes from
disjoint unions, i.e.,

(S, π,B)⊕ (S′, π′, B′) ∼= (S ⊔ S′, π ⊔ π′, B ⊔B′).

Definition 7.3 (Support for BG(Ω)). The support of an object B = (S, π,B) in
BG(Ω) is defined to be

supp1(B) := π(S) ⊆ Ω

The support of a morphism ϕ : (S, π,B) → (S′, π′, B′) in BG(Ω) is defined to be

supp2(ϕ) :=
{(

π′(s′)
gπ(s)

) ∣∣∣ s ∈ S, s′ ∈ S′, g ∈ G, g ∈ suppG(ϕ
s′

s )
}
⊆ Ω× Ω.

We set supp2(B) := supp2(idB) = {(π(s), gπ(s)) | s ∈ S, g ∈ suppB(π(σ))}. The
G-support of a morphism ϕ in BG(Ω) is

suppG(ϕ) =
⋃

s∈S,s′∈S′

suppB(ϕ
s′

s ).

We set suppG(B) := suppG(idB).
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7.c. The diagonal tensor product for Hecke categories with G-support.
In this subsection we want to define a bilinear pairing

(7.4) −⊗− : SG(Ω)× B → BG(Ω),

where B is a Hecke category with G-support in the sense of Definition 5.1.
Given V = (Σ, c) ∈ SG(Ω) and B ∈ B, we define V ⊗0 B in BG(Ω) by

(7.5) V ⊗0 B :=
(
Σ, c, σ 7→ B|supp(B)σ

)
,

where supp(B)σ = supp(B)∩Gσ denotes the isotropy group of σ ∈ Σ for the action
of supp(B) ⊆ G on Σ.

For morphisms ρ : V = (Σ, c) → V′ = (Σ′, c′) in SG(Ω) and ϕ : B → B′ in B we
define

(7.6) ρ⊗0 ϕ : V ⊗0 B → V′ ⊗0 B
′

as follows. Thanks to the axiom Support cofinality, we can define a morphism
ϕσ

′

σ : B|supp(B)σ → B′|supp(B′)σ′ by the composite

(7.7) ϕσ
′

σ : B|supp(B)σ

rB,supp(B)σ−−−−−−−→ B
ϕ
−→ B′

iB′,supp(B′)
σ′

−−−−−−−−−→ B′|supp(B′)σ′ .

By the property Morphism Additivity and Lemma 5.2 (ii) one can write

ϕσ
′

σ =
∑

x∈supp(B′

σ′ )\G/ supp(B)σ

ϕσ
′

σ [x]

for morphisms ϕσ
′

σ [x] : B|supp(B)σ → B′|supp(B′)σ′ that are uniquely determined by

supp(ϕσ
′

σ [x]) = supp(ϕσ
′

σ ) ∩ x. For an element x in Gσ′\G/Gσ define the integer

(7.8) ρσ
′

xσ := ρσ
′

gσ

for any g ∈ x. This definition is indeed independent of the choice of g, since
any other choice is of the form g1gg0 for g0 ∈ Gσ and g1 ∈ Gσ′ and we get
ρσ

′

g1gg0σ = ρg1σ
′

g1gσ = ρσ
′

gσ. For an element x ∈ supp(B′)σ′\G/ supp(B)σ we abuse

the notation and put ρσ
′

xσ := ρσ
′

gσ the integer ρσ
′

pr(x)σ := ρσ
′

gσ for the projection

pr : supp(B′)σ′\G/ supp(B)σ → Gσ′\G/Gσ.
We define

(7.9) (ρ⊗0 ϕ)
σ′

σ =
∑

x∈supp(B′)σ′\G/ supp(B)σ

ρσ
′

xσ · ϕ
σ′

σ [x].

This definition makes sense, since {x ∈ supp(B′)σ′\G/ supp(B)σ | ϕσ
′

σ [x] 6= 0} is

the finite set supp(B′)σ′\ supp(ϕσ
′

σ )/ supp(B)σ.

Lemma 7.10. Let ρ : V = (Σ, c) → V′ = (Σ′, c′) and ρ′ : V′ = (Σ′, c′) → V′′ =
(Σ′′, c′′) be composable morphisms in SG(Ω) and ϕ : B → B′ and ϕ′ : B′ → B′′ be
composable morphisms in B.

Then we get in BG(Ω)

(ρ′ ◦ ρ)⊗0 (ϕ
′ ◦ ϕ) = (ρ′ ⊗0 ϕ

′) ◦ (ρ⊗0 ϕ).

Proof. For the remainder of the proof we fix σ ∈ Σ and σ′′ ∈ Σ′′. We have to show

(7.11)
(
(ρ′ ◦ ρ)⊗0 (ϕ

′ ◦ ϕ)
)σ′′

σ
=

∑

σ′∈Σ′

(ρ′ ⊗0 ϕ
′)σ

′′

σ′ ◦ (ρ⊗0 ϕ)
σ′

σ .

We introduce the following abbreviations S = supp(B), S′ = supp(B′), and
S′′ = supp(B′′). For a compact subgroup K ⊆ G and σ ∈ Σ, σ′ ∈ Σ′, σ′′ ∈ Σ′′, we
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write Kσ = K ∩Gσ, Kσ′ = K ∩Gσ′ , and Kσ′′ = K ∩Gσ′′ . Put

(7.12) Σ̂′ = {σ′ ∈ Σ′ | ρσ
′

xσ 6= 0, ϕσ
′

σ [x] 6= 0 for some x ∈ S′
σ′\G/Sσ

and ρ′
σ′′

x′σ′ 6= 0, ϕ′σ
′′

σ′ [x′] 6= 0 for some x′ ∈ Sσ′′\G/S′
σ′}.

The set {σ′ ∈ Σ′ | ϕσ
′

σ 6= 0} is finite and for σ′ ∈ Σ′ and x ∈ S′
σ′\G/Sσ we have the

implication ϕσ
′

σ [x] 6= 0 =⇒ ϕσ
′

σ 6= 0. This implies that Σ̂′ is finite.

We get from the definitions as {σ′ ∈ Σ′ | (ρ′ ⊗0 ϕ
′)σ

′′

σ′ 6= 0 and (ρ⊗0 ϕ)
σ′

σ 6= 0} is

contained in Σ̂′

(7.13)
∑

σ′∈Σ′

(ρ′ ⊗0 ϕ
′)σ

′′

σ′ ◦ (ρ⊗0 ϕ)
σ′

σ =
∑

σ′∈Σ̂′

(ρ′ ⊗0 ϕ
′)σ

′′

σ′ ◦ (ρ⊗0 ϕ)
σ′

σ .

In the first step of the proof we show that we can assume without loss of generality

Assumption 7.14. For every σ′ ∈ Σ̂′, we have supp(B′) ⊆ Gσ′ .

Consider any compact open subgroup K ′ ⊆ S′. Next we show for every σ′ ∈ Σ′

iB′|S′
σ′
,K′

σ′
◦ (ρ⊗0 ϕ)

σ′

σ =
(
ρ⊗0 (iB′,K′ ◦ ϕ)

)σ′

σ
;(7.15)

(ρ′ ⊗0 ϕ
′)σ

′′

σ′ ◦ rB′|S
σ′ ,K

′

σ′
=

(
ρ′ ⊗0 (ϕ

′ ◦ rB′|K′ ,K′

σ′
)
)σ′′

σ′ .(7.16)

We begin with (7.15). Let pr : Sσ′\G/Sσ → K ′
σ′\G/Sσ be the canonical projection.

By Morphism Additivity we get

(iB′,K′ ◦ ϕ)σ
′

σ =
∑

y∈Kσ′\G/Sσ

(iB′,K′ ◦ ϕ)σ
′

σ [y](7.17)

for morphisms (iB′,K′ ◦ ϕ)σ
′

σ [y] : B|Sσ
→ B′|K′

σ′
with supp((iB′,K′ ◦ ϕ)σ

′

σ [y]) =

supp((iB′,K′ ◦ ϕ)σ
′

σ ) ∩ y. Analogously we get

ϕσ
′

σ =
∑

x∈Sσ′\G/Sσ

ϕσ
′

σ [x](7.18)

for morphisms ϕσ
′

σ [x] : B|Sσ
→ B′|S′

σ′
with supp(ϕσ

′

σ [x]) = supp(ϕσ
′

σ ) ∩ x. We have

supp
(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)

⊆ supp(iB′|S′
σ′ ,K

′
σ′

) · supp(ϕσ
′

σ [x])

= S′
σ′ · supp(ϕσ

′

σ [x])

= supp(ϕσ
′

σ [x])

= supp(ϕσ
′

σ ) ∩ x.

By Morphism Additivity we get a decomposition

iB′|S′
σ′ ,K

′
σ′

◦ ϕσ
′

σ [x] =
∑

y∈Kσ′\G/Sσ

pr(y)=x

(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
[y](7.19)

for morphisms
(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
[y] : B|Sσ

→ B′
K′

σ′
with

supp
(
(iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x])[y]
)
= supp

(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
∩ y ⊆ y.
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Hence we get

(7.20)

iB′|S′
σ′ ,K

′
σ′

◦ ϕσ
′

σ

(7.18)
= iB′|S′

σ′ ,K
′
σ′

◦


 ∑

x∈Sσ′\G/Sσ

ϕσ
′

σ [x]




=
∑

x∈Sσ′\G/Sσ

iB′|S′
σ′ ,K

′
σ′

◦ ϕσ
′

σ [x]

(7.19)
=

∑

x∈Sσ′\G/Sσ

∑

y∈Kσ′\G/Sσ

pr(y)=x

(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
[y].

We have

(7.21) iB′|S′
σ′ ,K

′
σ′

◦ ϕσ
′

σ

(7.7)
= iB′|S′

σ′ ,K
′
σ′

◦ iB′,S′

σ′
◦ ϕ ◦ rB,Sσ

= iB′,K′

σ′
◦ ϕ ◦ rB,Sσ

= iB′|K′ ,K′

σ′
◦ iB′,K′ ◦ ϕ ◦ rB,Sσ

(7.7)
= (iB′,K′ ◦ ϕ)σ

′

σ .

Hence we get from (7.20) and (7.21)

(7.22) (iB′,K′ ◦ ϕ)σ
′

σ =
∑

x∈Sσ′\G/Sσ

∑

y∈Kσ′\G/Sσ

pr(y)=x

(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
[y]

for morphisms
(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
[y] : Bσ → (B|S′

σ′
)|K′σ′ = B|K′

σ′
such that

supp
(
(iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x])[y]
)
⊆ y holds. By Morphisms additivity we get

(7.23) (iB′,K′ ◦ ϕ)σ
′

σ =
∑

y∈Kσ′\G/Sσ

(iB′,K′ ◦ ϕ)σ
′

σ [y]

for morphisms (iB′,K′ ◦ ϕ)σ
′

σ [y] : B|σ → B′|Kσ′ with supp
(
(iB′,K′ ◦ ϕ)σ

′

σ [y]
)

=

supp
(
(iB′,K′ ◦ ϕ)σ

′

σ

)
∩ y ⊆ y. We conclude from Lemma 5.2 (i) that for all

x ∈ Sσ′\G/Sσ and y ∈ Kσ′\G/Sσ with pr(y) = x we have

(7.24)
(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
[y] = (iB′,K′ ◦ ϕ)σ

′

σ [y].
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Now we compute
(
ρ⊗0 (iB′,K′ ◦ ϕ)

)σ′

σ

(7.9)
=

∑

y∈Kσ′\G/Sσ

ρσ
′

yσ · (iB′,K′ ◦ ϕ)σ
′

σ [y]

=
∑

x∈Sσ′\G/Sσ

∑

y∈Kσ′\G/Sσ

pr(y)=x

ρσ
′

yσ · (iB′,K′ ◦ ϕ)σ
′

σ [y]

=
∑

x∈Sσ′\G/Sσ

∑

y∈Kσ′\G/Sσ

pr(y)=x

ρσ
′

xσ · (iB′,K′ ◦ ϕ)σ
′

σ [y]

=
∑

x∈Sσ′\G/Sσ

ρσ
′

xσ ·
∑

y∈Kσ′\G/Sσ

pr(y)=x

(iB′,K′ ◦ ϕ)σ
′

σ [y]

(7.24)
=

∑

x∈Sσ′\G/Sσ

ρσ
′

xσ ·
∑

y∈Kσ′\G/Sσ

pr(y)=x

(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)
[y]

(7.19)
=

∑

x∈Sσ′\G/Sσ

ρσ
′

xσ ·
(
iB′|S′

σ′ ,K
′
σ′

◦ ϕσ
′

σ [x]
)

= iB′|S′
σ′ ,K

′
σ′

◦
∑

x∈Sσ′\G/Sσ

ρσ
′

xσ · ϕ
σ′

σ [x]

(7.9)
= iB′|S′

σ′ ,K
′
σ′

◦ (ρ⊗0 ϕ)
σ′

σ .

This finishes the proof of (7.15). The one of (7.16) is analogous.
Now we conclude

(
(ρ′ ⊗0 (ϕ

′ ◦ rB′,K′)) ◦ (ρ⊗0 (iB′,K′ ◦ ϕ))
)σ′′

σ

=
∑

σ′

(
ρ′ ⊗0 (ϕ

′ ◦ rB′,K′)
)σ′′

σ′ ◦
(
ρ⊗0 (iB′,K′ ◦ ϕ)

)σ′

σ

(7.15), (7.16)
=

∑

σ′

(ρ′ ⊗0 ϕ
′)σ

′′

σ′ ◦ rB′|S
σ′ ,K

′

σ′
◦ iB′|S

σ′ ,K
′

σ′
◦ (ρ⊗0 ϕ)

σ′

σ

=
∑

σ′

(ρ′ ⊗0 ϕ
′)σ

′′

σ′ ◦ (ρ⊗0 ϕ)
σ′

σ

=
(
(ρ′ ⊗0 ϕ

′) ◦ (ρ⊗0 ϕ)
)σ′′

σ
.

We also have
(
(ρ′ ◦ ρ)⊗0 (ϕ

′ ◦ ϕ)
)σ′′

σ
=

(
(ρ′ ◦ ρ)⊗0 ((ϕ

′ ◦ rB′,K′) ◦ (iB′,K′ ◦ ϕ))
)σ′′

σ
.

Hence (
(ρ′ ◦ ρ)⊗0 (ϕ

′ ◦ ϕ)
)σ′′

σ
=

(
(ρ′ ⊗0 ϕ

′) ◦ (ρ⊗0 ϕ)
)σ′′

σ

is true, if
(
(ρ′◦ρ)⊗0((ϕ

′◦rB′K′)◦(iB′,K′ ◦ϕ))
)σ′′

σ
=

(
(ρ′⊗0 (ϕ

′◦rB′,K′))◦(ρ⊗0 (iB′,K′ ◦ϕ))
)σ′′

σ

holds. Now specify K ′ to be

K ′ = supp(B′) ∩
⋂

σ′∈Σ̂′

Gσ′ .

Since the set Σ̂′ defined in (7.12) is finite and Σ′ is smooth, K ′ is a compact open

subgroup of supp(B′) and K ′ ⊆ Gσ′ holds for every σ′ ∈ Σ̂′. Hence ϕ′ ◦ rB′,K′
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and iB′,K′ ◦ϕ satisfy Assumption 7.14. We conclude from (7.13) that we can make
without loss of generality the Assumption 7.14, when proving (7.11).

By Morphism Additivity we can write

(7.25) ϕ′σ
′′

σ′ [x′] ◦ ϕσ
′

σ [x] =
∑

x′′∈S′′

σ′′\G/Sσ

(
ϕ′σ

′′

σ′ [x′] ◦ ϕσ
′

σ [x]
)
[x′′]

for morphisms
(
ϕ′σ

′′

σ′ [x′]◦ϕσ
′

σ [x]
)
[x′′] : B|Sσ

→ B′′|S′′

σ′′
with supp

(
(ϕ′σ

′′

σ′ [x′]◦ϕσ
′

σ [x])[x′′]
)
=

supp
(
ϕ′σ

′′

σ′ [x′] ◦ ϕσ
′

σ [x]
)
∩ x′′ ⊆ x′′.

We compute

(7.26)
(
(ρ′ ⊗0 ϕ

′) ◦ (ρ⊗0 ϕ)
)σ′′

σ

=
∑

σ′∈Σ′

(ρ′ ⊗0 ϕ
′)σ

′′

σ′ ◦ (ρ⊗0 ϕ)
σ′

σ

(7.9)
=

∑

σ′∈Σ′


 ∑

x′∈S′′

σ′′\G/S
′

σ′

ρ′
σ′′

x′σ′ · ϕ′σ
′′

σ′ [x′]




◦


 ∑

x∈S′

σ′\G/Sσ

ρσ
′

xσ · ϕσ
′

σ [x]




=
∑

σ′∈Σ′

∑

x′∈S′′

σ′′\G/S
′

σ′

∑

x∈S′

σ′\G/Sσ

ρ′
σ′′

x′σ′ · ρσ
′

xσ · ϕ′σ
′′

σ′ [x′] ◦ ϕσ
′

σ [x]

(7.12)
=

∑

σ′∈Σ̂′

∑

x′∈S′′

σ′′\G/S
′

σ′

∑

x∈S′

σ′\G/Sσ

ρ′
σ′′

x′σ′ · ρσ
′

xσ · ϕ′σ
′′

σ′ [x′] ◦ ϕσ
′

σ [x]

(7.25)
=

∑

σ′∈Σ̂′

∑

x′∈S′′

σ′′\G/S
′

σ′

∑

x∈S′

σ′\G/Sσ

ρ′
σ′′

x′σ′ · ρσ
′

xσ ·


 ∑

x′′∈S′′

σ′′\G/Sσ

(
ϕ′σ

′′

σ′ [x′] ◦ ϕσ
′

σ [x]
)
[x′′]




=
∑

σ′∈Σ̂′

∑

x′∈S′′

σ′′\G/S
′

σ′

∑

x∈S′

σ′\G/Sσ

∑

x′′∈S′′

σ′′\G/Sσ

ρ′
σ′′

x′σ′ · ρσ
′

xσ ·
(
ϕ′σ

′′

σ′ [x′] ◦ ϕσ
′

σ [x]
)
[x′′].

Since

supp
(
ϕ′σ

′′

σ′ [x′] ◦ ϕσ
′

σ [x]
)
⊆ supp

(
ϕ′σ

′′

σ′ [x′]
)
· supp

(
ϕσ

′

σ [x]
)
⊆ x′x

holds, we have

(7.27)
(
ϕ′σ

′′

σ′ [x′] ◦ ϕσ
′

σ [x]
)
[x′′] 6= 0 =⇒ x′′ ⊆ x′x.

We have S′
σ′ = S′ for σ′ ∈ Σ̂′ by Assumption 7.14. Moreover we get from (7.7) for

σ′ ∈ Σ̂′

ϕ′σ
′′

σ′ = ϕ′σ
′′

;(7.28)

ϕσ
′

σ = ϕσ,(7.29)

if we put ϕ′σ
′′

= iB′′,Sσ′′ ◦ ϕ
′′ and ϕσ = ϕ ◦ rB,Sσ

. Note that ϕ′σ
′′

and ϕσ and the
index sets S′′

σ′′\G/ supp(B′) and supp(B′)\G/Sσ and are independent of σ′. Hence
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we conclude from (7.26), (7.27), (7.28), and (7.29)

(7.30)
(
(ρ′ ⊗0 ϕ

′) ◦ (ρ⊗0 ϕ)
)σ′′

σ

=
∑

σ′∈Σ̂′

∑

x′∈S′′

σ′′\G/ supp(B
′)

∑

x∈supp(B′)\G/Sσ

∑

x′′∈S′′

σ′′\G/Sσ

x′′⊆x′x

ρ′
σ′′

x′σ′ · ρσ
′

xσ ·
(
ϕ′σ

′′

[x′] ◦ ϕσ[x]
)
[x′′].

=
∑

x′∈S′′

σ′′\G/ supp(B
′)

∑

x∈supp(B′)\G/Sσ

∑

x′′∈S′′

σ′′\G/Sσ

x′′⊆x′x
 ∑

σ′∈Σ̂′

ρ′
σ′′

x′σ′ · ρσ
′

xσ


 ·

(
ϕ′σ

′′

[x′] ◦ ϕσ[x]
)
[x′′].

Next we show that for any x′′ ∈ S′′
σ′′\G/Sσ we get for any choice of x ∈

supp(B′)\G/Sσ and x′ ∈ S′′
σ′′\G/ supp(B′) with x′′ ⊆ x′x

(ρ′ ◦ ρ)σ
′′

x′′σ =
∑

σ′∈Σ′

ρ′
σ′′

x′σ′ · ρσ
′

xσ.(7.31)

Choose elements g, g′, g′′ ∈ G with g ∈ x, g′ ∈ x′ and g′′ ∈ x′′. The condition x′′ ⊆
x′x says that we can find u ∈ Sσ, u

′ ∈ S′
σ′ , and u′′ ∈ S′′

σ′′ such that u′′g′u′gu = g′′

holds. We compute

(ρ′ ◦ ρ)σ
′′

x′′σ = (ρ′ ◦ ρ)σ
′′

g′′σ =
∑

σ′∈Σ′

ρ′
σ′′

σ′ ◦ ρσ
′

g′′σ =
∑

σ′∈Σ′

ρ′
σ′′

σ′ ◦ ρσ
′

u′′g′u′guσ

=
∑

σ′∈Σ′

ρ′
σ′′

σ′ ◦ ρσ
′

u′′g′u′gσ =
∑

σ′∈Σ′

ρ′
σ′′

u′′g′σ′ ◦ ρ
u′′g′σ′

u′′g′u′gσ .

Since we have

ρ′
σ′′

x′σ′ · ρσ
′

xσ = ρ′
σ′′

g′σ′ · ρσ
′

gσ = ρ′
u′′σ′′

u′′g′σ′ · ρ
u′′g′u′σ′

u′′g′u′gσ = ρ′
σ′′

u′′g′σ′ · ρ
u′′g′σ′

u′′g′u′gσ

equation 7.31 follows. We conclude from (7.30) and (7.31)

(7.32)
(
(ρ′ ⊗0 ϕ

′) ◦ (ρ⊗0 ϕ)
)σ′′

σ
=

∑

x′∈S′′

σ′′\G/ supp(B
′)

∑

x∈supp(B′)\G/Sσ

∑

x′′∈S′′

σ′′\G/Sσ

x′′⊆x′x

(ρ′ ◦ ρ)σ
′′

x′′σ ·
(
ϕ′σ

′′

[x′] ◦ ϕσ[x]
)
[x′′].
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Next we compute

(7.33)
(
(ρ′ ◦ ρ)⊗0 (ϕ

′ ◦ ϕ)
)σ′′

σ

(7.9)
=

∑

x′′∈S′′

σ′′\G/Sσ

(ρ′ ◦ ρ)σ
′′

x′′σ · (ϕ′ ◦ ϕ)σ
′′

σ [x′′]

(7.7)
=

∑

x′′∈S′′

σ′′\G/Sσ

(ρ′ ◦ ρ)σ
′′

x′′σ · (ϕ′σ
′′

◦ ϕσ)[x
′′]

=
∑

x′′∈S′′

σ′′\G/Sσ

(ρ′ ◦ ρ)σ
′′

x′′σ

·




 ∑

x′∈S′′

σ′′\G/ supp(B
′)

ϕ′σ
′′

[x′]


 ◦


 ∑

x∈supp(B′)\H/Sσ

ϕσ[x]




 [x′′]

=
∑

x′′∈S′′

σ′′\G/Sσ

∑

x′∈S′′

σ′′\G/ supp(B
′)

∑

x∈supp(B′)\H/Sσ

(ρ′ ◦ ρ)σ
′′

x′′σ ·
(
ϕ′σ

′′

[x′] ◦ ϕσ[x]
)
[x′′]

(7.27)
=

∑

x′∈S′′

σ′′\G/ supp(B
′)

∑

x∈supp(B′)\G/Sσ

∑

x′′∈S′′

σ′′\G/Sσ

x′′⊆x′x

(ρ′ ◦ ρ)σ
′′

x′′σ ·
(
ϕ′σ

′′

[x′] ◦ ϕσ[x]
)
[x′′].

Now Lemma 7.10 follows from (7.32) and (7.33). �

In general idV ⊗0 idB is not the identity on V ⊗0 B which will force as later to
pass to idempotent completions. However there is a favourite situation, where this
is not necessary, which we will describe next.

Lemma 7.34. Let V = (Σ, c) be an object of SG(Ω) and let B be an object of B.
Suppose that Σ is fixed pointwise by supp(B).

Then idV ⊗0 idB = idV⊗0B.

Proof. Since gσ = σ for g ∈ supp(B), we have supp(B) = supp(B)σ and (idB)
σ′

σ =
idB for every σ ∈ Σ and the object V ⊗0 B in BG(Ω) is given by (B,Σ, cB) for
the constant function cB : Σ → ob(B) with value B. Recall that the identity of

V = (Σ, c) is given by the morphism ρ = (ρσ
′

σ )σ,σ′∈Σ with ρσ
′

σ = 1 for σ = σ′ and
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ρσ
′

σ = 0 for σ 6= σ′. Now we compute

(idV ⊗0 idB)
σ′

σ

(7.9)
=

∑

x∈supp(B)σ′\G/ supp(B)σ

ρσ
′

xσ · (idB)
σ′

σ [x].

=
∑

x∈supp(B)\G/ supp(B)
σ′=xσ

(idB)
σ′

σ [x].

=
∑

x∈supp(B)\G/ supp(B)
σ′=xσ,idB [x] 6=0

(idB)
σ′

σ [x].

=
∑

x∈supp(B)\G/ supp(B)
σ′=xσ,x∩supp(B) 6=∅

(idB)
σ′

σ [x].

=
∑

x∈supp(B)\G/ supp(B)
σ′=xσ,x=supp(B)

(idB)
σ′

σ [x].

=
∑

x∈supp(B)\G/ supp(B)
σ′=σ,x=supp(B)

(idB)
σ′

σ [x].

=

{
idB σ′ = σ;

0 σ′ 6= σ.

This shows idV ⊗0 idB = idV⊗0B. �

7.d. The diagonal tensor product in the case of a Hecke algebra. It is not
needed for our purposes but illuminating to figure out what the diagonal tensor
product (7.4) becomes for the Hecke category with Q-support B = B(G;R, ρ, ω) of
Subsection 6.c. Given an object (V,Σ) in SQ(Ω) and an object K of B(Q;R, ρ, ω),
which is by definition just a compact open subgroup of G, we get

V ⊗0 K = (Σ, c, σ 7→ K ∩ α−1(Qσ))

It is not hard to check that for morphisms ρ : V = (Σ, c) → V′ = (Σ′, c′) in SG(Ω)
and s : K → K ′ in B(Q;R, ρ, ω) the morphism ρ⊗ s : V⊗0K → V′ ⊗0K

′ is given
by the formula

(7.35)
(
(ρ⊗0 ϕ)

σ′

σ

)
(g) = ρσ

′

gσ · s(g).

The following example explains the original root of the diagonal tensor prod-
uct (7.4).

Example 7.36. Suppose that Q is discrete, ρ is trivial and no normal character
is present, i.e., N = {1} and G = Q. Then the Hecke algebra H(G;R, ρ, ω) is
just the group ring RG. The category SG(G/G) can be viewed as a subcategory
of the category RG-Modf,R of RG-modules whose underlying R-module is free by
sending an object (Σ, c) to the permutation RG-module RΣ. Up to equivalence
Idem(BG(G/G)) is the category of finitely generated projective RG-modules for
B = B(G;R).

The diagonal tensor product (7.4) for Ω = G/G comes from the pairing

RG-Modf,R ×RG-Modf → RG-Modf

sending (M,P ) to M ⊗R P equipped with the diagonal G-action.
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7.e. Construction of SG(Ω)× BG(Λ) → BG(Ω× Λ). Let Ω and Λ be G-sets. In
this subsection we want to extend the pairing (7.4) to a bilinear pairing.

(7.37) −⊗0 − : SG(Ω)× BG(Λ) → BG(Ω× Λ).

Let V = (Σ, c) ∈ SG(Ω) and B = (S, π,B) ∈ BG(Λ). We define

V ⊗0 B :=
(
Σ× S, c× π, (σ, s) 7→ B(s)|suppB(B(s))σ

)
∈ BG(Ω× Λ),

where supp(B(s))σ = Gσ ∩ suppB(B(s)). For morphisms ρ : V = (Σ, c) → V′ =
(Σ′, c′) in SG(Ω) and ϕ : B = (S, π,B) → B′ = (S′, π′, B′) in B(Λ) we define
ρ⊗ ϕ : V ⊗0 A → V′ ⊗0 A

′ by

(7.38) (ρ⊗ ϕ)
(σ′,s′)
(σ,s) := ρ⊗ ϕs

′

s

using the pairing of Subsection 7.c.
The proof of Lemma 7.10 can easily be extended to the pairing 7.37

Lemma 7.39. Let ρ : V = (Σ, c) → V′ = (Σ′, c′) and ρ′ : V′ = (Σ′, c′) → V′′ =
(Σ′′, c′′) be composable morphisms in SG(Ω) and ϕ : B → B′ and ϕ′ : B′ → B′′ be
composable morphisms in BG(Λ).

Then we get in BG(Ω× Λ)

(ρ′ ◦ ρ)⊗0 (ϕ
′ ◦ ϕ) = (ρ′ ⊗0 ϕ

′) ◦ (ρ⊗0 ϕ).

Note that (idV ⊗ idA) = idV⊗0A can fail, but this can be fixed in the idempotent
completion. Lemma 7.39 implies that (idV ⊗ idA) is an idempotent endomorphism
of V ⊗0 A, and we define

V ⊗A :=
(
V ⊗0 A, idV ⊗0 idA

)
∈ Idem(BG(Ω× Λ)).

Then (idV ⊗0 idA) : V ⊗A → V ⊗A is idV⊗A, and we obtain a bilinear functor

(7.40) −⊗− : SG(Ω)× BG(Λ) → Idem(BG(Ω× Λ)).

The following observation will often allow us to get rid of idempotent comple-
tions.

Lemma 7.41. Let V = (Σ, c) ∈ SG(Ω) and B = (S, π,B) ∈ BG(Λ). If Σ is fixed
pointwise by all B(s), then V ⊗B = V ⊗0 B.

Proof. One needs to show that idV ⊗0 idB is the identity of V ⊗0 B, not just
an idempotent. The proof of Lemma 7.34 carries directly over this more general
case. �

For E ⊆ Ω× Ω and E′ ⊆ Λ× Λ we use the following convention

(7.42) E × E′ :=
{(

x′,λ′

x,λ

) ∣∣∣
(
x′

x

)
∈ E,

(
λ′

λ

)
∈ E′

}
⊆ (Ω× Λ)×2.

Lemma 7.43. (i) Let V = (Σ, c) ∈ SG(Ω) and B = (S, π,B) ∈ BG(Λ).
Then we have
(a) If V and B are finite, i.e., Σ and S are finite, then V ⊗0 B is finite

as well;
(b) supp1(V ⊗0 B) = supp1 V × supp1 B.

(ii) Let ρ : V = (Σ, c) → V′ = (Σ′, c′) in SG(Ω), ϕ : B = (S, π,B) → B′ =
(S′, π′, B′) in BG(Λ). for ρ⊗0 ϕ in BG(Ω× Λ) we have
(a) supp2(ρ⊗ ϕ) ⊆ supp2 ρ× supp2 ϕ;
(b) suppG(ρ⊗ ϕ) ⊆ suppG ϕ.



30 BARTELS, A. AND LÜCK, W.

Proof. We give the proof only for assertion ((ii)a). The elementary proof for the
other assertions is left to the reader. By definition we have

supp2(ρ) =
{(

c′(σ′)
c(σ)

) ∣∣∣ ρσ′

σ 6= 0
}
⊆ Ω× Ω;

supp2(ϕ) =
{(

π′(s′)
gπ(s)

) ∣∣∣ s ∈ S, s′ ∈ S′, g ∈ suppG(ϕ
s′

s )
}
⊆ Λ× Λ;

supp2(ρ⊗ ϕ) =
{(

(c′(σ′),π′(s′))
g(c(σ),π(s))

) ∣∣∣σ ∈ Σ, σ′ ∈ Σ′, s ∈ S, s′ ∈ S′, g ∈ suppB

(
(ρ⊗ ϕ)s

′

s

)}

⊆ (Ω× Λ)×2.

We conclude from 7.9

suppB(ρ⊗0 ϕ
σ′

σ ) ⊆ {g ∈ G | ρσ
′

gσ 6= 0, g ∈ suppB(ϕ
σ′

σ )}

= {g ∈ G |
(
c′(σ′)
c(gσ)

)
∈ supp2(ρ), g ∈ suppB(ϕ

σ′

σ )}

= {g ∈ G |
(
c′(σ′)
c(gσ)

)
∈ supp2(ρ),

(
π′(s′)
gπ(s)

)
∈ supp2(ϕ)}.

Hence we get

supp2(ρ⊗0 ϕ)

=
{(

(c′(σ′),π′(s′))
(g(c(σ),π(s)))

) ∣∣∣σ ∈ Σ, σ′ ∈ Σ′, s ∈ S, s′ ∈ S′, g ∈ suppB
(
(ρ⊗0 ϕ)

(σ′,s′)
(σ,s)

)}

(7.38)
=

{(
(c′(σ′),π′(s′))
(g(c(σ),π(s)))

) ∣∣∣σ ∈ Σ, σ′ ∈ Σ′, s ∈ S, s′ ∈ S′, g ∈ suppB
(
ρ⊗0 ϕ

s′

s

)}

=
{(

(c′(σ′),π′(s′))
(c(gσ),gπ(s))

) ∣∣∣σ ∈ Σ, σ′ ∈ Σ′, s ∈ S, s′ ∈ S′, g ∈ suppB
(
(ρ⊗0 ϕ)

s′

s

)}

⊆
{(

(c′(σ′),π′(s′))
(c(gσ),gπ(s))

) ∣∣∣σ ∈ Σ, σ′ ∈ Σ′, s ∈ S, s′ ∈ S′,
(
c′(σ′)
c(gσ)

)
∈ supp2(ρ),

(
π′(s′)
gπ(s)

)
∈ supp2(ϕ)

}
.

This finishes the proof of Lemma 7.43. �

7.f. Compatibility of the diagonal tensor product with induction and

restriction. Let U be an open subgroup of G. Write resUG : G-SETSsm → U -SETSsm

for the restriction functor. Given a smooth G-set Ω, it induces a restriction functor

SG(Ω) → SU (resUG Ω), (Σ, c) 7→ (resUG Σ, resUG c),

that we will also denote by resUG.
Let B be a Hecke category with G-suppport in the sense of Definition 5.1. We

have defined the full Z-linear subcategory B|U in Notation 5.4. Note that B|U
inherits from B the structure of a Hecke category with U -support if we define
suppB|U (ϕ) = suppB(ϕ) for any morphism ϕ in B|U and in particular suppB|U (B) =

suppB(B) for any object B in B|U . Let ind
G
U : B|U → B be the canonical inclusion.

It induces an inclusion indGU : BU (res
U
G Λ) → BG(Λ)

1 for any smooth G-set Ω. We
write

⊗G : SG(Ω)× BG(Λ) → Idem(BG(Ω× Λ));

⊗U : SU (resUG Ω)× BU (res
U
G Λ) → Idem

(
BU (res

U
G(Ω× Λ))

)
,

for the diagonal tensor products introduced in (7.40).

Lemma 7.44. We get for any V ∈ ob(SG(Ω)) and B ∈ ob(BU (res
U
G Λ))

indGU (res
U
GV ⊗U B) = V ⊗G indGU B.

1Strictly speaking the should be (B|U )U (resU
G
Λ)
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Similarly, for morphisms ρ : V → V′ in SG(Ω) and ϕ : B → B′ in BU (resUG Λ) we
get

indGU (res
U
G ρ⊗

U ϕ) = ρ⊗G indGU ϕ.

Proof. We give the proof only in the special case where Λ is G/G, in other words,
BG(Λ) = B and BU (resUG Λ) = B|U . The proof for the general case is then an
obvious generalization.

Consider the tensor products

⊗G0 : SG(Ω)× B → BG(Ω);

⊗U0 : SU (resUGΩ)× B|U → BU (res
U
GΩ),

introduced in (7.5) and (7.6). We obtain for V ∈ ob(SG(Ω)) and B ∈ ob(B|U )

(7.45) indGU (res
U
GV ⊗U0 B) = V ⊗G0 indGU B,

as we have by definition resGV⊗U0 B = (Σ, c, σ 7→ B|supp(B)∩Uσ
) andV⊗G0 ind

G
U B =

(Σ, c, σ 7→ B|supp(B)∩Gσ
) and suppB(B) ⊆ U implies supp(B)∩Uσ = supp(B)∩Gσ .

Given morphisms ρ : V → V′ in SG(Ω) and ϕ : B → B′ in B|U , we next show

(7.46) indGU (res
U
G ρ⊗

U
0 ϕ) = ρ⊗G0 indGU ϕ.

We have by (7.9)

(resUG ρ⊗0 ϕ)
σ′

σ =
∑

x∈(supp(B′)∩Uσ′ )\U/ supp(B)∩Uσ

ρσ
′

xσ · ϕσ
′

σ [x];(7.47)

(ρ⊗0 id
G
U ϕ)

σ′

σ =
∑

y∈(supp(B′)∩Gσ′)\G/(supp(B)∩Gσ)

ρσ
′

yσ · (indGU ϕ)
σ′

σ [y],(7.48)

where the morphisms ϕσ
′

σ in BU (resUG Ω) and (indGU ϕ)
σ′

σ in BG(Ω) are defined by

(7.49) ϕσ
′

σ : B|supp(B)∩Uσ

rB,supp(B)∩Uσ−−−−−−−−−→ B
ϕ
−→ B′

iB′,supp(B′)∩U
σ′

−−−−−−−−−−→ B′|supp(B′)∩Uσ′

and
(7.50)

(indGU ϕ)
σ′

σ : B|supp(B)∩Gσ

rB,supp(B)∩Gσ−−−−−−−−−→ B
indG

U ϕ−−−−→ B′
iB′,supp(B′)∩U

σ′

−−−−−−−−−−→ B′|supp(B′)∩Uσ′

and the morphisms ϕσ
′

σ [x] : B|supp(B)∩Uσ
→ B′|supp(B′)∩Uσ′ in BU (resUG Ω) and

(indGU ϕ)
σ′

σ [y] : B|supp(B)∩Gσ
→ B′|supp(B′)∩Uσ′ in BG(Ω) are uniquely determined

by

ϕσ
′

σ =
∑

x∈(supp(B′)∩Uσ′ )\U/ supp(B)∩Uσ

ϕσ
′

σ [x];

supp(ϕσ
′

σ [x]) = supp(ϕσ
′

σ ) ∩ x;

(indGU ϕ)
σ′

σ =
∑

y∈(supp(B′)∩Gσ′ )\G/(supp(B)∩Gσ)

(indGU ϕ)
σ′

σ [y];

supp
(
(indGU ϕ)

σ′

σ [y]
)

= supp
(
(indGU ϕ)

σ′

σ

)
∩ y.

As supp(B) and supp(B′) are contained in U , we get supp(B)∩Uσ = supp(B)∩Gσ
and supp(B′)∩Uσ′ = supp(B′)∩Gσ′ . We conclude from (7.47) and (7.48) that the

morphism ϕσ
′

σ and (indGU ϕ)
σ′

σ in B agree. Note that the inclusion of U ⊆ G induces
an inclusion

(supp(B′) ∩ Uσ′)\U/ supp(B) ∩ Uσ ⊆ (supp(B′) ∩Gσ′)\G/(supp(B) ∩Gσ).
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Since the support of ϕ is contained in U and hence the support of ϕσ
′

σ = (indGU ϕ)
σ′

σ

is contained in U , we conclude

(indGU ϕ)
σ′

σ [y] =

{
ϕσ

′

σ [x] if y ∈ (supp(B′) ∩ Uσ′)\U/ supp(B) ∩ Uσ;

0 otherwise.

Now (7.46) follows from (7.47) and (7.48). Hence Lemma 7.44 follows from (7.45)
and (7.46) in the special case Λ = G/G. �

7.g. Flatness. Consider a Hecke category B with G-support in the sense of Defi-
nition 5.1.

We extend the notion of the support for B to B⊕ as follows. The support
suppB⊕

(B) of an object B = (B1, B2, . . . , Bn) is defined to be
⋃n
i=1 suppB(Bi) and

for g ∈ G we put gB = (gB1, gB2, . . . , gBn). For a morphism ϕ = (ϕi,j) : B → B′

its support suppB⊕
(ϕ) is defined to be

⋃
i,j suppG(ϕi,j). Note that suppB⊕

(B)
is not a subgroup anymore. One easily checks that the conditions appearing in
Definition 5.1 are satisfied except the conditions (i) and (iii). So suppB⊕

(B) is not

a Hecke category with G-support. We have for any two objects B and B′ and any
two morphisms ϕ and ϕ′

supp(B ⊕B′) = supp(B) ∪ supp(B′);

supp(ϕ⊕ ϕ′) = supp(ϕ) ∪ supp(ϕ′).

Recall that a sequence A0
u
−→ A1

v
−→ A2 in an additive category A is exact if

for any object A in A the induced sequence of abelian groups is morA(A,A0)
u∗−→

morA(A,A1)
v∗−→ morA(A,A2) is exact.

Lemma 7.51. For any two open subgroups U ⊆ V of G and any n ∈ Z the inclusion
B|U → B|V induces a functor of additive categories

(BU )⊕[Z
d] → (B|V )⊕[Z

d]

that is exact.

Proof. Recall that the objects of (B|U )⊕[Zd] are the objects of (B|U )⊕ and hence the
support of an object B of (B|U )⊕[Zd] is defined. For a morphism ϕ =

∑
x∈Zd ϕx ·x

in (B|U )⊕[Zd] we set supp(ϕ) =
⋃
x∈Zn supp(ϕx).

Let A
ϕ
−→ A′

ϕ′

−→ A′′ be a sequence in (B|U )⊕[Z
d] that is exact at A′. Let

ψ : B → A′ be a morphism in (B|V )⊕[Zd] with ϕ′ ◦ ψ = 0. We need to find a lift

ψ̂ : B → A in (B|V )⊕[Zd] with ψ = ϕ ◦ ψ̂.

A
ϕ

// A′
ϕ′

// A′′

B
ψ̂

__❄
❄
❄
❄

ψ

OO

0

>>⑥⑥⑥⑥⑥⑥⑥⑥

Let M := supp(ψ) · supp(B). This is a compact subset of V . Then U0 =⋂
g∈M g−1Ug is an open subgroup of U such that gU0g

−1 ⊆ U holds for all g ∈M .

Because of the property Support cofinality we find B
i
−→ B′ r

−→ B in (B|V )⊕[Z
d]

such that r ◦ i = idB , supp(r) = supp(i) = supp(B) and supp(B′) ⊆ U0 hold. Put
ψ′ := ψ ◦ r. Then supp(ψ′) = supp(ψ ◦ r) ⊆ supp(ψ) · supp(B) =M . It will suffice

to find ψ̂′ : B′ → A such that ϕ ◦ ψ̂′ = ψ′ because then we can set ψ̂ := ψ̂′ ◦ i.
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We can write

ψ′ =
∑

UgU0∈U\V/U0

ψ′
UgU0

;

ϕ′ ◦ ψ′ =
∑

UgU0∈U\V/U0

(ϕ ◦ ψ′)UgU0 ,

where ψ′
UgU0

is a morphism B′ → A with supp(ψ′
UgU0

) ⊆ UgU0 and (ϕ′ ◦ψ′)UgU0

is a morphism B′ → A′ with supp(ϕ′ ◦ ψ′)UgU0 ⊆ UgU0. We give the argument
only for ψ′, the one for ϕ′ ◦ ψ′ is analogous.

Write supp(B′) = (B′
1, . . . , B

′
m) and A′ = (A′

1, . . . A
′
n). Fix UgU0 ∈ U\V/U0,

i ∈ {1, . . . ,m}, and j ∈ {1, . . . n}. Since supp(B′) ⊆ U0 and supp(A′) ⊆ U
holds, we get supp(A′

i)UgU0 supp(B
′
j) = UgU0. As supp(A

′
j) supp(ψ

′
i,j) supp(B

′
i) =

supp(ψ′
i,j) holds, we conclude supp(A

′
j)
(
supp(ψ′

i,j)∩UgU0

)
supp(B′

i) = supp(ψ′
i,j)∩

UgU0. Obviously supp(ψ′
i,j) =

∐
UgU0∈U\V/U0

(
supp(ψ′

i,j) ∩ UgU0

)
. Morphism Ad-

ditivity implies that we can write ψ′
i,j =

∑
UgU0∈U\V/U0

(ψ′
i,j)UgU0 for morphisms

(ψ′
i,j)UgU0 : B

′
i → A′

j with supp(ψ′
i,j)UgU0 ⊆ UgU0. Now define ψ′

UgU0
: B′ → A′ by

the collection of the morphisms (ψ′
i,j)UgU0 .

Since ϕ′ ◦ψ′ = 0, we conclude from Lemma 5.2 (i) that (ϕ◦ψ′)UgU0 = 0 holds for

all UgU0 ∈ U\V/U0. Lemma 5.2 (i) implies that (ϕ′ ◦ ψ′)UgU0 = ϕ′ ◦ ψ′
UgU0

, since

supp(ϕ′) ⊆ U . Hence we get ϕ′ ◦ ψ′
UgU0

= 0 for all g. This allows us to assume

without loss of generality that suppG(ψ
′) ⊆ UgU0 for some g ∈ V .

As gU0g
−1 ⊆ U we have UgU0 = Ug. From Translation we obtain an object

B′′ and an isomorphism f : B′′
∼=
−→ B′ satisfying supp(B′′) = g supp(B′)g−1 and

supp(f) ⊆ g−1 supp(B′′). Since supp(B′) ⊆ U0, we have

supp(B′′) = g supp(B′)g−1 ⊆ gU0g = U.

We have

supp(ψ′ ◦ f) ⊆ supp(ψ′) · supp(f) ⊆ UgU0g
−1 supp(B′′) ⊆ Ugg−1U = U.

This implies (ψ′ ◦ f) ∈ (B|U )⊕[Zd] and we can apply the exactness in (B|U )⊕[Zd]

to ψ′ ◦ f to obtain ψ̃ : B′′ → A with ψ′ ◦ f = ϕ ◦ ψ̃. Now with ψ̂′ := ψ̃ ◦ f−1 we get

ϕ ◦ ψ̂′ = ϕ ◦ ψ̃ ◦ f−1 = ψ′ ◦ f ◦ f−1 = ψ′

as required. �
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