RECIPES TO COMPUTE THE ALGEBRAIC K-THEORY OF HECKE ALGEBRAS OF REDUCTIVE p-ADIC GROUPS

BARTELS, A. AND LÜCK, W.

ABSTRACT. We compute the algebraic K-theory of the Hecke algebra of a reductive p-adic group G using the fact that the Farrell-Jones Conjecture is known in this context. The main tool will be the properties of the associated Bruhat-Tits building and an equivariant Atiyah-Hirzebruch spectral sequence. In particular the projective class group can be written as the colimit of the projective class groups of the compact open subgroups of G.

1. INTRODUCTION

We begin with stating the main theorem of this paper, explanation will follow:

Theorem 1.1 (Main Theorem). Let G be a td-group which is modulo a normal compact subgroup a subgroup of a reductive p-adic group. Let R be a uniformly regular ring with $\mathbb{Q} \subseteq \mathbb{R}$. Choose a model $E_{\text{Cop}}(G)$ for the classifying space for proper smooth G-actions. Let $\mathcal{I} \subseteq \text{Cop}$ be the set of isotropy groups of points in $E_{\text{Cop}}(G)$.

Then

(i) The map induced by the projection $E_{\text{Cop}}(G) \to G/G$ induces for every $n \in \mathbb{Z}$ an isomorphism

$$H_n^G(E_{\mathcal{C}op}(G); \mathbf{K}_R) \to H_n^G(G/G; \mathbf{K}_R) = K_n(\mathcal{H}(G; R));$$

(ii) There is a (strongly convergent) spectral sequence

$$E_{p,q}^2 = SH_p^{G,\mathcal{I}}\left(E_{\mathcal{C}\mathrm{op}}(G); \overline{K_q(\mathcal{H}(?;R))}\right) \implies K_{p+q}(\mathcal{H}(G;R)),$$

whose E^2 -term is concentrated in the first quadrant;

(iii) The canonical map induced by the various inclusions $K \subseteq G$

$$\operatorname{colim}_{K \in \operatorname{Sub}_{\mathcal{T}}(G)} K_0(\mathcal{H}(K;R)) \to K_0(\mathcal{H}(G;R))$$

can be identified with the isomorphism appearing in assertion (i) in degree n = 0 and hence is bijective;

(iv) We have $K_n(\mathcal{H}(G; R)) = 0$ for $n \leq -1$.

Note that assertion (i) of Theorem 1.1 is proved in [3, Corollary 1.8]. So this papers deals with implications of it concerning computations of the algebraic K-groups $K_n(\mathcal{H}(G))$ of the Hecke algebra of G.

A td-group G is a locally compact second countable totally disconnected topological Hausdorff group. It is modulo a normal compact subgroup a subgroup of a reductive p-adic group if it contains a (not necessarily open) normal compact subgroup K such that G/K is isomorphic to a subgroup of some reductive p-adic group.

Date: March 2024.

²⁰²⁰ Mathematics Subject Classification. 55P91 (Primary) 20C08, 19D50 (Secondary).

Key words and phrases. algebraic K-theory of Hecke algebras, reductive p-adic groups, Farrell-Jones Conjecture.

A ring is called *uniformly regular*, if it is Noetherian and there exists a natural number l such that any finitely generated R-module admits a resolution by projective R-modules of length at most l. We write $\mathbb{Q} \subseteq R$, if for any integer n the element $n \cdot 1_R$ is a unit in R. Examples for uniformly regular rings R with $\mathbb{Q} \subseteq R$ are fields of characteristic zero.

We denote by $\mathcal{H}(G; R)$ the *Hecke algebra* consisting of locally constant functions $s: G \to R$ with compact support, where the additive structure comes from the additive structure of R and the multiplicative structure from the convolution product. Note that $\mathcal{H}(G; R)$ is a ring without unit.

We denote by $E_{Cop}(G)$ a model for the *classifying space for proper smooth G-actions*, i.e., a *G-CW*-complex, whose isotropy groups are all compact open subgroups of *G* and for which $E_{Cop}(G)^H$ is weakly contractible for any compact open subgroup $H \subseteq G$. Two such models are *G*-homotopy equivalent. Hence $H_n^G(E_{Cop}(G); \mathbf{K}_R)$ is independent of the choice of a model. If *G* is a reductive *p*-adic group with compact center, then its Bruhat-Tits building is a model for $E_{Cop}(G)$. If the center is not compact, one has to pass to the extended Bruhat-Tits building.

We will construct a smooth *G*-homology theory $H^G_*(-; \mathbf{K}_R)$ in Section 3. It assigns to a smooth *G*-*CW*-pair (X, A) a collection of abelian groups $\mathcal{H}^G_n(X, A; \mathbf{K}_R)$ for $n \in \mathbb{Z}$ that satisfies the expected axioms, i.e., long exact sequence of a pair, *G*homotopy invariance, excision, and the disjoint union axiom. Moreover, for every open subgroup $U \subseteq G$ and $n \in \mathbb{Z}$ we have

(1.2)
$$H_n^G(G/U; \mathbf{K}_R) \cong K_n(\mathcal{H}(U; R)).$$

Let \mathcal{F} be a collection of open subgroups of G which is closed under conjugation. Examples are the set \mathcal{C} op of compact open subgroups of G and the set \mathcal{I} of isotropy groups of points of some model for $E_{\mathcal{C}op}(G)$. The subgroup category $\operatorname{Sub}_{\mathcal{F}}(G)$ appearing in Theorem 1.1 (iii) has \mathcal{F} as set of objects and will be described in detail in Subsection 2.A.

The abelian groups $SH_p^{G,\mathcal{F}}(E_{\mathcal{F}}(G); \overline{K_q(\mathcal{H}(?;R))})$ appearing in Theorem 1.1 (ii) will be defined for the covariant functor $\overline{K_q(\mathcal{H}(?;R))}$: $Sub_{\mathcal{F}}(G) \to \mathbb{Z}$ -Mod, whose value at $U \in \mathcal{F}$ is $K_n(\mathcal{H}(U;R))$, in Subsection 2.B. They are closely related to the Bredon homology groups $BH_p^{G,\mathcal{F}}(E_{\mathcal{F}}(G); K_q(\mathcal{H}(?;R)))$.

The proof of the Main Theorem 1.1 will be given in Section 4.

The relevance of the Hecke algebra $\mathcal{H}(G; R)$ is that the category of non-degenerate modules over it is isomorphic to the category of smooth *G*-representations with coefficients in *R*, see for instance [5, 13]. Hence in particular its projective class group $K_0(\mathcal{H}(G; R))$ is important. The various inclusions $K \to G$ for $K \in \mathcal{C}$ op induce a map

(1.3)
$$\bigoplus_{K \in \mathcal{C}op} K_0(\mathcal{H}(K;R)) \to K_0(\mathcal{H}(G;R)),$$

which factorizes over the canonical epimorphism from $\bigoplus_{K \in Cop} K_0(\mathcal{H}(K; R))$ to $\operatorname{colim}_{K \in \operatorname{Sub}_{\mathcal{I}}(G)} K_0(\mathcal{H}(K; R))$ to the isomorphism appearing in Theorem 1.1 (iii) and is hence surjective. Dat [10] has shown that the map (1.3) is rationally surjective for G a reductive p-adic group and $R = \mathbb{C}$. In particular, the cokernel of it is a torsion group. Dat [9, Conj. 1.11] conjectured that this cokernel is \widetilde{w}_G -torsion. Here \widetilde{w}_G is a certain multiple of the order of the Weyl group of G. Dat [9, Prop. 1.13] proved this conjecture for $G = \operatorname{GL}_n(F)$ for a p-adic field F of characteristic zero and asked about the integral version, see the comment following [9, Prop. 1.10], which is now proven by Theorem 1.1 (iii).

The computations simplify considerably in the case of a reductive p-adic group thanks to the associated (extended) Bruhat-Tits building, see Sections 5 and 7.

3

As an illustration we analyze the projective class groups of the Hecke algebras of $SL_n(F)$, $PGL_n(F)$ and $GL_n(F)$ in Section 6.

One of our main tools will be the *smooth equivariant Atiyah-Hirzebruch spectra* sequence, which we will establish and examine in Section 2.

Acknowledgments. We thank Eugen Hellmann and Linus Kramer for many help-ful comments and discussions.

We thank the referee for the careful and helpful report.

The paper isfunded by the ERC Advanced Grant "KL2MG-interactions" (no. 662400) of the second author granted by the European Research Council, by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – GZ 2047/1, Projekt-ID 390685813, Hausdorff Center for Mathematics at Bonn, and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC 2044 - 390685587, Mathematics Münster: Dynamics -Geometry – Structure.

The paper is organized as follows:

Contents

1. Introduction	1	
Acknowledgments	3	
2. The smooth equivariant Hirzebruch spectral sequence	3	
2.A. The smooth orbit category and the smooth subgroup category	4	
2.B. Cellular chain complexes and Bredon homology	5	
2.c. The construction of the equivariant Atiyah-Hirzebruch spectral se	quence 6	
2.D. Passing to the subgroup category	7	
2.E. The connective case	7	
2.F. The first differential	8	
3. A brief review of the Farrell Jones Conjecture for the algebraic K -th	neory of Hecke algebras	9
4. Proof of the Main Theorem 1.1	10	
5. The main recipe for the computation of the projective class group	10	
5.A. The general case	10	
5.B. A variation	11	
6. The projective class group of the Hecke algebras of $SL_n(F)$, $PGL_n(F)$	F) and $\operatorname{GL}_n(F)$ 15	
6.A. $\operatorname{SL}_n(F)$	15	
6.B. $\operatorname{PGL}_n(F)$	15	
6.C. $\operatorname{GL}_n(F)$	16	
7. Homotopy colimits	17	
7.A. The Farrell-Jones assembly map as a map of homotopy colimits	17	
7.B. Simplifying the source of the Farrell Jones assembly map	17	
8. Allowing central characters and actions on the coefficients	19	
References	19	

2. The smooth equivariant Hirzebruch spectral sequence

Throughout this section we fix a set \mathcal{F} of open subgroups of G which is closed under conjugation. Our main examples for \mathcal{F} are the family $\mathcal{O}p$ of all open subgroups and the family $\mathcal{C}op$ of all compact open subgroups. A \mathcal{F} -G-CW-complex Xis a G-CW-complex X such that for every $x \in X$ its isotropy group G_x belongs to \mathcal{F} . A smooth G-CW-complex is the same as a $\mathcal{O}p$ -CW-CW-complex and a proper smooth G-CW-complex is the same as a Cop-CW-complex. Let \mathcal{H}^G_* be a smooth G-homology theory.

The main result of this section is

Theorem 2.1. Consider a pair (X, A) of \mathcal{F} -G-CW-complexes and a smooth Ghomology theory \mathcal{H}^G_* . Then there is an equivariant Atyiah-Hirzebruch spectral sequence converging to $\mathcal{H}^G_{n+g}(X, A)$, whose E^2 -term is given by

$$E_{p,q}^2 = BH_p^{G,\mathcal{F}}(X,A;\mathcal{H}_q^G)$$

for the Bredon homology $BH_p^{G,\mathcal{F}}(X,A;\mathcal{H}_q^G)$ of (X,A) with coefficients in the covariant $\mathbb{Z}Or_{\mathcal{F}}(G)$ -module \mathcal{H}_q^G that sends G/H to $\mathcal{H}_q^G(G/H)$.

The remainder of this section is devoted to the definition of the Bredon homology, the construction of the equivariant Atiyah-Hirzebruch spectral sequence, and some general calculations concerning the E^2 -term. Convergence means that there is an ascending filtration $F_{l,m-l}\mathcal{H}_m^G(X,A)$ for $l = 0, 1, 2, \ldots$ of $\mathcal{H}_m^G(X,A)$ such that $F_{p,q}\mathcal{H}_{p+q}^G(X,A)/F_{p-1,q+1}\mathcal{H}_{p+q}^G(X,A) \cong E_{p,q}^\infty$ holds for $E_{p,q}^\infty = \operatorname{colim}_{r\to\infty} E_{p,q}^r$.

2.A. The smooth orbit category and the smooth subgroup category. The \mathcal{F} -orbit category $\operatorname{Or}_{\mathcal{F}}(G)$ has as objects homogeneous G-spaces G/H with $H \in \mathcal{F}$. Morphisms from G/H to G/K are G-maps $G/H \to G/K$. We will put no topology on $\operatorname{Or}_{\mathcal{F}}(G)$. For any G-map $f: G/H \to G/K$ of smooth homogeneous spaces, there is an element $g \in G$ such that $gHg^{-1} \subseteq K$ holds and f is the G-map $R_{g^{-1}}: G/H \to G/K$ sending g'H to $g'g^{-1}K$. Given two elements $g_0, g_1 \in G$ such that $g_iHg_i^{-1} \subseteq K$ holds for i = 0, 1, we have $R_{g_0^{-1}} = R_{g_1^{-1}} \iff g_1g_0^{-1} \in K$. We get a bijection

$$(2.2) K \setminus \{g \in G \mid gHg^{-1} \subseteq K\} \xrightarrow{\cong} \operatorname{map}_G(G/H, G/K), \quad g \mapsto R_{g^{-1}}.$$

The \mathcal{F} -subgroup category $\operatorname{Sub}_{\mathcal{F}}(G)$ has \mathcal{F} as the set of objects. For $H, K \in \mathcal{F}$ denote by $\operatorname{conhom}_G(H, K)$ the set of group homomorphisms $f: H \to K$, for which there exists an element $g \in G$ with $gHg^{-1} \subset K$ such that f is given by conjugation with g, i.e., $f = c(g) : H \to K$, $h \mapsto ghg^{-1}$. Note that c(g) = c(g') holds for two elements $g, g' \in G$ with $gHg^{-1} \subset K$ and $g'Hg'^{-1} \subset K$, if and only if $g^{-1}g'$ lies in the centralizer $C_GH = \{g \in G \mid gh = hg \text{ for all } h \in H\}$ of H in G. The group of inner automorphisms $\operatorname{Inn}(K)$ of K acts on $\operatorname{conhom}_G(H, K)$ from the left by composition. Define the set of morphisms

$$\operatorname{mor}_{\operatorname{Sub}_{\operatorname{Cop}}(G)}(H,K) := \operatorname{Inn}(K) \setminus \operatorname{conhom}_{G}(H,K).$$

There is an obvious bijection

(2.3)
$$K \setminus \{g \in G \mid gHg^{-1} \subseteq K\} / C_G H \xrightarrow{\cong} \operatorname{Inn}(K) \setminus \operatorname{conhom}_G(H, K),$$

 $KgC_G H \mapsto [c(g)],$

where $[c(g)] \in \operatorname{Inn}(K) \setminus \operatorname{conhom}_G(H, K)$ is the class represented by the element $c(g) \colon H \to K, \ h \mapsto ghg^{-1}$ in $\operatorname{conhom}_G(H, K)$ and K acts from the left and C_GH from the right on $\{g \in G \mid gHg^{-1} \subseteq K\}$ by the multiplication in G. Let

be the canonical projection which sends an object G/H to H and is given on morphisms by the obvious projection under the identifications (2.2) and (2.3). 2.B. Cellular chain complexes and Bredon homology. Given an \mathcal{F} -G-CWcomplex X, we obtain a contravariant $\operatorname{Or}_{\mathcal{F}}(G)$ -space $O_X : \operatorname{Or}_{\mathcal{F}}(G) \to \operatorname{Spaces}$ by
sending G/H to $\operatorname{map}_G(G/H, X) = X^H$. We get a contravariant $\operatorname{Sub}_{\mathcal{F}}(G)$ -space $S_X : \operatorname{Sub}_{\mathcal{F}}(G) \to \operatorname{Spaces}$ by sending H to $C_G H \setminus \operatorname{map}_G(G/H, X) = C_G H \setminus X^H$. A
morphism $H \to K$ given by an element $g \in G$ satisfying $gHg^{-1} \subseteq K$ is sent to the
map $C_G K \setminus X^K \to C_G H \setminus X^H$ induced by the map $X^K \to X^H$, $x \mapsto g^{-1}x$.

Given a pair (Y, A) with a filtration $A = Y_{-1} \subseteq Y_0 \subseteq Y_1 \subseteq Y_2 \subseteq \cdots \subseteq Y$ with $Y = \operatorname{colim}_{n \to \infty} Y_n$, we associate to it a \mathbb{Z} -chain complex $C^c_*(Y, A)$, whose *n*-th chain module is the singular homology $H_n^{\operatorname{sing}}(Y_n, Y_{n-1})$ of the pair (Y_n, Y_{n-1}) (with coefficients in \mathbb{Z}) and whose *n*th differential is given by the composite

$$H_n^{\operatorname{sing}}(Y_n, Y_{n-1}) \xrightarrow{\partial_n} H_{n-1}^{\operatorname{sing}}(Y_{n-1}) \xrightarrow{H_{n-1}^{\operatorname{sing}}(i_{n-1})} H_{n-1}^{\operatorname{sing}}(Y_{n-1}, Y_{n-2})$$

for ∂_n the boundary operator of the pair (Y_n, Y_{n-1}) and the inclusion $i_{n-1}: Y_{n-1} = (Y_{n-1}, \emptyset) \to (Y_{n-1}, Y_{n-2}).$

Given a pair of \mathcal{F} -G-CW-complexes (X, A), the filtration by its skeletons induces filtrations on the spaces X^H and $C_G H \setminus X^H$ for every $H \in \mathcal{F}$. We get a contravariant $\mathbb{Z}Or_{\mathcal{F}}(G)$ -chain complex $C^{\mathsf{Or}_{\mathcal{F}}(G)}_{*}(X, A) \colon \mathsf{Or}_{\mathcal{F}}(G) \to \mathbb{Z}$ -Ch and a contravariant $\mathbb{Z}Sub_{\mathcal{F}}(G)$ -chain complex $C^{\mathsf{Sub}_{\mathcal{F}}(G)}_{*}(X, A) \colon \mathsf{Sub}_{\mathcal{F}}(G) \to \mathbb{Z}$ -Ch by putting

$$C^{Or_{\mathcal{F}}(G)}_{*}(X,A)(G/H) := C^{c}_{*}(O_{X}(G/H), O_{A}(G/H)) = C^{c}_{*}(X^{H}, A^{H});$$

$$C^{Sub_{\mathcal{F}}(G)}_{*}(X,A)(H) := C^{c}_{*}(S_{X}(X)(H), S_{A}(H)) = C^{c}_{*}(C_{G}H \setminus X^{H}, C_{G}H \setminus A^{H}).$$

тт

Choose a G-pushout

(2.5)
$$\begin{array}{c} \coprod_{i \in I_n} G/H_i \times S^{n-1} & \xrightarrow{\coprod_{i \in I_n} q_i^n} & X_{n-1} \\ \downarrow & \downarrow \\ \coprod_{i \in I_n} G/H_i \times D^n & \xrightarrow{\coprod_{i \in I_n} Q_i^n} & X_{n-1}. \end{array}$$

It induces for every closed subgroup $H \subseteq G$ pushouts

$$\underbrace{\coprod_{i \in I_n} (G/H_i)^H \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} (q_i^n)^H} X_{n-1}^H }_{\bigcup_{i \in I_n} (G/H_i)^H \times D^n \xrightarrow{\coprod_{i \in I_n} (Q_i^n)^H} X_{n-1}^H }$$

and

$$\underbrace{\coprod_{i \in I_n} C_G H \setminus (G/H_i)^H \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} C_G H \setminus (q_i^n)^H} C_G H \setminus X_{n-1}^H }_{\bigcup_{i \in I_n} C_G H \setminus (G/H_i)^H \times D^n} \underbrace{\coprod_{i \in I_n} C_G H \setminus (Q_i^n)^H} C_G H \setminus X_{n-1}^H.$$

Note that $(G/H_i)^H$ agrees with $\operatorname{mor}_{\operatorname{Or}_{\mathcal{F}}(G)}(G/H, G/H_i) = \operatorname{map}_G(G/H, G/H_i)$. In the sequel we denote by $\mathbb{Z}S$ for a set S the free \mathbb{Z} -module with the set S as basis. Since singular homology satisfies the disjoint union axiom, homotopy invariance and excision, we obtain an isomorphism of contravariant $\mathbb{Z}\operatorname{Or}_{\mathcal{F}}(G)$ -modules

(2.6)
$$\bigoplus_{i \in I_n} \mathbb{Z} \operatorname{mor}_{\operatorname{Or}_{\mathcal{F}}(G)}(?, G/H_i) \xrightarrow{\cong} C_n^{\operatorname{Or}_{\mathcal{F}}(G)}(X, A),$$

where $\mathbb{Z} \operatorname{mor}_{\operatorname{Or}_{\mathcal{F}}(G)}(?, G/H_i)$ is the free $\mathbb{Z}\operatorname{Or}(G)$ -module based at the object G/H_i , see [14, Example 9.8 on page 164], and analogously an isomorphism of contravariant $\mathbb{Z}\operatorname{Sub}_{\mathcal{F}}(G)$ -modules

(2.7)
$$\bigoplus_{i \in I_n} \mathbb{Z} \operatorname{mor}_{\mathbb{Z} \operatorname{Sub}_{\mathcal{F}}(G)}(?, H_i) \xrightarrow{\cong} C_n^{\operatorname{Sub}_{\mathcal{F}}(G)}(X, A).$$

If $P_*C^{\mathsf{Or}_{\mathcal{F}}(G)}_*(X, A)$ is the $\mathbb{Z}\mathsf{Sub}_{\mathcal{F}}(G)$ -chain complex obtained by induction with $P: \mathsf{Or}_{\mathcal{F}}(G) \to \mathsf{Sub}_{\mathcal{F}}(G)$ from $C^{\mathsf{Or}_{\mathcal{F}}(G)}_*(X, A)$, see [14, Example 9.15 on page 166], we conclude from (2.6) and (2.7) that the canonical map of $\mathbb{Z}\mathsf{Sub}_{\mathcal{F}}(G)$ -chain complexes

(2.8)
$$P_*C^{\mathsf{Or}_{\mathcal{F}}(G)}_*(X,A) \xrightarrow{\cong} C^{\mathsf{Sub}_{\mathcal{F}}(G)}_*(X,A)$$

is an isomorphism.

For a covariant $\mathbb{Z}Or(G)$ -module M, we get from the tensor product over $Or_{\mathcal{F}}(G)$, see [14, 9.13 on page 166], a \mathbb{Z} -chain complex $C^{Or_{\mathcal{F}}(G)}_*(X, A) \otimes_{\mathbb{Z}Or_{\mathcal{F}}(G)} M$.

Definition 2.9 (Bredon homology). We define the *n*-th *Bredon homology* to be the \mathbb{Z} -module

$$BH_n^{G,\mathcal{F}}(X,A;M) = H_n\big(C^{\mathsf{Or}_{\mathcal{F}}(G)}_*(X,A) \otimes_{\mathbb{Z}\mathsf{Or}_{\mathcal{F}}(G)} M\big).$$

Given a covariant $\mathbb{Z}Sub_{\mathcal{F}}(G)$ -module N, define analogously

$$SH_n^{G,\mathcal{F}}(X,A;N) = H_n(C_*^{\operatorname{Sub}_{\mathcal{F}}(G)}(X,A) \otimes_{\mathbb{Z}\operatorname{Sub}_{\mathcal{F}}(G)} N).$$

Given a covariant $\mathbb{Z}Sub_{\mathcal{F}}(G)$ -module N, define the covariant $\mathbb{Z}Or_{\mathcal{F}}(G)$ -module P^*N to be $N \circ P$. We get from the adjunction of [14, 9.22 on page 169] and (2.8) a natural isomorphism of \mathbb{Z} -chain complexes

$$(2.10) \qquad C^{\mathsf{Sub}_{\mathcal{F}}(G)}_{*}(X,A) \otimes_{\mathbb{Z}\mathsf{Sub}_{\mathcal{F}}(G)} N \xrightarrow{\cong} C^{\mathsf{Or}_{\mathcal{F}}(G)}_{*}(X,A) \otimes_{\mathbb{Z}\mathsf{Or}_{\mathcal{F}}(G)} P^{*}N$$

and hence natural isomorphism of \mathbb{Z} -modules

(2.11)
$$BH_n^{G,\mathcal{F}}(X,A;P^*N) \xrightarrow{\cong} SH_n^{G,\mathcal{F}}(X,A;N).$$

Let (X, A) be a pair of \mathcal{F} -CW-complexes. Denote by \mathcal{I} the set of isotropy groups of points in X. Let M be a covariant $\mathbb{Z}Or_{\mathcal{F}}(G)$ -module and N be a covariant $\operatorname{Sub}_{\mathcal{F}}(G)$ -module. Denote by $M|_{\mathcal{I}}$ and $N|_{\mathcal{I}}$ their restrictions to $\operatorname{Or}_{\mathcal{I}}(G)$ and $\operatorname{Sub}_{\mathcal{I}}(G)$. Then one easily checks using [11, Lemma 1.9] that there are canonical isomorphisms

$$BH_n^{G,\mathcal{I}}(X,A;M|_{\mathcal{I}}) \cong BH_n^{G,\mathcal{F}}(X,A;M);$$

(2.13)
$$SH_n^{G,\mathcal{I}}(X,A;N|_{\mathcal{I}}) \cong BH_n^{G,\mathcal{F}}(X,A;N)$$

2.C. The construction of the equivariant Atiyah-Hirzebruch spectral sequence.

Proof of Theorem 2.1. Since (X, A) comes with the skeletal filtration, there is by a general construction a spectral sequence

$$E_{p,q}^r, \quad d_{p,q}^r: E_{p,q}^r \to E_{p-r,q+r-1}^r$$

converging to $\mathcal{H}_{p+q}^G(X, A)$, whose E_1 -term is given by

$$E_{p,q}^1 = \mathcal{H}_{p+q}^G(X_p, X_{p-1})$$

and the first differential is the composite

 $d_{p,q}^1: E_{p,q}^1 = \mathcal{H}_{p+q}^G(X_p, X_{p-1}) \to \mathcal{H}_{p+q-1}^G(X_{p-1}) \to \mathcal{H}_{p+q-1}^G(X_{p-1}, X_{p-2}) = E_{p-1,q}^1,$ where the first map is the boundary operator of the pair (X_p, X_{p-1}) and the second is induced by the inclusion. The elementary construction is explained for trivial G for instance in [18, 15.6 on page 339]. The construction carries directly over to the equivariant setting.

The straightforward proof of the identification of $E_{p,q}^2$ with $BH_p^{G,\mathcal{F}}(X,A;\mathcal{H}_q)$ is left to the reader.

2.D. Passing to the subgroup category.

Condition 2.14 $(\operatorname{Sub}|_{\mathcal{F}})$. Let $\mathcal{H}^G_*(-)$ be a smooth *G*-homology theory. Then $\mathcal{H}^G_*(-)$ satisfies the Condition $(\operatorname{Sub}|_{\mathcal{F}})$ if for any $H \in \mathcal{F}$ and $g \in C_G H$ the *G*-map $R_{g^{-1}} \colon G/H \to G/H$ sending g'H to $g'g^{-1}H$ induces the identity on $\mathcal{H}^G_q(G/H)$, *i.e.*, $\mathcal{H}^G_q(R_{g^{-1}}) = \operatorname{id}_{\mathcal{H}^G_g(G/H)}$.

Remark 2.15. Suppose that the *G*-homology theory \mathcal{H}_{*}^{G} satisfies the Condition $(\operatorname{Sub}|_{\mathcal{F}})$. Then the covariant $\mathbb{Z}\operatorname{Or}_{\mathcal{F}}(G)$ -module \mathcal{H}_{q}^{G} sending G/H with $H \in \mathcal{F}$ to $\mathcal{H}_{q}^{G}(G/H)$ defines a covariant $\mathbb{Z}\operatorname{Sub}_{\mathcal{F}}(G)$ -module $\overline{\mathcal{H}_{q}^{G}}: \operatorname{Sub}_{\mathcal{F}}(G) \to \mathbb{Z}$ -Mod uniquely determined by $\mathcal{H}_{q}^{G} = \overline{\mathcal{H}_{q}^{G}} \circ P$ for the projection $P: \operatorname{Or}_{\mathcal{F}}(G) \to \operatorname{Sub}_{\mathcal{F}}(G)$. Moreover, we obtain from (2.11) for every pair (X, A) of \mathcal{F} -*G*-*CW*-complexes natural isomorphisms

$$BH_n^{G,\mathcal{F}}(X,A;\mathcal{H}_q^G(-)) \xrightarrow{\cong} SH_n^{G,\mathcal{F}}(X,A;\overline{\mathcal{H}_q^G(-)}).$$

Note that the right hand side is often easier to compute than the left hand side. One big advantage of $\operatorname{Sub}(G)$ in comparison with $\operatorname{Or}(G)$ is that for a finite subgroup $H \subseteq G$ the set of automorphisms of H is the group $N_G H/H \cdot C_G H$, which is finite, whereas the set of automorphisms of G/H in $\operatorname{Or}(G)$ for a finite group H is the group $N_G H/H$, which is not necessarily finite. This is a key ingredient in the construction of an equivariant Chern character for discrete groups G and proper G-CW-complexes in [15, 16].

If G is abelian, $Sub_{\mathcal{F}}(G)$ reduces to the poset of open subgroups of G ordered by inclusion.

2.E. The connective case.

Theorem 2.16. (i) Suppose that $\mathcal{H}_q^G(G/H) = 0$ for every $H \in \mathcal{F}$ and $q \in \mathbb{Z}$ with q < 0. Then we get for every pair (X, A) of \mathcal{F} -G-CW-complexes and every $q \in \mathbb{Z}$ with q < 0

$$\mathcal{H}_{q}^{G}(X,A) = 0;$$

- (ii) Choose a model $E_{\text{Cop}}(G)$ for the classifying space of smooth proper Gactions. Let \mathcal{I} be the set of isotropy groups of points in $E_{\text{Cop}}(G)$. Suppose that $\mathcal{H}_{q}^{G}(G/H) = 0$ for every open $H \in \mathcal{I}$ and $q \in \mathbb{Z}$ with q < 0.
 - (a) Then for every q < 0 we have $\mathcal{H}_q^G(E_{\mathcal{C}op}(G)) = 0$, the edge homomorphism induces an isomorphism

$$BH_0^G(E_{\mathcal{C}op}(G); \mathcal{H}_q^G(-)) \xrightarrow{\cong} \mathcal{H}_0^G(E_{\mathcal{F}}(G))$$

and the canonical map

$$\operatorname{colim}_{G/H \in \operatorname{Or}_{\mathcal{I}}(G)} \mathcal{H}_0^G(G/H) \xrightarrow{\cong} \mathcal{H}_0^G(E_{\mathcal{F}}(G))$$

is bijective;

(b) Suppose additionally that \mathcal{H}^G_* satisfies Condition (Sub_I), see Condition 2.14. Then the edge homomorphism induces an isomorphism

$$SH_0^G(E_{\mathcal{C}op}(G); \overline{\mathcal{H}_q^G(-)}) \xrightarrow{\cong} \mathcal{H}_0^G(E_{\mathcal{F}}(G))$$

and the canonical map

$$\operatorname{colim}_{H \in \operatorname{Sub}_{\mathcal{I}}(G)} \overline{\mathcal{H}_0^G}(H) \xrightarrow{\cong} \mathcal{H}_0^G(E_{\operatorname{Cop}}(G))$$

is bijective.

Proof. (i) This follows directly from the smooth equivariant Atyiah-Hirzebruch spectral sequence of Theorem 2.1

(ii) a We get $\mathcal{H}_q^G(E_{\mathcal{C}op}(G)) = 0$ for q < 0 from assertion (i).

We get from the the smooth equivariant Atyiah-Hirzebruch spectral sequence of Theorem 2.1 an isomorphism

$$BH_0^{G,\mathcal{I}}(E_{\mathcal{C}op}(G);\mathcal{H}_0^G) = H_0(C^{\mathsf{Or}_{\mathcal{I}}(G)}_*(E_{\mathcal{C}op}(G)) \otimes_{\mathbb{Z}Or_{\mathcal{I}}(G)} \mathcal{H}_0^G) \xrightarrow{\cong} \mathcal{H}_0^G(E_{\mathcal{C}op}(G)).$$

since $E_{p,q}^2 = BH_0^{G,\mathcal{I}}(E_{\mathcal{C}op}(G); \mathcal{H}_q^G) = 0$ is valid for $p, q \in \mathbb{Z}$ if p < 0 or q < 0 holds. Since the $\mathbb{Z}Or_{\mathcal{I}}(G)$ -module $C_n^{Or_{\mathcal{I}}(G)}(E_{\mathcal{C}op}(G))$ is free in the sense of [14, 9.16 on page 167] for $n \geq 0$ by (2.6) and $E_{\mathcal{C}op}(G)^H$ is weakly contractible for $H \in \mathcal{I}$, the $\mathbb{Z}Or_{\mathcal{I}}(G)$ -chain complex $C_*^{Or_{\mathcal{I}}(G)}(E_{\mathcal{C}op}(G))$ is a projective $\mathbb{Z}Or_{\mathcal{I}}(G)$ -resolution of the constant contravariant $\mathbb{Z}Or_{\mathcal{I}}(G)$ -module $\underline{\mathbb{Z}}$, whose value is \mathbb{Z} at each object and assigns to any morphism id_{\mathbb{Z}}. Since $-\otimes_{\mathbb{Z}\otimes_{\mathbb{Z}Or_{\mathcal{I}}(G)}} \mathcal{H}_q^G$ is right exact by [14, 9.23 on page 169], we get a isomorphism

$$H_0(C^{\mathsf{Or}_{\mathcal{I}}(G)}_*(E_{\mathcal{C}op}(G)) \otimes_{\mathbb{Z}Or_{\mathcal{I}}(G)} \mathcal{H}^G_0) \cong \underline{\mathbb{Z}} \otimes_{\mathbb{Z}Or_{\mathcal{I}}(G)} \mathcal{H}^G_0.$$

We conclude from the adjunction appearing in [14, 9.21 on page 169] and the universal property of the colimit that there is a canonical isomorphism

$$\operatorname{colim}_{G/H \in \operatorname{Or}_{\mathcal{I}}(G)} \mathcal{H}_0^G(G/H) \cong \underline{\mathbb{Z}} \otimes_{\mathbb{Z} \operatorname{Or}_{\mathcal{I}}(G)} \mathcal{H}_0^G.$$

This finishes the proof of assertion (ii)a.

(ii) b This follows from assertion (ii) a, since we get from Condition $(\mathrm{Sub}_\mathcal{I})$ a canonical isomorphism

$$\operatorname{colim}_{G/H \in \operatorname{Or}_{\mathcal{I}}(G)} \mathcal{H}_0^G(G/H) \xrightarrow{\cong} \operatorname{colim}_{H \in \operatorname{Sub}_{\mathcal{I}}(G)} \overline{\mathcal{H}_q^G}(H).$$

for the covariant $\mathbb{Z}Sub_{\mathcal{I}}(G)$ -module $\overline{\mathcal{H}_q^G}$ determined by the covariant $\mathbb{Z}Or_{\mathcal{I}}(G)$ -module \mathcal{H}_q^G , see Remark 2.15.

2.F. The first differential. Let X be an \mathcal{F} -G-CW-complex. Suppose that $X_0 = \prod_{i \in J} G/V_i$ and that X_1 is given by the G-pushout

(2.17)
$$\begin{array}{ccc} \coprod_{i \in I} G/U_i \times S^0 & \xrightarrow{\coprod_{i \in I_n} q_i} & X_0 \\ & & & \downarrow \\ \coprod_{i \in I} G/U_i \times D^1 & \xrightarrow{\coprod_{i \in I} Q_i} & X_1. \end{array}$$

We want to figure out the map of $\mathbb{Z}Or_{\mathcal{F}}(G)$ -modules γ making the following diagram commute

where the vertical isomorphisms come from the isomorphisms (2.6). In order to describe γ , we have to define for each $i \in I$ and $j \in J$ a map of $\mathbb{Z}Or(G)$ -modules

$$\gamma_{i,j} \colon \mathbb{Z} \operatorname{mor}_{\operatorname{Or}_{\mathcal{F}}(G)}(?, G/H_i) \to \mathbb{Z} \operatorname{mor}_{\mathbb{Z}\operatorname{Or}_{\mathcal{F}}(G)}(?, G/K_j)$$

such that $\{j \in I_{n-1} \mid \gamma_{i,j} \neq 0\}$ is finite for every $i \in I_n$. Note that $\gamma_{i,j}$ is determined by the image of id_{G/H_i} . Hence we need to specify for $i \in I$ and $j \in J$ an element

(2.18)
$$\overline{\gamma_{i,j}} \in \mathbb{Z} \operatorname{mor}_{\mathsf{Or}_{\mathcal{F}}(G)}(G/U_i, G/V_j) = \mathbb{Z} \operatorname{map}_G(G/U_i, G/V_j).$$

For each $i \in I$ there are two elements $j_{-}(i)$ and $j_{+}(i)$ in J such that the image of $G/H_i \times \{\pm 1\}$ under the map q_i appearing in (2.17) is the summand $G/K_{j_{\pm}}(i)$ belonging to $j_{\pm}(i)$ of $\prod_{j \in I_0} G/K_j$, if we write $S^0 = \{-1, 1\}$. Denote by $(q_i^1)_{\pm 1} \colon G/H_i \to G/K_{j_{\pm}}$ the restriction of q_i^1 to $G/H_i \times \{\pm 1\}$. We leave the elementary proof of the next lemma to the reader.

Lemma 2.19. We get in $\mathbb{Z} \operatorname{map}_G(G/H_i, G/K_j)$

$$\overline{\gamma_{i,j}} = \begin{cases} \pm [(q_i^1)_{\pm 1}] & \text{if } j = j_{\pm}(i) \text{ and } j_{-}(i) \neq j_{+}(i); \\ [(q_i^1)_{+1}] - [(q_i^1)_{-1}] & \text{if } j = j_{-}(i) = j_{+}(i); \\ 0 & \text{if } j \notin \{j_{-}(i), j_{+}(i)\}. \end{cases}$$

Remark 2.20. This implies for the \mathbb{Z} -chain complex $C^{\operatorname{Or}_{\mathcal{F}}(G)}_*(X, A) \otimes_{\operatorname{Or}_{\mathcal{F}}(G)} M$ for a covariant $\mathbb{Z}\operatorname{Or}_{\mathcal{F}}(G)$ -module M that its first differential agrees with the \mathbb{Z} -homomorphism

$$\alpha = (\alpha_{i,j})_{i \in I, j \in J} \colon \bigoplus_{i \in I} M(G/U_i) \to \bigoplus_{j \in J} M(G/V_j),$$

where the Z-homomorphisms $\alpha_{i,j} \colon M(G/U_i) \to M(G/V_j)$ are given as follows. We get in the notation of Lemma 2.19

$$\alpha_{i,j} = \begin{cases} \pm M((q_i^1)_{\pm}) & \text{if } j = j_{\pm}(i) \text{ and } j_{-}(i) \neq j_{+}(i); \\ M((q_i^1)_{+1}) - M((q_i^1)_{-1}) & \text{if } j = j_{-}(i) = j_{+}(i); \\ 0 & \text{if } j \notin \{j_{-}(i), j_{+}(i)\}. \end{cases}$$

Note that the cokernel of α is $BH_0^{G,\mathcal{F}}(X;M)$.

We get a computation of the first differential of $C^{\operatorname{Sub}_{\mathcal{F}}(G)}_*(X, A) \otimes_{\mathbb{Z}\operatorname{Sub}_{\mathcal{F}}(G)} N$ for a covariant $\mathbb{Z}\operatorname{Sub}_{\mathcal{F}}(G)$ -module N from the isomorphism (2.10). Explicitly the first differential is given by

$$\beta = (\beta_{i,j})_{i \in I, j \in J} \colon \bigoplus_{i \in I_n} N(U_i) \to \bigoplus_{j \in I_{n-1}} N(V_j),$$

where the Z-homomorphisms $\beta_{i,j} \colon N(G/U_i) \to N(G/V_j)$ are given as follows. Choose for the map $(q_i)_{\pm} \colon G/U_i \to G/V_j$ an element $(g_i)_{\pm}$ with $(q_i)_{\pm}(eU_i) = (g_i)_{\pm}^{-1}V_j$. Let $[c(g_i)_{\pm}] \colon U_i \to V_j$ be the morphism in $\operatorname{Sub}_{\mathcal{F}}(G)$ represented by $c(g_i)_{\pm} \colon U_i \to V_j$ sending u to gug^{-1} . Then

$$\beta_{i,j} = \begin{cases} \pm N([c(g_i)_{\pm}]) & \text{if } j = j_{\pm}(i) \text{ and } j_{-}(i) \neq j_{+}(i); \\ N([c(g_i)_{+}]) - N([c(g_i)_{-}]) & \text{if } j = j_{-}(i) = j_{+}(i); \\ 0 & \text{if } j \notin \{j_{-}(i), j_{+}(i)\}. \end{cases}$$

Note that the cokernel of β is $SH_0^{G,\mathcal{F}}(X;N)$.

3. A brief review of the Farrell Jones Conjecture for the algebraic K-theory of Hecke algebras

In this section we give a review of the Farrell Jones Conjecture for the algebraic K-theory of Heckes algebras. Further information can be found in [2, 3].

Let R be a (not necessarily commutative) associative unital ring with $\mathbb{Q} \subseteq R$. Let G be a td-group. Let $\mathcal{H}(G; R)$ be the associated Hecke algebra. One can construct a covariant functor

$$\mathbf{K}_R \colon \operatorname{Or}_{\mathcal{O}_{\mathbf{P}}}(G) \to \operatorname{Spectra};$$

such that $\pi_n(\mathbf{K}_R(Q'/U')) \cong K_n(\mathcal{H}(U;R))$ holds for any $n \in \mathbb{Z}$ and open subgroup $U \subseteq Q$. Associated to it is a smooth *G*-homology theory $H^G_*(-;\mathbf{K}_R)$ such that

(3.1)
$$H_n^G(G/U; \mathbf{K}_R) \cong K_n(\mathcal{H}(U; R))$$

holds for every $n \in \mathbb{Z}$ and every open subgroup $U \subseteq Q$.

The next result follows from [3, Corollary 1.8].

Theorem 3.2. Let G be a td-group which is modulo a normal compact subgroup a subgroup of a reductive p-adic group. Let R be a uniformly regular ring with $\mathbb{Q} \subseteq R$.

Then the map induced by the projection $E_{\mathcal{C}op}(G) \to G/G$ induces for every $n \in \mathbb{Z}$ an isomorphism

$$H_n^G(E_{\mathcal{C}op}(G); \mathbf{K}_R) \xrightarrow{\cong} H_n^G(G/G; \mathbf{K}_R) = K_n(\mathcal{H}(G; R)).$$

4. Proof of the Main Theorem 1.1

Proof of Theorem 1.1. (i) This is exactly Theorem 3.2.

(ii) Since an open group homomorphism $U \to V$ between two td-groups induces a ring homomorphism $\mathcal{H}(U; R) \to \mathcal{H}(V; R)$ between the Hecke algebras and hence a homomorphism $K_n(\mathcal{H}(U; R)) \to K_n(\mathcal{H}(V; R))$ and inner automorphisms of a td-group U induce the identity on $K_n(\mathcal{H}(U; R))$, we get a covariant $\mathbb{Z}Sub_{\mathcal{C}om}(G)$ module $K_n(\mathcal{H}(?; R))$ whose value at U is $K_n(\mathcal{H}(U; R))$. Since the isomorphism (3.1) is natural, we get an isomorphisms of covariant $\mathbb{Z}Or_{\mathcal{O}p}(G)$ -modules

$$P^*K_n(\mathcal{H}(?;R)) \xrightarrow{\cong} \pi_n(\mathbf{K}_R)$$

for the projection $P: \operatorname{Or}_{\mathcal{O}p}(G) \to \operatorname{Sub}_{\mathcal{O}p}(G)$ of (2.4). So the smooth equivariant Atiyah-Hirzebruch spectral sequence applied to the smooth homology theory $H^G_*(-; \mathbf{K}_R)$ takes for a \mathcal{F} -G-CW-complexes X the form

(4.1)
$$E_{p,q}^2 = SH_q^{G,\mathcal{F}}(X; K_q(\mathcal{H}(?; R))) \implies H_{p+q}^G(X; \mathbf{K}_R).$$

the Main Theorem 1.1.

Now assertion (ii) follows from the special case $X = E_{Cop}(G)$ and assertion (i). (iii) and (iv) As $K_q(\mathcal{H}(K; R))$ vanishes for every compact td-group K and every $q \leq -1$, see [2, Lemma 8.1], assertions (iii), and (iv) follow from Theorem 2.16 applied in the case $X = E_{Cop}(G)$ and from assertion (i). This finishes the proof of

5. The main recipe for the computation of the projective class group

 \square

Throughout this section G will be a td-group and R be a uniformly regular ring with $\mathbb{Q} \subseteq R$, e.g., a field of characteristic zero. We will assume that the assembly map $H_n^G(E_{Cop}(G); \mathbf{K}_R) \to H_n^G(G/G; \mathbf{K}_R) = K_n(\mathcal{H}(G; R))$ is bijective for all $n \in \mathbb{Z}$ This is known to be true for subgroups of reductive *p*-adic groups by Theorem 3.2.

5.A. The general case. Let X be an abstract simplicial complex with a simplicial G-action such that all isotropy groups are compact open, the G-action is cellular, and $|X|^K$ is non-empty and connected for every compact open subgroup K of G.

We can choose a subset V of the set of vertices of X such that the G-orbit through any vertex in X meets V in precisely one element. Fix a total ordering on V. Let E be the subset of $V \times V$ consisting of those pairs (v, w) such that $v \leq w$ holds and there exists $g \in G$ for which v and gw satisfy $v \neq gw$ and span an edge [v, gw] in X. For $(v, w) \in E$ define $\overline{F(v, w)}$ to be the subset of $G_v \setminus G/G_w$ consisting of elements x for which v and gw satisfy $v \neq gw$ and span an edge [v, gw] in X for

some (and hence all) representative g of x. Choose a subset F(v, w) of G such that the projection $G \to G_v \setminus G/G_w$ induces a bijection $F(v, w) \to \overline{F(v, w)}$.

Then for every edge of X the G-orbit through it meets the set $\{[v, gv] \mid (v, w) \in E, g \in F(v, w)\}$ in precisely one element. Moreover, the 0-skeleton of |X| is given by $|X|_0 = \coprod_{u \in V} G/G_u$ and $|X|_1$ is given by the G-pushout

where $q_{(v,w),g} \colon G/(G_v \cap G_{gw}) \times S^0 \to |X|_0 = \coprod_{u \in V} G/G_u$ is defined as follows. Write $S^0 = \{-1, 1\}$. The restriction of $q_{(v,w),g}$ to $G/(G_v \cap G_{gw}) \times \{-1\}$ lands in the summand G/G_v and is given by canoncial projection. The restriction of $q_{(v,w),g}$ to $G/(G_v \cap G_{gw}) \times \{1\}$ lands in the summand G/G_w and is given by the *G*-map $R_{g^{-1}} \colon G/(G_v \cap G_{gw}) \to G/G_w$ sending $z(G_v \cap G_{gw})$ to zgG_w . Next we define a map

$$\beta = (\beta_{(v,w),g,u}) \colon \bigoplus_{(v,w) \in E} \bigoplus_{g \in F(v,w)} K_0(\mathcal{H}(G_v \cap G_{gw}; R)) \to \bigoplus_{u \in V} K_0(\mathcal{H}(G_u; R)).$$

If u = v, then $\beta_{(v,w),g,v} \colon K_0(\mathcal{H}(G_v \cap G_{gw}; R)) \to K_0(\mathcal{H}(G_v; R))$ is the map induced by the inclusion $G_v \cap G_{gw} \to G_v$ multiplied with (-1). If u = w, then $\beta_{(v,w),g,w}$ $K_0(\mathcal{H}(G_v \cap G_{gw}; R)) \to K_0(\mathcal{H}(G_w; R))$ is the map induced by the group homomorphism $G_v \cap G_{gw} \to G_w$ sending z to $g^{-1}zg$. If $u \notin \{v, w\}$, then $\beta_{(v,w),g,u} = 0$.

Lemma 5.1. The cokernel of β is isomorphic to $K_0(\mathcal{H}(G; R))$.

Proof. We conclude from Remark 2.20 that the cokernel of β is $SH_0^{G,\text{Cop}}(X; \overline{K_0^G}(-))$. The up to *G*-homotopy unique *G*-map $f: X \to E_{\text{Cop}}(G)$ induces for every compact open subgroup $K \subset G$ a 1-connected map $f^K: |X|^K \to E_{\text{Cop}}(G)^K$. This implies that the map $SH_0^{G,\text{Cop}}(X; \overline{K_0^G}(-)) \to SH_0^{G;\text{Cop}}(E_{\text{Cop}}(G); \overline{K_0^G}(-))$ induced by f is an isomorphism, see [14, Proposition 23 (iii) on page 35]. Theorem 2.16 (ii)b implies $SH_0^G(E_{\text{Cop}}(G); \overline{K_0^G}(-)) \cong H_0^G(E_{\text{Cop}}(G); \mathbf{K}_R)$. Since by assumption we have $H_0^G(E_{\text{Cop}}(G); \mathbf{K}_R) \cong K_0(\mathcal{H}(G; R))$, Lemma 5.1 follows.

Remark 5.2. Suppose additionally that X possesses a strict fundamental domain Δ , i.e., a simplicial subcomplex Δ that contains exactly one simplex from each orbit for the G-action on the set of simplices of X. Then one can take V to be the set of vertices of Δ and for $(v, w) \in E$ the set F(v, w) to be $\{e\}$. Moreover, β reduces to the map

$$\beta = (\beta_{(v,w,u)}) \colon \bigoplus_{(v,w)\in E} K_0(\mathcal{H}(G_v \cap G_w; R)) \to \bigoplus_{u\in V} K_0(\mathcal{H}(G_u; R)).$$

where $\beta_{(v,w),u}$ is the map induced by the inclusion $G_v \cap G_w \to G_v$ multiplied with (-1) for u = v, the map induced by the inclusion $G_v \cap G_w \to G_w$ for u = w, and zero for $u \notin \{v, w\}$. Note that E is the subset of $V \times V$ consisting of elements (v, w) for which v < w holds and v and w span an edge [v, w] in Δ .

5.B. A variation. Consider a central extension $1 \to \widetilde{C} \to \widetilde{G} \xrightarrow{\text{pr}} G \to 1$ of td-groups together with a group homomorphism $\mu : \widetilde{G} \to \mathbb{Z}$ such that $\widetilde{C} \cap \widetilde{M}$ is compact for $\widetilde{M} := \ker(\mu)$. We still consider the abstract simplicial complex X of Subsection 5.A coming with a simplicial G-action such that all isotropy groups are compact open, and $|X|^K$ is non-empty and connected for every compact open subgroup K of G. Furthermore, we will assume that the assembly map $H_n^{\widetilde{G}}(E_{Cop}(\widetilde{G}); \mathbf{K}_R) \to H_n^{\widetilde{G}}(\widetilde{G}/\widetilde{G}; \mathbf{K}_R) = K_0(\mathcal{H}(\widetilde{G}; \widetilde{R}))$ is bijective for all $n \in \mathbb{Z}$.

If \widetilde{C} is compact, then we can consider X as a \widetilde{G} -CW-complex by restricting the G-action with pr and Subsection 5.A applies. Hence we will assume that \widetilde{C} is not compact, or, equivalently, that \widetilde{C} is not contained in the kernel $\widetilde{M} := \ker(\mu)$. Then the index $m := [\mathbb{Z} : \mu(C)]$ is a natural number $m \ge 1$. We fix an element $\widetilde{c} \in \widetilde{C}$ with $\mu(\widetilde{c}) = m$. In sequel we choose for every $g \in G$ an element \widetilde{g} in \widetilde{G} satisfying $\operatorname{pr}(\widetilde{g}) = g$ and denote for an open subgroup $U \subseteq G$ by $\widetilde{U} \subseteq \widetilde{G}$ its preimage under $\operatorname{pr}: \widetilde{G} \to G$. Let

$$\gamma \colon \bigoplus_{(v,w) \in E} \bigoplus_{g \in F(v,w)} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{G_{gw}} \cap \widetilde{M}; R)) \to \bigoplus_{u \in V} K_0(\mathcal{H}(\widetilde{G_u} \cap \widetilde{M}; R))$$

be the map whose component for $(v, w) \in E$, $g \in F(v, w)$, and $u \in V$ is the map

(5.3)
$$\gamma_{(v,w),g,u} \colon K_0(\mathcal{H}(\widetilde{G}_v \cap \widetilde{G}_{gw} \cap \widetilde{M}; R)) \to K_0(\mathcal{H}(\widetilde{G}_u \cap \widetilde{M}; R))$$

defined next. If u = v, it is the map coming from the inclusion $\widetilde{G_v} \cap \widetilde{G_{gw}} \cap \widetilde{M} \to \widetilde{G_v} \cap \widetilde{M}$ multiplied with (-1). If u = w, it is the map coming from the group homomorphism $\widetilde{G_v} \cap \widetilde{G_{gw}} \cap \widetilde{M} \to \widetilde{G_w} \cap \widetilde{M}$ sending x to $\widetilde{g}x\widetilde{g}^{-1}$. If $u \notin \{v, w\}$, it is trivial. Note that this definition is independent of the choice of $\widetilde{g} \in \widetilde{G}$ satisfying $\operatorname{pr}(\widetilde{g}) = g$ for $g \in F(v, w)$.

Lemma 5.4. The cohernel of γ is $K_0(\mathcal{H}(\widetilde{G}; R))$.

Proof. Note that $|X| \times \mathbb{R}$ carries the $G \times \mathbb{Z}$ -CW-complex structure coming from the product of the G-CW-complex structure on |X| and the standard free \mathbb{Z} -CWstructure on \mathbb{R} . Since the \mathbb{Z} -CW-complex \mathbb{R} has precisely one equivariant 1-cell and one equivariant 0-cell, the set of equivariant 0-cells of the $G \times \mathbb{Z}$ -CW-complex $|X| \times \mathbb{R}$ can be identified with the set V and the set of equivariant 1-cells can be identified with the disjoint union of V and the set $\coprod_{(v,w)\in E} F(v,w)$. Now the 0skeleton of $|X| \times \mathbb{R}$ is given by the disjoint union $\coprod_{u\in V} \widetilde{G}/\widetilde{G}_u \times \mathbb{Z}$ and the 1-skeleton of $|X| \times \mathbb{R}$ is given by the $G \times \mathbb{Z}$ -pushout (5.5)

where \widetilde{q} is given as follows. Write $S^0 = \{-1, 1\}$. Fix $u \in V$. The restriction of \widetilde{q} to the summand $\widetilde{G}/\widetilde{G}_v \times \mathbb{Z} \times \{\epsilon\}$ lands in the summand $\widetilde{G}/\widetilde{G}_v \times \mathbb{Z}$ and is given by id for $\epsilon = -1$ and by id \times sh₁ for $\epsilon = 1$, where sh_a: $\mathbb{Z} \to \mathbb{Z}$ sends b to a + b for $a, b \in \mathbb{Z}$. Fix $(v, w) \in E$ and $g \in F(v, w)$. The restriction of \widetilde{q} to the summand $\widetilde{G}/(\widetilde{G}_v \cap \widetilde{G}_{gw}) \times \mathbb{Z} \times \{-1\}$ belonging to (v, w) and g lands in the summand for u = v and is the canonical projection $\widetilde{G}/(\widetilde{G}_v \cap \widetilde{G}_{gw}) \times \mathbb{Z} \to \widetilde{G}/\widetilde{G}_v \times \mathbb{Z}$. The restriction of \widetilde{q} to the summand $\widetilde{G}/(\widetilde{G}_v \cap \widetilde{G}_{gw}) \times \mathbb{Z} \times \{1\}$ belonging to (v, w) and g lands in the

summand for u = w and is the map $R_{\widetilde{g}^{-1}} \times \operatorname{id}_{\mathbb{Z}} : \widetilde{G}/(\widetilde{G_v} \cap \widetilde{G_{gw}}) \times \mathbb{Z} \to \widetilde{G}/\widetilde{G_w} \times \mathbb{Z}$, where $R_{\widetilde{g}^{-1}}$ sends $\widetilde{z}(\widetilde{G_v} \cap \widetilde{G_{gw}})$ to $\widetilde{z}\widetilde{g}^{-1}\widetilde{G_w}$.

We have the group homomorphism

$$\iota := \operatorname{pr} \times \mu \colon \widetilde{G} \to G \times \mathbb{Z}.$$

Its kernel is $\widetilde{C} \cap \widetilde{M}$. Its image has finite index in $G \times \mathbb{Z}$, which agrees with the index *m* of the image of μ in \mathbb{Z} .

We are interested in the \widehat{G} -CW-complex $\iota^*(|X| \times \mathbb{R})$ obtained by restriction with ι from the $G \times \mathbb{Z}$ -CW-complex $|X| \times \mathbb{R}$. So we have to analyze how the $G \times \mathbb{Z}$ -cells in $\iota^*(|X| \times \mathbb{R})$ viewed as \widetilde{G} -spaces decompose as disjoint union of \widetilde{G} -cells. Consider any open subgroup $U \subseteq G$. Then we obtain a \widetilde{G} -homeomorphism

$$\alpha(U)\colon \prod_{p=0}^{m-1} \widetilde{G}/(\widetilde{U} \cap \widetilde{M}) \xrightarrow{\cong} \iota^* \big(G/U \times \mathbb{Z} \big)$$

by sending the element $\tilde{z}(\tilde{U}\cap \tilde{M})$ in the *p*-th summand to $(\operatorname{pr}(\tilde{z})U, \mu(\tilde{z})+p)$. Next we have to analyze the naturality properties of $\alpha(U)$. The following diagram commutes for $a \in \mathbb{Z}$

$$\begin{array}{ccc} & \coprod_{p=0}^{m-1} \widetilde{G} / (\widetilde{U} \cap \widetilde{M}) & & \xrightarrow{\alpha(U)} & \iota^* \left(G / U \times \mathbb{Z} \right) \\ & & & & \downarrow^{\mathrm{id} \times \mathrm{sh}_a} \\ & & & \downarrow^{\mathrm{id} \times \mathrm{sh}_a} \\ & & \coprod_{p=0}^{m-1} \widetilde{G} / (\widetilde{U} \cap \widetilde{M}) & & \xrightarrow{\alpha(U)} & \iota^* \left(G / U \times \mathbb{Z} \right) \end{array}$$

where $\widehat{\pi}$ sends the summand for $p = 0, \ldots, m-2$ by the identity to the summand for p+1 and sends the summand for p = m-1 to the summand for p = 0 by the map $R_{\widetilde{c}} \colon \widetilde{G}/(\widetilde{U} \cap \widetilde{M}) \to \widetilde{G}/(\widetilde{U} \cap \widetilde{M})$ for $\widetilde{c} \in \widetilde{C}$ satisfying $\mu(\widetilde{c}) = m$. Note for the sequel that the endomorphism $\pi_n(\mathbf{K}_R(R_{\widetilde{c}}))$ of $\pi_n(\mathbf{K}_R(\widetilde{G}/\widetilde{U} \cap \widetilde{M})) = K_0(\mathcal{H}(\widetilde{U} \cap \widetilde{M}))$ is the identity, since conjugation with \widetilde{c} induces the identity on $\widetilde{U} \cap \widetilde{M}$.

Consider two open subgroups U and V of G and an element $g \in G$ with $gUg^{-1} \subseteq V$. Then we get well-defined \widetilde{G} -maps $R_{\widetilde{g}^{-1}} \colon \widetilde{G}/(\widetilde{U} \cap \widetilde{M}) \to \widetilde{G}/(\widetilde{V} \cap \widetilde{M})$ sending $\widetilde{z}(\widetilde{U} \cap \widetilde{M})$ to $\widetilde{z}\widetilde{g}^{-1}(\widetilde{V} \cap \widetilde{M})$ and $R_{g^{-1}} \times \operatorname{id} \colon \iota^*(G/U \times \mathbb{Z}) \to \iota^*(G/V \times \mathbb{Z})$ sending (zU, n) to $(zg^{-1}V, n)$ and the following diagram commutes

In particular the following diagram commutes

Now we obtain from the $G \times \mathbb{Z}$ -pushout (5.5) by applying restriction with ι and the maps α_U above a \tilde{G} -pushout describing how the 1-skeleton of the \tilde{G} -CWcomplex $\iota^*(|X| \times \mathbb{R})$ is obtained from its 0-skeleton and explicite descriptions of the attaching maps. In the sequel A^m stands for the *m*-fold direct sum of copies of A for an abelian group A and $\pi: A^m \to A^m$ denotes the permutation map sending (a_1, a_2, \ldots, a_m) to $(a_m, a_1, \ldots, a_{m-1})$ and aug: $A^m \to A$ denotes the augmentation map sending (a_1, \ldots, a_m) to $a_1 + \cdots + a_m$.

Let δ be the map given by the direct sum

$$\delta = \bigoplus_{v \in V} \delta_v \colon \bigoplus_{v \in V} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R))^m \to \bigoplus_{v \in V} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R))^m$$

where $\delta_v \colon K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R))^m \to K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R))^m$ is π - id. Let

$$\epsilon \colon \bigoplus_{(v,w)\in E} \bigoplus_{g\in F(v,w)} K_0(\mathcal{H}(\widetilde{G_v}\cap \widetilde{G_{gw}}\cap \widetilde{M};R))^m \to \bigoplus_{u\in V} K_0(\mathcal{H}(\widetilde{G_u}\cap \widetilde{M};R))^m$$

be the map given by the components $\epsilon_{(v,w),g,u}$ defined as follows. For u = v the map $\epsilon_{(v,w),g,v}$ is the *m*-fold direct sum $\gamma_{(v,w),g,v}^m$ of the maps $\gamma_{(v,w),g,v}$ defined in (5.3). For u = w we put

$$\epsilon_{(v,w),g,w} \colon K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{G_{gw}} \cap \widetilde{M}; R))^m \xrightarrow{\gamma_{(v,w),g,u}^m} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R))^m \xrightarrow{\pi^{\mu(\widetilde{g})}} K_0(\mathcal{H}(\widetilde{G_w} \cap \widetilde{M}; R))^m.$$

Since $\pi^m = \text{id}$, the map $\pi^{\mu(\tilde{g})}$ depends only on $\overline{\mu}(g)$, where $\overline{\mu} \colon G \to \mathbb{Z}/m$ sends g to the image of \tilde{g} under the projection $\mathbb{Z} \to \mathbb{Z}/m$ for any choice of an element $\tilde{g} \in \tilde{G}$ with $\operatorname{pr}(\tilde{g}) = g$.

The cokernel of the map

$$\delta \oplus \epsilon \colon \left(\bigoplus_{v \in V} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R))^m \right) \oplus \left(\bigoplus_{(v,w) \in E} \bigoplus_{g \in F(v,w)} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{G_{gw}} \cap \widetilde{M}; R))^m \right) \to \bigoplus_{u \in V} K_0(\mathcal{H}(\widetilde{G_u} \cap \widetilde{M}; R))^m$$

is $K_0(\mathcal{H}(\widetilde{G}; R))$ because of Theorem 2.16 (ii)b and Remark 2.20 by the same argument as it appears in the proof of Lemma 5.1 since $(\iota^*(|X| \times \mathbb{R}))^K$ is connected for every compact open subgroup K of \widetilde{G} . It does not matter that $\iota^*(|X| \times \mathbb{R})$ is a \widetilde{G} -CW-complex but not a simplicial complex, since in the description of $\beta_{i,j}$ appearing in Remark 2.20 the case $j_i(+) = j_-(i)$ never occurs.

We can identify $\bigoplus_{v \in V} K_0(\mathcal{H}(G_v \cap M; R))$ and the cokernel of δ , since we have the exact sequence $A^m \xrightarrow{\pi - \mathrm{id}} A^m \xrightarrow{\alpha} A \to 0$ for every abelian group A. The cokernel of $\delta \oplus \epsilon$ is isomorphic the cokernel of the composite of ϵ with the map

$$\bigoplus_{v \in V} \operatorname{aug} \colon \bigoplus_{v \in V} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R))^m \to \bigoplus_{v \in V} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{M}; R)) = \operatorname{cok}(\delta).$$

For every $(v, w) \in E$, $g \in F(v, w)$, and $u \in V$ the diagram

$$\begin{array}{c} K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{G_{gw}} \cap \widetilde{M}; R))^m \xrightarrow{\epsilon_{(v,w),u}} K_0(\mathcal{H}(\widetilde{G_u} \cap \widetilde{M}; R))^m \\ & \underset{aug}{\overset{aug}{\downarrow}} \\ K_0(\mathcal{H}(\widetilde{G_v} \cap \widetilde{G_{gw}} \cap \widetilde{M}; R)) \xrightarrow{\gamma_{(v,w),u}} K_0(\mathcal{H}(\widetilde{G_u} \cap \widetilde{M}; R)) \end{array}$$

commutes, since $\alpha \circ \pi = \alpha$ holds. This finishes the proof of Lemma 5.4.

6. The projective class group of the Hecke algebras of $SL_n(F)$, $\operatorname{PGL}_n(F)$ and $\operatorname{GL}_n(F)$

Next we apply the recipes of Sections 5 to some prominent reductive p-adic groups G as an illustration. For the remainder of this section R is a uniformly regular ring with $\mathbb{Q} \subseteq R$.

Note that for a reductive *p*-adic groups G the assembly map $H_n^G(E_{\mathcal{C}op}(G); \mathbf{K}_R) \to$ $H_n^G(G/G; \mathbf{K}_R) = K_n(\mathcal{H}(G; R))$ is bijective for all $n \in \mathbb{Z}$ by Theorem 3.2. Moreover, the Bruhat-Tits building X of G or of $G/\operatorname{cent}(G)$ can serve as the desired simplicial complex X appearing in Section 5. The original construction of the Bruhat-Tits building can be found in [8]. For more information about buildings we refer to [1, 1]6, 7, 17]. The space X carries a CAT(0)-metric, which is invariant under the action of G or $G/\operatorname{cent}(G)$, see [6, Theorem 10A.4 on page 344], Hence $|X|^H$ is contractible for any compact open subgroup H of G or $G/\operatorname{cent}(G)$, since X^H is a convex non-empty subset of X and hence contractible by [6, Corollary II.2.8 on page 179]. Therefore the geometric realization of the Bruhat-Tits building X is (after possibly subdividing to achieve a cellular action) a model for $E_{\mathcal{C}op}(G)$ or of $E_{\mathcal{C}op}(G/\operatorname{cent}(G)).$

6.A. $\mathrm{SL}_n(F)$. We begin with computing $K_0(\mathcal{H}(\mathrm{SL}_n(F); R))$, where F is a non-Archimedean local field with valuation $v: F \to \mathbb{Z} \cup \{\infty\}$. The following claims about the Bruhat-Tits building X for $SL_n(F)$ (and later about X') can all be verified from the description of X in [1, Sec. 6.9].

For l = 0, ..., n - 1 let U_l^S be the compact open subgroup of $SL_n(F)$ consisting of all matrices (a_{ij}) in $SL_n(F)$ satisfying $v(a_{i,j}) \ge -1$ for $1 \le i \le n - l < j \le n$, $v(a_{i,j}) \ge 1$ for $1 \le j \le n - l < i \le n$ and $v(a_{i,j}) \ge 0$ for all other i, j. In particular $U_0^{\mathrm{S}} = \mathrm{SL}_n(\mathcal{O})$, where $\mathcal{O} = \{z \in F \mid v \geq 0\}$. The intersection of the U_l^{S} -s is the Iwahori subgroup $I^{\rm S}$ of ${\rm SL}_n(F)$. It is given by those matrices A in ${\rm SL}_n(F)$ for which $v(a_{i,j}) \ge 1$ for i > j and $v(a_{i,j}) \ge 0$ for $i \le j$ hold.

The (n-1)-simplex Δ can be chosen with an ordering on its vertices such that the isotropy group of its *l*-th vertex v_l is $U_l^{\rm S}$. The isotropy group of a face σ of Δ is the intersection of the isotropy groups of the vertices of σ . In particular, the isotropy group of Δ is the Iwahori subgroup I^S of $SL_n(F)$. Consider the map

$$d^{\mathrm{SL}_n(F)} \colon \bigoplus_{0 \le i < j \le n-1} K_0(\mathcal{H}(U_i^{\mathrm{S}} \cap U_j^{\mathrm{S}}; R)) \to \bigoplus_{0 \le l \le n-1} K_0(\mathcal{H}(U_l^{\mathrm{S}}; R)),$$

for which the component $d_{i < j, l}^{\mathrm{SL}_n(F)} \colon K_0(\mathcal{H}(U_i^{\mathrm{S}} \cap U_j^{\mathrm{S}}; R)) \to K_0(\mathcal{H}(U_l^{\mathrm{S}}; R))$ is given by $-K_0(\mathcal{H}(f_{i < j}^i; R))$, if l = i, by $K_0(\mathcal{H}(f_{i < j}^j; R))$, if l = j, and is zero, if $l \notin \{i, j\}$, where $f_{i < j}^k \colon U_i^{\mathrm{S}} \cap U_j^{\mathrm{S}} \to U_k^{\mathrm{S}}$ is the inclusion for k = i, j. Then the cokernel of $d^{\mathrm{SL}_n(F)}$ is $K_0(\mathcal{H}(\mathrm{SL}_n(F); R))$ by Lemma 5.1 and Re-

mark 5.2.

6.B. $\operatorname{PGL}_n(F)$. Next we compute $K_0(\mathcal{H}(\operatorname{PGL}_n(F);R))$. The action of $\operatorname{SL}_n(F)$ on X extends to an action of $\operatorname{GL}_n(F)$. This action factors through the canonical projection pr: $\operatorname{GL}_n(F) \to \operatorname{PGL}_n(F)$ to an action of $\operatorname{PGL}_n(F)$. These actions are still simplicial, but no longer cellular. Let

$$\widehat{h} := \begin{pmatrix} 1 & & \\ & \ddots & \\ & & \ddots & \\ \zeta & & & 1 \\ \zeta & & & \end{pmatrix} \in \operatorname{GL}_n(F)$$

where we chose a uniformizer $\zeta \in F$, i.e., an element in F satisfying $v(\zeta) = 1$. Obviously \hat{h}^n is the diagonal matrix $\zeta \cdot I_n$, all whose diagonal entries are ζ , and hence is central in $\operatorname{GL}_n(F)$. Define $h \in \operatorname{PGL}_n(F)$ by $h = \operatorname{pr}(\widehat{h})$. Then $hv_l = v_{l+1}$ for l = 0, ..., n - 2 and $hv_{n-1} = v_0$ and h^n is the unit in $PGL_n(F)$. In particular, the action of $PGL_n(F)$ is transitive on the vertices of X. To obtain a cellular action, X can be subdivided to X' as follows. The (n-2)-skeleton of X is unchanged. while the (n-1)-simplices of X are in X' replaced with cones on their boundary. More formally, the vertices of X' are the vertices of X and the barycenters b_{σ} of (n-1)-simplices σ of X. A set S of vertices of X' is a simplex of X', if and only if S is a k-simplex of X and k < n-1 or if S contains exactly one barycenter b_{σ} and for all $v \in S \setminus \{b_{\sigma}\}$ are vertices of σ (in the simplicial structure of X). The action of $\operatorname{PGL}_n(F)$ on X' is then cellular and is transitive on (n-1)-simplices of X'. There are two orbits of vertices, represented by v_0 and b_{Δ} . Let $k := \lfloor n/2 \rfloor$. There are k+1 orbits of 1-simplices, represented by $\{v_0, v_1\}, \ldots, \{v_0, v_k\}$ and $\{v_0, b_{\Delta}\}$. Next we describe some isotropy groups.

For an open subgroup $W \subseteq \operatorname{PGL}_n(F)$ we denote by \widetilde{W} its preimage under the projection pr: $\operatorname{GL}_n(F) \to \operatorname{PGL}_n(F)$. For $l = 0, \ldots, n-1$ let U_l^{G} be the compact open subgroup of $\operatorname{GL}_n(F)$ given by $\widehat{h}^l \operatorname{GL}_n(\mathcal{O})\widehat{h}^{-l} = \operatorname{PGL}_n(F)_{v_l} = \operatorname{PGL}_n(F)_{h_l v_0}$ In particular $U_0^{\mathrm{G}} = \mathrm{GL}_n(\mathcal{O})$. Note that

$$U_l^{\mathcal{G}} \cap \operatorname{SL}_n(F) = (\widehat{h}^l \operatorname{GL}_n(\mathcal{O})\widehat{h}^{-l}) \cap \operatorname{SL}_n(F) = \widehat{h}^l \operatorname{SL}_n(\mathcal{O})\widehat{h}^{-l} = U_l^S$$

holds. The intersection of the U_l^{G} -s is the Iwahori subgroup I^{G} of $\mathrm{GL}_n(F)$. Let U_l^{P} be the image of $U_l^{\mathbf{G}}$ in $\mathrm{PGL}_n(F)$. This is the isotropy groups of the vertex v_l for the action of $\operatorname{PGL}_n(F)$. The Iwahori subgroup I^{P} of $\operatorname{PGL}_n(F)$ is the image of I^{G} under pr. It is the pointwise isotropy subgroup for Δ . Let H be the subgroup generated by the image of h in $\mathrm{PGL}_n(F)$. It is a cyclic subgroup of order n that cyclically permutes the vertices of Δ . This subgroup normalizes I^{P} and the isotropy group of b_{Δ} is the product HI^{P} . Recall that $v_l = h^l v_0$ and hence $U_l^P = h^l U_0 P h^{-l}$ Write $i_H \colon I^{\mathrm{P}} \to HI^{\mathrm{P}}$, $i_0 \colon I^{\mathrm{P}} \to U_0^{\mathrm{P}}$, $c_0 \colon U_0^{\mathrm{P}} \cap U_i^{\mathrm{P}} \to U_0^{\mathrm{P}}$ for the inclusions and define $c_l \colon U_0^{\mathrm{P}} \cap U_l^{\mathrm{P}} \to U_0^{\mathrm{P}}$ by $z \mapsto h^{-l} z h^l$. Let

$$d^{\mathrm{PGL}_{n}(F)} \colon K_{0}(\mathcal{H}(I^{\mathrm{P}}; R)) \oplus \bigoplus_{l=1}^{k} K_{0}(\mathcal{H}(U_{0}^{\mathrm{P}} \cap U_{l}^{\mathrm{P}}; R)) \to K_{0}(\mathcal{H}(HI^{\mathrm{P}}; R)) \oplus K_{0}(\mathcal{H}(U_{0}^{\mathrm{P}}; R))$$

be the map that is $K_0(i_H) \times -K_0(i_0)$ on $K_0(\mathcal{H}(I^{\mathrm{P}}; R))$ and $0 \times (K_0(c_l) - K_0(c_0))$ on $K_0(\mathcal{H}(U_0^{\mathrm{P}} \cap U_l^{\mathrm{P}}; R))$. The cokernel of the homomorphism $d^{\mathrm{PGL}_n(F)}$ agrees with $SH_0^{\operatorname{PGL}_n(F)}(X'; K_0(\mathcal{H}(?; R))) \text{ by Lemma 5.1, if , using the notation of Section 5.A,} we put E = \{v_0, b_\Delta\} \text{ with } v_0 < b_\Delta, F(v_0.v_0) = \{h, h^2, \ldots, h^k\}, \text{ and } F(v_0, b_\Delta) = \{e\}.$

6.c. $\operatorname{GL}_n(F)$. Next we compute $K_0(\mathcal{H}(\operatorname{GL}_n(F); R))$. Note that $\operatorname{GL}_n(F)$ has a noncompact center. Hence Subsection 5.A does not apply and we have to pass to the setting of Subsection 5.B using the short exact sequence $1 \to C = \operatorname{cent}(\operatorname{GL}_n(F)) \to$ $\operatorname{GL}_n(F) \xrightarrow{\operatorname{pr}} \operatorname{PGL}_n(F) \to 1$, the discussion in Subsection 6.B and Lemma 5.4.

Let \widetilde{M} be the kernel of the composite μ : $\operatorname{GL}_n(F) \xrightarrow{\operatorname{det}} F^{\times} \xrightarrow{\nu} \mathbb{Z}$. Let $\widehat{H} \subseteq$ $\operatorname{GL}_n(F)$ be the infinite cyclic subgroup generated by the element \widehat{h} . Note that $\widetilde{M} \cap C$ consists of those diagonal matrices whose entries on the diagonal are all the same and are sent to 0 under ν . We conclude $(\operatorname{GL}_n(\mathcal{O}) \cdot C) \cap \widetilde{M} = \operatorname{GL}_n(\mathcal{O})$ from $C \cap \widetilde{M} \subseteq \operatorname{GL}_n(\mathcal{O}) \subseteq \widetilde{M}$. Recall that for $W \subseteq \operatorname{PGL}_n(F)$ we denote by \widetilde{W} its preimage under pr: $\operatorname{GL}_n(F) \to \operatorname{PGL}_n(F)$. Since $\operatorname{pr}(U_l^{\mathrm{G}}) = U_l^{\mathrm{P}}$, we get for

$$l = 0, \dots, n-1$$

$$\widetilde{U_l^{\mathbf{P}}} \cap \widetilde{M} = (U_l^{\mathbf{G}} \cdot C) \cap \widetilde{M} = (\widehat{h}^l \operatorname{GL}_n(\mathcal{O})\widehat{h}^{-l} \cdot C) \cap \widetilde{M}$$

$$= \widehat{h}^l ((\operatorname{GL}_n(\mathcal{O}) \cdot C) \cap \widetilde{M})\widehat{h}^{-l} = \widehat{h}^l \operatorname{GL}_n(\mathcal{O})\widehat{h}^{-l} = U_l^{\mathbf{G}}.$$

Now one easily checks $\widetilde{I^{P}} \cap \widetilde{M} = I^{G}$. Finally we show $\widetilde{HI^{P}} \cap \widetilde{M} = I^{G}$. We get $I^{G} \subseteq \widetilde{HI^{P}} \cap \widetilde{M}$ from $\widetilde{I^{P}} \cap \widetilde{M} = I^{G}$. Consider an element $A \in \widetilde{HI^{P}} \cap \widetilde{M}$. We can find an integer b, an element $B \in I^{G}$, and an element $D \in C$ such that $A = \widehat{h}^{b}BD$ and $\nu(A) = 0$ holds. From $I^{G} \subseteq \widetilde{M}$ we conclude $\widehat{h}^{b}D \in \widetilde{M}$. Since $\mu(D)$ is divisible by n and $\mu(\widehat{h}) = 1$ holds, b is divisible by n. This implies $\widehat{h}^{b} \in C$ and hence $\widehat{h}^{b}D \in C \cap \widetilde{M}$. As $(C \cap \widetilde{M})I^{G} = I^{G}$ holds, we conclude $A \in I^{G}$. Hence $\widetilde{HI^{P}} \cap \widetilde{M} = I^{G}$ holds.

Let $\tilde{i}_0 : I^{\mathrm{G}} \to U_0^{\mathrm{G}}$ and $\tilde{c}_0 : U_0^{\mathrm{G}} \cap U_i^{\mathrm{G}} \to U_0^{\mathrm{G}}$ be the inclusions and let $\tilde{c}_l : U_0^{\mathrm{G}} \cap U_l^{\mathrm{G}} \to U_0^{\mathrm{G}}$ be the map sending \tilde{z} to $\hat{h}^{-l} \tilde{z} \hat{h}^l$. Let

$$\overline{d}^{\mathrm{GL}_{n}(F)} \colon K_{0}(\mathcal{H}(I^{\mathrm{G}};R)) \oplus \bigoplus_{l=1}^{k} K_{0}(\mathcal{H}(U_{0}^{\mathrm{G}} \cap U_{l}^{\mathrm{G}};R))$$
$$\to K_{0}(\mathcal{H}(I^{\mathrm{G}};R)) \oplus K_{0}(\mathcal{H}(U_{0}^{\mathrm{G}};R))$$

be the map that is $\operatorname{id}_{K_0(I^G)} \times - K_0(\widetilde{i}_0)$ on $K_0(\mathcal{H}(I^G; R))$ and $0 \times (K_0(\widetilde{c}_l) - K_0(\widetilde{c}_0))$ on $K_0(\mathcal{H}(U_0^G \cap U_i^G; R))$. The cokernel of the map $\overline{d}^{\operatorname{GL}_n(F)}$ is $K_0(\mathcal{H}(\operatorname{GL}_n(F); R))$ by Lemma 5.4 Let

$$\widetilde{d}^{\mathrm{GL}_n(F)} \colon \bigoplus_{l=1}^k K_0(\mathcal{H}(U_0^{\mathrm{G}} \cap U_l^{\mathrm{G}}; R)) \to K_0(\mathcal{H}(U_0^{\mathrm{G}}; R))$$

be the map which is given by $K_0(\tilde{c}_l) - K_0(\tilde{c}_0)$ on $K_0(\mathcal{H}(U_0^{\mathrm{G}} \cap U_l^{\mathrm{G}}; R))$. Since $\tilde{d}^{\mathrm{GL}_n(F)}$ has the same cokernel as $\overline{d}^{\mathrm{GL}_n(F)}$, the cokernel of $\tilde{d}^{\mathrm{GL}_n(F)}$ is $K_0(\mathcal{H}(\mathrm{GL}_n(F); R))$.

7. Homotopy colimits

7.A. The Farrell-Jones assembly map as a map of homotopy colimits. Next we want to extend the considerations of Section 6 to the higher K-groups. For this purpose and the proofs appearing in [3] it is worthwhile to write down the assembly map in terms of homotopy colimits. The projections $G/U \to G/G$ for U compact open in G induce a map

(7.1)
$$\underset{G/U \in \operatorname{Or}_{\operatorname{Cop}}(G)}{\operatorname{hocolim}} \mathbf{K}_{R}(G/U) \to \mathbf{K}_{R}(G/G) \simeq \mathbf{K}(\mathcal{H}(G;R)).$$

This map can be identified after applying π_n with the assembly map appearing in Theorem 1.1 (i) and Theorem 3.2. This follows from [11, Section 5].

7.B. Simplifying the source of the Farrell Jones assembly map. Let X be an abstract simplicial complex with simplicial G-action such that the isotropy group of each vertex is compact open and the G-action is cellular. Furthermore we assume that $|X|^K$ is weakly contractible for any compact open subgroup of G. Then |X|is a model for $E_{Cop}(G)$.

Let *C* be a collection of simplices of *X* that contains at least one simplex from each orbit of the action of *G* on the set of simplices of *X*. Define a category C(C)as follows. Its objects are the simplices from *C*. A morphism $gG_{\sigma} : \sigma \to \tau$ is an element $gG_{\sigma} \in G/G_{\sigma}$ satisfying $g\sigma \subseteq \tau$. The composite of $gG_{\sigma} : \sigma \to \tau$ with $hG_{\tau} : \tau \to \rho$ is $hgG_{\sigma} : \sigma \to \rho$. Define a functor

(7.2)
$$\iota_C \colon \mathcal{C}(C)^{\mathrm{op}} \to \mathrm{Or}_{\mathcal{C}\mathrm{op}}(G)$$

by sending an object σ to G/G_{σ} and a morphism $gG_{\sigma}: \sigma \to \tau$ to $R_g: G/G_{\tau} \to G/G_{\sigma}, g'G_{\tau} \mapsto g'gG_{\sigma}$.

Lemma 7.3. Under the assumptions above the map induced by the functor ι_C

$$\operatorname{hocolim}_{\sigma \in \mathcal{C}(C)^{\operatorname{op}}} \mathbf{K}_{R}(G/G_{\sigma}) \xrightarrow{\sim} \operatorname{hocolim}_{G/U \in \operatorname{Or}_{\operatorname{cop}}(G)} \mathbf{K}_{R}(G/U)$$

is a weak homotopy equivalence.

Proof. We want to apply the criterion [12, 9.4]. So we have to show that the geometric realization of the nerve of the category $G/K \downarrow \iota_C$ is a contractible space for every object G/K in $\operatorname{Or}_{\operatorname{Cop}}(G)$. An object in $G/K \downarrow \iota_C$ is a pair (σ, u) consisting of an element $\sigma \in C$ and a G-map $u: G/K \to G/G_{\sigma}$. A morphism $(\sigma, u) \to (\tau, v)$ in $G/K \downarrow \iota_C$ is given by a morphism $gG_{\tau}: \tau \to \sigma$ in $\mathcal{C}(C)$ such that the G-map $R_g: G/G_{\sigma} \to G/G_{\tau}$ sending zG_{σ} to zgG_{τ} satisfies $v \circ R_g = u$.

Let $\mathcal{P}(X^K)$ be the poset given by the simplices of X^K ordered by inclusion. Then we get an equivalence of categories

$$F: \mathcal{P}(X^K)^{\mathrm{op}} \xrightarrow{\simeq} G/K \downarrow \iota_C$$

as follows. It sends a simplex σ to the object $(\sigma, \operatorname{pr}_{\sigma} \colon G/K \to G/G_{\sigma})$ for the canonical projection $\operatorname{pr}_{\sigma}$. A morphism $\sigma \to \tau$ in $\mathcal{P}(X^{K})^{\operatorname{op}}$ is sent to the morphism $(\sigma, \operatorname{pr}_{\sigma}) \to (\tau, \operatorname{pr}_{\tau})$ in $G/K \downarrow \iota_{C}$ which is given by the morphism $eG_{\tau} \colon \tau \to \sigma$ in $\mathcal{C}(C)$.

Consider an object (σ, u) in $G/K \downarrow \iota_C$. We want to show that it is isomorphic to an object in the image of F. Choose $g \in G$ such that $g^{-1}Kg \subseteq G_{\sigma}$ holds and uis the G-map $R_g \colon G/K \to G/G_{\sigma}$ sending zK to zgG_{σ} . Then $K \subseteq G_{g\sigma}$ and we can consider the object $F(g\sigma) = (g\sigma, \operatorname{pr}_{g\sigma})$ for the projection $\operatorname{pr}_{g\sigma} \colon G/K \to G_{g\sigma}$. Now the isomorphism $gG_{\sigma} \colon \sigma \to g\sigma$ in $\mathcal{C}(C)$ induces an isomorphism $F(g\sigma) \xrightarrow{\cong} (\sigma, u)$ in $G/K \downarrow \iota_C$.

Obviously F is faithful. It remains to show that F is full. Fix two objects σ and τ in $\mathcal{P}(X^K)$. Consider a morphism $f: F(\sigma) = (\sigma, \mathrm{pr}_{\sigma}) \to F(\tau) = (\tau, \mathrm{pr}_{\tau})$ in $G/K \downarrow \iota_C$. It is given by a morphism $gG_{\tau}: \tau \to \sigma$ in $\mathcal{C}(C)$ such that the composite of $R_g: G/G_{\sigma} \to G/G_{\tau}$ with pr_{σ} is pr_{τ} . This implies $gG_{\tau} = G_{\tau}$ and hence $g \in G_{\tau}$. Since $g\tau \subseteq \sigma$ holds by the definition of a morphism in $\mathcal{C}(C)$, we get $\tau \subseteq \sigma$. Hence f is the image of the morphism $\sigma \to \tau$ under F. This shows that F is full.

Hence it remains to show that geometric realization of the nerve of $\mathcal{P}(X^K)^{\text{op}}$ is contractible. Since this is the barycentric subdivision of $|X|^K$, this follows from the assumptions.

Suppose additionally that X admits a strict fundamental domain Δ , i.e., a simplicial subcomplex Δ that contains exactly one simplex from each orbit for the G-action on the set of simplices of X. Then we can take for C the simplices from Δ . In this case $\mathcal{C}(C)$ can be identified with the poset $\mathcal{P}(\Delta)$ of simplices of Δ . Recall that for any open subgroup U of G, there is an explicit weak homotopy equivalence $\mathbf{K}(\mathcal{H}(U; R)) \xrightarrow{\simeq} \mathbf{K}_R(G/U)$, where the source is the K-theory spectrum $\mathbf{K}(\mathcal{H}(U; R))$ of the Hecke algebra $\mathcal{H}(U; R)$, see [4, 5.6 and Remark 6.7]. Lemma 7.3 implies

Theorem 7.4. Let X be an abstract simplicial complex with a simplicial G-action such that the isotropy group of each vertex is compact open, the G-action is cellular, and $|X|^K$ is weakly contractible for every compact open subgroup K of G. Let Δ be a strict fundamental domain.

Then the assembly map

(7.5)
$$\operatorname{hocolim}_{\sigma \in \mathcal{P}(\Delta)^{\operatorname{op}}} \mathbf{K}(\mathcal{H}(G_{\sigma}; R)) \to \operatorname{hocolim}_{G/U \in \operatorname{Or}_{\operatorname{Cop}}(G)} \mathbf{K}_{R}(G/U)$$

that is induced by the functor $\mathcal{P}(\Delta)^{\mathrm{op}} \to \operatorname{Or}_{\mathcal{C}\mathrm{op}}(G)$ sending a simplex σ to G_{σ} , is a weak homotopy equivalence,

Example 7.6 (SL_n(F)). Let X be the Bruhat-Tits building for SL_n(F). Then the canonical SL_n(F) action on X is cellular. We will use again the notation introduced in Section 6. The (n-1)-simplex Δ , viewed as a subcomplex of X, is a strict fundamental domain. Applying this in the case n = 2 yields the homotopy pushout diagram

For the K-groups this yields a Mayer-Vietoris sequence, infinite to the left, (7.7)

 $\cdots \to K_0(\mathcal{H}(I^{\mathrm{S}};R)) \to K_0(\mathcal{H}(U_1^{\mathrm{S}};R)) \oplus K_0(\mathcal{H}(U_0^{\mathrm{S}};R)) \to K_0(\mathcal{H}(\mathrm{SL}_2(F);R)) \to 0$

and $K_n(\mathcal{H}(\mathrm{SL}_2(F); R)) = 0$ for $n \leq -1$.

For n = 3 we obtain the homotopy push-out diagram

where we abbreviated $U_{ij}^{S} := U_i^{S} \cap U_j^{S}$. In general, for $SL_n(F)$ we obtain a homotopy push-out diagram whose shape is an n-cube.

To such an *n*-cube there is assigned a spectral sequence concentrated in the region for $p \ge 0$ and $0 \le q \le n-1$, which corresponds to the spectral sequence appearing in Theorem 1.1 (ii)

8. Allowing central characters and actions on the coefficients

So far we have only considered the standard Hecke algebra $\mathcal{H}(G; R)$. There are more general Hecke algebras $\mathcal{H}(G; R, \rho, \omega)$, see [2], and all the discussions of this paper carry over to them in the obvious way.

References

- P. Abramenko and K. S. Brown. Buildings, volume 248 of Graduate Texts in Mathematics. Springer, New York, 2008. Theory and applications.
- [2] A. Bartels and W. Lück. On the algebraic K-theory of Hecke algebras. preprint, arXiv:2204.07982 [math.KT], to appear in the Festschrift Mathematics Going Forward, Lecture Notes in Mathematics 2313, Springer, 2022.

- [3] A. Bartels and W. Lück. Algebraic K-theory of reductive p-adic groups. Preprint, arXiv:2306.03452 [math.KT], 2023.
- [4] A. Bartels and W. Lück. Inheritance properties of the K-theoretic Farrell-Jones Conjecture for totally disconnected groups. Preprint arXiv:2306.01518 [math.KT], 2023.
- [5] J. Bernstein. Draft of: Representations of p-adic groups. http//www.math.tau.ac.il/ bernstei/Unpublished_texts/Unpublished_list.html, 1992.
- [6] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Springer-Verlag, Berlin, 1999. Die Grundlehren der mathematischen Wissenschaften, Band 319.
- [7] K. S. Brown. Buildings. Springer-Verlag, New York, 1998. Reprint of the 1989 original.
- [8] F. Bruhat and J. Tits. Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math., 41:5–251, 1972.
- [9] J.-F. Dat. Quelques propriétés des idempotents centraux des groupes p-adiques. J. Reine Angew. Math., 554:69–103, 2003.
- [10] J.-F. Dat. Théorie de Lubin-Tate non-abélienne et représentations elliptiques. Invent. Math., 169(1):75–152, 2007.
- [11] J. F. Davis and W. Lück. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K-Theory, 15(3):201–252, 1998.
- [12] W. G. Dwyer and D. M. Kan. A classification theorem for diagrams of simplicial sets. *Topology*, 23(2):139–155, 1984.
- P. Garrett. Smooth representations of totally disconnected groups. unpublished notes, https://www-users.cse.umn.edu/~garrett/m/v/smooth_of_td.pdf, 2012.
- [14] W. Lück. Transformation groups and algebraic K-theory, volume 1408 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1989.
- [15] W. Lück. Chern characters for proper equivariant homology theories and applications to Kand L-theory. J. Reine Angew. Math., 543:193–234, 2002.
- [16] W. Lück. The relation between the Baum-Connes conjecture and the trace conjecture. Invent. Math., 149(1):123–152, 2002.
- [17] M. Ronan. Lectures on buildings. Academic Press Inc., Boston, MA, 1989.
- [18] R. M. Switzer. Algebraic topology—homotopy and homology. Springer-Verlag, New York, 1975. Die Grundlehren der mathematischen Wissenschaften, Band 212.

WWU MÜNSTER, MATHEMATISCHES INSTITUT, EINSTEINSTR. 62, D-48149 MÜNSTER, GERMANY Email address: a.bartels@uni-muenster.de URL: http://www.math.uni-muenster.de/u/bartelsa

Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Email address: wolfgang.lueck@him.uni-bonn.de *URL*: http://www.him.uni-bonn.de/lueck