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ALMOST EQUIVARIANT MAPS FOR TD-GROUPS

BARTELS, A. AND LÜCK, W.

Abstract. We construct certain maps from buildings associated to td-groups
to a space closely related to the classifying numerable G-space for the family
Cvcy of covirtually cyclic subgroups. These maps are used elsewhere to study
the K-theory of Hecke algebras in the spirit of the Farrell–Jones conjecture.

1. Introduction

The Farrell–Jones conjecture [13] originated in the surgery theory and has ap-
plications to the classification of manifolds, notably it implies (in dimension ≥ 5)
Borel’s conjecture on the topological rigidity of aspherical manifolds. The conjec-
ture concerns the K- and L-groups of group rings and expresses these in terms of an
equivariant homology theory. It can be viewed as reducing computations to the case
of group rings for virtually cyclic groups. Further information on the conjecture
can be found for instance in [19].

The main result from this paper are used in [5] to obtain computations for the K-
theory of Hecke algebras that are in spirit similar to the Farrell–Jones conjecture. It
can viewed as extending results from [3] which are a central ingredient to the proof
of the Farrell–Jones conjecture for CAT(0)-groups [4] from the setting of discrete
groups to td-groups.

1.a. Discrete case. Let Γ be a discrete groups. Typically a Γ-space cannot be
both compact and Γ-CW-complex with small isotropy groups. Compromises be-
tween these two properties are central to axiomatic results for the Farrell–Jones
conjecture, see for example [2, Sec. 2]. For CAT(0)-groups such a compromise was
established in [3, Main Thm] and [23, Thm 3.4].

For a collection F of subgroups and N ∈ N we consider the n+1-fold join
EN

F (Γ) := ∗Ni=0(
∐

V ∈F Γ/V )1. As EN
F (Γ) is a simplicial complex we can equip

it with the ℓ∞-metric dE . We note that this metric is Γ-invariant. Let X be a
CAT(0)-space of finite covering dimension with a cocompact proper isometric Γ-
action. We fix a basepoint in X and write BR for the closed ball of radius R around
the basepoint. Let πR : X → BR be the radial projection. Let Cvcy be the family
of subgroups of Γ that admit a map to a cyclic group with finite kernel.

Theorem 1.1. There is N ∈ N such that for all finite M ⊆ Γ and ǫ > 0 there
is V ⊆ Cvcy finite such that for all L > 0 we find R > 0 and a (continuous) map
f : X → EN

V (G) satisfying:

(i) for x ∈ BR+L, g ∈ M we have dE(f(gx), gf(x)) < ǫ;
(ii) for x ∈ BR+L, R

′ ≥ R we have dE(f(x), f(πR′ (x))) < ǫ.
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1The infinite join ∗∞

i=0(
∐

V ∈F
Γ/V ) is a model for the classifying Γ-CW-complex for the family

consisting of all subgroups of Γ that are subconjugated to one of the V ∈ F , compare [8, App. A1].
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Theorem 1.1 is the discrete precursor to our main result in the totally discon-
nected case, see Theorem 1.2. We discuss in Remark 1.7 how it is implied by the
main result. Theorem 1.1 has not been stated before, but it can be viewed as a
reformulation of the results from [3, 23] cited above.

There is a homotopy Γ-action on BR where g ∈ Γ acts as x 7→ πR(gx). Roughly
speaking (i) says that f is almost G-equivariant and (ii) ensures that the tracks of
the homotopies of the homotopy action on BR have small images in EN

V (G).

1.b. The setup. Throughout this paper we fix a td-groupG, i.e., a locally compact
second countable topological Hausdorff group. We also fix an action of G on a
locally compact CAT(0)-space X of finite covering dimension. We assume that the
action is by isometries, continuous, cocompact, smooth and proper. In particular,
all isotropy groups Gx for the action are compact open in G. The main result will
also depend on a further more technical assumption. Informally, the assumption
is that isotropy groups of geodesics in the space of geodesics with bounded period
for the G-action get only smaller in small neighborhoods, at least on a suitable
fundamental domain. Technically this is formulated as Assumption 2.7 using the
flow space for X . The main example where Assumption 2.7 is satisfied is the action
of a reductive p-adic group on its associated extended Bruhat-Tits building, see
Appendix A. This is the main example we are interested in.

1.c. The space JN
F (G). Let F be a collection of closed subgroups of G. As in the

discrete case we can consider for N ∈ N the N+1-fold join

JN
F (G) := ∗Ni=0

( ∐

V ∈F

G/V
)
.

For closed subgroups V, V ′ of G the product G/V × G/V ′ can as a G-space not
necessarily be written as a coproduct of orbits. For this reason JN

F (G) is not G-
CW-complex. But it is still a numerable G-space in the sense of [18, Def. 2.1]2. In
contrast to EN

F (Γ), there is in general no G-invariant metric on JN
F (G). In fact,

for a closed (but neither open nor compact) subgroup V of G there may be no
G-invariant metric on the orbit G/V that generates the topology. This is a more
substantial difficulty to formulating Theorem 1.1 for td-groups. We will explain
our solution to this difficulty next.

1.d. V -foliated distance in G. We can equip G with a left invariant proper
metric dG that generates the topology of G, see [14, Thm. 4.5] or [1, Thm. 1.1].
Let V be a closed subgroup of G. As a replacement for the in general not existing
G-invariant metric on G/V we will use the following V -foliated distance in G. For
g, g′ ∈ G, β, η > 0 we write

dV -fol(g, g
′) < (β, η)

if there is v ∈ V with dG(e, v) = dG(g, gv) < β and dG(gv, g
′) < η. Note that dV -fol

is left G-invariant in the sense that

dV -fol(g, g
′) < (β, η) ⇐⇒ dV -fol(g

′′g, g′′g′) < (β, η)

holds for all g, g′, g′′ ∈ G.
Two elements g, g′ in G satisfy gV = g′V if and only if there exists β > 0

such that for every η > 0 we have dV -fol(g, g
′) < (β, η). One might be tempted to

consider

dG/V (gV, g
′V ) := inf{η | dV -fol(g, g

′) < (β, η) for some β > 0},

2We note that colimN→∞ JN
F
(G) is a model for the classifying numerable G-space for the

family F , see [18, Def. 2.3] and [8, App. A1]. We will not need this fact, but it motivates the
definition.
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but this infimum can be 0 for gV 6= g′V . This happens for example for V the
subgroup of SL2(Qp) consisting of diagonal matrices g = e and g′ unipotent.

1.e. The space JN
F (G)∧. Let F be a collection of closed subgroups of G. For

N ∈ N let

JN
F (G)∧ := ∗Ni=0

( ∐

V ∈F

G
)
.

The projections G → G/V induce a G-equivariant map JN
F (G)∧ → JN

F (G).
As

∐
V ∈F G = G×F we can write elements in JN

F (G)∧ as [t0(g0, V0), . . . , tn(gn, Vn)]
with ti ∈ [0, 1], gi ∈ G, Vi ∈ F such that

∑
ti = 1. In this notation we have

[t0(g0, V0), . . . , tn(gn, Vn)] = [t′0(g
′
0, V

′
0), . . . , t

′
n(g

′
n, V

′
n)] if and only if ti = t′i for all i

and (gi, Vi) = (g′i, V
′
i ) for all i with ti 6= 0 6= t′i.

1.f. J-foliated distance. As discussed in Subsection 1.c there is in general no
G-invariant metric on JN

F (G). As a replacement we work with the following notion
of foliated distance on JN

F (G)∧. For

y = [t0(g0, V0), . . . , tN (gN , VN )], y′ = [t′0(g
′
0, V

′
0), . . . , t

′
N (g′N , V ′

N )] ∈ JN
F (G)∧

and β, η, ǫ > 0 we write

dJ-fol(y, y
′) < (β, η, ǫ)

if |ti − t′i| < ǫ for all i and, in addition, for all i with max{ti, t′i} ≥ ǫ we have

Vi = V ′
i , and dVi-fol(gi, g

′
i) < (β, η).

There is a map JN
F (G)∧ → ∗Ni=0V , [t0(g0, V0), . . . , tN (gN , VN )] 7→ [t0V0, . . . , tNVN ].

The first requirement implies that the images of y and y′ in the join ∗Ni=0V are of
distance < ǫ with respect to the ℓ∞-metric. Two points y and y′ in JN

F (G)∧ have
the same image under the projection JN

F (G)∧ → JN
F (G) if and only if there exists

β > 0 such that for any ǫ > 0 and any η > 0 we have dJ-fol(z, z
′) < (β, η, ǫ).

1.g. Statement of main result. We write now Cvcy for the family of subgroups
V of G which are covirtually cyclic, i.e., V is compact or there exists an exact

sequence of topological groups 1 → K
i
−→ V → Z

p
−→ 1, where i is the inclusion of a

compact open subgroup K of V and Z is equipped with the discrete topology.
As before we fix a base point b ∈ X and write BR for the closed ball of radius R

around b in X . We write πR : X → BR for the radial projection.

Theorem 1.2 (Main Theorem). Suppose that Assumption 2.7 holds.
There is N ∈ N such that for all M ⊆ G compact and ǫ > 0 there are β > 0 and
V ⊆ Cvcy finite with the following property: For all η > 0 and all L > 0 we find
R > 0 and a (not necessarily continuous) map f : X → JN

V (G)∧ satisfying:

(i) for x ∈ BR+L, g ∈ M we have dJ-fol(f(gx), gf(x)) < (β, η, ǫ);
(ii) for x ∈ BR+L, R

′ ≥ R we have dJ-fol(f(x), f(πR′ (x))) < (β, η, ǫ);
(iii) there is ρ > 0 such that for all x, x′ ∈ X with dX(x, x′) < ρ we have

dJ-fol(f(x), f(x
′)) < (β, η, ǫ).

Remark 1.3 (Quantifiers). Using quantifiers the beginning of Theorem 1.2 reads
as

∃N ∀M, ǫ ∃β,V ∀η, L ∃R, f such that . . .

Remark 1.4 (Failure of continuity). The map f appearing in Theorem 1.2 is not
necessarily continuous, but this should not be viewed as a serious problem; (iii) is
a sufficient replacement for continuity.

This issue arise in Proposition 6.8. We discuss in Remark 6.10 how it might be
circumvented with more careful bookkeeping.
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Remark 1.5 (Strategy of the proof of Theorem 1.2). The proof of Theorem 1.2
will use the flow space FS from [3] that mimics the geodesic flow on non-positively
curved manifolds. More precisely the map f from Theorem 1.2 will be constructed
as a composition

X
f0
−→ FS

f1
−→ JN

V (G).

The map f0 is constructed in Theorem 4.1. This uses the dynamic properties of the
flow on FS coming from the CAT(0)-geometry of X . The map f1 is constructed
in Theorem 4.3 and uses an adaptation of the long and thin covers for flow spaces
from [6, 15] to the case of td-groups.

Remark 1.6 (About Assumption 2.7). We do not know whether our main theorem
fails in the absence of Assumption 2.7. We do not know whether or whether not
Assumption 2.7 is always satisfied. It is not difficult to check that Assumption 2.7
holds automatically if G is discrete. It is not difficult to check that Assumption 2.7
implies that for ℓ > 0 the collection of all Vc with τc ≤ ℓ contains up to conjugation
only finitely many subgroups. We do not know whether or not the converse holds.

Remark 1.7 (Back to the discrete case). As any discrete group Γ is also a td-group
we can apply Theorem 1.2 in the situation of Subsection 1.a. Write p : JN

V (Γ)∧ →
JN
V (Γ) = EN

V (Γ) for the canonical projection. As Γ is discrete there is η > 0 such
that dΓ(g, g

′) < η implies g = g′. For such η and all β, ǫ > 0, y, y′ ∈ JN
V (Γ)∧ we

then have
dJ-fol(y, y

′) < (β, η, ǫ) =⇒ dE(p(y), p(y
′)) < ǫ.

Therefore we can simply compose f from Theorem 1.2 with p to obtain Theorem 1.1.
Note that (iii) from Theorem 1.2 implies that p◦f is continuous (in fact uniformly).
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2. The flow space FS

2.a. Construction of the flow space. Given a metric space Z, denote by FS =
FS (Z) the associated flow space defined in [3, Section 1]. It consists of all gen-
eralized geodesics. A generalized geodesic is a continuous map c : R → Z whose
restriction to some interval3 is an isometric embedding and is locally constant on
the complement of this interval. We do allow that c is constant. The metric on FS
is given by

dFS (c, c
′) :=

∫

R

dZ(c(t), c
′(t))

2e|t|
dt.

We recall from [3, Prop. 1.7] that this metric generates the topology of uniform
convergence on compact subsets. The flow Φ on FS is defined by

(Φτ c)(t) := c(t+ τ).

We also write FS∞ = FS∞(Z) for the subspace of FS consisting of all generalized
geodesics that are bi-infinite geodesics, i.e., are nowhere locally constant.

2.b. Basic facts about the flow space. For later reference we recall some facts
about FS from [3].

Lemma 2.1. Let (Z, dZ) be a metric space.

(i) The map Φ is a continuous flow and we have for c, d ∈ FS (Z) and τ, σ ∈ R

dFS

(
Φτ (c),Φσ(d)

)
≤ e|τ | · dFS (c, d) + |σ − τ |;

(ii) For fixed α the map FS × [−α, α] → FS , (c, t) 7→ Φt(c) is uniformly
continuous.

Proof. Assertion (i) is proved in [3, Lemma 1.3] and implies assertion (ii). �

Lemma 2.2. Suppose that Z is a proper metric space. Then FS (Z) is a proper
metric space, and for any t ∈ R the evaluation map FS → Z, c 7→ c(t) is proper
and uniformly continuous.

3By an interval we mean a set of the form [a, b], [a,+∞), (−∞, b] or (−∞,+∞)
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Proof. See [3, Prop. 1.9 and Lem. 1.10]. �

Lemma 2.3. If G acts cocompactly, isometrically, or properly respectively on the
proper metric space Z, then the G-action on FS is cocompact, isometric or proper
respectively.

Proof. Obviously the G-actions on FS is isometric if G acts isometrically on Z. We
conclude from Lemma B.1 (vii) and (xi) and Lemma 2.2 that the G-action on FS
is proper or cocompact respectively if G acts proper or cocompact respectively on
Z. �

2.c. Foliated distance in FS . For c, c′ ∈ FS , α, δ > 0 we write

dFS -fol(c, c
′) < (α, δ)

to mean that there is t ∈ [−α, α] with dFS (Φt(c), c
′) < δ. We set

U fol
α,δ(c) := {c′ ∈ FS | dFS -fol(c, c

′) < (α, δ)}.

Lemma 2.4 (Basics about foliated distance).

(i) For c, c′ ∈ FS, we get

dFS-fol(c, c
′) < (α, δ) =⇒ dFS (c

′, c) < α+ δ;

(ii) For c, c′ ∈ FS and g ∈ G, we have

dFS-fol(c, c
′) < (α, δ) ⇐⇒ dFS-fol(gc, gc

′) < (α, δ).
Proof. (i) This follows from the triangle inequality, since Φ has at most unit speed,
i.e., dFS (Φt(c), c) ≤ |t| for all c ∈ FS and t ∈ R, by Lemma 2.1 (i).

(ii) Recall that dFS left G-invariant and Φ is compatible with the G-action and
hence dFS (Φt(gc), gc

′) = dFS (Φt(c), c
′) for all c, c′ ∈ FS , g ∈ G and t ∈ R. �

Lemma 2.5 (Symmetry and triangle inequality for the foliated distance).

(i) For α > 0, δ > 0 there is ǫ > 0 such that for all c, c′ ∈ FS

dFS-fol(c, c
′) < (α, ǫ) =⇒ dFS-fol(c

′, c) < (α, δ);

(ii) For α > 0, δ > 0 there is ǫ > 0 such that for all c, c′, c′′ ∈ FS

dFS-fol(c, c
′), dFS-fol(c

′, c′′) < (α, ǫ) =⇒ dFS-fol(c, c
′′) < (2α, δ).

Proof. (i) Given α > 0, δ > 0, we conclude from Lemma 2.1 (i), that there is
ǫ > 0 such that dFS (Φt(c),Φt(c

′)) < δ, whenever t ∈ [−α, α] and dFS (c, c
′) <

ǫ. For (i), suppose now dFS -fol(c, c
′) < (α, ǫ). Then there is t ∈ [−α, α] with

dFS (Φt(c), c
′) < ǫ. This implies dFS (c,Φ−t(c

′)) = dFS (Φ−t(Φt(c)),Φ−t(c
′)) < δ

and therefore dFS -fol(c
′, c) < (α, δ).

(ii) Given α > 0, δ > 0, we find again ǫ > 0 as in (i). If dFS -fol(c, c
′), dFS -fol(c

′, c′′) <
(α, ǫ), then there exists t, t′ ∈ [−α, α] satisfying dFS (Φt(c), c

′), dFS (Φt′(c), c
′′) < ǫ.

This yields dFS (Φt+t′(c), c
′′) ≤ dFS (Φt′(Φt(c)),Φt′ (c

′)) + dFS (Φt′(c
′), c′′) < δ + ǫ.

Hence dFS -fol(c, c
′′) < (2α, δ + ǫ). Using δ′ := δ/2 in place of δ and asking in

addition for ǫ < δ/2 gives (ii). �

2.d. The groups Kc and Vc. For c ∈ FS (X) we set

(2.6a) Kc := Gc = {g ∈ G | gc = c} = {g ∈ G | gc(t) = c(t) for all t ∈ R};

(2.6b) Vc := {g ∈ G | ∃t ∈ R : gc = Φt(c)};

(2.6c) τc := inf{t > 0 | ∃v ∈ Vc \Kc,with Φt(c) = vc}.

We use inf ∅ = ∞. If τc < ∞ then we say that c is periodic. We have Kc ⊆ Vc

as the flow is G-equivariant.

Assumption 2.7. There exists FS 0 ⊆ FS compact such that

(2.7a) G · FS 0 = FS;
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(2.7b) for ℓ > 0 and c0 ∈ FS 0 there exists an open neighborhood U of c0 in FS0

such that for all c ∈ U with τc ≤ ℓ we have Vc ⊆ Vc0 .

Lemma 2.8. Let c ∈ FS be periodic. Then c ∈ FS∞. Moreover, there is v ∈ Vc

with vc = Φτc(c) and any such v together with Kc generates Vc.

Proof. Consider c 6∈ FS∞. Then c is constant on some interval (−∞, a−) or
(a+,∞). This implies that for all v ∈ Vc there is t with vc(t) = c(t). In par-
ticular, v fixes an endpoint of the image of c which is a finite geodesic or a geodesic
ray. Since v also fixes the image of c as a set, it must in fact fix c. Hence Kc = Vc.
If c is periodic we have Kc ( Vc and so we must have c ∈ FS∞.

In particular, t 7→ Φt(c) is injective. It follows that for v ∈ Vc there is a unique
tv ∈ R with vc = Φtv (c). We obtain a group homomorphism Vc → R, v 7→ tv whose
kernel is Kc. Denote the image of this homomorphism by Γc. We claim that Γc is
discrete.

To prove this claim, suppose that there are (vn)n∈N with tvn → 0 as n → ∞. As
c ∈ FS∞, c : R → X is injective. Now for any s ∈ R we have vn(c(s)) = (vnc)(s) =
(Φtn(c)) = c(s + tn) → c(s), so c(s) is an accumulation point of its G-orbit. But
G y X is smooth and proper, so orbits are discrete. Thus Γc is discrete.

Thus τc = minΓc∩R>0 and there is v ∈ Vc with tv = τc. Moreover, Γc is infinite
cyclic and generated by τc. Thus any v ∈ Vc with tv = τc will together with Kc

generate Vc. �

3. Triangle inequalities for dV -fol and dJ-fol

We have already proven a version of the triangle inequality for dFS -fol on the
flow space FS in Lemma 2.5. We will need versions of the triangle inequality for
dV -fol and dJ-fol as well.

Lemma 3.1.

(3.1a) Let M ⊆ G be compact. For any ǫ > 0 there is δ > 0 such that for all
g, g′ ∈ G, v ∈ M we have

dG(g, g
′) < δ =⇒ dG(gv, g

′v) < ǫ;

(3.1b) Let α ≥ 0. Then for any ǫ > 0 there is δ > 0 such that for any closed
subgroup V of G and g, g′, g′′ ∈ G we have

dV -fol(g, g
′), dV -fol(g

′, g′′) ≤ (α, δ) =⇒ dV -fol(g, g
′′) ≤ (2α, ǫ).

Proof. Assume the first statement fails for given M ⊆ G compact and ǫ > 0. Then
there are sequences gn, g

′
n ∈ G, vn ∈ M with dG(gn, g

′
n) < 1/n and dG(gnvn, g

′
nvn) ≥

ǫ. Let xn := g−1
n g′n. Then dG(e, xn) = dG(gn, g

′
n) < 1/n and thus limn→∞ xn = e.

By passing to a subsequence, we can arrange limn→∞ vn = v for some v ∈ M .
This implies limn→∞ v−1

n xnvn = v−1ev = e. Hence limn→∞ dG(gnvn, g
′
nvn) =

limn→∞ dG(e, v
−1
n xnvn) = 0, a contradiction.

For the second statement, let α > 0 and ǫ > 0 be given. Using the compactness
of the closed α-ball in G we find, using (3.1a), δ > 0 such that

dG(g, g
′) < δ, dG(v, e) < α =⇒ dG(gv, g

′v) < ǫ/2.

After decreasing δ we may assume δ < ǫ/2. Now if dV -fol(g, g
′), dV -fol(g

′, g′′) ≤ (α, δ)
then there are v, v′ ∈ G with dG(gv, g

′), dG(g
′v′, g′′) < δ, dG(v, e), dG(v

′, e) <
α. Our choice of δ implies dG(gvv

′, g′v′) < ǫ/2. Now dG(vv
′, e) ≤ dG(vv

′, v) +
dG(v, e) ≤ 2α and hence dG(gvv

′, g′′) ≤ dG(gvv
′, g′v′) + dG(g

′v′, g′′) < ǫ/2 + δ < ǫ.
Thus dV -fol(g, g

′′) < (2α, ǫ). �
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Lemma 3.2. Let V ⊆ Cvcy be finite. Fix β > 0. Then for all η′ > 0 there is η > 0
with the property that for every ǫ > 0 and every y, y′, y′′ in JN

V (G)∧ we have

dJ-fol(y, y
′), dJ-fol(y

′, y′′) < (β, η, ǫ) =⇒ dJ-fol(y, y
′′) < (2β, η′, 2ǫ).

Proof. We use η′ := δ′ from (3.1b) with δ := η. Write

y = [t0(g0, V0), . . . , tN (gN , VN )];

y′ = [t′0(g
′
0, V

′
0), . . . , t

′
N (g′N , V ′

N )];

y′′ = [t′′0(g
′′
0 , V

′′
0 ), . . . , t′′N (g′′N , V ′′

N )].

As |ti − t′i|, |t
′
i − t′′i | < ǫ for all i, we have |ti − t′′i | < 2ǫ for all i.

Suppose that max{ti, t′′i } ≥ 2ǫ. As |ti − t′i|, |t
′
i − t′′i | < ǫ, this implies both

max{ti, t′i} ≥ ǫ and max{t′i, t
′′
i } ≥ ǫ. Thus Vi = V ′

i = V ′′
i and dVi-fol(gi, g

′
i) < (β, η)

and dVi-fol(g
′
i, g

′′
i ) < (β, η). Now (3.1b) gives dVi-fol(gi, g

′′
i ) < (2β, η′). �

4. Factorization over the flow space

In this section we prove our main Theorem 1.2 modulo two results about the
flow space FS .

4.a. From X to FS .

Theorem 4.1. For all M ⊆ G compact there is α > 0 with the following property.
For all δ > 0, L > 0 there exists R > 0 and a uniformly continuous map f0 : X →
FS such that

(i) for x ∈ BR+L, g ∈ M we have dFS-fol(f0(gx), gf0(x)) < (α, δ);
(ii) for x ∈ BR+L, R

′ ≥ R we have dFS-fol(f0(x), f0(πR′(x))) < (α, δ), where
πR′ denotes the radial projection onto BR+L;

Remark 4.2. Using quantifiers the beginning of Theorem 4.1 reads as

∀M ∃α ∀δ, L ∃R, f0 such that . . .

The proof of Theorem 4.1 is given at the end of Section 5.

4.b. From FS to |JN
V (G)|∧.

Theorem 4.3. Suppose that Assumption 2.7 holds.
There is N ∈ N such that for any α > 0 and any ǫ > 0 there are β > 0 and V ⊆ Cvcy
finite such that for any η > 0 there are δ > 0, f1 : FS → JN

V (G)∧, satisfying the
following properties.

(i) For c, c′ ∈ FS with dFS-fol(c, c
′) < (α, δ) we have dJ-fol(f1(c), f1(c

′)) <
(β, η, ǫ);

(ii) For c ∈ FS, g ∈ G we have dJ-fol(f1(gc), gf1(c)) < (β, η, ǫ).

Remark 4.4. Using quantifiers the beginning of Theorem 4.3 reads as

∃N ∀α, ǫ ∃β,V ∀η ∃δ, f1 such that . . .

The proof of Theorem 4.3 (modulo three results proven later) is given at the end
of Section 6.

4.c. Proof of Main Theorem using Theorems 4.1 and 4.3. We restate our
Main Theorem 1.2 from the introduction.

Theorem (Main Theorem). Suppose that Assumption 2.7 holds.
There is N ∈ N such that for all M ⊆ G compact and ǫ > 0 there are β > 0 and
V ⊆ Cvcy finite with the following property: For all η > 0 and all L > 0 we find
R > 0 and a (not necessarily continuous) map f : X → JN

V (G)∧ satisfying:

(i) for x ∈ BR+L, g ∈ M we have dJ-fol(f(gx), gf(x)) < (β, η, ǫ);
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(ii) for x ∈ BR+L, R
′ ≥ R we have dJ-fol(f(x), f(πR′ (x))) < (β, η, ǫ);

(iii) there is ρ > 0 such that for all x, x′ ∈ X with dX(x, x′) < ρ we have
dJ-fol(f(x), f(x

′)) < (β, η, ǫ).

Proof of Main Theorem. Let N be the number from Theorem 4.3. Let M ⊆ G be
compact and ǫ > 0. Theorem 4.1 gives us a number α > 0. Theorem 4.3 gives us
β/2 > 0 and V ⊆ Cvcy finite. Let η > 0 be given. Because of Lemma 3.2 we can
find 0 < η0 ≤ η with the property that every y, y′, y′′ in JN

F (G)∧ we have

(4.5a) dJ-fol(y, y
′), dJ-fol(y

′, y′′) < (β/2, η0, ǫ/2) =⇒ dJ-fol(y, y
′′) < (β, η, ǫ).

Theorem 4.3 gives us δ > 0 and f1 : FS → JN
V (G)∧ satisfying

(4.5b) if c, c′ ∈ FS fullfils dFS-fol(c, c
′) < (α, δ), then we have dJ-fol(f1(c), f1(c

′)) <
(β/2, η0, ǫ/2);

(4.5c) for c ∈ FS , g ∈ G we have dJ-fol(f1(gc), gf1(c)) < (β/2, η0, ǫ/2).

Let L > 0 be given. Theorem 4.1 gives us R > 0 and f0 : X → FS uniformly
continuous satisfying

(4.5d) for x ∈ BR+L, g ∈ M we have dFS-fol(f0(gx), gf0(x)) < (α, δ);
(4.5e) for x ∈ BR+L, R ≤ t we have dFS-fol(f0(x), f0(πt(x))) < (α, δ).

We set now f := f1◦f0. It remains to verify the three assertions from Theorem 1.2.

(i) Let x ∈ BR+L, g ∈ M . Then dFS -fol(f0(gx), gf0(x)) < (α, δ) by (4.5d).
Thus (4.5b) implies dJ-fol(f1(f0(gx)), f1(gf0(x))) < (β/2, η0, ǫ/2). On the other
hand (4.5c) implies dJ-fol

(
f1(gf0(x)), gf1(f0(x))

)
< (β/2, η0, ǫ/2). Now we con-

clude

dJ-fol(f(gx), gf(x)) = dJ-fol
(
f1(f0(gx)), gf1(f0(x))

)
< (β, η, ǫ)

from (4.5a).

(ii) Let x ∈ BR+L, R
′ ≥ R. Then dFS -fol(f0(x), f0(πR′(x))) < (α, δ) by (4.5e). We

conclude

dJ-fol(f(x), f(πR′ (x))) = dJ-fol(f1(f0(x)), f1(f0(πR′(x))))

< (β/2, η0, ǫ/2) ≤ (β, η, ǫ)

from (4.5b).

(iii) Since f0 is uniformly continuous there is ρ > 0 such that dFS (f0(x), f0(x
′)) < δ

(and in particular dFS -fol(f0(x), f0(x
′)) < (α, δ)) for all x, x′ ∈ X with dX(x, x′) <

ρ. Using (4.5b) we obtain

dJ-fol(f(x), f
′(x)) < (β/2, η0, ǫ/2) ≤ (β, η, ǫ)

for all x, x′ ∈ X with dX(x, x′) < ρ. �

5. The map to the flow space

The proof of Theorem 4.1, given in this section, will follow closely arguments
from similar results for actions of discrete groups in [3].

For x, x′ ∈ X we write cx,x′ ∈ FS for the generalized geodesic from x to x′, i.e.,
for the generalized geodesic characterized by

cx,x′(t) = x t ∈ (−∞, 0],

cx,x′(t) = x t ∈ [d(x, x′),+∞).

Recall that we fixed a base point b and write BR for the closed ball of radius R
around b in X . Recall also that πR : X → BR denotes the radial projection.

Lemma 5.1. The map X → FS, x 7→ cb,x is uniformly continuous.
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Proof. The map is continuous by [9, II.1.4 (1) on page 160] and [3, Proposition 1.7].
As it is equivariant for the cocompact actions of G, it is also uniformly continuous.
(Alternatively, uniform continuity can also be checked directly without using the
G-action.) �

Lemma 5.2. For all δ > 0 there is ∆ > 0 such that for all R′, T with R′ ≥ T +∆,
x ∈ X we have

dFS (ΦT (cb,x),ΦT (cb,πR′(x))) < δ.

Proof. Choose ∆ > 0 such that
∫∞

∆
s

2e|s|
ds < δ holds. Let x ∈ X . For s+ T ≤ R′

we have
(
ΦT (cb,x)

)
(s) = cb,x(s+ T ) = cb,πR′(x)(s+ T ) =

(
ΦT (cb,πR′(x))

)
(s),

while for s+ T ≥ R′ we have

dX
((
ΦT (cb,x)

)
(s),

(
ΦT (cb,πR′(x))

)
(s)

)

= dX
(
cb,x(s+ T ), cb,πR′(x)(s+ T )

)
= s+ T −R′ = s− (R′ − T ).

Thus, for R′ ≥ T +∆,

dFS (ΦT (cb,x),ΦT (cb,πR′(x)))

=

∫ ∞

−∞

dX
((
ΦT (cb,x)

)
(s),

(
ΦT (cb,πR′ (x))

)
(s)

)

2e|s|
ds

=

∫ ∞

R′−T

s− (R′ − T )

2e|s|
ds

≤

∫ ∞

∆

s

2e|s|
ds

≤ δ. �

Lemma 5.3. Let r′, L, α > 0, r′′ > α. Let T := r′ + r′′, R := r′′ + 2r′ + α.
Let x, x1, x2 ∈ X with dX(x1, x2) ≤ α, dX(x1, x) ≤ R + L. Set τ := dX(x, x1) −
dX(x, x2). Then for all t ∈ [−r′, r′]

dX(cx1,x(T + τ + t), cx2,x(T + t)) ≤
2α(L+ 2r′ + 2α)

r′′
.

Proof. This is an application of the CAT(0)-condition, see [3, Lemma 3.6(i)]4. �

Lemma 5.4. For all α > 0, ∆ > 0, L > 0 and δ > 0 there are R > 0, 0 ≤ T ≤
R −∆ such that for all x, x1, x2 ∈ X with dX(x1, x2) ≤ α, dX(x1, x) ≤ R + L we
have

dFS-fol(ΦT (cx1,x),ΦT (cx2,x)) < (α, δ).

Proof. Pick 1 > δ′ > 0, r′ > ∆, r′′ > α such that
∫ −r′

−∞

2|t|+ 1

2e|t|
dt <

δ

3
,

∫ r′

−r′

δ′

2e|t|
dt <

δ

3
and

2α(L+ 2r′ + 2α)

r′′
< δ′.

Set R := 2r′ + r′′ + α and T := r′ + r′′. Then 0 ≤ T = R − r′ − α ≤ R −∆. Set
τ := dX(x, x1) − dX(x, x2). Then τ ∈ [−α, α] as dX(x1, x2) ≤ α. By Lemma 5.3
we have for all t ∈ [−r′, r′]

dX(cx1,x(T + τ + t), cx2,x(T + t)) < δ′.

4Strictly speaking, this reference gives dX(cx1,x(T + t), cx2,x(T + t + τ)) ≤
2α(L+2r′+α)

r′′
.

The statement is not quite symmetric in x1 and x2 as we only know dX(x, x2) ≤ dX(x, x1) +
dX(x1, x2) ≤ R+ L+ α. Thus in applying [3, Lemma 3.6(i)] we need to use L′ := L+ α. In any
event, the exact estimate is not important.
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For t ∈ (−∞,−r′] we have

dX(cx1,x(T + τ + t), cx2,x(T + t))

≤ dX(cx1,x(T + τ + t), cx1,x(T + τ − r′))

+ dX(cx1,x(T + τ − r′), cx2,x(T − r′))

+ dX(cx2,x(T − r′), cx2,x(T + t))

< |t+ r′|+ δ′ + |t+ r′|

= 2|t+ r′|+ δ′ ≤ 2|t|+ δ′ < 2|t|+ 1.

Similarly, for t ∈ [r′,∞) we have

dX(cx1,x(T + t), cx2,x(T + τ + t)) < 2|t|+ 1.

We can now estimate

dFS

(
ΦT+τ (cx1,x),ΦT (cx2,x)

)

=

∫ ∞

−∞

dX(cx1,x(T + τ + t), cx2,x(T + t))

2e|t|
dt

<

∫ −r′

−∞

2|t|+ 1

2e|t|
dt+

∫ r′

−r′

δ′

2e|t|
dt+

∫ +∞

r′

2|t|+ 1

2e|t|
dt

<
δ

3
+

δ

3
+

δ

3
= δ.

Therefore dFS -fol(ΦT (cx1,x),ΦT (cx2,x)) < (α, δ). �

Proof of Theorem 4.1. Let M ⊆ G be compact. By compactness of M · b there is
α > 0 such that dX(b, gb) ≤ α for all g ∈ M . Let δ > 0, L > 0 be given. Let ∆ be
the number from Lemma 5.2. Let R > 0 and 0 ≤ T ≤ R−∆ be the numbers from
Lemma 5.4. Let f0 : X → FS be the map x 7→ ΦT (cb,x). It is uniformly continuous
by Lemma 2.1 and 5.1. We can now verify the two assertions from Theorem 4.1.

(i) Let g ∈ M and x ∈ BR+L. Then f0(gx) = ΦT (cgb,gx) and gf0(x) = ΦT (cb,gx).
As g ∈ M , we have dX(b, gb) < α. Also dX(gb, gx) = dX(b, x) ≤ R + L. We can
therefore apply Lemma 5.4 and conclude

dFS-fol(f0(gx), gf0(x)) = dFS-fol(ΦT (cgb,gx),ΦT (cb,gx)) < (α, δ).

(ii) Let x ∈ BR+L and R′ ≥ R. Then f0(x) = ΦT (cb,x) and f0(πR′ (x)) =
ΦT (cb,πR′ (x)). As T ≤ R −∆ we have R′ ≥ R ≥ T + ∆. We can therefore apply

Lemma 5.2 and conclude dFS

(
f0(x), f0(πR′ (x))

)
= dFS (ΦT (cb,x),ΦT (cb,πR′ (x))) <

δ. In particular we get

dFS -fol

(
f0(x), f0(πR′(x))

)
< (α, δ).

�

6. Three properties of the flow space

Recall from Subsection 4.c and Section 5 that to prove our main Theorem 1.2 it
remains to prove Theorem 4.3 about maps FS → JN

V (G). In this section we formu-
late three propositions about the flow space and use them to prove Theorem 4.3.
These three propositions will be proved in the forthcoming sections.
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6.a. Long thin covers.

Definition 6.1 (α-long cover). A cover U of the flow space FS is said to be α-long
if for any c0 ∈ FS there exists U ∈ U such that Φ[−α,α](c0) ⊆ U .

Typically such covers are thin in directions transversal to the flow and are often
referred to as long thin covers.

Remark 6.2 (Discrete versus totally disconnected). For a discrete group Γ it is
possible to construct G-equivariant maps from the flow space FS to G-simplicial
complexes (such as EN

V (Γ)) via the α-long Cvcy-covers of FS from [6, Sec. 5] or [15].
Here a Cvcy-cover consists of open subsets U of FS for which there is V ∈ Cvcy
such that: gU ∩ U 6= ∅ iff g ∈ V and then gU = U . For a td-group G such U
will not exist; elements of g ∈ G \ V that are close to V will typically produce
gU ∩ U 6= ∅. The way out is to consider G · U . In the discrete case there is a
map G ·U → G/V and this generalizes to the totally disconnected case. In fact we
will even construct U → G, but this will typically not be equivariant and create
some (β, η)-errors. Some equalities from the case of discrete groups, we will here
be replaced with foliated bounds for the distance. This applies for instance to the
map FS → JN

V (G)∧.

Since G-action commutes with the flow, we get also a flow on G\FS .

Lemma 6.3. (i) Let U be a α-long cover of the flow space FS such that each
element U ∈ U is G-invariant. Then U ′ := {p(U) | U ∈ U} is a α-long
covering of G\FS;

(ii) Let V be a α-long covering of G\FS. Then V ′ = {p−1(V ) | V ∈ V is
a α-long cover of the flow space FS such that each element V ∈ U is
G-invariant.

Proof. This is obvious from the definitions. �

6.b. Partitions of unity for long thin covers.

Proposition 6.4 (Partition of unity). For all α > 0, ε > 0, N ∈ N there is α′ > 0
such that the following holds. Let U be a α′-long cover of dimension ≤ N by G-
invariant open subsets of FS. Then there exists a partition of unity {tU : FS →
[0, 1] | U ∈ U} subordinate to U and δ > 0 such that

(i) for U ∈ U , c, c′ ∈ FS with dFS-fol(c, c
′) < (α, δ) we have

|tU (c)− tU (c
′)| < ε;

(ii) the tU are G-invariant.

Proof. This follows from Lemma 6.3 and from Proposition 7.1 applied to G\FS . �

Remark 6.5. Using quantifiers the beginning of Proposition reads as

∀α, ǫ,N ∃α′ ∀U ∃{tU}, δ such that . . .

6.c. Dimension of long thin covers.

Proposition 6.6 (Dimension of long thin covers). There is N ∈ N such that for
any α′ > 0 there is α′′ such that the following is true. Let W be an α′′-long cover
of FS by G-invariant open subsets. Then there exist collections U0, . . . ,UN of open
G-invariant subsets of FS such that

(i) U := U0 ⊔ . . .⊔UN is an α′-long cover of FS, in particular Ui ∩Uj = ∅ for
i 6= j;

(ii) for each i the open sets in Ui are pairwise disjoint;
(iii) for each U ∈ U = U0 ⊔ . . . ⊔ UN there is W ∈ W with U ⊆ W .



ALMOST EQUIVARIANT MAPS FOR TD-GROUPS 13

Proof. This follows from Lemma 6.3 and Proposition 8.1 applied to G\FS . �

Remark 6.7. Using quantifiers the beginning of Proposition 6.6 reads as

∃N ∀α′ ∃α′′ ∀W ∃U0, . . . ,UN such that . . .

6.d. The local structure of FS .

Proposition 6.8 (Local structure). Suppose that Assumption 2.7 holds.
For all α′′ > 0 there are β > 0 and V ⊆ Cvcy finite with the following property. For
all η > 0 and all c0 ∈ FS there exist U ⊆ FS open, h : U → G, V ∈ V and δ′′ > 0
such that

(i) for some neighborhood U0 of the orbit Gc0 we have Φ[−α′′,α′′](U0) ⊆ U ;
(ii) U is G-invariant;
(iii) for c, c′ ∈ U we have

dFS-fol(c, c
′) < (α′′, δ′′) =⇒ dV -fol(h(c), h(c

′)) < (β, η);

(iv) for c ∈ U , g ∈ G we have;

dV -fol(h(gc), gh(c)) < (β, η)

Proposition 6.8 is proven in Section 9.

Remark 6.9. Using quantifiers the beginning of Proposition 6.8 reads as

∀α′′ ∃β,V ∀η, c0 ∃U, h, δ′′ such that . . .

Remark 6.10 (Failure of continuity). The failure of continuity in Theorem 1.2
comes from the failure of continuity of h in Proposition 6.8. The action of G on
the flow space FS is not free and so maps h : U → G defined on open subsets
of the flow space are necessarily a bit pathological. The action of G on the flow
space is proper and it seems possible to construct maps U → G/K(V ) that are
continuous where K(V ) is the maximal compact subgroup of V . It should then be
possible to obtain continuous maps in Theorem 1.2 after one replaces JN

V (G)∧ with
∗ni=0

(∐
V ∈V G/K(V )

)
. We will not work this out in detail here.

6.e. Proof of Theorem 4.3 using Propositions 6.4, 6.6 and 6.8.

Proof of Theorem 4.3. We will use for N the number appearing in Proposition 6.6.
Given α > 0 and ǫ > 0 Proposition 6.4 gives us a number α′ and Proposition 6.6
gives us then a number α′′ > 0. We can assume α′′ ≥ α. Next Proposition 6.8
gives us a number β > 0 and V ⊆ Cvcy finite. Let now η > 0 be given. From
Proposition 6.8 we get for every c0 ∈ FS an open subset U(c0) ⊆ FS , an open
neighborhood U0(c0) of the orbit Gc0, a map h(c0) : U(c0) → G, an element V (c0) ∈
V and δ′′(c0) > 0 such that the assertions (i), (ii), (iii) and (iv) hold. Since G acts
cocompactly on FS , we can find a finite subset I ⊆ FS such that FS =

⋃
c0∈I U0(c0)

holds. Define δ′′ := min{δ′′(c0) | c0 ∈ I} and W = {U(c0) | c0 ∈ I}. Then W an
α′′-long cover of FS by G-invariant open subsets and comes for every W ∈ W with
maps hW : W → G and an element VW ∈ V satisfying

(6.10a) for W ∈ W and c, c′ ∈ W we have

dFS-fol(c, c
′) < (α′′, δ′′) =⇒ dVW−fol(hW (c), hW (c′)) < (β, η);

(6.10b) for W ∈ W , c ∈ W and g ∈ G we have

dVW−fol(hW (gc), ghW (c)) < (β, η).

We apply Proposition 6.6 to the cover W and obtain collections U0, . . . ,UN of open
G-invariant subsets of FS such that

(6.10c) U := U0 ⊔ . . . ⊔ UN is an α′-long cover of FS ;
(6.10d) for each i the open sets in Ui are pairwise disjoint;
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(6.10e) for each U ∈ U = U0 ⊔ . . . ⊔ UN , there is WU ∈ W with U ⊆ WU ; we pick
such a WU for each U and set VU := VWU

, hU := hWU
.

Proposition 6.4 yields a G-invariant partition of unity {tU : FS → [0, 1] | U ∈ U}
subordinate to U and δ > 0, such that

(6.10f) for U ∈ U , c, c′ ∈ FS with dFS-fol(c, c
′) < (α, δ) we have

|tU (c)− tU (c
′)| < ǫ.

We can assume δ ≤ δ′′. We now define f1 : FS → JN
V (G)∧ by

c 7→ [tU0(c)(hU0 (c), VU0), . . . , tUN
(c)(hUN

(c), VUN
)],

where for i = 0, . . . , N , Ui ∈ Ui is determined by c ∈ Ui. There is at most one such
Ui by (6.10d). If there is no Ui ∈ Ui containing c, then tU (c) = 0 for all U ∈ Ui

and the choice of Ui is without effect. It remains to verify the two assertions of
Theorem 4.3.

(i) Let c, c′ ∈ FS with dFS -fol(c, c
′) < (α, δ). We write

f1(c) = [tU0(c)(hU0 (c), VU0), . . . , tUN
(c)(hUN

(c′), VUN
)];

f1(c
′) = [tU ′

0
(c′)(hU ′

0
(c′), VU ′

0
), . . . , tU ′

N
(c′)(hU ′

N
(c′), VU ′

N
)].

If max{tUi
(c), tU ′

i
(c′)} ≥ ǫ then, by (6.10f), we necessarily have Ui = U ′

i and

|tUi
(c) − tU ′

i
(c′)| < ǫ. Moreover, by (6.10a) dVUi

−fol(hUi
(c), hU ′

i
(c′)) < (β, η). If

max{tUi
(c), tU ′

i
(c′)} < ǫ, then |tUi

(c)− tU ′
i
(c′)| < ǫ, as tUi

(c), tU ′
i
(c′) ∈ [0, 1]. Thus

dJ-fol(f1(c), f1(c
′)) < (β, η, ǫ).

(ii) Let c ∈ FS and g ∈ G. We write

f1(c) = [tU0(c)(hU0 (c), VU0), . . . , tUN
(c)(hUN

(c′), VUN
)];

f1(gc) = [tU ′
0
(gc)(hU ′

0
, (gc)VU ′

0
), . . . , tU ′

N
(gc)(hU ′

N
(gc), VU ′

N
)].

Then

gf1(c) = [tU0(c)(ghU0(c), VU0 ), . . . , tUN
(c)(ghUN

(c), VU ′
N
)].

As the Ui and the tUi
are all G-invariant we have Ui = U ′

i , tUi
(c) = tU ′

i
(gc)

for all i. Moreover, by (6.10b), dVUi
-fol(hUi

(gc), ghUi
(c)) < (β, η). In particular,

dJ-fol(f1(gc), gf1(c)) < (β, η, ǫ). �

In order to prove our main Theorem 1.2, it suffices to prove Propositions 6.4, 6.6
and 6.8. This we will do in the forthcoming sections.

7. Partition of unity

In this section we finish the proof Proposition 6.4 by proving Proposition 7.1
below.

Proposition 7.1 (Partition of unity). Let Z be a compact metric space with a flow
Φ. For all α > 0, ǫ > 0, N ∈ N there is α̂ > 0 such that the following holds. Let
U be a α̂-long cover of Z of dimension ≤ N by open subsets. Then there exists a
partition of unity {tU : Z → [0, 1] | U ∈ U} subordinate to U and δ > 0 such that
for U ∈ U , z, z′ ∈ Z with dFS-fol(z, z

′) < (α, δ) we have

|tU (z)− tU (z
′)| < ε.

Remark 7.2. Using quantifiers the beginning of Proposition 7.1 reads as

∀α, ǫ,N ∃α̂ ∀U ∃{tU}, δ > 0 ∀U, z, z′ we have . . .

Lemma 7.3. Let α̂ > 0. Let K ⊆ Z be compact and U be an open neighborhood
of K. Then there exists a (continuous) map f : Z → [0, 1] satisfying

(i) f |K ≡ 1;
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(ii) f |Z\Φ[−α̂,α̂]U ≡ 0;

(iii) for s ∈ R, z ∈ Z we have |f(Φs(z))− f(z)| ≤ |s|
α̂ .

Proof. As Z is a metric space, there is ϕ : Z → [0, 1] with ϕ|K ≡ 1 and ϕ|Z\U ≡ 0.
Define F : Z × R → [0, 1] by

F (z, t) :=

{
(1− |t|

α̂ )ϕ(Φt(z)) t ∈ [−α̂, α̂];

0 else.

Put
f(z) := sup{F (z, t) | t ∈ R} = max{F (z, t) | t ∈ [−α̂, α̂]}.

We verify that f is continuous. Assume it is not. Then there exist ǫ > 0, z ∈ Z,
and a sequence (zn)n≥0 in Z such that zn → z in Z and |f(zn) − f(z)| > ǫ holds
for all n ≥ 0. Choose τn ∈ [−α̂, α̂] with f(zn) = F (zn, τn). We can arrange after
passing to subsequences that there exists τ ∈ [−α̂, α̂] satisfying limn→∞ τn = τ .
Then f(zn) = F (zn, τn) → F (z, τ) ≤ f(z). Hence there is a natural number N
such that f(zn) < f(z)+ǫ holds for n ≥ N . On the other hand, choose τ ′ ∈ [−α̂, α̂]
with f(z) = F (z, τ ′). Then f(zn) ≥ F (zn, τ

′) → f(z) and hence there is a natural
number N ′ such that f(zn) > f(z)− ǫ for n ≥ N ′. This is a contradiction.

It remains to check (i), (ii) and (iii).

(i) Let z ∈ K. Then F (z, 0) = ϕ(z) = 1. Thus f(z) = 1.

(ii) Let z ∈ Z \ Φ[−α̂,α̂](U). Then Φt(z) 6∈ U for all t ∈ [−α̂, α̂]. Thus F (z, t) = 0
for all t ∈ [−α̂, α̂]. Therefore f(z) = 0.

(iii) Next we show for all s, t ∈ R and z ∈ Z.

(7.4)
∣∣∣F (Φs(z), t)− F (z, t)

∣∣ ≤ |s|

α̂
.

If s and s+ t belong to [−α̂, α̂], this follows from

∣∣F (Φs(z), t)− F (z, t+ s)
∣∣ =

∣∣∣∣(1 −
|t|

α̂
)ϕ(Φt(Φs(z)))− (1 −

|t+ s|

α̂
)ϕ(Φt+s(z))

∣∣∣∣

=

∣∣∣∣(1 −
|t|

α̂
)ϕ(Φt+s(z))− (1−

|t+ s|

α̂
)ϕ(Φt+s(z))

∣∣∣∣

=

∣∣∣∣
|t| − |t+ s|

α̂
ϕ(Φt+s(z))

∣∣∣∣

=

∣∣|t| − |t+ s|
∣∣

α̂
ϕ(Φt+s(z))

≤

∣∣|t| − |t+ s|
∣∣

α̂

≤
|s|

α̂
.

Suppose that s ∈ [−α̂, α̂] and (s + t) /∈ [−α̂, α̂]. Then F (z, t + s) = 0 and α̂ ≤
|t+ s| ≤ |s|+ [t]. Now(7.4) follows from

∣∣F (Φs(z), t)| = (1−
|t|

α̂
)ϕ(Φt(z)) ≤

α̂− |t|

α̂
≤

|s|

α̂
.

Suppose that (s+ t) ∈ [−α̂, α̂] and t /∈ [−α̂, α̂]. Then F (Φs(z), t) = 0 and α̂ ≤ |t| =
|(s+ t)− s| ≤ |s+ t|+ |s|. Now (7.4) follows from

∣∣F ((z), s+ t)| = (1−
|s+ t|

α̂
)ϕ(z) ≤

α̂− |s+ t|

α̂
≤

|s|

α̂
.

If (s+t) /∈ [−α̂, α̂] and t /∈ [−α̂, α̂], then F (Φs(z), t) = F (z, t+s) = 0 and hence (7.4)
is true. This finishes the proof of (7.4).
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From the definitions we conclude that there exists t0 and t1 ∈ R such that for
all t ∈ R we have

f(Φs(z)) = F (Φs(z), t0);(7.5)

F (Φs(z), t) ≤ F (Φs(z), t0);(7.6)

f(z) = F (z, t1);(7.7)

F (z, t) ≤ F (z, t1).(7.8)

We estimate

f(z)
(7.7)
= F (z, t1)

(7.4)

≤ F (Φs(z), t1−s)+
|s|

α̂

(7.6)

≤ F (Φs(z), t0)+
|s|

α̂

(7.5)
= f(Φs(z))+

|s|

α̂
,

and

f(Φs(z))
(7.5)
= F (Φs(z), t0)

(7.4)

≤ F (z, t0 + s) +
|s|

α̂

(7.8)

≤ F (z, t1) +
|s|

α̂

(7.7)

≤ f(z) +
|s|

α̂
.

This finishes the proof of Lemma 7.3. �

Proof of Proposition 7.1. Let α, ǫ and N be given. Pick α̂ > 0 such that

(2N + 3)α

α̂
< ǫ/2.

For U ∈ U let U−α̂ := {z ∈ Z | Φ[−α̂,α̂](z) ⊆ U}. As U is α̂-long, we can find
for every z ∈ Z an open neighborhood U0(z) and an element U(z) ∈ U such that
U0(z) ⊆ U−α̂. Since Z is compact, we can find a finite subset I ⊆ Z such that
Z =

⋃
z∈Z U0(z). By replacing U with {U(z) | z ∈ I}, we can arrange that both

U and U−α̂ := {U−α̂ | U ∈ U} are N -dimensional finite coverings of Z. As Z is
compact we can find a Lebesgue number ℓ > 0 for U . Define a compact subset
KU ⊆ U by KU = {z ∈ Z | dZ(z, Z \ U) ≥ ℓ}. Then {KU | U ∈ U} covers Z. For
each U ∈ U we now choose fU as in Lemma 7.3, i.e., such that

(7.9a) fU |KU
≡ 1;

(7.9b) fU |Z\U ≡ 0;

(7.9c) for τ ∈ R, z ∈ Z we have |fU (z)− fU (Φτ (z))| ≤
|τ |
α̂ .

As U is finite, we can normalize the fU to obtain tU : Z → [0, 1] with

tU (z) :=
fU (z)∑

U ′∈U fU ′(z)
.

Then {tU | U ∈ U} is a partition of unity subordinate to U . For τ ∈ [−α, α] and
z ∈ Z, we next want to estimate tU (z) − tU (Φτ (z)). We abbreviate xV := fV (z),
x′
V := fV (Φτ (u)) for V ∈ U . By (7.9a) xV = 1, x′

V ′ = 1 for at least one V, V ′.
In particular

∑
V xV ,

∑
V x′

V ≥ 1. By (7.9b) and since the dimension of U is at
most N , we have xV 6= 0 for at most N + 1 different V ∈ V , and similarly for x′

V .
By (7.9c) |xV − x′

V | ≤
τ
α̂ . Using all this we compute for τ ∈ [−α, α] and z ∈ Z,
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where V and V ′ run through U :

|tU (z)− tU (Φτ (z))|

=

∣∣∣∣∣
xU∑
V xV

−
x′
U∑

V ′ x′
V ′

∣∣∣∣∣

=

∣∣∣∣∣

∑
V ′ xUx

′
V ′∑

V,V ′ xV x′
V ′

−

∑
V x′

UxV∑
V,V ′ xV x′

V ′

∣∣∣∣∣

≤

∑
V

∣∣xUx
′
V − xUxV + xUxV − x′

UxV

∣∣
∑

V,V ′ xV x′
V ′

≤

∑
V xU

∣∣x′
V − xV

∣∣+
∣∣xU − x′

U

∣∣xV∑
V,V ′ xV x′

V ′

≤

∑
V

∣∣xV − x′
V

∣∣
∑

V,V ′ xV x′
V ′

+

∣∣xU − x′
U

∣∣
∑

V ′ x′
V ′

≤
∑

V

∣∣xV − x′
V

∣∣+
∣∣xU − x′

U

∣∣

≤
(∣∣{V ∈ U | xV 6= 0}|+

∣∣{V ∈ U | x′
V 6= 0}|+ 1

)
·max{

∣∣xV − x′
V

∣∣ | V, V ′ ∈ U}

≤ (2(N + 1) + 1)
τ

α̂
<

ǫ

2
.

As Z is compact the tU are uniformly continuous. Since U is finite, there is δ > 0
such that for U ∈ U , z, z′ ∈ Z, we have

dZ(z, z
′) < δ =⇒ |tU (z)− tU (z

′)| <
ǫ

2
.

Thus
dFS -fol(z, z

′) < (α, δ) =⇒ |tU (z)− tU (z
′)| < ǫ. �

8. Dimension of long thin covers

In this section we finish the proof of Proposition 6.6 by proving Proposition 8.1
below.

Proposition 8.1. There is N such that for any α > 0 there is α̂ > 0 such that the
following is true. Let W be an α̂-long cover of G\FS by open subsets. Then there
exists collections U0, . . . ,UN of open subsets of G\FS such that

(i) U := U0 ⊔ . . . ⊔ UN is an α-long cover of G\FS;
(ii) for each i the open sets in Ui are pairwise disjoint;
(iii) for each U ∈ U = U0 ⊔ . . . ⊔ UN there is W ∈ W with U ⊆ W .

Remark 8.2. Using quantifiers the beginning of Proposition 8.1 reads as

∃N ∀α ∃α̂ ∀W ∃U0, . . . ,UN such that . . .

Proof of Proposition 8.1. This follows by combining Proposition 8.4 and Lemma 8.5
below. �

Lemma 8.3. G\FS is of finite dimension, compact and metrizable.

Proof. Recall that G acts on FS cocompactly, isometrically, and properly and that
FS is a proper metric space, see Lemmas 2.2, and Lemma 2.3. Hence G\FS is
compact and metrizable. A formula for a metric is

dG\FS ([c], [c
′]) = min{dFS (gc, c

′) | g ∈ G}.

By [3, Prop. 2.9] the dimension of FS \ FSR is finite. As FSR ∼= X is also
finite dimensional, the sum theorem from dimension theory [12, Cor. 1.5.5] now
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implies that FS is finite dimensional. Another result from dimension theory [12,
Thm. 1.12.7] asserts that for open maps A → B with discrete fibers the dimension
of A and B agree5. The quotient map FS → G\FS is open, but as the action of G
on FS is not smooth, the fibers of the quotient map are not discrete. For R > 0 let
FSR be the subspace of FS consisting of all generalized geodesics c : R → X that are
locally constant on the complement of [−R,R]. As FSR is a closed subspace of FS
we have dimFSR ≤ dimFS . The action of G on FSR is smooth, so FSR → G\FSR

has discrete fibers and dimG\FSR = dimFSR ≤ dimFS is finite. There is a
canonical retract pR : FS → FSR that sends c to the restriction of c to [−R,R],
more precisely to the generalized geodesic that agrees with c on [−R,R] and is
locally constant on the complement. It is not difficult to check that the fibers of pR
are of uniformly bounded diameter ǫR with ǫR → 0 as R → ∞. The fibers of the
induced map pR : G\FS → G\FSR have the same property. Write WR,δ for the
open cover of G\FSR by all balls of radius δ. We can refine WR,δ to an open cover
W ′

R,δ of dimension ≤ dimFS , i.e., every point of G\FSR is contained in at most

dimFS +1 sets in W ′
R,δ. Now let U an open cover of G\FS . By compactness U has

a positive Lebesgue number. We then find δ > 0 and R > 0 such that the pull-back
p∗R(WR,δ) refines U . It follows that p∗R(W

′
R,δ) is a refinement of U of dimension

≤ dimFS . Thus dimG\FS ≤ dimFS < ∞. �

Proposition 8.4. There is N such that for any β > 0 there is α̂ > 0 such that the
following is true. Let W be an α̂-long cover of G\FS by open subsets. Then there
exists an open cover V of G\FS such that

(i) V is an β-long;
(ii) dimV ≤ N ;
(iii) for each U ∈ V there is W ∈ W with U ⊆ W .

Proof. The main result from [16] almost gives this. More precisely Lemma 8.3
allows us to apply [16, Thm. 1.1] to G\FS . Thus there exists N only depending on
the dimension of G\FS such that for given β > 0 there exists a cover V of G\FS
satisfying (i) and (ii).

We will argue below that the construction from [16] in fact also gives (iii).
We point out that we apply [16] to the quotient G\FS which no longer carries a

group action. In [16] an equivariant situation is considered, but we use the special
case of [16] where the group acting on the flow space is trivial.

Given β > 0, let α̂ := 20β. Suppose that W is an α̂-long cover. Then for any
c ∈ G\FS there is W ∈ W with Φ[−α̂,α̂](c) ⊆ W . As W is open there is δ > 0
such that the δ-neighborhood of Φ[−α̂,α̂](c) is still contained in W . As G\FS is
compact we can choose δ > 0 uniformly, that is for any c ∈ G\FS there is W ∈ W
containing the δ-neighborhood of Φ[−α̂,α̂](c).

The period of c ∈ G\FS is τ(c) := inf{t > 0 | Φt(c) = c}. If Φt(c) 6= c for all
t > 0, then τ(c) = ∞. Let

(
G\FS

)
>α̂

:= {c ∈ G\FS | τ(c) ∈ (α̂,∞)}.

Let δ > 0 be given. By [16, Thm. 5.3] there exists an β-long cover V1 of
(
G\FS

)
>α̂

of dimension ≤ N1, where N1 depends only on the dimension of G\FS . Moreover,
as explained in the last line of the proof of [16, Thm. 5.3], every V ∈ V1 is contained
in the δ-neighborhood of Φ[α̂,α̂](c) for some c, and therefore in some W ∈ W .

Next consider
(
G\FS

)
≤α̂

:= {c ∈ G\FS | τ(c) ∈ [0, α̂]}.

5Strictly speaking the two results cited from [12] are about inductive dimension, not covering
dimension. However, it is not difficult to check that FS is separable, so there is no difference
between covering dimension and inductive dimension [12, Thm. 1.7.7].
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By [16, Lem. 7.6] there exists an open cover V2 of
(
G\FS

)
≤α̂

of dimension ≤ N2,

where N2 again depends only on the dimension of of G\FS . Moreover, for each
c of period ≤ α̂ there is V ∈ U2 with ΦR(c) ⊆ V , and each V ∈ V2 is contained
in the δ-neighborhood of ΦR(c). In fact, by construction, see the last line of the
proof of [16, Lem. 7.6], c can here be chosen to be of period ≤ α̂. In particular,
V is contained in the δ-neighborhood of Φ[0,α̂](c) = ΦR(c), and therefore in some
W ∈ W .

We have G\FS =
(
G\FS

)
≤α̂

⊔
(
G\FS

)
>α̂

, where the first set if closed by [16,

Lem. 7.1] and the second consequently open. In particular, the V ∈ V1 are open
in G\FS . We can use [16, Lem. 2.7] to extend the V ∈ V2 to open subsets of
G\FS while preserving the properties of V2. The union of the two covers is now
the needed cover V . �

Lemma 8.5. Fix a number N . For any α > 0 there is β > 0 with following
property. Let V be an β-long cover of G\FS. Assume that dimV ≤ N . Then there
exists collections U0, . . . ,UN of open subsets of G\FS such that

(i) U := U0 ⊔ . . . ⊔ UN is an α-long cover of G\FS;
(ii) for each i the open sets in Ui are pairwise disjoint;
(iii) for each U ∈ U = U0 ⊔ . . . ⊔ UN there is V ∈ V with U ⊆ V .

The proof is not difficult. We translate between open covers and maps to sim-
plicial complexes and for the latter we use barycentric subdivision.

Proof of Lemma 8.5. The metric on FS has the property that dFS (Φt(c), c) ≤ |t|
for all c ∈ FS and t ∈ R. It is not difficult to check that there is metric dG\FS

with the same property. For λ > 0 we define a metric dλ on G\FS as follows. For
c, c′ ∈ G\FS set

dλ(c, c
′) := inf

n∑

i=0

|ti|+ λdG\FS (Φti(ci), ci+1)

where the infimum is taken over all finite sequences c = c0, . . . , cn+1 = c′, t0, . . . , tn ∈
R. Compactness of G\FS can be used to check that for an β-long cover V there is
λ > 0 such that the Lebesgue number of V with respect to dλ is ≥ β. Let now Λ
be the nerve of V , i.e., the simplicial complex that has a vertex vV for each V ∈ V
and where vV0 , . . . , vVn

span a simplex iff V0 ∩ · · · ∩ Vn 6= ∅. The dimension of V
is exactly the dimension of Λ. We equip |Λ| with the l1-metric d1. There is now a
map f : G\FS → |Λ| satisfying

(8.6) dλ(c, c
′) ≤

β

4N
=⇒ d1(f(c), f(c′)) ≤

16N2

β
dλ(c, c

′),

see [7, Prop. 5.3]. By its construction the map f has the following property: the
preimage of the open star of vU is exactly U . Let now Λ′ be the barycentric
subdivision of Λ. The vertices of Λ′ correspond to the simplices of Λ. For j =
0, . . . , N let Ij be the set of simplices of Λ′ to j-simplices of Λ and Ũj be the

collection of open stars around simplices in Ij . Then Ũ := Ũ0 ⊔ · · · ⊔ ŨN is an
open cover |Λ| = |Λ′| of positive Lebesgue number L, where L depends only on the

dimension of Λ. Moreover, for each j the open sets in Ũj are pairwise disjoint. We

now set Uj := f∗Ũj and U := f∗U . Using estimate 8.6 we see that the Lebesgue

number of U with respect to dΛ is at least min{ β
4N , Lβ

16N2 }. In particular, if we

choose β ≥ max{4Nα, 16N
2α

L }, then the Lebesgue number of U with respect to dλ
is at least α. Thus U is α-long. Finally, each open star for Λ′ is contained in an
open star for Λ. Thus each U from U is contained in some V from V . �
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Remark 8.7. A more careful analysis of the arguments from [16] reveals that the
constructions there also lead to coloured covers. This leads to a more direct proof
of Proposition 8.1 and renders Lemma 8.5 superfluous.

9. Local structure

In section we will prove Proposition 6.8.

9.a. Neighborhoods in FS mapping to G.

Lemma 9.1. Let FS 0 ⊆ FS be compact. For all α > 0 there is β > 0 such that
for g ∈ G, c ∈ FS 0 we have

dFS (gc, c) < α =⇒ dG(g, e) < β.

Proof. Assume this fails for a given α > 0. Then there are sequences (cn)n≥0 in
FS 0, and (gn)n≥0 in G with dFS (gncn, cn) < α but

lim
n→∞

dG(gn, e) = ∞.

After passing to a subsequence, we can assume c0 = limn→∞ cn for some c0 ∈
FS 0. We can choose a constant C > 0 such that dFS (cn, c0) = dFS (gncn, gnc0) ≤
C for n ≥ 0. Then the gnc0 are elements of the closed ball K of radius α +
2C around c0. Since FS is a proper metric space by Lemma 2.2, K is compact.
The set {g ∈ G | g · K ∩ K 6= ∅} is a compact subset of G by Lemma B.1 (iii)
and contains the sequence (gn)n≥0. After passing to subsequences again, we can
assume limn→∞ gn = g for some g ∈ G. Hence limn→∞ dG(gn, e) = dG(g, e). This
contradicts limn→∞ dG(gn, e) = ∞. �

We have defined U fol
α,δ(c0) in Subsection 2.c and Vc0 in (2.6b).

Proposition 9.2. Let FS0 ⊆ FS be compact. For all α > 0 there is β > 0 such
that the following is true: For all η > 0, c0 ∈ FS0, there are δ > 0 and a (not
necessarily continuous) map h : G · U fol

α,δ(c0) → G satisfying

(i) for c, c′ ∈ G · U fol
α,δ(c0) we have

dFS-fol(c, c
′) < (α, δ) =⇒ dVc0−fol(h(c), h(c

′)) < (β, η);

(ii) for g ∈ G, c ∈ G · U fol
α,δ(c0) we have

dVc0−fol(h(gc), gh(c)) < (β, η).

Proof. Let α > 0 be given. By Lemma 9.1 there is β > 0 such that for g ∈ G,
c ∈ FS 0 we have

(9.3) dFS (gc, c) < 3α =⇒ dG(g, e) < β.

Next let η > 0 and c0 ∈ FS 0 be given. For n ∈ N choose hn : G · U fol
α,1/n(c0) → G

such that c ∈ hn(c) · U fol
α,1/n(c0) for all c ∈ G · U fol

α,δn
(c0). We will show that for all

sufficiently large n the map hn satisfies (i) and (ii).

(i) Assume there are infinitely many n such that (i) fails. Then there is I ⊆ N

infinite and for n ∈ I there are cn, c
′
n ∈ FS with cn ∈ hn(cn) · U fol

α,1/n(c0), c
′
n ∈

hn(c
′
n) · U

fol
α,1/n(c0), dFS -fol(cn, c

′
n) < (α, 1/n) such that

dVc0−fol(hn(cn), hn(c
′
n)) < (β, η)

fails. Lemma 2.5 implies that we can arrange by possibly replacing I by a smaller
infinite subset that we have

dFS -fol(hn(cn)c0, hn(c
′
n)c0) < (3α, 1/n).
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Then, with an := hn(c
′
n)

−1hn(cn),

dFS-fol(anc0, c0) < (3α, 1/n).

We conclude from Lemma 2.4 (i) that anc0 stays in some closed ball K around
c0 with respect to dG. Since FS is a proper metric space, K is compact. Since
FS is a proper G-space by Lemma 2.3, we conclude from Lemma B.1 (iii) that
{g ∈ G | g · K ∩ K 6= ∅} is a compact subset of G and contains the sequence
(an)n≥0. Hence we can arrange by passing to subsequences that limn→∞ an = a
holds in G for some a ∈ G.

We can choose τn ∈ [−3α, 3α] for n ≥ 0 satisfying dFS (anΦτn(c0), c0) < 1/n.
This implies limn→∞ anΦτn(c0) = c0. By passing to subsequences again, we can
arrange limn→∞ τn = τ for some τ ∈ [−3α, 3α]. We conclude limn→∞ anΦτn(c0) =
aΦτ (c0) from Lemma 2.1 (ii). This shows aΦτ (c0) = c0 and hence a ∈ Vc0 . As the
flow is of at most unit speed, see Lemma 2.1 (i), and dFS is left G-invariant, we get

dFS (ac0, c0) = dFS (ac0, aΦτ (c0)) = dFS (c0,Φτ (c0)) ≤ |τ | ≤ 3α.

Hence dG(a, e) ≤ β by 9.3. Since limn→∞ an = a and a ∈ Vc0 hold, there exists a
natural number N such that dVc0−fol(an, e) < (β, η) holds for n ∈ I with n ≥ N .

Since DG and hence dVc0−fol are left G-invariant, we get dVc0−fol(hn(cn), hn(c
′
n)) <

(β, η) for n ∈ I with n ≥ N , a contradiction.

(ii) Assume there are infinitely many n such that (ii) fails. Then there is I ⊆ N

infinite and for n ∈ I there are cn ∈ FS , gn ∈ G with cn ∈ hn(cn) · U fol
α,1/n(c0),

gncn ∈ hn(gncn) · U fol
α,1/n(c0), such that

dVc0−fol(hn(gncn), gnhn(cn)) < (β, η)

fails. Recall that dFS-fol is left G-invariant, see Lemma 2.4 (ii). Hence we get from
cn ∈ hn(cn) · U fol

α,1/n(c0) and gncn ∈ hn(gncn) · U fol
α,1/n(c0) that dFS (cn, hn(cn)c0) ≤

(α, 1/n) and dFS (cn, g
−1
n hn(gncn)c0) ≤ (α, 1/n) holds for n ∈ I. Put an :=

hn(cn)
−1g−1

n hn(gncn). We conclude from Lemma 2.5 that we can arrange by re-
placing I by a possibly smaller infinite subset that

dFS -fol(anc0, c0) < (2α, 1/n)

holds for n ∈ I. We conclude from Lemma 2.1 (i), that anc0 stays in the closed
ball K of radius 2α+1 around c. Since FS is a proper metric space, K is compact.
Since FS is a proper G-space by Lemma 2.3, we conclude from Lemma B.1 (iii) that
g ∈ G | g ·K ∩K 6= ∅} is a compact subset of G and contains the sequence (an)n≥0.
Hence we can arrange by passing to subsequences that limn→∞ an = a holds in
G for some a ∈ G. There are τn ∈ [−2α, 2α] with dFS (anΦτn(c0), c0) < 1/n.
This implies limn→∞ anΦτn(c0) = c0. We can arrange by passing to subsequences
limn→∞ τn = τ for some τ ∈ [−2α, 2α]. We conclude limn→∞ anΦτn(c0) = aΦτ (c0)
from Lemma 2.1 (ii). This shows aΦτ (c0) = c0 and hence a ∈ Vc0 . As the flow is
of at most unit speed, see Lemma 2.1 (i), and dFS is left G-invariant, we get

dFS (ac0, c0) = dFS (ac0, aΦτ (c0)) = dFS (c0,Φτ (c0)) ≤ |τ | ≤ 2α.

Hence dG(a, e) ≤ β by 9.3. Since limn→∞ an = a and a ∈ Vc0 hold, there is a natural
number N such that dVc0−fol(an, e) < (β, η) holds for n ∈ I with n ≥ N . As dG and

hence dVc0−fol are left G-invariant, we get dVc0−fol(hn(gncn), gnhn(cn)) < (β, η) for
n ∈ I with n ≥ N , a contradiction. �

The following addendum to Proposition 9.2 strengthens the conclusion in the
case where the period τc0 of c0 defined in (2.6c) is large relative to the given α.
Recall that we have defined the compact subgroup Kc0 ⊂ G to be isotropy group
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Gc0 of c0 ∈ FS in (2.6a). The difference to Proposition 9.2 is that in the two
conclusions dKc0−fol is used, not dVc0−fol.

Addendum 9.4. Let FS 0 ⊆ FS be compact. For all α > 0 there are β > 0, ℓ > 0
such that the following is true. For all η > 0, c0 ∈ FS 0 with τc0 > ℓ there are δ > 0,
h : G · U fol

α,δ(c0) → G satisfying the following.

(i) for c, c′ ∈ G · U fol
α,δ(c0) we have

dFS-fol(c, c
′) < (α, δ) =⇒ dKc0−fol(h(c), h(c

′)) < (β, η);

(ii) for g ∈ G, c ∈ G · U fol
α,δ(c0) we have

dKc0−fol(h(gc), gh(c)) < (β, η).

Proof. We can argue almost exactly as in the proof of Proposition 9.2. For the
element a ∈ Vc0 produced in the proof of both conclusions there we also proved
dFS (ac0, c0) ≤ 3α. Thus if τc0 > ℓ := 3α, then we must have ac0 = c0, i.e., a ∈ Kc0

and the conclusions follow for dKc0−fol in place of dVc0−fol. �

Remark 9.5 (The role of FS 0). The construction of maps h : U → G will depend
on a choice of base point for the orbit Gc0, namely c0. The same construction
with respect to a different base point g0c0 would also work, but with respect to a
different collection of subgroups and constant β. But the subgroups and constant
β in Proposition 6.8 are required to be uniform over all orbits. Therefore the base
points for different orbits have to be chosen somewhat consistently; in our argument
we have done this by using only base points from a fixed compact subset FS 0 of
FS .

9.b. Proof of Proposition 6.8.

Lemma 9.6. Let c0 ∈ FS. Then there exists an open neighborhood U of c0 in FS
and a compact open subgroup K of G such that Kc ⊆ K for all c ∈ U .

Proof. Recall that G acts cocompactly, isometrically, properly, and smoothly on
X . There is an open neighborhood W ⊆ X of c0(0) such that Gx ⊆ Gc0(0) for all
x ∈ W , see Lemma B.1 (iv). Now K := Gc0(0) and U := {c ∈ FS | c(0) ∈ W}
satisfy the assertion. �

The following proof of Proposition 6.8 is the only place where we use Assump-
tion 2.7.

Proof. Let FS 0 be the compact subset of FS from Assumption 2.7. Given α > 0
Proposition 9.2 and Addendum 9.4 provide us with numbers β > 0, ℓ > 0.

Next we use (2.7b) and 9.6 to find V ⊆ Cvcy finite and a finite cover W of FS0

such that for any W ∈ W there are KW , VW ∈ Cvcy satisfying

(9.7a) for all c ∈ W we have Kc ⊆ KW ;
(9.7b) for all c ∈ W with 0 < τc ≤ ℓ we have Vc ⊆ VW .

Let now η > 0 and c0 ∈ FS be given. According to (2.7a) FS 0 is a fundamental
domain for the G action. This allows us to choose g0 ∈ G, W ∈ W such that
g0c0 ∈ W ⊆ FS 0. If τc0 = τg0c0 > ℓ, then we set V := KW and note that
by (9.7a) Kg0c0 ⊆ V . If τc0 = τg0c0 ≤ ℓ then we set V := VW and note that
by (9.7b) Vg0c0 ⊆ V . Now Proposition 9.2 and Addendum 9.4 give us δ > 0 and
h : G · U fol

α,δ(c0) → G satisfying for c, c′ ∈ G · U fol
α,δ(c0), g ∈ G

dV -fol(h(c), h(c
′)) < (β, η) provided dFS -fol(c, c

′) < (α, δ);

dV -fol(h(gc), gh(c)) < (β, η).

Of course U := G · U fol
α,δ(c0) is G-invariant. �

This finishes the proof of our main Theorem 1.2.
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Appendix A. The Bruhat-tits building for reductive p-adic groups

LetK be a non-Archimedian local field, i.e., a finite extension of the field of p-adic
numbers or the field of formal Laurent series k((t)) over a finite field k. Consider
an algebraic group G over K whose component of the identity is reductive. Let
G(K) be its group of K-points. We will simply say that G(K) is a reductive p-adic
group. We will need the action of G(K) on the associated (extended) Bruhat-Tits
building. The original reference for the Bruhat-Tits building is [10, 11]. Summaries
of the construction can be found in [21] and in [20, Sec. I.1].

To set up notation we briefly review aspects of the construction. Let A be the
real affine space constructed in [21, 1.2, p.31,32]. It comes equipped with an action
of a subgroup N(K) of G(K). The affine space is finite dimensional and the action
of N(K) is cocompact6. There is also a collection Φaf of affine linear function
α : A → R, these are the affine roots [21, 1.6, p.33]. This set is symmetric, i.e., if
α ∈ Φaf then −α ∈ Φaf. After identifying A with the associated linear space V
the affine roots can be described as follows: there are finitely many linear function
a : V → R (the roots) and for each a there is a discrete set Γa ⊆ R such that the
affine roots are the maps v 7→ a(v)+l where l ∈ Γa. (This follows from the discussion
in [21, 1.6, p.33], see also [20, p. 103]). Associated to α ∈ Φaf is the half-apartment
Aα = {x ∈ A | α(x) ≥ 0} and the wall ∂Aα = {x ∈ A | α(a) = 0}. Chambers of A
are the connected components of the complements of the walls 7. The facets of the
chambers are called the facets of A. The building X is constructed as a quotient of
G×A [21, 2.1, p.43]. The quotient map G(K)×A → X is G(K)-equivariant and the
G(K)-action on X extends the N(K)-action on A. The translates of A under G(K)
are the apartments of X . As N(K) acts cocompactly on A and since X is the union
of its apartments the action of G(K) on X is cocompact as well. The apartments
gA inherit an affine structure and a partition into facets from A; these structures
agree on intersections of apartments; any two points (in fact any two facets) of
X are contained in a common apartment [21, 2.2.1, p.44]. Given two apartments
A′ and A′′ there is g ∈ G with gA′ = A′′ such that g fixes A′ ∩ A′′ pointwise [21,
2.2.1]. This can be used to construct a G(K)-invariant CAT(0)-metric dX on X [21,
2.3, p.45]8. Apartments are then flat subspace of X . The action of G(K) on X
is also proper [21, p.45]. By our assumption on K its residue field (denoted K
in [21]) is finite. This assumption is used in some of the following results from [21].
The stabilizer groups of chambers (and therefore of facets) contain the Iwahori
subgroups [21, p.54] and these subgroups are open [21, p.55]. In particular, all
stabilizer groups for facets are open and the action of G(K) on X is smooth. The
chambers ofX can be subdivided to giveX the structure of a locally finite simplicial
complex where the action of G(K) is simplicial [21, 2.3.1, p.45]. Altogether X is
a finite dimensional CAT(0)-space with a a proper, continuous, isometric, smooth,
cocompact G(K)-action. Assumption 2.7 for the action of G(K) on X is verified
in Proposition A.7 below.

Lemma A.1. Any generalized geodesic c : R → X is contained in a translate of A.

Proof. We may assume c(0) ∈ A. For n ∈ N we find an apartment A′ that contains
c(±n). By the construction of the metric A′ will then contain c([−n, n]). Now
choose gn ∈ G such that gnA = A′ and gn fixes A∩A′. Then (gn)n∈N is a sequence

6This is not explicitly mentioned [21, 1.2, p.31,32] but follows from the construction.
7In the quasi-simple case the facets are simplices; in the semi-simple case the facets are poly-

simplices (i.e., finite products of simplices); in general the facets are products of affine spaces with
poly-simplices [21, 1.7, p.33].

8In [21] the terminology of CAT(0)-spaces is not used, but the inequality given there is equiv-
alent to the CAT(0)-condition, see [9, p. 163].
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in the compact subgroup of G(K) that fixes c(0) and has an accumulation point g.
As the action of G(K) on X is continuous the gnA must agree with gA on larger
and larger neighborhoods of c(0). It follows that the apartment gA contains the
image of c. �

In the following we write FS∞ for the subspace of FS consisting of all (bi-infinite)
geodesics c : R → X and for Y ⊆ X we set FS∞(Y ) := FS (Y ) ∩ FS∞.

Lemma A.2. Let c0 ∈ FS∞(A). Then there is ǫ > 0 such that for all α ∈ Φaf,
with c0 6∈ FS∞(Aα) we have

dFS

(
c0,FS∞(Aα)

)
≥ ǫ.

Proof. As there are only finitely many roots it suffices to consider the affine roots
associated to a fixed root a. The walls associated to these affine roots are then all
parallel and the half-apartments Aα are linearly ordered by inclusion (because Γa

is discrete). If c0 is not parallel to these walls, then no half-apartment Aα contains
c0 (or any geodesic parallel to c0) and c0 intersects all the walls ∂Aα in the same
angle. It is then not difficult to bound dFS (c0,FS∞(Aα)) in terms of this angle.
If c0 is parallel to the walls ∂Aα, then among the Aα not containing c0 there is a
maximal half-apartment Aα0 and we can use ǫ := dFS (c0,FS∞(Aα0)). �

Lemma A.3. Let c0 ∈ FS∞(A). Then there is ǫ > 0 such that for all g ∈ G we
have

dFS

(
c0,FS∞(A ∩ gA)

)
∈ {0} ∪ (ǫ,∞).

Proof. The intersection gA∩A is a union of facets of A and convex. It follows that
if c0 is not contained in gA ∩ A, then gA ∩ A is contained in a half-apartment Aα

that does not contain c0. The assertion follows now from Lemma A.2. �

Lemma A.4. Let c0 ∈ FS∞(A). Then Gc0 ∩ FS∞(A) is discrete.

Proof. Choose real numbers t− < t+. As geodesics in A have unique extensions in
A we observe the following: if gc0 ∈ FS∞(A) and c0(t±) = gc0(t±), then c0 = gc0.

Let now gn ∈ G with gnc0 ∈ FS∞(A) and gnc0 → c1 ∈ FS∞(A) as n → ∞.
As the action of G(K) on X is smooth all orbits for this action are discrete. Thus
gnc0(t±) = c1(t±) for almost all n. The above observation now implies that gnc0 is
eventually constant. Thus Gc0 ∩ FS (A) is discrete, as asserted. �

Recall that an element c in FS is called periodic if there exists g ∈ G and t ∈ R

with t > 0, and gc = Φt(c). If c is periodic, then necessarily c ∈ FS∞.

Lemma A.5. Let c0 ∈ FS∞(A). Let β > 0. Then there is ǫ > 0 such that the
following holds. Let c ∈ FS∞(A) with dFS (c, c0) < ǫ, g ∈ G, t ∈ [−β, β] with
gc = Φtc. Then g ∈ Vc0 .

Proof. Assume this fails. Then there are sequences (cn)n≥0 in FS∞(A), (tn)n≥0

in [−β, β], and (gn)n≥0 in G(K) such that limn→∞ cn = c0, gncn = Φtncn, but
gn 6∈ Vc0 . By passing to subsequences we can arrange limn→∞ tn = t for some t ∈
[−β, β]. Then we get limn→∞ gncn = limn→∞ Φtn(cn) = Φtc0 from Lemma 2.1 (ii).
As G y FS is proper, see Lemma 2.3, the gn vary over a relatively compact set.
Thus we can pass to a further subsequence and assume that limn→∞ gn = g for
some g ∈ G. Then limn→∞ gnc0 = gc0. As G y FS is isometric we also have
limn→∞ gncn = gc0. Thus gc0 = Φt(c0). We have gncn = Φtncn ∈ FS (A). Thus
cn ∈ FS∞((gn)

−1A). Lemma A.3 implies that c0 ∈ FS∞((gn)
−1A) for almost all n.

Thus gnc0 ∈ FS (A) for almost all n. Now Lemma A.4 implies that gnc0 = gc0 for
almost all n. Thus gnc0 = gc0 = Φt(c0) for almost all n, contradicting gn 6∈ Vc0 . �
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Lemma A.6. Let c0 ∈ FS∞(A). Let ℓ > 0. Then there is ǫ > 0 such that for all
c ∈ FS∞(A) with dFS (c, c0) < ǫ and 0 < τc < ℓ we have Vc ⊆ Vc0 .

Recall that have defined the group Kc to be the G(K)-isotropy group of c
in (2.6a).

Proof of Lemma A.6. Let c ∈ FS(A) with τc > 0, i.e., c is periodic. Lemma 2.8
tells us that there is v ∈ Vc such that Φτc(c) = vc and that v together with Kc

generates Vc. The result follows therefore from Lemma A.5 �

Proposition A.7. The action of G(K) on FS (X) satisfies Assumption 2.7.

Proof. As discussed above the action of the subgroup N(K) on A is cocompact.
This implies that the action ofN(K) on FS (A) is cocompact as well, see Lemma 2.3.
Thus we find FS 0 ⊆ FS (A) compact with N(K) · FS 0 = FS (A). By Lemma A.1
we have G(K) · FS (A) = FS . So G · FS 0 = FS , i.e., (2.7a) is satisfied.

Towards (2.7b), we first observe that τc < ∞ implies c ∈ FS∞, see Lemma 2.8.
Let now c0 ∈ FS 0 ⊆ FS (A) and ℓ > 0 be given. We need to find an open neigh-
borhood U of c0 in FS 0 such that for all c ∈ U with τc < ℓ we have Vc ⊆ Vc0 .
As FS∞ ⊆ FS is closed we can take FS 0 \ FS∞ if c0 6∈ FS∞. If c0 ∈ FS∞, then
Lemma A.6 provides a suitable ǫ-neighborhood. Thus (2.7b) is satisfied as well. �

Appendix B. Basics about group actions

A (continuous) map f : X → Y of (compactly generated topological) spaces is
called proper if preimages of compact subsets are compact again. A G-space X is
called proper if the map ΘG

X : G × X → X × X, (g, x) 7→ (x, gx) is proper. It is
called smooth if all isotropy group are open. It is called cocompact if the quotient
space X/G is compact.

Lemma B.1. Let G be a locally compact Hausdorff group and let X be a G-space.

(i) The G-space X is proper if and only if for any x ∈ X there is an open
neighborhood U such that the subset {g ∈ G | g · U ∩ U 6= ∅} of G is
relatively compact, i.e., its closure in G is compact;

(ii) The isotropy groups of a proper G-space are all compact. A G-CW -complex
is proper if and only if all its isotropy groups are compact;

(iii) If the G-space X is proper, then for every compact subset K ⊆ X the
subset {g ∈ G | gK ∩K 6= ∅} of G is compact. The converse is true if X
is locally compact;

(iv) Let X be a metric space with isometric proper smooth G-action. Then for
any x ∈ X there exists ǫ > 0 satisfying:
(a) Gx = {g ∈ G | g ·Bǫ(x) ∩Bǫ(x) 6= ∅};
(b) The map

α : G×Gx
Bǫ(x)

∼=
−→ G ·Bǫ(x), (g, y) 7→ gy

is a G-homeomorphism;
(c) We have Gy ⊆ Gx for every y ∈ Bǫ(x).

(v) Let X be a proper G-space. Let A ⊆ X be a closed subspace. Let GA =
{g ∈ G | gA = A}. Then the GA-space A is proper;

(vi) Let H be a (closed) subgroup of G. If the G-space X is proper, then its
restriction to an H-space is proper.

(vii) Let f : X → Y be a proper G-map. If Y is proper, then X is proper;
(viii) Let X be a metric space on which G acts isometrically and properly. Then

X is smooth if and only if each orbit Gx (equipped with the subspace topol-
ogy from X) is discrete;
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(ix) Suppose that X is a locally compact metric space on which G acts iso-
metrically. Then X is proper and smooth if and only if each orbit Gx is
discrete and each isotropy group Gx is compact.

(x) If the G-space X contains a compact subset C with G · C = X, then X is
cocompact.

If the G-space X is locally compact and cocompact, then there is a com-
pact subset C ⊆ X satisfying G · C = X;

(xi) Let f : X → Y be a proper G-map. If Y is locally compact and cocompact,
then X is cocompact.

Proof. (i) See [22, Proposition 3.21 in Chapter I on page 28].

(ii) Obviously the isotropy groups of a proper G-space are all compact. The claim
about G-CW -complexes is proved in [17, Theorem 1.23 on page 18].

(iii) The set {g ∈ G | g · K ∩K 6= ∅} is the image of (ΘG
X)−1(K ×K) under the

projection G ×X → G. Hence it is compact if X is proper. The converse follows
from assertion (i).

(iv) Suppose assertion (iv)a is not true. Then there is an x ∈ X such that for
every ǫ > 0 the isotropy group Gx is not equal to {g ∈ G | g · Bǫ(x) ∩ Bǫ(x) 6=
∅. Hence we can choose a sequence of elements (xn)n≥0 in X and a sequence
of elements (gn)n≥0 in G such that xn and gnxn belong to B1/n(x) and gn /∈ Gx

holds. Because of assertion (i) there is an open neighborhood U such that the subset

{g ∈ G | g · U ∩ U 6= ∅} ofG is compact. By passing to subsequences we can arrange

xn ∈ U for n ≥ 0. Then gn belongs to the compact subset {g ∈ G | g · U ∩ U 6= ∅}
of G. By passing to subsequences, we can arrange that there is an element g ∈ G
with limn→∞ gn = g. Since limn→∞ xn = x and limn→∞ gnxn = x holds and G
acts isometrically, we conclude limn→∞ gnx = x. This implies g ∈ Gx because of
limn→∞ gn = g. Since Gx is open in G and limn→∞ gn = g, we get for almost all
gn that gn = g and hence gn ∈ Gx, a contradiction. This proves assertion (iv)a.

Next we show assertion (iv)b for the ǫ for which assertion (iv)a is true. Let
s : G/Gx → G be a map of sets such that its composition with the projection p : G →
G/Gx the identity on G/Gx. Since G/Gx is discrete, we obtain a homeomorphism

β : G/Gx ×Bǫ(x)
∼=
−→ G×Gx

Bǫ(x), (gGx, y) 7→ (s(gGx), y).

Its inverse is given by (g, y) 7→ (gGx, s(gGx)
−1gy). The composite β ◦ α is the

map G/Gx ×Bǫ(x) → G ·Bǫ(x), (gGx, y) 7→ s(gGx) · y which is a homeomorphism
since G · Bǫ(x) is the disjoint union of open subsets

∐
gGx∈G/Gx

s(gGx) · Bǫ(x) by

assertion (iv)a. Hence assertion (iv)b is true.
Assertion (iv)c follows directly from assertion (iv)a.

(v) Let f : X → Y be a proper map and B ⊆ Y closed. Consider any closed
subspace A ⊆ f−1(B). Then the induced map f |A : A → B is obviously proper.
Now the claim follows from the commutativity of the following diagram

GB ×B
Θ

GB
A

//

��

B ×B

��

G×X
ΘG

X

// X ×X

whose vertical arrows are the obvious inclusions.

(vi) This follows from the fact that the restriction of a proper map to a closed
subspace is again proper.
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(vii) Suppose that Y is proper. The following diagram

G×X
ΘG

X
//

idG ×f

��

X ×X

f×f

��

G× Y
ΘG

Y

// Y × Y

commutes. Since the lower horizontal arrow and the vertical arrows are proper,
the upper arrow is proper, see [17, Lemma 1.16 on page 14], in other words, X is
proper.

(viii) This follows from the fact that for a proper G-space the canonical map
G/Gx → Gx is a homeomorphism for every x ∈ X , see [22, Proposition 3.19 (ii) in
Chapter I on page 28] or [17, Lemma 1.19 (iii) on page 16].

(ix) Suppose that X is proper and smooth. Then each isotropy group is compact
and each G-orbit is discrete by assertions (ii) and (viii).

Suppose that each each orbit Gx is discrete and each isotropy group Gx is com-
pact. By assertion (viii) it suffices to show that the G-action is proper. Consider
x ∈ X . Since Gx is discret and X locally compact, we can choose a compact neigh-
borhood U of x in X satisfying U ∩ Gx = {x}. It suffices to show that the subset
{g ∈ G | gU∩U 6= ∅} of G is relative compact because of assertion (i). We can equip
G with a left invariant proper metric, see [14]. It suffices to show that any sequence
(gn)n∈N of element in G satisfying gn · U ∩ U 6= ∅ has a convergent subsequence.
Choose for each n ≥ 0 elements un and u′

n in U such that gnun = u′
n holds. Since

U is compact, we can arrange after passing to subsequences that limn→∞ un = u
and limn→∞ u′

n = u′ holds for appropriate elements u, u′ ∈ U . Since G acts by
isometries on X , we get limn→∞ gnu = u′. As Gu is a discrete subspace of X , we
can arrange after passing to subsequences that gnu = u′ holds for n ≥ 0. Hence
g−1
0 gnu = u for all n ≥ 0. Since Gu is compact, we can arrange after passing to
subsequences that g−1

0 gn is a convergent sequence in G. This implies that gn is a
convergent sequence in G.

(x) Let p : X → X/G be the projection. If C ⊆ X is a compact subset with
G · C = X , then p(C) = X/G and hence X/G is compact.

Suppose that X is locally compact and X/G is compact. We can find for every

x ∈ X an open neighborhood U(x) such that U(x) is compact. We obtain an open
covering {p(U(x)) | x ∈ X} of X/G. Since X/G is compact, we can find a finite

subset I ⊆ X with
⋃

x∈I p(U(x)) = X/G. Then C =
⋃

x∈I U(x) is a compact
subset of X with G · C = X .

(xi) Since Y is locally compact and cocompact, we can choose by assertion (x) a
compact subset C ⊆ Y with G · C = Y . Since f is proper, D := f−1(C) is a
compact subset of X . Since G ·D = X holds, X/G is compact by assertion (x), in
other words, X is cocompact. This finishes the proof of Lemma B.1. �

Example B.2 (Non-proper action). The action of Z on S1 by rotating through
an irrational angle is free, isometric, and smooth, but not proper. All Z-orbits are
dense and not discrete. The canonical G-map map G/Gx → Gx is continuous and
bijective, but not a homeomorphism.
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