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ON THE ALGEBRAIC K-THEORY OF HECKE ALGEBRAS

BARTELS, A. AND LÜCK, W.

Abstract. Consider a totally disconnected group G, which is covirtually
cyclic, i.e., contains a normal compact open subgroup L such that G/L is
infinite cyclic. We establish a Wang sequence, which computes the algebraic
K-groups of the Hecke algebra of G in terms of the one of L, and show that all
negative K-groups vanish. This confirms the K-theoretic Farrell-Jones Con-
jecture for the Hecke algebra of G in this special case. Our ultimate long term
goal is to prove it for any closed subgroup of any reductive p-adic group. The
results of this paper will play a role in the final proof.

1. Introduction

LetG be a td-group, i.e., a locally compact second countable totally disconnected
topological Hausdorff group. Our ultimate goal is to compute the algebraic K-
groups and in particular the projective class group of the Hecke algebra H(G) of G,
which is defined in terms of locally constant functions with compact support from
G to the real or complex numbers and the convolution product. We want to show
that the canonical map

(1.1) colimK∈SubCop(G) K0(H(K))
∼=
−→ K0(H(G))

is bijective. Here SubCop(G) is the following category. Objects are compact open
subgroups K of G, a morphism f : K → K ′ is a group homomorphism, for which
there exists g ∈ G satisfying f(k) = gkg−1 for all k ∈ K, and we identify two such
group homomorphisms f : K → K ′ and f ′ : K → K ′, if they differ by an inner
automorphism of K ′. In particular the obvious map

(1.2)
⊕

K

K0(H(K)) → K0(H(G))

is surjective, where K runs through the compact open subgroups of G.
Dat [7, Theorem 1.6 and Corollary 4.22] showed following ideas of Bernstein

that the map (1.2) is rationally surjective for a reductive p-adic group G. He used
for the proof the Hattori-Stallings rank and input from the representation theory
of reductive p-adic groups. Dat also asked the question, whether the map (1.2) is
surjective without rationalizing, see the sentence after [8, Proposition 1.10] and the
formulation of the weaker conjecture [8, Conjecture 1.11].

The projective class group K0(H(G)) is interesting for the study of smooth G-
representations, since every finitely generated smooth G-representation has a finite
projective resolution and hence define elements in it, see for instance [5, Theorem 29
on page 97 and Proposition 32 on page 60], [16], [17], [18], [19].

If G is discrete, the family Cop of compact open subgroups reduces to the family
F in of finite subgroups of G and the bijectivity of the map (1.1) reduces to the
bijectivity of the canonical map

(1.3) colimF∈SubFin(G)K0(CF )
∼=
−→ K0(CG),
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which follows from the K-theoretic Farrell-Jones Conjecture for CG.
Our ultimate and long term goal is to the prove the version of the K-theoretic

Farrell-Jones Conjecture for the Hecke algebra of td-groups for any closed subgroup
G of any reductive p-adic group. It predicts the bijectivity of the assembly map

(1.4) HG
n (ECop(G);K∞

H )
∼=
−→ HG

n (G/G;K∞
H ) = Kn(H(G))

for every n ∈ Z. Here the source is a smooth G-homology theory, which digests
smooth G-CW -complexes and satisfies HG

n (G/H ;K∞
H ) = Kn(H(H)) for open sub-

groups H ⊆ G, and the smooth G-CW -complex ECop(G) is a model for the classify-
ing space of the family of compact open subgroups, or, equivalently the classifying
space for smooth proper G-actions in the realm of G-CW -complexes. This map
will be constructed in [3], where a formulation of the K-theoretic Farrell-Jones
Conjecture is given for Hecke categories, which generalize the notion of a Hecke
algebra.

We will not prove the K-theoretic Farrell-Jones Conjecture for Hecke categories
in this paper. At least we present a direct proof of it in the special case that G is
covirtually infinite cyclic, i.e., G contains a normal compact open subgroup L such
that the quotient G/L is the discrete group Z. Then the conjecture boils down to
Theorem 9.1 which says that there is a Wang sequence, infinite to the left,

· · ·
K2(i)
−−−→ K2(H(G))

∂2−→ K1(H(L))
id−K1(φ)
−−−−−−→ K1(H(L))

K1(i)
−−−→ K1(H(G))

∂1−→ K0(H(L))
id−K0(φ)
−−−−−−→ K0(H(L))

K0(i)
−−−→ K0(H(G)) → 0,

where φ : L → L is the automorphism given by conjugation with some preimage of
the generator of the infinite cyclic group G/L under the projection G → G/L and
i : L → G is the inclusion, and that we have

Kn(H(G)) = 0 for n ≤ −1.

So in this paper we can confirm the Farrell-Jones Conjecture for covirtually infi-
nite cyclic td-groups. One may say that this paper plays the same role for the
Farrell-Jones Conjecture for Hecke algebras as the papers by Farrell-Hsiang [9] and
Pimsner-Voiculescu [14] did for the Farrell-Jones Conjecture for discrete groups
and the Baum-Connes Conjecture. To our knowledge this paper presents the first
instance of a version of the Farrell-Jones Conjecture for non-discrete groups.

One application of this paper will be that the bijectivity of (1.4) implies the bi-
jectivity of (1.1). Moreover, Theorem 7.2 and Theorem 10.1 will be key ingredients
in the part of the forthcoming proof of the Farrell-Jones Conjecture, where we will
reduce the family Cvcy of (not necessarily open) covirtually cyclic subgroups to the
family Cop.

We mention that we will look at more complicated Hecke algebras than the stan-
dard ones. We will allow other rings than R or C. Moreover, we take a G-action
on R by ring automorphisms and a normal character, which is an obvious gener-
alization of a central character, into account. In the sequel papers we will replace
the Hecke algebras by the more general notion of a Hecke category, since allowing
more general coefficients will ensure the desirable inheritance to closed subgroups
of the Farrell-Jones Conjecture. This is interesting in the case of reductive p-adic
groups, since important subgroups such as the Borel subgroup are in general not
open.

One ingredient for the main results of this paper is the Bass-Heller-Swan decom-
positions for additive categories and the presentation of criteria for the vanishing of
the Nil-term, see Section 6, and [2, 12]. The second is the analysis of the filtration
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of the Hecke algebra of a compact td-groups in terms of approximate units, see
Section 7.

1.a. Conventions and notations.

• A td-group is a locally compact second countable totally disconnected
topological Hausdorff group;

• A subgroup is always assumed to be closed;
• A group homomorphism has closed image and is an identification onto it;
• We denote by R an associative ring, which is not necessarily commutative
and not necessarily has a unit. If a ring has a unit, it is called a unital
ring. In almost all cases we will require for a unital ring R that Q ⊆ R
holds, i.e., for every integer n ≥ 1 the element n · 1 = 1+ 1+ · · ·+ 1 has a
multiplicative inverse in R;

• In a ring the unit is denoted by 1. In a group the unit is denoted by e;
• For an epimorphism p : S → S′ of sets, a transversal T is a subset T ⊆ S

such that the restriction of p to T yields a bijection p|T : T
∼=
−→ S′. If S is

a group, we always assume that the unit is in T ;
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interactions” (no. 662400) of the second author granted by the European Research
Council, by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – GZ 2047/1, Projekt-ID 390685813,
Hausdorff Center for Mathematics at Bonn, and by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project-ID 427320536 – SFB
1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Math-
ematics Münster: Dynamics–Geometry–Structure.
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2. Hecke algebras

In this section we slightly generalize the notions of a Hecke algebra by imple-
menting a normal character.

2.a. Normal characters. Let R be a (not necessarily commutative) associative
unital ring with Q ⊆ R. Let G be a td-group with a normal (not necessarily open
or central) subgroup N ⊆ G. Put Q = G/N . Then we obtain an extension of

td-groups 1 → N → G
pr
−→ Q → 1.

Consider a group homomorphism ρ : G → aut(R), where aut(R) is the group of
automorphism of the unital ring R. We will assume throughout the paper that the
kernel of ρ is open, in other words, G acts smoothly on R.



4 BARTELS, A. AND LÜCK, W.

We write gr = ρ(g)(r) for g ∈ G and r ∈ R. With this notation we get er = r,
g1 = 1, (g1g2)r = g1(g2r), g(r1r2) = (gr1)(gr2) and g(r1 + r2) = gr1 + gr2 for
g, g1, g2 ∈ G, r, r1, r2 ∈ R, and the units e ∈ G and 1 ∈ R.

A normal character is a locally constant group homomorphism

ω : N → cent(R)×

to the multiplicative group of central units of R satisfying

ω(gng−1) = ω(n)(2.1)

for all n ∈ N and g ∈ G. Note that ker(ω) is an open subgroup of N and a normal
subgroup of G. We will need the following compatibility condition between the
normal character and the G-action ρ on R, namely for n ∈ N , g ∈ G, and r ∈ R

gω(n) = ω(n);(2.2)

n · r = r.(2.3)

2.b. The construction of the Hecke algebra. Let µ be a Q-valued Haar mea-
sure on Q, i.e., a Haar measure µ on G such that for any compact open subgroup
K ⊆ Q we have µ(K) ∈ Q>0. Given any Haar measure µ on G, we can normalize
it to a Q-valued Haar measure by choosing a compact open subgroup L0 ⊆ G and
defining µ′ = 1

µ(L0)
· µ.

An element s in the Hecke algebra H(G;R, ρ, ω)µ is given by a map s : G → R
with the following properties

• The map s : G → R is locally constant;
• The image of its support supp(s) := {g ∈ G | s(g) 6= 0} ⊆ G under
pr: G → Q is a compact subset of Q;

• For n ∈ N and g ∈ G we have

s(ng) = ω(n) · s(g);(2.4)

s(gn) = s(g) · ω(n).(2.5)

Definition 2.6. Let Pρ,ω the subset of compact open subgroups K ⊆ G satisfying

kr = r for k ∈ K, r ∈ R.(2.7)

ω(n) = 1 for n ∈ N ∩K;(2.8)

We abbreviate P = Pρ,ω if ρ and ω are clear from the context.
We call an element K ∈ P admissible for s : G → R, if for all g ∈ G and k ∈ K

we have

s(kg) = s(g);(2.9)

s(gk) = s(g).(2.10)

Note that the existence of an admissible element K ∈ P is equivalent to the
condition that s is locally constant, since we assume that s has compact support.
Moreover, for K ∈ P , which is admissible for s, every open subgroup K ′ ⊆ K is
also admissible.

Remark 2.11 (Redundancy). Note that condition (2.5) follows from conditions (2.1)
and (2.4) by the following calculation

s(gn) = s(gng−1g)
(2.4)
= ω(gng−1) · s(g)

(2.1)
= ω(n) · s(g)

ω(n)∈cent(R)
= s(g) · ω(n).

Analogously condition (2.4) follows from conditions (2.1) and (2.5).

The sum of two elements s, s′ in H(G;R, ρ, ω)µ is defined by

(s+ s′)(g) := s(g) + s′(g) for g ∈ G.(2.12)
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Consider K ∈ P which is admissible for s and admissible for s′, and a transversal
T for the projection p : G → G/NK, where NK is the subgroup of G given by
{nk | n ∈ N, k ∈ K}. Define the product s · s′ by

(s · s′)(g) := µ(pr(K)) ·
∑

g′∈T

s(gg′) · gg′s′(g′−1).(2.13)

Note that K may depend on s, but not on g, whereas T can depend on both s
and g. The independence of the transversal follows from the following computation
for g ∈ G, g′ ∈ G′, n ∈ N and k ∈ K

s(g(g′nk)) · g(g′nk)s′((g′nk)−1) = s((gg′n)k) · (gg′n)ks′(k−1n−1g′−1)

(2.9), (2.10)
= s(gg′n) · (gg′n)ks′(n−1g′−1)

(2.7)
= s(gg′n) · gg′ns′(n−1g′−1)

(2.4), (2.5)
= s(gg′)·ω(n)·gg′n(ω(n−1)·s′(g′−1)) = s(gg′)·ω(n)·gg′nω(n−1)·gg′ns′(g′−1)

(2.2), (2.3)
= s(gg′) · ω(n) · ω(n−1) · gg′s′(g′−1) = s(gg′) · ω(n · n−1) · gg′s′(g′−1)

= s(gg′) · ω(e) · gg′s′(g′−1) = s(gg′) · gg′s′(g′−1).

We leave the elementary proof to the reader that the definition of the prod-
uct (2.13) is independent of the choice of K and that we do get the structure of
a (non-unital) ring on H(G;R, ρ, ω)µ. A more general setting including all proofs
will be presented in details in [3]. Moreover, one easily checks

Lemma 2.14. Consider two elements s, s′ ∈ H(G;R, ρ, ω)µ and compact open
subgroups K,K ′ of G. Suppose that K admissible for s and K ′ is admissible for s′.

Then K ∩K ′ is admissible for the product s′ · s.

2.c. Functoriality in Q. Let G, N , Q, R, ρ, ω, and µ be as in Subsection 2.a. In
particular we can consider the Hecke algebra H(G;R, ρ, ω)µ see Subsection 2.b.

Consider a (not necessarily injective or surjective) open group homomorphism
φ : G′ → G of td-groups. Let N ′ ⊆ G′ be a normal subgroup satisfying

(2.15) φ(N ′) = N.

Denote by pr′ : G′ → Q′ := G′/N ′ the projection. Let φ : Q′ → Q be the open group
homomorphism induced by φ. Define a group homomorphism ρ′ : G′ → aut(R) and
a normal character ω′ : N ′ → cent(R)× by

ρ′ = ρ ◦ φ;(2.16)

ω′(n′) = ω(φ(n′)) for n′ ∈ N ′.(2.17)

Choose a Q-valued Haar measure on µ′ on Q′. Then we can consider the Hecke
algebra H(G′;R, ρ′, ω′)µ′ . Next we want to construct a homomorphism of rings

(2.18) φ∗ : H(G′;R, ρ′, ω′)µ′ → H(G;R, ρ, ω)µ.

Consider an element s′ : G′ → R in H(G′;R, ρ′, ω′)µ′ . Choose K ′ ∈ Pρ′,ω′ , which is
admissible for s′. Then φ(K ′) ∈ Pρ,ω . Fix g ∈ G. Consider g′ ∈ φ−1(gφ(N ′K ′)).
Then φ(g′)−1g belongs to φ(N ′K ′). Choose n′ ∈ N ′ and k′ ∈ K ′ with φ(g′n′k′) = g.
Put

s̃′(g′, g) := s′(g′) · ω(φ(n′)) ∈ R.(2.19)

One easily checks that this definition independent of the choice of n′ ∈ N ′ and

k′ ∈ K ′. Obviously we have s̃′(g′, φ(g′)) = s′(g′) for g′ ∈ G′. Choose a transversal
T ′ of the projection G′ → G′/N ′K ′, which is allowed to depend on s′. Put T ′(g) =
T ′ ∩ φ−1(gφ(N ′K ′)). Then we define

φ∗(s
′)(g) =

µ′(pr′(K ′))

µ(pr(φ(K ′)))
·

∑

g′∈T ′(g)

s̃′(g′, g).(2.20)
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This is a well-defined element in H(G;R, ρ, ω)µ, which is independent of the choice
of T and K ′. One easily checks

Lemma 2.21.

(i) We have supp(φ∗(s
′)) ⊆ φ(supp(s′));

(ii) If K ′ ∈ P ′
ρ′,ω′ is admissible for s′, then φ(K ′) admissible for φ∗(s

′);

(iii) Suppose that φ is injective. Then we get

φ∗(s
′)(g) =

{
µ′(pr′(K′))
µ(pr(φ(K′))) · s(g

′) if φ(g′) = g for some g′ ∈ G′

0 g′ /∈ im(φ).

and

suppG(φ∗(s
′)) = φ(suppG′(s′));

(iv) The map φ∗ : H(G′;R, ρ′, ω′)µ′ → H(G;R, ρ, ω)µ is a homomorphism of
(non-unital) rings.

2.d. Approximate units.

Definition 2.22 (Rings with approximate units). An approximate unit for a ring
R is a subset {ei | i ∈ I} of elements ei ∈ R indexed by some directed set I such
that ei · ej = ei = ej · ei holds for i ≤ j and for every element r ∈ R there exists an
index i ∈ I with ei · r = r = r · ei.

The ring R has an approximate unit, if and only if there is a directed system
of subrings {Ri | i ∈ I} indexed by inclusion such that each Ri is unital and
R =

⋃
i∈I Ri. Obviously a unital ring has an approximate unit.

Note that the ring H(G;R, ρ, ω)µ has a unit, if and only if G is discrete. If G
is not discrete, H(G;R, ρ, ω)µ has at least an approximate unit by the following
construction.

Lemma 2.14 implies for K ∈ P that the subset

(2.23) H(G//K;R, ρ, ω)µ ⊆ H(G;R, ρ, ω)µ

consisting of those elements, for which K is admissible, is closed under addition and
multiplication and hence is a subring. Define an element 1K in H(G//K;R, ρ, ω)µ
by

(2.24) 1K(g) =

{
1

µ(pr(K)) · ω(n) if g ∈ NK, g = nk for n ∈ N, k ∈ K;

0 otherwise.

Lemma 2.25. The element 1K is a unit in H(G//K;R, ρ, ω)µ. Moreover

H(G//K;R, ρ, ω)µ ⊆ H(G//K ′;R, ρ, ω)µ if K ′ ⊆ K;

H(G;R, ρ, ω)µ =
⋃

K

H(G//K;R, ρ, ω)µ,

where K and K ′ run through the elements of P .

2.e. Discarding µ. In the sequel we omit the subscript µ in the notation of the
Hecke algebra, since for two Q-valued Haar measures µ and µ′ on G/N there is
precisely one rational number r satisfying r > 0 and µ′ = r · µ, and the map

H(G;R, ρ, ω)µ′

∼=
−→ H(G;R, ρ, ω)µ, s 7→ r · s.

is an isomorphism of rings.
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3. Z-categories, additive categories and idempotent completions

A Z-category is a category A such that for every two objects A and A′ in A the
set of morphisms morA(A,A

′) has the structure of a Z-module and composition is
Z-bilinear. If G is a group, a G-Z-category is a Z-category with a left G-action by
automorphisms of Z-categories. Note that we do not require that A has identity
morphisms. Given a ring R, we denote by R the Z-category with precisely one
object, whose Z-module of endomorphisms is given by R with its additive structure
and composition is given by the multiplication in R. Obviously R is unital, if and
only if R is unital.

An additive category is a Z-category with finite direct sums. Given a ring R,
the category R-MODfgf of finitely generated free R-modules carries an obvious
structure of an additive category. Note that we do not require that A has identity
morphisms. If it does, we call it unital.

Given a Z-category A, let A⊕ be the associated additive category, whose objects
are finite tuples of objects in A and whose morphisms are given by matrices of
morphisms in A (of the right size) and the direct sum is given by concatenation
of tuples and the block sum of matrices, see for instance [12, Section 1.3]. If A is
unital, A⊕ is unital.

Let R be a unital ring. Then the obvious inclusion of unital additive categories

(3.1) R⊕
≃
−→ R-MODfgf

is an equivalence of unital additive categories.
Given an additive categoryA, its idempotent completion Idem(A) is defined to be

the following additive category. Objects are morphisms p : A → A in A satisfying
p ◦ p = p. A morphism f from p1 : A1 → A1 to p2 : A2 → A2 is a morphism
f : A1 → A2 in A satisfying p2 ◦ f ◦ p1 = f . Note that Idem(A) is always unital,
regardless whether A is unital or not. The identity of an object (A, p) is given by
the morphism p : (A, p) → (A, p).

If A is unital, then there is a obvious embedding

η(A) : A → Idem(A)

sending an object A to idA : A → A and a morphism f : A → B to the morphism
given by f again. A unital additive category A is called idempotent complete, if
η(A) : A → Idem(A) is an equivalence of unital additive categories, or, equivalently,
if for every idempotent p : A → A in A there are objects B and C and an isomor-

phism f : A
∼=
−→ B ⊕ C in A such that f ◦ p ◦ f−1 : B ⊕ C → B ⊕ C is given by(

idB 0
0 0

)
. The idempotent completion Idem(A) of a unital additive category A

is idempotent complete.
Let R be unital ring. Let R-MODfgp be the unital additive category of finitely

generated projective R-modules. We obtain an equivalence of unital additive cat-

egories Idem(R-MODfgf)
≃
−→ R-MODfgp by sending an object (F, p) to im(p). It

and the functor of (3.1) induce an equivalence of unital additive categories

(3.2) θR : Idem
(
R⊕

) ≃
−→ R-MODfgp.

Let A be an additive category. Let Φ: A → A be an automorphism of additive
categories. Define the the additive category AΦ[t, t

−1] called Φ-twisted finite Lau-
rent category as follows. It has the same objects as A. Given two objects A and
B, a morphism f : A → B in AΦ[t, t

−1] is a formal sum f =
∑

i∈Z
fi · t

i, where

fi : Φ
i(A) → B is a morphism in A from Φi(A) to B and only finitely many of the

morphisms fi are non-trivial. If g =
∑

j∈Z
gj · t

j is a morphism in AΦ[t, t
−1] from
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B to C, we define the composite g ◦ f : A → C by

g ◦ f :=
∑

k∈Z

( ∑

i,j∈Z,
i+j=k

gj ◦ Φ
j(fi)

)
· tk.

If A is unital, then AΦ[t, t
−1] is unital again.

Let R be a (not necessarily unital) ring with an automorphism φ : R
∼=
−→ R of

rings. Let Rφ[t, t
−1] be the ring of φ-twisted finite Laurent series with coefficients

in R. We obtain from φ an automorphism Φ: R
∼=
−→ R of Z-categories. There is an

obvious isomorphism of Z-categories

(3.3) RΦ[t, t
−1]

∼=
−→ Rφ[t, t

−1].

If R is unital, then we obtain equivalences of unital additive categories

(R⊕)Φ[t, t
−1]

≃
−→ Rφ[t, t

−1]-MODfgf ;

Idem
(
(R⊕)Φ[t, t

−1]
) ≃

−→ Rφ[t, t
−1]-MODfgp.(3.4)

4. The algebraic K-theory of Z-categories

Let A be a unital additive category. A construction of the non-connective K-
theory spectrum K∞(A) of a unital additive category can be found for instance
in [10] or [13]. We get from the canonical embedding η(A) : A → Idem(A) a weak
homotopy equivalenceK∞(η(A)) : K∞(A) → K∞(Idem(A)) on the non-connective
K-theory, see for instance [2, Lemma 3.3 (ii)].

Definition 4.1 (Algebraic K-theory of (not necessarily unital) Z-categories). We
will define the algebraic K-theory spectrum K∞(A) of the (not necessarily unital)
Z-category A to be the non-connective algebraic K-theory spectrum of the unital
additive category Idem(A⊕). Define for n ∈ Z

Kn(A) := πn(K
∞(A)).

Note that Definition 4.1 extends the definition of the non-connective K-theory
spectrum of unital additive categories to not necessarily unital Z-categories.

A functor F : A → A′ of (not necessarily unital) Z-categories induces a map of
spectra

(4.2) K∞(F ) : K∞(A) → K∞(A′).

If the (not necessarily unital) Z-category A is the directed union of (not neces-
sarily unital) Z-subcategories Ai, then the canonical map

(4.3) hocolimi∈I K
∞(Ai)

≃
−→ K∞(A)

is a weak homotopy equivalence and for every n ∈ Z the canonical map

(4.4) colimi∈I Kn(Ai)
∼=
−→ Kn(A)

is a bijection. We conclude (4.3) and (4.4) for instance from [10, Corollary 7.2].
If R is an associative ring (not necessarily with a unit), we define the non-

connective K-theory spectrum K∞(R) to be K∞(R) and Kn(R) := πn(K
∞(R))

for n ∈ Z. If R has an approximate unit, then our definition of Kn(R) agrees with
the usual definition of Kn(R) for a ring without unit by the kernel of the map
Kn(R+) → Kn(Z), where R+ is the ring with unit associated to R. Because of
Lemma 2.25 this applies to the Hecke algebra H(G;R, ρ, ω).
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5. Covirtually Z groups

Let G, N , Q, R, ρ, P , ω, and µ as in Subsection 2.a. In particular we can
consider the Hecke algebra H(G;R, ρ, ω), see Subsection 2.b. Assume furthermore,
that we have a normal open subgroup L ⊆ G satisfying:

• G/L is isomorphic to Z;
• N ⊆ L;
• M := L/N is compact;

Note that we get exact sequences of td-groups 1 → L → G → Z → 1 and
1 → M → Q → Z → 1, where Z is considered as discrete group and M is compact.

Let g0 ∈ G be any element which represents in G/L a generator. Let φ : L → L
be the automorphism of L given by conjugation with g0. Denote by L ⋊cg0

Z the
td-group given by the semi-direct product of L with the discrete group Z with
respect to cg0 . Then we get an isomorphism of td-groups

α : L⋊cg0
Z

∼=
−→ G; ltn 7→ lgn0 ,

if t ∈ Z is a fixed generator. It induces also an isomorphism β : M ⋊cq0
Z

∼=
−→ Q , if

we put q0 = pr(g0). In the sequel we identify G = L ⋊cg0N
Z and g0 with eLt for

eL ∈ L the unit and Q = M ⋊cg0
Z and g0N with eQt for eQ ∈ Q the unit.

Since L ⊆ G is open, the Q-valued measure µ on G defines a Q-valued measure
on L by restriction, which we will denote by µ again. Note that we can consider
the Hecke algebra H(L;R, ρ|L, ω).

Next we check that the automorphism cg0 : L → L induces an automorphism of
rings

(5.1) φ : H(L;R, ρ|L, ω)
∼=
−→ H(L;R, ρ|L, ω)

by sending s ∈ H(L;R, ρ|L, ω) given by a function s : L → R to the element given
by the function φ(s) : L → R, l 7→ ts(t−1lt). Note that this is not just (2.18)
applied to cg0 , condition (2.16) cg0 is not satisfied for cg0 . So we have to check that
φ(s) defines an element in H(L;R, ρ|L, ω).

Obviously the image of the support of φ(s) under L → L/N is compact, since
this is true for supp(s) and supp(φ(s)) = t supp(s)t−1.

Suppose that K ∈ P is admissible for s. Then tKt−1 is admissible for φ(s) by
the following calculation for l ∈ L and k′ ∈ tKt−1, if we write k′ = tkt−1 for k ∈ K

φ(s)(k′l) = ts(t−1k′lt) = ts(t−1tkt−1lt) = ts(kt−1lt)
(2.9)
= ts(t−1lt) = φ(s)(l),

and

φ(s)(lk′) = ts(t−1lk′t) = ts(t−1ltkt−1t) = ts(t−1ltk)
(2.10)
= ts(t−1lt) = φ(s)(l).

The following calculation shows that condition (2.4) is satisfied.

φ(s)(nl) = ts(t−1nlt) = ts(t−1ntt−1lt)
(2.4)
= t

(
ω(t−1nt) · s(t−1lt)

)

= tω(t−1nt) · ts(t−1lt)
(2.1), (2.2)

= ω(n) · ts(t−1lt) = ω(n) · φ(s)(l).

Recall that the condition (2.5) holds automatically, see Remark 2.11. Hence φ is
well-defined.

It is obviously compatible with the addition. It is compatible with the multi-
plication by the following calculation for two elements s, s′ ∈ H(L;R,P |L, ω) and
l ∈ L, where K ∈ P is admissible for both s and s′, and T is a transversal for the
projection L → L/NK, and pr : L → M = L/N is the projection. We will use the
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fact that tT t−1 is a transversal for the projection L → L/NtKt−1 and tKt−1 is
admissible for φ(s) and φ(s′). Moreover, we have

(5.2) [M : pr(K)] = [tMt−1 : t pr(K)t−1] = [M : pr(tKt−1)].

We compute

φ(s · s′)(l) = t(s · s′)(t−1lt)

(2.13)
= t



µ(pr(K)) ·
∑

g′∈T

s(t−1ltg′) · t−1ltg′s′(g′−1)





= µ(pr(K)) ·
∑

g′∈T

ts(t−1ltg′) · ltg′s′(g′−1)

=
µ(M)

[M : pr(K)]
·
∑

g′∈T

ts(t−1ltg′t−1t) · ltg′t−1ts′(t−1tg′−1t−1t)

(5.2)
=

µ(M)

[M : pr(tKt−1)]
·

∑

g′′∈tT t−1

ts(t−1lg′′t) · lg′′ts′(t−1g′′−1t)

= µ(pr(tKt−1)) ·
∑

g′′∈tT t−1

φ(s)(lg′′) · lg′′φ(s′)(g′′−1)

(2.13)
= (φ(s) · φ(s′))(l).

Lemma 5.3. There is a natural isomorphism of (non-unital) rings

Ξ: H(L;R, ρ|L, ω)φ[t, t
−1]

∼=
−→ H(G;R, ρ, ω).

Proof. Consider an element s ∈ H(L;R, ρ|L, ω) and an element n ∈ Z. Then Ξ(stn)
is defined to be the element in H(G;R, ρ, ω) given by

(5.4) G → R, (ltm) 7→

{
s(l) if m = n;

0 otherwise.

Obviously the image of the support of Ξ(stn) under pr : G → Q is compact, as it
is a closed subset of tnM and M ⊆ Q is compact. Suppose that the compact open
subgroup K ⊆ L is admissible for s. Then K ∩ t−nKtn ⊆ L ⊆ G is admissible for
Ξ(stn) by the following calculation for l ∈ L and k ∈ K ∩ t−nKtn

Ξ(stn)(kltn)
(5.4)
= s(kl)

(2.9)
= s(l)

(5.4)
= Ξ(stn)(ltn),

and

Ξ(stn)(ltnk) = Ξ(stn)(ltnkt−ntn)
(5.4)
= s(ltnkt−n)

(2.10)
= s(l)

(5.4)
= Ξ(stn)(ltn)

and the observation that we have Ξ(stn)(ltmk) = Ξ(stn)(kltm) = Ξ(stn)(ltm) = 0
for m ∈ Z with m 6= n. Next we verify condition (2.4). We get for z ∈ N and
m ∈ Z with m 6= n that Ξ(stn)(zltm) = 0 = Ξ(stn)(nltm) and

Ξ(stn)(zltn)
(5.4)
= s(zl)

(2.4)
= ω(z) · s(l)

(5.4)
= ω(z) · Ξ(stn)(ltn)

hold. Recall that the condition (2.5) holds automatically, see Remark 2.11. Thus
we have shown that Ξ(stn) is a well-defined element in H(G;R, ρ, ω).

Define the image under Ξ of an arbitrary element in H(L;R, ρ|L, ω)φ[t, t
−1] given

by a finite sum
∑

n∈Z
snt

n to be the element
∑

n∈Z
Ξ(snt

n) in H(G;R, ρ, ω). Ob-
viously Ξ is compatible with the addition. In order to show that Ξ is compatible
with the multiplication, it suffices to show for s, s′ ∈ H(L;R, ρ|L, ω), l ∈ L, and
m′, n, n′ ∈ Z (

Ξ(stn) · Ξ(s′tn
′

)
)
(ltm) = Ξ(stn · s′tn

′

)(ltm).
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Fix a compact open subgroup K ⊆ G such that K is admissible for both Ξ(stn)

and Ξ(s′tn
′

) and tnKt−n is admissible for both s and φn(s). Consider a transversal

T ′ for the projection L → L/NK. Then T = {tm
′

l′ | m′ ∈ Z, l′ ∈ T ′} is a transversal

for the projection G → G/NK and the map Z×T ′
∼=
−→ T sending (m′, l′) to tm

′

l′ is
a bijection. Moreover, tnT ′t−n is a transversal for the projection L → L/NtnKt−n.
We have

(5.5) µ(pr(tnKt−n)) = µ(tn pr(K)t−n)

=
µ(M)

[M : tn pr(K)t−n]

(5.2)
=

µ(M)

[M : pr(K)]
= µ(pr(K)).

We compute
(
Ξ(stn) · Ξ(s′tn

′

)
)
(ltm)

(2.13)
= µ(pr(K)) ·

∑

g′∈T

Ξ(stn)(ltmg′) · ltmg′Ξ(s′tn
′

)(g′−1)

= µ(pr(K)) ·
∑

l′∈T ′

∑

m′∈Z

Ξ(stn)(ltmtm
′

l′) · ltmtm
′

l′Ξ(s′tn
′

)((tm
′

l′)−1)

= µ(pr(K)) ·
∑

l′∈T ′

∑

m′∈Z

Ξ(stn)(ltm+m′

l′t−m−m′

tm+m′

) · ltm+m′

l′Ξ(s′tn
′

)(l′−1t−m′

)

(5.4)
= µ(pr(K)) ·

∑

l′∈T ′

∑

m′∈Z

m+m′=n,−m′=n′

s(ltm+m′

l′t−m−m′

) · ltm+m′

l′s′(l′−1)

=

{
µ(pr(K)) ·

∑
l′∈T ′ s(ltnl′t−n) · ltnl′s′(l′−1) m = n+ n′

0 m 6= n+ n′

=

{
µ(pr(K)) ·

∑
l′∈T ′ s(ltnl′t−n) · ltnl′t−ntns′(t−ntnl′−1t−ntn) m = n+ n′

0 m 6= n+ n′

=

{
µ(pr(K)) ·

∑
l′∈T ′ s(ltnl′t−n) · ltnl′t−nφn(s′)(tnl′−1t−n) m = n+ n′

0 m 6= n+ n′

(5.5)
=

{
µ(tnKt−n) ·

∑
l′′∈tnT ′t−n s(ll′′) · ll′′φn(s′)(l′′−1) m = n+ n′

0 m 6= n+ n′

(2.13)
=

{
(s · φn(s′))(l) m = n+ n′

0 m 6= n+ n′

(5.4)
= Ξ(s · φn(s′) · tn+n′

)(ltm)

= Ξ(stn · s′tn
′

)(ltm).

Obviously Ξ is injective. It remains to show that Ξ is surjective. Any element
in H(G;R, ρ, ω) can be written as a sum of elements s′ for which the support is
contained in Ltn for some n ∈ Z. Hence it suffices to show that such s′ is in the
image. Define s : L → R by s(l) = s′(ltn). Choose K ∈ P such that both K and
t−nKtn are admissible for s′. Obviously K ⊆ L and t−nKtn ⊆ L. We have for

l ∈ L and k ∈ K the equality s′(kltn)
(2.9)
= s′(ltn), which implies s(kl) = s(l). We

also have s′(lktn) = s′(ltnt−nktn)
(2.10)
= s′(ltn) which implies s(lk) = s(l). Hence

K is admissible for s. Condition (2.4) follows from the calculation for z ∈ N .

s(zl) = s′(zltn)
(2.4)
= ω(z) · s′(ltn) = ω(z) · s(l).
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Recall that the condition (2.5) holds automatically, see Remark 2.11. We con-
clude that s defines an element in H(L;R, ρ|L, ω) with Ξ(stn) = s′. This finishes
the proof of Lemma 5.3. �

Lemma 5.6. Let A be a (not necessarily unital) additive category, which is the

directed union A =
⋃

i∈I Ai of unital additive categories. Let Φ: A
∼=
−→ A be an

automorphism of (non-unital) additive categories.
There is an equivalence of unital additive categories

F : Idem
(
Idem(A)Idem(Φ)[t, t

−1]
) ≃
−→ Idem

(
AΦ[t, t

−1]
)
.

Proof. Recall that an object in Idem(A) is given by a pair (A, p), where A is
an object in A and p : A → A is a morphism in A with p ◦ p = p. Moreover, a
morphism f : (A, p) → (A′, p′) in Idem(A)Idem(Φ)[t, t

−1] is given by a finite sum f =∑
j∈Z

fj · t
j , where fj : Idem(Φ)j(A, p) := (Φj(A),Φj(p)) → (A′, p′) is a morphism

in Idem(A). Hence each fj is given by a morphism fj : Φ
j(A) → A′ satisfying

fj = p′ ◦ fj ◦ Φj(p). We conclude that the morphism f : (A, p) → (A′, p′) in
Idem(A)Idem(Φ)[t, t

−1] is the same as a morphism f : A → A′ in AΦ[t, t
−1] satisfying

(p′ · t0) ◦ f ◦ (p · t0) = f , since we get in AΦ[t, t
−1]

(p′ · t0) ◦ f ◦ (p · t0) =
∑

j∈Z

(p′ · t0) ◦ fj · t
j ◦ (p · t0) =

∑

j∈Z

(
p′ ◦ fj · Φ

j(p)
)
· tj .

Now an object in Idem
(
Idem(A)Idem(Φ)[t, t

−1]
)
is given by

(
(A, p), q

)
, where A is

an object in A, p : A → A is a morphism in A with p◦p = p, and q : (A, p) → (A, p)
is a morphism in Idem(A)Idem(Φ)[t, t

−1] satisfying q ◦ q = q. The morphism q is the

same as a morphism q : A → A in AΦ[t, t
−1] satisfying (p · t0) ◦ q ◦ (p · t0) = q and

q ◦ q = q. Hence we can define F on objects by

F ((A, p), q) = (A, q).

Consider two objects ((A, p), q) and ((A′, p′), q′). A morphism f : ((A, p), q) →
((A′, p′), q′) in Idem

(
Idem(A)Idem(Φ)[t, t

−1]
)
is the same as a morphism f : (A, p) →

(A′, p′) in Idem(A)Idem(Φ)[t, t
−1] satisfying q′ ◦ f ◦ q = f and therefore the same

as a morphism f : A → A′ in AΦ[t, t
−1] satisfying (p′ · t0) ◦ f ◦ (p · t0) = f and

q′ ◦ f ◦ q = f .
Hence we can define F on morphisms by sending the morphism f :

(
(A, p), q

)
→(

(A′, p′), q′
)
in Idem

(
Idem(A)Idem(Φ)[t, t

−1]
)
to the morphism (A, q) → (A′, q′) in

Idem
(
AΦ[t, t

−1]
)
given by the morphism f : A → A′ in AΦ[t, t

−1]. One easily checks
that F is compatible with composition and sends identity morphisms to identity
morphisms.

Next we show that the map induced by F

morIdem(Idem(A)Idem(Φ)[t,t−1])

(
((A, p), q), ((A′, p′), q′)

)

→ morIdem(AΦ[t,t−1])

(
(A, q), (A′, q′)

)

is bijective. Obviously it is injective. In order to show surjectivity, we have to show
for a morphism f : (A, q) → (A′, q′) in Idem(A)Idem(Φ)[t, t

−1] satisfying q′ ◦f ◦q = f

that (p′ · t0) ◦ f ◦ (p · t0) = f holds. This follows from the following computation
using (p · t0)◦ q ◦ (p · t0) = q, q ◦ q = q, p◦p = p, (p′ · t0)◦ q′ ◦ (p′ · t0) = q′, q′ ◦ q′ = q′,
and p′ ◦ p′ = p′,

(p′ · t0) ◦ f ◦ (p · t0) = (p′ · t0) ◦ q′ ◦ f ◦ q ◦ (p · t0)

= (p′ · t0) ◦ (p′ · t0) ◦ q′ ◦ (p′ · t0) ◦ f ◦ (p · t0) ◦ q ◦ (p · t0) ◦ (p · t0)

= (p′ · t0) ◦ q′ ◦ (p′ · t0) ◦ f ◦ (p · t0) ◦ q ◦ (p · t0) = q′ ◦ f ◦ q = f.
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Finally we show that F is surjective on objects. Consider any object (A, q) in
Idem

(
AΦ[t, t

−1]
)
. In order to show that (A, q) is in the image of F , we have

to construct a morphism p : A → A in A such that p ◦ p = p holds in A and
(p · t0) ◦ q ◦ (p · t0) = q holds in AΦ[t, t

−1].
We can write q as a finite sum q =

∑
j∈Z

qj · t
j for morphism qj : Φ

j(A) → A

in A. Since A is the directed union
⋃

i∈I Ai of the unital subcategories Ai, we can
find an index i0 ∈ I such that for each j ∈ Z with qj 6= 0 and hence for all j ∈ J the
morphisms qj and Φ−j(qj) belong to Ai0 . Let p ∈ Ai0 be the identity morphism of
the object A in Ai0 . Then we get p ◦ p = p, p ◦ qj = qj , and Φ−j(qj) ◦ p = Φ−j(qj)
in A for all j ∈ Z. Now we compute

(p · t0) ◦ q ◦ (p · t0) = (p · t0) ◦




∑

j∈Z

qj · t
j



 ◦ (p · t0)

=
∑

j∈Z

(p · t0) ◦ (qj · t
j) ◦ (pt0) =

∑

j∈Z

(p ◦ qj · Φ
j(p)) · tj =

∑

j∈Z

(qj · Φ
j(p)) · tj

=
∑

j∈Z

Φj(Φ−j(qj) · p) · t
j =

∑

j∈Z

Φj(Φ−j(qj)) · t
j =

∑

j∈Z

qj · t
j = q.

This finishes the proof of Lemma 5.6 �

The next lemma allows to reduced the computation of the algebraic K-theory
of the non-unital ring H(G;R, ρ, ω) to the calculation of the algebraic K-theory
of a unital additive category given by the twisted finite Laurent category of an
automorphism of a unital additive category. The main advantage will be that for
such a category Bass-Heller-Swan decompositions will be available.

Lemma 5.7. There is a weak equivalence

K∞
(
Idem(H(L;R, ρ|L, ω)⊕)Idem(φ

⊕
)[t, t

−1]
) ≃
−→ K∞

(
H(G;R, ρ, ω)

)
.

Proof. Recall that for a unital additive category B the obvious map K∞(B) →
K∞(Idem(B)) is a weak homotopy equivalence. We can apply Lemma 5.6 to A =
H(L;R, ρ|L, ω)

⊕
and the automorphism φ

⊕
because of Lemma 2.25. Hence we

obtain a weak equivalence

K∞
(
Idem(H(L;R, ρ|L, ω)

⊕
)Idem(φ

⊕
)[t, t

−1]
)

≃
−→ K∞

(
Idem

(
(H(L;R, ρ|L, ω)⊕)φ⊕

[t, t−1]
))
.

The (non-unital) additive category (H(L;R, ρ|L, ω)⊕)φ⊕
[t, t−1] is isomorphic to the

(non-unital) additive category
(
H(L;R, ρ|L, ω)φ[t, t

−1]
)
⊕

by (3.3), and hence by

Lemma 5.3 to the (non-unital) additive category H(G;R, ρ, ω)
⊕
. Hence we obtain

a weak homotopy equivalence

K∞
(
Idem

(
(H(L;R, ρ|L, ω)⊕)φ⊕

[t, t−1]
)) ≃

−→ K∞
(
Idem

(
H(G;R, ρ, ω)

⊕

))
.

�

6. A review of the twisted Bass-Heller-Swan decomposition for

unital additive categories

In this section additive category means always a small unital additive category
and functors are assumed to respect identity morphisms. The same is true for rings.

The following definitions are taken from [2, Definition 6.1].

Definition 6.1 (Regularity properties of rings). Let l be a natural number.
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(i) We call R Noetherian, if any R-submodule of a finitely generated R-module
is again finitely generated;

(ii) We call R regular coherent, if every finitely presented R-module M is of
type FP;

(iii) We call R l-uniformly regular coherent, if every finitely presentedR-module
M admits an l-dimensional finite projective resolution, i.e., there exist an
exact sequence 0 → Pl → Pl−1 → · · · → P0 → M → 0 such that each Pi

is finitely generated projective;
(iv) We call R regular, if it is Noetherian and regular coherent;
(v) We call R l-uniformly regular, if it is Noetherian and l-uniformly regular

coherent.

These notions are generalized to additive categories in [2, Section 6] in such a
way that they reduce in the special case A = R to the ones appearing in Defini-
tion 6.1. Therefore the precise definitions for additive categories are not needed to
comprehend the material of this paper.

The following result follows from [2, Theorem 7.8 and Theorem 10.1].

Theorem 6.2 (The non-connective K-theory of additive categories). Let A be an

additive category. Suppose that A is regular. Consider any automorphism Φ: A
∼=
−→

A of additive categories.
Then we get a weak homotopy equivalence of non-connective spectra

a∞ : TK∞(Φ−1)
≃
−→ K∞(AΦ[t, t

−1]),

where TK∞(Φ−1) is the mapping torus of the map of spectra K∞(Φ): K∞(A) →
K∞(A) induced by Φ.

7. Hecke algebras over compact td-groups and crossed product rings

Let G, N , Q := G/N , pr : G → Q, R, P , ρ, ω, and µ be as in Subsection 2.a
and denote by H(G;R, ρ, ω) the Hecke algebra, which we have introduced in Sub-
section 2.b. Our main assumption in this section will be that Q is compact.

Definition 7.1. We call a subgroup N ⊆ G locally central, if the centralizer CGN
of N in G is an open subgroup.

The main result of this section is

Theorem 7.2. Suppose that Q is compact and N is locally central. Let l be a
natural number. Let R be a unital ring with Q ⊆ R such that R is l-uniformly
regular or regular respectively.

Then the additive category Idem
(
H(G;R, ρ, ω)[Zm]

⊕

)
is (l+2m)-uniformly reg-

ular or regular respectively for all m ≥ 0.

For the purpose of this paper we need Theorem 7.2 only for the property regular,
but for later applications it will be crucial to consider the property l-uniformly
regular as well. The point will be that the property l-uniformly regular is compatible
with infinite products of additive categories, in contrast to the property regular.

7.a. Existence of normal K ∈ P .

Lemma 7.3. Suppose that Q is compact and N is locally central.
Then for every compact open subgroup K ⊆ G there exists a compact open sub-

group K ′ ⊆ G such that K ′ ⊆ K, K ′ ⊆ CGN , and K ′ is normal in G.

Proof. Put L = K ∩ CGN . Then L is a compact open subgroup of G satisfying
L ⊆ K and L ⊆ CGN . Choose a transversal T of the projection G → G/NL =
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Q/ pr(L). Define K ′ =
⋂

t∈t tLt
−1. Since Q/ pr(L) is compact and discrete, the set

T is finite. Hence K ′ ⊆ G is again compact open. We get for n ∈ N and l ∈ L

(tnl)L(tnl)−1 = tnlLl−1n−1t−1 = tnLn−1t−1 L⊆CGN
= tLt−1.

This implies K ′ =
⋂

g∈G gLg−1. Hence K ′ ⊆ G is a compact open normal subgroup

and obviously satisfies K ′ ⊆ K and K ′ ⊆ CGN . �

7.b. Crossed products of finite groups and regularity. Let R be a unital
ring and D be a (discrete) group. Recall that a crossed product ring R ∗ D is a
unital ring, which is a free left R-module with an R-basis {bd | d ∈ D} indexed by
the elements in D such that be is the unit in R ∗D, for d1, d2 ∈ D there is a unit
w(d1, d2) ∈ R× satisfying bd1d2 = w(d1, d2) · bd1 · bd2 , and for r ∈ R and d ∈ D there
exists cd(r) ∈ R with cd(r) · bd = bd · (r · be), where ce(r) = r is required for r ∈ R.
In particular each element bd has an inverse b−1

d in R ∗D, (which is not given by
bd−1 in general,) and there is an inclusion of rings R → R ∗D sending r to r · be.

The notion of crossed product ring is a generalization of the notion of a twisted
group ring, which is the special case, where w is trivial. For more details we refer
for instance to [1, Section 4] or [4, Section 6].

Lemma 7.4. Let R be a ring with Q ⊆ R and D be a finite group. Let R ∗D be a
crossed product ring.

(i) Let M be any R ∗D-module. Let j : R → R ∗D be the canonical inclusion
of rings. Then we obtain R ∗D-homomorphisms

i : M → R ∗D ⊗R j∗M, x 7→
∑

d∈D

1

|D|
· bd ⊗ b−1

d · x;

p : R ∗D ⊗R j∗M → M, u⊗ y 7→ u · y,

satisfying p ◦ i = idM , where b−1
d denotes the inverse of bd in R ∗D;

(ii) If R is regular, then R ∗D is regular;
(iii) If R is l-uniformly regular, then R ∗D is l-uniformly regular;
(iv) If R is semi-simple, then R ∗D is semi-simple.

Proof. (i) We check that i is R∗D-linear. Obviously i is compatible with addition,
it remains to treat multiplication. Consider r ∈ R and d0 ∈ D. Note for the sequel
that the element b−1

d · r · bd0 · bd−1
0 d in R ∗D belongs to R. Hence we get for x ∈ M ,

r ∈ R and d0 ∈ D

i(r·bd0 ·x) =
∑

d∈D

1

|D|
·bd⊗b−1

d ·(r·bd0 ·x) =
∑

d∈D

1

|D|
·bd⊗(b−1

d ·r·bd0 ·bd−1
0 d)·(bd−1

0 d)
−1·x

=
∑

d∈D

1

|D|
·bd ·(b

−1
d ·r ·bd0 ·bd−1

0 d)⊗(bd−1
0 d)

−1 ·x =
∑

d∈D

1

|D|
·r ·bd0 ·bd−1

0 d⊗(bd−1
0 d)

−1 ·x

= r·bd0 ·
1

|D|
·
∑

d∈D

bd−1
0 d⊗(bd−1

0 d)
−1·x = r·bd0 ·

1

|D|
·
∑

d′∈D

bd′⊗(bd′)−1·x = r·bd0 ·i(x).

Obviously p is a well-defined R ∗D-homomorphism satisfying p ◦ i = idM .

(ii) Since R is regular, R is in particular Noetherian. Since R ∗ D is a finitely
generated R-module, R ∗D is Noetherian as well.

It remains to show that a finitely presented R∗D-module M is of type FP. Since
R is regular and the R-module i∗M is finitely presented, i∗M is of type FP. Since
R ∗ D is free as R-module and hence the functor sending an R-module N to the
R ∗D-module R ∗D⊗RN is flat and sends finitely generated projective R-modules
to finitely generated projective R ∗D-modules, the R ∗D-module R ∗D⊗R i∗M is
of type FP. Since a direct summand in a module of type FP is of type FP again,
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the R ∗D-module M is of type FP.

(iii) The proof is analogous to assertion (ii), since all the statements about finite-
dimension remain true, if one inserts l-dimensional everywhere.

(iv) This follows from assertion (i). This finishes the proof of Lemma 7.4. �

7.c. The Hecke algebra and crossed products. In this subsection we will
assume that Q is compact.

Consider a compact open normal subgroup K of G satisfying K ∈ P . Since both
K and N are normal in G, the subgroup NK of G is also normal. Put

(7.5) D := G/NK = Q/ pr(K).

Note that D is a finite discrete group.
Next we show that H(G;R, ρ, ω) is a left R-module. Namely, define for s ∈

H(G;R, ρ, ω) the new element rs by rs(g) := r · s(g) One easily checks that rs
satisfies (2.4), (2.5), (2.9), and (2.10).

Fix a set-theoretic section σ : D → G of the projection p : G → D = G/NK
satisfying σ(eD) = eG. In the sequel we denote by T the transversal of p given by
T := {σ(d)−1 | d ∈ D}. For d ∈ D define bd ∈ H(G//K;R, ρ, ω) by the function

(7.6) bd : G → R,

g 7→

{
1

µ(pr(K)) · ω(n) if p(g) = d and g = nkσ(d) for n ∈ N, k ∈ K;

0 p(g) 6= d.

This is independent of the choice of n ∈ N and k ∈ K, since for n0, n1 ∈ N and
k0, k1 ∈ K with n0k0 = n1k1 we have n−1

1 n0 = k1k
−1
0 ∈ N ∩K and we compute

(7.7) ω(n1) = ω(n1) · ω(n
−1
1 n0)

(2.8)
= ω(n1) · 1 = ω(n0).

We have to check that the required transformation formulas (2.9) and (2.10) for
g ∈ G and k ∈ K are satisfied. If p(g) 6= d, then bd(kg) = bd(g) = bd(gk) = 0 and
the formulas hold. It remains to treat the case p(g) = d. This follows from the
calculations for g = nkσ(d) for n ∈ N , k ∈ K and k′ ∈ K using σ(d)k′σ(d)−1 ∈ K

bd(k
′g) = bd(k

′nkσ(d)) = bd((k
′nk′−1)(k′k)σ(d))

(7.6)
=

1

µ(pr(K))
· ω(k′nk′−1)

(2.1)
=

1

µ(pr(K))
· ω(n)

(7.6)
= bd(g),

and

bd(gk
′) = bd(nkσ(d)k

′) = bd(n(kσ(d)k
′σ(d)−1)σ(d))

(7.6)
=

1

µ(pr(K))
· ω(n)

(7.6)
= bd(g).

The verification of (2.4) and (2.5) is left to the reader. This finishes the proof that
bd is a well-defined element in H(G//K;R, ρ, ω).

Consider any element s ∈ H(G//K;R, ρ, ω). Then we get

s =
∑

d∈D

µ(pr(K)) · s(σ(d)) · bd(7.8)

by the following calculation for g ∈ G with g = nkσ(d) for n ∈ N and k ∈ K

s(g) = s(nkσ(d))
(2.4),(2.9)

= ω(n) · s(σ(d))

ω(n)∈cent(R)
= µ(pr(K)) ·s(σ(d)) ·

(
1

µ(pr(K))
· ω(n)

)
(7.6)
= µ(pr(K)) ·s(σ(d)) ·bd(g).
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We conclude from (7.8) that {bd | d ∈ D} is an R-basis for the left R-module
H(G//K;R, ρ, ω).

For d1, d2 in D, define an element

w(d1, d2) := ω(n) ∈ R×,(7.9)

if σ(d1d2)σ(d2)
−1σ(d1)

−1 = nk for n ∈ N and k ∈ K. This is independent of the
choice of n ∈ N and k ∈ K by (7.7). Next we want to show

bd1 · bd2 = w(d1, d2) · bd1d2 .(7.10)

Consider d1, d2 ∈ D and g ∈ G. Choose elements n ∈ N and k ∈ K satisfying
σ(d1d2)σ(d2)

−1σ(d1)
−1 = nk. If p(g) = d1d2, we fix n0 ∈ N and k0 ∈ K satisfying

g = n0k0σ(d1)σ(d2). We compute

(7.11)

(bd1 · bd2)(g)

(2.13)
= µ(pr(K)) ·

∑

d∈D

bd1(gσ(d)
−1) · gσ(d)−1bd2(σ(d))

(7.6)
= µ(pr(K)) ·

∑

d∈D,p(σ(d))=d2

bd1(gσ(d)
−1) · gσ(d)−1bd2(σ(d))

= µ(pr(K)) · bd1(gσ(d2)
−1) · gσ(d2)

−1bd2(σ(d2))

(7.6)
= µ(pr(K)) · bd1(gσ(d2)

−1) · gσ(d2)
−1 ·

(
1

µ(pr(K))
· ω(e)

)

= bd1(gσ(d2)
−1) ·

(
gσ(d2)

−1 · 1
)

= bd1(gσ(d2)
−1)

(7.6)
=

{
1

µ(pr(K)) · ω(n0) if p(g) = d1d2;

= 0 if p(g) 6= d1d2.

Suppose for g ∈ G that p(g) = d1d2. We can write

g = n0k0σ(d1)σ(d2) =
(
n0k0k

−1n−1(k0k
−1)−1

)(
k0k

−1
)
σ(d1d2)

and have n0k0k
−1n−1(k0k

−1)−1 ∈ N and k0k
−1 ∈ K. We compute

(7.12)

w(d1, d2) · bd1d2(g)

(7.9)
= ω(n) · bd1d2(g)

(7.6)
= ω(n) ·

1

µ(pr(K))
· ω(n0k0k

−1n−1(k0k
−1)−1)

= ω(n) ·
1

µ(pr(K))
· ω(n0) · ω(k0k

−1n−1(k0k
−1)−1)

(2.1)
= ω(n) ·

1

µ(pr(K))
· ω(n0) · ω(n

−1)

ω(n0)∈cent(R)
=

1

µ(pr(K))
· ω(n) · ω(n−1) · ω(n0)(7.13)

=
1

µ(pr(K))
· ω(n0).

Since w(d1, d2) · bd1d2(g) = 0, if p(g) 6= d1d2, we conclude (7.10) from (7.11)
and (7.12).

We compute for d ∈ D, r ∈ R and d′ ∈ D using the fact that {σ(d′′)−1 | d′′ ∈ D}
is a transversal for G → G/NK = D and σ(eD) = eG
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(
bd · (r · beD )

)
(σ(d′))

(2.13)
= µ(pr(K)) ·

∑

d′′∈D

bd(σ(d
′)σ(d′′)−1) · σ(d′)σ(d′′)−1

(
(r · beD )(σ(d

′′))
)

(7.6)
= µ(pr(K)) ·

∑

d′′∈{eQ}

bd(σ(d
′)σ(d′′)−1) · σ(d′)σ(d′′)−1

(
(r · beD )(σ(d

′′))
)

= µ(pr(K)) · bd(σ(d
′)e−1

G ) · σ(d′)e−1
G

(
(r · beD )(eG)

)

(7.6)
= µ(pr(K)) · bd(σ(d

′)) · σ(d′)

(
1

µ(pr(K))
· r · 1

)

= bd(σ(d
′)) · σ(d′)r

(7.6)
=

{
1

µ(pr(K)) · σ(d)r if d′ = d;

0 otherwise.

This implies for d ∈ D, r ∈ R, and g ∈ G

(7.14)
(
bd · (r · beD )

) (7.8)
=

∑

d′∈D

µ(pr(K)) · bd · (r · beD )(σ(d
′))bd′

= µ(pr(K)) ·

(
1

µ(pr(K))
· σ(d)r

)
· bd = σ(d)r · bd.

Recall from Lemma 2.24 that H(G//K;R, ρ, ω) has a unit, namely beD .
We conclude from (7.10) and (7.14)

Lemma 7.15. Suppose that Q is compact. Consider a compact open normal sub-
group K of G satisfying K ∈ P .

Then the unital ring H(G//K;R, ρ, ω) is the crossed product R∗D associated to
(w, c) for w defined in (7.9) and cd(r) := (ρ ◦ σ(d))(r).

7.d. Filtering the Hecke algebra of a compact group by normal compact

open subgroups. Consider a sequence G = K0 ⊇ K1 ⊇ K1 ⊇ K2 ⊇ · · · of normal
compact open subgroups of G with

⋂
n≥0 Kn = {1} such that Kn ∈ P holds for

n ∈ N. It exists by Lemma 7.3 as we assume throughout this section that Q is
compact and N is locally central. Let 1Kn

be the element in H(G;R, ρ, ω) defined
in (2.24). Then 1Kn

is central in H(G;R, ρ, ω), since Kn is normal in G. We have
1Kn

· 1Km
= 1Kn

= 1Km
· 1Kn

for m ≤ n. For every s ∈ H(G) there exists a
natural number n ∈ N satisfying 1Kn

· s = s = s · 1Kn
. In the sequel we sometimes

abbreviate 1n = 1Kn
, H(G) = H(G;R, ρ, ω) and H(G//Kn) = H(G//Kn;R, ρ, ω)

and put 1−1 = 0. The elementary proof of the next lemma is left to the reader.

Lemma 7.16. We have the subrings rings 1nH(G)1n = H(G//Kn) and (1n −
1n−1)H(G)(1n − 1n−1) of H(G), which have 1n and (1n − 1n−1) as unit. We get
an obvious identification of rings (without unit)

⊕

m≥0

(1m − 1m−1)H(G)(1m − 1m−1) = H(G),

and for n ≥ 0 of rings with unit
n⊕

m=0

(1m − 1m−1)H(G)(1m − 1m−1) = 1nH(G)1n.

Recall that a sequence A0
f0
−→ A1

f1
−→ A2 in an additive category A is called exact

at A1, if f1◦f0 = 0 and for every object A and morphism g : A → A1 with f1◦g = 0
there exists a morphism g : A → A0 with f0◦g = g. For information how this notion
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is related by the Yoneda embedding to the usually notion of exactness for modules
we refer to [2, Lemma 5.10 and Lemma 6.3]. A functor F : A → A′ of additive

categories is called faithfully flat, provided that a sequence A0
f0
−→ A1

f1
−→ A2 in

A is exact, if and only if the sequence F (A0)
F (f0)
−−−→ F (A1)

F (f1)
−−−→ F (A2) in A′ is

exact.

Lemma 7.17. Let S and T be unital rings. Let pr: S × T → T be the projection,
which is a homomorphism of unital rings. Let i : S → S×T be the inclusion sending
s to (s, 0), which is a homomorphism of rings (without units). Then

(i) There exists a diagram of unital additive categories commuting up to nat-
ural equivalence of unital additive categories

Idem(S⊕)
Idem(i⊕)

//

ΘS ≃

��

Idem(S × T⊕)

ΘS×T≃

��

S-MODfgp
pr∗

// S × T -MODfgp

where the vertical arrows are the equivalences of unital additive categories
of (3.2) and pr∗ is restriction with pr;

(ii) The functor Idem(i⊕) : Idem(S⊕) → Idem(S × T⊕) has retraction, namely

Idem(pr
⊕
) : Idem(S × T⊕) → Idem(S⊕);

(iii) The functor Idem(i⊕) : Idem(S⊕) → Idem(S × T⊕) is faithfully flat.

Proof. (i) Next we construct for every object ([l], p) in Idem(S⊕) an isomorphism
in S × T -MODfgp

T ([l], p) : pr∗ ◦ ΘS([l], p)
∼=
−→ ΘS×T ◦ Idem(i⊕)([l], p).

Let A be the (l, l)-matrix over S, for which p : [l] → [l] is given by A. If i(A)
is the (l, l)-matrix over S × T given by applying i to each element in A, then
θS×T ◦ i⊕(p) is the S×T -homomorphism ri(A) : (S×T )l → (S×T )l given by right

multiplication with i(A). Let il : Sl → (S ×T )l be the map sending (x1, x2, . . . , xl)
to (i(x1), i(x2), . . . , i(xl)). We obtain a commutative diagram of abelian groups

Sl il
//

rA

��

(S × T )l

ri(A)

��

Sl

il
′

// (S × T )l.

Now il
′

induce a homomorphism of abelian groups.

T ([l], p) : im(rA) → im(ri(A)).

It is injective, since i and hence il is injective. Next we show that T ([l], p) is bijective.
Let y be an element of the image of ri(A). Choose x =

(
(s1, t1), . . . , (sl, tl)

)
in

(S ×T )l with ri(A)(x) = y. Define x′ ∈ S by x′ = (s1, . . . , sl). Then ri(A) ◦ i
l(x′) =

ri(A)(x) = y. Hence il sends rA(x) to y. This finishes the proof that T ([l], p) is
an isomorphisms of abelian groups. One easily checks that it is an isomorphism of
S × T -modules.

We leave it to the reader to check that the collection of the isomorphisms T ([l], p)
defines a natural equivalence of functors Idem(S⊕) → S×T -MODfgp from pr∗ ◦ θS
to θS×T ◦ Idem(i⊕).

(ii) This follows from pr ◦i = idS .

(iii) Since restriction is faithfully flat, the claim follows from assertion (i). �



20 BARTELS, A. AND LÜCK, W.

We record for later purposes

Lemma 7.18. Suppose that Q is compact. Consider normal compact open sub-
groups K and K ′ of G satisfying K ′ ⊆ K and K,K ′ ∈ P . Let

i : H(G//K;R, ρ, ω) → H(G//K ′;R, ρ, ω)

be the inclusion of rings. Let m ≥ 0 be an integer. Denote by

i[Zm] : H(G//K;R, ρ, ω)[Zm] → H(G//K ′;R, ρ, ω)[Zm]

the inclusion of the (untwisted) group rings induced by i.
Then the functor

Idem(i[Zm]
⊕
) : Idem

(
H(G//K;R, ρ, ω)[Zm]

⊕

)

→ Idem
(
H(G//K ′;R, ρ, ω)[Zm]

⊕

)

has a retraction and is faithfully flat.

Proof. This follows from Lemma 7.17 and the the decomposition of unital rings

H(G//K ′;R, ρ, ω) = H(G//K;R, ρ, ω)⊕ (1K′ − 1K)H(G//K ′;R, ρ, ω)(1K′ − 1K),

cf. Lemma 7.16. �

7.e. Proof of Theorem 7.2.

Lemma 7.19. Let Ai be a collection of additive categories. Then
⊕

i∈I Ai is l-
uniformly regular or regular respectively, if and only if each Ai is l-uniformly regular
or regular respectively.

Proof. This is a consequence of the observations following from [2, Lemma 5.3], that
for an object A ∈

⊕
i∈I Ai there exists a finite subset J ⊆ I with A ∈

⊕
i∈J Ai and

we have the identifications

mor⊕
i∈I Ai

(?, A) = mor⊕
i∈J Ai

(?, A);

Z(
⊕

i∈J

Ai)-MOD =
∏

i∈J

ZAi-MOD.

More details of the proof can be found in [2, Section 11]. �

Consider a sequence G = K0 ⊇ K1 ⊇ K1 ⊇ K2 ⊇ · · · of normal compact open
subgroups of G with

⋂
n≥0 Kn = {1} such that Kn ∈ P holds for n ∈ N. We get

from Lemma 7.16 identifications of additive categories
⊕

m≥0

Idem
(
(1m − 1m−1)H(G)(1m − 1m−1)⊕

)
[Zm] = Idem

(
H(G)

⊕

)
[Zm];

n⊕

m=0

Idem
(
(1m − 1m−1)H(G)(1m − 1m−1)

⊕

)
[Zm] = Idem

(
H(G/Kn)

⊕

)
[Zm].

Hence by Lemma 7.19 it suffices to show that Idem
(
H(G/Kn)

⊕

)
[Zm] is (l + 2m)-

uniformly regular or regular respectively for every n ∈ N.
The unital ring H(G//Kn) is l-uniformly regular or regular respectively, since R

is l-uniformly regular or regular respectively by assumption and we have Lemma 7.4
and Lemma 7.15. Hence Idem

(
H(G//Kn)

)
[Zm] is (l + 2m)-uniformly regular or

regular respectively by [2, Corollary 6.5 and Theorem 10.1]. This finishes the proof
of Theorem 7.2.
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8. Negative K-groups and the projective class group of Hecke

algebras over compact td-groups

Let G, N , Q := G/N , pr : G → Q, R, P , ρ, ω, and µ be as in Subsection 2.a
and denote by H(G;R, ρ, ω) the Hecke algebra, which we have introduced in Sub-
section 2.b. Our main assumption in this section will be that Q is compact.

Lemma 8.1. Suppose that Q is compact and N is locally central. Suppose that the
unital ring R is regular and satisfies Q ⊆ R. Then:

(i) Let K be the set of compact open normal subgroups K ⊆ G with K ∈ P
directed by K ≤ K ′ ⇐⇒ K ′ ⊆ K.

Then we get for n ∈ Z

Kn

(
H(G;R, ρ, ω)

)
= colimK∈KKn

(
H(G//K;R, ρ, ω)

)
;

(ii) We get
Kn

(
H(G;R, ρ, ω)

)
= 0 for n ≤ −1.

Proof. (i) We conclude from Lemma 2.25 and Lemma 7.3

H(G;R, ρ, ω) =
⋃

K∈K

H(G//K;R, ρ, ω).

Now apply (4.4).

(ii) For K ∈ K the unital ring H(G//K;R, ρ, ω) is regular by Lemma 7.4 (ii) and
Lemma 7.15. Hence Kn

(
H(G//K;R, ρ, ω)

)
= {0} for n ≤ −1, see [15, page 154].

Now apply assertion (i). �

Remark 8.2. Suppose that Q is compact and N is locally central. Because of
Lemma 7.3 we can choose a nested sequence of elements in K

K0 ⊇ K1 ⊇ K2 ⊇ K3 ⊇ · · ·

satisfying
⋂∞

i=0 Kn = {1}. Then for every K ∈ K there is a natural number
i with Ki ⊆ K. Abbreviate H(G//Ki) = H(G//Ki;R, ρ, ω). Then the in-
clusion H(G//Ki) → H(G//Ki+1) induces a split injection Kn(H(G//Ki)) →
Kn(H(G//Ki+1)) for i ∈ N and n ∈ Z by Lemma 7.18. Lemma 8.1 (i) implies that
there is an isomorphism

Kn(H(G;R, ρ, ω))

∼= Kn(H(G//K0))⊕
⊕

i≥0

cok
(
Kn(H(G//Ki)) → Kn(H(G//Ki+1))

)

and cok
(
Kn(H(G//Ki)) → Kn(H(G//Ki+1))

)
is isomorphic to a direct summand

of Kn(H(G//Ki+1)).
Now suppose additionally that R is semisimple. Then H(G//Ki) is semisimple

and hence the abelian group K0(H(G//Ki)) is finitely generated free for i ∈ N by
Lemma 7.4 (iv) and Lemma 7.15, Hence the abelian group K0(H(G;R, ρ, ω)) is free
and in particular torsionfree.

9. On the algebraic K-theory of the Hecke algebra of a covirtually

Z totally disconnected group

Consider the setup of Section 5. In particular Q is covirtually cyclic. Denote by
TK∞(φ−1) the mapping torus of the map

K∞(φ−1) : K∞(H(L;R, ρ|L, ω)) → K∞(H(L;R, ρ|L, ω))

of non-connective K-theory spectra.

Theorem 9.1 (Wang sequence). Suppose that the unital ring R is regular and
satisfies Q ⊆ R. Assume that N is locally central. Then:
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(i) There is a weak homotopy equivalence of non-connective spectra

a∞ : TK∞(φ−1)
≃
−→ K∞(H(G;R, ρ, ω));

(ii) We get a long exact sequence, infinite to the left

· · ·
K2(i)
−−−→ K2(H(G;R, ρ, ω))

∂2−→ K1(H(L;R, ρ|L, ω))

id−K1(φ
−1)

−−−−−−−−→ K1(H(L;R, ρ|L, ω))
K1(i)
−−−→ K1(H(G;R, ρ, ω))

∂1−→ K0(H(L;R, ρ|L, ω))
id−K0(φ

−1)
−−−−−−−−→ K0(H(L;R, ρ|L, ω))

K0(i)
−−−→ K0(H(G;R, ρ, ω)) → 0;

(iii) We get for n ≤ 1

Kn(H(G;R, ρ, ω)) = 0.
Proof. (i) This follows from Lemma 5.7 and Theorem 6.2 applied to the additive
category A = Idem

(
H(L;R, ρ|L, ω)

⊕

)
after we have shown that the additive cate-

gory Idem
(
H(L;R, ρ|L, ω)

⊕

)
is regular. This has already been done in Theorem 7.2.

(ii) and (iii) These follow from the Wang sequence associated to the left hand side of
the weak homotopy equivalence appearing in assertion (i) and Lemma 8.1 (ii). �

10. Some input for the Farrell-Jones Conjecture

In forthcoming papers we will need for the proof and the application of the K-
theoretic Farrell-Jones Conjecture for the Hecke algebra of a closed subgroup of a
reductive p-adic group, which is our ultimate goal, Theorem 7.2 and the following
Theorem 10.1.

Consider the setup of Subsection 2.a. For the remainder of this subsection we will
assume that the td-group Q is compact and N is locally central. Let i : Q′ → Q be
the inclusion of a compact open subgroup of Q. Put G′ = pr−1(Q′). Let i : G′ → G
be the inclusion. The construction in Subsection 2.c yields a ring homomorphism

H(i) : H(G′;R, ρ′, ω) → H(G;R, ρ, ω)

where ρ′ = ρ ◦ i, µ′ is obtained from µ by restriction with i, and we take N ′ = N
and ω′ = ω. The image H(i)(s) of an element s ∈ H(G′;R, ρ′, ω), which is given
by an appropriate function s : G′ → R, is specified by the function H(i)(s) : G → R
sending g to s(g), if g ∈ G′, and to 0, if g /∈ G′, see Lemma 2.21 (iii).

Theorem 10.1. Suppose that Q is compact and N is locally central. Then the
functor of unital additive categories

Idem
(
H(i)

⊕
[Zm]

)
: Idem

(
H(G′;R, ρ′, ω)

⊕
[Zm]

)
→ Idem

(
H(G;R, ρ, ω)

⊕
[Zm]

)

is faithfully flat.

Proof. Let K′ be the directed set of normal compact open subgroups of Q which
satisfy K ⊆ Q′, and K ∈ P , where we put K ≤ K ′ ⇐⇒ K ′ ⊆ K. Note that for any
compact open subgroup L of Q there exists K ∈ K′ with K ⊆ L by Lemma 7.3.

In the sequel we abbreviate

H(G) := H(G;R, ρ, ω);

H(G//K) := H(G//K;R, ρ, ω),

and analogously for G′. Next we want to show that the functor

Idem
(
jK⊕

[Zm]
)
: Idem

(
H(G//K)

⊕
[Zm]

)
→ Idem

(
H(G)

⊕
[Zm]

)
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is faithfully flat forK ∈ K′, where iK : H(G//K) → H(G) is the inclusion. Consider
morphisms f0 : A0 → A1 and f1 : A1 → A2 in Idem

(
H(G//K)

⊕
[Zm]

)
with f1◦f0 =

0. Note that we can consider them also as morphisms in Idem
(
H(G)

⊕
[Zm]

)
. We

have to show that it is exact in Idem
(
H(G//K)

⊕
[Zm]

)
, if and only if it is exact in

Idem
(
H(G)

⊕
[Zm]

)
.

Suppose that A0
f0
−→ A1

f2
−→ A2 is exact in Idem

(
H(G//K)

⊕
[Zm]

)
. In order to

show that it is exact in Idem
(
H(G)

⊕
[Zm]

)
, we have to find for any object A and any

morphism g : Q → A1 in Idem
(
H(G)

⊕
[Zm]

)
with f1 ◦g = 0 a morphism g : A → A0

in Idem
(
H(G)

⊕
[Zm]

)
with f0 ◦ g = g. We can choose an element K ′ ∈ K′ with

K ≤ K ′ such that A and g live already in Idem
(
H(G//K ′)

⊕
[Zm]

)
by Lemma 2.25.

Since the inclusion

Idem
(
H(G//K)

⊕
[Zm]

)
→ Idem

(
H(G//K ′)

⊕
[Zm]

)

is faithfully flat by Lemma 7.18, we can find g : A → P0 with f0 ◦ g = g in
Idem

(
H(G//K ′)

⊕
[Zm]

)
and hence also in Idem

(
H(G)

⊕
[Zm]

)
.

Suppose that A0
f0
−→ A1

f2
−→ A2 is exact in Idem

(
H(G)

⊕
[Zm]

)
. In order to show

that it is exact in Idem
(
H(G//K)

⊕
[Zm]

)
we have to find for any object A and

any morphism g : Q → A1 in Idem
(
H(G//K)

⊕
[Zm]

)
with f1 ◦ g = 0 a morphism

g : A → A0 in Idem
(
H(G//K)

⊕
[Zm]

)
with f0 ◦ g = g. At any rate we can find such

g : A → A1 in Idem
(
H(G)

⊕
[Zm]

)
. We conclude from Lemma 2.25 that there exists

K ′ ∈ K′ with K ≤ K ′ such that g : A → A1 lies already in Idem
(
H(G//K ′)

⊕
[Zm]

)
.

Recall from Lemma 7.18 that there is a retraction of the inclusion

Idem
(
H(G//K)

⊕
[Zm]

)
→ Idem

(
H(G//K ′)

⊕
[Zm]

)

If we apply it to g, we get a morphism g′ : A → A1 in Idem
(
H(G//K)

⊕
[Zm]

)

satisfying f1 ◦ g′ = g in Idem
(
H(G//K)

⊕
[Zm]

)
. This finishes the proof that

functor Idem
(
jK⊕

[Zm]
)
is faithfully flat. Analogously one shows that the func-

tor Idem
(
j′K⊕

[Zm]
)
: Idem

(
H(G′//K)

⊕
[Zm]

)
→ Idem

(
H(G′)

⊕
[Zm]

)
is faithfully

flat for the inclusion j′K : H(G′//K) → H(G′).
We have the following commutative diagram of functors of additive categories

Idem
(
H(G′)

⊕
[Zm]

) Idem(H(i)
⊕
[Zm])

// Idem
(
H(G)

⊕
[Zm]

)

Idem
(
H(G′//K)

⊕
[Zm]

)
Idem(H(i//K)

⊕
[Zm])

//

Idem(j′K
⊕
[Zm])

OO

Idem
(
H(G//K)

⊕
[Zm]

)
Idem(j′K

⊕
[Zm])

OO

whose two left vertical arrows are faithfully flat. We conclude from Lemma 2.25 that
it suffices to show that the lower vertical arrow in the diagram above is faithfully
flat.

We have identified H(G//K) and H(G′//K) respectively as a crossed product
ring R∗F and R∗F ′ respectively for the finite group F = G/K and F ′ = G′/K re-
spectively in Lemma 7.15. Moreover the inclusionH(G//K)[Zm] → H(G′//K)[Zm]
corresponds under these identifications to the inclusions R ∗ F [Zm] → R ∗ F ′[Zm]
coming from the inclusion of finite groups F ′ → F . The lower horizontal ar-
row Idem(H(i//K)

⊕
[Zm]) becomes under the equivalences of categories of (3.2)
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and (3.4) the functor

F : R ∗ F ′[Zm]-MODfgp → R ∗ F [Zm]-MODfgp, P 7→ R ∗ F [Zm]⊗R∗F ′[Zm] P.

There is a commutative diagram

R ∗ F ′[Zm]-MODfgp
F

//

��

R ∗ F [Zm]-MODfgp

��

R[Zm]-MODfgp
// R[Zm]-MODfgp

whose vertical arrows are given by restriction from R∗F [Zm] or R∗F ′[Zm] to R[Zm]

and whose lower vertical arrow is given by P 7→
⊕[F :F ′]

i=1 P . Since the vertical arrows
and the lower horizontal arrow are obviously faithfully flat, the upper vertical arrow
is faithfully flat. This finishes the proof of Lemma 10.1. �

11. Characteristic p

We have assumed Q ⊆ R, or in other words that any natural number n ≥ 1 is
invertible in R. One may wonder what happens, if one drops this condition, for
instance, if R is a field of prime characteristic. The following condition appearing
in [6, page 9] suffices to make sense of the Hecke algebra.

Condition 11.1. There exists a compact open subgroup K in Q such that the index
[K : K0] of any open subgroup K0 of K is invertible in R.

Let Q be a reductive p-adic group. Then Condition 11.1 is satisfied, if p is
invertible in R, see [6, page 9].

However, this does not mean that assertion of the Farell-Jones Conjecture or
Theorem 9.1 remains true integrally. Our arguments would go though if for every
compact open subgroup K in Q the index [K : K0] of any open subgroup K0 of K
is invertible in R which is stronger than Condition 11.1.

One may hope that under under Condition 11.1 the Farrell-Jones Conjecture
or Theorem 9.1 remain true rationally. Let us confine ourselves to the setup of
Section 5 and Theorem 9.1. Then we get from [12, Theorem 0.1] a weak homotopy
equivalence, where we abbreviate H(G) := H(G;R, ρ, ω) and analogously for L

TK∞(Idem(φ)−1)∨NK∞(Idem(H(L)
⊕
)Idem(φ

⊕
)[t])∨NK∞(Idem(H(L)

⊕
)Idem(φ

⊕
)[t

−1])

≃
−→ K∞(H(G;R, ρ, ω)).

So we need to show that the homotopy groups of the Nil-terms all vanish rationally.
If L is finite, this is known to be true, see [11, Theorem 0.3 and Theorem 9.4].
Under the strong condition that there is a sequence L ⊇ L1 ⊇ L2 ⊇ L2 · · · of in L
normal compact open subgroups such that

⋂
i≥0 Li = {1} and φ(Li) = Li holds for

i ≥ 0, this implies that the homotopy groups of the Nil-terms all vanish rationally.
Without this strong condition we do not have a proof.
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