Presentation of two topics for Bachelor thesis

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de

slides available on http://www.him.uni-bonn.de/lueck/

Bonn, December 13th

1/10

The simplicial volume

Define the L¹-seminorm of an element *y* in the *p*-th singular homology H^{sing}_p(X; ℝ) := H_p(C^{sing}_{*}(X; ℝ)) by

$$||y||_1 := \inf\{||x||_1 \mid x \in C_p^{sing}(X; \mathbb{R}), \partial_p(x) = 0, y = [x]\}.$$

Definition (Simplicial volume)

Let M be a closed connected orientable manifold of dimension n. Define its simplicial volume to be the non-negative real number

$$||M|| := ||j([M])||_1 \in [0,\infty)$$

for any choice of fundamental class $[M] \in H_n^{sing}(M; \mathbb{Z})$ and $j: H_n^{sing}(M; \mathbb{Z}) \to H_n^{sing}(M; \mathbb{R})$ the change of coefficients map associated to the inclusion $\mathbb{Z} \to \mathbb{R}$.

Lemma

Let $f: M \to N$ be a map of closed connected oriented manifolds of the same dimension n. Let deg(f) be the degree of f. Then

 $||\boldsymbol{M}|| \geq |\deg(f)| \cdot ||\boldsymbol{N}||.$

In particular the simplicial volume is a homotopy invariant.

Proof.

For any
$$x \in C_n^{\text{sing}}(X; \mathbb{R})$$
 we get $||C_n^{\text{sing}}(f)(x)||_1 = ||x||_1$.

Corollary

If $f: M \to M$ is a selfmap of a closed connected orientable manifold of degree different from -1, 0 and 1, then ||M|| = 0. In particular we get $||S^1 \times M|| = 0$.

3/10

Lemma

Let $p\colon M\to N$ be a d-sheeted covering of closed connected orientable manifolds. Then

$$||\boldsymbol{M}|| = \boldsymbol{d} \cdot ||\boldsymbol{N}||.$$

Theorem

Let M be a connected closed orientable manifold. If M carries a non-trivial S^1 -action, then

$$||M|| = 0.$$

Theorem

Let M be a closed connected orientable manifold of dimension \geq 1 with amenable fundamental group. Then

||M|| = 0.

Theorem (Simplicial volume of hyperbolic manifolds)

Let M be a closed hyperbolic orientable manifold of dimension n. Then

$$||M|| = \frac{\operatorname{vol}(M)}{v_n}.$$

for a specific dimension constant $v_n > 0$.

Theorem (Betti numbers and simplicial volume)

Let *M* be a complete connected orientable Riemannian manifold of dimension *n* with finite volume. Let $k_1 \ge k_2 > 0$ be positive constants such that the sectional curvature satisfies $-k_1 \le \sec(M) \le -k_2$. Then there is a constant $C(n, k_1/k_2)$, which depends only on *n* and the ratio k_1/k_2 but not on *M*, such that

$$\sum_{i\geq 0} b_p(M) \leq C(n, k_1/k_2) \cdot ||M||.$$

• Literature: [2] and [4, Section 14.1].

The group cohomology of certain crystallographic groups

- Give a basic introduction to group (co)homology.
- This includes projective resolutions, classifying spaces of groups, Tate cohomology, transfer, Hochschild-Serre spectral sequence, Tate cohomology
- Literature: Brown [1].

7/10

 Let G ≃ Z/m be a finite cyclic group of order m and let L ≃ Zⁿ be a finitely generated free abelian group of rank n. Let ρ: G → aut_Z(L) be a group homomorphism. Let Γ be the associated semi-direct product L ×_ρ G.

Conjecture (Adem-Ge-Pan-Petrosyan)

The Lyndon-Hochschild-Serre spectral sequence associated to the semi-direct product $L \rtimes_{\rho} G$ collapses in the strongest sense, i.e., all differentials in the E_r -term for $r \ge 2$ are trivial and all extension problems at the E_{∞} -level are trivial. In particular we get for all $k \ge 0$

$$H^k(\Gamma;\mathbb{Z})\cong \bigoplus_{i+j=k}H^i(G;H^j(L)).$$

Theorem (Langer-Lück [3])

Conjecture of Adem-Ge-Pan-Petrosyan is true, provided that the G-action on L is free outside the origin.

Theorem (Langer-Lück [3])

Consider the special case n = 6 and m = 4, where ρ is given by the matrix

(0	1	0	0	0	0/
-1	0	1	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	-1	0	1
0 /	0	0	0	-1	0/

Then the second differential in the Lyndon-Hochschild-Serre spectral sequence associated to the semi-direct product $L \rtimes_{\rho} G$ is non-trivial.

Cohomology of groups, volume 87 of *Graduate Texts in Mathematics*.

Springer-Verlag, New York, 1982.

M. Gromov.

Volume and bounded cohomology.

Inst. Hautes Études Sci. Publ. Math., 56:5–99 (1983), 1982.

M. Langer and W. Lück.

On the group cohomology of the semi-direct product $\mathbb{Z}^n \rtimes_{\rho} \mathbb{Z}/m$ and a conjecture of Adem-Ge-Pan-Petrosyan.

J. Pure Appl. Algebra, 216:1318–1339, 2012.

🚺 W. Lück.

L²-Invariants: Theory and Applications to Geometry and K-Theory, volume 44 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics].

Springer-Verlag, Berlin, 2002.