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SURVEY ON L2-INVARIANTS AND 3-MANIFOLDS

LÜCK, W.

Abstract. In this paper give a survey about L2-invariants focusing on 3-
manifolds.

0. Introduction

The theory of L2-invariants was triggered by Atiyah in his paper on the L2-index
theorem [4]. He followed the general principle to consider a classical invariant of
a compact manifold and to define its analog for the universal covering taking the
action of the fundamental group into account. Its application to (co)homology,
Betti numbers and Reidemeister torsion led to the notions of L2-(cohomology),
L2-Betti numbers and L2-torsion. Since then L2-invariants were developed much
further. They already had and will continue to have striking, surprizing, and deep
impact on questions and problems of fields, for some of which one would not expect
any relation, e.g., to algebra, differential geometry, global analysis, group theory,
topology, transformation groups, and von Neumann algebras.

The theory of 3-manifolds has also a quite impressive history culminating in the
work of Waldhausen and in particular of Thurston and much later in the proof of the
Geometrization Conjecture by Perelman and of the Virtual Fibration Conjecture by
Agol. It is amazing how many beautiful, easy to comprehend, and deep theorems,
which often represent the best result one can hope for, have been proved for 3-
manifolds.

The motivating question of this survey paper is: What happens if these two
prominent and successful areas meet one another? The answer will be: Something
very interesting.

In Section 1 we give a brief overview over basics about 3-manifolds, which of
course can be skipped by someone who has already some background. We will
explain the prime decomposition, Kneser’s Conjecture, the Jaco-Shalen splitting,
Thurston’s Geometrization Conjecture, and the Virtual Fibration Conjecture. They
give a deep insight into the structure of 3-manifolds. All these conjectures have
meanwhile been proved. We also explain the Thurston norm and polytope, which
have been connected to L2-invariants in the recent years.

In Section 2 we briefly explain the definition of L2-Betti numbers and of L2-
torsion including the necessary input from the theory of von Neumann algebras.
For the rest of the article the concrete constructions are not relevant and can be
skipped, but one has to understand the basic properties of the L2-invariants, see
Subsection 2.8. For the large variety of applications of L2-invariants, we will refine
ourselves to 3-manifolds. A discussion of all the other plentiful applications to
various different fields goes beyond the scope of this survey article.

In Section 3 we discuss the main open conjectures and problems about L2-
invariants: the Atiyah Conjecture, the Singer Conjecture, the Determinant Con-
jecture, various conjectures about approximation and homological growth, and the
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relation between simplicial volume and L2-invariants for aspherical closed mani-
folds. These conjectures make sense and are interesting in all dimensions.

In general L2-invariants are hard to compute. We explain in Section 4 that one
can compute the L2-Betti numbers and the L2-torsion for 3-manifolds explicitly
exploring all the known results about 3-manifolds mentioned above.

In Section 5 we discuss the status of all the conjectures mentioned in Section 3 for
3-manifolds. Roughly speaking, they are essentially all known except the conjecture
about homological growth, which is wide open also in dimension 3.

The remaining sections are dealing with rather new developments concerning
the twisting of L2-invariants with (not necessarily unitary or unimodular) finite-
dimensional representations. The basics of this construction are presented in Sec-
tion 6 and Section 7.

All these twisted invariants make sense in all dimensions and have a great po-
tential, but concrete and interesting results are known so far only in dimension 3.
Again this due to the fact that the structure of 3-manifolds is rather special and
well understood nowadays. This will be carried out in Sections 8 and 9, where
the Turston norm and polytope are linked to the degree of the L2-torsion function,
universal L2-torsion, and the L2-polytope.

In the final Section 10 we relate the conjecture of homological growth to the
question, whether the L2-torsion of an aspherical closed 3-manifold depends only
on the profinite completion of the fundamental group.
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1. Brief survey on 3-manifolds

In this section we give a brief survey about 3-manifolds.
For the remainder of this paper 3-manifold is to be understood to be connected

compact and orientable, and we allow a non-empty boundary. The assumption
orientable will make the formulation of some results easier and is no real constraint
for L2-invariants, since these are multiplicative under finite coverings and therefore
one may pass to the orientation covering in the non-orientable case.

1.1. The prime decomposition and Kneser’s Conjecture. A 3-manifold M
is prime if for any decomposition of M as a connected sum M1#M2, M1 or M2

is homeomorphic to S3. It is irreducible if every embedded 2-sphere bounds an
embedded 3-disk. Any prime 3-manifold is either irreducible or is homeomorphic
to S1 × S2 [40, Lemma 3.13].
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Every 3-manifold M has a prime decomposition, i.e., one can write M as a
connected sum

M = M1#M2# . . .#Mr,

where each Mj is prime, and this prime decomposition is unique up to renumbering
and orientation preserving homeomorphism [40, Theorems 3.15 and 3.21].

Let M be a 3-manifold with incompressible boundary whose fundamental group
admits a splitting α : π1(M) → Γ1 ∗ Γ2. Kneser’s Conjecture, whose proof can be
found in [40, Chapter 7], says that there are manifolds M1 and M2 with Γ1 and
Γ2 as fundamental groups and a homeomorphism M → M1#M2 inducing α on
the fundamental groups. Here incompressible boundary means that no boundary
component is S2 and the inclusion of each boundary component into M induces an
injection on the fundamental groups.

1.2. The Jaco-Shalen-Johannson splitting. We use the definition of Seifert
manifold given in [89], which we recommend as a reference on Seifert manifolds.
The work of Casson and Gabai shows that an irreducible 3-manifold with infinite
fundamental group π is Seifert if and only if π contains a normal infinite cyclic
subgroup, see [37, Corollary 2 on page 395]. This together with the argument
appearing in [89, page 436] implies the following statement: If a 3-manifold M has
infinite fundamental group and empty or incompressible boundary, then it is Seifert
if and only if it admits a finite coveringM , which is the total space of a S1-principal
bundle over a compact orientable surface.

Johannson [47] and Jaco and Shalen [44] have shown for an irreducible 3-manifold
M with incompressible boundary the following result. There is a finite family of
disjoint, pairwise-nonisotopic incompressible tori in M , which are not isotopic to
boundary components and which split M into pieces that are Seifert manifolds or
are geometrically atoroidal , meaning that they admit no embedded incompressible
torus (except possibly parallel to the boundary). A minimal family of such tori is
unique up to isotopy, and we will say that it gives a toral splitting of M .

A graph manifold is an irreducible 3-manifold for which all its pieces in the
Jaco-Shalen-Johannson splitting are Seifert fibered spaces.

1.3. Thurston’s Geometrization Conjecture. Recall that a manifold (possible
with boundary) is called hyperbolic if its interior admits a complete Riemannian
metric whose sectional curvature is constant −1.

Thurston’s Geometrization Conjecture for irreducible 3-manifolds with infinite
fundamental groups states that the geometrically atoroidal pieces in the Jaco-
Shalen-Johannson splitting carry a hyperbolic structure.

Roughly speaking, a geometry on a 3-manifold M is a complete locally homoge-
neous Riemannian metric on its interior. The precise definition is given for instance
in [3, page 17]. The universal cover of the interior has a complete homogeneous Rie-
mannian metric, meaning that the isometry group acts transitively [91]. Thurston
has shown that there are precisely eight simply connected 3-dimensional geometries

having compact quotients, namely S3, R3, S2 × R, H2 × R, Nil, S̃L2(R), Sol and
H3. If a closed 3-manifold admits a geometric structure modelled on one of these
eight geometries, then the geometry involved is unique.

Let M be a closed Seifert manifold. Then it has a geometry. In terms of the
Euler class e of the Seifert bundle and the Euler characteristic χ of the base orbifold,
the geometric structure is determined as follows [89, Theorem 5.3]

χ > 0 χ = 0 χ < 0
e = 0 S2 × R R3 H2 × R

e 6= 0 S3 Nil S̃L2(R)
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The geometry is S3 if and only if π1(M) is finite. Moreover, M is finitely covered
by the total space M of an S1-principal bundle p : M → F over an orientable closed
surface F . We have e = 0 if and only if e(p) = 0, and the Euler characteristic χ of
the base orbifold of M is negative, zero or positive if and only if χ(M/S1) has the
same property, see [89, page 426, 427 and 436].

For completeness we mention that Thurston’s Geometrization Conjecture implies
for a closed 3-manifold with finite fundamental group that its universal covering
is homeomorphic to S3, the fundamental group of M is a subgroup of SO(4) and
the action of it on the universal covering is conjugated by a homeomorphism to
the restriction of the obvious SO(4)-action on S3. This implies, in particular, the
Poincaré Conjecture that any homotopy 3-sphere is homeomorphic to S3.

Many results about 3-manifolds have as hypothesis that Thurston’s Geometriza-
tion Conjecture holds. Meanwhile Thurston’s Geometrization Conjecture is known
to be true, a proof is given in [56, 77] following the spectacular ideas of Perelman.

1.4. The Virtual Fibration Conjecture. Given a 3-manifold and a non-trivial
element φ ∈ H1(N ;Q) = Hom(π1(N),Q), we say that φ is fibered if there exists
a locally trivial fiber bundle p : N → S1 with a compact surface as fiber and an
element r ∈ Q such that the induced map p∗ : π1(N) → π1(S

1) = Z coincides with
r · φ. We say φ ∈ H1(N ;R) is quasi-fibered if φ is the limit in H1(N ;R) of fibered
classes in H1(N ;Q) ⊆ H1(N ;R). A group is residually finite rationally solvable
(RFRS for short), if there is a filtration of π by subgroups π = π0 ⊇ π1 ⊇ π2 ⊇ · · ·
such that

(1)
⋂

i πi = {1};
(2) for any i the group πi is a normal, finite-index subgroup of π;
(3) for any i the map πi → πi/πi+1 factors through πi → H1(πi;Z)/torsion.

If (P) is a property of groups, for instance being (RFRS), then a group is called
virtually (P) if it contains a subgroup of finite index which has property (P). The fol-
lowing is a straightforward consequence of the Virtual Fibering Theorem of Agol [1,
Theorem 5.1], see also [31, Corollary 5.2] and [53].

Theorem 1.1. Let N be a prime 3-manifold. Suppose that π1(N) is virtually

RFRS. Then there exists a finite regular cover p : N̂ → N such that for every class

φ ∈ H1(N ;R) the class p∗φ ∈ H1(N̂ ;R) is quasi-fibered.

The following theorem was proved by Agol [2] and Wise [102, 103] in the hyper-
bolic case. It was proved by Liu [62] and Przytycki-Wise [84] for graph manifolds
with boundary and it was proved by Przytycki-Wise [83] for manifolds with a non-
trivial Jaco-Shalen-Johannson decomposition and at least one hyperbolic piece in
the JSJ decomposition.

Theorem 1.2. If N is a prime 3-manifold that is not a closed graph manifold,
then π1(N) is virtually RFRS.

This implies that any hyperbolic 3-manifold M has a finite covering p : M → M
such that M fibers over S1 in the sense that there exists a locally trivial fiber bundle
M → S1 with a compact 2-manifold as fiber.

1.5. Topological rigidity. The fundamental group plays a dominant role in the
theory of 3-manifolds. Besides Kneser’s Conjecture this is illustrated by the follow-
ing discussion of topological rigidity.

By the Sphere Theorem [40, Theorem 4.3], an irreducible 3-manifold is aspher-
ical, i.e., all its higher homotopy groups vanish, if and only if it is a 3-disk or has
infinite fundamental group. If M and N are two aspherical closed 3-manifolds,
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then they are homeomorphic if and only if their fundamental groups are isomor-
phic. Actually, every isomorphism between their fundamental groups is induced by
a homeomorphism. More generally, every 3-manifold N with torsionfree fundamen-
tal group group is topologically rigid in the sense that any homotopy equivalence of
closed 3-manifolds with N as target is homotopic to a homeomorphism. This fol-
lows from results of Waldhausen, see Hempel [40, Lemma 10.1 and Corollary 13.7]
and Turaev [97], as explained for instance [58, Section 5].

1.6. On the fundamental groups of 3-manifolds. The fundamental group of a
closed manifold is finitely presented. Fix a natural number d ≥ 4. Then a groupG is
finitely presented if and only if it occurs as fundamental group of a closed orientable
d-dimensional manifold. This is not true in dimension 3. A detailed exposition
about the problem, which finitely presented groups occur as fundamental groups
of closed 3-manifolds, can be found in [3]. For us it will be important that the
fundamental group of any 3-manifold is residually finite, This follows from [41] and
the proof of the Geometrization Conjecture. More information about fundamental
groups of 3-manifolds can be found for instance in [3].

1.7. The Thurston norm and the dual Thurston polytope. Let M be a
compact oriented 3-manifold. Recall the definition in [96] of the Thurston norm
xM (φ) of a 3-manifold M and an element φ ∈ H1(M ;Z) = Hom(π1(M),Z):

x(φ)– := min{χ−(F ) |F ⊂ M properly embedded surface dual to φ},

where, given a surface F with connected components F1, F2, . . . , Fk, we define

χ−(F ) =

k∑

i=1

max{−χ(Fi), 0}.

Thurston [96] showed that this defines a seminorm on H1(M ;Z) which can be
extended to a seminorm on H1(M ;R) which we also denote by xM . In particular
we get for r ∈ R and φ ∈ H1(M ;R)

xM (r · φ) = |r| · xM (φ).(1.3)

If p : M̃ → M is a finite covering with n sheets, then Gabai [36, Corollary 6.13]
showed that

x
M̃
(p∗φ) = n · xM (φ).(1.4)

If F → M
p
−→ S1 is a fiber bundle for a 3-manifold M and compact surface F , and

φ ∈ H1(M ;Z) is given by H1(p) : H1(M) → H1(S
1) = Z, then by [96, Section 3]

we have

xM (φ) =

{
−χ(F ), if χ(F ) ≤ 0;

0, if χ(F ) ≥ 0.
(1.5)

We refer to

(1.6) BxM
:= {φ ∈ H1(M ;R) |xM (φ) ≤ 1}

as the Thurston norm ball. In the sequel we will identify H1(M ;R) = H1(M ;R)∗

and V = V ∗∗ for a finite-dimensional real representation V by the obvious isomor-
phisms. Then there is a notion of a polytope dual to B∗

xM
, see [27, Subsection 3.5]

and we define the dual Thurston polytope

(1.7) T (M)∗ := B∗
xM

⊂ (H1(M ;R))∗ = H1(M ;R).

Explicitly it is given by

T (M)∗ = {v ∈ H1(M ;R) | φ(v) ≤ xM (φ) for all φ ∈ H1(M ;R)}.
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Thurston [96, Theorem 2 on page 106 and first paragraph on page 107] has shown
that T (M)∗ is an integral polytope, i.e, the convex hull of finitely many points in
the integral lattice H1(M ;Z)/torsion ⊆ H1(M ;R).

A marking for a polytope is a (possibly empty) subset of the set of its vertices.
We conclude from Thurston [96, Theorem 5] that we can equip T (M)∗ with a
marking such that φ ∈ H1(M ;R) is fibered if and only if it pairs maximally with a
marked vertex, i.e., there exists a marked vertex v of T (M)∗, such that φ(v) > φ(w)
for any vertex w 6= v.

2. Brief survey on L2-invariants

2.1. Group von Neumann algebras. Denote by L2(G) the Hilbert space L2(G)
consisting of formal sums

∑
g∈G λg·g for complex numbers λg such that

∑
g∈G |λg|

2 <
∞. This is the same as the Hilbert space completion of the complex group ring CG
with respect to the pre-Hilbert space structure for which G is an orthonormal ba-
sis. Note that left multiplication with elements in G induces an isometric G-action
on L2(G). Given a Hilbert space H , denote by B(H) the C∗-algebra of bounded
operators from H to itself, where the norm is the operator norm and the involution
is given by taking adjoints.

Definition 2.1 (Group von Neumann algebra). The group von Neumann algebra
N (G) of the group G is defined as the algebra of G-equivariant bounded operators
from L2(G) to L2(G)

N (G) := B(L2(G))G.

In the sequel we will view the complex group ring CG as a subring ofN (G) by the
embedding of C-algebras ρr : CG → N (G) which sends g ∈ G to the G-equivariant
operator rg−1 : L2(G) → L2(G) given by right multiplication with g−1.

Example 2.2 (The von Neumann algebra of a finite group). If G is finite, then
nothing happens, namely CG = L2(G) = N (G).

Example 2.3 (The von Neumann algebra of Zd). In general there is no concrete
model for N (G). However, for G = Zd, there is the following illuminating model
for the group von Neumann algebra N (Zd). Let L2(T d) be the Hilbert space of
equivalence classes of L2-integrable complex-valued functions on the d-dimensional
torus T d, where two such functions are called equivalent if they differ only on a
subset of measure zero. Define the ring L∞(T d) by equivalence classes of essentially
bounded measurable functions f : T d → C, where essentially bounded means that
there is a constant C > 0 such that the set {x ∈ T d | |f(x)| ≥ C} has measure
zero. An element (k1, . . . , kd) in Zd acts isometrically on L2(T d) by pointwise

multiplication with the function T d → C, which maps (z1, z2, . . . , zd) to zk1
1 ·· · ··zkd

d .

The Fourier transform yields an isometric Zd-equivariant isomorphism L2(Zd)
∼=
−→

L2(T d). We conclude N (Zd) = B(L2(T d))Z
d

. We obtain an isomorphism of C∗-
algebras

L∞(T d)
∼=
−→ N (Zd)

by sending f ∈ L∞(T d) to the Zd-equivariant operatorMf : L
2(T d) → L2(T d), g 7→

g · f, where (g · f)(x) is defined by g(x) · f(x).

2.2. The von Neumann dimension. An important feature of the group von
Neumann algebra is its trace.

Definition 2.4 (Von Neumann trace). The von Neumann trace on N (G) is defined
by

trN (G) : N (G) → C, f 7→ 〈f(e), e〉L2(G),

where e ∈ G ⊆ L2(G) is the unit element.
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Definition 2.5 (Finitely generated Hilbert module). A finitely generated Hilbert
N (G)-module V is a Hilbert space V together with a linear isometric G-action
such that there exists an isometric linear G-embedding of V into L2(G)r for some
natural number r. A morphism of Hilbert N (G)-modules f : V → W is a bounded
G-equivariant operator.

Definition 2.6 (Von Neumann dimension). Let V be a finitely generated Hilbert
N (G)-module. Choose a matrix A = (ai,j) ∈ Mr,r(N (G)) with A2 = A such that

the image of the G-equivariant bounded operator r
(2)
A : L2(G)r → L2(G)r given by

A is isometrically G-isomorphic to V . Define the von Neumann dimension of V by

dimN (G)(V ) :=
r∑

i=1

trN (G)(ai,i) ∈ R≥0.

The von Neumann dimension dimN (G)(V ) depends only on the isomorphism
class of the Hilbert N (G)-module V but not on the choice of r and the matrix A.
The von Neumann dimension dimN (G) is faithful, i.e. dimN (G)(V ) = 0 ⇔ V = 0
holds for any finitely generated Hilbert N (G)-module V . It is weakly exact in the
following sense, see [69, Theorem 1.12 on page 21].

Lemma 2.7. Let 0 → V0
i
−→ V1

p
−→ V2 → 0 be a sequence of finitely generated Hilbert

N (G)-modules. Suppose that it is weakly exact, i.e., i is injective, the closure of i
is the kernel of p and the image of p is dense. Then

dimN (G)(V1) = dimN (G)(V0) + dimN (G)(V0).

Example 2.8 (Von Neumann dimension for finite groups). If G is finite, then
dimN (G)(V ) is 1

|G| -times the complex dimension of the underlying complex vector

space V .

Example 2.9 (Von Neumann dimension for Zd). Let X ⊂ T d be any measurable
set and χX ∈ L∞(T d) be its characteristic function. Denote by MχX

: L2(T d) →
L2(T d) the Zd-equivariant unitary projection given by multiplication with χX . Its
image V is a Hilbert N (Zd)-module with dimN (Zd)(V ) = vol(X).

2.3. Weak isomorphisms. A boundedG-equivariant operator f : L2(G)r → L2(G)s

is called a weak isomorphism if and only if it is injective and its image is dense. If
there exists a weak isomorphism L2(G)r → L2(G)s, then we must have r = s by
Lemma 2.7. The following statements are equivalent for a bounded G-equivariant
operator f : L2(G)r → L2(G)r, see [69, Lemma 1.13 on page 23]:

(1) f is a weak isomorphism;
(2) Its adjoint f∗ is a weak isomorphism;
(3) f is injective;
(4) f has dense image;
(5) The von Neumann dimension of the closure of the image of f is r.

2.4. The Fuglede-Kadison determinant.

Definition 2.10 (Spectral density function). Let f : V → W be a morphisms of

finitely generated Hilbert N (G)-modules. Denote by {Ef∗f
λ | λ ∈ R} the (right-

continuous) family of spectral projections of the positive operator f∗f . Define the
spectral density function of f by

Ff : R → R≥0 λ 7→ dimN (G)

(
im(Ef∗f

λ2 )
)
= trN (G)(E

f∗f
λ2 ).

The spectral density function is monotone non-decreasing and right-continuous.
We have F (0) = dimN (G)(ker(f)).
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Example 2.11 (Spectral density function for finite groups). Let G be finite and
f : U → V be a morphism of finitely generated Hilbert N (G)-modules, i.e., of finite-
dimensional unitary G-representations. Then F (f) is the right-continuous step
function whose value at λ is the sum of the complex dimensions of the eigenspaces
of f∗f for eigenvalues µ ≤ λ2 divided by the order of G, or, equivalently, the sum
of the complex dimensions of the eigenspaces of |f | for eigenvalues µ ≤ λ divided
by the order of G.

Example 2.12 (Spectral density function for Zd). Let G = Zd. In the sequel
we use the notation and the identification N (Zd) = L∞(T d) of Example 2.3. For
f ∈ L∞(T d) the spectral density function F (Mf ) of Mf : L

2(T d) → L2(T d) sends
λ to the volume of the set {z ∈ T d | |f(z)| ≤ λ}.

Definition 2.13 (Fuglede-Kadison determinant). Let f : V → W be a morphism
of finitely generated Hilbert N (G)-modules. Let Ff (λ) be the spectral density
function of Definition 2.10 which is a monotone non-decreasing right-continuous
function. Let dF be the unique measure on the Borel σ-algebra on R which satisfies
dF ((a, b]) = F (b)− F (a) for a < b. Define the Fuglede-Kadison determinant

detN (G)(f) ∈ R≥0

to be the positive real number

detN (G)(f) = exp

(∫ ∞

0+

ln(λ) dF

)
,

if the Lebesgue integral
∫∞

0+ ln(λ) dF converges to a real number, and to be 0
otherwise.

Note that in the definition above we do not require that the source and domain
of f agree or that f is injective or that f is surjective. Our conventions imply that
the Fulgede-Kadison operator of the zero operator 0 : V → W is 1.

Example 2.14 (Fuglede-Kadison determinant for finite groups). To illustrate this
definition, we look at the example where G is finite. We essentially get the classical
determinant detC. Namely, let λ1, λ2, . . ., λr be the non-zero eigenvalues of f∗f
with multiplicity µi. Then one obtains, if f∗f is the automorphism of the orthogonal
complement of the kernel of f∗f induced by f∗f ,

detN (G)(f) = exp

(
r∑

i=1

µi

|G|
· ln(

√
λi)

)
=

r∏

i=1

λ
µi

2·|G|

i = detC
(
f∗f

) 1
2·|G| ,

where detC
(
f∗f) is put to be 1 of f is the zero operator and hence f∗f is id : {0} →

{0}. If f : CGm → CGm is an automorphism, we get

detN (G)(f) = |detC(f)|
1

|G| .

Example 2.15 (Fuglede-Kadison determinant for N (Zd)). Let G = Zd. We use
the identification N (Zd) = L∞(T d) of Example 2.3. For f ∈ L∞(T d) we conclude
from Example 2.12

detN (Zd)

(
Mf : L

2(T d) → L2(T d)
)
= exp

(∫

Td

ln(|f(z)|) · χ{u∈Td|f(u) 6=0} dvolz

)

using the convention exp(−∞) = 0.

Let i : H → G be an injective group homomorphism. Let V be a finitely
generated Hilbert N (H)-module. There is an obvious pre-Hilbert structure on
CG ⊗CH V for which G acts by isometries since CG ⊗CH V as a complex vector
space can be identified with

⊕
G/H V . Its Hilbert space completion is a finitely
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generated Hilbert N (G)-module and denoted by i∗V . A morphism of finitely gen-
erated Hilbert N (H)-modules f : V → W induces a morphism of finitely generated
Hilbert N (G)-modules i∗f : i∗V → i∗W .

The following theorem can be found with proof in [69, Theorem 3.14 on page 128
and Lemma 3.15 (4) on page 129].

Theorem 2.16 (Fuglede-Kadison determinant).

(1) Let f : U → V and g : V → W be morphisms of finitely generated Hilbert
N (G)-modules such that f has dense image and g is injective. Then

detN (G)(g ◦ f) = detN (G)(f) · detN (G)(g);

(2) Let f1 : U1 → V1, f2 : U2 → V2 and f3 : U2 → V1 be morphisms of finitely
generated Hilbert N (G)-modules such that f1 has dense image and f2 is
injective. Then

detN (G)

(
f1 f3
0 f2

)
= detN (G)(f1) · detN (G)(f2);

(3) Let f : U → V be a morphism of finitely generated Hilbert N (G)-modules.
Then

detN (G)(f) = detN (G)(f
∗) =

√
detN (G)(f∗f) =

√
detN (G)(ff∗);

(4) Let i : H → G be the inclusion of a subgroup of finite index [G : H ].
Let i∗f : i∗U → i∗V be the morphism of finitely generated Hilbert N (H)-
modules obtained from f by restriction. Then

detN (H)(i
∗f) = detN (G)(f)

[G:H];

(5) Let i : H → G be an injective group homomorphism and let f : U → V be a
morphism of finitely generated Hilbert N (H)-modules. Then

detN (G)(i∗f) = detN (H)(f).

2.5. L2-Betti numbers and L2-torsion of finite Hilbert N (G)-chain com-

plexes. Let G be a group and let

· · · 0 → 0 → C(2)
n

c(2)n−−→ C
(2)
n−1

c
(2)
n−1

−−−→ · · ·
c
(2)
2−−→ C

(2)
1

c
(2)
1−−→ C

(2)
0 → 0 → · · ·

be a finite N (G)-chain complex (C
(2)
∗ , c

(2)
∗ ), i.e., each C

(2)
p is a finitely generated

Hilbert N (G)-module, each differential c
(2)
p is a G-equivariant bounded operator

and there is a natural number n such that C
(2)
p = 0 for p < 0 and for p > n. For

p ∈ N, we define the finitely generated Hilbert N (G)-module

H(2)
p (C

(2)
∗ ) := ker(c(2)p )/im(c

(2)
p+1).

Note that we divide out the closure of the image of c
(2)
p+1 to ensure that we indeed

obtain a finitely generated Hilbert N (G)-module. Denote by

b(2)p (C
(2)
∗ ) := dimN (G)(H

(2)
p (C

(2)
∗ )) ∈ R≥0(2.17)

the p-th L2-Betti number of C
(2)
∗ . We say that the complex C

(2)
∗ is L2-acyclic if all

its L2-Betti numbers vanish.
Define the pth Laplace operator

∆(2)
p := c

(2)
p+1 ◦ (c

(2)
p )∗ + (c

(2)
p−1)

∗ ◦ c(2)p : C(2)
p → C(2)

p .

Then b
(2)
p (C

(2)
∗ ) = dimN (G)(ker(∆

(2)
p )), see [69, Lemma 1.18 on page 24]. Hence

b
(2)
p (C

(2)
∗ ) vanishes if and only if ker(∆

(2)
p ) is trivial, or, equivalently, ∆

(2)
p is a weak

isomorphism.
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We call C
(2)
∗ of determinant class if detN (G)(c

(2)
p ) > 0 holds for every p ∈ N.

This is equivalent to the condition that detN (G)(∆
(2)
p ) > 0 holds for every p ∈ N.

If C∗ is of determinant class, then we define the L2-torsion of C
(2)
∗ by

ρ(2)(C
(2)
∗ ) = ρ(2)(C

(2)
∗ ;N (G)) := −

∑

p∈N

(−1)p · ln(detN (G)(c
(2)
p )).(2.18)

This turns out to be the same as putting

ρ(2)(C
(2)
∗ ) = −

1

2
·
∑

p∈N

(−1)p · p · ln(detN (G)(∆
(2)
p )).(2.19)

2.6. L2-Betti numbers and L2-torsion of finite based free chain complexes

over group rings. Let G be a group and let R be one of the rings Z, Q, R, or C.
Let

· · · 0 → 0 → Cn
cn−→ Cn−1

cn−1
−−−→ · · ·

c2−→ C1
c1−→ C0 → 0 → · · ·

be a finite based free RG-chain complex (C∗, c∗), i.e., each Cp is a finitely generated
freeRG-module equipped with a RG-basis, each differential is aRG-homomorphism
and there is a natural number n such that Cp = 0 for p < 0 and for p > n. The basis

induces on C
(2)
p := L2(G)⊗RGCp the structure of a finitely generated HilbertN (G)-

module in the obvious way. Note for the sequel that this structure is unchanged if
we permute the basis elements or multiply one of the basis elements with ±g for

some g ∈ G. The resulting differentials c
(2)
p = id⊗cp : C

(2)
i → C

(2)
i−1 are bounded

G-equivariant operators. So we get a finite Hilbert N (G)-chain complex C
(2)
∗ . For

p ∈ N, we define the finitely generated Hilbert N (G)-module

H(2)
p (C∗) := H(2)

p (C
(2)
∗ ).

Denote by

b(2)p (C∗) = b(2)p (C∗;N (G)) := b(2)p (C
(2)
∗ ) ∈ R≥0(2.20)

the p-th L2-Betti number of C∗. We say that the complex C∗ is L2-acyclic if all its
L2-Betti numbers vanish.

We call C∗ of determinant class if C
(2)
∗ is of determinant class. If C∗ is of

determinant class, then we define the L2-torsion of C∗ by

ρ(2)(C∗) = ρ(2)(C∗;N (G)) := ρ(2)(C
(2)
∗ ).(2.21)

2.7. L2-Betti numbers and L2-torsion of regular coverings of finite CW -

complexes. Let G be a (discrete) group and X be a finite CW -complex. Let
G → X → X be a G-principal bundle over X , or, equivalently, a normal covering
with G a group of deck transformations. The cellular chain complex C∗(X) of X
with Z-coefficients is a finite free ZG-chain complex. If we choose an ordering on
the set of cells of X , an orientation for each cell in X , and a lift of each cell in
X to cell in X, we obtain a ZG-basis for C∗(X) and we can consider the finite

N (G)-chain complex C
(2)
∗ (X). One easily checks that C

(2)
∗ (X) is independent of

the choices above. Hence we can define the pth L2-Betti number

b(2)p (X) = b(2)p (X;N (G)) := b(2)p (C
(2)
∗ (X)).(2.22)

If C
(2)
∗ (X) is of determinant class, we can also consider the L2-torsion

ρ(2)(X) = ρ(2)(X ;N (G)) := ρ(2)(C
(2)
∗ (X)).(2.23)
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Let X be a finite (not necessarily connected) CW -complex. Let C be any of its

path components. Let C̃ → C be the universal covering of C which is a π1(C)-

principal bundle. So b
(2)
p (C̃) is defined. We put

b(2)p (X̃) :=
∑

C∈π0(X)

b(2)p (C̃).(2.24)

We call X of determinant class if C
(2)
∗ (C̃) is of determinant class for every C ∈

π0(C). In this case we put

ρ(2)(X̃) :=
∑

C∈π0(X)

ρ(2)(C̃).(2.25)

We say that X̃ is L2-acyclic if b
(2)
p (X̃) vanishes for all p ∈ N. We say that X̃ is

det-L2-acyclic if X̃ is of determinant class and b
(2)
p (X̃) vanishes for all p ∈ N.

2.8. Basic properties of L2-Betti numbers and L2-torsion of universal cov-

erings of finite CW -complexes.

Here is a list of basic properties of L2-Betti numbers and L2-torsion of universal
coverings of finite CW -complexes. Note that the status of the Determinant Con-
jecture 3.10 will be reviewed in Remark 3.11. It is known to be true for a very large
class of groups including sofic groups and fundamental groups of 3-manifolds.

(1) (Simple) Homotopy invariance, see [69, Theorem 1.35 (1) on page 37 and
Theorem 3.96 (i) on page 163].

Let f : X → Y be a homotopy equivalence of finite CW -complexes.
(a) Then

b(2)p (X̃) = b(2)p (Ỹ );

(b) Suppose that X̃ or Ỹ is det-L2-acyclic. Then both X̃ and Ỹ are det-
L2-acyclic;

(c) Suppose that f is a simple homotopy equivalence or that f is a homo-
topy equivalence and π1(X) satisfies the Determinant Conjecture 3.10.

Assume that X̃ and Ỹ are det-L2-acyclic. Then

ρ(2)(Ỹ ) = ρ(2)(X̃);

(2) Euler-Poincaré formula, see [69, Theorem 1.35 (2) on page 37].

We get for a finite CW -complex X

χ(X) =
∑

p∈N

(−1)p · b(2)p (X̃);

(3) Sum formula, see [69, Theorem 3.96 (2) on page 164].

Consider the pushout of finite CW -complexes such that j1 is an inclusion
of CW -complexes, j2 is cellular and X inherits its CW -complex structure
from X0, X1 and X2

X0
j1

//

j2

��

X1

i1

��

X2
i2

// X.

Assume that for k = 0, 1, 2 the map π1(ik, x) : π1(Xk, x) → π1(X, jk(x))
induced by the obvious map ik : Xk → X is injective for all base points x
in Xk.

(a) If X̃0, X̃1, and X̃2 are L2-acyclic, then X̃ is L2-acyclic;



SURVEY ON L2-INVARIANTS AND 3-MANIFOLDS 13

(b) If X̃0, X̃1, and X̃2 are det-L2-acyclic, then X̃ is det-L2-acyclic and we
get

ρ(2)(X̃) = ρ(2)(X̃1) + ρ(2)(X̃2)− ρ(2)(X̃0);

(4) Poincaré duality, see [69, Theorem 1.35 (3) on page 37 and Theorem 3.96 (3)
on page 164].

Let M be a closed manifold of dimension n
(a) Then

b(2)p (M̃) = b
(2)
n−p(M̃);

(b) Suppose that n is even and M̃ is det-L2-acyclic. Then

ρ(2)(M̃) = 0;

(5) Product formula, see [69, Theorem 1.35 (4) on page 37 and Theorem 3.96 (4)
on page 164].

Let X and Y be finite CW -complexes.
(a) Then

b(2)p (X̃ × Y ) =
∑

i,j∈N,p=i+j

b
(2)
i (X̃) · b

(2)
j (Ỹ );

(b) Suppose that X̃ is det-L2-acyclic. Then X̃ × Y is det-L2-acyclic and

ρ(2)(X̃ × Y ) = χ(Y ) · ρ(2)(X̃);

(6) Multiplicativity, see [69, Theorem 1.35 (9) on page 38 and Theorem 3.96 (3)
on page 164].

Let X → Y be a finite covering of finite CW -complexes with d sheets.
(a) Then

bp(X̃) = d · bp(Ỹ );

(b) Then X̃ is det-L2-acyclic if and only if Ỹ is det-L2-acyclic, and in this
case

ρ(2)(X̃) = d · ρ(2)(Ỹ );

(7) Determinant class.

If π1(C) satisfies the Determinant Conjecture 3.10 for each component C

of the finite CW -complex X , then X̃ is of determinant class;
(8) 0th L2-Betti number, see [69, Theorem 1.35 (8) on page 38].

If X is a connected finite CW -complex with fundamental group π, then

b
(2)
0 (X̃) =

{
1
|π| if π is finite;

0 otherwise;

(9) Fibration formula, see [69, Lemma 1.41 on page 45 and Corollary 3.103 on
page 166].

(a) Let p : E → B a fibration such that B is a connected finite CW -
complex and the fiber is homotopy equivalent to a finite CW -complex
Z. Suppose that for every b ∈ B and x ∈ Fb := p−1(b) the in-
clusion p−1(b) → E induces an injection on the fundamental groups
π1(Fb, x) → π1(E, x), and that Z is L2-acyclic.
Then E is homotopy equivalent to a finite CW -complex X which is
L2-acyclic;
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(b) Let F
i
−→ E

p
−→ B be locally trivial fiber bundle of finite CW -complexes.

Suppose B is connected, that the map π1(F, x) → π1(E, i(x)) is bijec-

tive for every base point x ∈ F , and that F̃ is det-L2-acyclic.

Then Ẽ is det-L2-acyclic and

ρ(2)(Ẽ) = χ(B) · ρ(2)(F̃ );

(10) S1-actions, see [69, Theorem 1.40 on page 43 and Theorem 3.105 on page 168].

Let X be a connected compact S1-CW -complex, for instance a closed
smooth manifold with smooth S1-action. Suppose that for one orbit S1/H
(and hence for all orbits) the inclusion into X induces a map on π1 with

infinite image. (In particular the S1-action has no fixed points.) Then X̃

is det-L2-acyclic and ρ(2)(M̃) vanishes;
(11) Aspherical spaces, see [69, Theorem 3.111 on page 171 and Theorem 3.113

on page 172].

(a) Let M be an aspherical closed smooth manifold with a smooth S1-
action. Then the conditions appearing in assertion (10) are satisfied

and hence M̃ is det-L2-acyclic and ρ(2)(X̃) vanishes;
(b) If X is an aspherical finite CW -complex whose fundamental group

contains an infinite, elementary amenable, and normal subgroup, then

X̃ is det-L2-acyclic and ρ(2)(X̃) vanishes;
(12) Mapping tori, see [69, Theorem 1.39 on page 42].

Let f : X → X be a self homotopy equivalence of a finite CW -complex.
Denote by Tf its mapping torus.

(a) Then T̃f is L2-acyclic;

(b) If X̃ is det-L2-acyclic, then ρ(2)(T̃f ) vanishes;
(13) Hyperbolic manifolds, see [43], [69, Theorem 1.39 on page 42].

Let M be a hyperbolic closed manifold M of dimension n.

(a) If n is odd, M̃ is det-L2-acyclic;

(b) Suppose n = 2m is even. Then b
(2)
p (M̃) vanishes for p 6= m, and we

have (−1)m · χ(M) = b
(2)
m (M̃) > 0;

(c) For every number m there exists an explicit constant Cm > 0 with the
following property: If M is a hyperbolic closed manifold of dimension
(2m+ 1) with volume vol(M), then

ρ(2)(M̃) = (−1)m · Cm · vol(M).

We have C1 = 1
6π . The number πm · Cm is always rational;

(14) Approximation of L2-Betti numbers by classical Betti numbers, see [68],[69,
Chapter 13].

Let X be a connected finite CW -complex with fundamental group G =
π1(X). Suppose that G comes with a descending chain of subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · ·

such that Gi is normal in G, the index [G : Gi] is finite and we have⋂
i≥0 Gi = {1}. Let bp(Gi\X̃) be the p-th Betti number of the finite CW -

complex Gi\X̃.
Then Gi\X → X is a finite [G : Gi]-sheeted covering and we have

b(2)p (X̃) = lim
i→∞

bp(Gi\X̃)

[G : Gi]
.
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There is also version, where the subgroups are not necessarily normal, see Far-
ber [24].

L2-Betti numbers were originally defined by Atiyah [4]. The definition of L2-
torsion in the analytic setting goes back to Lott [66] and Mathai [76] , and in the
topological setting to Lück-Rothenberg [74].

For more information about L2-invariants we refer for instance to [48, 65, 69].

3. Some open conjectures about L2-invariants

We briefly review some prominent and open conjectures about L2-invariants.

3.1. The Atiyah Conjecture.

Conjecture 3.1 (Atiyah Conjecture). We say that a torsionfree group G satisfies
the Atiyah Conjecture if for any matrix A ∈ Mm,n(QG) the von Neumann dimen-
sion dimN (G)(ker(rA)) of the kernel of the N (G)-homomorphism rA : N (G)m →
N (G)n given by right multiplication with A is an integer.

The Atiyah Conjecture can also be formulated for any field F with Q ⊆ F ⊆ C
and matrices A ∈ Mm,n(FG) and for any group with a bound on the order of its
finite subgroups. However, we only need and therefore consider in this paper the
case, where F = Q and G is torsionfree.

Definition 3.2 (Admissible 3-manifold). A 3-manifold is called admissible if it is
connected, orientable, compact and irreducible, its boundary is empty or a disjoint
union of tori, its fundamental group is infinite, and it is not homeomorphic to
S1 ×D2.

For some information about the proof and in particular of references in the
literature we refer to [28, Theorem 3.2] except for assertion (5) which is due to
Jaikin-Zapirain and Lopez-Alvarez [46, Proposition 6.5]. A group is called locally
indicable if every non-trivial finitely generated subgroup admits an epimorphism
onto Z. Examples are torsionfree one-relator groups.

Theorem 3.3 (Status of the Atiyah Conjecture).

(1) If the torsionfree group G satisfies the Atiyah Conjecture, see Conjecture 3.1,
then also each of its subgroups satisfies the Atiyah Conjecture;

(2) Let C be the smallest class of groups which contains all free groups and
is closed under directed unions and extensions with elementary amenable
quotients. Suppose that G is a torsionfree group which belongs to C.

Then G satisfies the Atiyah Conjecture;
(3) Let G be an infinite group that is the fundamental group of an admissible

3-manifold M which is not a closed graph manifold. Then G is torsionfree
and belongs to C. In particular G satisfies the Atiyah Conjecture;

(4) Let D be the smallest class of groups such that
• The trivial group belongs to D;
• If p : G → A is an epimorphism of a torsionfree group G onto an
elementary amenable group A and if p−1(B) ∈ D for every finite group
B ⊂ A, then G ∈ D;

• D is closed under taking subgroups;
• D is closed under colimits and inverse limits over directed systems.
If the group G belongs to D, then G is torsionfree and the Atiyah Con-

jecture holds for G.
The class D is closed under direct sums, direct products and free products.

Every residually torsionfree elementary amenable group belongs to D;
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(5) A locally indicable group satisfies the Atiyah Conjecture. More generally,
if 1 → H → G → Q → 1 is an extension of groups, H satisfies the
Atyiah Conjecture and Q is locally indicable, then G satisfies the Atyiah
Conjecture.

Remark 3.4. Let G be a finitely presented torsionfree group. Then G satisfies the

Atiyah Conjecture if and only if the pth L2-Betti number b
(2)
p (M̃) is an integer for

every p ≥ 0 and every closed manifold M with π1(M) ∼= G.

Remark 3.5 (Analytic version of L2-Betti numbers). One can define the L2-Betti

number b
(2)
p (M̃) of a closed Riemannian manifold M by the analytic expression

b(2)p (M̃) = lim
t→∞

∫

F

trR(e
−t∆p(x, x)) dvol .(3.6)

Here e−t∆p(x, y) denotes the heat kernel for p-forms on the universal covering M̃
and trR(e

−t∆p(x, x)) is its trace, and F is a fundamental domain for the π1(M)-

action on M̃ , see for instance [4, Proposition 4.16 on page 63] or [69, Section 1.3.2].
In view of expression (3.6) it is rather surprizing that this should always be an
integer if the fundamental group is torsionfree.

Note that any non-negative real number occurs as the von Neumann dimension
of the kernel of some morphisms of finitely generated Hilbert N (G)-modules if G
contains an element of infinite order. So it is crucial that the matrices appearing
in the Atiyah Conjecture 3.3 live already over the group ring.

Associated to the von Neumann algebra N (G) is the algebra of affiliated opera-
tors U(G) which contains N (G). It can be defined analytically or just as the Ore
localization of N (G) with respect to the multiplicative subset of non-zero divisors.
Now one can consider the so called division closure D(G) of QG in U(G).

The proof of the following is based on ideas of Peter Linnell from [61] which have
been explained in detail and a little bit extended in [69, Lemma 10.39 on page 10.39
and Chapter 10] and [86], see also [29, Theorem 3.8].

Theorem 3.7 (Main properties of D(G)). Let G be a torsionfree group.

(1) The group G satisfies the Atiyah Conjecture if and only if D(G) is a skew
field;

(2) Suppose that G satisfies the Atiyah Conjecture. Let C∗ be a QG-chain
complex whose chain-modules are finitely generated projective. Then we get
for all n ≥ 0

b(2)n

(
N (G) ⊗QG C∗

)
= dimD(G)

(
Hn(D(G) ⊗QG C∗)

)
.

In particular b
(2)
n

(
N (G)⊗QG C∗

)
is an integer.

Theorem 3.7 shows that the Atyiah Conjecture is related to the question whether
for a torsionfree group G the group ring QG can be embedded into a skew field, see
for instance [42].

There is a program of Linnell [61] to prove the Atyiah Conjecture which is
discussed in details for instance in [69, Theorem 10.38 on page 387 and Section 10.3]
and [86]. This shows that one has at least some ideas why the Atyiah Conjecture
is true and that the Atiyah Conjecture is related to some deep ring theory and
to algebraic K-theory, notably to projective class groups. This connection to ring
theory has been explained and exploited for instance in [45, 46], where the division
closure is replaced by the ∗-regular closure.

For more information about the Atyiah Conjecture we refer for instance to [69,
Chapter 10].



SURVEY ON L2-INVARIANTS AND 3-MANIFOLDS 17

3.2. The Singer Conjecture.

Conjecture 3.8 (Singer Conjecture). If M is an aspherical closed manifold, then

b(2)p (M̃) = 0 if 2p 6= dim(M).

If M is a closed connected Riemannian manifold with negative sectional curvature
of even dimension dim(M) = 2m, then

(−1)m · χ(M) = b(2)m (M̃) > 0.

Note that the equality (−1)m ·χ(M) = b
(2)
m (M̃) appearing in the Singer Conjec-

ture 3.8 above follows from the the Euler-Poincaré formula χ(M) =
∑

p≥0(−1)p ·

b
(2)
p (M̃). Obviously Singer Conjecture 3.8 implies the following conjecture in the
cases, where M is aspherical or has negative sectional curvature.

Conjecture 3.9 (Hopf Conjecture). If M is an aspherical closed manifold of even
dimension dim(M) = 2m, then

(−1)m · χ(M) ≥ 0.

If M is a closed Riemannian manifold of even dimension dim(M) = 2m with
sectional curvature sec(M), then

(−1)m · χ(M) > 0 if sec(M) < 0;
(−1)m · χ(M) ≥ 0 if sec(M) ≤ 0;

χ(M) = 0 if sec(M) = 0;
χ(M) ≥ 0 if sec(M) ≥ 0;
χ(M) > 0 if sec(M) > 0.

In original versions of the Singer Conjecture 3.8 and the Hopf Conjecture 3.9 the
condition aspherical closed manifolds was replaced by the condition closed Riemann-
ian manifold with non-positive sectional curvature. Note that a closed Riemannian
manifold with non-positive sectional curvature is aspherical by Hadamard’s Theo-
rem.

Note that the Singer Conjecture 3.9 is consistent with the Atiyah Conjecture

in the sense that it predicts that the L2-Betti numbers b
(2)
p (M̃) for an aspherical

closed manifold M are all integers.
The action dimension of a discrete group G is the smallest dimension of a con-

tractible manifold that admits a proper action of G. This notion and its relation
to the Singer Conjecture is explained in [6, 81].

In contrast to the Atyiah Conjecture the evidence for the Singer Conjecture 3.8
comes from computations only and no good strategy is known for a potential proof.
In some sense Poincaré duality and the L2-conditions seems to force the L2-Betti

numbers b
(2)
p (M̃) of an aspherical closed manifold to concentrate in the middle

dimension. One may wonder what happens if we replace M by an aspherical finite
Poincaré complex in the Singer Conjecture 3.8. There are counterexamples to the
Singer Conjecture 3.8 if one weakens aspherical to rationally aspherical, see [5,
Theorem 4].

For more information about the Singer Conjecture and its status we refer for
instance to [21, Conjecture 2], [69, Chapter 11], and [92].

3.3. The Determinant Conjecture.

Conjecture 3.10 (Determinant Conjecture for a group G). For any matrix A ∈
Mr,s(ZG), the Fuglede-Kadison determinant of the morphism of Hilbert modules

r
(2)
A : L2(G)r → L2(G)s given by right multiplication with A satisfies

det
(2)
N (G)

(
r
(2)
A

)
≥ 1.
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Remark 3.11 (Status of the Determinant Conjecture). We will want to assume
that the Determinant Conjecture 3.10 is true because then the condition of deter-
minant class is automatically satisfied. This is an acceptable condition since the
Determinant Conjecture 3.10 is known for a very large class of groups. Namely, the
following is known, see [22, Theorem 5], [69, Section 13.2], [87, Theorem 1.21]. Let
F be the class of groups for which the Determinant Conjecture 3.10 is true. Then:

(1) Amenable quotient
Let H ⊂ G be a normal subgroup. Suppose that H ∈ F and the quotient
G/H is amenable. Then G ∈ F ;

(2) Colimits
If G = colimi∈I Gi is the colimit of the directed system {Gi | i ∈ I} of
groups indexed by the directed set I (with not necessarily injective structure
maps) and each Gi belongs to F , then G belongs to F ;

(3) Inverse limits
If G = limi∈I Gi is the limit of the inverse system {Gi | i ∈ I} of groups
indexed by the directed set I and each Gi belongs to F , then G belongs to
F ;

(4) Subgroups
If H is isomorphic to a subgroup of a group G with G ∈ F , then H ∈ F ;

(5) Quotients with finite kernel
Let 1 → K → G → Q → 1 be an exact sequence of groups. If K is finite
and G belongs to F , then Q belongs to F ;

(6) Sofic groups belong to F ;
(7) The fundamental group of a 3-manifold belongs to F .

The class of sofic groups is very large. It is closed under direct and free products,
taking subgroups, taking inverse and direct limits over directed index sets, and is
closed under extensions with amenable groups as quotients and a sofic group as
kernel. In particular it contains all residually amenable groups and fundamental
groups of 3-manifolds. One expects that there exists non-sofic groups but no ex-
ample is known. More information about sofic groups can be found for instance
in [23] and [82].

For more information about the Determinant Conjecture we refer for instance
to [69, Chapter 13].

3.4. Approximation Conjecture for L2-Betti numbers. Let G be a group
together with an exhausting normal inverse system of subgroups {Gi | i ∈ I} of
normal subgroups of G directed by inclusion over the directed set I such that⋂

i∈I Gi = {1}. If I is given by the natural numbers, this boils down to a nested
sequence of normal subgroups of G

G = G0 ⊃ G1 ⊇ G2 ⊇ · · ·

satisfying
⋂

n≥1 Gn = {1}.

Notation 3.12 (Inverse systems and matrices). Let R be a ring with Z ⊆ R ⊆ C.
Given a matrix A ∈ Mr,s(RG), let A[i] ∈ Mr,s(R[G/Gi]) be the matrix obtained
from A by applying elementwise the ring homomorphism RG → R[G/Gi] induced
by the projection G → G/Gi. Let rA : RGr → RGs and rA[i] : R[G/Gi]

r →
R[G/Gi]

s be the RG- and R[G/Gi]-homomorphisms given by right multiplication

with A and A[i]. Let r
(2)
A : L2(G)r → L2(G)s and r

(2)
A[i] : L

2(G/Gi)
r → L2(G/Gi)

s

be the morphisms of Hilbert N (G)- and Hilbert N (G/Gi)-modules given by right
multiplication with A and A[i].
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Conjecture 3.13 (Approximation Conjecture for L2-Betti numbers). A group G
together with an exhausting normal inverse system of subgroups {Gi | i ∈ I} sat-
isfies the Approximation Conjecture for L2-Betti numbers if one of the following
equivalent conditions holds:

(1) Matrix version

Let A ∈ Mr,s(QG) be a matrix. Then

dimN (G)

(
ker
(
r
(2)
A : L2(G)r → L2(G)s

))

= lim
i∈I

dimN (G/Gi)

(
ker
(
r
(2)
A[i] : L

2(G/Gi)
r → L2(G/Gi)

s
))
;

(2) CW -complex version

Consider normal covering p : X
p
−→ X with G as group of deck transforma-

tion over a CW -complex X of finite type. Put X[i] := Gi\X. Then we get a
normal covering p[i] : X[i] → X with G/Gi as group of deck transformation
and

b(2)p (X;N (G)) = lim
i∈I

b(2)p (X [i];N (G/Gi)).

The two conditions appearing in Conjecture 3.13 are equivalent by [69, Lemma 13.4
on page 455].

Theorem 3.14 (The Determinant Conjecture implies the Approximation Conjec-
ture for L2-Betti numbers). If for each i ∈ I the quotient G/Gi satisfies the Deter-
minant Conjecture 3.10, then the conclusion of the Approximation Conjecture 3.13
holds for {Gi | i ∈ I}.

Proof. See [69, Theorem 13.3 (1) on page 454] and [87]. �

Suppose that each quotient G/Gi is finite. Then we rediscover (14) appearing
in Subsection 2.8 from Remark 3.11 and Theorem 3.14.

For more information about the Approximation Conjecture for L2-Betti num-
bers 3.13 we refer for instance to [69, Chapter 13] and [87, Conjecture 1.10].

3.5. Approximation Conjectures for Fuglede-Kadison determinants and

L2-torsion. Next we turn to Fuglede-Kadison determinants and L2-torsion.

3.5.1. Approximation Conjecture for Fuglede-Kadison determinants.

Conjecture 3.15 (Approximation Conjecture for Fuglede-Kadison determinants).
A group G together with an exhausting normal inverse system of subgroups {Gi |
i ∈ I} satisfies the Approximation Conjecture for Fuglede-Kadison determinants if
for any matrix A ∈ Mr,s(QG) we get for the Fuglede-Kadison determinant

detN (G)

(
r
(2)
A : L2(G)r → L2(G)s

)
> 0;

detN (G/Gi)

(
r
(2)
A[i] : L

2(G/Gi)
r → L2(G/Gi)

s
)

> 0,

and

detN (G)

(
r
(2)
A : L2(G)r → L2(G)s

)

= lim
i∈I

detN (G/Gi)

(
r
(2)
A[i] : L

2(G/Gi)
r → L2(G/Gi)

s
)
,

where the existence of the limit above is part of the claim.

Remark 3.16 (Q-coefficients are necessary). Recall that the Atiyah Conjecture
may be true if we consider matrices over the complex group ring instead of the
rational group ring. Conjecture 3.15 does not hold if one replaces Q by C by the
following result appearing in [69, Example 13.69 on page 481].
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There exists a sequence of integers 2 ≤ n1 < n2 < n3 < · · · and a real number s
such that for G = Z and Gi = ni · Z and the (1, 1)-matrix A given by the element
z − exp(2πis) in C[Z] = C[z, z−1] we get for all i ≥ 1

ln
(
det

(2)
N (G)(r

(2)
A )
)

= 0;

ln
(
det(r

(2)
A[i])

)

[G : Gi]
≤ −1/2.

A strategy for the proof of Conjecture 3.15 is discussed in [71, Section 17], see
also [57]. The uniform integrability condition appearing in [71, Theorem 16.3 (v)
and Remark 16.13] seems to play a key role. It would be automatically satisfied if
one has a uniform estimate on the spectral density functions of the intermediate
stages for i ∈ I. Roughly speaking, the spectrum has to be uniformly thin at zero

for r
(2)
A[i] each i ∈ I. The crudest way to guarantee this condition is to require a

uniform gap at zero in the spectrum for r
(2)
A[i] each i ∈ I, see [71, Lemma 16.14 and

Remark 16.15].

3.5.2. The chain complex version.

Notation 3.17 (Inverse systems and chain complexes). Let C∗ be a finite based free
QG-chain complex. In the sequel we denote by C[i]∗ the Q[G/Gi]-chain complex

Q[G/Gi] ⊗QG C∗, by C
(2)
∗ the finite Hilbert N (G)-chain complex L2(G) ⊗QG C∗,

and by C[i]
(2)
∗ the finite Hilbert N (G/Gi)-chain complex L2(G/Gi)⊗Q[G/Gi] C[i]∗.

The QG-basis for C∗ induces a Q[G/Gi]-basis for C[i]∗ and Hilbert space structures

on C
(2)
∗ and C[i]

(2)
∗ using the standard Hilbert structure on L2(G) and L2(G/Gi).

We emphasize that in the sequel after fixing a QG-basis for C∗ the Q[G/Gi]-basis

for C∗[i] and the Hilbert structures on C
(2)
∗ and C[i]

(2)
∗ have to be chosen in this

particular way.
Denote by

ρ(2)(C∗) := −
∑

p≥0

(−1)p · ln
(
detN (G)(c

(2)
p )
)
;(3.18)

ρ(2)(C[i]∗) := −
∑

p≥0

(−1)p · ln
(
detN (G/Gi)(c[i]

(2)
p )
)
,(3.19)

their L2-torsion over N (G) and N (G/Gi) respectively, provided that C∗ and C[i]∗
are of determinant class.

We have the following chain complex version of Conjecture 3.15 which is obvi-
ously equivalent to Conjecture 3.15

Conjecture 3.20 (Approximation Conjecture for L2-torsion of chain complexes).
A group G together with an exhausting normal inverse system {Gi | i ∈ I} satisfies
the Approximation Conjecture for L2-torsion of chain complexes if the finite based
free QG-chain complex C∗ and C[i]∗ are of determinant class and we have

ρ(2)(C∗) = lim
i∈I

ρ(2)(C[i]∗).

3.5.3. Analytic L2-torsion. Let M be a Riemannian manifold without boundary
that comes with a proper free cocompact isometric G-action. Denote by M [i]
the Riemannian manifold obtained from M by dividing out the Gi-action. The
Riemannian metric on M [i] is induced by the one on M . There is an obvious
proper free cocompact isometric G/Gi-action on M [i] induced by the given G-
action on M . Note that M = M/G is a closed Riemannian manifold and we get
a G-covering M → M and a G/Gi-covering M [i] → M for the closed Riemannian



SURVEY ON L2-INVARIANTS AND 3-MANIFOLDS 21

manifold M = M/G, which are compatible with the Riemannian metrics. Denote
by

ρ
(2)
an (M ;N (G)) ∈ R;(3.21)

ρ
(2)
an (M [i];N (G/Gi)) ∈ R,(3.22)

their analytic L2-torsion over N (G) and N (G/Gi) respectively, provided that M
and M [i] are of determinant class. For the notion of analytic L2-torsion we refer for
instance to [69, Chapter 3]. Burghelea-Friedlander-Kappeler-McDonald [18] have
shown that the analytic L2-torsion agrees with the L2-torsion defined in terms of
the cellular chain complex in (2.23) in the L2-acyclic case.

We will not discuss the condition of determinant class here and in the sequel.
This is not necessary if each Gi satisfies the Determinant Conjecture 3.10, which is
true for a very large class of groups, see Remark 3.11.

Conjecture 3.23 (Approximation Conjecture for analytic L2-torsion). Consider a
group G together with an exhausting normal inverse system {Gi | i ∈ I}. Let M be
a Riemannian manifold without boundary that comes with a proper free cocompact
isometric G-action. Then M and M [i] are of determinant class and

ρ(2)an (M ;N (G)) = lim
i∈I

ρ(2)an (M [i];N (G/Gi)).

Remark 3.24. The conjectures above imply a positive answer to [20, Question 21]
and [69, Question 13.52 on page 478 and Question 13.73 on page 483]. They also
would settle [54, Problem 4.4 and Problem 6.4] and [55, Conjecture 3.5]. One may
wonder whether it is related to the Volume Conjecture due to Kashaev [51] and H.
and J. Murakami [79, Conjecture 5.1 on page 102].

The proof of the following result can be found in [71, Section 16]. It reduces in
the weakly acyclic case Conjecture 3.23 to Conjecture 3.15.

Theorem 3.25. Consider a group G together with an exhausting normal inverse
system {Gi | i ∈ I}. Let M be a Riemannian manifold without boundary that comes

with a proper free cocompact isometric G-action. Suppose that b
(2)
p (M ;N (G)) = 0

for all p ≥ 0. Assume that the Approximation Conjecture for L2-torsion of chain
complexes 3.20 (or, equivalently, Conjecture 3.15) holds for G.

Then Conjecture 3.23 holds for M , i.e., M and M [i] are of determinant class
and

ρ(2)an (M ;N (G)) = lim
i∈I

ρ(2)an (M [i];N (G/Gi)).

Note that in Theorem 3.25 we are not assuming that b
(2)
p (M [i];N (G/Gi)) van-

ishes for all p ≥ 0 and i ∈ I.
It is conceivable that Theorem 3.25 remains true if we drop the assumption that

b
(2)
p (M ;N (G)) vanishes for all p ≥ 0, but our present proof works only under this
assumption, see [71, Remark 16.2].

More information about the conjectures above can be found in [71, Section 15 –
17].

3.6. Homological growth and L2-torsion. Denote by Hn(X ;Z) the singular
homology with integer coefficients. If X is a compact manifold or a finite CW -
complex, then Hn(X ;Z) is a finitely generated group and hence its torsion part
tors(Hn(X ;Z)) is a finite abelian group.

Conjecture 3.26 (Homological growth and L2-torsion for aspherical manifolds).
Let M be an aspherical closed manifold of dimension d with fundamental group G =
π1(M). Consider a nested sequence G = G0 ⊇ G1 ⊇ G2 ⊇ · · · of normal subgroups
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of G of finite index [G : Gi] satisfying
⋂∞

i=0 Gi = {1}. Let M [i] = M̃/Gi → M be
the [G : Gi]-sheeted covering of M associated to Gi ⊆ G.

Then we get for any natural number n with 2n+ 1 6= d

lim
i→∞

ln
(∣∣tors(Hn(M [i];Z))

∣∣)

[G : Gi]
= 0,

and we get in the case d = 2n+ 1

lim
i→∞

ln
(∣∣tors(Hn(M [i];Z))

∣∣)

[G : Gi]
= (−1)n · ρ(2)an (M̃) ≥ 0.

Recall that ρ
(2)
an (M̃) = ρ(2)(M̃) holds, if M̃ is L2-acyclic and that the Singer

Conjecture implies for an aspherical closed manifold of odd dimension that M̃ is
L2-acyclic. Moreover, since G appearing in Conjecture 3.26 is residually finite, the

condition of determinant class is automatically satisfied for M̃ .
One may wonder what happens if we replace M by an aspherical finite Poincaré

complex in Conjecture 3.26.
Conjecture 3.26 is known to be true in the case that G contains a normal in-

finite elementary amenable subgroup or admits a non-trivial S1-action, see [70].
However, to the author’s knowledge there is no hyperbolic 3-manifold for which
Conjecture 3.26 is known to be true.

Conjecture 3.26 is attributed to Bergeron-Venkatesh [12]. They allow only locally
symmetric spaces for M . They also consider the case of twisting with a finite-
dimensional integral representation. Further discussions about this conjecture can
be found for instance in [3, Section 7.5.1], [11], and [17].

The relation between Conjecture 3.15 and Conjecture 3.26 is discussed in [71,
Section 9 and 10].

The chain complex version Conjecture 3.26 is stated in [71, Conjeture 7.12]. We
at least explain what it says for 1-dimensional chain complexes, or, equivalently,
matrices. Here it is important to work over the integral group ring.

Conjecture 3.27 (Approximating Fuglede-Kadison determinants by homology).
Consider a nested sequence G = G0 ⊇ G1 ⊇ G2 ⊇ · · · of normal subgroups of G of
finite index [G : Gi] satisfying

⋂∞
i=0 Gi = {1}. Consider A ∈ Mr,r(ZG).

Then we get using Notation 3.12 for R = Z

det
(2)
N (G)(r

(2)
A ) = lim

i→∞

∣∣tors(coker(rA[i]))
∣∣1/[G:Gi]

.

Recall that for Conjecture 3.15 we could formulate a good condition, namely
the uniform integrability condition, which implies its validity. Nothing like this is
known for Conjecture 3.27. The only infinite group for which Conjecture 3.27 is
known to be true is Z. The proof indicates that some deep number theory may enter
in a potential proof of Conjecture 3.27. Note that for Conjecture 3.27 it is crucial
that the matrix A lives over the integral group ring, whereas for Conjecture 3.15 it
suffices that A lives over the rational group ring, see Remark 3.16.

3.7. L2-invariants and the simplicial volume. We briefly recall the definition
of the simplicial volume.

Let X be a topological space and let Csing
∗ (X ;R) be its singular chain complex

with real coefficients. Recall that a singular p-simplex of X is a continuous map
σ : ∆p → X , where here ∆p denotes the standard p-simplex (and not the Laplace
operator). Let Sp(X) be the set of all singular p-simplices. Then Csing

p (X ;R) is the
real vector space with Sp(X) as basis. The p-th differential ∂p sends the element
σ given by a p-simplex σ : ∆p → X to

∑p
i=0(−1)i · σ ◦ si, where si : ∆p−1 → ∆p
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is the i-th face map. Define the L1-norm of an element x ∈ Csing
p (X ;R), which is

given by the (finite) sum
∑

σ∈Sp(X) λσ · σ, by

||x||1 :=
∑

σ

|λσ |.

We define the L1-seminorm of an element y in the p-th singular homology
Hsing

p (X ;R) := Hp(C
sing
∗ (X ;R)) by

||y||1 := inf{||x||1 | x ∈ Csing
p (X ;R), ∂p(x) = 0, y = [x]}.

Notice that ||y||1 defines only a seminorm on Hsing
p (X ;R), it is possible that ||y||1 =

0 but y 6= 0. The next definition is taken from [38, page 8].

Definition 3.28 (Simplicial volume). Let M be a closed connected orientable
manifold of dimension n. Define its simplicial volume to be the non-negative real
number

||M || := ||j([M ])||1 ∈ R≥0

for any choice of fundamental class [M ] ∈ Hsing
n (M ;Z) and j : Hsing

n (M ;Z) →
Hsing

n (M ;R) the change of coefficients map associated to the inclusion Z → R.

There is the following interesting but poorly understood conjecture relating
the simplicial volume and L2-invariants for aspherical orientable closed manifolds,
see [69, Chapter 14.1].

Conjecture 3.29 (Simplicial volume and L2-invariants). Let M be an aspherical
closed orientable manifold of dimension ≥ 1. Suppose that its simplicial volume

||M || vanishes. Then M̃ is of determinant class and

b(2)p (M̃) = 0 for p ≥ 0;

ρ(2)(M̃) = 0.

For more information about this conjecture we refer for instance to [32], [69,
Chapter 14], [88]. It has been verified by computations if M is a locally symmet-
ric space, if M is 3-manifold, if M carries a non-trivial S1-action, or π1(M) is
elementary amenable. But no strategy for a potential proof is known to the author.

4. The computation of L2-Betti numbers and L2-torsion of

3-manifolds

4.1. L2-Betti numbers of 3-manifolds. The following theorem is taken from [67,
Theorem 0.1].

Theorem 4.1 (L2-Betti numbers of 3-manifolds). Let M be the connected sum
M1# . . .#Mr of compact connected orientable prime 3-manifolds Mj. Assume that

π1(M) is infinite. Then the L2-Betti numbers of the universal covering M̃ are given
by

b
(2)
0 (M̃) = 0;

b
(2)
1 (M̃) = (r − 1)−

r∑

j=1

1

| π1(Mj) |
+
∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣− χ(M);

b
(2)
2 (M̃) = (r − 1)−

r∑

j=1

1

| π1(Mj) |
+
∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣ ;

b
(2)
3 (M̃) = 0.
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In particular, M̃ is L2-acyclic if and only if M is homotopy equivalent, or, equiva-
lently, homeomorphic, to RP3#RP3 or a prime 3-manifold with infinite fundamental
group whose boundary is empty or a union of tori.

4.2. L2-torsion of 3-manifolds. Finally we state the values for the L2-torsion,
see [75, Theorem 0.6].

Theorem 4.2 (L2-torsion of 3-manifolds). Let M be a compact connected ori-
entable prime 3-manifold with infinite fundamental group such that the boundary of
M is empty or a disjoint union of incompressible tori. Let M1, M2, . . ., Mr be the
hyperbolic pieces. (They all have finite volume [78, Theorem B on page 52].)

Then M̃ is det-L2-acyclic and

ρ(2)(M̃) = −
1

6π
·

r∑

i=1

vol(Mi).

In particular, ρ(2)(M̃) is 0 if and and only if M is S1 × S2 or is a graph manifold.

5. The status of the conjectures about L2-invariants for 3-manifolds

5.1. The Atiyah Conjecture. The fundamental group of an admissible 3-manifold
M that is not a closed graph manifold, is torsionfree and satisfies the Atiyah Con-
jecture 3.1, see Theorem 3.3 (3).

5.2. The Singer Conjecture. Every aspherical closed 3-manifold satisfies the
Singer Conjecture 3.8 by Theorem 4.2 since an aspherical closed 3-manifold is irre-
ducible and has infinite fundamental group.

5.3. The Determinant Conjecture. If G is the fundamental group of a com-
pact 3-manifold, then G is residually finite and hence satisfies the Determinant
Conjecture 3.10 by Remark 3.11.

5.4. Homological growth and L2-torsion for aspherical manifolds. The
Conjecture 3.26 about homological growth and L2-torsion for aspherical manifolds,
is wide open. To the authors knowledge, there is no hyperbolic 3-manifold, where
it is known to be true. Already this case would be very interesting.

Namely, suppose that M is a closed hyperbolic 3-manifold. Then ρan(M̃) is
known to be − 1

6π · vol(M), by Theorem 4.2 and hence Conjecture 3.26 predicts

lim
i→∞

ln
(∣∣tors(H1(Gi))

∣∣)

[G : Gi]
=

1

6π
· vol(M).

Since the volume is always positive, the equation above implies that | tors(H1(Gi))|
grows exponentially in [G : Gi]. Some evidence for Conjecture 3.26 for closed
hyperbolic 3-manifolds is given in Sun [94, Corollary 1,6], where it is shown that
for any finitely generated abelian group A, and any closed hyperbolic 3-manifold
M , there exists a finite coverN ofM , such that A is a direct summand ofH1(N ;Z).

Bergeron-Sengun-Venkatesh [11] consider the equality above for arithmetic hy-
perbolic 3-manifolds and relate it to a conjecture about classes in the second integral
homology.

Some numerical evidence for the equality above is given in Sengun [90].
The inequality

lim sup
i→∞

ln
(∣∣tors(H1(Gi))

∣∣)

[G : Gi]
≤

1

6π
· vol(M)

is proved by Thang [59] for a compact connected orientable irreducible 3-manifold
M with infinite fundamental group and empty or toroidal boundary.
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5.5. L2-invariants and the simplicial volume. Define the positive real number
v3 to be the supremum of the volumes of all n-dimensional geodesic simplices,
i.e., the convex hull of (n + 1) points in general position, in the n-dimensional
hyperbolic space H3. If M is an admissible 3-manifold, then one gets from [75,
Theorem 0.6], [93], and [95], see [69, Theorem 14.18 on page 490]

||M || =
−6π

v3
· ρ(2)(M̃).

In particular, ρ(2)(M̃) = 0 if and and only if ||M || = 0. Hence Conjecture 3.29
is true in dimension 3.

It is not true for odd n ≥ 9 that there exists a dimension constant Cn such that

for an aspherical orientable closed manifold M of dimension n we have ρ(2)(M̃) =
Cn · ||M ||, see [69, Theorem 14.38 on page 498].

There are variants of the simplicial volume, namely, the notion of the integral
foliated simplicial volume, see [39, page 305f], [88], or [32, Section 2], and of the
stable integral simplicial volume, see [32, page 709]. The integral foliated simplicial
volume gives an upper bound on the torsion growth for an oriented closed man-

ifold, i.e, an upper bound on lim supi→∞

ln
(∣∣tors(Hn(M [i];Z))

∣∣)
[G:Gi]

in the situation of

Conjecture 3.26, see [32, Theorem 1.6]. There are the open questions whether for
an aspherical oriented closed manifold the simplicial volume and the integral foli-
ated simplicial volume agree and whether for an aspherical oriented closed manifold
with residually finite fundamental group the integral foliated simplicial volume and
the stable integral simplicial volume agree, see [32, Question 1.2 and Question 1.3].
The stable integral simplicial volume and the simplicial volume agree for aspherical
oriented closed 3-manifolds, see [26, Theorem 1].

6. Twisting L2-invariants with finite-dimensional representations

In general one would like to twist L2-Betti numbers and L2-torsion with a finite-
dimensional representation. In this section we discuss the general case and the
technical difficulties and potential applications. The case, where the representation
is a 1-dimensional real representation, is much easier, since then all the technical
problems have been solved, and is very interesting for 3-manifolds. It is treated in
Section 7 and a reader may directly pass to Section 7.

A strategy to do this is discussed in [72]. Consider a groupG and a d-dimensional
complex G-representation V . Consider a CG-homomorphism f : CGm → CGn.
Choose a C-basis B for the underlying complex vector spaces V . (No compatibility
conditions with the G-actions are required for this basis.) Then one can define a
new CG-homomorphism ηGV,B(f) : CG

md → CGnd, see Remark 6.8. By applying

L2(G) ⊗CG −, we obtain a bounded G-equivariant operator η
(2)
V,B(f) : L

2(G)md →

L2(G)nd. Analogously, we can assign to a finite based free CG-chain complex C∗ a

finite Hilbert N (G)-chain complex η
(2)
V,B(C∗).

One important question is what the relationship of the L2-Betti numbers of

η
(2)
V,B(C∗) and of C

(2)
∗ are. The hope is that

b(2)p (η
(2)
V,B(C∗)) = dimC(V ) · b(2)p (C

(2)
∗ )(6.1)

holds. This has interesting consequences for the behaviour of L2-Betti numbers
under fibrations, see [72, Section 5.2]. The answer to Question 6.1 is positive if G
is a torsionfree elementary amenable group, see [72, Lemma 5.2].

For L2-torsion the following question is crucial.
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Question 6.2. Suppose that C
(2)
∗ is det-L2-acyclic. Is then η

(2)
V,B(C∗) det-L2-

acyclic?

Remark 6.3 (L2-torsion and character varieties). Let G be a group and denote
by R(G,GLn(C)) the character variety given by group homomorphisms u : G →
GLn(C). Let C∗ be a det-L2-acyclic CG-chain complex. It may come from the

cellular ZG-chain complex C∗(X̃) for an appropriate det-L2-acyclic CW -complexX
with G ∼= π1(X), for instance from a closed aspherical manifold X of odd dimension
with G ∼= π1(X).

If the answer to Question 6.2 is positive, one could study the interesting function
from the character variety R(G,GLn(C)), which assign to such u ∈ R(G,GLn(C))

the L2-torsion of η
(2)
Vu,Bu

(C∗) for Vu the n-dimensional complex G-representation
with the obvious basis B associated to u. One may ask whether the function on the
character variety is continuous. This problem is in general wide open, but solved in
some special case as we will see below. We will describe some special cases, where
this type of function leads to interesting results.

If η
(2)
Vu,Bu

(C∗) has a gap at the spectrum at zero, then obviously the L2-torsion

of η
(2)
Vu,Bu

(C∗) is well-defined. Moreover the function sending v ∈ R(G,GLn(C)) to

the L2-torsion of η
(2)
Vu,Bu

(C∗) is well-defined and continuous in neighborhood of u.
This follows form the continuity of the Fulgede-Kadison determinant for invertible
matrices over the group von Neumann algebra with respect to the norm topology,
see [19, Theorem 1.10 (d)], [33, Theorem 1 (3)], or, [72, Lemma 9.14]. This is
studied in more detail for a hyperbolic 3-manifold M with empty or incompressible
torus boundary and the canonical holonomy representation h : π1(M) → SL2(C) by
Bénard-Raimbault [10]. They actually show that this function is real analytic near
h.

Remark 6.4 (Twisting L2-torsion for det-L2-acyclic finite CW -complexes). Of
course it is interesting to study for a det-L2-acyclic finite CW -complex its twisted

L2-torsion ρ(2)(X ;V,B) = ρ(2)(η
(2)
V,B(C∗(X̃))) for a finite dimensional complex π1(X)-

representation V with a basisB for its underlying vector space. The basic properties
including the independence of the choice of B are discussed in [72, Theorem 6.7].

Unfortunately, deciding Question 6.2 seems to be very hard. The only case,
where one knows that the answer is positive, is the one, where G is finitely generated
residually finite, V is a Zd-representation and V is viewed as G-representation by
a group homomorphism from G or π1(X) to Zd, see [72, Theorem 6.7]. There are
interesting results in this setting as we see below, for instance if V is 1-dimensional.

Remark 6.5 (Unitary representations). If the representation is unitary, then (6.1)

is true and the answer to Question 6.2 is positive, Moreover, we have ρ(2)(η
(2)
V,B(C∗)) =

dimC(V ) · ρ(2)(C
(2)
∗ ) and hence the twisting has no interesting effect, see [72, The-

orem 3.1]. Hence it is crucial to consider not necessarily unitary representations.

All these problems are related to the following question. Define the regular
Fuglede-Kadison determinant of a morphism f : U → U of finitely generated Hilbert
N (G)-modules

detrN (G)(f) :=

{
detN (Γ)(f) if f is injective and of determinant class;

0 otherwise,
(6.6)

One should not confuse the Fuglede-Kadison determinant detN (G)(f) and the
regular Fuglede-Kadison determinant detrN (G)(f) of a morphism f : U → V of

finitely generated Hilbert N (G)-modules, see [72, Remark 8.9].
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For an element x =
∑

g∈G λg · g in CG define its support suppG(x) to be the

finite subset {g ∈ G | λg 6= 0} of G. For a matrix A = (ai,j) ∈ M(m,n;CG) define
its support to be the finite subset

⋃
i,j suppG(ai, j) of G. The following question is

taken from [72, Question 9.11].

Question 6.7 (Continuity of the regular determinant). Let G be a group for which
there exists a natural number d, such that the order of any finite subgroup H ⊆ G
is bounded by d, e.g., G is torsionfree. Let S ⊆ G be a finite subset. Put C[n, S] :=
{A ∈ Mn,n(CG) | suppG(A) ⊆ S} and equip it with the standard topology coming
from the structure of a finite-dimensional complex vector space.

(1) Is the function given by the regular Fuglede-Kadison determinant

C[n, S] → [0,∞], A 7→ detrN (G)(r
(2)
A : L2(G)n → L2(G)n)

continuous?
(2) Consider A ∈ C[S] such that r

(2)
A : L2(G)n → L2(G)n is a weak isomor-

phism of determinant class. Does there exist an open neighbourhood U of

A in C[S] such that for every element B ∈ U also r
(2)
B : L2(G)n → L2(G)n

is a weak isomorphism of determinant class?

We mention that the answer to this question is known to be negative for some
finitely presented groups for which there is no bound on the order of its finite
subgroups, see [72, Remark 9.12]. Moreover, one cannot discard the condition about
the existence of the finite set S, see [72, Remark 9.13]. The answer is positive if G
is finitely generated abelian. It is possible that the answer is always positive for a
torsionfree finitely generated group G.

Remark 6.8 (Basic idea of the construction of ηGV,B). The basic idea is the follow-

ing. Let M and V be CG-modules. Denote by (M ⊗C V )1 the CG-module whose
underlying vector space is M ⊗CV and on which g ∈ G acts only on the first factor,
i.e., g(u ⊗ v) = gu ⊗ v. Denote by (M ⊗C V )d the CG-module whose underlying
vector space is M⊗CV and on which g ∈ G acts diagonally, i.e., g(u⊗v) = gu⊗gv.
Note that (M ⊗C V )1 is independent of the G-action on V and CG-isomorphic to
the direct sum of dimC(V ) copies of M , whereas (CG⊗C M)d does depend on the
G-action on M . We obtain a CG-isomorphism

ξV (M) : (M ⊗C V )1
∼=
−→ (M ⊗C V )d, g ⊗ v 7→ g ⊗ gv,

whose inverse sends g⊗v to g⊗g−1v. Given a CG-homomorphism f : CGm → CGn,
we obtain a CG-homomorphism (f⊗C idV )d : (CGm⊗CV )d → (CGn⊗CV )d. If V is
a d-dimensional complex representation which comes with a basis for the underlying
complex vector space, we obtain an identification (CGm ⊗C V )1 = CGmd and we
define ηGV,B(f) by requiring that the following diagram commutes

CGmd = (CGm ⊗C V )1
ξV (CGm)

//

ηG
V,B(f)

��

(CGm ⊗C V )d

f⊗CidV

��

CGnd = (CGn ⊗C V )1
ξV (CGn)

// (CGn ⊗C V )d

More details can be found in [72, Section 1 and 2].

Some information about the equality of analytic and topological torsion for the
twisted versions can be found for instance in [98].
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7. Twisting L2-invariants with a homomorphism to R

Consider a finite connected CW -complex X and an element φ ∈ H1(X ;R) =
hom(π1(X),R). We call two functions f0, f1 : R>0 → R equivalent if there exists
an element r ∈ R such that f0(t) − f1(t) = r · ln(t) holds for all t ∈ R>0. In
the sequel function R>0 → R is often to be understood as an equivalence class of
functions R>0 → R. One has to interprete some statements to be for one and hence
all representatives and equality of functions means the equality of their equivalence
classes.

Assumption 7.1. We will assume that

• The finite CW -complex X is det-L2-acyclic;
• Its fundamental group π1(X) is residually finite;
• Its fundamental group π1(X) satisfies the Farrell-Jones Conjecture for ZG.

Remark 7.2 (Assumption 7.1). The reader does not need to know what the K-
theoretic Farrell-Jones Conjecture for ZG is, it can be used as a black box. The
reader should have in mind that it is known for a large class of groups, e.g., hy-
perbolic groups, CAT(0)-groups, solvable groups, lattices in almost connected Lie
groups, fundamental groups of 3-manifolds and passes to subgroups, finite direct
products, free products, and colimits of directed systems of groups (with arbitrary
structure maps). For more information we refer for instance to [7, 8, 9, 25, 49, 73,
99].

In particular Assumption 7.1 is satisfied if X is an admissible 3-manifold.

Then from the construction of Section 6 we get a well-defined (equivalence class
of) function R>0 → R, denoted by

(7.3) ρ(2)(X̃ ;φ) : R>0 → R

and called reduced twisted L2-torsion function. It sends t ∈ R>0 to ρ(2)(X̃;Ct)
for the complex representation with underlying complex vector space C on which
g ∈ π1(X) acts by multiplication with the real number tφ(g).

If X is a finite not necessarily connected CW -complex, we require that Assump-
tion 7.1 holds for each component C of X and we define

ρ(2)(X̃;φ) =
∑

C∈π0(X)

ρ(2)(C̃;φ|C).

Theorem 7.4 (Properties of the twisted L2-torsion function). Let X be a fi-
nite CW -complex which satisfies Assumption 7.1 and comes with an element φ ∈
H1(X ;R).

(1) Well-definedness

The function ρ(2)(X̃ ;φ) is well-defined;
(2) Logarithmic estimate

There exist constants C ≥ 0 and D ≥ 0, such that we get for 0 < t ≤ 1

C · ln(t)−D ≤ ρ(2)(X̃ ;φ)(t) ≤ −C · ln(t) +D,

and for t ≥ 1

−C · ln(t)−D ≤ ρ(2)(X̃;φ)(t) ≤ C · ln(t) +D;

(3) G-homotopy invariance
Let Y be a finite CW -complex and let f : Y → X be a G-homotopy equiv-
alence. Denote by f∗φ ∈ H1(Y ;R) the image of φ under the isomorphism

H1(f ;R) : H1(X ;R)
∼=
−→ H1(Y ;R).

Then Y satisfies Assumption 7.1 with respect to f∗φ and we get

ρ(2)(Y ; f∗φ) = ρ(2)(X ;φ);
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(4) Sum formula
Consider a cellular pushout of finite CW -complexes

X0
i1

//

j0

!!
❇

❇

❇

❇

❇

❇

❇

❇

i2

��

X1

j1

��

X2
j2

// X

where i1 is cellular, i0 is an inclusion of CW -complexes and X has the
obvious CW -structure coming from the ones on X0, X1 and X2. Suppose
that for i = 0, 1, 2 the map ji is π1-injective, i.e., for any choice of bases
point xi ∈ Xi the induced map π1(ji, xi) : π1(Xi, xi) → π1(X, ji(xi)) is
injective. Suppose we are given elements φi ∈ H1(Xi;R) and φ ∈ H1(X ;R)
such that j∗i (φ) = φi holds for i = 0, 1, 2. Assume that Xi for i = 0, 1, 2
and X satisfy Assumption 7.1.

Then we get

ρ(2)(X̃ ;φ) = ρ(2)(X̃1;φ1) + ρ(2)(X̃2;φ2)− ρ(2)(X̃0;φ0);

(5) Product formula
Let Y be a finite connected CW -complex such that π1(Y ) is residually finite.
Consider an element φ′ ∈ H1(X × Y ;R) such that φ is the image of φ′

under the map H1(X × Y ;R) → H1(X ;R) induced by the inclusion X →
X × Y, x 7→ (x, y) for any choice of base point y ∈ Y . Suppose that X
satisfies Assumption 7.1.

Then X × Y satisfies Assumption 7.1 with respect to φ′ and we get

ρ(2)(X̃ × Y ;φ′) = χ(Y ) · ρ(2)(X̃ ;φ);

(6) Poincaré duality
Let X be a finite orientable n-dimensional Poincaré complex, e.g., a closed
orientable manifold of dimension n without boundary. Then

ρ(2)(X̃ ;φ)(t) = (−1)n+1 · ρ(2)(X̃;φ)(t−1);

(7) Finite coverings
Let p : Y → X be a d-sheeted covering. Then Y satisfies Assumption 7.1
with respect to p∗φ and we get

ρ(2)(Ỹ ; p∗φX) = d · ρ(2)(X̃ ;φ);

(8) Scaling φ
Let r ∈ R be a real number. Then

ρ(2)(X ; r · φ)(t) = ρ(2)(X ;φ)(tr).

(9) Value for t = 0.

The value ρ(2)(X̃;φ)(0) is the L2-torsion ρ̃(X̃).

Definition 7.5 (Degree of an equivalence class of functions R>0 → R). Let ρ be
an equivalence class of functions R>0 → R. Let ρ be a representative. Assume that

lim inft→0+
ρ(t)
ln(t) ∈ R and lim supt→∞

ρ(t)
ln(t) ∈ R.

Then define the degree at zero and the degree at infinity of ρ to be the real
numbers

deg0(ρ) := lim inf
t→0+

ρ(t)

ln(t)
;

deg∞(ρ) := lim sup
t→∞

ρ(t)

ln(t)
.
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Define the degree of ρ to be the real number

deg(ρ) := deg∞(ρ)− deg0(ρ) = lim sup
t→∞

ρ(t)

ln(t)
− lim inf

t→0+

ρ(t)

ln(t)
.

Thus we can assign to a finite CW -complex X satisfying Assumption 7.1 and
φ ∈ H1(X ;R) its degree

(7.6) deg(X ;φ) := deg(ρ(2)(X̃;φ)) ∈ R.

This is a new invariant with high potential although it is very hard to compute.
We will be able to relate the degree to the Thurston norm for an admissible 3-
manifold in the next Section 8.

Conjecture 7.7. The reduced twisted L2-torsion function ρ(2)(X̃ ;φ) : R>0 → R is
continuous.

Moreover, the lim inf and lim sup terms appearing in Definition 7.5 are actually
limits lim.

Conjecture 7.7 has been proved for admissible 3-manifolds X by Liu [63, Theo-
rem 1.2], where also multiplicative convexity is shown.

Moreover, for an admissible 3-manifold X the degree defines a continuous func-
tion on H1(X ;R), see [63, Theorem 6.1]. We conjecture that this is true for every
finite CW -complex X which satisfies Assumption 7.1.

Many of the results of this section are inspired by classical results on the Mahler
measure, see [13, 14], which is the same as the Fuglede-Kadison determinant in the
special case G = Zd, see [69, Example 3.13 on page 128 and (3.23) on page 136].

8. The degree of the reduced twisted L2-torsion function and the

Thurston norm

.
The following result was proved independently by Friedl-Lück[29, Theorem 0.1]

and by Liu [63, Theorem 1.2]. The proofs depend on the facts that both the
Thurston Geometrization Conjecture and the Virtually Fibering Conjecture are
true, see Subsection 1.3 and 1.4.

Theorem 8.1. Let M be an admissible 3-manifold in the sense of Definition 3.2.
Then we get for any element φ ∈ H1(M ;Q) that

deg(M ;φ) = −xM (φ),

where the degree deg(M ;φ) := deg(ρ(2)(M̃ ;φ)) has been defined in Section 7 and
xM (φ) is the Thurston norm, see Subsection 1.7.

Actually, Friedl-Lück [29, Theorem 5.1] get a much more general result, where
one can consider not only the universal covering but appropriate G-coverings G →
M → M and get estimates for the L2-function for all times t ∈ (0,∞) which imply
the equality of the degree and the Thurston norm.

9. The universal L2-torsion and the Thurston polytope

9.1. The weak Whitehead group. Next we assign to a group G the weak K1-

groups Kw
1 (ZG), K̃w

1 (ZG) and the weak Whitehead group Whw(G), which are
variations on the corresponding classical groups.

Definition 9.1 (Kw
1 (ZG)). Define the weak K1-group

Kw
1 (ZG)
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to be the abelian group defined in terms of generators and relations as follows.
Generators [f ] are given by of ZG-endomorphisms f : ZGn → ZGn for n ∈ Z, n ≥ 0
such that the induced bounded G-equivariant operator f (2) : L2(G)n → L2(G)n

is a weak isomorphism of finite Hilbert N (G)-modules. If f1, f2 : ZGn → ZGn are

ZG-endomorphisms such that f
(2)
1 and f

(2)
2 are weak isomorphisms, then we require

the relation

[f2 ◦ f1] = [f1] + [f2].

If f0 : ZGm → ZGm, f2 : ZGn → ZGn and f1 : ZGn → ZGm are ZG-maps such

that f
(2)
0 and f

(2)
2 are weak isomorphisms, then we get for the ZG-map

f =

(
f0 f1
0 f2

)
: ZGm+n = ZGm ⊕ ZGn → ZGm ⊕ ZGn

the relation

[f ] = [f0] + [f2].

Let

K̃w
1 (ZG)

be the quotient of Kw
1 (ZG) by the subgroup generated by the element [− id : ZG →

ZG]. This is the same as the cokernel of the obvious composite K1(Z) → Kw
1 (ZG).

Define the weak Whitehead group of G

Whw(G)

to be the cokernel of the homomorphism

{σ · g | σ ∈ {±1}, g ∈ G} → Kw
1 (ZG), σ · g 7→ [rσ·g : ZG → ZG].

These groups are in general much larger than their classical analogues. For
example, we have Wh(Z) = 0 and Whw(Z) ∼= Q(z±1)×/{±zn | n ∈ Z}. More
generally, if G is torsionfree, the Farrell-Jones Conjecture implies Wh(G) = {0}
and we have the following result taken from [60, Theorem 0.1].

Theorem 9.2 (Kw
1 (G) and units in D(G)). Let C be the smallest class of groups

which contains all free groups and is closed under directed unions and extensions
with elementary amenable quotients. Let G be a torsionfree group which belongs to
C.

Then the division closure D(G) of QG in U(G) is a skew field and there are
isomorphisms of abelian groups

Kw
1 (ZG)

∼=
−→ K1(D(G))

∼=
−→ D(G)×/[D(G)×,D(G)×].

9.2. The universal L2-torsion. Given an L2-acyclic finite based free ZG-chain
complex C∗, Friedl-Lück [27, Definition 1.7] assign to it its universal L2-torsion,

(9.3) ρ(2)u (C∗) ∈ K̃w
1 (G).

It is characterized by the universal properties that

ρ(2)u

(
0 → ZG

± id
−−→ ZG → 0

)
= 0

and that for any short based exact sequence 0 → C∗ → D∗ → E∗ → 0 of L2-acyclic

finite based free ZG-chain complexes we get ρ
(2)
u (D∗) = ρ

(2)
u (C∗) + ρ

(2)
u (E∗), as

explained in [27, Definition 1.16]. If X is a det-L2-acyclic finite CW -complex with
fundamental group π = π1(X), it defines an element

(9.4) ρ(2)u (X̃) ∈ Whw(π)

determined by ρ
(2)
u (C∗(X̃)), where C∗(X̃) is the cellular Zπ-chain complex of the

universal covering X̃ of X .
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The basic properties of these invariants including homotopy invariance, sum
formula, product formula, and Poincaré duality are collected in [27, Theorem 2.11].
One can show for a finitely presented group G, for which there exists at least one
L2-acyclic finite connected CW -complex X with π1(X) ∼= G, that every element

in Whw(G) can be realized as ρ
(2)
u (Ỹ ) for some L2-acyclic finite connected CW -

complex Y with G ∼= π1(Y ), see [27, Lemma 2.8].
The point of this new invariant is that it encompasses many other well-known

invariants such as the reduced twisted L2-torsion function (which is sometimes also
called L2-Alexander torsion), as explained in [27, Introduction]. We next illustrate
this by considering the dual Thurston polytope of an admissible 3-manifold.

9.3. Polytopes. A polytope in a finite-dimensional real vector space V is a subset
which is the convex hull of a finite subset of V . An element p in a polytope is called
extreme if the implication p = q1

2 + q2
2 =⇒ q1 = q2 = p holds for all elements q1 and

q2 in the polytope. Denote by Ext(P ) the set of extreme points of P . If P is the
convex hull of the finite set S, then Ext(P ) ⊆ S and P is the convex hull of Ext(P ).
The Minkowski sum of two polytopes P1 and P2 is defined to be the polytope

P1 + P2 := {p1 + p2 | p1 ∈ P1, p ∈ P2}.

It is the convex hull of the set {p1 + p2 | p1 ∈ Ext(P1), p2 ∈ Ext(P2)}.
Let H be a finitely generated free abelian group. We obtain a finite-dimensional

real vector space R ⊗Z H . An integral polytope in R ⊗Z H is a polytope such
that Ext(P ) is contained in H , where we consider H as a lattice in R ⊗Z H by
the standard embedding H → R ⊗Z H, h 7→ 1 ⊗ h. The Minkowski sum of two
integral polytopes is again an integral polytope. Hence the integral polytopes form
an abelian monoid under the Minkowski sum with the integral polytope {0} as
neutral element.

Definition 9.5 (Grothendieck group of integral polytopes). Let PZ(H) be the
abelian group given by the Grothendieck construction applied to the abelian monoid
of integral polytopes in R⊗Z H under the Minkowski sum.

Notice that for polytopes P0, P1 and Q in a finite-dimensional real vector space
we have the implication P0 +Q = P1 +Q =⇒ P0 = P1, see [85, Lemma 2]. Hence
elements in PZ(H) are given by formal differences [P ] − [Q] for integral polytopes
P and Q in R⊗Z H and we have [P0]− [Q0] = [P1]− [Q1] ⇐⇒ P0 +Q1 = P1 +Q0.

There is an obvious homomorphism of abelian groups i : H → PZ(H) which
sends h ∈ H to the class of the polytope {h}. Denote its cokernel by

PWh
Z (H) = coker

(
i : H → PZ(H)

)
.(9.6)

Put differently, in PWh
Z (H) two polytopes are identified if they are obtained by

translation with some element in the lattice H from one another.

Example 9.7. An integral polytope in R ⊗Z Z is given by an interval [m,n] for
integers m,n with m ≤ n. The Minkowski sum becomes [m1, n1] + [m2, n2] =
[m1 + m2, n1 + n2]. One easily checks that one obtains isomorphisms of abelian
groups

PZ(Z)
∼=
−→ Z2 [[m,n]] 7→ (n−m,m);(9.8)

PWh
Z (Z)

∼=
−→ Z, [[m,n]] 7→ n−m.(9.9)

Given a homomorphism of finitely generated abelian groups f : H → H ′, we can
assign to an integral polytope P ⊆ R⊗Z H an integral polytope in R⊗Z H

′ by the
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image of P under idR ⊗Zf : R⊗ZH → R⊗ZH
′ and thus we obtain homomorphisms

of abelian groups

PZ(f) : PZ(H) → PZ(H
′), [P ] 7→ [idR ⊗Zf(P )];(9.10)

PWh
Z (f) : PWh

Z (H) → PWh
Z (H ′).(9.11)

The elementary proof of the next lemma can be found in [27, Lemma 3.8].

Lemma 9.12. Let H be a finitely generated free abelian group. Then:

(1) The homomorphism

ξ : PZ(H) →
∏

φ∈homZ(H,Z)

PZ(Z), [P ]− [Q] 7→
(
PZ(φ)([P ] − [Q])

)
φ

is injective;
(2) The canonical short sequence of abelian groups

0 → H
i
−→ PZ(H)

pr
−→ PWh

Z (H) → 0

is split exact;
(3) The abelian groups PZ(H) and PWh

Z (H) are free. They are finitely generated
free if and only if H ∼= Z.

Explicit bases of the free abelian groups PZ(H) and PWh
Z (H) are constructed by

Funke [34].

9.4. The polytope homomorphism and the L2-torsion polytope. Given a
torsionfree group G that satisfies the Atiyah Conjecture, the polytope homomor-
phism

(9.13) P : Whw(ZG) → PWh
Z (H1(G)f )

is constructed in [27, Section 3.2 3.2].

Definition 9.14 (L2-torsion polytope). Let X is an L2-acyclic finite CW -complex
such that π1(X) is torsionfree and satisfies the Atiyah Conjecture. The L2-torsion
polytope

P (X̃) ∈ PWh
Z (H1(G)f )

is defined to be the negative of the image of the universal L2-torsion ρ
(2)
u (X̃) defined

in Subsection 9.2 under the polytope homomorphism (9.13).

Note that we abuse language here a little bit, the L2-torsion polytope is a formal
difference of integral polytopes and not itself a polytope.

9.5. The dual Thurston polytope and the L2-torsion polytope. Of particu-
lar interest is the composition of the universal torsion with the polytope homomor-
phism. For example let M be an admissible 3-manifold that is not a closed graph
manifold. Then we obtain a well-defined element

P (M̃) := P(ρu(M̃)) ∈ PWh
Z (H1(M)f ).

Recall from Theorem 3.3 3 the fundamental group of an admissible 3-manifold

M satisfies the Atiyah Conjecture and hence its L2-torsion polytope P (X̃) ∈
PWh
Z (H1(G)f ) is defined. The next result is taken from [27, Theorem 3.7].

Theorem 9.15 (The dual Thurston polytope and the L2-torsion polytope). Let
M be an admissible 3-manifold. Then

[T (M)∗] = 2 · P (M̃) ∈ PWh
Z (H1(M)f ).
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10. Profinite completion of the fundamental group of a 3-manifold

We can associate to a (discrete) group its profinite completion defined as

Ĝ := invlimN G/N(10.1)

where N runs through normal subgroups N of G with finite index [G : N ]. The

inverse limit Ĝ is a compact, totally disconnected group. The canonical group

homomorphism i : G → Ĝ has dense image.

Definition 10.2 (Profinitely rigid). A finitely generated residually finite group
G is profinitely rigid if for every finitely generated residually finite group K with

K̂ ∼= Ĝ we have K ∼= G.

It makes no difference whether K̂ ∼= Ĝ means abstract isomorphism of groups or
topological group isomorphism, see Nikolov and Segal [80, Theorem 1.1].

Recall that an admissible 3-manifold N is topologically rigid in the sense that
any other 3-manifold N with π1(N) ∼= π1(M) is homeomorphic to M , see Subsec-
tion 1.5. So one may ask whether for two admissible 3-manifolds the following three
assertions are equivalent

• π̂1(M) ∼= π̂1(N);
• π1(M) ∼= π1(N);
• M and N are homeomorphic.

To the author’s knowledge profinite rigidity of fundamental groups of hyperbolic
closed 3-manifolds, even among themselves, is an open question. Examples of
hyperbolic closed 3-manifolds, whose fundamental groups are profinite rigid in the
absolute sense, are constructed in [16]. A weaker but still open problem is the
following which is equivalent to [48, Conjecture 6.33].

Conjecture 10.3 (Volume and profinitely rigidity). Let M and N be admissible

closed 3-manifolds. Then π̂1(M) ∼= π̂1(N) implies ρ(2)(M̃) = ρ(2)(Ñ).

Recall that for two hyperbolic 3-manifolds we have ρ(2)(M̃) = ρ(2)(M̃) ⇐⇒
vol(M) = vol(N), see Theorem 4.2, and there are up to diffeomorphism only finitely
many hyperbolic 3-manifolds with the same volume.

Liu [64, Theorem 1.1] has shown that among the class of finitely generated
3-manifold groups, every finite-volume hyperbolic 3-manifold group is profinitely
almost rigid, where a group G is profinitely almost rigid among a class of groups C,
if there exist finitely many groups in C, such that any group in C that is profinitely
isomorphic to G is isomorphic to one of those groups. Seifert manifolds and graph
manifolds have been treated in [100, 101].

The proof of the following result can be found in [48, Satz 6.34].

Theorem 10.4. If Conjecture 3.26 holds in dimension 3, Conjecture 10.3 is true.

The first L2-Betti number is profinite among finitely presented residually finite
groups, i.e., the first L2-Betti numbers of two finitely presented residually finite
groups agree if the profinite completion of these two groups are isomorphic, see [15,
Corollary 3.3]. Higher L2-Betti numbers are not profinite rigid among finitely
presented residually finite groups, see [50, Theorem 1].

For more information about profinite rigidity we refer for instance to [48, Sec-
tion 6.7].

11. Miscellaneous

We can also use this approach to assign formal differences of polytopes to
many other groups, e.g., free-by-cyclic groups and two-generator one-relator groups.
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These examples are discussed in more details in [30], where further references to
the literature can be found.

Finally letG be any group that admits a finite model for BG and that satisfies the
Atiyah Conjecture and let f : G → G be a monomorphism. Then we can associate
to this monomorphism the polytope invariant of the corresponding ascending HNN-
extension. If G = F2 is the free group on two generators this polytope invariant has
been studied by Funke-Kielak [35]. We hope that this invariant of monomorphisms
of groups will have other interesting applications.

Bieri-Neumann-Strebel invariants are related to polytopes and L2-invariants, see
for instance [52].

There are further interesting connections between L2-invariants and group the-
ory, orbit equivalence and von Neumann algebras which we cannot cover here, see
for instance [69].
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[11] N. Bergeron, M. H. Şengün, and A. Venkatesh. Torsion homology growth and cycle com-

plexity of arithmetic manifolds. Duke Math. J., 165(9):1629–1693, 2016.
[12] N. Bergeron and A. Venkatesh. The asymptotic growth of torsion homology for arithmetic

groups. J. Inst. Math. Jussieu, 12(2):391–447, 2013.
[13] D. W. Boyd. Speculations concerning the range of Mahler’s measure. Canad. Math. Bull.,

24(4):453–469, 1981.
[14] D. W. Boyd. Uniform approximation to Mahler’s measure in several variables. Canad. Math.

Bull., 41(1):125–128, 1998.
[15] M. R. Bridson, M. D. E. Conder, and A. W. Reid. Determining Fuchsian groups by their

finite quotients. Israel J. Math., 214(1):1–41, 2016.
[16] M. R. Bridson, D. B. McReynolds, A. W. Reid, and R. Spitler. Absolute profinite rigidity

and hyperbolic geometry. Ann. of Math. (2), 192(3):679–719, 2020.
[17] J. F. Brock and N. M. Dunfield. Injectivity radii of hyperbolic integer homology 3-spheres.

Geom. Topol., 19(1):497–523, 2015.
[18] D. Burghelea, L. Friedlander, T. Kappeler, and P. McDonald. Analytic and Reidemeister

torsion for representations in finite type Hilbert modules. Geom. Funct. Anal., 6(5):751–859,
1996.

[19] A. L. Carey, M. Farber, and V. Mathai. Determinant lines, von Neumann algebras and L2

torsion. J. Reine Angew. Math., 484:153–181, 1997.
[20] C. Deninger. Mahler measures and Fuglede-Kadison determinants. Münster J. Math., 2:45–

63, 2009.
[21] J. Dodziuk. L2 harmonic forms on rotationally symmetric Riemannian manifolds. Proc.

Amer. Math. Soc., 77(3):395–400, 1979.
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