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Abstract. The equivariant cohomology of the classical configuration space
F(Rd, n) has been been of great interest and has been studied intensively start-
ing with the classical papers by Artin (1925/1947) on the theory of braids, by
Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol’d (1969).
We give a brief treatment of the subject from the beginnings to recent devel-
opments. However, we focus on the mod 2 equivariant cohomology algebras of
the classical configuration space F(Rd, n), as described in an influential paper
by Hu’ng (1990). We show with a new, detailed proof that his main result is
correct, but that the arguments that were given by Hu’ng on the way to his
result are not, as are some of the intermediate results in his paper.

This invalidates a paper by three of the present authors, Blagojević, Lück
& Ziegler (2016), who used a claimed intermediate result from Hu’ng (1990)
in order to derive lower bounds for the existence of k-regular and `-skew em-
beddings. Using our new proof for Hu’ng’s main result, we get new lower
bounds for existence of highly regular embeddings: Some of them agree with
the previously claimed bounds, some are weaker.
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Preface

The systematic study of the ordered configuration space

F(M,n) := {(x1, . . . , xn) ∈Mn : xi 6= xj for all 1 ≤ i < j ≤ n}

of all ordered n-tuples of distinct points on a manifold M started in 1962 with the
work of Fadell & Neuwirth [47] and Fox & Neuwirth [52], with prehistory going back
to the work of Artin [7, 8, 9]. Soon after, Arnol’d, in his seminal work [5] from 1969,
gave a description of the integral cohomology ring of the ordered configuration space
F(R2, n). From that point on the topology of the ordered configuration spaces was
studied very intensively from many aspects, while finding applications in diverse
problems, theories and even different fields of Mathematics and beyond, notably in
Physics.

Each configuration space F(M,n) is equipped with a natural free action of the
symmetric group on n letters Sn, given by the permutation of points. The as-
sociated orbit space F(M,n)/Sn, called the unordered configuration space, is an
important and challenging object to study. (The free action of the symmetric group
is also an essential ingredient of the little cubes operad structure to be discussed
later.)

In his influential 1970 paper [53] using fundamental new ideas, Fuks gave a
description of the cohomology algebra of the unordered configuration space of n
distinct points in the plane H∗(F(R2, n)/Sn;F2) as an image of the cohomology
H∗(BO(n);F2). In the course of study of infinite and iterated loop spaces objects
of the same homotopy type as the configuration space F(Rd, n) were invented by
Boardman & Vogt [17] and adapted in a beautiful way by May [76, Sec. 4] for the
definition of an important structure that we now call the little cubes operad; see
Section 7.1. Frederick Cohen, in his 1976 contribution [33], gave the first descrip-
tions of the cohomology of the unordered configuration space F(Rd, n)/Sn, for n
a prime, with trivial coefficients (including the ring structure) and with twisted
coefficients (including the relevant module structure) [33, Thm. 5.2 and Thm. 5.3].

The homology of the unordered configuration space for points on a smooth man-
ifold M has been determined in 1989 by Bödigheimer, F. Cohen & Taylor [26] in
the case when M is odd-dimensional and coefficients are in an arbitrary field, and
in the case whenM is even-dimensional and coefficients are in a field of characteris-
tic 2. More precisely, for even-dimensional manifolds they computed the homology
of the unordered configuration space of M with coefficients in the field twisted by
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the sign representation. These results were given in terms of Cohen’s computation
for the case M = Rn. Some further results, for an even-dimensional orientable
closed manifold and the rationals as the field of coefficients, were obtained by Félix
& Thomas [50].

Nguyên Hũ’u Viêt Hu’ng, in a series of papers [61, 62, 63, 64] from 1981 until
1990, studied the mod 2 cohomology algebra of the symmetric group Sn and of the
unordered configuration space F(Rd, n)/Sn in the case when n is a power of two.
The key paper in this series, [64], which contained detailed proofs for all results
announced in [62], was apparently finished in August of 1982, but after some delays
(described in [64, Footnote 1 on p. 286]) was published only in 1990. The central
idea was
— to consider a natural embedding

Pe(Rd, 2m)
ecyd,2m

// F(Rd, 2m)

of the product of spheres Pe(Rd, 2m) = (Sd−1)2m−1 into the configuration space
F(Rd, 2m), which turns out to be equivariant with respect to the action of a
Sylow 2-subgroup S2m of the symmetric group S2m ,

— to describe the cohomology ring H∗(Pe(Rd, 2m)/S2m ;F2) of the quotient space
Pe(Rd, 2m)/S2m using the homeomorphism

Pe(Rd, 2m+1)/S2m+1
∼=
(

Pe(Rd, 2m)/S2m × Pe(Rd, 2m)/S2m
)
×Z2 S

d−1,

via an inductive computation, and finally
— to prove that the induced homomorphism in cohomology

H∗(F(Rd, 2m)/S2m ;F2)
(id /S2m )∗

// H∗(F(Rd, 2m)/S2m ;F2)

(ecyd,2m /S2m )∗

// H∗(Pe(Rd, 2m)/S2m ;F2)

is a monomorphism. Here (id /S2m)∗ is directly a monomorphism since S2m is
a 2-Sylow subgroup of S2m and cohomology is considered with F2 coefficients.
Thus, the main difficulty lies in proving that (ecyd,2m /S2m)∗ is a injective.

In this way the cohomology ring H∗(F(Rd, 2m)/S2m ;F2) of the unordered config-
uration space F(Rd, 2m)/S2m could be seen as a subring of the, now known, ring
H∗(Pe(Rd, 2m)/S2m ;F2). Further on,

This series of papers, and in particular the paper [64], feature extended and sub-
stantial calculations. It turned out to be important and influential. It was quoted,
and its main result was used, in quite a number of papers since then, such as Vas-
siliev’s 1988 and 1998 papers on braid group cohomologies and algorithm complexity
[98] and r-neighborly embeddings of manifolds [100], Crabb’s 2012 survey on the
topological Tverberg theorem and related topics [42], Karasev & Landweber’s 2012
paper on higher topological complexity of spheres [68], Karasev & Volovikov’s 2013
paper on the waist of the sphere theorem for maps to manifolds [69], Matschke’s
2014 paper on a parameterized Borsuk–Ulam–Bourgin–Yang–Volovikov paper [74],
as well as Karasev, Hubard & Aronov’s 2014 paper on the “spicy chicken theo-
rem” [67].

None of these papers mentioned the fact that – as we will document in Section 4.1
of the present work – Hu’ng’s proof for his main result [62, Thm. 2.3] [64, Thm. 3.1]
is incorrect, as are some of his intermediate and follow-up results. This does not
jeopardize the papers listed above, as Hu’ng’s main result, the injectivity of the
composition (ecyd,2m /S2m)∗ ◦ (id /S2m)∗, holds, as we will demonstrate – by a
new, entirely different, homotopy-theoretic proof – in Section 4.2 of this paper.
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In contrast to the above works, the 2016 paper of Blagojević, Lück & Ziegler
[15] – by three of the present authors – did not only quote Hu’ng’s papers, but it
also used some of Hu’ng’s intermediate results in an essential way, specifically the
decomposition of the equivariant cohomology claimed in [64, (4.7), page 279]. Our
computations in [15] based on this led to results that are not consistent with some
of Crabb’s computations related to [42]. This led to our discovery of the substantial
mistakes in Hu’ng’s paper, including the fact that the decomposition of [64, (4.7),
p. 279] is not correct, which also invalidates the main results of [15] and two minor
follow-up corollaries given in [14].

Thus the second main purpose of the present paper is to correct our work in
[14] and in [15], by presenting alternative arguments, based on the corrected proof
for Hu’ng’s theorem, towards estimates for the dimensions of k-regular embeddings
and their relatives. The results we get are in some cases weaker than what we had
claimed before, in other cases we recreate the previously-claimed results in full.

This text is organized as follows. (See below for a summary of notations as well as
for definitions and background.)
— In Section 2 we describe the S2m -equivariant embedding

ecyd,2m : Pe(Rd, 2m) −→ F(Rd, 2m)

of the (d−1)(2m−1)-dimensional manifold Pe(Rd, 2m) ∼= (Sd−1)2m−1 into the
classical configuration space F(Rd, 2m). Furthermore, we relate the embedding
ecyd,2m with the structural map of the little cubes operad.

— In Section 3 we study the S2m -equivariant cohomology H∗S2m (Pe(Rd, 2m);F2)
using the Serre spectral sequence associated to the fiber bundle

X ×X // (X ×X)×Z2
EZ2

// BZ2.

The highlight of that section is the proof of the decomposition of the cohomol-
ogy given in Theorem 3.11:

H∗S2m (Pe(Rd, 2m);F2) ∼=
F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m),

where I∗(Rd, 2m) is an ideal, and deg(Vm,r) = 2r−1 for 1 ≤ r ≤ m.
— In Section 4 we discuss the claim that the induced homomorphism in coho-

mology

(ecyd,2m /S2m)∗ : H∗(F(Rd, 2m)/S2m ;F2) // H∗(Pe(Rd, 2m)/S2m ;F2)

is a monomorphism, or equivalently that the homomorphism

(ecyd,2m /S2m)∗ ◦ (id /S2m)∗ : H∗(F(Rd, 2m)/S2m ;F2) //

H∗(Pe(Rd, 2m)/S2m ;F2)

is a monomorphism. In Section 4.1 we present the proof for injectivity of
(ecyd,2m /S2m)∗ given by Hu’ng in [64, Thm. 3.1] and document several critical
gaps that invalidate this proof. In particular, the failure of decomposition [64,
(4.7)] will be illustrated by a counterexample in Claim 4.5. The new inductive
proof of the injectivity of (ecyd,2m /S2m)∗, or (ecyd,2m /S2m)∗ ◦ (id /S2m)∗, is
given in Section 4.2. More precisely, for the inductive step, using the presen-
tation of homology of the configuration space via Araki–Kudo–Dyer–Lashof
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homology operations, we prove that the structural map of the little cubes
operad induces, now in homology, an epimorphism

(µd,2m)∗ : H∗((Cd(2m−1)/S2m−1 × Cd(2m−1)/S2m−1)×Z2
Cd(2);F2) //

H∗(Cd(2m)/S2m ;F2);

see Theorem 4.8.
— Additionally in Section 4.3, motivated by the results of Atiyah [10] and Giusti,

Salvatore & Sinha [55] we prove, as an interesting fact, that the homology of the
space of all finite subsets of Rd with addition of a base point and appropriately
defined multiplication, is a polynomial ring.

— In Section 5, based on the results of the previous sections, we explain the in-
duced gaps in the results given by three of the present authors in [15, Thm. 2.1,
Thm. 3.1, Thm. 4.1] and [14, Thm. 5.1, Thm. 6.1] and correct all of them. In
particular, corrected lower bounds for the existence of k-regular, `-skew and
k-regular-`-skew embeddings of an Euclidean space are given; see Theorem
5.14, Theorem 5.18 and Theorem 5.22.

— In Section 6, using novel techniques for the computation of Stiefel–Whitney
classes, we get the Key Lemma 6.6 and from this derive still stronger lower
bounds for the existence of k-regular, `-skew, k-regular-`-skew embeddings as
well as for their complex analogues. They are summarized in Theorem 6.16
and Theorem 6.23.

In Sections 5 and 6 we in particular present extensive calculations with character-
istic classes of the vector bundles associated with the natural permutation and the
standard representation of the symmetric group Sn over the unordered configura-
tion space F(Rd, n)/Sn. These are the vector bundles

ξRd,n : Rn // F(Rd, n)×Sn Rn // F(Rd, n)/Sn,

and
ζRd,n : Wn

// F(Rd, n)×Sk Wn
// F(Rd, n)/Sn,

where
Wn = {(a1, . . . , an) ∈ Rn : a1 + · · ·+ an = 0}

denotes the standard representation of Sn. These vector bundles have been studied
intensively over the years. For example, a particular result that can be deduced
from [64, Thm. 2.10] about the (d− 1)st power of the top Stiefel–Whitney class of
the vector bundle ζRd,n was rediscovered, extended and reproved by many authors.
Going back in time, already in 1970 it was known, by the work of Cohen [33,
Thm. 8.2], which was published only in 1976, that the Euler class of ζ⊕(d−1)

Rd,n does
not vanish if n is a prime. At the same time Fuks in [53] showed that the vector
bundle ξ⊕2

R2,n is trivial and furthermore that wn−1(ξR2,n) 6= 0 if and only if n is a
power of 2. In 1978 while working on the existence of k-regular embedding Cohen &
Handel [36, Thm. 3.1] evaluated Stiefel–Whitney classes of the vector bundle ζR2,n.
One year later, Chisholm, in his follow-up paper [29, Lem. 3], computed Stiefel–
Whitney classes of the vector bundle ζRd,n in the case when d is a power of 2.
Gromov, in his seminal work on the waist of a sphere, sketched an argument that
the top Stiefel–Whitney class of ζ⊕(d−1)

Rd,n does not vanish in the case when n is a
power of 2 [56, Lem. 5.1]. Three different proofs for the fact that the Euler class of
ζ
⊕(d−1)

Rd,n does not vanish if and only if n is a power of a prime were given by three
groups of authors: by Karasev, Hubard & Aronov in [67, Thm. 1.10], by Blagojević
& Ziegler in [16, Thm. 1.2], and by Crabb in [42, Prop. 5.1]. Furthermore, the stable
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order of the vector bundle ξRd,n was analyzed already in 1978 by Cohen, Mahowald
& Milgram in [38, Thm. 1] in the case when d = 2. It was completely determined,
for all d ≥ 2, in 1983 by Cohen, Cohen, Kuhn & Neisendorfer [35, Thm. 1.1].

We would like to point out that in these lecture notes we treat a number of
quite different problems, for which we perform extended and rather complex com-
putations, which use a variety of different tools and methods. In order to make
this accessible, and for reasons of completeness, in the following we present many
classical proofs with all details, accompanied with all relevant references, rather
than just quoting them; see for example Section 7. For the same reason we start
with the list of notations used in this paper, some of which we have already used
in the overview.
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Notations used

Groups:
. CG(H) : the centralizer of the subgroup H in the group G,
. NG(H) : the normalizer of the subgroup H in the group G,
. WG(H) : the Weyl group of the subgroup H in the group G is the quotient

group WG(H) = NG(H)/H,
. Sn : the symmetric group on n letters,
. S2m : the symmetric group of the point set of the group Z⊕m2 , or the vector

space F⊕m2 ,
. Em : the elementary abelian group, isomorphic to Z⊕m2 , that is regularly em-

bedded, via translations of F⊕m2 , into S2m ,
. S2m : the Sylow 2-subgroup of S2m , isomorphic to Zom2 := Z2 o Z2 o · · · o Z2 (m

times), that contains Em, and acts freely on Pe(Rd, 2m),
. GLm(F2) : the general linear group of the F2 vector space F⊕m2 ,
. Lm(F2) : the Sylow 2-subgroup of GLm(F2) of all lower triangular matrices

with 1’s on the main diagonal,
. Um(F2) : the Sylow 2-subgroup of GLm(F2) of all upper triangular matrices

with 1’s on the main diagonal,
. O(n) : the orthogonal group,
. U(n) : the unitary group,
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. Bn : Artin’s braid group on n strings,

. Pn : Artin’s pure braid group on n strings.

Group representations:
. Rn : is a real n-dimensional Sn-representation,
. Cn : is a complex n-dimensional Sn-representation,
. Wn := {(a1, . . . , an) ∈ Rn : a1 + · · · + an = 0} is a real (n − 1)-dimensional
Sn-representation and an irreducible Sn-subrepresentation of Rn,

. WC
n := {(b1, . . . , bn) ∈ Cn : b1 + · · ·+ bn = 0} is a complex (n− 1)-dimensional

Sn-representation, and an irreducible Sn-subrepresentation of Cn,

Algebras:
. Hm := F2[x1, . . . , xm]Lm(F2),
. Dm := F2[x1, . . . , xm]GLm(F2) the Dickson algebra.

Sets:
. [n] := {1, 2, . . . , n},
. [n]1 := {1, 2, . . . , n2 } for even n,
. [n]2 := {n2 + 1, n2 + 2, . . . , n} for even n.

Categories:
. Top : the category of compactly generated weak Hausdorff spaces with contin-

uous maps as morphisms,
. Toppt : the category of compactly generated weak Hausdorff spaces with non-

degenerate base points and with continuous maps that preserve base points as
morphisms,

. Topcw : the category of CW -complexes with continuous maps as morphisms.

Spaces:
. F(X,n) : the ordered configuration space of n pairwise distinct points in the

space X,
. F(X,n)/Sn : the unordered configuration space of n pairwise distinct points

in the space X,
. Pe(Rd, 2m) : the Ptolemaic epicycles space (Sd−1)2m−1,
. Ce(Rd, 2m) : the little cubes epicycles space,
. Cd(n) : the space of ordered n-tuples of interior disjoint little d-cubes,
. Th(ξ) : the Thom space of the vector bundle ξ.

Maps:
. ecyd,2m : Pe(Rd, 2m) −→ F(Rd, 2m) : the S2m-equivariant Ptolemaic epicycles

embedding,
. cecyd,2m : Ce(Rd, 2m) −→ Cd(2m) : the S2m -equivariant little cubes epicycle

embedding,
. ρd,2m : Pe(Rd, 2m)/S2m −→ F(Rd, 2m)/S2m : the composition (id /S2m) ◦

(ecyd,2m /S2m),
. κd,2m : Pe(Rd, 2m) −→ Pe(R∞, 2m) : the S2m-equivariant map induced map

by the inclusion Rd −→ R∞, x 7−→ (x, 0, 0, . . .) where x ∈ Rd,
. ιd,n : F(Rd, n) −→ F(R∞, n) : the Sn-equivariant map induced map by the

inclusion Rd −→ R∞, x 7−→ (x, 0, 0, . . .) where x ∈ Rd,
. evd,n : Cd(n) −→ F(Rd, n) : the evaluation at the centres of cubes map,
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. β : Z⊕m2 −→ [2m] : the bijection given by (i1, . . . , im) 7−→ 1 +
∑m
j=1 2m−jij ,

. α : N −→ N : α(k) is the number of 1s in the binary presentation of k,

. ε : N −→ N : ε(k) is the remainder of k modulo 2,

. γ : N −→ N : γ(k) = blog2 kc+1 is the minimal integer such that 2γ(k) ≥ k+1.

Vector bundles:
. ξX,k : Rk // F(X, k)×Sk Rk // F(X, k)/Sk,

. ζX,k : Wk
// F(X, k)×Sk Wk

// F(X, k)/Sk,

. τX,k : R // F(X, k)/Sk × R // F(X, k)/Sk,

. ξCX,k : Ck // F(X, k)×Sk Ck // F(X, k)/Sk,

. ζCX,k : WC
k

// F(X, k)×Sk W
C
k

// F(X, k)/Sk,

. τCX,k : C // F(X, k)/Sk × C // F(X, k)/Sk,

. ξd,k : Rk // Cd(k)×Sk Rk // Cd(k)/Sk,

. ζd,k : Wk
// Cd(k)×Sk Wk

// Cd(k)/Sk,

. τd,k : R // Cd(k)/Sk × R // Cd(k)/Sk,

. λd,m : W2m
// Pe(Rd, 2m)×S2m W2m

// Pe(Rd, 2m)/S2m ,

. τd,m : R // Pe(Rd, 2m)/S2m × R // Pe(Rd, 2m)/S2m ,

. γk : Rk // EO(k)×O(k) Rk // BO(k),

. γCk : Ck // EU(k)×U(k) Rk // BU(k),

. ξk : Rk // ESk ×Sk Rk // BSk,

. η2m : R2m // ES2m ×S2m R2m // BS2m ,

. ν2m : R2m // EEm ×Em R2m // BEm,

. θ2m : R2m // E(S2
2m−1)×S2

2m−1
R2m // B(S2

2m−1),

. ω2m : R2m // E(S2
2m−1)×S2

2m−1
R2m // B(S2

2m−1).

1. Snapshots from the history

In many ways it is much harder to write accurately about the complete history of
a subject than to make a contribution to its development. Even with the possibility
to take a peek into the past such an endeavor is impossible to complete. For these
reasons we give only a brief overview of the study of configuration spaces from the
perspective of the contents of this book, choosing both seminal contributions as
well as some particular topics to focus on. Our presentation by no means aims to
be, or could be, complete.

We begin our story by introducing the object we study; that is, we answer the
question: What is hiding under the name configuration space?

Let X be a topological space. The ordered configuration space of all n-tuples
of distinct points on X is the following subspace of the product space Xn:

F(X,n) := {(x1, . . . , xn) ∈ Xn : xi 6= xj for all 1 ≤ i < j ≤ n}.

The ordered configuration space F(X,n) is endowed with a natural free (left) action
of the symmetric group on n letters Sn, given by the permutation of points, that
is

π · (x1, . . . , xn) = (xπ(1), . . . , xπ(n)),

where π ∈ Sn and (x1, . . . , xn) ∈ F(X,n). The associated orbit space F(X,n)/Sn

is called the unordered configuration space of n distinct points on X.
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The official history of configuration spaces begins in 1925 with Theorie der Zöpfe,
the fundamental work of Emil Artin [7], while the prehistory goes back to a work of
Adolf Hurwitz [65] from 1891 and a 1930s work of Oscar Zariski [102]. The braids,
the oldest of gadgets of man, now transformed into a beautiful algebraic object,
became the starting point for the intensive research branching over areas, sciences
and decades not ever losing on intensity or its fundamental importance.

1.1. The braid group. In his seminal paper [7] from 1925 Artin introduced the
notion, of what we would call today a geometric braid, as a collection of n
disjoint arcs (β1, . . . , βn) connecting two collections of n pairwise distinct points
(x1, . . . , xn) and (x′1, . . . , x

′
n) placed on the planes z = 0 and z = 1 of the 3-

dimensional Euclidean space R3 respectively. In addition, the arcs (β1, . . . , βn)
need to satisfy the following two properties:
— β1(0) = x1, . . . , βn(0) = xn and β1(1) = x′i1 , . . . , βn(1) = x′in with the index

sets {i1, . . . , in} and {1, . . . , n} coinciding, and
— βi(t) belongs to the plane z = t for every 0 ≤ t ≤ 1 and every 1 ≤ i ≤ n.

Here, an arc is assumed to be a continuous injection of the segment [0, 1] into R3.
Classically the arcs of the braid β1, . . . , βn are also called strings of the braid. For
an illustration of a geometric braid see Figure 1.

x1 x2 x3

x′
1 x′

2 x′
3 x′

1 x′
2 x′

3

x1 x2 x3

Figure 1. A geometric braid and its projection to the affine plane
spanned by the end points of the strings.

Considering braids up to a homotopy (through the space of geometric braids),
rather than how they are geometrically presented, Artin was able to define a natural
operation on the set Bn of homotopy classes of all braids between two fixed collec-
tions of points. Artin [7] said that two braids are equivalent (homotopic for us) if one
braid can be deformed into another without self-intersections — Zwei solche Zöpfe
heißen äquivalent oder kürzer gleich, wenn sie sich ineinander ohne Selbstdurch-
dringung deformieren lassen. Concatenation of braids and the shrinking procedure
applied to the representatives of homotopy classes of braids nicely fit with the ho-
motopy relation and as such a well defined operation on Bn was introduced. This
operation was associative and with the obvious neutral element — the homotopy
class of the trivial braid τ — the collection of line segments ([x1, x

′
1], . . . , [xn, x

′
n]) as

strings. Furthermore, the elementary braids σi, for 1 ≤ i ≤ n− 1, were introduced
as braids identical to the trivial braid in all strings except the i-th string crosses
“over” (i + 1)-th string. Here “over” refers to a side, half-space, of the affine plan
spanned by the end points of the strings. An illustration of the plane projections
of representatives of the braids τ , σi and its inverse σ−1

i are given in Figure 2.
The most quoted result of Artin’s paper [7, Satz 1] is the presentation of the

braid group Bn on n strings of the following form:

Bn =
〈
σ1, . . . , σn−1 :

σiσj = σjσi, for 1 ≤ i < j − 1 ≤ n− 2
σiσi+1σi = σi+1, σiσi+1 for 1 ≤ i ≤ n− 2

〉
,
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now known as Artin’s presentation of the braid group. An alternative and more
formal argument for this result was further developed by Artin in his paper [8] from
1947. In particular, a relation of s-isotopy between braids is introduced and it is
shown that two braids are s-isotopic if and only if they are homotopic (through the
space of geometric braids); see [8, Thm. 8].

1 i i+ 1 n 1 i i+ 1 n 1 i i+ 1 n

τ σi σ−1
i

Figure 2. The representatives of the braids τ , σi and σ−1
i .

Furthermore, Artin in [7, Sec. 4] defines a group homomorphism an : Bn −→ Sn

which fits into the following short exact sequence of groups:

1 // Pn // Bn
an
// Sn

// 1.

The normal subgroup Pn := ker(an) of the braid group Bn is called the pure braid
group on n strings. Geometrically, Pn is the set of all representatives of geometric
braids (β1, . . . , βn) which have the property that β1(0) = x1, . . . , βn(0) = xn and
β1(1) = x′1, . . . , βn(1) = x′n.

For more aspects in the study of braid groups consult the classical monograph
Braids, links, and mapping class groups by Joan Birman [12].

1.2. The fundamental sequence of fibrations. The work of Edward Fadell &
Lee Neuwirth [47] from 1962 gave birth to the name configuration space for the
space of all ordered collections of pairwise distinct points on a topological space.
The central results of this fundamental work is the construction of the so-called
fundamental sequence of fibrations of configuration spaces of a manifold.

Let M be a topological, connected manifold without a boundary of dimension
at least 2. For an integer m ≥ 1 let Qm = {q1, . . . , qm} be some fixed collection
of m distinct points on M , and in particular let Q0 = ∅. In addition, let n ≥ 1
be an integer. Consider a family of configuration spaces of the punctured manifold
M\Qm defined by

Fm,n(M) := F(M\Qm, n)

with the corresponding projections

pm,n,r : Fm,n(M) // M\Qm, (x1, . . . xn) � // (x1, . . . , xr)

for 1 ≤ r ≤ n − 1 and (x1, . . . xn) ∈ Fm,n(M). Observe that F(M,n) = F0,n(M).
Fadell & Neuwirth, in [47, Thm. 1 and Thm. 3], for n ≥ 2 showed that pm,n,1 is a
locally trivial fibration with fibre Fm+r,n−r(M). In addition, they proved that the
fibration pm,n,1 admits a (continuous) cross-section.

Using the sequence of fibrations

Fn−1,1(M) // Fn−2,2(M) //

��

· · · // F2,n−2(M) //

��

F1,n−1(M) //

��

F0,n(M)

��

Fn−2,1(M) F2,1(M) F1,1(M) F0,1(M),

and associated long exact sequences in homotopy, in combination with the existence
of the corresponding cross-sections, they obtained various descriptions of homotopy
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groups of ordered configuration spaces. For example, they showed that for d ≥ 2
and i ≥ 2 there exist isomorphisms

πi(F(Rd, n)) ∼=
n−1⊕
k=1

πi(S
d−1 ∨ · · · ∨ Sd−1︸ ︷︷ ︸

k

),

and

πi(F(S2d−1, n)) ∼= πi(S
2d−1)⊕

n−2⊕
k=1

πi(S
2d−2 ∨ · · · ∨ S2d−2︸ ︷︷ ︸

k

).

In particular, they obtained that F(R2, n) is an Eilenberg–Mac Lane space K(Pn, 1).
Hence, the (co)homology of the pure braid group Pn coincides with the corre-
sponding (co)homology of the configuration space F(R2, n). Consult [47, Cor. 2.1,
Cor. 5.1].

Furthermore, almost at the same time, Fadell in [46, Thm. 1 and Thm. 2] gave
additional descriptions of homotopy groups of configuration spaces for d ≥ 4:

πi(F(Sd, n)) ∼= πi(V2(Rd+1))⊕
n−2⊕
k=1

πi(S
d−1 ∨ · · · ∨ Sd−1︸ ︷︷ ︸

k

),

and

πi(F(RPd−1, n)) ∼= πi(V2(Rd+1))⊕
n−2⊕
k=1

πi(S
d−1 ∨ · · · ∨ Sd−1︸ ︷︷ ︸

2k+1

).

Here V2(Rd+1) denotes the Stiefel manifold of orthogonal 2-frames in Rd+1.
For a detailed exposition of these results and much more about topology of con-

figuration spaces consult the book Geometry and Topology of Configuration Spaces
by Fadell & Husseini [49].

1.3. Artin’s presentation of Bn and π1(F(R2, n)). The seminal work of Fadell
& Neuwirth [47] we discussed in the previous section intertwines in an essential
way with the work of Ralph Fox with Lee Neuwirth [52] from the same year. As
explained at the beginning of their papers they aimed at “a straightforward deriva-
tion” of Artin’s presentation of the braid group Bn.

Since the braid group Bn can also be seen as the fundamental group of the
unordered configuration space of n distinct points in the plane, as already pointed
out by Artin, Fox and Neuwirth aimed to use classical knowledge for presentation
of fundamental groups to obtain exactly Artin’s presentation as a presentation of
π1(F(R2, n)/Sn).

More precisely, using the lexicographic ordering on the coordinates of R2 the
power set (R2)n can be stratified by a family of convex cones. For example, for
n = 7 the stratum defined by the symbol

θ = (3 < 5 = 1 < 6 ∨ 4 ∨ 2 = 7)

is the convex cone of (R2)7 given by{
(p1, . . . , p7) = (x1, y1, . . . , x7, y7) ∈ (R2)7 :

x3 < x5 = x1 < x6 = x4 = x2 = x7

y5 = y1 y6 < y4 < y2 = y7

}
.

For an illustration of a point inside θ see Figure 3. The action of the symmetric
group Sn on (R2)n induces a stratum-wise action – translations given by action
send strata to strata homeomorphically. Furthermore, such a stratification induces
a regular Sn-invariant cell complex structure on the one-point compactification S2n

of the ambient (R2)n.
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p3

p1 = p5

p6

p4

p2 = p7

Figure 3. A configuration that corresponds to a point in the stratum
(3 < 5 = 1 < 6 ∨ 4 ∨ 2 = 7).

Consider the Sn-CW-subcomplex ∆ of S2n given by all the cells whose symbols
have at least one sign of equality “=”. In particular such a cell is induced by the
stratum θ. Then the configuration space F(R2, n) is the complement S2n\∆ of the
(2n− 2)-dimensional Sn-CW-subcomplex ∆ inside the (2n)-dimensional Sn-CW-
complex S2n. Furthermore, the unordered configuration space can also be seen as
the complement

F(R2, n)/Sn = (S2n/Sn) \ (∆/Sn)

of the (2n − 2)-dimensional CW-subcomplex ∆/Sn inside the (2n)-dimensional
CW-complex S2n/Sn. In particular, the CW-complex S2n/Sn has one maximal
(2n)-cell given by the symbol (representative) (1 < 2 < · · · < n).

In such a situation, a presentation of the fundamental group of a complement
of a cell complex, in our case π1(F(R2, n)/Sn) = π1((S2n/Sn) \ (∆/Sn)), can be
obtained from:
— the specified generators contained in the complement indexed by all (2n− 1)-

cells in the boundary of the (2n)-cell, and
— the relations corresponding to (2n − 2)-cells contained in the complement in-

duced from theirs coboundaries in a specific way.
Knowing this technical gadget Fox & Neuwirth “only” needed to list generators and
identify the corresponding relations, as the “recipe” suggested. They did this in a
beautiful and geometrically clear way in [52, Sec. 7] showing that, at the end, the
braid group Bn ∼= π1(F(R2, n)/Sn) can be given via Artin’s presentation.

Furthermore, Fadell & Neuwirth noticed that the unordered configuration space
F(R2, n)/Sn is an Eilenberg–Mac Lane space K(Bn, 1). This implies, in particular,
that the braid group Bn has no elements of finite order [52, Cor. 1].

In parallel, Fadell & James Van Buskirk in [48], based on the work of Wei-
Liang Chow [30], offered an argument of different flavour for the fact that Bn ∼=
π1(F(R2, n)/Sn) can be described via Artin’s presentation.

The idea of Fox & Neuwirth to stratify the ambient (R2)n of the configuration
space F(R2, n) into cones motivated Anders Björner & Günter M. Ziegler [13] to
use stratifications in construction of cell complex models for general complements
of subspace arrangements; it was essential in the work of Pavle Blagojević & Ziegler
[16].

1.4. The cohomology ring H∗(F(R2, n);Z). The next section in our story about
configuration spaces is dedicated to the seminal work of Vladimir Igorovich Arnol’d
[5] from 1969. He showed that the integral cohomology ring of the configuration
space F(R2, n) can be presented as a quotient of the exterior algebra (over the ring
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of integers) as follows:

H∗(F(R2, n);Z) ∼=
Λ
(
ωi,j : 1 ≤ i < j ≤ n

)
(ωi,jωj,k + ωj,kωi,k + ωi,kωj,k : 1 ≤ i < j < k ≤ n)

=: A(n).

In particular, he described an additive basis of the cohomology H∗(F(R2, n);Z) and
showed that the Poincaré polynomial of F(R2, n);Z) is given by

pF(R2,n)(t) = (1 + t)(2 + t) · · · (1 + (n− 1)t).

See for example [5, Thm. 1, Cor. 1, Cor. 3].
The presented proof of these results was based on a masterful use of the Serre

spectral sequence. According to Arnol’d, Dmitry Fuks made a substantial contri-
bution to this proof. More precisely, Arnol’d considered the projection

p : F(R2, n) −→ F(R2, n− 1), (z1, . . . , zn) 7−→ (z1, . . . , zn−1)

and showed that it is a fiber bundle which additionally admits a continuous cross-
section. Furthermore, in [5, Lem. 1] he showed that the fundamental group of the
base space – the pure braid group π1(F(R2, n− 1)) ∼= Pn−1 – acts trivially on the
cohomology of the fiber

R2\{z1, . . . , zn−1} ' S1 ∨ · · · ∨ S1︸ ︷︷ ︸
n−1

.

Here the point (z1, . . . , zn−1) ∈ F(R2, n− 1) is assumed to be fixed. With these in-
gredients the E2-term of the Serre spectral sequence associated to the fiber bundle p
is:

Er,s2 = Hr(F(R2, n− 1);Hs(R2\{z1, . . . , zn−1};Z))

∼= Hr(F(R2, n− 1);Z)⊗Hs(R2\{z1, . . . , zn−1};Z).

This spectral sequence converges to the cohomology of the base space of the fiber
bundle – in this case H∗(F(R2, n);Z). In the description of the E2-term only the
triviality of the action of π1(F(R2, n − 1)) on the cohomology of the fiber is used.
Now the existence of the cross-section of the fiber bundle p implies that the only
possible non-zero differential ∂2 has to vanish. Consequently, the spectral sequence
is completely determined and collapses at the E2-term, that is Er,s2

∼= Er,s∞ for all
integers r and s. Since the cohomology groups of the fiberH∗(R2\{z1, . . . , zn−1};Z)
are free abelian groups (free Z-modules) in every dimension using induction on n
we see that all entries of the E∞-term are free Abelian groups. Hence, the spectral
sequence has no extension problem and the additive structure of the cohomology
of the configuration space H∗(F(R2, n);Z) is completely determined. For example,
one can write

H∗(F(R2, n);Z) ∼= H∗(S1 × (S1 ∨ S1)× · · · × (S1 ∨ · · · ∨ S1︸ ︷︷ ︸
n−1

);Z).

What about the ring structure on the cohomology H∗(F(R2, n);Z)? To answer
this question Arnol’d brought into play a beautiful new idea which was to be
used over and over again for years to come. He defined the map ϕ : A(n) −→
H∗(F(R2, n);R), between the quotient of the exterior algebra and the de Rham
cohomology of the configuration space F(R2, n), by sending the algebra generator
ωi,j , 1 ≤ i < j ≤ n, to the cohomology class of the logarithmic differential form

wi,j :=
1

2πi
· dzi − dzj
zi − zj

=
d log(zi − zj)

2πi
.
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The map turns out to be well defined and, in particular, a ring homomorphism.
Now, since the cohomology classes of wi,j , for all 1 ≤ i < j ≤ n, are integral, the
ring homomorphism ϕ factors as follows:

A(n)
ϕ

//

ϕ′

''

H∗(F(R2, n);R)

H∗(F(R2, n);Z).

ψ
55

Here, the ring homomorphism ψ is induced by the coefficient inclusion Z −→ R.
Finally, combining the knowledge of additive structures of A(n) and the cohomology
H∗(F(R2, n);Z), Arnol’d proved that the ring homomorphism ϕ′ is actually a ring
isomorphism.

1.5. The cohomology of the braid group Bn. A year later, in 1970 Arnol’d
published yet another breakthrough paper [6] in which he studied the cohomology,
now of the unordered configuration space F(R2, n)/Sn.

In order to argue the importance of understanding the topology of the unordered
configuration space he gave a list of various important incarnations of the unordered
configuration space, like the space of all monic polynomials of degree n in the
polynomial ring C[z] (algebraic functions) without multiple roots, the space of all
hyperelliptic curves of degree n (see [3], [97]), and the set of regular values of the
mapping Σ1n (see [4]).

Using the fact that the unordered configuration space F(R2, n)/Sn is a K(Bn, 1)-
space he utilized the isomorphism Hi(Bn;Z) ∼= Hi(F(R2, n)/Sn;Z) (with trivial
integer coefficients), to obtain the following fundamental facts about the additive
cohomology structure of the braid group.

Theorem 1.1 (Finiteness, Repetition and Stability theorem). Let n ≥ 1 be an
integer.
(1) The cohomology groups of the braid group Bn are all finite, except H0(Bn;Z) ∼=

H1(Bn;Z) ∼= Z. Furthermore, Hi(Bn;Z) = 0 for all i ≥ n.
(2) For all integers n ≥ 1 and i ≥ 0 there is an isomorphism

Hi(B2n+1;Z) ∼= Hi(B2n;Z).

(3) For all integers n ≥ 1 and i ≥ 0 with the property that n ≥ 2i− 2 there is an
isomorphism

Hi(Bn;Z) ∼= Hi(B2i−2;Z).

Furthermore, by direct computations Arnol’d completed the following table of
cohomologies for the first ten braid groups B2, . . . ,B11.

i = 0 1 2 3 4 5 6 7 8 9

Hi(B2) ∼= Hi(B3) Z Z 0 0 0 0 0 0 0 0

Hi(B4) ∼= Hi(B5) Z Z 0 Z2 0 0 0 0 0 0

Hi(B6) ∼= Hi(B7) Z Z 0 Z2 Z2 Z3 0 0 0 0

Hi(B8) ∼= Hi(B9) Z Z 0 Z2 Z2 Z6 Z3 Z2 0 0

Hi(B10) ∼= Hi(B11) Z Z 0 Z2 Z2 Z6 Z6 or Z3 Z2 or 0 Z2 Z5

1.6. The cohomology ring H∗(Bn;F2). In parallel with the work of Arnol’d, a
flood of new ideas was presented by Dmitry Borisovich Fuks in his seminal paper
[53], which aimed to describe the cohomology ring of the braid group H∗(Bn;F2).
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The approach Fuks used differed from the one applied by Arnol’d. The initial
idea was to consider the sequence of group embeddings

Bn
an
// Sn

// O(n) // U(n). (1)

The sequence of homomorphism (1) induces the corresponding sequence of contin-
uous maps between the classifying spaces:

F(R2, n)/Sn
∼= BBn

Ban
// BSn

// BO(n) // BU(n). (2)

The classifying space BBn can be modeled with F(R2, n)/Sn, because F(R2, n)/Sn

is a K(BBn, 1)-space. The sequence of continuous maps (2) induces the following
sequence of morphisms of (pull-back) real vector bundles ξR2,n −→ ξn −→ γn,
that is,

F(R2, n)×Sn Rn //

��

ESn ×Sn Rn //

��

EO(n)×O(n) Rn

��

F(R2, n)/Sn
// BSn

// BO(n).

(3)

In addition, the following morphisms between complex vector bundles ξCR2,n −→ γCn
can also be induced, that is

F(R2, n)×Sn Cn //

��

EU(n)×U(n) Cn

��

F(R2, n)/Sn
// BU(n).

(4)

Now, the basic results of Fuks’ paper [53] can be stated as follows.

Theorem 1.2. Let n ≥ 1 be an integer.
(1) The homomorphism in cohomology

H∗(BO(n);F2) // H∗(F(R2, n)/Sn;F2),

induced by the bundle morphism (3), is an epimorphism. In other words, the
cohomology (algebra) ring H∗(Bn;F2) ∼= H∗(F(R2, n)/Sn;F2) is generated by
the Stiefel–Whitney classes of the vector bundle ξR2,n, that is

H∗(Bn;F2) ∼= H∗(F(R2, n)/Sn;F2) ∼=
F2[w1(ξR2,n), . . . , wn−1(ξR2,n)]/In, (5)

where

In = ker
(
H∗(BO(n);F2) // H∗(F(R2, n)/Sn;F2)

)
.

(2) The homomorphism in cohomology

H∗(BU(n);F2) // H∗(F(R2, n)/Sn;F2), (6)

is the zero homomorphism in all positive degrees.

Note that the bundle ξR2,n has a non-vanishing cross section and consequently
wn(ξR2,n) = 0 does not appear in (5). Furthermore, the zero homomorphism (6)
factors through the non-zero homomorphism H∗(BU(n);F2) −→ H∗(BSn;F2).

How did Fuks obtain these results? First, he realised that the lexicographic
stratification of (R2)n, introduced by Fox & Neuwirth in [52], can be used to obtain
a non-regular cell complex model for the one-point compactification ̂F(R2, n)/Sn

of the unordered configuration space F(R2, n)/Sn. In particular, the cell complex
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model has one 0-cell, the infinity point, and for every integer partition (n1, . . . , nk)
of the integer n = n1 + · · ·+nk a cell e(n1, . . . , nk) of dimension n+k. Furthermore,
he computed the boundary operator for all associated generators in the cellular
chain complex, that is

∂e(n1, . . . , nk) =

k∑
i=1

(
ni + ni+1

ni

)
e(n1, . . . , ni−1, ni + ni+1, . . . , nk).

(Here, with the usual abuse of notation, e(n1, . . . , nk) also denotes the correspond-
ing generator in the chain group Cn+k( ̂F(R2, n)/Sn;F2).) Then the Poincaré du-
ality isomorphism for relative homology manifolds, as in [84, Thm. 70.2]:

H∗(F(R2, n)/Sn;F2) ∼= H̃2n−∗( ̂F(R2, n)/Sn;F2)

allowed Fuks to go back and forth between the cohomology H∗(F(R2, n)/Sn;F2)

and the homology H∗( ̂F(R2, n)/Sn;F2) of the explicitly given CW-complex for
̂F(R2, n)/Sn. In this way he was able, for example, to show the following results.

Theorem 1.3. Let n ≥ 1 and k ≥ 0 be integers.
(1) The dimension of the F2 vector space

Hk(Bn;F2) ∼= Hk(F(R2, n)/Sn;F2)

is equal to the number of representations of the integer n as a sum of n − k
powers of 2, that is the number of sets {i1, . . . , in−k} of non-negative integers
such that k = 2i1 + · · ·+ 2in−k .

(2) The group
Hn−1(Bn;F2) ∼= Hn−1(F(R2, n)/Sn;F2)

does not vanish if and only if n is power of two.

For every integer n ≥ 1 there is the natural inclusion homomorphism of groups
ϕn : Bn −→ Bn+1 induced by extending a collection of n strings with a trivial
(n+1)st string. The approach Fuks employed allowed him also to prove the following
stability results.

Theorem 1.4. Let n ≥ 1 be an integer.
(1) The homomorphism ϕ∗n : H∗(Bn+1;F2) −→ H∗(Bn;F2) is an epimorphism.
(2) If n is even, then the homomorphism ϕ∗n is an isomorphism.

For an additional presentation of results by Fuks consult the famous book of Vas-
siliev Complements of Discriminants of Smooth Maps: Topology and Applications,
[99, Ch. I].

1.7. Cohomology of braid spaces. In 1973, in a paper of Frederick Cohen [31] ti-
tled Cohomology of braid spaces, came an announcement, a teaser, for the landmark
Springer Lecture Notes in Mathematics volume 533, The Homology of Iterated Loop
Spaces, written by Cohen, Thomas Lada & J. Peter May [37]. Cohen presented two
theorems [31, Thm. 1 and Thm. 2] and outlined a proof, with details appearing in
[33], as an auxiliary tool on the road towards the homology of Cd-spaces. Both the
results of [31] and [33] and even more the proof methods played a key role in various
applications over the years.

What was announced in [31] and then proved in [33], or in other words what is
the cohomology of braid spaces? In this article under the name of a braid space was
hidden an unordered configuration space F(M,n)/Sn of a manifoldM of dimension
at least 2. Motivated by the fundamental work of May [75] [76] related to the study
of iterated loop spaces and corresponding homology operations, Cohen computed
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specific cohomologies of the unordered configurations space F(Rd, n)/Sn in the case
when n = p is a prime.

To be more precise let us fix an odd prime p, and integers d ≥ 2 and q ≥ 0.
Furthermore, let Fp(q) denotes the Sp-module defined on the ground vector space
Fp by π · x = (−1)q·sgn(π)x. The cohomology Cohen considered is the cohomology
of the cochain complex

homSp

(
C∗ F(Rd, p);Fp(q)

)
(7)

of all Sp-equivariant cochains in the cochain complex hom
(
C∗ F(Rd, p);Fp(q)

)
.

Here C∗ F(Rd, p) denotes the singular chain complex of the ordered configuration
space F(Rd, p) with the natural structure of a free Sp-module, or Z[Sp]-module,
inherited from the free Sp-action on F(Rd, p).

In the case when q is even and since the action of Sp on F(Rd, p) is proper the
cohomology of the cochain complex (7) coincides with the (usual) cohomology

H∗(F(Rd, p)/Sp;Fp)

of the unordered configuration space F(Rd, p)/Sp with (trivial) coefficients in the
field Fp. Furthermore, in this case the cohomology has a structure of a ring. In
the case when d ≥ 2 the cohomology of the cochain complex (7) coincides with the
cohomology

H∗(F(Rd, p)/Sp;Fp(q))
of the unordered configuration space F(Rd, p)/Sp with local (twisted) coefficients
in the Sp-module Fp(q). For simplicity, by an abuse of notation we denote the
cohomology of the cochain complex (7) always by H∗(F(Rd, p)/Sp;Fp(q)). Note
that in the case when q is odd the cohomology H∗(F(Rd, p)/Sp;Fp(q)) does not
have a structure of a ring, only an additional structure of Fp-module.

Before we state the main results announced in [31], and proved in all the details
in [33], we need to set the stage.

For integers n ≥ 2 and d ≥ 1 let ιd,n : F(Rd, n) −→ F(R∞, n) denote the Sn-
equivariant continuous map induced by the inclusion Rd −→ R∞, x 7−→ (x, 0, 0, . . .)
where x ∈ Rd. It induces the following morphism of fibrations:

F(Rd, n)
ιd,n

//

��

F(R∞, n)

��

F(Rd, n)/Sn

ιd,n/Sn
// F(R∞, n)/Sn.

Since the configuration space F(R∞, n) is contractible and equipped with a free Sn-
action the orbit space F(R∞, n)/Sn is a model for BSn. In particular, H∗(Sn) ∼=
H∗(F(R∞, n)/Sn) with any appropriately defined coefficients.

Let A and B be connected Z≥0-graded Fp-algebras, where connected refers to
A0
∼= B0

∼= Fp. The u-product of A and B is the connected graded Fp-algebras
A uB given for an integer n ≥ 0 by

(A uB)n :=

{
Fp, n = 0,

An ×Bn, n ≥ 1.

The product structure on AuB is specified by As ·Br = 0 for all s ≥ 1 and r ≥ 1,
and by the requirement that both projection maps A uB −→ A and A uB −→ B
be algebra homomorphisms. Consult also [33, pp. 245-246].

Now we can present the following result of Cohen [31, Thm. 1], [33, Thm. 5.2].
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Theorem 1.5. Let d ≥ 2 be an integer, p an odd prime and q an even integer.
Then

H∗(F(Rd, p)/Sp;Fp(q)) ∼= Ad u im(ιd,n/Sn)∗

as a connected Fp-algebra. Here the Fp-algebra im(ιd,n/Sn)∗ is given by

im(ιd,n/Sn)∗ ∼= H∗(Sp;Fp(q))/ ker(ιd,n/Sn)∗ (8)
∼= H∗(Sp;Fp(q))/H≥(d−1)(p−1)+1(Sp;Fp(q)),

and the graded Fp-algebra Ad by

Ad =

{
Λ(a), d even,
Fp, d odd.

The element a is of degree d − 1, Λ(a) is the exterior algebra generated by a, and
Fp denotes the trivial connected Fp-algebra.

Implicitly, we said that ker(ιd,n/Sn)∗ is the ideal of H∗(Sp;Fp(q)) consisting of
all elements of the ring of degree ≥ (d− 1)(p− 1) + 1.

It is important to mention that the cohomology ring of the symmetric group Sp

with trivial Fp coefficients was already known at that time [75, p. 158]. Concretely,
for q even

H∗(Sp;Fp) ∼= H∗(Sp;Fp(q)) ∼= Λ(b)⊗ Fp[βb],
where b is an element of degree 2(p− 1)− 1, Λ(b) is the exterior algebra generated
by b, βb is the Bockstein of b, and Fp[βb] the polynomial algebra generated by βb.

Next we give the following result of Cohen [31, Thm. 2], [33, Thm. 5.3].

Theorem 1.6. Let d ≥ 2 be an integer, p an odd prime and q an odd integer. Then

H∗(F(Rd, p)/Sp;Fp(q)) ∼= Md ⊕ im(ιd,n/Sn)∗

as an Fp-vector space, or as an H∗(Sp;Fp)-module, or as an H∗(F(Rd, p)/Sp;Fp)-
module. Here the Fp-vector space, or H∗(Sp;Fp)-module, or H∗(F(Rd, p)/Sp;Fp)-
module, im(ιd,n/Sn)∗ is given by

im(ιd,n/Sn)∗ ∼= H∗(Sp;Fp(q))/ ker(ιd,n/Sn)∗ (9)
∼= H∗(Sp;Fp(q))/H≥(d−1)(p−1)+1(Sp;Fp(q)),

and the Fp-vector space, or the H∗(Sp;Fp)-module, or H∗(F(Rd, p)/Sp;Fp)-module,
Md is determined by

Md =

{
0, d even,
Fp = 〈λ〉, d odd and deg(λ) = 1

2 (d− 1)(p− 1).

The H∗(Sp;Fp)-module structure on Md is trivial, which means that the generator
λ is annihilated by all elements of positive degree of the ring H∗(Sp;Fp).

Again, implicitly we have that ker(ιd,n/Sn)∗ is the H∗(Sp;Fp)-submodule of
H∗(Sp;Fp(q)) generated by all elements of degree ≥ (d− 1)(p− 1) + 1.

The methods used in the proofs of Theorem 1.5 and Theorem 1.6 are at least
as important as the results themselves. The proofs are presented on more than 50
pages in [33, Sec. 5-11]. One of the technical highlights is the so-called Vanishing
Theorem [33, Thm. 8.2], which was also announced in [31, Thm. 4]. It gives a
description of the cohomology Serre spectral sequences, with coefficients in the
appropriately interpreted Sp-module associated with fiber bundles

F(Rd, p) // F(Rd, p)×Sp ESp
// BSp (10)
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0

0

p− 1

2(p− 1)

(d− 2)(p− 1)

(d− 1)(p− 1)

Figure 4. The shape of E2-term of the Serre spectral sequence asso-
ciated to the fiber bundle (11).

and
F(Rd, p) // F(Rd, p)×Zp ESp

// BZp. (11)

Here the cyclic group Zp is the Sylow p-subgroup of the symmetric group Sp gen-
erated by the cyclic shift, or in other words by the p-cycle (12 . . . p). An illustration
of the E2

∼= E(d−1)(p−1)+1-term of the Serre spectral sequence with trivial Fp co-
efficients associated to the fiber bundle (11) shaped by the Vanishing theorem is
given in Figure 4.

In this section, so far, we touched only the achievements of [33] announced in
[31], but as the title The homology of Cn+1-spaces indicates, the paper has much
more to offer; see also the announcement [32]. In the context of the previously
presented results we only point out that the homology of the unordered configura-
tion space F(Rd, n)/Sn, with arbitrary number of particles n ≥ 1, and coefficients
in the field Fp, can be recovered from [33, Thm. 3.1]. In addition, a recipe for
the coalgebra structure on Fp-homology of F(Rd, n)/Sn was given by showing that
H∗(F(Rd, n)/Sn;Fp) injects into the coalgebra H∗(ΩdSd;Fp).

Now, it was natural to ask: How much further can these computations be ex-
tended? For which classes of spaces are similar formulas true?

1.8. Homology of unordered configuration spaces. The breakthroughs made
in 1970s first by May [75, 76, 77], and then by F. Cohen [31, 32, 33], Dusa Mc-
Duff [78, 79], Victor Snaith [94], Graeme Segal [92], Cohen, Mark Mahowald &
James Milgram in [38, Thm. 1], and Cohen, May & Laurence R. Taylor [39, 40],
opened a pathway for applications of homotopy methods in the study of topology of
configuration spaces. The next decade brought more excitement of different flavor
with the work of Cohen, Ralph Cohen, Nicholas Kuhn & Joseph Neisendorfer [35],
Cohen, May & Taylor [41], Jeffrey Caruso, Cohen, May & Taylor [28], followed by
the results of Carl-Friedrich Bödigheimer, Cohen & Taylor [26] and Bödigheimer &
Cohen [25].

The highlight of 1970s and 1980s in the study of configuration spaces, from the
perspective of this book, are the results given in the paper [26]. For this reason,



20 BLAGOJEVIĆ, COHEN, CRABB, LÜCK, AND ZIEGLER

we give a (simplified) presentation of how Bödigheimer, Cohen & Taylor computed
homologies of unordered configuration spaces of manifolds.

In this section we consider configuration spaces of smooth, compact connected
manifolds M of (fixed) dimension d ≥ 2. Furthermore, by F we denote the field Fp
with prime number p of elements, or a field of characteristic zero. Let n ≥ 1 be an
integer, and assume that in the case when F is not the field with two elements F2

the sum d+ n is odd.
The objective is to compute the homology of the unordered configuration spaces

of the manifold M with coefficients in the field F. The main idea is to describe the
graded vector space H∗(F(M,k)/Sk;F) as a part of the homology of a much larger
space, namely the quotient space

C(M ;X) :=
(∐
k≥1

F(M,k)×Sk X
k
)
/ ≈,

where X is a CW-complex with the base point pt ∈ X, and the equivalence relation
≈ is generated by (m1, . . . ,mk;x1, . . . , xk) ≈ (m1, . . . ,mk−1;x1, . . . , xk−1) if xk =
pt. The computation is done in several steps.

In the first step, based on a result from [33] and proceeding by an induction on
the number of handles in a handle decomposition of M , the homology of C(M ;Sn)
is described in terms of homologies of iterated loop spaces of spheres as follows; see
[26, Thm.A].

Theorem 1.7. There is an isomorphism of graded vector spaces

θ : H∗(C(M ;Sn);F) −→
d⊗
i=0

H∗(Ω
d−iSd+n;F)⊗ dim(Hi(M ;F)).

It is important to point out that, as an artefact of the proof, the isomorphism θ
depends on the choice of a handle decomposition of M . On the other hand, the
isomorphism is natural for embeddings which preserve the handle decomposition.

The next step is a more delicate one. We can say that it gives us a “filtration
refinement” of the isomorphism θ. Indeed, the space C(M ;Sn) can be naturally
filtered by the number of points in a configuration. More precisely, let

FkC(M ;Sn) := im
( ∐

0≤m≤k

F(M,k)×Sm (Sn)m −→

∐
m≥0

F(M,k)×Sm (Sn)m −→
( ∐
m≥0

F(M,k)×Sm (Sn)m
)
/≈

)
,

with the first map being the obvious inclusion and the second map the identification
map. In this way we have the filtration of C(M ;Sn):

∅ = F−1C(M ;Sn) ⊆ F0C(M ;Sn) ⊆ F1C(M ;Sn) ⊆ · · ·
⊆ Fk−1C(M ;Sn) ⊆ FkC(M ;Sn) ⊆ · · · ,

where each consecutive pair of spaces (FkC(M ;Sn),Fk−1C(M ;Sn)) is an NDR-
pair; consult [76, Prop. 2.6]. According to the work of Segal [92], Cohen [34] and
Bödigheimer [18], the filtration stably splits. In particular,

H̃∗(C(M ;Sn);F) ∼=
⊕

H̃∗(FkC(M ;Sn)/Fk−1C(M ;Sn);F).

On the other hand C(H∗,M, Sn) :=
⊗d

i=0H∗(Ω
d−iSd+n;F)⊗ dim(Hi(M ;F)) is an al-

gebra with each generator equipped with a weight — as described in the language
of Araki–Kudo–Dyer–Lashof homology operations much earlier by Shôrô Araki &
Tatsuji Kudo [70] in the case F = F2, by Eldon Dyer & Richard Lashof [45] for
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F = Fp, and by May [77] using the framework of E∞-operads. The weight assign-
ment induces the so-called product filtration on the algebra C(H∗,M, Sn):

0 = F0C(H∗,M, Sn) ⊆ F1C(H∗,M ;Sn) ⊆ · · ·
⊆ Fk−1C(H∗,M, Sn) ⊆ FkC(H∗,M, Sn) ⊆ · · · .

It turns out that these two filtrations agree under the isomorphism θ of Theorem
1.7. In other words, the following theorem holds [26, Thm.B].

Theorem 1.8. There are isomorphisms of graded vector spaces

θk : H∗(FkC(M ;Sn);F) −→ FkC(H∗,M, Sn),

such that for every k ≥ 0 the following diagram commutes:

H∗(FkC(M ;Sn);F)
θk
//

��

FkC(H∗,M, Sn)

��

H∗(C(M ;Sn);F)
θ
// C(H∗,M, Sn).

The left vertical homomorphism in the diagram is induced by the inclusion of spaces
FkC(M ;Sn) ⊆ C(M ;Sn), while the right vertical homomorphism is the inclusion
homomorphism FkC(H∗,M, Sn) ⊆ C(H∗,M, Sn).

In the final step we consider the successive quotients:

DkC(M ;Sn) := FkC(M ;Sn)/Fk−1C(M ;Sn),

DkC(M ;Sn) := FkC(H∗,M, Sn)/Fk−1C(H∗,M, Sn).

From Theorem 1.8 it follows directly that the family of isomorphisms θk induce the
sequence of isomorphisms

θk : H∗(DkC(M ;Sn);F) −→ DkC(H∗,M, Sn).

Next, consider the vector bundle ξM,k given by

Rk // F(M,k)×Sk Rk // F(M,k)/Sk.

It is not hard to see that the space DkC(M ;Sn) is the Thom space [80, Sec, 18] of the
Whitney power vector bundle ξ⊕nM,k. Consequently, applying the Thom isomorphism
theorem [80, Cor. 10.7 and Lem. 18.2] to the following result, a description of the
homology of the unordered configuration space of the manifold M can be obtained;
see [26, Thm.C].

Theorem 1.9. There is an isomorphism of graded vector spaces

H∗−kn(F(M,k)/Sk;F) ∼= DkC(H∗,M, Sn).

In the case when M = Rd the last result is used in Section 4.2, more precisely
in the proof of Theorem 4.1. For relevant details see Corollary 4.14.

For n odd and d even a similar result was deduced by a slight modification of the
coefficients. Instead of coefficients in the field F with trivial Sk-module structure
one considers the local coefficient system given on the field F by π · a = (−1)sgn(π)a
for π ∈ Sk and a ∈ F.

The isomorphism of Theorem 1.9, in combination with understanding of Araki–
Kudo–Dyer–Lashof homology operations, allows one to do explicit computations
of the homology of unordered configuration spaces of manifolds. For example,
Bödigheimer, Cohen & Taylor illustrated such computations in [26, Sec. 5] and in
particular computed the dimensions of the vector spaces H∗(F(S2, k)/Sk;F) for
k ≤ 10:
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k = 1 2 3 4 5 6 7 8 9 10

dim(H0(F(S2, k)/Sk)) 1 1 1 1 1 1 1 1 1 1

dim(H1(F(S2, k)/Sk)) 0 1 1 1 1 1 1 1 1 1

dim(H2(F(S2, k)/Sk)) 1 1 1 2 2 2 2 2 2 2

dim(H3(F(S2, k)/Sk)) 1 2 2 3 3 3 3 3
dim(H4(F(S2, k)/Sk)) 1 2 2 3 3 3

dim(H5(F(S2, k)/Sk)) 1 1 2 3 3 4

dim(H6(F(S2, k)/Sk)) 1 2 3 4

dim(H7(F(S2, k)/Sk)) 1 2 3

dim(H8(F(S2, k)/Sk)) 1 2

dim(H9(F(S2, k)/Sk)) 1 1

Finally, in the case when the sum n+d is even and the coefficients are taken in the
field of rational numbers, Bödigheimer & Cohen in [25] computed the cohomology
H∗(C(Mg;S

2n);Q) for n ≥ 1, as a Q vector space. Here Mg denotes the open
manifold obtained by deleting a point from an orientable surface of genus g. In this
way they demonstrated the importance of the parity assumption on the sum n+ d
for the results of [26]. More precisely, they showed in [25, Thm.A] that

H∗(C(Mg;S
2n);Q) ∼= Q[v, u1, . . . , u2g]⊗H∗(Λ(w, z1, . . . , z2g), ∂),

where deg(v) = 2n, deg(u1) = · · · = deg(u2g) = 4n+ 2, deg(w) = 4n+ 1, deg(z1) =
· · · = deg(z2g) = 2n + 1, and the differential ∂ on Λ(w, z1, . . . , z2g) is given by
∂w = 2(z1z2 + · · ·+ z2g−1z2g), and ∂z1 = · · · = ∂z2g = 0.

2. The Ptolemaic epicycles embedding

In this section we follow the work of Hu’ng [62, Sec. 2] [64, Sec. 1 and Sec. 2].
Using the analogy with the structural map of the little cubes operad, we introduce
and study an embedding of a product of spheres into the ordered configuration
space of a Euclidean space.

LetM be a topological space. The ordered configuration space of n pairwise
distinct points on the space M is the following space:

F(M,n) := {(x1, . . . , xn) ∈ Xn : xi 6= xj for all 1 ≤ i < j ≤ n},

equipped with the subspace topology. The symmetric group Sn acts (from right)
freely on the configuration space by

π · (x1, . . . , xn) := (xπ(1), . . . , xπ(n)),

where π ∈ Sn and (x1, . . . , xn) ∈ F(M,n).
Now let m ≥ 0 be an integer and n = 2m. We define a bijection β : Z⊕m2 −→ [2m]

as follows:

(i1, . . . , im) −→ 1 +

m∑
j=1

2m−jij .

In particular, we have:

(0, 0, . . . , 0, 0) 7−→ 1, (0, 1, . . . , 1, 1) 7−→ 2m−1,
(1, 0, . . . , 0, 0) 7−→ 2m−1 + 1, (1, 1, . . . , 1, 1) 7−→ 2m.

The symmetric group S2m for us is the group of permutations of the set Z⊕m2 =
[2m], where the last equality (set identification) is given via the bijection β.
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Definition 2.1. Let d ≥ 2 be an integer or d = ∞, and let m ≥ 0 be also an
integer. Furthermore, let Sd−1 denote the unit sphere in Rd with the base point
∗ := (1, 0, . . . , 0) ∈ Sd−1. Fix a real number 0 < ε < 1

3 .
— The space Pe(Rd, 2m), a product of spheres,
— its embedding into the configuration space

ecyd,2m : Pe(Rd, 2m) −→ F(Rd, 2m),

which is called the Ptolemaic epicycles embedding, and
— the group S2m that acts on the space Pe(Rd, 2m),

are defined inductively as follows.
(1) If m = 0 then Pe(Rd, 1) := {pt} is a point, and

ecyd,1 : Pe(Rd, 1) −→ F(Rd, 1), pt 7−→ 0 ∈ (Rd)1.

The group S1 := 1 acts on both spaces Pe(Rd, 1) and F(Rd, 1) trivially. Since
S1 = 1 = S1 is the trivial group, the map ecyd,1 is an S1-equivariant map.

(2) If m = 1 then Pe(Rd, 2) := Sd−1 = (Pe(Rd, 1)×Pe(Rd, 1))×Sd−1 is a (d− 1)-
sphere, and

ecyd,2 : Pe(Rd, 2) −→ F(Rd, 2), x 7−→ (x,−x).

The group S2 := (S1 × S1) o Z2 = S1 o Z2
∼= Z2 acts on Pe(Rd, 2) antipodally.

The groups S2 and S2 are isomorphic via the unique isomorphism ι1 : S2 −→
S2. Hence, F(Rd, 2) is a S2-space where the S2-action on F(Rd, 2) is induced
via the isomorphism ι1. Consequently, ecyd,2 is an S2-equivariant map.

(3) Let us now assume that for m = k we have defined
— the space

Pe(Rd, 2k) = (Pe(Rd, 2k−1)× Pe(Rd, 2k−1))× Sd−1 = (Sd−1)2k−1,

— the embedding of the spaces

ecyd,2k : Pe(Rd, 2k) −→ F(Rd, 2k),

— the group embedding

ιk : S2k −→ S2k

such that ιk(S2k) is a Sylow 2-subgroup of S2k , and
— the action of the group S2k on Pe(Rd, 2k) in such a way that ecyd,2k is

an S2k -equivariant map, assuming that the action of S2k on the configu-
rations space F(Rd, 2k) is given via ιk.

For convenience we denote the coordinate functions of the embedding ecyd,2k by

ecyd,2k(y) = (ecy1
d,2k(y), . . . , ecy2k

d,2k(y)) ∈ F(Rd, 2k),

where y ∈ Pe(Rd, 2k). That is, ecyid,2k : Pe(Rd, 2k) −→ Rd for 1 ≤ i ≤ 2k.
(4) Let m = k + 1, then we define

— the space

Pe(Rd, 2k+1) := (Pe(Rd, 2k)× Pe(Rd, 2k))× Sd−1

= (Sd−1)2k+1−1,

— the group

S2k+1 := (S2k × S2k) o Z2

= S2k o Z2 = Z2 o · · · o Z2 (k + 1 times),
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— the action of the group S2k+1 on Pe(Rd, 2k+1) by

(h1, h2) · (y1, y2, x) := (h1 · y1, h2 · y2, x), (12)
(h1, h2, ω) · (y1, y2, x) := (h2 · y2, h1 · y1,−x),

where (h1, h2) ∈ S2k × S2k ⊆ (S2k × S2k) o Z2, ω is the generator of
Z2 ⊆ (S2k ×S2k)oZ2, and (y1, y2, x) ∈ (Pe(Rd, 2k)×Pe(Rd, 2k))×Sd−1,

— the Ptolemaic epicycles embedding

ecyd,2k+1 : Pe(Rd, 2k+1) −→ F(Rd, 2k+1)

by

ecyd,2k+1(y1, y2, x) := (x+ ε ecy1
d,2k(y1), . . . , x+ ε ecy2k

d,2k(y1),

− x+ ε ecy1
d,2k(y2), . . . ,−x+ ε ecy2k

d,2k(y2)),

— the embedding ιk+1 : S2k+1 −→ S2k+1 that is defined by

ιk+1(h1, h2)(i) :=

{
ιk(h1)(i), 1 ≤ i ≤ 2k,

ιk(h2)(i− 2k) + 2k, 2k + 1 ≤ i ≤ 2k+1,
(13)

ιk+1(ω)(i) :=

{
i+ 2k, 1 ≤ i ≤ 2k,

i− 2k, 2k + 1 ≤ i ≤ 2k+1.

This, in particular, means that the subgroup S2k × 1 permutes elements
of [2k+1]1 while keeping elements of [2k+1]2 fixed, the subgroup 1 × S2k

on the other hand permutes elements of [2k+1]2 and fixes elements of
[n]1. The subgroup generated by ω interchanges the blocks [2k+1]1 and
[2k+1]2. In addition ιk+1(S2k+1) is a Sylow 2-subgroup of S2k+1 . For an
illustration of the embedding ecy2,2 : Pe(R2, 2) −→ F(R2, 2) see Figure 5.

Then ecyd,2k+1 is an S2k+1-equivariant map if the action of S2k+1 on F(Rd, 2k+1)
is given by

(h1, h2) · (z1, . . . , z2k+1) := (h1 · (z1, . . . , z2k), h2 · (z2k+1, . . . , z2k+1)), (14)
(h1, h2, ω) · (z1, . . . , z2k+1) := (h2 · (z2k+1, . . . , z2k+1), h1 · (z1, . . . , z2k)),

for (h1, h2) ∈ S2k×S2k , ω the generator of Z2, and (z1, . . . , z2k+1) ∈ F(Rd, 2k+1).
In other words, the action of S2k+1 on F(Rd, 2k+1) is given via the embedding
ιk+1.

Remark 2.2. An analogous construction can be given using the little cubes op-
erad Cd(2) in the place of the sphere Sd−1. (For more details on little cubes
operad see for example [76] or consult Section 7.1.3.) Indeed, let d ≥ 2 be an
integer or d = ∞, and let m ≥ 0 be also an integer. We define the space
Ce(Rd, 2m) of little cubes epicycles space and the corresponding S2m -eqivariant
map cecyd,2m : Ce(Rd, 2m) −→ Cd(2m) as follows.
(1) If m = 0, then we set Ce(Rd, 1) := Cd(1), and cecyd,1 : Ce(Rd, 1) −→ Cd(1) is

the identity map. The group S1 = 1 acts on both spaces Ce(Rd, 1) and Cd(1)
trivially, and so cecyd,1 is an S1-equivariant map.

(2) If m = 1, then we set Ce(Rd, 2) := (Ce(Rd, 1) × Ce(Rd, 1)) × Cd(2), and the
map

cecyd,2 : Ce(Rd, 2) −→ Cd(2)
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R2

Sp(R2, 2)

Figure 5. An illustration of the embedding ecy2,2 : Pe(R2, 2) −→ F(R2, 2).

is the composition map

(Ce(Rd, 1)× Ce(Rd, 1))× Cd(2)
(cecyd,1× cecyd,1)×id

//

,,

(Cd(1)× Cd(1))× Cd(2)

µ

��

Cd(2),

where µ denotes the structural map of the little cubes operad, as defined in
Section 7.1.3. The group S2 = (S1 × S1) o S2 ↪

ι1−−→ S2 coincides with the
group S1,1;2 defined in Lemma 7.2 and acts on Ce(Rd, 2) as follows:

(h1, h2) · (y1, y2, x) := (h1 · y1, h2 · y2, x), (15)
(h1, h2, ω) · (y1, y2, x) := (h2 · y2, h1 · y1,−x),

where (h1, h2) ∈ S1 × S1 ⊆ (S1 × S1) o S2, ω is the generator of S2 ⊆
(S1×S1)oS2, and (y1, y2, x) ∈ (Ce(Rd, 1)×Ce(Rd, 1))×Cd(2). The assumed
action of S2 = S1,1;2 on (Cd(1) × Cd(1)) × Cd(2) is described in Section 7.1.3.
Finally the action of S2 on Cd(2) is given via embedding ι1 : S2 −→ S2. With
these actions both maps (cecyd,1× cecyd,1)× id and µ are S2-equivariant, and
consequently the composition map cecyd,2 is a S2-equivariant. It is important
to notice that S1 = 1 and so S2

∼= Z2
∼= S2.

(3) Let us assume that for m = k we have defined the space

Ce(Rd, 2k) = (Ce(Rd, 2k−1)× Ce(Rd, 2k−1))× Cd(2),

the embedding cecyd,2k : Ce(Rd, 2k) −→ C2(2k), the embedding ιk of the Sylow
2-subgroup S2k into S2k , and the action of the group S2k on Ce(Rd, 2k) in such
a way that cecyd,2k is a S2k -equivariant map.
For m = k + 1 we define the space

Ce(Rd, 2k+1) := (Ce(Rd, 2k)× Ce(Rd, 2k))× Cd(2).

The action of the group S2k+1 on Ce(Rd, 2k+1) is given by

(h1, h2) · (y1, y2, x) := (h1 · y1, h2 · y2, x), (16)
(h1, h2, ω) · (y1, y2, x) := (h2 · y2, h1 · y1,−x),
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where (h1, h2) ∈ S2k × S2k ⊆ (S2k × S2k) o S2, ω is the generator of S2 ⊆
(S2k ×S2k)oS2, and (y1, y2, x) ∈ (Ce(Rd, 2k)×Ce(Rd, 2k))×Cd(2). The map

cecyd,2k+1 : Ce(Rd, 2k+1) −→ Cd(2k+1)

is defined to be the following composition

(Ce(Rd, 2k)× Ce(Rd, 2k))× Cd(2)
(cecy

d,2k
× cecy

d,2k
)×id
//

cecy
d,2k+1

,,

(Cd(2k)× Cd(2k))× Cd(2)

µ

��

Cd(2k+1),

where µ denotes the structural map of the little cubes operad. Under assumed
actions, by direct inspection, we get that the two maps (cecyd,2k × cecyd,2k)×
id and µ are both S2k+1-equivariant. Consequently the composition map
cecyd,2k+1 is also S2k+1-equivariant.

Example 2.3. Let m = 2. Then the bijection β : Z⊕2
2 −→ [4] is given by

(0, 0) 7−→ 1, (0, 1) 7−→ 2, (1, 0) 7−→ 3, (1, 1) 7−→ 4.

The group S2 = (S1 × S1) o Z2 = 〈ε1, ε2〉 o 〈ω〉 ∼= (Z2 × Z2) o Z2 embeds via ι2
into the symmetric group S4 by sending generators to the following permutations

ε1 7−→
(

1234

2134

)
, ε2 7−→

(
1234

1243

)
, ω 7−→

(
1234

3412

)
.

Let n ≥ 1 be an integer. We consider the following vector subspace of Rn:
Wn := {(a1, . . . , an) ∈ Rn : a1 + · · ·+ an = 0}.

Then the subspace {(x1, . . . , xn) ∈ (Rd)n : x1 + · · · + xn = 0} of (Rd)n can be
identified with the direct sum W⊕dn . The map ecyd,n that we have defined has the
following property.

Proposition 2.4. Let d ≥ 2 be an integer or d =∞, and let m ≥ 0 be an integer.
Then im(ecyd,2m) ⊆W⊕d2m , that is, for every (y1, y2, x) ∈ Pe(Rd, 2m)

ecy1
d,2m(y1, y2, x) + · · ·+ ecy2m

d,2m(y1, y2, x) = 0.

Proof. We use induction on the integer m ≥ 0. For m = 0 we have that

im(ecyd,1) = {0} = W⊕d1 .

Assume that for m = k > 0 we have im(ecyd,2k) ⊆ W⊕d
2k

. Then for m = k + 1 and
(y1, y2, x) ∈ Pe(Rd, 2k+1) = (Pe(Rd, 2k) × Pe(Rd, 2k)) × Sd−1, using the induction
hypothesis, we get

2k+1∑
j=1

ecyj
d,2k+1(y1, y2, x) = (x+ ε ecy1

d,2k(y1)) + · · ·+ (x+ ε ecy2k

d,2k(y1))+

(−x+ ε ecy1
d,2k(y2)) + · · ·+ (−x+ ε ecy2k

d,2k(y2))

= ε
( 2k∑
j=1

ecyj
d,2k

(y1)
)

+ ε
( 2k∑
j=1

ecyj
d,2k

(y2)
)

= 0.

Consequently im(ecyd,2k+1) ⊆W⊕d
2k+1 , and the induction is completed. �

Next we verify that the Ptolemaic epicycles embedding ecyd,2m is indeed an
embedding, see [64, Lem. 1.6].
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R2Sp(R2, 4)

Figure 6. An illustration of the embedding ecy2,4 : Pe(R2, 4) −→ F(R2, 4).

Proposition 2.5. Let d ≥ 2 be an integer or d =∞, and let m ≥ 0 be an integer.
For any fixed real number 0 < ε < 1

3 the map

ecyd,2m : Pe(Rd, 2m) −→ F(Rd, 2m)

is an embedding.

Proof. The continuity of the map ecyd,2m follows directly from Definition 2.1. Thus,
we only need to show that ecyd,2m is an injective map. For that we use induction
on integer m ≥ 0.
The map ecyd,1 : Pe(Rd, 1) −→ F(Rd, 1) is evidently injective, since Pe(Rd, 1) = pt.
Assume that for m = k ≥ 0 the map ecyd,2k is injective. Now, for m = k + 1,
suppose that

ecyd,2k+1(y1, y2, x) = ecyd,2k+1(y′1, y
′
2, x
′), (17)

where (y1, y2, x), (y′1, y
′
2, x
′) ∈ Pe(Rd, 2k+1). Consequently, the sums of first 2k

coordinates must coincide
2k∑
j=1

ecyj
d,2k+1(y1, y2, x) =

2k∑
j=1

ecyj
d,2k+1(y′1, y

′
2, x
′).

From the definition of the map ecyd,2k+1 it follows that

2kx+ ε
( 2k∑
j=1

ecyj
d,2k

(y1)
)

= 2kx′ + ε
( 2k∑
j=1

ecyj
d,2k

(y′1)
)
.

From Proposition 2.4 we get

2k∑
j=1

ecyj
d,2k

(y1) = 0 and
2k∑
j=1

ecyj
d,2k

(y′1) = 0,

implying that x = x′. Furthermore, using Definition 2.1 and (17) we have that

ecyd,2k(y1) = ecyd,2k(y′1) and ecyd,2k(y2) = ecyd,2k(y′2).

Finally the induction hypothesis implies that y1 = y′1 and y2 = y′2 concluding the
proof of the proposition. �

In the case when d =∞ the space Pe(Rd, 2m) is a contractible space with a free
S2m -action, and therefore is a model for ES2m . In particular, we can observe that

Pe(R∞, 2m) ∼= colimd→∞ Pe(Rd, 2m),

where the colimit is defined via the inclusions Rd −→ Rd+1, x 7−→ (x, 0), which
induce the corresponding inclusion maps Pe(Rd, 2m) −→ Pe(Rd+1, 2m). Further-
more, the induced S2m-equivariant map Pe(Rd, 2m) −→ colimd→∞ Pe(Rd, 2m) is
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given by the inclusion maps Rd −→ R∞, x 7−→ (x, 0, 0, . . .), and is denoted by

κd,2m : Pe(Rd, 2m) −→ Pe(R∞, 2m). (18)

In summary, we have the following.

Proposition 2.6. Let m ≥ 0 be an integer. Then Pe(R∞, 2m) is a free contractible
S2m-CW complex.

Before we continue towards the study of the equivariant cohomology of the space
Pe(Rd, 2m), we specify an elementary abelian subgroup Em of the Sylow 2-subgroup
S2m of the symmetric group S2m .

Definition 2.7. Let m ≥ 0 be an integer. The subgroup Em of the group S2m is
defined inductively as follows.
(1) If m = 0, then we set E0 := S1 = 1.
(2) If m = 1, then we set E1 := S2

∼= Z2.
(3) Let us assume that for m = k ≥ 1 we have defined the subgroup Ek of S2k .
(4) If m = k + 1 and δ : S2k −→ S2k × S2k denotes the diagonal monomorphism

given by s 7→ (s, s), then we set

Ek+1 := δ(Ek)× Z2
∼= Ek × Z2

∼= Z⊕k+1
2 ⊆ (S2k × S2k) o Z2 = S2k+1 .

Furthermore, let C1, . . . , Cm be cyclic groups isomorphic to Z2 with the property
that

Ei = (C1 × · · · × Ci−1)× Ci = δ(Ei−1)× Ci.
Here we make slight abuse of notation identifying Ei−1 with a subgroup of Ei.
Having this decomposition fixed we see that S2m = C1 o · · · o Cm. In summary, we
have inclusions of the groups

Em ⊆ S2m ⊆ S2m (19)

where Em is the subgroup of S2m given by translations (seen as permutations) of
Z⊕m2 , the so called regular embedded subgroup [2, Ex. III.2.7], and the inclusion
S2m ⊆ S2m is defined via the monomorphism ιm.

The cohomology of the elementary abelian group Em with F2 coefficients is well
known. In particular, we fix the following presentation

H∗(Em;F2) = F2[y1, . . . , ym],

where deg(yk) = 1 for 1 ≤ k ≤ m, in such a way that the exact sequence of groups

1 // Em−1
// Em−1 × Cm // Cm // 1

induces the following sequence of algebras

0 F2[y1, . . . , ym−1]oo F2[y1, . . . , ym−1, ym]oo F2[ym]oo 0 ,oo

which is exact in each positive degree.

3. The equivariant cohomology of Pe(Rd, 2m)

Let d ≥ 2 be an integer or d = ∞, and let m ≥ 0 be an integer. In this section
we study the equivariant cohomology of the space Pe(Rd, 2m) with respect to the
already defined free action of the group S2m , that is,

H∗S2m (Pe(Rd, 2m);F2) ∼= H∗(Pe(Rd, 2m)/S2m ;F2)

∼= H∗(ES2m ×S2m Pe(Rd, 2m);F2).

In particular, if d =∞, then according to Proposition 2.6 we have that

H∗S2m (Pe(R∞, 2m);F2) ∼= H∗(Pe(R∞, 2m)/S2m ;F2) ∼= H∗(S2m ;F2).
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Since the space Pe(Rd, 2m) is defined inductively, our computation utilizes this
feature, and is an alternative to the calculation presented in [64, Sec. 2]. The
methods we use are applicable in a more general setting.

3.1. Small values of m. Let us first consider the case when m = 0. In this case,
according to Definition 2.1, we have that

Pe(Rd, 1) = pt and S1 = 1.

Consequently

Hr
S1(Pe(Rd, 1);F2) ∼= Hr(Pe(Rd, 1)/S1;F2) ∼= Hr(pt;F2) ∼=

{
F2, r = 0,

0, r 6= 0.

We specify a particular additive basis for the cohomology H∗(Pe(Rd, 1)/S1;F2) by

B(Rd, 1) := {1},

where 1 is the generator of H0(Pe(Rd, 1)/S1;F2) ∼= F2. In addition we partition
the set B(Rd, 1) into two subsets

Ba(Rd, 1) := B(Rd, 1) and Bi(Rd, 1) := B(Rd, 1)\Ba(Rd, 1).

Thus, Bi(Rd, 1) = ∅.
Next, let m = 1. Then from Definition 2.1 we get

Pe(Rd, 2) = Sd−1 and S2 = Z2.

Therefore

Hr
S2(Pe(Rd, 2);F2) ∼= Hr(Pe(Rd, 2)/Z2;F2) ∼= Hr(RPd−1;F2)

∼=

{
F2, 0 ≤ r ≤ d− 1,

0, otherwise.

Again we specify an additive basis for the cohomology H∗(Pe(Rd, 2)/S2;F2) as
follows:

B(Rd, 2) := {1, e, e2, . . . , ed−1},
where ei is the generator ofHi(RPd−1;F2) ∼= F2. The partition of the basis B(Rd, 2)
we use is defined by:

Ba(Rd, 2) := {(x⊗ x)⊗Z2
ei : x ∈ Ba(Rd, 1), 0 ≤ i ≤ d− 1} = {1, e, e2, . . . , ed−1},

and
Bi(Rd, 2) := B(Rd, 2)\Ba(Rd, 2) = ∅.

3.2. The case m = 2. The first interesting case is when m = 2. Again from
Definition 2.1 we have that

Pe(Rd, 2m) = Pe(Rd, 4) = (Pe(Rd, 2)×Pe(Rd, 2))× Sd−1 = (Sd−1 × Sd−1)× Sd−1,

and
S2m = S4 = (Z2 × Z2) o Z2 = Z2 o Z2 =

(
〈ε1〉 × 〈ε2〉

)
o 〈ω〉.

(The group S4 is isomorphic to the dihedral group D8.) The free action of the
group S4 on Pe(Rd, 4) we introduced is given by

ε1 · (y1, y2, x) = (−y1, y2, x),

ε2 · (y1, y2, x) = (y1,−y2, x),

ω · (y1, y2, x) = (y2, y1,−x),
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for (y1, y2, x) ∈ Sd−1 × (Sd−1 × Sd−1). Thus

Pe(Rd, 4)/S4 =
(
(Sd−1 × Sd−1)× Sd−1

)
/S4

∼=
(
(Sd−1/Z2 × Sd−1/Z2)× Sd−1

)
/Z2

∼=
(
(RPd−1 × RPd−1)× Sd−1

)
/Z2 =: (RPd−1 × RPd−1)×Z2

Sd−1.

The action of Z2 on (RPd−1 × RPd−1)× Sd−1 we have is given by

(u1, u2, x) 7−→ (u2, u1,−x)

for (u1, u2, x) ∈ (RPd−1 × RPd−1) × Sd−1. Since this Z2-action is free then the
corresponding quotient space (RPd−1 × RPd−1) ×Z2 S

d−1 is the total space of the
fiber bundle

RPd−1 × RPd−1 // (RPd−1 × RPd−1)×Z2
Sd−1 p

// RPd−1, (20)

where the map p is induced by the (Z2-equivariant) projection on the second factor

(RPd−1 × RPd−1)× Sd−1 −→ Sd−1.

Furthermore, the S4-equivariant inclusion κd,4 : Pe(Rd, 4) −→ Pe(R∞, 4), intro-
duced in (18), induces the following morphism of fiber bundles

(RPd−1 × RPd−1)×Z2 S
d−1

κd,4/S4
//

��

(RP∞ × RP∞)×Z2 S
∞

��

RPd−1 // RP∞.

(21)

For every integer d ≥ 2 or d =∞ the fiber bundle (20) induces a Serre spectral
sequence that converges to H∗((RPd−1 × RPd−1) ×Z2

Sd−1;F2). The E2-term of
this spectral sequence is of the form

Er,s2 (d) = Hr(RPd−1;Hs(RPd−1 × RPd−1;F2)). (22)

Here H∗(RPd−1 ×RPd−1;F2) denotes a local coefficient system determined by the
action of the fundamental group of the base π1(RPd−1) on the cohomology of the
fiber H∗(RPd−1 × RPd−1;F2). The cohomology ring of the fiber, via the Künneth
formula [21, Thm.VI.3.2], can be presented in the following way

H∗(RPd−1 × RPd−1;F2) ∼= H∗(RPd−1;F2)⊗H∗(RPd−1;F2)

∼= F2[e1]/〈ed1〉 ⊗ F2[e2]/〈ed2〉
∼= F2[e1, e2]/〈ed1, ed2〉,

where deg(e1) = deg(e2) = 1. Here 〈ed1, ed2〉 denotes the ideal in F2[e1, e2] generated
by the polynomials ed1 and ed2. The fundamental group π1(RPd−1) = 〈t〉 is a cyclic
group. Indeed, π1(RP1) ∼= Z and π1(RPd−1) ∼= Z2 for d ≥ 3. The action of
π1(RPd−1) on the cohomology ring H∗(RPd−1 ×RPd−1;F2) is given by t · e1 = e2.

In the case when d =∞ the spectral sequence (22) becomes

Er,s2 (∞) = Hr(RP∞;Hs(RP∞ × RP∞;F2)) ∼= Hr(Z2;Hs(Z2 × Z2;F2)). (23)

Now, the cohomology ring of the fiber, via the Künneth formula [21, Thm.VI.3.2],
can be presented in the following way

H∗(RP∞ × RP∞;F2) ∼= H∗(RP∞;F2)⊗H∗(RP∞;F2)

∼= F2[e1]⊗ F2[e2] ∼= F2[e1, e2],

where deg(e1) = deg(e2) = 1. Notice an abuse of notation occurring in naming of
the generators of the cohomology of the fibers in spectral sequences (22) and (23).
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The fundamental group π1(RP∞) = 〈t〉 ∼= Z2 acts on the cohomology ring of the
fiber H∗(RP∞ × RP∞;F2) by t · e1 = e2.

d− 10

0

2(d− 1)

0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Er,s
2 (κd,n)

Figure 7. The morphism Er,s2 (κd,n).

Next, we consider the morphism between the spectral sequences (22) and (23)
induced by the morphism of fiber bundles (21) on the level of E2-terms:

Er,s2 (d) Er,s2 (∞)
Er,s2 (κd,4/S4)

oo

Hr(RPd−1;Hs(RPd−1 × RPd−1;F2)) Hr(RP∞;Hs(RP∞ × RP∞;F2)).
Er,s2 (κd,4/S4)
oo

Then we have that
— Er,s2 (κd,4/S4) is an isomorphism for all (r, s) ∈ {0, . . . , d− 2} × {0, . . . , d− 1},
— Er,s2 (κd,4/S4) is an epimorphism for all (r, s) ∈ {0, . . . , d−2}×{0, . . . , 2(d−1)},
— Er,s2 (κd,4/S4) 6= 0 is a monomorphism for all (r, s) ∈ {d− 1} × {1, . . . , d− 1},
— Er,s2 (κd,4/S4) = 0 for every (r, s) /∈ {0, . . . , d− 1} × {0, . . . , 2(d− 1)}, because

all Er,s2 (d) vanish.
(For an illustration of the morphism Er,s2 (κd,n) see Figure 7.) Thus, if we prove
that the spectral sequence (23) collapses at the E2-term the same will be true for
the spectral sequence (22). Indeed, in the next section we prove Theorem 3.4 which
guaranties that the spectral sequence (23) collapses at the E2-term. Consequently,
the spectral sequence (22) also collapses at the E2-term because all the differentials
emanating from positions (d− 1, s) ∈ {d− 1} × Z are zero.

Now, the calculation of the cohomology of the real projective space with local
coefficients H∗(RPd−1;M), presented in Section 7.4.4 of the appendix, in combi-
nation with Lemma 3.2 from the next section, gives the complete description of the
E2-terms of the both spectral sequences.
— For the spectral sequence (22) we have

Er,s2 (d) = Hr(RPd−1;Hs(RPd−1 × RPd−1;F2)) (24)

=



H0(RPd−1;F2)⊕ F⊕q(s)2 , r = 0, s even, 0 ≤ s ≤ 2d− 2,

F⊕q(s)2 , r = 0, s odd, 1 ≤ s ≤ 2d− 3,

Hd−1(RPd−1;F2)⊕ F⊕q(s)2 , r = d− 1, s even, 0 ≤ s ≤ 2d− 2,

F⊕q(s)2 , r = d− 1, s odd, 1 ≤ s ≤ 2d− 3,

Hr(RPd−1;F2), 1 ≤ r ≤ d− 2, s even, 0 ≤ s ≤ 2d− 2,

0, otherwise,

where q(s) := |{(i, j) ∈ Z× Z : 0 ≤ i < j ≤ d− 1, i+ j = s}|.
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— For the spectral sequence (23) we have

Er,s2 (∞) = Hr(BZ2;Hs(RP∞ × RP∞;F2)) (25)
∼= Hr(Z2;Hs(RP∞ × RP∞;F2))

=


H0(Z2;F2)⊕ F⊕q(s)2 , r = 0, s is even, s ≥ 0,

F⊕q(s)2 , r = 0, s is odd, s ≥ 1,

Hr(Z2;F2), r ≥ 1, s is even, s ≥ 0,

0, otherwise.

In Figure 8 the E2-term of the Serre spectral sequence (22) associated with the
fibration (20) in the case d = 5 is presented.

(1⊗ 1)⊗Z/2 1 (1⊗ 1)⊗Z/2 f (1⊗ 1)⊗Z/2 f
2 (1⊗ 1)⊗Z/2 f

3 (1⊗ 1)⊗Z/2 f
4

(e1 ⊗ e2)⊗Z/2 1 (e1 ⊗ e2)⊗Z/2 f (e1 ⊗ e2)⊗Z/2 f
2 (e1 ⊗ e2)⊗Z/2 f

3 (e1 ⊗ e2)⊗Z/2 f
4

e21 ⊗ e2

e32 ⊗ 1

e22 ⊗ 1

(e21 ⊗ e22)⊗Z/2 1

e31 ⊗ e2

e41 ⊗ 1

(e21 ⊗ e22)⊗Z/2 f (e21 ⊗ e22)⊗Z/2 f
2 (e21 ⊗ e22)⊗Z/2 f

3 (e21 ⊗ e22)⊗Z/2 f
4

0 1 2 3 4

0

1

2

3

4

0 0 0

0 0 0

e1 ⊗ 1 (e1 ⊗ 1)⊗Z/2 z4

(e21 ⊗ 1)⊗Z/2 z4

(e31 ⊗ 1)⊗Z/2 z4

(e21 ⊗ e2)⊗Z/2 z4

(e31 ⊗ e2)⊗Z/2 z4

(e41 ⊗ 1)⊗Z/2 z4

Figure 8. E2 = E∞-term of the Serre spectral sequence (22) for the
fibration (20) when d = 5. In the picture, for example, by e1 ⊗ 1 ∈ E0,1

2

we denote the invariant element e1 ⊗ 1 + 1⊗ e1.

The additive basis B(Rd, 4) for the cohomology H∗(Pe(Rd, 4)/S4;F2) is specified
using already defined basis B(Rd, 2) in the following way:
(a) (ei⊗ ei)⊗Z2 f

k = (ei1⊗ ei2)⊗Z2 f
k ∈ B(Rd, 4) for ei ∈ B(Rd, 2), 0 ≤ k ≤ d− 1,

(b) (ei⊗ej)⊗Z21 = (ei1⊗e
j
2)⊗Z21 ∈ B(Rd, 4) for ei, ej ∈ B(Rd, 2), 0 ≤ j < i ≤ d−1,

(c) (ei ⊗ ej) ⊗Z2
zd−1 = (ei1 ⊗ e

j
2) ⊗Z2

zd−1 ∈ B(Rd, 4) when d < ∞ for ei, ej ∈
B(Rd, 2), 0 ≤ j < i ≤ d− 1.
Here f ∈ H1(RPd−1;F2) denotes the multiplicative generator of the cohomol-
ogy of the base space of the fibration (20). Moreover, in the definition of the
basis B(Rd, 4) we used two notations. One of them is analogues to the notation
used in Section 7.4.4 for the generator (ei ⊗ ej) ⊗Z2

zd−1 of the cohomology
group Hd−1(RPd−1;Mi,j) where the local coefficient systemMi,j

∼= F2 ⊕ F2

is given by cohomology classes ei ⊗ ej and ej ⊗ ei.
Now, a partition of the basis B(Rd, 4) is defined by

Ba(Rd, 4) :=
{

(x⊗ x)⊗Z2 f
k : x ∈ Ba(Rd, 2), 0 ≤ k ≤ d− 1

}
={

(ei ⊗ ei)⊗Z2 f
k : ei ∈ B(Rd, 2), 0 ≤ k ≤ d− 1

}
,

and in addition

Bi(Rd, 4) := B(Rd, 4)\Ba(Rd, 4) ={
(ei ⊗ ej)⊗Z2

1 : ei, ej ∈ B(Rd, 2), 0 ≤ j < i ≤ d− 1
}
∪{

(ei ⊗ ej)⊗Z2
zd−1 : d <∞, 0 ≤ j < i ≤ d− 1

}
.
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Furthermore, denote by

A∗(Rd, 4) := 〈Ba(Rd, 4)〉 and I∗(Rd, 4) := 〈Bi(Rd, 4)〉.
Then there is an additive decomposition of the cohomology of Pe(Rd, 4)/S4 as
follows:

H∗(Pe(Rd, 4)/S4;F2) ∼= A∗(Rd, 4)⊕ I∗(Rd, 4),

where A∗(Rd, 4) turns out to be a subalgebra ofH∗(Pe(Rd, 4)/S4;F2) while I∗(Rd, 4)
is an ideal. More precisely, there is an isomorphism of algebras

A∗(Rd, 4) ∼= 〈(1⊗ 1)⊗Z2
f, (e1 ⊗ e2)⊗Z2

1〉 ∼= F2[V2,1, V2,2]/〈V d2,1, V d2,2〉,
where V2,1 = (1⊗1)⊗Z2

f and V2,2 = (e⊗e)⊗Z2
1 = (e1⊗e2)⊗Z2

1. Thus, we have
proved that the cohomology H∗(Pe(Rd, 4)/S4;F2) can be decomposed into the sum
of a subalgebra and an ideal as follows

H∗(Pe(Rd, 4)/S4;F2) ∼= F2[V2,1, V2,2]/〈V d2,1, V d2,2〉 ⊕ I∗(Rd, 4), (26)

where deg(V2,1) = 21−1 = 1 and deg(V2,2) = 22−1 = 2. The part of the Serre
spectral sequence in the case d = 5 induced by the subalgebra A∗(R5, 4) is illustrated
in Figure 9.

(1⊗ 1)⊗Z/2 1 (1⊗ 1)⊗Z/2 f (1⊗ 1)⊗Z/2 f
2 (1⊗ 1)⊗Z/2 f

3 (1⊗ 1)⊗Z/2 f
4

(e1 ⊗ e2)⊗Z/2 1 (e1 ⊗ e2)⊗Z/2 f (e1 ⊗ e2)⊗Z/2 f
2 (e1 ⊗ e2)⊗Z/2 f

3 (e1 ⊗ e2)⊗Z/2 f
4

(e21 ⊗ e22)⊗Z/2 1 (e21 ⊗ e22)⊗Z/2 f (e21 ⊗ e22)⊗Z/2 f
2 (e21 ⊗ e22)⊗Z/2 f

3 (e21 ⊗ e22)⊗Z/2 f
4

0 1 2 3 4

0

1

2

3

4

0 0 0

0 0 00

0

0

0

Figure 9. The algebra A∗(R5, 4).

3.3. Cohomology of (X × X) ×Z2
Sd−1 and (X × X) ×Z2

EZ2. Let X be a
CW-complex (not necessarily finite dimensional). Consider an action of the group
Z2 = 〈t〉 on the product X ×X given by t · (x1, x2) := (x2, x1). Then the product
spaces (X × X) × Sd−1 and (X × X) × EZ2 are equipped with the diagonal Z2-
action where the action on EZ2 comes with the space definition and the action
on Sd−1 is assumed to be antipodal. In this section, using the classical work of
Minoru Nakaoka [87] and following the fundamental book of Alejandro Adem and
James Milgram [2, Sec. IV.1], we describe the cohomology with F2-coefficients of
the following quotient spaces

(X ×X)×Z2
Sd−1 :=

(
(X ×X)× Sd−1

)
/Z2,

(X ×X)×Z2
EZ2 :=

(
(X ×X)× EZ2

)
/Z2.

For this we will use Serre spectral sequences of the following fibrations.
The spaces (X ×X)×Z2

Sd−1 and (X ×X)×Z2
EZ2 are the total spaces of the

following fiber bundles

X ×X // (X ×X)×Z2
Sd−1 // RPd−1, (27)
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where we use that Sd−1/Z2
∼= RPd−1, and

X ×X // (X ×X)×Z2
EZ2

// RP∞ ∼= BZ2. (28)

If for a model of EZ2 we take S∞ with antipodal action the natural inclusion map
Sd−1 −→ S∞ induces the following map between corresponding quotient spaces

(X ×X)×Z2
Sd−1 id

// (X ×X)×Z2
S∞ ∼= (X ×X)×Z2

EZ2. (29)

This map induces a morphism of the fiber bundles (27) and (28):

(X ×X)×Z2
Sd−1 id

//

��

(X ×X)×Z2
S∞ ∼= (X ×X)×Z2

EZ2

��

RPd−1 // RP∞ ∼= BZ2.

(30)

The cohomology of the total spaces of both fibrations (27) and (28) can be
computed using Serre spectral sequences. In the case of the fibration (27) the
E2-term of the associated Serre spectral sequence is of the form

Er,s2 (d) = Hr(RPd−1;Hs(X ×X;F2)). (31)

The local coefficient system H∗(X × X;F2) is determined by the action of the
fundamental group π1(RPd−1) of the base space on the cohomology of the fiber
H∗(X×X;F2). Recall that π1(RPd−1) is a cyclic group. In particular, the Künneth
formula [21, Thm.VI.3.2] gives a presentation of the cohomology of the fiber

H∗(X ×X;F2) ∼= H∗(X;F2)⊗H∗(X;F2),

and the action of π1(RPd−1) is given by the cyclic shift of factors in the tensor
product.
The Serre spectral sequence associated to the fibration (28) has the E2-term

Er,s2 (∞) = Hr(RP∞;Hs(X ×X;F2)) ∼= Hr(BZ2;Hs(X ×X;F2)) (32)
∼= Hr(Z2;Hs(X ×X;F2)).

The fundamental group of the base π1(BZ2) ∼= Z2 acts on the cohomology of the
fiber and defines the local coefficient system Hs(X × X;F2), or defines the Z2-
module structure on Hr(Z2;Hs(X ×X;F2)).

The morphism (30) between the fibrations (27) and (28) induces a morphism
between the spectral sequences (31) and (32):

Er,s2 (d) = Hr(RPd−1;Hs(X ×X;F2)) Er,s2 (∞) = Hr(RP∞;Hs(X ×X;F2))
Er,s2 (id)
oo .

The homomorphisms Er,s2 (id) are isomorphisms whenever Er,s2 (d) 6= 0 and (r, s) /∈
{d − 1} × Z, or Er,s2 (d) = Er,s2 (∞) = 0. In the case when (r, s) ∈ {d − 1} × Z we
have that

Ed−1,s
2 (d) ∼= Ed−1,s

2 (∞)⊕ Fb(d,X)
2 ,

where for s odd

b(d,X) =
∑

0≤i<j, i+j=s

(
rank(Hi(X;F2)) · rank(Hj(X;F2))

)
,

and for s even

b(d,X) =
∑

0≤i<j, i+j=s

(
rank(Hi(X;F2)) · rank(Hj(X;F2))

)
+

1

2

(
rank(H

s
2 (X;F2))

)2 − rank(H
s
2 (X;F2)).
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Consult also Section 7.4.4. In particular, all the homomorphisms Er,s2 (id) are
monomorphism, and for (r, s) /∈ {d− 1} × Z they are non-zero epimorphisms.

To make any further progress in computation of the spectral sequences (31) and
(32) we need to understand the action of the fundamental groups of the base spaces
on the cohomology of the fibers. For that we use the following lemma, which is a
particular case of [2, Lem. IV.1.4].

Lemma 3.1. Let V =
⊕

n≥0 Vn be a graded F2 vector space, and let B := {vi : i ∈
I} be a basis of V where the index set I is equipped with a linear order. The tensor
product vector space V ⊗ V as a F2[Z2]-module, where the action of Z2 is given
by the cyclic shift, is a direct sum of free and trivial F2[Z2]-modules. The trivial
modules are generated by the elements of the form vi⊗ vi where vi is an element of
the basis B, while the free modules are generated by the elements of the form vi⊗vj
where i < j and vi, vj belong to B.

Proof. A basis of the vector space V ⊗ V is given by all vectors of the form vi ⊗ vj
where vi, vj ∈ B. The Z2 = 〈t〉-action on V ⊗ V preserves this basis. Since
t · (vi ⊗ vj) = vj ⊗ vi we have that each element vi ⊗ vi generates a copy of the
trivial F2[Z2]-module and each element vi ⊗ vj , i < j, generates a copy of the free
F2[Z2]-module. Thus, V ⊗V is a direct sum of free and trivial F2[Z2]-modules. �

Since the homomorphisms Er,s2 (id) are isomorphisms for (r, s) ∈ {0, . . . , d−2}×Z,
monomorphism when (r, s) ∈ {d− 1} × Z, and otherwise zero homomorphisms, we
study first the spectral sequence (32). If we prove that Er,s2 (∞) = Er,s∞ (∞) it
would imply that all its differentials vanish and consequently the same would hold
for the spectral sequence (31) implying that Er,s2 (d) = Er,s∞ (d). In the next step we
describe the E2-term of the spectral sequence (32), see also [2, Cor. IV.1.6].

Lemma 3.2. Let B := {vi : i ∈ I} be a basis of the F2 vector space H∗(X;F2)
where the index set I is equipped with a linear order. The E2-term of the spectral
sequence (32) can be presented as follows:

Er,s2 (∞) = Hr(BZ2;Hs(X ×X;F2)) ∼= Hr(Z2;Hs(X ×X;F2))

∼=


Hs(X ×X;F2)Z2 , r = 0,

H
s
2 (X;F2), r > 0, s even,

0, otherwise.

Moreover, E∗,∗2 (∞) as a H∗(Z2;F2)-module, ignoring the grading, decomposes into
the direct sum ⊕

i∈I
H∗(Z2;F2)⊕

⊕
i<j∈I

F2

where the action of H∗(Z2;F2) on each summand of the first sum is given by the
cup product, and on the each summand of the second sum is trivial.

Proof. This is a direct consequence of Lemma 3.1, and the facts that:
— H0(G;M) = MG for any group G and any G-module M , and
— Hi(G;F ) = 0 for i ≥ 1 when F is a projective (free) G-module.

�

Now, for the spectral sequence (31), using the calculation presented in Section
7.4.4, we get the following presentation of the corresponding E2-term.
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Lemma 3.3. The the E2-term of the spectral sequence (31) can be presented as
follows

Er,s2 (d) = Hr(RPd−1;Hs(X ×X;F2))

∼=


Hs(X ×X;F2)Z2 , r ∈ {0, d− 1},
H

s
2 (X;F2), 1 ≤ r ≤ d− 2, s even,

0, otherwise.

The fact that the E2-term of the spectral sequence (32) collapses dates back to
work of Smith [93], Steenrod [95] and Nakaoka [87], for a result in more general
setup consult more recent work of Leary [71, Thm. 2.1]. The following theorem is
a special case of [2, Thm. IV.1.7].

Theorem 3.4. Let X be a CW-complex. The Serre spectral sequence of the fibration

X ×X // (X ×X)×Z2
EZ2

// BZ2. (33)

collapses at the E2-term, that is, Er,s2 (∞) ∼= Er,s∞ (∞) for all (r, s) ∈ Z× Z.

Proof. Let B := {vi : i ∈ I} be a basis of the F2 vector space H∗(X;F2) where
the index set I is equipped with a linear order. The E2-term (32) of the Serre
spectral sequence of the fibration (33) is calculated in Lemma 3.2. Further on, the
F2[Z2]-module structure on the cohomology of the fiber – the coefficient system
– is described in Lemma 3.1. Since the differentials of these spectral sequences
are H∗(Z2;F2)-module maps we concentrate on the generators of the H∗(Z2;F2)-
module structure of the rows of the spectral sequences. In this situation it means
that we consider elements of the zero column and prove that they survive to the
E∞-term. Consequently the proof of the theorem proceeds in two steps.

(A) Let vi and vj be two different cohomology classes from the basis B. In
the first step we prove that all the elements (of the form vi ⊗ vj + vj ⊗ vi) in
E0,s

2 associated to the invariants of free F2[Z2]-modules (generated by vi ⊗ vj) in
the decomposition of H∗(X × X;F2) survive to the E∞-term. Since EZ2 is a
contractible and free Z2-space we have that (X × X) × EZ2 ' (X × X) is a free
Z2-space and the quotient map

π : (X ×X)× EZ2 −→ (X ×X)×Z2
EZ2

is a covering map. Denote by p : (X×X)×EZ2 −→ X×X the projection. Since it
is a homotopy equivalence it induces an isomorphism in cohomology. Furthermore,
there is a transfer homomorphism

tr : H∗((X ×X)× EZ2;F2) −→ H∗((X ×X)×Z2
EZ2;F2)

with a property that that composition

(p∗)−1 ◦ π∗ ◦ tr ◦ p∗ : H∗(X ×X;F2) −→ H∗(X ×X;F2)

is the map
vi ⊗ vj 7−→ vi ⊗ vj + vj ⊗ vi = (1 + t) · (vi ⊗ vj),

where vi, vj ∈ H∗(X;F2), t is a generator of Z2, and 1+ t ∈ Z[Z2]. Thus, the image
im((p∗)−1◦π∗◦tr◦p∗) is contained inH∗(X×X;F2)Z2 and each element is associated
to an invariant element vi ⊗ vj + vj ⊗ vi, where vi 6= vj , of a free F2[Z2]-module
in the decomposition of the cohomology H∗(X × X;F2). Since the composition
(p∗)−1 ◦ π∗ ◦ tr ◦ p∗ factors through the cohomology H∗((X ×X)×Z2 EZ2;F2) all
these elements survive to the E∞-term.

(B) Let v be a cohomology classes of dimension n from the basis B. In the
second step we prove that all the elements (of the form v⊗ v) in E0,s

2 associated to
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the invariants of trivial F2[Z2]-modules (generated by v ⊗ v) in the decomposition
of H∗(X ×X;F2) survive to the E∞-term. Using the bijective correspondence

Hn(X;F2)←→ [X,K(Z2, n)] (34)

we can present the cohomology class v as the image of the fundamental class ιn ∈
H∗(K(Z2, n);F2) along the map ν : X −→ K(Z2, n) that is associated to v via the
correspondence (34), that is v = ν∗(ιn). For more details about the correspondence
(34) consult for example [81, Thm. 1, page 3]. The map ν induces the following
Z2-equivariant map ν × ν : X × X −→ K(Z2, n) × K(Z2, n), and consequently a
morphism of Borel construction fibrations:

(X ×X)×Z2
EZ2

(ν×ν)×Z2 id
//

��

(K(Z2, n)×K(Z2, n))×Z2
EZ2

��

BZ2
// BZ2.

This morphism of fibrations induces a morphism between associated Serre spectral
sequences. In particular, the map between E0,2n

2 entries sends the class ιn ⊗ ιn to
the class v ⊗ v, see Figure 10. Consequently, if the class ιn ⊗ ιn survives to the
E∞-term (all differentials evaluated at ιn ⊗ ιn are zero), then the class v ⊗ v also
survives to the E∞-term.

2n

2n− 1

0

n

n− 1

v ⊗ v ιn ⊗ ιn

0 0

0

0 0

Figure 10. The morphism between Serre spectral sequences induced
by the map id×Z2(ν × ν).

Hence, we prove that the class ιn ⊗ ιn survives to the E∞-term in the Serre
spectral sequences associated to the Borel construction fibration

K(Z2, n)×K(Z2, n) // (K(Z2, n)×K(Z2, n))×Z2
EZ2

q
// BZ2. (35)

The E2-term of this spectral sequence is of the form

Er,s2 = Hr(Z2;Hs(K(Z2, n)×K(Z2, n);F2)). (36)

Since the Eilenberg–Mac Lane space K(Z2, n) is (n − 1)-connected the Künneth
formula [21, Thm.VI.3.2] implies that

Hs(K(Z2, n)×K(Z2, n);F2) =


F2, for s = 0,

0, for 1 ≤ s ≤ n− 1,

free F2[Z2]-module, for n ≤ s ≤ 2n− 1,

not relevant for our proof, otherwise.
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Here we used that for n ≤ s ≤ 2n− 1 the following holds:

Hs(K(Z2, n)×K(Z2, n);F2) =(
Hs(K(Z2, n);F2)⊗H0(K(Z2, n);F2)

)
⊕(

H0(K(Z2, n);F2)⊗Hs(K(Z2, n);F2)
)
.

Thus, a part of the E2-term vanishes, meaning

Er,s2 = Hr(Z2;Hs(K(Z2, n)×K(Z2, n);F2)) = 0,

for all r ≥ 1 and 1 ≤ s ≤ 2n − 1. Therefore the element ιn ⊗ ιn ∈ E0,2n
2 survives

to the the E∞-term if and only if ∂2n+1(ιn ⊗ ιn) = 0. It suffices to prove that no
non-zero differential lands in the zero row of the spectral sequence.

The fibration (35) has a section

σ : BZ2 −→ (K(Z2, n)×K(Z2, n))×Z2
EZ2

induced by the Z2-map EZ2 −→ (K(Z2, n) × K(Z2, n)) × EZ2 given by e 7−→
(x0, x0, e) where e ∈ EZ2 and x0 ∈ K(Z2, n) is an arbitrary point that we fixed.
Consequently, q ◦ σ = idBZ2

. Passing to cohomology we get σ∗ ◦ q∗ = idH∗(BZ2;F2)

implying that

q∗ : H∗(BZ2;F2) −→ H∗((K(Z2, n)×K(Z2, n))×Z2
EZ2;F2)

is a monomorphism. Hence, all the element of the zero row of the E2-term of the
spectral sequence (36) survive to the E∞-term, implying that all the differentials
lending in the zero row vanish. In particular, this means that ∂2n+1(ιn ⊗ ιn) = 0,
and we concluded the proof of the theorem. �

Corollary 3.5. Let X be a CW-complex. The Serre spectral sequence of the fibra-
tion

X ×X // (X ×X)×Z2
Sd−1 // RPd−1

collapses at the E2-term, that is, Er,s2 (d) ∼= Er,s∞ (d) for all (r, s) ∈ Z× Z.

Proof. We prove that all differentials of the spectral sequence E∗,∗∗ (d) vanish. In
(29), using S∞ as a model for EZ2, we have defined the map

id : (X ×X)×Z2
Sd−1 −→ (X ×X)×Z2

ES∞ ∼= (X ×X)×Z2
EZ2.

The map id induces a morphism of the fiber bundles:

(X ×X)×Z2
Sd−1 id

//

��

(X ×X)×Z2
S∞ ∼= (X ×X)×Z2

EZ2

��

RPd−1 // RP∞ ∼= BZ2.

that in turn gives a morphism between the corresponding Serre spectral sequences:

Er,s2 (d) = Hr(RPd−1;Hs(X ×X;F2)) Er,s2 (∞) = Hr(RP∞;Hs(X ×X;F2))
Er,s2 (id)
oo .

Since by Theorem 3.4 the spectral sequence Er,s2 (∞) collapses at the E2-term all
the differential of this spectral sequence vanish. Consequently, all the elements in
the image im

(
Er,s2 (id)

)
⊆ Er,s2 (d) survive to the infinity term. The only elements

of Er,s2 (d) not contained in im
(
Er,s2 (id)

)
belong to the (d− 1)-column, correspond

to F2[Z2]-free summands in the cohomology H∗(X × X;F2), and are of the form
(something)⊗Z2

zd−1, consult Section 7.4.4. Because all differentials emanating from
the (d − 1)-column of the spectral sequence E∗,∗∗ (d) are zero and all differentials
arriving at the (d− 1)-column have to be zero we conclude that all differentials in
E∗,∗∗ (d) indeed vanish. �
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In summary, when an additive basis of the F2 vector space H∗(X;F2) is given,
then we can describe a basis of the cohomology of the spaces (X×X)×Z2

Sd−1 and
(X ×X)×Z2 EZ2 as follows. Keep in mind notation introduced in Section 7.4.4.

Theorem 3.6. Let d ≥ 2 be integer or d = ∞, let X be a CW-complex, and
let BX be an additive basis of H∗(X;F2). Denote by f j for 0 ≤ j ≤ d − 1 the
additive generator of the group Hj(RPd−1;F2) ∼= F2, where f ∈ H1(RPd−1;F2) is
the multiplicative generator of the cohomology ring H∗(RPd−1;F2). Here we assume
that 1 = f0 ∈ H0(RPd−1;F2). An additive basis B of the cohomology

H∗((X ×X)×Z2
Sd−1;F2)

can be given the following way:
(1) If v ∈ BX , then (v⊗v)⊗Z2

f j ∈ B for 0 ≤ j ≤ d−1 with deg((v⊗v)⊗Z2
f j) =

2 deg(v) + deg(f j) = 2 deg(v) + j;
(2) If u, v ∈ BX and u 6= v, then (u ⊗ v) ⊗Z2 1 ∈ B with deg((u ⊗ v) ⊗Z2 1) =

deg(u) + deg(v); and
(3) If u, v ∈ BX and u 6= v with d < ∞, then we set (u ⊗ v) ⊗Z2

zd−1 ∈ B where
deg((u⊗ v)⊗Z2

zd−1) = deg(u) + deg(v) + d− 1.

Proof. The spectral sequences (31) and (32), depending whether d <∞ or d =∞,
converge to the cohomology H∗((X ×X)×Z2

Sd−1;F2). Since by Theorem 3.4 and
Corollary 3.5 both spectral sequences collapse at the E2-term it suffices to find a
basis of E2-terms. Thus, the proof is concluded by a direct application of Lemma
3.2 and Lemma 3.3. �

The calculation of the cohomology of (X ×X)×Z2
Sd−1 we presented was done

with coefficients in the field F2. The Universal Coefficient theorem transcribes the
arguments for cohomology into homology arguments, implying the following claim.

Theorem 3.7. Let d ≥ 2 be integer or d =∞, let X be a CW-complex, and let B′X
be an additive basis of the homology H∗(X;F2). Denote by fj for 0 ≤ j ≤ d− 1 the
generator of the group Hj(RPd−1;F2) ∼= F2. An additive basis B′ of the homology

H∗((X ×X)×Z2
Sd−1;F2)

can be given the following way:
(1) If v ∈ B′X , then (v⊗v)⊗Z2

fj ∈ B
′
for 1 ≤ j ≤ d−1 with deg((v⊗v)⊗Z2

fj) =
2 deg(v) + deg(fj) = 2 deg(v) + j;

(2) If u, v ∈ B′X and u 6= v, then (u ⊗ v) ⊗Z2
1 ∈ B with deg((u ⊗ v) ⊗Z2

1) =
deg(u) + deg(v); and

(3) If u, v ∈ B′X and u 6= v with d <∞, then we set (u⊗ v)⊗Z2 hd−1 ∈ B
′
where

deg((u⊗ v)⊗Z2
hd−1) = deg(u) + deg(v) + d− 1.

A useful consequence of Theorem 3.6 is the following fact.

Corollary 3.8. Let d ≥ 2 be integer or d = ∞, let X and Y be CW-complexes,
and let f : X −→ Y be a continuous map. If the induced map in cohomology
f∗ : H∗(Y ;F2) −→ H∗(X;F2) is injective, then the induced map

((f × f)×Z2 id)∗ : H∗((Y × Y )×Z2 S
d−1;F2) −→ H∗((X ×X)×Z2 S

d−1;F2),

is also injective.
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Proof. The induced map (f × f)×Z2
id : (X ×X)×Z2

Sd−1 −→ (Y × Y )×Z2
Sd−1

is covering the identity map in the following bundle morphism:

(X ×X)×Z2 S
d−1

(f×f)×Z2 id
//

��

(Y × Y )×Z2 S
d−1

��

Sd−1/Z2
id

// Sd−1/Z2.

The bundle morphism induces the morphism between the corresponding Serre spec-
tral sequences that corresponds to the homomorphism ((f×f)×Z2

id)∗. Since both
spectral sequences collapse at E2-term and there is no extension problem Theorem
3.6 in combination with the assumption that f∗ is injective yields the injectivity of
((f × f)×Z2

id)∗. This concludes the proof. �

The following dual version of the previous corollary also holds.

Corollary 3.9. Let d ≥ 2 be integer or d = ∞, let X and Y be CW-complexes,
and let f : X −→ Y be a continuous map. If the induced map in homology

f∗ : H∗(X;F2) −→ H∗(Y ;F2)

is surjective, then the induced map

((f × f)×Z2
id)∗ : H∗((X ×X)×Z2

Sd−1;F2) −→ H∗((Y × Y )×Z2
Sd−1;F2),

is also surjective.

3.4. The induction step. In this section we take d ≥ 2 to be an integer or d =∞.
Let us assume that for m = k the cohomology

H∗(Pe(Rd, 2m)/S2m ;F2) = H∗(Pe(Rd, 2k)/S2k ;F2)

is determined by specifying a basis B(Rd, 2k) and its associated partition B(Rd, 2k) =
Ba(Rd, 2k) ∪ Bi(Rd, 2k) in such a way that

A∗(Rd, 2k) := 〈Ba(Rd, 2k)〉 ∼= F2[Vk,1, . . . , Vk,k]/〈V dk,1, . . . , V dk,k〉

is a subalgebra and I∗(Rd, 2k) := 〈Bi(Rd, 2k)〉 is an ideal of H∗(Pe(Rd, 2k)/S2k ;F2),
and in addition

H∗(Pe(Rd, 2k)/S2k ;F2) ∼= A∗(Rd, 2k)⊕ I∗(Rd, 2k)

∼= F2[Vk,1, . . . , Vk,k]/〈V dk,1, . . . , V dk,k〉 ⊕ I∗(Rd, 2k), (37)

where deg(Vk,r) = 2r−1 for 1 ≤ r ≤ k.
Now, for m = k + 1 we study the cohomology

H∗(Pe(Rd, 2k+1)/S2k+1 ;F2).

According to Definition 2.1 we have that

Pe(Rd, 2k+1) = (Pe(Rd, 2k)× Pe(Rd, 2k))× Sd−1 and S2k+1 = (S2k × S2k) oZ2.

Using the nature of the S2k+1-action on the spaces Pe(Rd, 2k+1) we have that

Pe(Rd, 2k+1)/S2k+1
∼=
(
(Pe(Rd, 2k)× Pe(Rd, 2k))× Sd−1

)
/S2k+1

∼=
(
(Pe(Rd, 2k)/S2k × Pe(Rd, 2k)/S2k)× Sd−1

)
/Z2

=:
(

Pe(Rd, 2k)/S2k × Pe(Rd, 2k)/S2k
)
×Z2 S

d−1.

Since the additive basis B(Rd, 2k) for the cohomology H∗(Pe(Rd, 2k)/S2k ;F2) is
already fixed we can now use Theorem 3.6 and get the basis B(Rd, 2k+1) for the
cohomology

H∗(Pe(Rd, 2k+1)/S2k+1 ;F2)
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as follows:
(i) If v ∈ B(Rd, 2k), then for all 0 ≤ j ≤ d− 1

(v ⊗ v)⊗Z2
f j ∈ B(Rd, 2k+1),

with deg((v ⊗ v)⊗Z2
f j) = 2 deg(v) + deg(f j) = 2 deg(v) + j;

(ii) If u, v ∈ B(Rd, 2k) and u 6= v, then

(u⊗ v)⊗Z2
1 ∈ B(Rd, 2k+1),

with deg((u⊗ v)⊗Z2
1) = deg(u) + deg(v); and

(iii) If u, v ∈ B(Rd, 2k) and u 6= v and d <∞, then

(u⊗ v)⊗Z2
zd−1 ∈ B(Rd, 2k+1),

with deg((u⊗ v)⊗Z2
zd−1) = deg(u) + deg(v) + d− 1.

The partition of the basis B(Rd, 2k+1) just introduced is given by

(v ⊗ v)⊗Z2
f j ∈ Ba(Rd, 2k+1),

for v ∈ Ba(Rd, 2k) and 0 ≤ j ≤ d− 1, that is,

Ba(Rd, 2k+1) := {(v ⊗ v)⊗Z2
f j : v ∈ Ba(Rd, 2k), 0 ≤ j ≤ d− 1}.

Then we set Bi(Rd, 2k+1) = B(Rd, 2k+1)\Ba(Rd, 2k+1). As before, we denote by

A∗(Rd, 2k+1) := 〈Ba(Rd, 2k+1)〉 and I∗(Rd, 2k+1) := 〈Bi(Rd, 2k+1)〉.

Then we have the following additive decomposition of the cohomology

H∗(Pe(Rd, 2k+1)/S2k+1 ;F2) ∼= A∗(Rd, 2k+1)⊕ I∗(Rd, 2k+1).

Lemma 3.10. Let d ≥ 2 be an integer or d =∞. Then A∗(Rd, 2k+1) is a subalgebra
and I∗(Rd, 2k+1) is an ideal of the cohomology algebra H∗(Pe(Rd, 2k+1)/S2k+1 ;F2).
Moreover,

A∗(Rd, 2k+1) ∼= F2[Vk+1,1, . . . , Vk+1,k+1]/〈V dk+1,1, . . . , V
d
k+1,k+1〉, (38)

and deg(Vk+1,r) = 2r−1 for 1 ≤ r ≤ k + 1.

Proof. Since the description of the cohomology H∗(Pe(Rd, 2k+1)/S2k+1 ;F2) is de-
rived from a spectral sequence with appropriate multiplication structure it follows
directly that A∗(Rd, 2k+1) is a subalgebra, and I∗(Rd, 2k+1) is an ideal, consult
Theorem 3.6. It remains to establish the isomorphism (38).

Let us set
Vk+1,1 := (1⊗ 1)⊗Z2

f, (39)

and for all 2 ≤ r ≤ k + 1 let

Vk+1,r := (Vk,r−1 ⊗ Vk,r−1)⊗Z2
1. (40)

Then
deg(Vk+1,1) = 2 deg(1) + deg(f) = 2 · 0 + 1 = 1,

and
deg(Vk+1,r) = 2 deg(Vk,r−1) + deg(1) = 2 · 2r−2 + 0 = 2r−1

for 2 ≤ r ≤ k + 1. Therefore, from the construction of the set Ba(Rd, 2k) and the
assumption about the structure of the subalgebra

A∗(Rd, 2k) ∼= F2[Vk,1, . . . , Vk,k]/〈V dk,1, . . . , V dk,k〉,

directly follows that the isomorphism (38) holds. �

The calculations of this section establish the following theorem.
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Theorem 3.11. Let d ≥ 2 be an integer or d = ∞, and let m ≥ 0 be an integer.
Then

H∗(Pe(Rd, 2m)/S2m ;F2) ∼=
F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m), (41)

where I∗(Rd, 2m) is an ideal, and deg(Vm,r) = 2r−1 for 1 ≤ r ≤ m. In particular,
for d =∞ we have

H∗(Pe(R∞, 2m)/S2m ;F2) ∼= F2[Vm,1, . . . , Vm,m]⊕ I∗(R∞, 2m). (42)

3.5. The restriction homomorphisms. Let m ≥ 0 be an integer. Consider the
sequence of inclusions

Em // S2m
ι2m
// S2m

// O(2m)

where the last inclusion is the embedding give via the permutation representation.
The corresponding sequence of maps between classifying spaces

BEm // BS2m
// BS2m

// BO(2m)

induces the following sequence of restriction homomorphisms:

H∗(O(2m);F2)
res

O(2m)
S2m
// H∗(S2m ;F2)

res
S2m
S2m
// H∗(S2m ;F2)

res
S2m
Em
// H∗(Em;F2).

In this section we study various aspects of these restriction homomorphisms.

3.5.1. For d = ∞ the isomorphism (41) gives the following decomposition of the
cohomology of the group S2m :

H∗(S2m ;F2) ∼= H∗(Pe(R∞, 2m)/S2m ;F2) (43)
∼= F2[Vm,1, . . . , Vm,m]⊕ I∗(R∞, 2m),

where deg(Vm,r) = 2r−1 for 1 ≤ r ≤ m.
Recall that in Definition 2.7 we have specified the elementary abelian group

Em ∼= Z⊕m2 as a subgroup of S2m . First we study the restriction map

resS2mEm : H∗(S2m ;F2) −→ H∗(Em;F2).

From the definition of the basis B(Rd, 2m), its partition into subsetes Ba(Rd, 2m)
and Bi(Rd, 2m), and the definition of the element Vm,1 follows that

Vm,1 · I∗(R∞, 2m) = 0.

In addition, if we recall how we introduced the subgroup Em of S2m (see Definition
2.7), and observe that multiplication by resS2mEm (Vm,1) in H∗(Em;F2) is injective, we
can conclude that

resS2mEm (I∗(R∞, 2m)) = 0 ⇐⇒ I∗(R∞, 2m) ⊆ ker(resS2mEm ). (44)

Now, we shift our interest to the generators Vm,1, . . . , Vm,m of the polynomial
subalgebra in the decomposition (43) and will identify its images under the restric-
tion resS2mEm (Vm,1), . . . , resS2mEm (Vm,m). Even the definitions of the group S2m and
its subgroup Em were inductive our approach to the description of the image of
im(resS2mEm ) is not be inductive. For that we follow [64, p. 266] and first note that
according to Lemma 7.23 the restriction image is contained in the ring of invariants
of the corresponding Weyl group

im
(

resS2mEm : H∗(S2m ;F2) −→ H∗(Em;F2)
)
⊆ H∗(Em;F2)WS2m (Em)

= F2[y1, . . . , ym]WS2m (Em).
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From Lemma 7.24 we know thatWS2m (Em) = Lm(F2) is the Sylow 2-subgroup of
GLm(F2) of all lower triangular matrices with 1’s on the main diagonal. Therefore
all polynomials

vm,1 := resS2mEm (Vm,1), . . . , vm,m := resS2mEm (Vm,m)

are Lm(F2) invariant polynomials. Each polynomial vm,r has ym−r+1 as a factor
by (39) and (40), deg(vm,r) = 2r−1, and vm,r is Lm(F2) invariant, consequently

vm,r =
∏

(λm,...,λm−r+2)∈Fr−1
2

(
λm ym + · · ·+ λm−r+2 ym−r+2 + ym−r+1

)
, (45)

as stated in [62, (2.14)]. In particular, the polynomials vm,1, . . . , vm,m are alge-
braically independent. In the notation of Theorem 7.12 we have that vm,r = hr,
with identifications m = n and y1 = x1, . . . , ym = xm.

3.5.2. Let us now consider the restriction homomorphism

resS2m

Em : H∗(S2m ;F2) −→ H∗(Em;F2).

Like in the previous case using Lemma 7.23 we get that

im
(

resS2m

Em : H∗(S2m ;F2) −→ H∗(Em;F2)
)
⊆ H∗(Em;F2)WS2m

(Em)

= F2[y1, . . . , ym]WS2m
(Em).

From Lemma 7.25 we get that WS2m
(Em) ∼= GLm(F2), and consequently

im
(

resS2m

Em : H∗(S2m ;F2) −→ H∗(Em;F2)
)
⊆ H∗(Em;F2)WS2m

(Em)

= F2[y1, . . . , ym]GLm(F2).

Now the description of the ring of invariants given in Theorem 7.13 yields that

im
(

resS2m

Em : H∗(S2m ;F2) −→ H∗(Em;F2)
)
⊆ H∗(Em;F2)WS2m

(Em)

= F2[y1, . . . , ym]GLm(F2) = F2[dm,0, . . . , dm,m−1], (46)

where dm,0, . . . , dm,m−1 are the Dickson invariants.
Next we recall that

H∗(BO(2m);F2) = F[w1, . . . , w2m ],

where wi, for 1 ≤ i ≤ 2m, denotes the ith Stiefel–Whitney class of the tautological
vector bundle γ2m over BO(2m), see [80, Thm. 7.1]. Let us introduce the following
notation

w2m−2r
� res

O(2m)
S2m

// wm,r
� res

S2m
S2m

// Dm,r
� res

S2m
Em

// dm,r,

where 0 ≤ r ≤ m − 1. From Theorem 7.15 we have that indeed the classes
dm,0, . . . , dm,m−1 are Dickson invariants, and furthermore

res
O(2m)
Em (wi) =


dm,r = resS2m

Em (wm,r), i = 2m − 2r, 0 ≤ r ≤ m− 1,

1, i = 0,

0, otherwise.

Hence, from (46) we conclude that

im
(

resS2m

Em : H∗(S2m ;F2) −→ H∗(Em;F2)
)

= H∗(Em;F2)WS2m
(Em)

= F2[y1, . . . , ym]GLm(F2) = F2[dm,0, . . . , dm,m−1].

To summarise, we have proved the following lemma.
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Lemma 3.12. Let m ≥ 0 be an integer. Then

im
(

resS2m

Em : H∗(S2m ;F2) −→ H∗(Em;F2)
)

= F2[y1, . . . , ym]GLm(F2)

= F2[dm,0, . . . , dm,m−1], (47)

where dm,0, . . . , dm,m−1 are the Dickson invariants. Consequently,

H∗(S2m ;F2) ∼= im
(

resS2m

Em : H∗(S2m ;F2) −→ H∗(Em;F2)
)
⊕ ker(resS2m

Em ) (48)
∼= F2[dm,0, . . . , dm,m−1]⊕ ker(resS2m

Em )

∼= F2[wm,0, . . . , wm,m−1]⊕ ker(resS2m

Em ).

Let us reflect on the facts we obtained so far. For 0 ≤ r ≤ m − 1 we specified
the following elements under the restriction maps:

H∗(O(2m);F2)
res

O(2m)
S2m
// H∗(S2m ;F2)

res
S2m
S2m
// H∗(S2m ;F2)

res
S2m
Em
// H∗(Em;F2)

w2m−2r
� res

O(2m)
S2m

// wm,r
� res

S2m
S2m

// Dm,r
� res

S2m
Em

// dm,r

Vm,r+1
� res

S2m
Em

// vm,r+1.

(49)

Furthermore, we have proved the factorizations of the restriction homomorphism
which are described by the diagram (50) on the next page. In other words,
— the restriction homomorphism res

O(2m)
Em factors as follows:

H∗(O(2m);F2)
OO

∼=
��

// // H∗(Em;F2)GLm(F2)
OO

∼=
��

� � // H∗(Em;F2)
OO

∼=
��

F2[w1, . . . , w2m ] // // F2[dm,0, . . . , dm,m−1]
� � // F[y1, . . . , ym],

— the restriction homomorphism resS2m

Em factors as follows

H∗(S2m ;F2)
OO

∼=
��

// // H∗(Em;F2)GLm(F2)

OO

∼=
��

� � // H∗(Em;F2)
OO

∼=
��

F2[wm,0, . . . , wm,m−1]⊕ ker(resS2m

Em ) // // F2[dm,0, . . . , dm,m−1] �
�
// F[y1, . . . , ym],

— the restriction homomorphism resS2mEm factors as follows:

H∗(S2m ;F2)
OO

∼=
��

// // H∗(Em;F2)Lm(F2)
OO

∼=
��

� � // H∗(Em;F2)
OO

∼=
��

F2[Vm,1, . . . , Vm,m]⊕ I∗(R∞, 2m) // // F2[vm,1, . . . , vm,m] �
�

// F[y1, . . . , ym].

Now from Proposition 7.14 we get a connection between the Dickson invariant
polynomials dm,0, . . . , dm,m−1 and the Lm(F2)-invariant polynomials vm,1, . . . , vm,m.
For 0 ≤ r ≤ m− 1 and dm−1,−1 = 0 holds:

dm,r = (χmdm−1,r) vm,m + (χmdm−1,r−1)2. (51)
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Here χm ∈ GLm(F2) is the variable change given by the matrix
0 0 · · · 0 1
0 0 · · · 1 0

· · ·
0 1 · · · 0 0
1 0 · · · 0 0

 .

3.5.3. In the final part of this section we prove the following two lemmas. For the
next lemma see also [64, Lem. 3.14].

Lemma 3.13. Let m ≥ 0 be an integer. Then

resS2m

S2m
(
〈wm,0〉

)
⊆ F2[Vm,1, . . . , Vm,m], (52)

where 〈wm,0〉 denotes the principal ideal generated by the class wm,0 in H∗(S2m ;F2).

Proof. Recall that in (43) we concluded that

H∗(S2m ;F2) ∼= F2[Vm,1, . . . , Vm,m]⊕ I∗(R∞, 2m).

In order to prove (52) it suffices to show that

Dm,0 · I∗(R∞, 2m) = 0, and Dm,0 = Vm,1 · · ·Vm,m. (53)

Indeed, if the equalities (53) hold, and because resS2m

S2m (wm,0) = Dm,0, we have that

resS2m

S2m
(
〈wm,0〉

)
= resS2m

S2m
(
wm,0 ·H∗(S2m ;F2)

)
⊆ Dm,0 ·H∗(S2m ;F2) = Dm,0 ·

(
F2[Vm,1, . . . , Vm,m]⊕ I∗(R∞, 2m)

)
= Dm,0 · F2[Vm,1, . . . , Vm,m] ⊆ F2[Vm,1, . . . , Vm,m].

Thus, in order to finish the proof of the lemma it remains to verify equalities (53).
First we verify that Dm,0 · I∗(R∞, 2m) = 0. For that we use a classical result of

Quillen [90] about detection of group cohomology, see Section 7.4.1. In particular,
according to Theorem 7.20 we have that the cohomology H∗(S2m ;F2) of the Sylow
2-subgroup S2m modulo F2 is detected by the subgroups Em and S2m−1 × S2m−1 .
From (44) we have that resS2mEm (I∗(R∞, 2m)) = 0. Consequently, if we prove that
resS2mS2m−1×S2m−1

(Dm,0) = 0 it would follow that Dm,0 · I∗(R∞, 2m) = 0. To see
that this restriction of Dm,0 vanishes we first recall that Dm,0 is a (2m− 1)-Stiefel–
Whitney class of the vector bundle η2m :

R2m // ES2m ×S2m R2m // BS2m ,

see Section 7.2.2. The vector bundle η2m can be decomposed into a Whitney sum
of two vector bundles where one of them is a trivial line bundle. Consequently,
the 2m-Stiefel–Whitney class of the bundle vanishes. The trivial line subbundle
is determined by the trivial S2m subrepresentation {(x1, . . . , x2m) ∈ R2m : x1 =
· · · = x2m} of R2m . Using the naturality property of Stiefel–Whitney classes [80,
Ax. 2, p. 35] we have that resS2mS2m−1×S2m−1

(Dm,0) is the (2m − 1)-Stiefel–Whitney
class of the pull-back vector bundle:

E(S2m−1 × S2m−1)×(S2m−1×S2m−1 ) R2m //

ω2m

��

ES2m ×S2m R2m

η2m

��

B(S2m−1 × S2m−1) // BS2m .

The pull-back vector bundle ω2m can be decomposed into a Whitney sum of two vec-
tor bundles where one of them is a two dimensional trivial vector bundle. This triv-
ial vector subbundle is determined by the trivial S2m−1 × S2m−1 subrepresentation
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{(x1, . . . , x2m) ∈ R2m : x1 = · · · = x2m−1 , x2m−1+1 = · · · = x2m} of R2m . Hence,
(2m−1)-Stiefel–Whitney class of this bundle w2m−1(ω2m) = resS2mS2m−1×S2m−1

(Dm,0)

has to vanish. This completes the proof of the first equality Dm,0 · I∗(R∞, 2m) = 0
in (53).

Next we prove that Dm,0 = Vm,1 · · ·Vm,m. Once again we use the fact that
H∗(S2m ;F2) is detected by the subgroups Em and S2m−1 ×S2m−1 . Since we showed
that resS2mS2m−1×S2m−1

(Dm,0) = 0 it suffices to show that

resS2mEm (Dm,0) = resS2mEm (Vm,1 · · ·Vm,m) ⇐⇒ dm,0 = vm,1 · · · vm,m.
Indeed, the equality dm,0 = vm,1 · · · vm,m can be established by direct computa-
tion using the induction on m in combination with relations (45) and (51), and
observation that

χm(vm−1,1 · · · vm−1,m−1) = vm,1 · · · vm,m−1.

Hence, we showed that Dm,0 = Vm,1 · · ·Vm,m and consequently verification of the
second equality in (53). This completes the proof of the lemma. �

In the final lemma of this section we describe the kernel of the restriction homo-
morphism resS2m

S2m−1×S2m−1
.

Lemma 3.14. Let m ≥ 0 be an integer. Then

ker
(

resS2m

S2m−1×S2m−1

)
= 〈wm,0〉 ⊆ H∗(S2m ;F2). (54)

Proof. For the proof of the lemma we use again a classical result of Quillen on the
detection of group cohomology, see Section 7.4.1. From Theorem 7.20 we have that
the cohomology H∗(S2m ;F2) of the symmetric group S2m modulo F2 is detected
by the subgroups Em and S2m−1 ×S2m−1 . This means that the homomorphism

H∗(S2m ;F2)
res

S2m
Em × res

S2m

S
2m−1×S

2m−1
// H∗(Em;F2)×H∗(S2m−1 ×S2m−1 ;F2)

is a monomorphism. Thus,

0 6= x ∈ ker
(

resS2m

S2m−1×S2m−1

)
=⇒ resS2m

Em (x) 6= 0.

Further on, using the decomposition (48) we get the implication

0 6= x ∈ ker
(

resS2m

S2m−1×S2m−1

)
=⇒ x ∈ 〈wm,0, . . . , wm,m−1〉.

Like in the proof of the previous lemma we consider the vector bundle ξ2m and
its pull-back θ2m introduced by the following pull-back diagram:

E(S2m−1 ×S2m−1)×(S2m−1×S2m−1 ) R2m //

θ2m

��

ES2m ×S2m
R2m

ξ2m

��

B(S2m−1 ×S2m−1) // BS2m .

As we know the classes wm,0, . . . , wm,m−1 are the Stiefel–Whitney classes of the
vector bundle ξ2m in dimensions 2m − 20, . . . , 2m − 2m−1, respectively. The pull-
back vector bundle θ2m can be decomposed into a Whitney sum of two vector
bundles where one of them is a two dimensional trivial vector bundle. The trivial
vector subbundle is determined by the trivial S2m−1 × S2m−1 subrepresentation
{(x1, . . . , x2m) ∈ R2m : x1 = · · · = x2m−1 , x2m−1+1 = · · · = x2m} of R2m . Hence,
(2m−1)-Stiefel–Whitney class of this bundle resS2m

S2m−1×S2m−1
(wm,0) has to vanish,

or equivalently
wm,0 ∈ ker

(
resS2m

S2m−1×S2m−1

)
.



48 BLAGOJEVIĆ, COHEN, CRABB, LÜCK, AND ZIEGLER

On the other hand the pull-back vector bundle θ2m is isomorphic to the vector
bundle ξ2m−1 × ξ2m−1 . Therefore,

resS2m

S2m−1×S2m−1

(
w(ξ2m)

)
= w(θ2m) = w(ξ2m−1 × ξ2m−1) = w(ξ2m−1)× w(ξ2m−1),

and consequently for 2 ≤ r ≤ m− 1 we have

resS2m

S2m−1×S2m−1
(wm,r) = resS2m

S2m−1×S2m−1
(w2m−2r (ξ2m))

= w2m−2r (ξ2m−1 × ξ2m−1)

=

2m−2r∑
i=0

wi(ξ2m−1)× w2m−2r−i(ξ2m−1)

=

2m−2r∑
i=0

wi(ξ2m−1)⊗ w2m−2r−i(ξ2m−1)

∈
2m−2r⊕
i=0

Hi(S2m−1 ;F2)⊗H2m−2r−i(S2m−1 ;F2).

Here we silently use the Eilenberg–Zilber isomorphism [21, Th.VI.3.2]. In particu-
lar, we can isolate a concrete (direct) summand in the decomposition as follows:

resS2m

S2m−1×S2m−1
(wm,r) =

2m−2r∑
i=0

wi(ξ2m−1)⊗ w2m−2r−i(ξ2m−1) =

w2m−1−2r−1(ξ2m−1)⊗ w2m−1−2r−1(ξ2m−1)+∑
i 6=2m−1−2r−1

wi(ξ2m−1)⊗ w2m−2r−i(ξ2m−1).

Now we use the fact that the Stiefel–Whitney classes

w2m−1−2m−2(ξ2m−1), . . . , w2m−1−20(ξ2m−1)

are algebraically independent. Indeed, they restrict to the corresponding Dickson
invariants dm−1,0, . . . , dm−1,m−2 for which we know to be algebraically independent.
Consequently, the restricted homomorphism

resS2m

S2m−1×S2m−1
|〈wm,1,...,wm,m−1〉

has to be a monomorphism. Hence, ker(resS2m

S2m−1×S2m−1
) = 〈wm,0〉, and the proof

of the lemma is complete. �

4. Hu’ng’s Injectivity Theorem

Let d ≥ 2 be an integer or d = ∞, and let m ≥ 0 be an integer. Consider the
composition map ρd,2m := id /S2m ◦ ecyd,2m /S2m between the quotient spaces

Pe(Rd, 2m)/S2m
ecyd,2m /S2m

// F(Rd, 2m)/S2m
id /S2m

// F(Rd, 2m)/S2m , (55)

where the first map is induced by the S2m -equivariant map ecyd,2m : Pe(Rd, 2m) −→
F(Rd, 2m), and the second map is induced by the identity.

The central objective of this section is to present a new and complete proof of
the following claim, but first it is necessary to explain in detail several critical gaps
in the published proof of this result, [62, Thm. 3.1].

Theorem 4.1. Let d ≥ 2 be an integer or d = ∞, and let m ≥ 0 be an integer.
Then the homomorphism

ρ∗d,2m : H∗(F(Rd, 2m)/S2m ;F2) −→ H∗(Pe(Rd, 2m)/S2m ;F2) (56)
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is a monomorphism.

Remark 4.2. The homomorphism ρ∗d,2m decomposes into the composition

(ecyd,2m /S2m)∗ ◦ (id /S2m)∗.

Since the map id /S2m : F(Rd, 2m)/S2m −→ F(Rd, 2m)/S2m is a covering map then
the composition homomorphism

H∗(F(Rd, 2m)/S2m ;F2)
(id /S2m )∗

//

[S2m :S2m ]·
++

H∗(F(Rd, 2m)/S2m ;F2)

tr

��

H∗(F(Rd, 2m)/S2m ;F2)

is the multiplication with the index [S2m : S2m ]. Here tr denotes the classical
transfer homomorphism, consult for example [60, Sec. 3.G]. Since S2m is a Sylow 2-
subgroup the index [S2m : S2m ] has to be odd. Hence the composition tr◦(id /S2m)∗

is an isomorphism implying that (id /S2m)∗ is a monomorphism. This means that
in order to prove Theorem 4.1 it suffices to show that the homomorphism

(ecyd,2m /S2m)∗ : H∗(F(Rd, 2m)/S2m ;F2) // H∗(Pe(Rd, 2m)/S2m ;F2) (57)

is a monomorphis.

Remark 4.3. In the case when d = ∞ the homomorphism ρ∗∞,2m becomes the
restriction homomorphism resS2m

S2m . Since we are working in the field F2 and S2m

is a Sylow 2-subgroup the restriction map resS2m

S2m is injective, see for example [23,
Prop. III.9.5(ii) and Thm. III.10.3]. Thus, Theorem 4.1 holds for d =∞.

4.1. Critical points in Hu’ng’s proof of his Injectivity Theorem. In order
to simplify the comparison with the work of Hu’ng we begin with a dictionary that
translates between our notation and the notation used in [64].

Paper [64] This paper
S2m S2m the symmetric group on the set Z⊕m2

S2m,2 S2m the Sylow 2-subgroup of S2m that contains Em
Em Em Z⊕m2 regularly embedded elementary abelian group in S2m

F (X,n) F(X,n) the ordered configuration space of n distinct points in X

M̃(d,m) Pe(Rd, 2m) the ordered Ptolemaic epicycles space (Sd−1)2m−1

M(d,m) Pe(Rd, 2m)/S2m the unordered Ptolemaic epicycles space
ĩ(d,m) ecyd,2m the map from Def. 2.1 with d ≥ 1 integer or d =∞
i(d,m) ρd,2m the map introduced in (55) with d ≥ 1 integer or d =∞
i(M,d) κd,m/S2m the map Pe(Rd,m)/S2m −→ Pe(R∞,m)/S2m

i(F, d) the map F (Rd, 2m) −→ F (R∞, 2m)

Wm,r wm,r restriction of the Stiefel–Whitney class w2m−2r to H∗(S2m )

Qm,r Dm,r restriction of the Stiefel–Whitney class w2m−2r to H∗(S2m )

Qm,r dm,r restriction of the Stiefel–Whitney class w2m−2r to H∗(Em),
or the Dickson invariant

Vm,r Vm,r elements of H∗(S2m ) defined in Thm. 3.11

Vm,r vm,r elements of H∗(Em) given by restriction res
S2m
Em (Vm,r)

The statement of Theorem 4.1 in [64, Thm. 3.1] is written as follows; the coeffi-
cient field F2 is always to be assumed.

3.1. Theorem i∗(q, n) : H∗(F (Rq, 2n)/S2n) −→ H∗(M(q, n)) is a monomor-
phism for q ≥ 1, n ≥ 0.
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The proof of [64, Thm. 3.1] presented in Hu’ng’s paper is by induction on n. It
starts on the page 269 and ends on page 271. This proof relies on [64, Prop. 3.5].
The claim of [64, Prop. 3.5] is proven on page 275 and relies on [64, Lem. 3.14] and
[64, Lem. 3.19].

Now we outline the proof given by Hu’ng and exhibit two critical points that we
have identified. The proof is by induction on n. For n = 0 the statement is easy
to verify since F (Rq, 2n) = Rq and M̃(q, n) = pt. Let us assume that i∗(q, n − 1)
is injective. Before we make the next step in the proof we define the maps µm,n
introduced in [64, (3.2)], and the map ϕn−1 defined in [64, (2.3)].

For integers m ≥ 1 and n ≥ 1 consider the map

µm,n : F (Rq,m)/Sm × F (Rq, n)/Sn
// F (Rq,m+ n)/Sm+n,

given by

[(x1, . . . , xm)]× [(y1, . . . , yn)] � // [(x1, . . . , xm, y1 + z, . . . , yn + z)].

Here for

R1 = max
1≤k≤m

∥∥∥xk − 1

m

m∑
i=1

xi

∥∥∥ and R2 = max
1≤k≤n

∥∥∥yk − 1

n

n∑
j=1

yj

∥∥∥
we define

z =
1

m

m∑
i=1

xi −
1

n

n∑
j=1

yj − (R1 +R2 + 1, 0, . . . , 0).

Next for any n ≥ 1 we introduce the following map

ϕn−1 : M(q, n− 1)×M(q, n− 1) // M(q, n), (x, y) � // [(x, y, ∗)].

Let us now consider the following diagram that commutes up to a homotopy

F (Rq, 2n)/S2n
(
F (Rq, 2n−1)/S2n−1

)2µ:=µ2n−1,2n−1
oo

M(q, n)

i(q,n)

OO

M(q, n− 1)2.
ϕ:=ϕn−1

oo

i(q,n−1)2

OO

This diagram induces the following commutative diagram in cohomology where
Hu’ng claimed that each row is exactI:

0 // ker(µ∗) //

i∗(q,n)|ker(µ∗)
��

H∗(F (Rq, 2n)/S2n)
µ∗
//

i∗(q,n)

��

H∗((F (Rq, 2n−1)/S2n−1)2) //

i∗(q,n−1)2

��

0

0 // ker(ϕ∗) // H∗(M(q, n))
ϕ∗

// H∗(M(q, n− 1)2) // 0

(58)
From induction hypothesis we have that i∗(q, n − 1)2 = i∗(q, n − 1) ⊗ i∗(q, n − 1)
is a monomorphism. Then from 5-lemma in order to conclude the induction, and
consequently prove [64, Thm. 3.1], it suffices to prove that

i∗(q, n)|ker(µ∗) : ker(µ∗) −→ ker(ϕ∗)

is a monomorphism.
At this point we already crossed path with the first critical point in the proof

(indicated by a footnote). The following claim explains the nature of the problem
that appears in the diagram (58).

IThe first critical point that is explained in Claim 4.4.
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Claim 4.4. For any integer n ≥ 2, the map

ϕ∗ : H∗(M(q, n)) −→ H∗(M(q, n− 1)2)

in (58) is not surjective.

Proof. In the proof of the claim we use the notation of Hu’ng and keep in mind that

M(q, n) = M̃(q, n)/S2n,2 = Pe(Rq, 2n)/S2n .

The cohomology of this space is described in Section 3. For a reader convenience
we repeat some of the arguments already presented.

From Definition 2.1 we have that

M(q, n) = M̃(q, n)/S2n,2
∼= (M(q, n− 1)×M(q, n− 1))×Z2

Sq−1.

Since the action of Z2 on the sphere Sq−1 is free the projection on the last coordinate
induces the following fiber bundle

M(q, n− 1)×M(q, n− 1) −→
(M(q, n− 1)×M(q, n− 1))×Z2 S

q−1 −→ RPq−1,

where the map ϕ = ϕn−1 is the fiber embedding.
The Serre spectral sequence associated to this fibration has the E2-term given

by
Er,s2 = Hr(RPq−1;Hs(M(q, n− 1)×M(q, n− 1))).

As we have seen in Corollary 3.5 this spectral sequence collapses at the E2-term,
that is Er,s2

∼= Er,s∞ . In particular, for an arbitrary integer k ≥ 0 this means that
the map ϕ∗ factors as follows:

Hk(M(q, n)) ∼=
⊕
r+s=k

Er,s2 −→

E0,k
2
∼= Hk(M(q, n− 1)×M(q, n− 1))π1(RPq−1)

−→ Hk(M(q, n− 1)×M(q, n− 1)).

Here the first map is the projection and the second map is the inclusion. It is
important to recall that π1(RPq−1) acts on Hs(M(q, n − 1) × M(q, n − 1)) by
interchanging the factors in the product. Thus, while the first map – the projection
– is surjective, the second map is not surjective in all positive dimensions where
Hk(M(q, n− 1)×M(q, n− 1)) 6= 0. �

Thus already at this point the proof of [64, Thm. 3.1] has the first problem.
Nevertheless, we continue to outline next steps of the proof that now concentrates
on proving that

i∗(q, n)|ker(µ∗) : ker(µ∗) −→ ker(ϕ∗)

is a monomorphism. The complexity of the proof suggests that we first explain
the strategy that was used by Hu’ng and then study particular details. Consider
the commutative diagram (59) on the next page, which is an enrichment of the
diagram (58) that we have already considered. The proof of the injectivity of the
map i∗(q, n)|ker(µ∗) presented by Hu’ng consists of several steps that we now list:

(A) Description of ker
(

resS2n

S2
2n−1

)
in terms of the dual Nakamura elements.

(B) Description of ker(µ∗) via the surjectivity of the map

i∗(F, q)| = i∗(F, q)|
ker
(

res
S2n

S2
2n−1

) : ker
(

resS2n

S2
2n−1

)
−→ ker(µ∗).
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(C) Description of the image

(i∗(M, q) ◦ i∗(∞, n))
(

ker
(

resS2n

S2
2n−1

))
⊆ ker(ϕ∗).

(D) A proof that

ker(µ∗) ∼= (i∗(M, q) ◦ i∗(∞, n))
(

ker
(

resS2n

S2
2n−1

))
as F2-vector spaces.

These claims along with commutativity of the diagram (59) imply that the map

i∗(q, n)|ker(µ∗) : ker(µ∗) −→ (i∗(M, q) ◦ i∗(∞, n))
(

ker
(

resS2n

S2
2n−1

))
is an isomorphism, and consequently

i∗(q, n)|ker(µ∗) : ker(µ∗) −→ ker(ϕ∗)

is a monomorphism. Thus, establishing claims we listed above would complete the
proof of [64, Thm. 3.1]. Now we discuss these steps separately exhibiting the second
critical point of the proof.

(A) and (B) For these steps multiple results of May [77], Nakaoka [87], Naka-
mura [85], and Hu’ng [62] are recalled and will be used in the proof. For the reader’s
convenience we collect the relevant facts as presented in [64, Sec. 3].

First, the homology H∗(F (Rq,∞)/S∞) can be identified with a Hopf subalge-
bra of the homology H∗(F (R∞,∞)/S∞) = H∗(S∞), [76, Sec. 5]. Furthermore,
H∗(F (Rq,∞)/S∞) is equipped with multiplicity in such a way that

mH∗(F (Rq,∞)/S∞) = H∗(F (Rq,m)/Sm, F (Rq,m− 1)/Sm−1),

consult [62, Sec. 2]. In general, an algebra A equipped with multiplicity has a
decomposition A =

⊕
n≥0 nA, and we define its filtration by multiplicities with

A(m) :=
⊕

0≤n≤m nA. For more detailed definitions see [85, p. 96]. In our concrete
situation we have that

H∗(F (Rq,∞)/S∞)(m) = H∗(F (Rq,m)/Sm).

Let us further on, for integers k0, . . . , kn−1 ≥ 0, denote by

Nk0,...,kn−1
∈ H∗(F (Rq,∞)/S∞)

the so called Nakamura element of multiplicity 2n, as introduced in [62, Sec. 2].
Now we can quote the following theorem from [64, Thm. 3.4].

3.4. Theorem (Nakamura [85], May [77], Huýnh Múi [83])
(i) Let q > 0 and

J+(q) =
{
K = (k0, . . . , kn−1) : n ≥ 1, k0 ≥ 1, k1, . . . , kn−1 ≥ 0,

n−1∑
i=0

ki ≤ q − 1
}
.

Then

H∗(F (Rq,∞)/S∞) = F2[NK : K ∈ J+(q)]

as algebras with multiplicities. So we have for every 0 ≤ n ≤ ∞
that

H∗(F (Rq,m)/Sm) = F2[NK : K ∈ J+(q)](m).

In other words H∗(F (Rq,m)/Sm) has the F2-basis consisting of all
monomials in F2[NK : K ∈ J+(q)] of multiplicities ≤ m. This is
called Nakamura basis.
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(ii) The homomorphism

i∗(F, q) : H∗(F (Rq,∞)/S∞) −→ H∗(F (R∞,∞)/S∞)

induced by the canonical embeddings F (Rq,m) ⊂ F (R∞,m), 0 ≤
m <∞, is an injection. It sends NK to the element denoted by the
same notation NK for K ∈ J+(q).

Now a part of the commutative diagram (59) is considered:

H∗(F (R∞, 2n)/S2n)

res
S2n

S2
2n−1

//

i∗(F,q)

��

H∗((F (R∞, 2n−1)/S2n−1)2)

i∗(F,q)2

��

H∗(F (Rq, 2n)/S2n)
µ∗

// H∗((F (Rq, 2n−1)/S2n−1)2),

where the maps i∗(F, q) are induced by the inclusion Rq −→ R∞. Observe that

H∗(F (R∞, 2n)/S2n) ∼= H∗(S2n)

and
H∗(F (R∞, 2n−1)/S2n−1)2 ∼= H∗(S2n−1 ×S2n−1).

It is now claimed that based of [64, Thm. 3.4], which we quoted in full, and the defi-
nition of the algebra structure on H∗(F (Rq,∞)/S∞), see [63, Sec. 2], the following
equality holds:

ker
(

resS2n

S2
2n−1

)
= span{N∗k0,...,kn−1

: k0 ≥ 1},

where N∗k0,...,kn−1
is the dual of the Nakamura element Nk0,...,kn−1 . Furthermore

ker(µ∗) = span{N∗k0,...,kn−1
: (k0, . . . , kn−1) ∈ J+(q)}

= i∗(F, q)
(

span{N∗k0,...,kn−1
: k0 ≥ 1}

)
= i∗(F, q)

(
ker
(

resS2n

S2
2n−1

))
.

In particular, the map i∗(F, q)|
ker
(

res
S2n

S2
2n−1

) is surjective. With this parts (A) and

(B) of Hu’ng’s injectivity proof are concluded.
(C) In [64, Prop. 3.5] the image (i∗(M, q) ◦ i∗(∞, n))

(
ker
(

resS2n

S2
2n−1

))
was de-

scribed. We present this proposition with the paragraph that precedes it as in the
original.

On the other, let ρ2n : S2n −→ O(2n) denote the natural representation
of the symmetric group S2n in the orthogonal group O(2n). As it is well
known:

H∗(O(2n)) = Z2[W1, . . . ,W2n ],

where Wi denotes the ith universal Stiefel–Whitney class (of dimension
i). We define (2n − 2s)th Stiefel–Whitney class of ρ2n by putting

Wn,s = ρ∗2nW2n−2s , 0 ≤ s < n.

Further, we set

Qn,s = Res(S2n,2,S2n)(Wn,s) ∈ H∗(S2n,2), 0 ≤ s < n.

3.5. Proposition. Let
i(M, q) : M(q, n) −→M(∞, n),
i(∞, n) : M(∞, n) −→ F (R∞, 2n)/S2n

be well-known embeddings. Then we have

(i∗(M, q) ◦ i∗(∞, n))
(

ker
(

res
S2n

S2
2n−1

))
= Qn,0 F2[Qn,0, . . . , Qn,n−1]/I(Q, q).
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Here I(Q, q) denotes the ideal of Qn,0 F2[Qn,0, . . . , Qn,n−1] generated by
monomials of degree q.

The proof given by Hu’ng proceeds as follows. According to Lemma 3.14, the
decomposition (48), and the fact that H∗(S2n ;F2) is detected by the subgroups
En and S2

2n−1 we have that

ker
(

resS2n

S2
2n−1

)
= 〈Wn,0〉 = Wn,0 F2[Wn,0, . . . ,Wn,n−1].

Consequently, using the notation dictionary i∗(∞, n) = resS2n

S2n , we get

i∗(∞, n)
(

ker
(

resS2n

S2
2n−1

))
= i∗(∞, n)

(
〈Wn,0〉

)
= i∗(∞, n)

(
Wn,0 F2[Wn,0, . . . ,Wn,n−1]

)
= Qn,0 F2[Qn,0, . . . , Qn,n−1].

On the other hand from Lemma 3.13 we have that

i∗(∞, n)
(
〈Wn,0〉

)
⊆ F2[V n,1, . . . , V n,n].

Thus,

i∗(∞, n)
(

ker
(

resS2n

S2
2n−1

))
= Qn,0 F2[Qn,0, . . . , Qn,n−1] ⊆ F2[V n,1, . . . , V n,n].

Now from Theorem 3.11 we have that

i∗(M, q)(F2[V n,1, . . . , V n,n]) ∼= F2[V n,1, . . . , V n,n]/〈V qn,1, . . . , V
q

n,n〉.
Therefore,

(i∗(M, q) ◦ i∗(∞, n))
(

ker
(

resS2n

S2
2n−1

)) ∼= Qn,0 F2[Qn,0, . . . , Qn,n−1]/I(Q, q)

where ideal I(Q, q) is given by

I(Q, q) = Qn,0 F2[Qn,0, . . . , Qn,n−1] ∩ 〈V qn,1, . . . , V
q

n,n〉. (60)

In order to complete the step (C) in the proof of [64, Prop. 3.5] it remains to
show that the ideal I(Q, q) is the ideal generated by the monomials of degree q.
The necessary argument for this was given in [64, Lem. 3.19] by using the restriction
homomorphism resS2nEn and considering the corresponding claim in H∗(En). We give
the original formulation without introducing new variables.

3.19. Lemma. Let

pr: F2[Vn,1, . . . , Vn,n] −→ F2[Vn,1, . . . , Vn,n]/〈V qn,1, . . . , V
q
n,n〉

be the projection. Then, for the subring F2[Qn,0, . . . , Qn,n−1] of F2[Vn,1, . . . , Vn,n],
we have

pr
(
F2[Qn,0, . . . , Qn,n−1]

)
= F2[Qn,0, . . . , Qn,n−1]/I(Q, q).

Here I(Q, q) denotes the ideal of F2[Qn,0, . . . , Qn,n−1] generated by mono-
mials of degree q.II

It will turn out that the ideal I(Q, q) is not the ideal of F2[Qn,0, . . . , Qn,n−1] gener-
ated by monomials of degree q, implying that the claim of [64, Lem. 3.19] does not
stand.

First we equivalently transform the statement of the lemma. Recall that the
classes Qn,0, . . . , Qn,n−1 are Dickson invariants and therefore GLn(F2)-invariants,
while Vn,1, . . . , Vn,n are Ln(F2)-invariants. Furthermore, from (51) we have that

Qn,r = (χnQn−1,r)Vn,n + (χnQn−1,r−1)2 (61)

IIThe second critical point that is explained in Claim 4.5.
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where χn ∈ GLn(F2) can be interpreted as the variable change in F2[y1, . . . , yn]
given by yi 7−→ yn−i+1 for 1 ≤ i ≤ n. Applying χn to the equality (61) yields

χnQn,r = (χ2
nQn−1,r)χnVn,n + (χ2

nQn−1,r−1)2.

Since χ2
n = id and Qn,r is a GLn(F2)-invariant we get the following recurrent

relation
Qn,r = Qn−1,r (χnVn,n) + (Qn−1,r−1)2.

For simplicity the following notation was introduced Vr := χnVn,r for all 1 ≤ r ≤ n.
Then the projection map

pr: F2[Vn,1, . . . , Vn,n] −→ F2[Vn,1, . . . , Vn,n]/〈V qn,1, . . . , V qn,n〉
can written by

pr: F2[V1, . . . , Vn] −→ F2[V1, . . . , Vn]/〈V q1 , . . . , V qn 〉.
Thus [64, Lem. 3.19], equivalently, states that

pr
(
F2[Qn,0, . . . , Qn,n−1]

)
= F2[Qn,0, . . . , Qn,n−1]/I(Q, q),

where I(Q, q) is the ideal of F2[Qn,0, . . . , Qn,n−1] generated by monomials of degree
q, and

Qn,r = Qn−1,r Vn + (Qn−1,r−1)2, (62)
where we assume that Qk,k = 1 and Qk,−1 = 0 for any integer k ≥ 1. In particular,
from the second equality in (53) we get that

Qn,0 = V1 · · ·Vn. (63)

Now we explain the problem that occurs in the description of the ideal I(Q, q).

Claim 4.5. The ideal I(Q, q), defined in (60), is not in general the ideal of the
ring F2[Qn,0, . . . , Qn,n−1] generated by the monomials of degree q. For example,
this fails for n = 2 and q = 3 or q = 4.

Proof. The proof is given by exhibiting several counterexamples in the case when
n = 2. From equalities (62) and (63) we get that

Q2,0 = V1V2 and Q2,1 = V2 + V 2
1 .

Now we discuss different values of q.
(1) Let q = 3. Then by a direct computation in the ring F2[V1, V2] we have that

monomials

Q3
2,0 = V 3

1 V
3
2 , Q2

2,0Q2,1 = V 2
1 V

3
2 + V 4

1 V
2
2 , Q2,0Q

2
2,1 = V1V

3
2 + V 5

1 V2

belong to the ideal I(Q, 3). Furthermore, since Q2
2,0 = V 2

1 V
2
2 /∈ I(Q, 3) and

Q3
2,1 = V 3

2 + V 2
2 V

2
1 + V2V

4
1 + V 6

1 /∈ I(Q, 3)

we obtain that the monomial

Q2
2,0 +Q3

2,1 = V 3
2 + V2V

4
1 + V 6

1 ∈ I(Q, 3).

Thus, Q3
2,1 /∈ I(Q, 3) and Q2

2,0 + Q3
2,1 ∈ I(Q, 3) giving us the first counterex-

ample to the description of the ideal I(Q, q).
(2) Let q = 4. Then working in the ring F2[V1, V2] we get that the monomials

Q4
2,0 = V 4

1 V
4
2 , Q3

2,0Q2,1 = V 3
1 V

4
2 + V 5

1 V
3
2 ,

Q2
2,0Q

2
2,1 = V 2

1 V
4
2 + V 6

1 V
2
2 , Q4

2,1 = V 8
1 + V 4

2

are in the ideal I(Q, 4),while

Q2,0Q
3
2,1 = V1V

4
2 + V 3

1 V
3
2 + V 5

1 V
2
2 + V 7

1 V2 /∈ I(Q, 4).

Thus we obtained yet another evidence that the description of the ideal I(Q, q)
is incorrect.
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This concludes the proof of the claim and opens a question of correct description
of the ideal I(Q, q). �

We explained an essential gap in the proof of the step (C): “description of the
image (i∗(M, q) ◦ i∗(∞, n))

(
ker
(

resS2n

S2
2n−1

))
.” This automatically invalidates the

proof of the next step (D). Thus based on two gaps explained in Claim 4.4 and
Claim 4.5 we have shown that the proof of [64, Thm. 3.1] is incorrect. Moreover,
we do not see how the approach taken by Hu’ng can be easily repaired.

Remark 4.6. The presented gaps also invalidate results of [64, Sec. 4]. In partic-
ular, counterexamples given in the proof of Claim 4.5 are also counter examples of
the equality [64, (4.7)] that we copy as in the original:

(4.7) H∗(F (Rq, 2n)/S2n) = i∗(F, q)R⊕ i∗(F, q)(〈Wn,0〉).

4.2. Proof of the Injectivity Theorem. In this section we prove that the map

ρ∗d,2m : H∗(F(Rd, 2m)/S2m ;F2) −→ H∗(Pe(Rd, 2m)/S2m ;F2)

is a monomorphism for all d ≥ 2 and all m ≥ 0. For the case when d = ∞, in
Remark 4.3, we already explained why ρ∗∞,2m is a monomorphism.

The proof we present is by induction on m. For m = 0 we have that

Pe(Rd, 20)/S20 = Pe(Rd, 20) = {pt} and F(Rd, 20)/S20 = F(Rd, 20) = Rd,

where ecyd,20 : Pe(Rd, 20) −→ F(Rd, 20) is given my pt 7−→ 0 ∈ Rd. Thus, ρ∗d,20 is
obviously an isomorphism and consequently a monomorphism. Let m ≥ 1, and let
us assume that

ρ∗d,2m−1 : H∗(F(Rd, 2m−1)/S2m−1 ;F2) −→ H∗(Pe(Rd, 2m−1)/S2m−1 ;F2)

is a monomorphism. From Corollary 3.8 we have that the map:

(ρd,2m−1 × ρd,2m−1)×Z2
id :

(Pe(Rd, 2m−1)/S2m−1 × Pe(Rd, 2m−1)/S2m−1)×Z2 S
d−1 −→

(F(Rd, 2m−1)/S2m−1 × F(Rd, 2m−1)/S2m−1)×Z2
Sd−1

induces a monomorphism ((ρd,2m−1 × ρd,2m−1)×Z2
id)∗ in cohomology. Since from

Definition 2.1 we know that

Pe(Rd, 2m)/S2m = (Pe(Rd, 2m−1)/S2m−1 × Pe(Rd, 2m−1)/S2m−1)×Z2 S
d−1

we have obtained the monomorphism ((ρd,2m−1 × ρd,2m−1)×Z2
id)∗ in cohomology:

H∗((F(Rd, 2m−1)/S2m−1 × F(Rd, 2m−1)/S2m−1)×Z2
Sd−1;F2) −→

H∗(Pe(Rd, 2m)/S2m ;F2).
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Next, consider the following diagram of spaces

Pe(Rd, 2m)/S2m
ρd,2m

//

(ρd,2m−1 )2×Z2 id

��

F(Rd, 2m)/S2m

(F(Rd, 2m−1)/S2m−1)2 ×Z2 S
d−1

(F(Rd, 2m−1)/S2m−1)2 ×Z2
F(Rd, 2)

(id)2×Z2r

OO

(Cd(2m−1)/S2m−1)2 ×Z2 Cd(2)

(evd,2m−1 /S2m−1 )2×Z2evd,2

OO

µd,2m
// Cd(2m)/S2m

evd,2m /S2m

OO
(64)

which “commutes up to a homotopy.” Here
— r : F(Rd, 2) −→ Sd−1 is the deformation retraction r(x1, x2) := x1−x2

‖x1−x2‖ ,
— Cd is the little d-cubes operad, consult Definition 7.8,
— evd,n : Cd(n) −→ F(Rd, n) is the evaluation map introduced in (110) which is

an Sn-equivariant homotopy equivalence, as stated in Lemma 7.9, and
— µd,2m is induced by the structural map of the little d-cubes operad:

µ : (Cd(2m−1)× Cd(2m−1))× Cd(2) −→ Cd(2m).

(See Definition 7.8.)
What we mean by “commutes up to a homotopy” here is that the diagram (64),
after substituting the maps (id)2 ×Z2

r and (evd,2m−1 /S2m−1)2 ×Z2
evd,2 with its

homotopy inverses, becomes commutative up to a homotopy. Since we know that
the maps (id)2 ×Z2 r, (evd,2m−1 /S2m−1)2 ×Z2 evd,2 and evd,2m /S2m are homotopy
equivalences, and ((ρd,2m−1 × ρd,2m−1)×Z2 id)∗ is an injection by induction hypoth-
esis, we obtained the following claim.

Lemma 4.7. If the homomorphism

(µd,2m)∗ : H∗(Cd(2m)/S2m ;F2) −→
H∗((Cd(2m−1)/S2m−1 × Cd(2m−1)/S2m−1)×Z2 Cd(2);F2)

is a monomorphism, then the homomorphism

ρ∗d,2m : H∗(F(Rd, 2m)/S2m ;F2) −→ H∗(Pe(Rd, 2m)/S2m ;F2)

is also a monomorphism.

Hence, the induction step, in the proof of Theorem 4.1, would follow from the
proof of injectivity of the homomorphism (µd,2m)∗. To conclude the induction step,
and consequently complete the proof of Theorem 4.1, we show the following dual
theorem.

Theorem 4.8. Let d ≥ 2 and m ≥ 1 be integers. The homomorphism

(µd,2m)∗ : H∗((Cd(2m−1)/S2m−1 × Cd(2m−1)/S2m−1)×Z2
Cd(2);F2)

−→ H∗(Cd(2m)/S2m ;F2) (65)

is an epimorphism.
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For the proof of the theorem we use results of many authors that we first review
in generality we need, and then in Section 4.2.2 we give the proof of Theorem 4.8.
This will finalize the proof of Theorem 4.1.

4.2.1. Prerequisites. Let X be a path-connected space in Toppt. The free Cd-space
generated by X is defined as the quotient space

Cd(X) :=
( ∐
m≥0

Cd(m)×Sm Xm
)
/≈,

where for (~c1, . . . ,~cm) ∈ Cd(m) and (x1, . . . , xm−1, xm) ∈ Xm, with xm = pt the
base point, we define

((~c1, . . . ,~cm−1,~cm), (x1, . . . , xm−1, xm)) ≈ ((~c1, . . . ,~cm−1), (x1, . . . , xm−1)).

(For more details consult [76, Cons. 2.4] or Section 7.1.5.) The space Cd(X) is
equipped with the natural filtration given by the number of cubes, that is for k ≥ 0
we define

FkCd(X) := im
( ∐

0≤m≤k

Cd(m)×Sm Xm −→

∐
m≥0

Cd(m)×Sm Xm −→
( ∐
m≥0

Cd(m)×Sm Xm
)
/≈

)
,

where the first map is the obvious inclusion and the second map is the identification
map. Thus, we obtained the filtration of Cd(X):

∅ = F−1Cd(X) ⊆ F0Cd(X) ⊆ F1Cd(X) ⊆ · · · ⊆ Fk−1Cd(X) ⊆ FkCd(X) ⊆ · · · ,

where each pair of spaces (FkCd(X),Fk−1Cd(X)) is an NDR-pair; see [76, Prop. 2.6].
Further on we denote successive quotients by

DkCd(X) := FkCd(X)/Fk−1Cd(X).

Recall that we have set F−1Cd(X) = ∅. Next, we introduce the real k-dimensional
vector bundle ξd,k over the quotient space Cd(k)/Sk by

Rk // Cd(k)×Sk Rk // Cd(k)/Sk, (66)

where Rk is assumed to be the real Sk-representation with the action given by
permutation of the coordinates. The facts we are going to use — in the case when
the spaceX is a sphere — are collected in the following theorem, see [26, Thm.A-C],
[39] and [40, Thm. 2.6].

Theorem 4.9. Let L ≥ 1 and N ≥ 1 be integers.
(1) The space DkCd(SL) is homeomorphic to the Thom space of the vector bundle

ξ⊕Ld,k , that is DkCd(SL) ≈ Th(ξ⊕Ld,k ). Consequently, for every i ≥ 0 there is the
Thom isomorphism

H̃i+Lk(DkCd(SL);F2) ∼= H̃i+Lk(Th(ξ⊕Ld,k )) ∼=
Hi(Cd(k)/Sk;F2) ∼= Hi(F(Rd, k)/Sk;F2).

(2) For N large enough there is a homotopy equivalence

ΣN
(
FkCd(SL)

)
' ΣN

(
DkCd(SL) ∨ Fk−1Cd(SL)

)
.

Here Σ(X) denotes the suspension of the spaces X.
The Approximation theorem of May, Theorem 7.10, applied to the sphere SL,

where L ≥ 1 is an integer, yields the weak homotopy equivalence

αd : Cd(SL) −→ ΩdΣdSL.
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In particulart, αd induces the isomorphism in homology with F2 coefficients:

(αd)∗ : H∗(Cd(SL);F2) −→ H∗(Ω
dΣdSL;F2).

(The results in [33, Sec. 3] describe further properties of the homology isomorphism
(αd)∗.) The homology of the iterated loop space ΩdΣdSL = ΩdSd+L with F2

coefficients was described as a Pontryagin ring by Araki and Kudo in their seminal
paper [70, Thm. 7.1] using, what we call now, Araki–Kudo–Dyer–Lashof homology
operations; see Section 7.1.6 for more details.

Theorem 4.10. Let d ≥ 1 and L ≥ 1 be integers. The homology H∗(ΩdΣdSL;F2),
as a Pontryagin ring, is a polynomial algebra generated by a generator uL and all
Qi1Qi2 · · ·QisuL where 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d− 1. Furthermore, deg(uL) = L
and

deg(Qi1Qi2 · · ·QisuL) = i1 + 2i2 + 4i3 + · · ·+ 2s−1is + 2sL.

We use notation

H∗(Ω
dΣdSL;F2) ∼=
F2

[
{uL} ∪ {Qi1Qi2 · · ·QisuL : s ≥ 1, 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d− 1}

]
.

Remark 4.11. The generators of the homology H∗(ΩdΣdSL;F2) have a concrete
geometric description. Consider the map ed : SL −→ ΩdΣdSL that corresponds
to the identity map id : ΣdSL −→ ΣdSL along the adjunction [A,ΩdB]pt ←→
[ΣdA,B]pt. Here [·, ·]pt denotes the set of all homotopy classes of pointed maps
between the pointed spaces. After taking d-fold suspension, or the smash product
with the sphere Sd, we get the following commutative triangle

ΣdSL = Sd ∧ SL id∧ed
//

id

((

ΣdΩdΣdSL = Sd ∧ (ΩdΣdSL)

evd

��

ΣdSL = Sd ∧ SL,

where evd : ΣdΩdX −→ X is the evaluation map. Thus, the induced map in ho-
mology

(ed)∗ : H∗(S
L;F2) −→ H∗(Ω

dΣdSL;F2)

is a monomorphism. The generator uL, the so called fundamental class of ΩdΣdSL,
is the image of the generator of HL(SL;F2) along (ed)∗. Now the generators
Qi1Qi2 · · ·QisuL for 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d − 1 are images of uL under the
sequence Qi1Qi2 · · ·Qis of Araki–Kudo–Dyer–Lashof homology operations. Thus
we have complete description of the homology H∗(ΩdΣdSL;F2).

Next we define a filtration of the polynomial algebra

F2

[
{uL} ∪ {Qi1Qi2 · · ·QisuL : s ≥ 1, 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d− 1}

] ∼=
H∗(Ω

dΣdSL;F2)

by defining the weight function ω on its monomials as follows:

ω(uL) = 1, ω(Qiu) = 2ω(u), ω(v1 · v2) = ω(v1) + ω(v2),

where u is an algebra generator, and v1, v2 are monomials is algebra generators. In
particular, the weight of algebra generators are alway powers of two, that is

ω(Qi1Qi2 · · ·QisuL) = 2ω(Qi2Qi3 · · ·QisuL) = · · · = 2s.
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Now, for k ≥ 0, we set FkH∗(ΩdΣdSL;F2) to be the vector subspace of the polyno-
mial ring H∗(ΩdΣdSL;F2) generated by all monomials with weight at most k. In
this way we obtained a filtration of the polynomial ring H∗(ΩdΣdSL;F2) by vector
spaces:

0 = F0H∗(Ω
dΣdSL;F2) ⊆ F1H∗(Ω

dΣdSL;F2) ⊆

· · · ⊆ Fk−1H∗(Ω
dΣdSL;F2) ⊆ FkH∗(ΩdΣdSL;F2) ⊆ · · · ,

the so called weight filtration. Furthermore we denote the sequence of quotients
by

DkH∗(ΩdΣdSL;F2) := FkH∗(ΩdΣdSL;F2)/Fk−1H∗(Ω
dΣdSL;F2).

Example 4.12. In order to illustrate the notion of the weight filtration in the
following table we list all the generators of H∗(ΩdΣdSL;F2) with weight at most 4.

monomial weight degree
uL 1 L

u2
L 2 2L

QiuL 2 i+ 2L 1 ≤ i ≤ d− 1

u3
L 3 3L

uLQiuL 3 i+ 3L 1 ≤ i ≤ d− 1

u4
L 4 4L

u2
LQiuL 4 i+ 4L 1 ≤ i ≤ d− 1

QiuLQjuL 4 i+ j + 4L 1 ≤ i, j ≤ d− 1

QiQjuL 4 i+ 2j + 4L 1 ≤ i ≤ j ≤ d− 1

Thus, for example:

F1H∗(Ω
dΣdSL;F2) = the F2-vector space with a basis {uL},

F2H∗(Ω
dΣdSL;F2) = the F2-vector space with a basis {uL, u2

L, QiuL},

F3H∗(Ω
dΣdSL;F2) = the F2-vector space with a basis

{uL, u2
L, QiuL, u

3
L, uLQiuL}.

Consequently,

D1H∗(Ω
dΣdSL;F2) = the F2-vector space with a basis {uL},

D2H∗(Ω
dΣdSL;F2) = the F2-vector space with a basis {u2

L, QiuL},

D3H∗(Ω
dΣdSL;F2) = the F2-vector space with a basis {u3

L, uLQiuL},

D4H∗(Ω
dΣdSL;F2) = the F2-vector space with a basis

{u4
L, u

2
LQiuL, QiuLQjuL, QiQjuL}.

For more details calculation of this type see [26, Sec. 5].

The central property of the filtration we just defined is given in the following
theorem, see [33, Cor. 3.3].

Theorem 4.13. Let d ≥ 2 and L ≥ 1 be integers. For every k ≥ 0 there is an
isomorphism of graded vector spaces

αd,k : H∗(FkCd(SL);F2) −→ FkH∗(ΩdΣdSL;F2).

Moreover, for every k ≥ 0 there is an isomorphism of vector spaces

αd,k : H̃∗(DkCd(SL);F2) −→ DkH∗(ΩdΣdSL;F2),
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such that the following diagram commutes

H∗(FkCd(SL);F2)
αd,k

//

��

FkH∗(ΩdΣdSL;F2)

��

H̃∗(DkCd(SL);F2)
αd,k

// DkH∗(ΩdΣdSL;F2).

Here the left vertical map is induced by the quotient map of topological spaces

FkCd(SL) −→ DkCd(SL) = FkCd(SL)/Fk−1Cd(SL),

while the right vertical map is the quotient map of vector spaces

FkH∗(ΩdΣdSL;F2) −→ DkH∗(ΩdΣdSL;F2)

= FkH∗(ΩdΣdSL;F2)/Fk−1H∗(Ω
dΣdSL;F2).

The results presented in [33, Sec. 3 and Sec.4] imply that the isomorphisms αd,k
and αd,k are induced by the isomorphism (αd)∗.

Now, directly from Theorem 4.9 and Theorem 4.13, we get a description of
homology of the unordered configuration space with F2 coefficients, see [26, Sec. 4.4].

Corollary 4.14. Let d ≥ 2, k ≥ 1 and L ≥ 1 be integers. There is an isomorphism
of graded vector space

H∗−kL(F(Rd, k)/Sk;F2) ∼= DkH∗(ΩdΣdSL;F2).

Alternatively, we can describe the homology of the unordered configurations
space F(Rd, k)/Sk with F2 coefficients in the following way.

Corollary 4.15. Let d ≥ 2, k ≥ 1, L ≥ 1 and 0 ≤ i ≤ (d − 1)(k − 1) be integers.
The homology of the unordered configurations space

Hi(F(Rd, k)/Sk;F2)

is isomorphic to the F2 vector space spanned by all monomials of degree i + kL of
the polynomial ring

F2

[
{uL} ∪ {Qi1Qi2 · · ·QisuL : s ≥ 1, 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d− 1}

]
whose weights are exactly k.

In order to illustrate the previous result we give a few simple examples of eval-
uation of the homology of the unordered configuration space.

Example 4.16. From Corollary 4.15 we have that the homologyH∗(F(Rd, k)/Sk;F2)
of the unordered configuration space is
(1) for the case d = 2 and k = 2 spanned in

dimension 0 by the monomial: u2
L,

dimension 1 by the monomial: Q1uL,
(Thus, indeed H∗(F(R2, 2)/S2;F2) ∼= H∗(RP1;F2) as expected.)

(2) for the case d = 2 and k = 3 spanned in
dimension 0 by the monomial: u3

L,
dimension 1 by the monomial: u3

L (Q1uL),

(3) for the case d = 2 and k = 4 spanned in
dimension 0 by the monomial: u4

L,
dimension 1 by the monomial: u2

L (Q1uL),
dimension 2 by the monomial: (Q1uL) (Q1uL),
dimension 3 by the monomial: Q1Q1uL,
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(4) for the case d = 3 and k = 2 spanned in
dimension 0 by the monomial: u2

L,
dimension 1 by the monomial: Q1uL,
dimension 1 by the monomial: Q2uL,

(Again, we see that H∗(F(R3, 2)/S2;F2) ∼= H∗(RP2;F2) as expected.)
(5) for the case d = 3 and k = 4 spanned in

dimension 0 by the monomial: u4
L,

dimension 1 by the monomial: u2
L (Q1uL),

dimension 2 by the monomials: u2
L (Q2uL) and (Q1uL) (Q1uL),

dimension 3 by the monomials: (Q1uL) (Q2uL) and Q1Q1uL,
dimension 4 by the monomial: (Q2uL) (Q2uL),
dimension 5 by the monomial: Q1Q2uL,
dimension 6 by the monomial: Q2Q2uL,

Thus, we have that

Hi(F(R3, 4)/S4;F2) ∼=


F2, i = 0, 1, 4, 5, 6,

F⊕2
2 , i = 3, 4,

0, otherwise.

With this result we collected all necessary ingredients that we need for the proof
of Theorem 4.8.

4.2.2. Proof of the dual Epimorphism Theorem. Let the integers d ≥ 2 and m ≥ 1
be fixed. Now we prove that the following homomorphism, induced by a structural
map of the little cubes operad Cd,

(µd,2m)∗ : H∗((Cd(2m−1)/S2m−1 × Cd(2m−1)/S2m−1)×Z2
Cd(2);F2) −→
H∗(Cd(2m)/S2m ;F2)

is an epimorphism.
Let L ≥ 1 be an arbitrary integer, and consider the free Cd-space Cd(SL). From

Theorem 4.10, using the the weak homotopy equivalence

αd : Cd(SL) −→ ΩdΣdSL,

we get the following isomorphisms

H∗(Cd(SL);F2) ∼= H∗(Ω
dΣdSL;F2) ∼=

⊕
k≥0

DkH∗(ΩdΣdSL;F2) ∼=

F2

[
{uL} ∪ {Qi1Qi2 · · ·QisuL : s ≥ 1, 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d− 1}

]
.

Since Cd(SL) is a Cd-space, as explained in Lemma 7.6, there exists a map

Θ2 : (Cd(SL)× Cd(SL))× Cd(2) //Cd(SL).

(In the following we will abuse notation and all maps induced by Θ2 will be denoted
in the same way.) On the level of space filtration, for integers k1 ≥ 0 and k2 ≥ 0,
we have that Θ2 induces a map

Θ2 : (Fk1Cd(SL)× Fk2Cd(SL))× Cd(2) //Fk1+k2Cd(SL).

Thus, for any integer k ≥ 0 we have an induced map on quotient spaces

Θ2 : (DkCd(SL)×DkCd(SL))× Cd(2) //D2kCd(SL).

The symmetric group S2
∼= Z2 acts naturally on: the space Cd(2) of pairs of little

d-cubes by interchanging the cubes, and on the product DkCd(SL)×DkCd(SL) by
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interchanging the factors. If the trivial action on the space D2kCd(SL) is assumed,
the equivariance property of the structural map of the little cubes operad implies
that the last Θ2 map is an S2-equivariant map. Consequently, it induces maps
such that the following diagram commutes

(Cd(SL)× Cd(SL))×Z2 Cd(2)
Θ2

// Cd(SL)

(FkCd(SL)× FkCd(SL))×Z2
Cd(2)

Θ2
//

OO

��

F2kCd(SL)

OO

��

(DkCd(SL)×DkCd(SL))×Z2
C2(2)

Θ2
// D2kCd(SL).

Here the vertical maps are either inclusions or quotient maps. Passing to homology
we get the following commutative diagram:

H∗((Cd(SL)× Cd(SL))×Z2
Cd(2);F2)

(Θ2)∗
// H∗(Cd(SL);F2)

H∗((FkCd(SL)× FkCd(SL))×Z2
Cd(2);F2)

(Θ2)∗
//

OO

��

H∗(F2kCd(SL);F2)

OO

��

H∗((DkCd(SL)×DkCd(SL))×Z2 C2(2);F2)
(Θ2)∗

// H∗(D2kCd(SL);F2).

(67)

In the case when k = 2m−1 the homomorphism

(Θ2)∗ : H∗((DkCd(SL)×DkCd(SL))×Z2
C2(2);F2) −→

H∗(D2kCd(SL);F2) (68)

coincides with the map (µd,2m)∗ from (65) — after appropriate dimension shift by
−2kL. Therefore in order to complete the proof of Theorem 4.8 it suffices to prove
that the homomorphism (Θ2)∗, from (68), is surjective.

The map H∗(FkCd(SL);F2) −→ H∗(DkCd(SL);F2) is surjective for every k.
Therefore, using Corollary 3.9 and commutativity of the diagram (67), we should
first consider the homomorphism

(Θ2)∗ : H∗((FkCd(SL)× FkCd(SL))×Z2 C2(2);F2) −→
H∗(F2kCd(SL);F2). (69)

For d ≥ 2, let

Id := {(i1, . . . , is) : s ≥ 1, 1 ≤ i1 ≤ · · · ≤ is ≤ d− 1}

be the set of all admissible iterations. Then, every element I ∈ Id defines the
iterated Araki–Kudo–Dyer–Lashof homology operation

QI := Qi1Qi2 · · ·Qis .

Hence, as we have seen in Theorem 4.13, the homology H∗(FkCd(SL);F2) can be
identified with the vector space spanned by all monomials in, variables from the
set {QIuL : I ∈ Id} ∪ {uL} with weight at most k. Furthermore, from definition
of Araki–Kudo–Dyer–Lashof homology operations given in Section 7.1.6, it follows
that for every QIuL, I ∈ Id, of weight exactly 2m, there exists i ≥ 1 and an element
QJuL or uL, J ∈ Id, of weight exactly 2m−1 such that

QIuL = (Θ2)∗((QJuL ⊗QJuL)⊗Z2 fi). (70)
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It is important to notice that this does not mean that the homomorphism (Θ2)∗
from (69) is surjective.

Now we specialize to the case k = 2m−1 and analyze the map (68):

(Θ2)∗ : H∗((D2m−1Cd(SL)×D2m−1Cd(SL))×Z2
Cd(2);F2) −→ H∗(D2mCd(SL);F2)

and prove that it is surjective. The vector space H∗(D2mCd(SL);F2) is a quotient
of H∗(F2mCd(SL);F2). It can be identified with the vector space spanned by all
monomials of weight exactly 2m in variables {uL} ∪ {QIuL : I ∈ Id}. From (70)
we that all elements of the form QIuL of weight 2m (variables) are in the image of
(Θ2)∗. It remains to show that all other monomials are also in im((Θ2)∗).

Let QI1uL · · ·QItuL with t ≥ 2, I1, . . . It ∈ Id∪{0} and Q0uL := uL, be a typical
element of the basis of H∗(D2mCd(SL);F2) which is not a variable. Then,

2m = ω(QI1uL · · ·QItuL) = ω(QI1uL) + · · ·+ ω(QItuL) = 2b1 + · · ·+ 2bt ,

where
ω(QI1uL) = 2b1 , ω(QI2uL) = 2b2 , . . . , ω(QItuL) = 2bt .

Without loss of generality, we can assume that there exists an integer 1 ≤ ` ≤ t− 1
such that

ω(QI1uL · · ·QI`uL) = 2m−1 and ω(QI`+1
uL · · ·QItuL) = 2m−1.

Consequently,
QI1uL · · ·QI`uL ∈ H∗(D2m−1Cd(SL);F2)

and
QI`+1

uL · · ·QItuL ∈ H∗(D2m−1Cd(SL);F2).

The product structure on the homology of Cd-space Cd(SL) is introduced by an
arbitrary element of (~c1,~c2) ∈ Cd(2) via the map

Θ2(~c1,~c2) : Cd(SL)× Cd(SL) −→ Cd(SL),

see [76, Lem. 1.9(i)]. The invariance of the action of the little cubes operad with
respected to the actions of related symmetric groups implies that the product map
Θ2(~c1,~c2) factors thought the induced map

Θ2 : (Cd(SL)× Cd(SL))×Z2
Cd(2) −→ Cd(SL).

Hence, on the level of homology with F2 coefficients we have that

QI1uL . . . QItuL = (QI1uL · · ·QI`uL) · (QI`+1
uL · · ·QItuL)

= (Θ2)∗
(
(QI1uL · · ·QI`uL)⊗ (QI`+1

uL · · ·QItuL)⊗Z2 h0

)
,

where h0 is the generator of H0(RPd−1;M), as explained in Section 7.4.5. Thus,
we have proved that all additive generators of H∗(D2mCd(SL);F2) are in the image
of (Θ2)∗ implying that the map (Θ2)∗ in (68) is surjective. This concludes the proof
of Theorem 4.8 and consequently we have proved Theorem 4.1.

4.3. An unexpected corollary. In this section we take a small detour from the
objectives of this book and present an unexpected corollary which is an artefact of
the proof of Theorem 4.8. This result shares the spirit with the the classical result of
Michael Atiyah [10] about the complex representation ring of the symmetric group
R(Sk) ∼= K∗Sk(pt) and the modern breakthrough of Chad Giusti, Paolo Salvatore
& Dev Sinha [55, Thm. 1.2] in describing the cohomology of the symmetric groups
collected disjointly together H∗(

∐
k≥1 BSk;F2).
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4.3.1. Motivation. In 1966 Atiyah studied the following direct sum of abelian groups

R∗ :=
⊕
k≥0

hom(R(Sk),Z) ∼=
⊕
k≥0

hom(K∗Sk(pt),Z)

which was additionally equipped with the structure of a commutative ring via the
product induced by the inclusion maps Sr×Ss −→ Sr+s. For details and original
presentation see [10, p. 169]. He showed [10, Cor. 1.3] that the ring R∗ is isomorphic
to the polynomial ring

Z[σ1, . . . , σk, . . . ]

on generators σk : R(Sk) −→ Z, for k ≥ 1, given by the dimension of the fixed
Sk-submodule.

The study of the homology and cohomology of symmetric groups has a rich and
exciting history with many spectacular breakthroughs and crucial applications in
different areas of mathematics. The major contributions go back to the extraordi-
nary work of Nakaoka [86] [87] [88], Daniel Quillen [90] [89], Quillen & Boris Venkov
[91], Huỳnh Mùi [82], Benjamin Mann [73], Adem, John Maginnis & Milgram, [1],
Adem & Milgram [2], all the way towards the modern results by Mark Feshbach
[51] and Giusti, Salvatore & Sinha [55].

A detailed understanding of the cohomology of a particular symmetric group is
still a challenging problem in general. On the other hand, Giusti, Salvatore & Sinha
[55], considering all symmetric groups together, like Atiyah did, gave a compact
description of the cohomology H∗

(∐
k≥1 BSk;F2

)
in the language of Hopf rings

where the operations are naturally introduced.
In more details, a Hopf ring is a five-tuple (V,�, ·,∆, S) of the vectors space V ,

two multiplications � and ·, one comultiplication ∆, and an antipode S such that:
(1) (V,�,∆, S) is a Hopf algebra,
(2) (V, ·,∆) is a bialgebra, and
(3) u · (v � w) =

∑
∆u=

∑
u′⊗u′′(u

′ · v)� (u′′ · w) for all u, v, w ∈ V .
Next, the cohomology H∗

(∐
k≥1 BSk;F2

)
can be equipped with a structure of a

Hopf ring where:
— the first product � is the so call transfer product, for a definition consult [55,

Sec. 3],
— the second product · is the cup product, extended to be zero on the classes

coming from different disjoint components,
— the coproduct ∆ on is the dual to the standard Pontryagin product on the

homology of H∗
(∐

k≥1 BSk;F2

)
, that is the coproduct induced by the natural

inclusions of the symmetric groups Sr ×Ss −→ Sr+s, and finally
— the anipode S is just the identity map.
Now the main result of Giusti, Salvatore & Sinha [55, Thm. 1.2] is as follows.

Theorem 4.17. The cohomology H∗
(∐

k≥1 BSk;F2

)
, as a Hopf ring, is generated

by the unit classes on each component and classes u`,n ∈ H∗(BSn2` ;F2). The
coproduct is generated by the formula

∆u`,n =
∑
r+s=n

u`,r ⊗ u`,s,

while the relations between the transfer products on generators are given by

u`,r � u`,s =

(
r + s

r

)
u`,r+s.

The second (cup-)product · between the generators from different components is zero,
and there are no further relations between products of the generators. In addition,
the antipode is the identity.
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4.3.2. Corollary. Motivated by the work of Atiyah and Giusti, Salvatore & Sinha,
for a fixed integer d ≥ 2 or d =∞, we describe the F2 homology of the space of all
finite subsets of Rd with additional base point, that is H∗

(∐
k≥0 F(Rd, k)/Sk;F2

)
.

Here, F(Rd, 0) and F(Rd, 0)/S0 stand for base points.
In addition to the additive structure on the homology, which can be already read

from Corollary 4.15, we can also identify the ring structure with the respect to a
naturally induced multiplication. For a clear definition of the product structure on
this homology we use the little d-cubes operad isomorphic model and set

Td := H∗

(∐
k≥0

Cd(k)/Sk;F2

)
∼= H∗

(∐
k≥0

F(Rd, k)/Sk;F2

)
.

Recall that by Definition 7.1 the space Cd(0) is just a point and therefore coincides
with the F(Rd, 0). Now, the product structure on Td, we care about, is induced by
the structural maps of the little d-cubes operad

µCd(~c1,~c2) : Cd(r)× Cd(s) −→ Cd(r + s), (71)

where (~c1,~c2) ∈ Cd(2) is assumed to be an arbitrary but fixed pair of little d-cubes.

Theorem 4.18. Let d ≥ 2 be an integer or d =∞. Then Td is isomorphic to the
polynomial ring

Rd := F2

[
{u0} ∪ {Qi1Qi2 · · · Qisu0 : s ≥ 1, 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d− 1}

]
on generators

u0 ∈ H0(Cd(1)/S1;F2)

and
Qi1Qi2 · · · Qisu0 ∈ Hi(Cd(2s)/S2s ;F2)

where s ≥ 1, 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ d− 1, and i = i1 + 2i2 + 22i3 + · · ·+ 2s−1is.
The unit of the ring Rd is the generator of the 0-homology of the base point, that
is 1 ∈ H0(Cd(0)/S0;F2).

Proof. The ring Td has two gradings, one with respect to the number of cubes
(points) and the second one with respect to the homology degree:

Td = H∗

(∐
k≥0

Cd(k)/Sk;F2

)
∼=
⊕
k≥0

H∗(Cd(k)/Sk;F2) ∼=

⊕
k≥0

⊕
i≥0

Hi(Cd(k)/Sk;F2).

Indeed the product, induced by the map (71), is the composition homomorphism:

Hi(Cd(r)/Sr;F2)⊗Hj(Cd(s)/Sk;F2)
×
//

))

Hi+j(Cd(r)/Sr × Cd(s)/Sk;F2)

(µCd (~c1,~c2))∗

��

Hi+j(Cd(r + s)/Sr+s;F2).

The horizontal map is the homology cross product which is an isomorphism in our
situation; consult for example [21, Thm.VI.1.6].

In order to simplify notation for d ≥ 2 we set

Id := {(i1, . . . , is) : s ≥ 1, 1 ≤ i1 ≤ · · · ≤ is ≤ d− 1}.
Let I = (i1, . . . , is) ∈ Id, then we set the length of I to be |I| := s. Like in the previ-
ous section, we denote the iterated Araki–Kudo–Dyer–Lashof homology operation
Qi1Qi2 · · ·Qis applied on uL by QIuL where I = (i1, . . . , is) ∈ Id. Furthermore,
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we write QIu0 := Qi1Qi2 · · · Qisu0 for a typical generator of the polynomial ring R
which differs from the generator u0. Recall, that deg(uL) = L, and

deg(QIul) = deg(Qi1Qi2 · · ·QisuL) = i1 + 2i2 + 4i3 + · · ·+ 2s−1is + 2sL.

On the other hand, we have set that

deg(QIu0) = deg(Qi1Qi2 · · · Qisu0) = i1 + 2i2 + 4i3 + · · ·+ 2s−1is,

with deg(u0) = 0. In other words, if L could be zero the rings Td and Rd would
coincide precisely.

From Corollary 4.15 we know that the homology Hi(Cd(k)/Sk;F2), for 0 ≤ i ≤
(d − 1)(k − 1), is the F2 vector space spanned by all monomials of degree i + kL
of the polynomial ring F2[{uL} ∪ {QIuL : I ∈ Id}] whose weights are exactly k.
It is important to keep in mind that the base elements of this vector space are
indexed by, but are not equal to, the iterated Araki–Kudo–Dyer–Lashof homology
operations applied to the class uL. Furthermore, recall that for I = (i1, . . . , is) ∈ Id
the weight of QIuL is 2s, while the weight of uL is 1. Then we the ring Td can be
decomposed into a direct sum of vector spaces as follows:

Td = H∗

(∐
k≥0

Cd(k)/Sk;F2

)
∼=
⊕
k≥0

H∗(Cd(k)/Sk;F2) ∼=
⊕
k≥0

⊕
i≥0

Hi(Cd(k)/Sk;F2)

∼=
⊕
k≥0

⊕
i≥0

〈
(QI1uL) · · · (QItuL)uaL :

ω((QI1uL) · · · (QItuL)uaL) = k
deg((QI1uL) · · · (QItuL)uaL) = i+ kL

〉
∼=
⊕
k≥0

⊕
i≥0

〈
(QI1uL) · · · (QItuL)uaL :

2s1 + · · ·+ 2st + a = k
ι(I1, . . . , It) + (2s1 + · · ·+ 2st + a)L = i+ kL

〉
∼=
⊕
k≥0

⊕
i≥0

〈
(QI1uL) · · · (QItuL)uaL :

2s1 + · · ·+ 2st + a = k
ι(I1, . . . , It) = i

〉
.

Here we took I1 = (i11, i12, . . . , i1s1), . . . , It = (it1, it2, . . . , itst) and denoted by
ι(I1, . . . , It) the sum (i11 + · · ·+ 2s1−1i1s1) + · · ·+ (it1 + · · ·+ 2st−1itst), that is

ι(I1, . . . , It) := (i11 + · · ·+ 2s1−1i1s1) + · · ·+ (it1 + · · ·+ 2st−1itst).

On the other hand, in a similar way as above, the polynomial ring Rd can be
decomposed into a direct sum of vector subspaces as follows:

Rd := F2[{u0} ∪ {QIu0 : I ∈ Id}] ∼=⊕
k≥0

⊕
i≥0

〈
(QI1u0) · · · (QItu0)ua0 :

2s1 + · · ·+ 2st + a = k
ι(I1, . . . , It) = i

〉
.

Thus, the bijective correspondence QIuL ←→ QIu0, for I ∈ Id, and uL ←→ u0

induces bijection between the (monomial) basis of Td and Rd, which further on
induces an isomorphism of Td and Rd considered as F2 vector spaces.

It remains to show that the induced isomorphism on the underlying vector space
structures of Td and Rd also respects the corresponding product structures. This
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fact follows from the commutativity of the following diagram:

Hi(Cd(r)/Sr)⊗Hj(Cd(s)/Ss)

=

��

H̃i+rL(DrCd(SL))⊗ H̃j+sL(DsCd(SL))
∼=
oo

∼=
��

Hi(Cd(r)/Sr)⊗Hj(Cd(s)/Ss)

∼=

��

H̃i+rL(Th(ξ⊕Ld,r ))⊗ H̃j+sL(Th(ξ⊕Ld,s ))
∼=

oo

∼=
��

Hi+j(Cd(r)/Sr × Cd(s)/Ss)

=

��

H̃i+j+(r+s)L(Th(ξ⊕Ld,r ) ∧ Th(ξ⊕Ld,s ))
∼=

oo

∼=
��

Hi+j(Cd(r)/Sr × Cd(s)/Ss)

(µCd (~c1,~c2))∗

��

H̃i+j+(r+s)L(Th(ξ⊕Ld,r × ξ
⊕L
d,s ))

∼=
oo

(µCd (~c1,~c2))∗

��

Hi+j(Cd(r + s)/Sr+s)

=

��

H̃i+j+(r+s)L(Th(ξ⊕Ld,r+s))
∼=

oo

∼=
��

Hi+j(Cd(r + s)/Sr+s) H̃i+j+(r+s)L(Dr+sCd(SL))
∼=

oo

(72)

where the coefficients in all homologies are assumed to be in the field F2. (Recall,
here Th(ξ) stands for the Thom space of the vector bundle ξ.) Thus, we have
proved that Td and Rd are isomorphic as rings. �

Remark 4.19. It is important to observe that alternatively we could see the dis-
joint union

∐
k≥0 F(Rd, k)/Sk as the free Cd-space Cd(Sd) generated by the sphere

S0. Then the homology H∗(
∐
k≥0 F(Rd, k)/Sk;Fp), for p a prime, was described

already in 1976 by Cohen [33, Thm. 3.1] using the framework of an appropriate
class of Hopf algebras.

5. On highly regular embeddings – revised

The study of highly regular embeddings has a long history, which starts in 1957
with the work of Borsuk [20] on the existence k-regular embeddings. Boltjanskĭı,
Ryškov & Šaškin [19] in 1963 gave the first lower bounds for the existence of 2k-
regular embeddings. In the 1970’s and 1980’s the accumulated knowledge about the
topology of the unordered configuration space allowed for further progress, which
was made by Cohen & Handel [36], Chisholm [29], Handel [57], and Handel &
Segal [59]. In the 1990’s the existence of k-regular embeddings was related to the
notion of k-neighbourly submanifolds; this was considered by Vassiliev [100] and
Handel [58]. The result of Chisholm [29, Theorem 2] is the strongest result from
that time.

In the first decade of 21st century the notion of `-skew embeddings was intro-
duced and studied by Ghomi & Tabachnikov [54]. Furthermore, combining the
notions of k-regular embeddings and of `-skew embeddings, in 2006 Stojenović [96]
defined the notion of k-regular-`-skew embeddings and gave the first bounds for
their existence.

The second decade of the new century brought the first non-elementary construc-
tions of k-regular embedding. In 2019, Jarosław Buczyński, Tadeusz Januszkiewicz,
Joachim Jelisiejew & Mateusz Michałek [24], using advanced methods of algebraic
geometry, constructed k-regular embeddings of finite dimensional real and complex
vector spaces.
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In this section we revise the results of Blagojević, Lück and Ziegler presented in
the paper [15]. The proofs of [15, Thm. 2.1, Thm. 3.1, Thm. 4.1] relied essentially
on a result of Hu’ng [64, (4.7)] that turned out to be incorrect, see Remark 4.6.
Specifically, [15, Lem. 2.15] is not true when d is not a power of 2.

5.1. k-regular embeddings. In this section we correct [15, Sec. 2]. In the fol-
lowing all topological spaces are Hausdorff spaces and all maps are assumed to be
continuous.

Definition 5.1. Let k ≥ 1 and N ≥ 1 be integers, and let X be a topological
space. A continuous map f : X −→ RN is a k-regular embedding if for every
(x1, . . . , xk) ∈ F(X, k) the vectors f(x1), . . . , f(xk) are linearly independent. In
particular, 0 /∈ im(f).

For N ≥ 1 and 1 ≤ k ≤ N integers, the Stiefel manifold Vk(RN ) of all ordered
k-frames is a (topological) subspace of the product (RN )k given by

Vk(RN ) = {(y1, . . . , yk) ∈ (RN )k : y1, . . . , yk are linearly independent}.
The symmetric group Sk acts freely on the Stiefel manifold by permuting the
vectors in the frame. Now from Definition 5.1 we get a necessary condition for the
existence of a k-regular embedding phrased in term of the existence of an equivariant
map.

Lemma 5.2. If there exists a k-regular embedding X −→ RN , then there exists an
Sk-equivariant map

F(X, k) −→ Vk(RN ). (73)

In order to study the existence of anSk-equivariant map (73) we use the criterion
of Cohen and Handel [36, Prop. 2.1], see also [15, Lem. 2.11]. Let Rk be endowed
with an Sk-action given by coordinate permutation. Then the subspace Wk =
{(a1, . . . , ak) ∈ Rk : a1 + · · · + ak = 0} is an Sk-invariant subspace. Consider the
following vector bundles

ξX,k : Rk // F(X, k)×Sk Rk // F(X, k)/Sk,

ζX,k : Wk
// F(X, k)×Sk Wk

// F(X, k)/Sk,

τX,k : R // F(X, k)/Sk × R // F(X, k)/Sk,

(74)

where τX,k is a trivial line bundle. An obvious decomposition holds:

ξX,k ∼= ζX,k ⊕ τX,k. (75)

The bundle ξd,k introduced in (66) is the pull-back vector bundle of the vector
bundle ξRd,k along the homotopy equivalence Cd(k)/Sk −→ F(Rd, k)/Sk which is
induced by the evaluation at centers of cubes map evd,n : Cd(n) −→ F(Rd, n) from
Lemma 7.9.

Lemma 5.3. An Sk-equivariant map F(X, k) −→ Vk(RN ) exists if and only if the
k-dimensional vector bundle ξX,k admits an (N − k)-dimensional inverse.

As a direct consequence of Lemmas 5.2 and 5.3 we get a criterion for the non-
existence of a k-regular embedding in term of the dual Stiefel–Whitney class of the
vector bundle ξX,k. We recall only a particular case of [15, Lem. 2.12 (2)] that we
use here.

Lemma 5.4. Let d ≥ 1 and k ≥ 1 be integers. If the dual Stiefel–Whitney class

wN−k+1(ξRd,k) 6= 0

does not vanish, then there cannot be any k-regular embedding Rd −→ RN .
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The criterion for the non-existence of a k-regular embedding X −→ RN given
in the previous lemma motivates the study of Stiefel–Whitney classes of the vector
bundle ξX,k. In [15, Thm. 2.13], based on the work of Hu’ng [64, (4.7)], the following
theorem about the dual Stiefel–Whitney classes of ξRd,k was proved.

Theorem 2.13. Let k, d ≥ 1 be integers. Then the dual Stiefel–Whitney
class

w(d−1)(k−α(k))(ξRd,k)

does not vanish.

The previous theorem and the criterion given in Lemma 5.4 implied [15, Thm. 2.1]:
Theorem 2.1. Let k, d ≥ 1 be integers. There is no k-regular embedding
Rd −→ RN for

N ≤ d(k − α(k)) + α(k)− 1,

where α(k) denotes the number of ones in the dyadic presentation of k.

The proof of the key theorem [15, Thm. 2.13] was done in two steps. First, the
special case when k is a power of 2 was established [15, Lem. 2.15], and then the
general case for arbitrary integer k ≥ 2 was derived [15, Lem. 2.17]. In the following
we quote both lemmas as in they were written in the original.

Lemma 2.15. Let d ≥ 1 be an integer, and k = 2m for some m ≥ 1.
Then the dual Stiefel–Whitney class w(d−1)(k−1)(ξRd,k) does not vanish.
Lemma 2.17. Let d, k ≥ 1 be integers. Then the dual Stiefel–Whitney
class w(d−1)(k−α(k))(ξRd,k) does not vanish.

The proof of [15, Lem. 2.15] contains a gap at the place where [64, (4.7)] was applied
and is not true for d ≥ 1 not a power of 2. More precisely, in the proof stands:

The following decomposition of H∗(F(Rd, k)/Sk) was proved by Hu’ng
in [20, (4.7), page 279]:

(5) H∗(F(Rd, k)/Sk) ∼= α∗d,k
(

ker(res
Sk
Em

)⊕ F2[qm,m−1, . . . , qm,1]
)
⊕ α∗d,k(〈qm,0〉).

In particular, this implies that

α∗d,k
(

ker(res
Sk
Em

)⊕ F2[qm,m−1, . . . , qm,1]
)
∩ α∗d,k(〈qm,0〉) = {0}.

Consequently, [15, Lem. 2.15], [15, Lem. 2.17], [15, Thm. 2.13] and [15, Thm. 2.1] do
not hold. Furthermore, a technical result stated in [15, Cor. 2.16] is incorrect. In
the following we correct these gaps.

For the corrections we will combine different results we established so far. Many
of them can be summarized in the commutative diagram (77). The cohomologies
appearing in the diagram (77) are assumed to be with the field F2 coefficients.

First, we show that [15, Lem. 2.15], [15, Lem. 2.17] and consequently [15, Thm. 2.13]
hold, as stated, in the case when the dimension d is a power of 2. For that we use
the following result from [14, Thm. 3.1]: For integers d ≥ 2 and k ≥ 2

height(H∗(F(Rd, k)/Sk;F2)) ≤ min{2t : 2t ≥ d}, (76)

where height(F(Rd, k)/Sk;F2)) is the height of the algebra H∗(F(Rd, k)/Sk;F2).
This result, obtained as an application of Kahn–Priddy [66, Thm. pp. 103], is the
best possible as explained in [14, Sec. 3]. It is worth mentioning that a similar upper
bound for the hight of the cohomology ring H∗(F(Rd, k)/Sk;Fp), where p is now
an odd prime, was given in [14, Thm. 3.2].

Recall, for an algebra A over a field F, the height of an element a ∈ A\A∗ is a
natural number or infinity height(a) := min{n ∈ N : an = 0}. Here A∗ denotes
the group of all invertible elements of the algebra A. The height of the algebra A is
defined to be height(A) := max{height(a) : a ∈ A\A∗}.

We prove the following lemma which can be extracted from work of Chisholm
[29]. For alternative proof see also [42, Prop. 5.2].
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H
∗
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∗
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∞
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⊕
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��
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∗
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∞
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)/
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⊕
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∞
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S
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〉⊕
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��
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..
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m
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〉
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..
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d m
〉
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Lemma 5.5. Let d = 2a and k = 2m for some integers a ≥ 1 and m ≥ 1. Then
the dual Stiefel–Whitney class

w(d−1)(k−1)(ξRd,k) = w(2a−1)(2m−1)(ξRd,2m)

does not vanish.

Proof. Let us fix d = 2a and k = 2m for integers a ≥ 1 and m ≥ 1. For simplicity
denote by w := w(ξRd,2m) the total Stiefel–Whitney class of the vector bundle ξRd,2m
and by w := w(ξRd,2m) the associated total dual Stiefel–Whitney, that is w ·w = 1.
From the decomposition (75) we get that wi := wi(ξRd,2m) = wi(ζRd,2m) = 0 for
all i ≥ 2m, and so w = 1 + w1 + · · ·+ w2m−1 ∈ H∗(F(Rd, 2m)/S2m ;F2). From the
inequality (76) we have that

height(H∗(F(Rd, 2m)/S2m ;F2)) ≤ min{2t : 2t ≥ d} = 2a = d.

Thus, we compute

wd = w2a = (1 + w1 + · · ·+ w2m−1)2a = 1 + w2a

1 + · · ·+ w2a

2m−1 = 1,

and so wd = w · wd−1 = 1. Therefore,

w = wd−1 = w2a−1 = w1+21+22+···+2a−1

= (1 + w1 + · · ·+ w2m−1)1+21+22+···+2a−1

=

a−1∏
i=0

(
1 + w2i

1 + · · ·+ w2i

2m−1

)
= w

∑a−1
i=0 2i

2m−1 +
(
terms of degree < (d− 1)(2m − 1)

)
= wd−1

2m−1 +
(
terms of degree < deg(wd−1

2m−1) = (d− 1)(2m − 1)
)
.

In summary,

w = wd−1
2m−1 +

(
terms of degree < deg(wd−1

2m−1) = (d− 1)(2m − 1)
)

∈ H∗(F(Rd, 2m)/S2m ;F2). (78)

The fact that wd−1
2m−1 6= 0 follows from general obstruction computation in [16,

Cor. 4.5]. Nevertheless, we present a different argument that follows from the results
of Sections 3 and 4. First we apply the map ρ∗d,2m to the relation (78) and get

ρ∗d,2m(w) = ρ∗d,2m(w2m−1)d−1 +
(
terms of degree < deg(wd−1

2m−1)
)

∈ H∗(Pe(Rd, 2m)/S2m ;F2). (79)

Recall that according to Theorem 3.11 we have that

H∗(Pe(Rd, 2m)/S2m ;F2) ∼= F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m).

Furthermore, from the proof of Lemma 3.13, the commutative diagram (77) and
the relation (53) we have that

ρ∗d,2m(w2m−1) = Vm,1 · · ·Vm,m ∈ F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉

⊆ H∗(Pe(Rd, 2m)/S2m ;F2).

Combining these facts we get

ρ∗d,2m(w) = (Vm,1 · · ·Vm,m)d−1 +
(
terms of degree < deg(wd−1

2m−1)
)

∈ H∗(Pe(Rd, 2m)/S2m ;F2),

and furthermore

ρ∗d,2m(w(d−1)(2m−1)) = ρ∗d,2m(w2m−1)d−1 = (Vm,1 · · ·Vm,m)d−1 6= 0.

Consequently, w(d−1)(2m−1) 6= 0, and the proof of the lemma is concluded. �
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The extension of the previous lemma (for dimension d = 2a) to the case of where
k ≥ 1 is an arbitrary integer (still for dimension d = 2a) can be done as in the proof
of [15, Lem. 2.17]. For the sake of completeness we give a detailed proof using the
presentation from [15, Proof of Lem. 2.17]. Here α(k) denotes the number of 1s in
the binary presentation of the integer k ≥ 1.

Lemma 5.6. Let d = 2a for some integer a ≥ 1, and let k ≥ 1 be an integer. Then
the dual Stiefel–Whitney class

w(d−1)(k−α(k))(ξRd,k) = w(2a−1)(k−α(k))(ξRd,k)

does not vanish.

Proof. Let r := α(k) be the number of 1s in the binary presentation of the integer
k ≥ 1, and let k = 2b1 + · · · + 2br where 0 ≤ b1 < b2 < · · · < br. Consider
a morphism between vector bundles

∏r
i=1 ξRd,2bi and ξRd,k where the following

commutative square is a pullback diagram:∏r
i=1 ξRd,2bi

Θ
//

��

ξRd,k

��∏r
i=1 F(Rd, 2bi)/S2bi

θ
// F(Rd, k)/Sk.

The map θ is induced, up to an equivariant homotopy, from a restriction of the
little cubes operad structural map

(Cd(2b1)× · · · × Cd(2br ))× Cd(r) −→ Cd(2b1 + · · ·+ 2br ).

Alternatively, fix embeddings ei : Rd −→ Rd for 1 ≤ i ≤ r such that their images
are pairwise disjoint open d-balls. They induces embeddings F(Rd, `) −→ F(Rd, `)
denoted by the same letter ei for all natural numbers `. Thus, the map θ is induced
by the map

∏r
i=1 F(Rd, 2bi) −→ F(Rd, k) defined by(

(x1,1, . . . , x1,2b1 ), . . . , (xr,1, . . . , xr,2br )
)
7−→

e1(x1,1, . . . , x1,2b1 )× · · · × er(xr,1, . . . , xr,2br ).

The map Θ that covers θ is given by(
(x1,1, . . . , x1,2b1 ; v1), . . . , (xr,1, . . . , xr,2br ; vr)

)
7−→(

e1(x1,1, . . . , x1,2b1 )× · · · × er(xr,1, . . . , xr,2br ), v1 × · · · × vr
)
.

Consequently, the pullback vector bundle is the product vector bundle θ∗ξRd,k ∼=∏r
i=1 ξRd,2bi . Now the naturality property of the Stiefel–Whitney classes [80, Ax. 2,

p. 37] implies that in cohomology we get

θ∗(w(d−1)(k−r)(ξRd,k)) = w(d−1)(k−r)

( r∏
i=1

ξRd,2bi

)
.

The product formula for Stiefel–Whitney classes [80, Pr. 4-A, p. 54] implies that

w
( r∏
i=1

ξRd,2bi

)
= w(ξRd,2b1 )× · · · × w(ξRd,2br ).

Now we compute

θ∗(w(d−1)(k−r)(ξRd,k)) = w(d−1)(k−r)

( r∏
i=1

ξRd,2bi

)
=

∑
s1+···+sr=(d−1)(k−r)

ws1(ξRd,2b1 )× · · · × wsr (ξRd,2br ).
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From the Künneth formula [21, Thm.VI.3.2] we have that each term of the previous
sum ws1(ξRd,2b1 )× · · · × wsr (ξRd,2br ) belongs to a different direct summand in the
following direct decomposition of the (d− 1)(k − r)th cohomology

H(d−1)(k−r)
( r∏
i=1

F(Rd, 2bi)/S2bi ;F2

)
∼=⊕

s1+···+sr=(d−1)(k−r)

Hs1(F(Rd, 2b1)/S2b1 ;F2)⊗ · · · ⊗Hsr (F(Rd, 2br )/S2br ;F2).

Thus, we have the equivalence

w(d−1)(k−r)

( r∏
i=1

ξRd,2bi

)
6= 0 ⇐⇒

ws1(ξRd,2b1 )× · · · × wsr (ξRd,2br ) 6= 0 for some s1 + · · ·+ sr = (d− 1)(k − r).

Now, since d is a power of 2, Lemma 5.5 implies that w(d−1)(2bi−1)(ξRd,2bi ) 6= 0 for
all 1 ≤ i ≤ r, and so

w(d−1)(2b1−1)(ξRd,2b1 )× · · · × w(d−1)(2br−1)(ξRd,2br ) 6= 0.

Hence, θ∗(w(d−1)(k−r)(ξRd,k)) 6= 0, and furthermore w(d−1)(k−α(k))(ξRd,k) 6= 0. �

Next we consider the case when d, the dimension of the Euclidean space Rd, is
not a power of 2. Like in the previous situation this is done in two separate steps
depending whether k is power of 2 or not. Now we give two corrections of [15,
Lem. 2.15]. In the first one, next lemma, we do not take into account the dyadic
presentation of the dimensions d.

Lemma 5.7. Let d ≥ 3 be an integer that is not a power of 2, and let k = 2m for
some integer m ≥ 1. Then the dual Stiefel–Whitney class

w(d−1)k/2(ξRd,k) = w(d−1)2m−1(ξRd,2m)

does not vanish.

Proof. Let us fix an integer d ≥ 3 which is not a power of 2. Then there exists an
integer a ≥ 2 such that 2a−1 + 1 ≤ d ≤ 2a − 1. Furthermore, let k = 2m where
m ≥ 1 is an integer. Then d − 1 can be presented as d − 1 = 2a1 + · · · + 2aq

where 0 ≤ a1 < · · · < aq = a − 1. As before, for simplicity we again denote by
w = w(ξRd,2m) the total Stiefel–Whitney class of the vector bundle ξRd,2m and by
w = w(ξRd,2m) the associated total dual Stiefel–Whitney. Hence, w · w = 1. Now
the inequality (76) implies that

height(H∗(F(Rd, 2m)/S2m ;F2)) ≤ min{2t : 2t ≥ d} = 2a.

Consequently, w2a = (1 +w1 + · · ·+w2m−1)2a = 1 +w2a

1 + · · ·+w2a

2m−1 = 1, and so

w = w2a−1

= (1 + w1 + · · ·+ w2m−1)1+21+22+···+2a−1

=

a−1∏
i=0

(
1 + w2i

1 + · · ·+ w2i

2m−1

)
. (80)

Now we apply the monomorphism

ρ∗d,2m : H∗(F(Rd, 2m)/S2m ;F2) −→ H∗(Pe(Rd, 2m)/S2m ;F2)

from Theorem 4.1 to the equality (80) and use the decomposition of the cohomology

H∗(Pe(Rd, 2m)/S2m ;F2) ∼= F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m),
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given in Theorem 3.11, to get that

ρ∗d,2m(w) =

a−1∏
i=0

(
1 +D2i

m,m−1 + · · ·+D2i

m,0

)
+R

∈ F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m),

where
– Dm,r = (κd,2m/S2m)∗(Dm,r) = ρ∗d,2m(w2m−2r ), for 0 ≤ r ≤ m − 1, with the

obvious abuse of notation, see (49), and
– R ∈ I∗(Rd, 2m).
Let us denote by π the following composition of the maps from the diagram (77):

F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m)

projection
��

F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉

χm

��

F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉,

where the first map is the projection on a direct summand and the second map is
induced by the change of variables χm ∈ GLm(F2). Next we apply π on ρ∗d,2m(w)
and get:

π(ρ∗d,2m(w)) =

a−1∏
i=0

(
1 + π(Dm,m−1)2i + · · ·+ π(Dm,0)2i

)
.

Since the change of the variables χm transforms Lm(F2)-invariants into Um(F2)-
invariants and Dickson polynomials, GLm(F2)-invariants, can be presented in terms
of Um(F2)-invariants, as explained in (114) and (115), we have

π(ρ∗d,2m(w)) =

a−1∏
i=0

(
1 + π(Dm,m−1)2i + · · ·+ π(Dm,0)2i)

=

a−1∏
i=0

(
1 +

(
V 2m−1

1 + V 2m−2

2 + · · ·+ V 20

m

)2i
+ · · ·+

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2r (Vj1+1 · · ·Vj2−1)2r−1

· · · (Vjr+1 · · ·Vm)20)2i
+ · · ·+(

V1 · · ·Vm
)2i)

=

a−1∏
i=0

(
1 +

(
V 2i+m−1

1 + V 2i+m−2

2 + · · ·+ V 2i

m

)
+ · · ·+

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2i+r (Vj1+1 · · ·Vj2−1)2i+r−1

· · · (Vjr+1 · · ·Vm)2i)
+ · · ·+(

V1 · · ·Vm
)2i)

.

Since d − 1 = 2a1 + · · · + 2aq and 0 ≤ a1 < · · · < aq = a − 1, by choosing terms
V 2a`+0

m from factors in the product indexed by i = a1, . . . , aq we get that

π(ρ∗d,2m(w(d−1)2m−1)) = V d−1
m + S ∈ F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉,
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where S denotes a sum of some monomials in V1, . . . , Vm of degree (d− 1)2m−1 =
(d− 1)k/2 which are all different from V d−1

m . Consequently, π(ρ∗d,k(w(d−1)k/2)) 6= 0
and w(d−1)k/2 6= 0. �

Remark 5.8. In general, without analyzing the dyadic presentation of d − 1 in
more detail, we cannot give a better result. For example, in the case k = 22 = 4
and d = 3 we have

π(ρ∗3,4(w)) = (1 + π(D2,1) + π(D2,0))(1 + π(D2,1)2 + π(D2,0)2)

= (1 + V 2
1 + V2 + V1V2)(1 + V 4

1 + V 2
2 + V 2

1 V
2
2 )

= (1 + V 2
1 + V2 + V1V2)(1 + V 2

2 + V 2
1 V

2
2 )

= 1 + (V 2
1 + V2) + V1V2 + V 2

2 ∈ F2[V1, V2]/〈V 3
1 , V

3
2 〉.

Hence, π(ρ∗3,4(w4)) = V 2
2 6= 0 and π(ρ∗3,4(wi)) = 0 for all i > k(d− 1)/2 = 4.

Remark 5.9. On the other hand a better result can be obtained, as the following
example will show. Let k = 22 = 4 and d = 6. We compute

π(ρ∗6,4(w)) = (1 + π(D2,1) + π(D2,0))(1 + π(D2,1)2 + π(D2,0)2)

(1 + π(D2,1)4 + π(D2,0)4)

= (1 + V 2
1 + V2 + V1V2)(1 + V 4

1 + V 2
2 + V 2

1 V
2
2 )

(1 + V 8
1 + V 4

2 + V 4
1 V

4
2 )

= 1 + (V 2
1 + V2) + V1V2 + (V 4

1 + V 2
2 ) + (V 4

1 V2 + V 3
2 )+

(V1V
3
2 + V 5

1 V2) + (V 2
1 V

3
2 + V 4

1 V
2
2 + V 4

2 ) + V 3
1 V

3
2 + (V 2

1 V
4
2 + V 5

2 )+

V1V
5
2 ∈ F2[V1, V2]/〈V 6

1 , V
6
2 〉.

Thus, π(ρ∗3,4(w10)) = V 2
1 V

4
2 + V 5

2 6= 0, as Lemma 5.7 predicts, but actually more
is true π(ρ∗3,4(w11)) = V1V

5
2 6= 0. A natural question arises: Can Lemma 5.7 be

improved?

Remark 5.10. The non-vanishing of the dual Stiefel–Whitney class w(d−1)k/2(ξRd,k)
in the case when d ≥ 3 is not a power of 2 and k = 2m which was established in
Lemma 5.7 can be also obtain as follows. Consider the embedding

F(Rd, 2)× · · · × F(Rd, 2)︸ ︷︷ ︸
2m−1

−→ F(Rd, 2m)

induced by the fixed embeddings ei : Rd −→ Rd for 1 ≤ i ≤ 2m−1 such that their
images are pairwise disjoint open d-balls. It induces a continuous map

F(Rd, 2)/Z2 × · · · × F(Rd, 2)/Z2︸ ︷︷ ︸
2m−1

−→ F(Rd, 2m)/S2m .

Then the pull-back of the vector bundle ξRd,k is isomorphic to the product vector

bundle
∏2m−1

i=1 ξRd,2. Now, the embedding Sd−1 −→ F(Rd, 2) given by x 7−→ (x,−x)

induces a continuous map RPd−1 −→ F(Rd, 2)/Z2 such that the pullback bundle
of the vector bundle ξRd,2 is isomorphic to the Whitney sum of the tautological
line vector bundle γd−1

1 and a trivial line bundle. Thus, the pull-back of the vector
bundle ξRd,k along the composition

RPd−1 × · · · × RPd−1︸ ︷︷ ︸
2m−1

−→ F(Rd, 2)/Z2 × · · · × F(Rd, 2)/Z2︸ ︷︷ ︸
2m−1

−→ F(Rd, 2m)/S2m
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is the product vector bundle γ :=
∏2m−1

i=1 (γd−1
1 ⊕ τd−1

1 ). Here τd−1
1 denotes the

trivial line vector bundle over the real projective space RPd−1. Now we compute

w(γ) = w
( 2m−1∏
i=1

(γd−1
1 ⊕ τd−1

1 )
)

=
2m−1

×
i=1

w(γd−1
1 ⊕ τd−1

1 ) =
2m−1

×
i=1

w(γd−1
1 ).

Here “×” denotes the cross product in cohomology. Since w(γd−1
1 ) = 1 + u, where

u ∈ H∗(RPd−1;F2) = F2[u]/〈ud〉, we have that w(γd−1
1 ) = w(γd−1

1 )−1 = 1 + u +
· · ·+ ud−1. Therefore,

w(d−1)2m−1(γ) = w(d−1)k/2(γ) = u× · · · × u︸ ︷︷ ︸
2m−1

6= 0.

Having this simpler argument in mind it is natural to ask why we chose to present
the more involved proof of the same fact. The reason lies in the method of the
proof of Lemma 5.7 which is used once again for the proof of the next lemma.

Now, using a similar line of arguments as in the proof of Lemma 5.7 and taking
into account the dyadic presentation of d− 1 we get the following particular result.

Lemma 5.11. Let d ≥ 6 be an even integer such that for some a ≥ 3 holds
2a−1 + 1 ≤ d ≤ 2a − 1, and let k = 2m for some integer m ≥ 1. Then the dual
Stiefel–Whitney class

wdk/2−1(ξRd,k) = wd2m−1−1(ξRd,2m)

does not vanish.

Proof. Let us assume that d− 1 = 2a1 + · · ·+ 2aq where 0 = a1 < · · · < aq = a− 1.
Following the steps of the proof of Lemma 5.7 we reach again the equality:

π(ρ∗d,2m(w)) =

a−1∏
i=0

(
1 + π(Dm,m−1)2i + · · ·+ π(Dm,0)2i) (81)

=

a−1∏
i=0

(
1 +

(
V 2m−1

1 + V 2m−2

2 + · · ·+ V 20

m

)2i
+ · · ·+

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2r (Vj1+1 · · ·Vj2−1)2r−1

· · · (Vjr+1 · · ·Vm)20)2i
+ · · ·+(

V1 · · ·Vm
)2i)

=

a−1∏
i=0

(
1 +

(
V 2i+m−1

1 + V 2i+m−2

2 + · · ·+ V 2i

m

)
+ · · ·+

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2i+r (Vj1+1 · · ·Vj2−1)2i+r−1

· · · (Vjr+1 · · ·Vm)2i)
+ · · ·+(

V1 · · ·Vm
)2i)

.

Only now we show that

π(ρ∗d,2m(wd2m−1−1)) =

V1 · · ·Vm−1V
d−1
m + S ∈ F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉,

where S is a sum of monomials in V1, . . . , Vm of degree d2m−1 − 1 which are dif-
ferent from V1 · · ·Vm−1V

d−1
m . Hence, π(ρ∗d,k(wd2m−1−1)) 6= 0, and consequently

wd2m−1−1 6= 0.
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Indeed, observe that in every monomial of the ith factor of the product (81)
which has the variable Vm with positive exponent this exponent is always the same
and equal to 2i, 0 ≤ i ≤ a− 1. In particular, in the ith factor each monomial with
the variable Vm is of the form pi(V1, . . . , Vm−1)2iV 2i

m where pi(V1, . . . , Vm−1) is a
monomial in variables V1, . . . , Vm−1. Now, when multiplying out the product (81)
the monomial of the form p(V1, . . . , Vm−1)V d−1

m can appear in the final result if and
only if we take non-zero
— monomials pi(V1, . . . , Vm−1)2iV 2i

m from ith factors where i ∈ {a1, . . . , aq}, and
— monomials p′j(V1, . . . , Vm−1) from jth factors for j ∈ {0, . . . , a−1}\{a1, . . . , aq}.

Thus, we have

p(V1, . . . , Vm−1)V d−1
m =

∏
i∈{a1,...,aq}

pi(V1, . . . , Vm−1)2iV 2i

m ·∏
j∈{0,...,a−1}\{a1,...,aq}

p′j(V1, . . . , Vm−1).

Observe that, if pi(V1, . . . , Vm−1) 6= 1 for some i ∈ {a1, . . . , aq}, then there exists
1 ≤ t ≤ m− 1 such that Vt | pi(V1, . . . , Vm−1). Hence, V 2i

t | pi(V1, . . . , Vm−1)2i .
Now we want to understand in how many ways we can obtain the monomial

V1 . . . Vm−1V
d−1
m when we multiply out the product (81). This means that we need

to find all possible pis and p′j ’s such that

V1 · · ·Vm−1V
d−1
m =

∏
i∈{a1,...,aq}

pi(V1, . . . , Vm−1)2iV 2i

m ·∏
j∈{0,...,a−1}\{a1,...,aq}

p′j(V1, . . . , Vm−1).

From the previous observation and the fact that 0 = a1 < a2 < · · · < aq = a − 1
we conclude that pa2(V1, . . . , Vm−1) = · · · = paq (V1, . . . , Vm−1) = 1. Thus, the
previous equality becomes

V1 · · ·Vm−1V
d−1
m = pa1(V1, . . . , Vm−1)2a1V d−1

m · ∏
j∈{0,...,a−1}\{a1,...,aq}

p′j(V1, . . . , Vm−1).

Taking additionally into account that a1 = 0 we have that

V1 · · ·Vm−1V
d−1
m = p0(V1, . . . , Vm−1)V d−1

m · ∏
j∈{1,...,a−1}\{a2,...,aq}

p′j(V1, . . . , Vm−1).

Therefore, the monomial V1 · · ·Vm−1V
d−1
m can be obtained only in the case when

we choose

p0(V1, . . . , Vm−1) = V1 · · ·Vm−1,

pi(V1, . . . , Vm−1) = 1,

p′j(V1, . . . , Vm−1) = 1,

for all i ∈ {a2, . . . , aq} and all j ∈ {1, . . . , a− 1}\{a2, . . . , aq}.
Indeed, if we assume that pa1(V1, . . . , Vm−1) = p0(V1, . . . , Vm−1) 6= 1, then ob-

viously we must have p0(V1, . . . , Vm−1) = V1 · · ·Vm−1. This is possible by taking
monomial V1 . . . Vm−1Vm in the a0th factor of the product (81). On the other hand,
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if we assume that pa1(V1, . . . , Vm−1) = p0(V1, . . . , Vm−1) = 1 then we should have
that ∏

j∈{1,...,a−1}\{a2,...,aq}

p′j(V1, . . . , Vm−1) = V1 · · ·Vm−1.

This is not possible since for every p′j(V1, . . . , Vm−1) 6= 1 in the previous product
there is 1 ≤ t ≤ m − 1 such that Vt | p′j(V1, . . . , Vm−1). Looking closer at the
typical monomials in the product (81) we see that more is true, actually V 2j

t |
p′j(V1, . . . , Vm−1) and so

V 2j

t |
∏

j∈{1,...,a−1}\{a2,...,aq}

p′j(V1, . . . , Vm−1) = V1 · · ·Vm−1.

Since j ∈ {1, . . . , a− 1}\{a2, . . . , aq} we have that 2j ≥ 2 and so V 2
t | V1 · · ·Vm−1;

contradiction.
Hence, we showed that

π(ρ∗d,2m(wd2m−1−1)) = V1 · · ·Vm−1V
d−1
m + S ∈ F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉,

where S is a sum of monomials in V1, . . . , Vm of degree d2m−1−1 which are different
from V1 · · ·Vm−1V

d−1
m . Thus, wd2m−1−1 6= 0. �

Now we extend the previous two lemmas to the case of an arbitrary integer
k ≥ 1 and consequently correct [15, Lem. 2.17]. For an integer k ≥ 1 let ε(k) be the
reminder of k modulo 2, that is ε(k) = 1 for k odd, and ε(k) = 0 when k is even.
Lemma 5.12.
(1) Let d ≥ 3 be an integer which is not a power of 2, and let k ≥ 1 be an integer.

Then the dual Stiefel–Whitney class

w(d−1)(k−ε(k))/2(ξRd,k)

does not vanish.
(2) Let d ≥ 6 be an even integer which is not a power of 2, and let k ≥ 1 be an

integer. Then the dual Stiefel–Whitney class

wd(k−ε(k))/2−α(k)+ε(k)(ξRd,k)

does not vanish.

Proof. Let r := α(k) and k = 2b1 + · · ·+2br where 0 ≤ b1 < b2 < · · · < br. As in the
proof of Lemma 5.6 we consider a morphism between vector bundles

∏r
i=1 ξRd,2bi

and ξRd,k where the following commutative square is a pullback diagram:∏r
i=1 ξRd,2bi

Θ
//

��

ξRd,k

��∏r
i=1 F(Rd, 2bi)/S2bi

θ
// F(Rd, k)/Sk.

The map θ is induced, up to an equivariant homotopy, from a restriction of the
little cubes operad structural map

(Cd(2b1)× · · · × Cd(2br ))× Cd(r) −→ Cd(2b1 + · · ·+ 2br ),

as explained in the proof of Lemma 5.6. The naturality of the Stiefel–Whitney
classes [80, Ax. 2, p. 37] implies that

θ∗(wN (ξRd,k)) = wN

( r∏
i=1

ξRd,2bi

)
,
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for any integer N ≥ 0. Further on, the product formula [80, Pr. 4-A, p. 54] implies
that

w
( r∏
i=1

ξRd,2bi

)
= w(ξRd,2b1 )× · · · × w(ξRd,2br ).

Consequently,

θ∗(wN (ξRd,k)) = wN

( r∏
i=1

ξRd,2bi

)
=

∑
s1+···+sr=N

ws1(ξRd,2b1 )× · · · × wsr (ξRd,2br ). (82)

According to the Künneth formula [21, Thm.VI.3.2] each term, the cross product,
ws1(ξRd,2b1 ) × · · · × wsr (ξRd,2br ) in the previous sum belongs to a different direct
summand of the cohomology

HN
( r∏
i=1

F(Rd, 2bi)/S2bi ;F2

)
∼=⊕

s1+···+sr=N

Hs1(F(Rd, 2b1)/S2b1 ;F2)⊗ · · · ⊗Hsr (F(Rd, 2br )/S2br ;F2).

Hence the following equivalence holds

wN

( r∏
i=1

ξRd,2bi

)
6= 0⇐⇒

ws1(ξRd,2b1 )× · · · × wsr (ξRd,2br ) 6= 0 for some s1 + · · ·+ sr = N.

To isolate a non-zero summand in (82) we use either Lemma 5.7 or Lemma 5.11.
Let d ≥ 3 be an integer which is not a power of 2, and let N = (d−1)(k−ε(k))/2.

The Lemma 5.7 states that the dual Stiefel–Whitney class w(d−1)2bi−1(ξRd,2bi ) does
not vanish when bi ≥ 1. First consider the case when k is even. Hence, ε(k) = 0,
and since k = 2b1 + · · · + 2br we have that 1 ≤ b1 < b2 < · · · < br. Now, since
N = (d−1)2b1−1 + · · ·+(d−1)2br−1 the following summand in (82) does not vanish

w(d−1)2b1−1(ξRd,2b1 )× · · · × w(d−1)2br−1(ξRd,2br ) 6= 0.

In the case when ε(k) = 1, k = 2b1 + · · · + 2br and 0 = b1 < b2 < · · · < br, the
summand in (82) that does not vanish is

w0(ξRd,2b1 )× w(d−1)2b2−1(ξRd,2b2 )× · · · × w(d−1)2br−1(ξRd,2br ) 6= 0.

Consequently, θ∗(w(d−1)(k−ε(k))/2(ξRd,k)) 6= 0, and so w(d−1)(k−ε(k))/2(ξRd,k) 6= 0.
Let now d ≥ 6 be an even integer which is not a power of 2, and let N =

d(k− ε(k))/2−α(k) + ε(k). The Lemma 5.11 states that the dual Stiefel–Whitney
class wd2bi−1−1(ξRd,2bi ) does not vanish when bi ≥ 1. Again we first consider the
case when k is even, that is ε(k) = 0. Since k = 2b1 + · · · + 2br we have that
1 ≤ b1 < b2 < · · · < br. Now, since N = (d2b1−1 − 1) + · · · + (d2br−1 − 1) the
following summand in (82) does not vanish

wd2b1−1−1(ξRd,2b1 )× · · · × wd2br−1−1(ξRd,2br ) 6= 0.

In the case of odd k we have that ε(k) = 1, k = 2b1 + · · ·+ 2br and 0 = b1 < b2 <
· · · < br. The summand in (82) that does not vanish is

w0(ξRd,2b1 )× wd2b2−1−1(ξRd,2b2 )× · · · × wd2br−1−1(ξRd,2br ) 6= 0.

Consequently, θ∗(wd(k−ε(k))/2−α(k)+ε(k)(ξRd,k)) 6= 0, and so the dual Stiefel–Whiney
class wd(k−ε(k))/2−α(k)+ε(k)(ξRd,k) does not vanish. �
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Summarizing the results obtained in Lemma 5.5, Lemma 5.6, Lemma 5.7, Lemma
5.11 and Lemma 5.12 we get the following theorem which is a correction of [15,
Thm. 2.13].

Theorem 5.13. Let k ≥ 1 and d ≥ 1 be integers.
(1) If d is a power of 2, then the dual Stiefel–Whitney class

w(d−1)(k−α(k))(ξRd,k)

does not vanish.
(2) If d is not a power of 2, then the dual Stiefel–Whitney class

w(d−1)(k−ε(k))/2(ξRd,k)

does not vanish.
(3) If d is an even integer which is not a power of 2, then the dual Stiefel–Whitney

class
wd(k−ε(k))/2−α(k)+ε(k)(ξRd,k)

does not vanish.

Now, we use Theorem 5.13 and the criterion given in Lemma 5.4 to correct the
result stated in [15, Thm. 2.1]. In this way we completed corrections of the invalid
results in [15, Sec. 2].

Theorem 5.14. Let k ≥ 1 and d ≥ 1 be integers. Denote by α(k) the number of
1s in the dyadic presentation of k, and by ε(k) the remainder of k modulo 2.
(1) If d is a power of 2, then there is no k-regular embedding Rd −→ RN for

N ≤ d(k − α(k)) + α(k)− 1.

(2) If d is not a power of 2, then there is no k-regular embedding Rd −→ RN for

N ≤ 1

2
(d− 1)(k − ε(k)) + k − 1.

(3) If d is an even integer which is not a power of 2, then is no k-regular embedding
Rd −→ RN for

N ≤ 1

2
d(k − ε(k)) + k − α(k) + ε(k)− 1.

5.2. `-skew embeddings. In this section we revise [15, Sec. 3] and correct the
related results [15, Thm. 3.1, Thm. 3.7]. In order for our presentation to be complete
we recall basic definitions and necessary facts.

The affine subspaces L1, . . . , L` of the Euclidean space RN are affinely inde-
pendent if

dimaff(L1 ∪ · · · ∪ L`) = (dimaff L1 + 1) + · · ·+ (dimaff L` + 1)− 1.

In particular, any two lines in R3 are skew if and only if they are affinely indepen-
dent.

Let M be a real smooth d-dimensional manifold. Then TM denotes he tangent
bundle of M , and TyM stands for the tangent space of M at the point y ∈ M .
For a smooth map f : M −→ RN we denote by df : TM −→ TRN the differential
map between associated tangent vector bundles induced by f . Further on, let
ι : TRN −→ RN denotes the map that sends a tangent vector v ∈ TxRN at the
point x ∈ RN to the point x + v. Here the standard identification TxRN = RN is
assumed.
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Definition 5.15. Let ` ≥ 1 be an integer, and letM be a real smooth d-dimensional
manifold. A smooth embedding f : M −→ RN is an `-skew embedding if for every
point (y1, . . . , y`) ∈ F(M, `) the affine subspaces

(ι ◦ dfy1)(Ty1M), . . . , (ι ◦ dfy`)(Ty`M)

of RN are affinely independent.

Now, like in the case of k-regular embeddings, a criterion for non-existence of
`-skew embedding can be derived in terms of Stiefel–Whitney class of appropriate
vector bundle over the configuration space. We recall [15, Lem. 3.6].

Lemma 5.16. Let d ≥ 1 and ` ≥ 1 be integers. If the dual Stiefel–Whitney class

wN−(d+1)`+2(ξ
⊕(d+1)

Rd,` )

does not vanish, then there is no `-skew embedding Rd −→ RN .

Motivated by the criterion in Lemma 5.16, based on the work of Hu’ng [64, (4.7)],
a relevant study of Stiefel–Whitney classes of the vector bundle ξ⊕(d+1)

Rd,` was given
in [15, Thm. 3.7].

Theorem 3.7. Let d, ` ≥ 1 be integers. Then the dual Stiefel–Whitney
class

w(2γ(d)−d−1)(`−α(`))

(
ξ
⊕(d+1)

Rd,`

)
does not vanish.

Here γ(d) = blog2 dc+ 1 for d ≥ 1. The result of the previous theorem in combina-
tion with [15, Lem. 3.6] directly implied the following result [15, Thm. 3.1].

Theorem 3.1. Let `, d ≥ 2 be integers. There is no `-skew embedding
Rd −→ RN for

N ≤ 2γ(d)(`− α(`)) + (d+ 1)α(`)− 2,

where α(`) denotes the number of ones in the dyadic presentation of l
and γ(d) = blog2 dc+ 1.

The proof of [15, Thm. 3.7] was based on some of the results presented in [15,
Sec. 2]. In particular, in [15, Sec. 3.3.3] an incorrect result was used [15, Cor. 2.16].
Consequently, [15, Thm. 3.1] does not stand. In the following we give correct ver-
sions, first of [15, Thm. 3.7], and then of [15, Thm. 3.1].

Theorem 5.17. Let d ≥ 1 and ` ≥ 2 be integers.
(1) If d = 2, and if ` ≥ 2 is an integer, then

w`−α(`)

(
ξ
⊕(d+1)

Rd,`
)

= w`−α(`)

(
ξ⊕3
R2,`

)
6= 0.

(2) If d ≥ 1 is an integer, and if ` = 2, then

w2γ(d)−d−1

(
ξ
⊕(d+1)

Rd,`
)

= w2γ(d)−d−1

(
ξ
⊕(d+1)

Rd,2
)
6= 0.

(3) If d ≥ 2 is a power of 2, and if ` ≥ 2 is an integer, then

w(d−1)(`−α(`))

(
ξ
⊕(d+1)

Rd,`
)
6= 0.

(4) If d+ 1 ≥ 2 is a power of 2, and if ` ≥ 2 is an integer, then

w
(
ξ
⊕(d+1)

Rd,`
)

= w
(
ξ
⊕(d+1)

Rd,`
)

= 1.

(5) If d ≥ 5 is an integer which is not a power of 2, and in addition d+ 1 is not
a power of 2, and if ` ≥ 3 is an integer, then

w(2γ(d)−d−1)(`−ε(`))/2
(
ξ
⊕(d+1)

Rd,`
)
6= 0.
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(6) If d ≥ 5 is an integer which is not a power of 2, 2γ(d) − d − 1 = 2a1z where
a1 ≥ 0 is an integer and z ≥ 1 is an odd integer, and d+ 1 is not a power of
2, and if ` ≥ 3 is an integer, then

w(2γ(d)−d−1+2a1 )(`−ε(`))/2−2a1α(`)

(
ξ
⊕(d+1)

Rd,`
)
6= 0.

Proof. We prove the theorem by discussing all cases separately.
(1) Let d = 2, and let ` ≥ 2 be an integer. Then from [38, Thm. 1] we get that

the bundle ξ⊕2
R2,` is a trivial bundle. Consequently, w

(
ξ⊕3
R2,`

)
= w

(
ξR2,`

)
. Since d = 2

is power of 2 we can use Lemma 5.6 to get that

w`−α(`)

(
ξ
⊕(d+1)

Rd,`
)

= w`−α(`)

(
ξ⊕3
R2,`

)
= w`−α(`)

(
ξR2,`

)
6= 0.

(2) Let d ≥ 2 be an integer and let ` = 2. In this case the base space of
the vector bundle ξR2,` is the unordered configuration space F(Rd, 2)/S2. The
S2-equivariant map ecyd,2 : Sd−1 −→ F(Rd, 2) given by x 7−→ (x,−x) is an S2-
equivariant homotopy equivalence. Consequently, ecyd,2 induces homotopy equiv-
alence ρd,2 : Sd−1/S2 −→ F(Rd, 2)/S2. Recall that Sd−1/S2

∼= RPd−1. It can
be directly checked that the vector bundle ξRd,2 over F(Rd, 2)/S2 pulls back to
the vector bundle isomorphic to the Whitney sum of the tautological line bundle
and trivial line bundle over the projective space RPd−1. Hence, if we denote the
cohomology of the projective space by

H∗(RPd−1,F2) ∼= H∗(F(Rd, 2)/S2,F2) = F2[w1]/〈wd1〉,

where deg(w1) = 1, we have that

w(ξRd,2) = 1 + w1.

Now, the total Stiefel–Whitney class of the vector bundle ξ⊕(d+1)

Rd,` is

w
(
ξ
⊕(d+1)

Rd,`
)

= w
(
ξ
⊕(d+1)

Rd,2
)

= (1 + w1)d+1.

Now notice that 2γ(d) is the minimal power of 2 that is greater that d. Therefore,

w
(
ξ
⊕(d+1)

Rd,2
)
(1 + w1)2γ(d)−d−1 = (1 + w1)d+1(1 + w1)2γ(d)−d−1

= (1 + w1)2γ(d)

= 1.

Thus, we have that

w
(
ξ
⊕(d+1)

Rd,`
)

= w
(
ξ
⊕(d+1)

Rd,2
)

= (1 + w1)2γ(d)−d−1 = 1 + · · ·+ w2γ(d)−d−1
1 .

Sine 2γ(d)−d−1 < d we have that w2γ(d)−d−1
1 6= 0, and so w2γ(d)−d−1

(
ξ
⊕(d+1)

Rd,2
)
6= 0.

(3) Let d = 2a for a ≥ 1 an integer, and let ` ≥ 2 be an integer. From the
decomposition of vector bundles (75) we have that

w(ξRd,`) = w(ζRd,`) = 1 + w1 + · · ·+ w`−1,

where wi := wi(ξRd,`) = wi(ζRd,`). Consequently,

w
(
ξ
⊕(d+1)

Rd,`
)

= (1 + w1 + · · ·+ w`−1)d+1

= (1 + w1 + · · ·+ w`−1)2a(1 + w1 + · · ·+ w`−1)

= (1 + w2a

1 + · · ·+ w2a

`−1)(1 + w1 + · · ·+ w`−1)

= 1 + w1 + · · ·+ w`−1

= w(ξRd,`).
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Here we used that from (76) we know that

height((H∗(F(Rd, `)/S`;F2)) ≤ min{2t : 2t ≥ d} = 2a = d.

Thus, with the additional help of Lemma 5.6, we get that

w(d−1)(`−α(`))

(
ξ
⊕(d+1)

Rd,`
)

= w(d−1)(`−α(`))(ξRd,`) 6= 0.

(4) Let d = 2a − 1 for a ≥ 1 an integer, and let ` ≥ 2 be an integer. In the
footsteps of the proof of the previous case we calculate:

w
(
ξ
⊕(d+1)

Rd,`
)

= (1 + w1 + · · ·+ w`−1)d+1

= (1 + w1 + · · ·+ w`−1)2a

= 1 + w2a

1 + · · ·+ w2a

`−1

= 1.

In this case we used the fact that

height(H∗(F(Rd, `)/S`;F2)) ≤ min{2t : 2t ≥ d} = 2a = d+ 1.

Consequently, w
(
ξ
⊕(d+1)

Rd,`
)

= 1.
(5) This case is analyzed in two separate steps depending whether ` is a power

of 2 or not.
(5A) Let d ≥ 5 be an integer such that 2a−1 + 1 ≤ d ≤ 2a − 2 where a ≥ 3 is
an integer. We first consider the case when ` = 2m for m ≥ 2 an integer. The
decomposition of vector bundles (75) implies that

w(ξRd,2m) = w(ζRd,2m) = 1 + w1 + · · ·+ w2m−1,

and consequently,

w
(
ξ
⊕(d+1)

Rd,2m
)

= (1 + w1 + · · ·+ w2m−1)d+1.

From (76) we have that

height(H∗(F(Rd, 2m)/S2m ;F2)) ≤ min{2t : 2t ≥ d} = 2a.

Therefore,

w
(
ξ
⊕(d+1)

Rd,2m
)
(1 + w1 + · · ·+ w2m−1)2a−d−1 = (1 + w1 + · · ·+ w2m−1)2a

= 1 + w2a

1 + · · ·+ w2a

2m−1

= 1,

and consequently,

w
(
ξ
⊕(d+1)

Rd,2m
)

= (1 + w1 + · · ·+ w2m−1)2a−d−1.

Now, let 2a − d− 1 = 2a1 + · · ·+ 2aq where 0 ≤ a1 < · · · < aq ≤ a− 2. Then

w
(
ξ
⊕(d+1)

Rd,2m
)

= (1 + w1 + · · ·+ w2m−1)2a1+···+2aq

=

q∏
i=1

(
1 + w2ai

1 + · · ·+ w2ai
2m−1

)
. (83)

Following the calculation in the proof of Lemma 5.7 we apply the monomorphism

ρ∗d,2m : H∗(F(Rd, 2m)/S2m ;F2) −→ H∗(Pe(Rd, 2m)/S2m ;F2)

from Theorem 4.1 to the equality (83), and use the decomposition of the cohomology

H∗(Pe(Rd, 2m)/S2m ;F2) ∼= F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m),
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given in Theorem 3.11, to get that

ρ∗d,2m(w
(
ξ
⊕(d+1)

Rd,2m
)
) =

q∏
i=1

(
1 +D2ai

m,m−1 + · · ·+D2ai
m,0

)
+R (84)

∈ H∗(Pe(Rd, 2m)/S2m ;F2),

where
— Dm,r = (κd,2m/S2m)∗(Dm,r) = ρ∗d,2m(w2m−2r ), for 0 ≤ r ≤ m − 1, with the

obvious abuse of notation, see (49), and
— R ∈ I∗(Rd, 2m).
Let π be the following composition of the maps from the diagram (77):

F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m)

projection
��

F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉

χm

��

F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉.

The first map is the projection on a direct summand and the second map is induced
by the change of variables χm ∈ GLm(F2). We apply π to (84) and have

π
(
ρ∗d,2m

(
w
(
ξ
⊕(d+1)

Rd,2m
)))

=

q∏
i=1

(
1 + π(Dm,m−1)2i + · · ·+ π(Dm,0)2i

)
.

The change of the variables χm transforms Lm(F2)-invariants into Um(F2)-invariants
and Dickson polynomials, GLm(F2)-invariants, can be presented in terms of Um(F2)-
invariants, as explained in (114) and (115). Hence, p := π

(
ρ∗d,2m

(
w
(
ξ
⊕(d+1)

Rd,2m
)))

can
be computed further as follows:

p =

q∏
i=1

(
1 + π(Dm,m−1)2ai + · · ·+ π(Dm,0)2ai

)
=

q∏
i=1

(
1 +

(
V 2m−1

1 + V 2m−2

2 + · · ·+ V 20

m

)2ai
+ · · ·+

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2r (Vj1+1 · · ·Vj2−1)2r−1

· · · (Vjr+1 · · ·Vm)20)2ai
+ · · ·+(

V1 · · ·Vm
)2ai)

=

q∏
i=1

(
1 +

(
V 2ai+m−1

1 + V 2ai+m−2

2 + · · ·+ V 2ai
m

)
+ · · ·+

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2ai+r (Vj1+1 · · ·Vj2−1)2ai+r−1

· · · (Vjr+1 · · ·Vm)2ai
)

+ · · ·+(
V1 · · ·Vm

)2ai)
.

Since 2a − d − 1 = 2a1 + · · · + 2aq ≤ d − 1 by choosing terms V 2ai+0

m from each
factors in the product indexed by i = 1, . . . , q we get that

p = V 2a−d−1
m + S ∈ F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉,
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where S is a sum of some monomials in V1, . . . , Vm of degree (2a − d − 1)2m−1 =
(2a − d − 1)`/2 which are all different from V d−1

m . Hence, p 6= 0 and consequently
w(2a−d−1)`/2

(
ξ
⊕(d+1)

Rd,2m
)

= w(2a−d−1)(`−ε(`))/2
(
ξ
⊕(d+1)

Rd,2m
)
6= 0.

(5B) Let d ≥ 5 be an integer that is not a power of 2, and furthermore d + 1
is not a power of 2. Now we consider the case when ` ≥ 3 is not a power of 2.
Set r := α(`) ≥ 2 and ` = 2b1 + · · · + 2br where 0 ≤ b1 < b2 < · · · < br. As in
the proofs of Lemma 5.6 and Lemma 5.12 we consider a morphism between vector
bundles

∏r
i=1 ξRd,2bi and ξRd,` where the following commutative square is a pullback

diagram: ∏r
i=1 ξRd,2bi

Θ
//

��

ξRd,`

��∏r
i=1 F(Rd, 2bi)/S2bi

θ
// F(Rd, `)/S`.

That is θ∗ξRd,` ∼=
∏r
i=1 ξRd,2bi . The naturality of the Stiefel–Whitney classes [80,

Ax. 2, p. 37] gives the equality

θ∗(w(2γ(d)−d−1)(`−ε(`))/2(ξ
⊕(d+1)

Rd,` )) = w(2γ(d)−d−1)(`−ε(`))/2

( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
.

The product formula [80, Pr. 4-A, p. 54] implies that

w
( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
= w

(
ξ
⊕(d+1)

Rd,2b1
)
× · · · × w

(
ξ
⊕(d+1)

Rd,2br
)
.

Thus,

θ∗(w(2γ(d)−d−1)(`−ε(`))/2(ξ
⊕(d+1)

Rd,` )) (85)

= w(2γ(d)−d−1)(`−ε(`))/2

( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
=

∑
s1+···+sr=(2γ(d)−d−1)(`−ε(`))/2

ws1(ξ
⊕(d+1)

Rd,2b1 )× · · · × wsr (ξ
⊕(d+1)

Rd,2br ).

The Künneth formula [21, Thm.VI.3.2] implies that each term

ws1(ξ
⊕(d+1)

Rd,2b1 )× · · · × wsr (ξ
⊕(d+1)

Rd,2br )

in the previous sum belongs to a different direct summand of the cohomology

H(2γ(d)−d−1)(`−ε(`))/2
( r∏
i=1

F(Rd, 2bi)/S2bi ;F2

)
∼=⊕

s1+···+sr=(2γ(d)−d−1)(k−ε(k))/2

Hs1(F(Rd, 2b1)/S2b1 ;F2)⊗· · ·⊗Hsr (F(Rd, 2br )/S2br ;F2).

Therefore, the following equivalence holds

w(2γ(d)−d−1)(`−ε(`))/2

( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
6= 0 ⇐⇒

ws1(ξ
⊕(d+1)

Rd,2b1 )× · · · × wsr (ξ
⊕(d+1)

Rd,2br ) 6= 0

for some s1 + · · ·+ sr = (2γ(d) − d− 1)(`− ε(`))/2.

To isolate a non-zero summand in (85) we use the previous case of this theorem
which states that w(2γ(d)−d−1)2bi−1(ξ

⊕(d+1)

Rd,2bi ) 6= 0 when bi ≥ 1.
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We discuss two separate cases. Let us assume that ` be even, or in other words
ε(`) = 0. Since ` = 2b1 + · · · + 2br it follows that 1 ≤ b1 < b2 < · · · < br. Hence,
the following summand in (85) does not vanish

w(2γ(d)−d−1)2b1−1(ξ
⊕(d+1)

Rd,2b1 )× · · · × w(2γ(d)−d−1)2br−1(ξ
⊕(d+1)

Rd,2br ) 6= 0.

When ε(`) = 1 we have that 0 = b1 < b2 < · · · < br, and the summand in (85)
which does not vanish is

w0(ξ
⊕(d+1)

Rd,2b1 )× w(2γ(d)−d−1)2b2−1(ξ
⊕(d+1)

Rd,2b2 )× · · · × w(2γ(d)−d−1)2br−1(ξ
⊕(d+1)

Rd,2br ) 6= 0.

In summary, θ∗(w(2γ(d)−d−1)(`−ε(`))/2(ξ
⊕(d+1)

Rd,` )) 6= 0 and therefore

w(2γ(d)−d−1)(`−ε(`))/2(ξ
⊕(d+1)

Rd,` ) 6= 0.

(6) In this case we follow the footsteps of the proof of the previous claim. For
completeness reasons we discuss all steps of the proof. Again we distinguish case
when ` is a power of 2 from the case when ` is not a power of 2

(6A) Let d ≥ 5 be an integer such that 2a−1 + 1 ≤ d ≤ 2a − 2 where γ(d) = a ≥ 3
is an integer. Take ` = 2m for m ≥ 2 an integer.

Using the decomposition of vector bundles (75) we get that

w
(
ξ
⊕(d+1)

Rd,2m
)

= w
(
ζ
⊕(d+1)

Rd,2m
)

= (1 + w1 + · · ·+ w2m−1)d+1.

From (76) the height of the algebra H∗(F(Rd, 2m)/S2m ;F2) is known:

height(H∗(F(Rd, 2m)/S2m ;F2)) ≤ min{2t : 2t ≥ d} = 2a.

Therefore,

w
(
ξ
⊕(d+1)

Rd,2m
)

= (1 + w1 + · · ·+ w2m−1)2a−d−1.

Let 2a − d− 1 = 2a1 + · · ·+ 2aq for 0 ≤ a1 < · · · < aq ≤ a− 2. Then

w
(
ξ
⊕(d+1)

Rd,2m
)

= (1 + w1 + · · ·+ w2m−1)2a1+···+2aq

=

q∏
i=1

(
1 + w2ai

1 + · · ·+ w2ai
2m−1

)
. (86)

We apply the monomorphism

ρ∗d,2m : H∗(F(Rd, 2m)/S2m ;F2) −→ H∗(Pe(Rd, 2m)/S2m ;F2)

from Theorem 4.1 to the equality (86). Using the decomposition of the cohomology

H∗(Pe(Rd, 2m)/S2m ;F2) ∼= F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m),

given in Theorem 3.11, we have

ρ∗d,2m(w
(
ξ
⊕(d+1)

Rd,2m
)
) =

q∏
i=1

(
1 +D2ai

m,m−1 + · · ·+D2ai
m,0

)
+R (87)

where
— Dm,r = (κd,2m/S2m)∗(Dm,r) = ρ∗d,2m(w2m−2r ), for 0 ≤ r ≤ m − 1, with the

obvious abuse of notation, see (49), and
— R ∈ I∗(Rd, 2m).
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Furthermore, let π denote the following composition of the maps from the dia-
gram (77):

F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉 ⊕ I∗(Rd, 2m)

projection
��

F2[Vm,1, . . . , Vm,m]/〈V dm,1, . . . , V dm,m〉

χm

��

F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉,

The first map is the projection on a direct summand and the second map is induced
by the change of variables χm ∈ GLm(F2). Applying π to (87) we get

π
(
ρ∗d,2m

(
w
(
ξ
⊕(d+1)

Rd,2m
)))

=

q∏
i=1

(
1 + π(Dm,m−1)2i + · · ·+ π(Dm,0)2i

)
.

Recall that the change of the variables χm transforms Lm(F2)-invariants into Um(F2)-
invariants and Dickson polynomials, GLm(F2)-invariants, can be presented in terms
of Um(F2)-invariants, as explained in (114) and (115). Now, the element p :=

π
(
ρ∗d,2m

(
w
(
ξ
⊕(d+1)

Rd,2m
)))

can be expressed as follows:

p =

q∏
i=1

(
1 + π(Dm,m−1)2ai + · · ·+ π(Dm,0)2ai

)
=

q∏
i=1

(
1 +

(
V 2m−1

1 + V 2m−2

2 + · · ·+ V 20

m

)2ai
+ · · ·+

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2r (Vj1+1 · · ·Vj2−1)2r−1

· · · (Vjr+1 · · ·Vm)20)2ai
+ · · ·+(

V1 · · ·Vm
)2ai)

=

q∏
i=1

(
1 +

(
V 2ai+m−1

1 + V 2ai+m−2

2 + · · ·+ V 2ai
m

)
+ · · ·+ (88)

( ∑
1≤j1<···<jr≤m

(V1 · · ·Vj1−1)2ai+r (Vj1+1 · · ·Vj2−1)2ai+r−1

· · · (Vjr+1 · · ·Vm)2ai
)

+ · · ·+(
V1 · · ·Vm

)2ai)
.

Now we want to show that

π
(
ρ∗d,2m

(
w(2γ(d)−d−1+2a1 )2m−1−2a1

(
ξ
⊕(d+1)

Rd,2m
)))

=

(V1 · · ·Vm−1)2a1V 2γ(d)−d−1
m + S ∈ F2[V1, . . . , Vm]/〈V d1 , . . . , V dm〉.

Here S is a sum of monomials in V1, . . . , Vm of degree (2γ(d)−d−1+2a1)2m−1−2a1

which are different from the monomial (V1 · · ·Vm−1)2a1V 2γ(d)−d−1
m + S. Hence,

π
(
ρ∗d,2m

(
w(2γ(d)−d−1+2a1 )2m−1−2a1

(
ξ
⊕(d+1)

Rd,2m
)))
6= 0, and consequently

w(2γ(d)−d−1+2a1 )2m−1−2a1

(
ξ
⊕(d+1)

Rd,2m
)
6= 0.
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Indeed, observe that in every monomial of the ith factor of the product (88)
which has the variable Vm, with a positive exponent, the variable Vm has al-
ways the same exponent equal to 2ai , 1 ≤ i ≤ q. In particular, in the ith factor
each monomial with the variable Vm is of the form pi(V1, . . . , Vm−1)2aiV 2ai

m where
pi(V1, . . . , Vm−1) is a monomial in variables V1, . . . , Vm−1. Now, when multiplying
out the product (88), since 2γ(d) − d − 1 = 2a1 + · · · + 2aq , the monomial of the
form p(V1, . . . , Vm−1)V 2γ(d)−d−1

m can appear in the final result if and only if we take
from each factor a non-zero monomial of the form pi(V1, . . . , Vm−1)2aiV 2ai

m . Thus,
we have

p(V1, . . . , Vm−1)V 2γ(d)−d−1
m =

q∏
i=1

pi(V1, . . . , Vm−1)2aiV 2ai
m

Observe that, if pi(V1, . . . , Vm−1) 6= 1 for some 1 ≤ i ≤ q, then there exists 1 ≤ t ≤ q
such that Vt | pi(V1, . . . , Vm−1). Hence, V 2ai

t | pi(V1, . . . , Vm−1)2ai .
Now we want to count in how many ways we can obtain the monomial

(V1 · · ·Vm−1)2a1V 2γ(d)−d−1
m

when we multiply out the product (88). This means that we need to find all possible
pis and p′j ’s such that

(V1 · · ·Vm−1)2a1V 2γ(d)−d−1
m =

q∏
i=1

pi(V1, . . . , Vm−1)2aiV 2ai
m

From the previous observation and the fact that 0 ≤ a1 < a2 < · · · < aq ≤ a − 2
we conclude that pa2(V1, . . . , Vm−1) = · · · = paq (V1, . . . , Vm−1) = 1. Thus, the
previous equality becomes

(V1 · · ·Vm−1)2a1V 2γ(d)−d−1
m = p1(V1, . . . , Vm−1)2aiV 2γ(d)−d−1

m .

Therefore, the monomial (V1 · · ·Vm−1)2a1V 2γ(d)−d−1
m can be obtained for

pa1(V1, . . . , Vm−1) = V1 · · ·Vm−1,

and
pa2(V1, . . . , Vm−1) = · · · = paq (V1, . . . , Vm−1) = 1.

Hence, we completed the proof of the non-vanishing of the dual class:

w(2γ(d)−d−1+2a1 )2m−1−2a1

(
ξ
⊕(d+1)

Rd,2m
)
6= 0.

(6B) Let d ≥ 5 be an integer that is not a power of 2, and furthermore d+ 1 is not
a power of 2. Consider the case when ` ≥ 3 is not a power of 2. Set r := α(`) ≥ 2
and ` = 2b1 + · · · + 2br where 0 ≤ b1 < b2 < · · · < br. As many times before
we consider a morphism between vector bundles

∏r
i=1 ξRd,2bi and ξRd,` where the

following commutative square is a pullback diagram:∏r
i=1 ξRd,2bi

Θ
//

��

ξRd,`

��∏r
i=1 F(Rd, 2bi)/S2bi

θ
// F(Rd, `)/S`.

In particular, θ∗ξRd,` ∼=
∏r
i=1 ξRd,2bi . The naturality of the Stiefel–Whitney classes [80,

Ax. 2, p. 37] gives the equality

θ∗(w(ξ
⊕(d+1)

Rd,` )) = w
( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
,
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while the product formula [80, Pr. 4-A, p. 54] implies that

w
( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
= w

(
ξ
⊕(d+1)

Rd,2b1
)
× · · · × w

(
ξ
⊕(d+1)

Rd,2br
)
.

Thus, for every integer N ≥ 0

θ∗(wN (ξ
⊕(d+1)

Rd,` )) = wN

( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
=

∑
s1+···+sr=N

ws1(ξ
⊕(d+1)

Rd,2b1 )× · · · × wsr (ξ
⊕(d+1)

Rd,2br ). (89)

The Künneth formula [21, Thm.VI.3.2] implies that each term

ws1(ξ
⊕(d+1)

Rd,2b1 )× · · · × wsr (ξ
⊕(d+1)

Rd,2br )

in the previous sum belongs to a different direct summand of the cohomology

HN
( r∏
i=1

F(Rd, 2bi)/S2bi ;F2

) ∼=⊕
s1+···+sr=N

Hs1(F(Rd, 2b1)/S2b1 ;F2)⊗ · · · ⊗Hsr (F(Rd, 2br )/S2br ;F2).

Therefore, the following equivalence holds

wN

( r∏
i=1

ξ
⊕(d+1)

Rd,2bi

)
6= 0⇐⇒ ws1(ξ

⊕(d+1)

Rd,2b1 )× · · · × wsr (ξ
⊕(d+1)

Rd,2br ) 6= 0

for some s1 + · · ·+ sr = N.

To isolate a non-zero summand in (89) for

N = (2γ(d) − d− 1 + 2a1)(`− ε(`))/2− 2a1α(`)

we use the previous case of this theorem which states that for bi ≥ 1:

w(2γ(d)−d−1+2a1 )2bi−1−2a1 (ξ
⊕(d+1)

Rd,2bi ) 6= 0.

We discuss two separate cases. Let ` be even, or ε(`) = 0. Since ` = 2b1 +· · ·+2br

it follows that 1 ≤ b1 < b2 < · · · < br. Thus, the following summand in (89) does
not vanish

w(2γ(d)−d−1+2a1 )2b1−1−2a1 (ξ
⊕(d+1)

Rd,2b1 )× · · · × w(2γ(d)−d−1+2a1 )2br−1−2a1 (ξ
⊕(d+1)

Rd,2br ) 6= 0.

When ε(`) = 1 we have that 0 = b1 < b2 < · · · < br, and the summand in (89)
which does not vanish is

w0(ξ
⊕(d+1)

Rd,2b1 )× w(2γ(d)−d−1+2a1 )2b2−1−2a1 (ξ
⊕(d+1)

Rd,2b1 )× · · ·×

w(2γ(d)−d−1+2a1 )2br−1−2a1 (ξ
⊕(d+1)

Rd,2br ) 6= 0.

In summary,
w(2γ(d)−d−1+2a1 )(`−ε(`))/2−2a1α(`)

(
ξ
⊕(d+1)

Rd,`
)
6= 0.

�

Now, we use Theorem 5.17 and the criterion from Lemma 5.16 to correct the
result stated in [15, Thm. 3.1]. In this way we completed corrections of the invalid
claims in [15, Sec. 3].
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Theorem 5.18. Let ` ≥ 1 and d ≥ 2 be integers.
(1) If d = 2, and if ` ≥ 2 is an integer, then there is no `-skew embedding

R2 −→ RN for
N ≤ 4`− α(`)− 2.

(2) If d ≥ 1 is an integer, and if ` = 2, then there is no 2-skew embedding
Rd −→ RN for

N ≤ 2γ(d) + d− 1.

(3) If d ≥ 2 is a power of 2, and if ` ≥ 2 is an integer, then there is no `-skew
embedding Rd −→ RN for

N ≤ 2d`− (d− 1)α(`)− 2.

(4) If d+ 1 ≥ 2 is a power of 2, and if ` ≥ 2 is an integer, then this method does
not produce any non-trivial result about the existence of `-skew embeddings
Rd −→ RN .

(5) If d ≥ 5 is an integer which is not a power of 2, and in addition d + 1 is
not a power 2, and if ` ≥ 3 is an integer, then there is no `-skew embedding
Rd −→ RN for

N ≤ 1

2

(
2γ(d) − d− 1

)
(`− ε(`)) + (d+ 1)`− 2.

(6) If d ≥ 5 is an integer which is not a power of 2, 2γ(d) − d − 1 = 2a1z where
a1 ≥ 0 is an integer and z ≥ 1 is an odd integer, and d+ 1 is not a power of
2, and if ` ≥ 3 is an integer, then there is no `-skew embedding Rd −→ RN
for

N ≤ 1

2

(
2γ(d) − d− 1 + 2a1

)
(`− ε(`))− 2a1α(`) + (d+ 1)`− 2.

5.3. k-regular-`-skew embeddings. In this section we revise [15, Sec. 4] and cor-
rect the related results [15, Thm. 4.1, Thm. 4.8]. First we recall some basic notions
on k-regular-`-skew embeddings.

Definition 5.19. Let k ≥ 1 and ` ≥ 1 be an integer, and let M be a real smooth
d-dimensional manifold. A smooth embedding f : M −→ RN is k-regular-`-skew
embedding if for every (x1, . . . , xk, y1, . . . , y`) in F(M,k + `) the affine subspaces

{f(x1)}, . . . , {f(xk)}, (ι ◦ dfy1)(Ty1M), . . . , (ι ◦ dfy`)(Ty`M)

of RN are affinely independent.

Now, like in the case of k-regular embeddings and `-skew embeddings a criterion
for non-existence of k-regular-`-skew embedding can be derived in terms of Stiefel–
Whitney class of appropriate vector bundle over the relevant configuration space.
We state a consequence of [15, Lem. 4.6] and [15, Lem. 4.7] used for the proof of
[15, Thm. 4.1].

Lemma 5.20. Let d ≥ 1, k ≥ 1 and ` ≥ 1 be integers. If the dual Stiefel–Whitney
class

wN−(d+1)`−k+2(ξRd,k × ξ
⊕(d+1)

Rd,` )

does not vanish, then there is no k-regular-`-skew embedding Rd −→ RN .

Like in the case of k-regular embeddings and `-skew embeddings, now based
on invalid results in [15, Thm. 2.13] and [15, Thm. 3.7] the following theorem was
proved [15, Thm. 4.8]:
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Theorem 4.8. Let `, k, d ≥ 2 be integers. The dual Stiefel–Whitney
class

w(d−1)(k−α(k))+(2γ(d)−d−1)(`−α(`))(ξRd,k × ξ
⊕(d+1)

Rd,` )

does not vanish.

The result of the previous theorem in combination with [15, Lem. 4.6] and [15,
Lem. 4.4] directly implied the following result [15, Thm. 4.1].

Theorem 4.1. et `, d ≥ 2 be integers. There is no k-regular-`-skew
embedding Rd −→ RN for

N ≤ (d− 1)(k − α(k)) + (2γ(d) − d− 1)(`− α(`)) + (d+ 1)`+ k − 2,

where α(c) denotes the number of ones in the dyadic presentation of c,
and γ(d) := blog2 dc+ 1.

The proof of [15, Thm. 4.8] was based on incorrect results [15, Cor. 2.13] and [15,
Cor. 3.7]. Since we corrected these results we can now give correct versions, first of
[15, Thm. 4.8], and then of [15, Thm. 4.1].

Theorem 5.21. Let d ≥ 1, k ≥ 1, and ` ≥ 1 be integers.
(1) If d = 2, and if k ≥ 1 and ` ≥ 1 are integers, then

wk−α(k)+`−α(`)

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(2) If d ≥ 2 is a power of 2, ` = 2, and if k ≥ 1 is an integer, then

w(d−1)(k−α(k)+1)

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(3) If d ≥ 3 is not a power of 2, ` = 2, and if k ≥ 1 is an integer, then

w(d−1)(k−ε(k))/2+2γ(d)−d−1

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(4) If d ≥ 2 is a power of 2, and if k ≥ 1 and ` ≥ 1 are integers, then

w(d−1)(k−α(k)+`−α(`))

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(5) If d+ 1 ≥ 2 is a power of 2, and if k ≥ 1 and ` ≥ 1 are integers, then

w(d−1)(k−ε(k))/2

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(6) If d ≥ 5 is an integer which is not a power of 2, and in addition d + 1 is a
not power of 2, and if k ≥ 1 and ` ≥ 1 are integers, then

w(d−1)(k−ε(k))/2+(2γ(d)−d−1)(`−ε(`))/2
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(7) If d ≥ 6 be an even integer which is not a power of 2, 2γ(d) − d − 1 = 2a1z
where a1 ≥ 0 is an integer and z ≥ 1 is an odd integer, and if k ≥ 1 and
` ≥ 3 are integers, then

wd(k−ε(k))/2−α(k)+ε(k)+(2γ(d)−d−1+2a1 )(`−ε(`))/2−2a1α(`)

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

Proof. In order to compute the dual Stiefel–Whitney class of the product vector
bundle ξRd,k × ξ

⊕(d+1)

Rd,` we use the product formula [80, Problem 4-A, page 54]:

w
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)

= w(ξRd,k)× w
(
ξ
⊕(d+1)

Rd,`
)
,

where “×” on the right hand side denotes the cross product in cohomology. In
particular, for a fixed integer r ≥ 0 we have that

wr
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)

=
∑
i+j=r

wi(ξRd,k)× wj
(
ξ
⊕(d+1)

Rd,`
)

∈ Hr(F(Rd, k)/Sk × F(Rd, `)/S`;F2).
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The Künneth formula [21, Thm.VI.3.2] implies that each of the terms wi(ξRd,k)×
wj
(
ξ
⊕(d+1)

Rd,`
)
in the previous sum belongs to a different direct summand of the

cohomology

Hr(F(Rd, k)/Sk × F(Rd, `)/S`;F2) ∼=⊕
i+j=r

Hi(F(Rd, k)/Sk;F2)⊗Hj(F(Rd, `)/S`;F2).

Therefore, the following equivalence holds

wr
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0⇐⇒ wi(ξRd,k)× wj

(
ξ
⊕(d+1)

Rd,`
)
6= 0 for some i+ j = r.

Now, using Theorem 5.13 and Theorem 5.17 to prove all cases of the theorem.
(1) Let d = 2, and let k ≥ 1 and ` ≥ 1 be integers. Then

wk−α(k)(ξRd,k) 6= 0 and w`−α(`)

(
ξ
⊕(d+1)

Rd,`
)
6= 0,

and consequently wk−α(k)+`−α(`)

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(2) Let d ≥ 2 be a power of 2, ` = 2, and let k ≥ 1 be an integer. Then

w(d−1)(k−α(k))(ξRd,k) 6= 0 and wd−1

(
ξ
⊕(d+1)

Rd,`
)
6= 0,

and consequently w(d−1)(k−α(k)+1)

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(3) Let d ≥ 2 be not a power of 2, ` = 2, and let k ≥ 1 be an integer. Then

w(d−1)(k−ε(k))/2(ξRd,k) 6= 0 and w2γ(d)−d−1

(
ξ
⊕(d+1)

Rd,`
)
6= 0,

and consequently w(d−1)(k−ε(k))/2+2γ(d)−d−1

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(4) Let d ≥ 2 be not a power of 2, and let k ≥ 1 and ` ≥ 1 be integers. Then

w(d−1)(k−α(k))(ξRd,k) 6= 0 and w(d−1)(`−α(`))

(
ξ
⊕(d+1)

Rd,`
)
6= 0,

and consequently w(d−1)(k−α(k)+`−α(`))

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(5) Let d+ 1 ≥ 2 be a power of 2, and let k ≥ 1 and ` ≥ 1 be integers. Then

w(d−1)(k−ε(k))/2(ξRd,k) 6= 0 and w0

(
ξ
⊕(d+1)

Rd,`
)
6= 0,

and consequently w(d−1)(k−ε(k))/2

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0

(6) Let d ≥ 5 be an integer which is not a power of 2, and in addition d+ 1 is a
not power of 2, and let k ≥ 1 and ` ≥ 1 be integers. Then

w(d−1)(k−ε(k))/2(ξRd,k) 6= 0 and w(2γ(d)−d−1)(`−ε(`))/2
(
ξ
⊕(d+1)

Rd,`
)
6= 0,

and consequently w(d−1)(k−ε(k))/2+(2γ(d)−d−1)(`−ε(`))/2
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

(7) Let d ≥ 6 be an even integer which is not a power of 2, 2γ(d) − d− 1 = 2a1z
where a1 ≥ 0 is an integer and z ≥ 1 is an odd integer, and let k ≥ 1 and ` ≥ 3 be
integers. Then

wd(k−ε(k))/2−α(k)+ε(k)(ξRd,k) 6= 0 and wd(k−ε(k))/2−α(k)+ε(k)(ξRd,k) 6= 0,

and consequently

wd(k−ε(k))/2−α(k)+ε(k)+(2γ(d)−d−1+2a1 )(`−ε(`))/2−2a1α(`)

(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0.

�

Like in the previous situation, we use Theorem 5.21 and the criterion from
Lemma 5.20 to correct the result stated in [15, Thm. 4.1]. In this way we com-
pleted corrections of the invalid results in [15, Sec. 4].
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Theorem 5.22. Let d ≥ 1, k ≥ 1, and ` ≥ 1 be integers.
(1) If d = 2, and if k ≥ 1 and ` ≥ 1 are integers, then there is no k-regular-`-skew

embedding R2 −→ RN for

N ≤ (d+ 1)`+ 2k − α(k) + `− α(l)− 2.

(2) If d ≥ 2 is a power of 2, ` = 2, and if k ≥ 1 is an integer, then there is no
k-regular-2-skew embedding Rd −→ RN for

N ≤ (d+ 1)`+ k − 2 + (d− 1)(k − α(k) + 1).

(3) If d ≥ 2 is not a power of 2, ` = 2, and if k ≥ 1 is an integer, then there is
no k-regular-2-skew embedding Rd −→ RN for

N ≤ (d+ 1)`+ k − 2 +
1

2
(d− 1)(k − ε(k)) + 2γ(d) − d− 1.

(4) If d ≥ 2 is not a power of 2, and if k ≥ 1 and ` ≥ 1 are integers, then there
is no k-regular-`-skew embedding R2 −→ RN for

N ≤ (d+ 1)`+ k − 2 + (d− 1)(k − α(k) + `− α(`)).

(5) If d + 1 ≥ 2 is a power of 2, and if k ≥ 1 and ` ≥ 1 are integers, then there
is no k-regular-`-skew embedding Rd −→ RN for

N ≤ (d+ 1)`+ k − 2 +
1

2
(d− 1)(k − ε(k)).

(6) If d ≥ 5 is an integer which is not a power of 2, and in addition d + 1 is
a not power of 2, and if k ≥ 1 and ` ≥ 1 are integers, then there is no
k-regular-`-skew embedding Rd −→ RN for

N ≤ (d+ 1)`+ k − 2 +
1

2
(d− 1)(k − ε(k)) +

1

2

(
2γ(d) − d− 1

)
(`− α(`)).

(7) If d ≥ 6 be an even integer which is not a power of 2, 2γ(d) − d − 1 = 2a1z
where a1 ≥ 0 is an integer and z ≥ 1 is an odd integer, and if k ≥ 1 and ` ≥ 3
are integers, then there is no k-regular-`-skew embedding Rd −→ RN for

N ≤ (d+ 1)`+ k − 2 +
1

2
d(k − ε(k))− α(k) + ε(k)+

1

2

(
2γ(d) − d− 1 + 2a1

)
(`− ε(`))− 2a1α(`).

This concludes all corrections of the paper [15].

5.4. Complex highly regular embeddings. A gap in the decomposition [64,
(4.7)] created incorrectness that we have already discussed in the study of real
highly regular embeddings [15], which in turn implied two results on complex highly
regular embeddings [14, Thm. 5.1, Thm. 6.1] that now also need to be corrected.
For completeness we recall some basic notions about complex highly regular em-
beddings.

First we introduce a notion of complex k-regular embedding in a similar way as
in the case of real k-regular embedding, see Section 5.1.

Definition 5.23. Let k ≥ 1 be an integer, and let X be a topological space. A
continuous map f : X −→ CN is a complex k-regular embedding if for every
(x1, . . . , xk) ∈ F(X, k) the vectors f(x1), . . . , f(xn) of the complex vector space CN
are linearly independent.



96 BLAGOJEVIĆ, COHEN, CRABB, LÜCK, AND ZIEGLER

Next we introduce a notion of complex `-regular embedding. For a real analogue
consult Section 5.2. A collection of complex affine subspaces {L1, . . . , L`} of the
complex vector space CN is affinely independent if the following equality holds

dimC
aff span(L1 ∪ · · · ∪ L`) = (dimC

aff L1 + 1) + · · ·+ (dimC
aff L` + 1)− 1.

Let M be a complex d-dimensional manifold. The associated complex tangent
bundle of M is denote by TM . For a point y ∈ M we denote by TyM the corre-
sponding tangent space to M . If f : M −→ CN is a smooth complex map, then
df : TM −→ TCN denotes the complex differential map between tangent complex
vector bundles induced by f . Furthermore, let ι : TCN −→ CN be the map which
sends a tangent vector v ∈ TxCN at a point x ∈ CN to the sum x + v, where the
standard identification TxCN = CN is assumed.

Definition 5.24. Let ` ≥ 1 be an integer, and let M be a smooth complex d-
dimensional manifold. A smooth complex embedding f : M −→ CN is an complex
`-skew embedding if for every (y1, . . . , y`) ∈ F(M, `) the collection of complex
affine subspaces {(ι ◦ dfy1)(Ty1M), . . . , (ι ◦ dfy`)(Ty`M)} of CN is affinely indepen-
dent.

In the following we will work with complex vector bundles that are analogues
of real vector bundles introduced in (74), see also [14, Sec. 4]. Hence, consider the
complex vector bundles:

ξCX,k : Ck // F(X, k)×Sk Ck // F(X, k)/Sk,

ζCX,k : WC
k

// F(X, k)×Sk W
C
k

// F(X, k)/Sk,

τCX,k : C // F(X, k)/Sk × C // F(X, k)/Sk,

(90)

where WC
k = {(b1, . . . , bk) ∈ Ck : b1 + · · ·+ bk = 0} is an Sk-invariant subspace of

Ck. It is obvious that on the level of underlying real vector bundles the following
bundle isomorphisms hold:

ξCX,k
∼= ξ⊕2

X,k, ζCX,k
∼= ζ⊕2

X,k, τCX,k
∼= τ⊕2

X,k.

Like in the real case a criterion for an existence of complex k-regular embeddings
and of complex `-skew embeddings can be phrased in terms of the vector bundle
ξCX,k. Let us recall the relevant special cases of [14, Lem. 5.7] and [14, Lem. 6.6].

Lemma 5.25. Let k ≥ 1, ` ≥ 1, d ≥ 1 and N ≥ 1 be integers.
(1) If there exists a complex k-regular embedding Rd −→ CN , then the complex

vector bundle ξCRd,k admits an (N − k)-dimensional complex inverse.
(2) If there exists a complex `-skew embedding Cd −→ CN , then the complex vector

bundle (ξCCd,`)
⊕(d+1) admits an (N−(d+1)`+1)-dimensional complex inverse.

The result we prove next corrects [14, Thm. 5.1]. In particular, we follow the
outline of the proof of [14, Thm. 5.1] and alternate at a single place.

Theorem 5.26. Let d ≥ 1 be an integer. There is no complex k-regular embedding
Rd −→ CN for N < 1

2 (M + k), where

M :=

{
(d− 1)(k − α(k)), d is a power of 2,

(d− 1)(k − ε(k)), d is not a power of 2.

Proof. Consider a complex k-regular embedding Rd −→ CN . From Lemma 5.25
the complex vector bundle ξCRd,k admits an (N − k)-dimensional complex inverse.
Hence, the real vector bundle ξ⊕2

Rd,k admits a 2(N − k)-dimensional real inverse. In
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particular, the real vector bundle ξRd,k admits a (2N − k)-dimensional real inverse.
Since w̄M (ξRd,k) 6= 0, Theorem 5.13, we have that

2N − k ≥M ⇐⇒ N ≥ 1
2 (M + k).

�

Remark 5.27. Notice that, compared to [14, Thm. 5.1], a correction was needed
for the case when d is not a power of 2.

Next we correct [14, Thm. 6.1]. Again we proceed in the footsteps of the proof
of [14, Thm. 6.1].

Theorem 5.28. Let d ≥ 1 and ` ≥ 1 be integers. There is no complex `-skew
embedding Cd −→ CN for

N ≤ d+
1

2

(
M − `− 2

)
,

where

M :=


2γ(d)+1 − 2d− 1, ` = 2,

(2d− 1)(`− α(`)), d is a power of 2,

(2γ(d)+1 − 2d− 1)(`− ε(`))/2, d ≥ 3 is not power of 2.

Proof. Consider a complex `-skew embedding Cd −→ CN . According to Lemma 5.25
the complex vector bundle (ξCCd,`)

⊕(d+1) admits an (N − (d+ 1)`+ 1)-dimensional

complex inverse. Hence, the real vector bundle ξ⊕2(d+1)

R2d,`
admits a 2(N−(d+1)`+1)-

dimensional real inverse. Consequently, the real vector bundle ξ⊕(2d+1)

R2d,`
admits a

(2N − 2(d+ 1)`+ 2 + `)-dimensional real inverse. From Theorem 5.17 follows that
w̄M (ξ

⊕(2d+1)

R2d,`
) 6= 0 and therefore:

2N − 2(d+ 1)`+ 2 + ` ≥M ⇐⇒ N ≥ 1

2

(
2(d+ 1)− 2− `+M

)
.

�

This completes the corrections of the paper [14].

6. More bounds for highly regular embeddings

In this section we present computations that yield additional bounds for the
existence of highly regular embeddings. For this we present an alternative approach
in the study of Stiefel–Whitney classes of the vector bundle ξRd,2m . In particular,
we utilize a specific decomposition of the pull-back vector bundle ρ∗d,2mξRd,2m of the
vector bundle ξRd,2m via the map ρd,2m : Pe(Rd, 2m)/S2m −→ F(Rd, 2m)/S2m .

First, we introduce several real S2m-representations and consider properties of
the associated vector bundles.

6.1. Examples of S2m-representations and associated vector bundles. In
this text the real vector space Rk is often considered as the real k-dimensional
Sk-representation with the action defined by

π · (a1, . . . , ak) := (aπ−1(1), . . . , aπ−1(k)),

where π ∈ Sk and (a1, . . . , ak) ∈ Rk. Furthermore, its (n − 1)-dimensional vector
subspace

Wk := {(a1, . . . , ak) ∈ Rk : a1 + · · ·+ ak = 0}
is an Sk-subrepresentation. For every subgroup G of Sk both vector spaces Rk and
Wk become real G-representations via the corresponding inclusion homomorphism
G ↪→ Sk.
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6.1.1. Examples of S2m-representations. Let k = 2m for some integerm ≥ 1. Recall
that the group S2m , as a subgroup of S2m , was introduced in Definition 2.1 and
the corresponding inclusion homomorphism was denotes by ιm : S2m −→ S2m .
Inductively, we can describe the group S2m via the exact sequence of groups

1 // S2m−1 × S2m−1

ϑm
// S2m

ςm
// Z2

// 1, (91)

where the inclusion map ϑm is defined in the expected way.
Now we define inductively a sequence of real S2m-representations. Let Mm[m]

be the S2m-representation obtained as the pull-back of the real 1-dimensional Z2-
representation W2 via the surjection ςm from the exact sequence (91). This means
thatMm[m] = W2 as a vector space, and that π ·v := ςm(π) ·v for every v ∈Mm[m]
and every π ∈ S2m .

Assume that for every integer 1 ≤ i ≤ m − 1 we have defined the sequence of
S2i -representations Mi[1], . . . ,Mi[i] with dim(Mi[j]) = 2i−j , 1 ≤ j ≤ i. Next, for
i = m and 1 ≤ j ≤ m − 1, we define the S2m-representation Mm[j] to be, on the
level of vector spaces, the direct sum Mm[j] := Mm−1[j]⊕Mm−1[j]. The action of
S2m on Mm[j] is given by:

(h1, h2) · (v1, v2) := (h1 · v1, h2 · v2),

(h1, h2, ω) · (v1, v2) := (h2 · v2, h1 · v1),

where (h1, h2) ∈ S2m−1 × S2m−1 ⊆ (S2m−1 × S2m−1) o Z2, ω is the generator of the
subgroup Z2 ⊆ (S2m−1×S2m−1)oZ2, and (v1, v2) ∈Mm−1[j]⊕Mm−1[j]. It follows
directly that dim(Mm[j]) = 2m−j for all 1 ≤ j ≤ m.

The vector space W2m , now considered as an S2m -representation, we denote
by Lm. The following decomposition of S2m -representations holds.

Lemma 6.1. For every integer m ≥ 1 there is an isomorphism of real S2m-
representations

Lm ∼= Mm[1]⊕ · · · ⊕Mm[m].

6.1.2. Associated vector bundles. Let m ≥ 1 be an integer, and let d ≥ 1 be an
integer, or d =∞. To every S2m -representation introduced in the previous section
we associate real vector bundles in the following way:

λd,m : Lm // Pe(Rd, 2m)×S2m Lm // Pe(Rd, 2m)/S2m , (92)

µd,m[j] : Mm[j] // Pe(Rd, 2m)×S2m Mm[j] // Pe(Rd, 2m)/S2m , (93)

where 1 ≤ j ≤ m. Note that
— λ1,d = µ1,d[1] is the Hopf line bundle over RPd−1 ∼= Pe(Rd, 2)/S2,
— µd,m[m] is the pull-back vector bundle of the line bundle λd,1 via the map(

Pe(Rd, 2m−1)/S2m−1 × Pe(Rd, 2m−1
)
/S2m−1)×Z2 Pe(Rd, 2) −→ Pe(Rd, 2)/S2,

— λd,m and µd,m[j] are pull-backs of λ∞,m and µ∞,m[j] along the map

κd,2m/S2m : Pe(Rd, 2m)/S2m −→ Pe(R∞, 2m)/S2m ,

— λd,m is the pull-back of ζRd,2m via the map

ρd,2m : Pe(Rd, 2m)/S2m −→ F(Rd, 2m)/S2m .

The vector bundles µd,m[j] for different values ofm, are connected via the wreath
square of bundles operations as follows:

S2µ∞,m−1[j] ∼= µ∞,m[j] and S2,dµd,m−1[j] ∼= µd,m[j], (94)

for all integers d ≥ 2, m ≥ 1, and all 1 ≤ j ≤ m − 1. For details about wreath
square operations see Section 7.3.
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The decomposition from Lemma 6.1 implies the following Whitney sum decom-
position on the vector bundle λd,m.

Lemma 6.2. For every integer m ≥ 1, and every integer d ≥ 1 or d =∞, there is
an isomorphism of real S2m-representations

λd,m ∼= µd,m[1]⊕ · · · ⊕ µd,m[m].

Using the relation (53) and the decomposition from the previous lemma we get
the following equalities.

Lemma 6.3. For every integer m ≥ 1 and every integer 1 ≤ j ≤ m:

w2m−1(λm,∞) = Dm,0 and w2m−j (µm,∞[j]) = Vm,m−j .

From the fact that w(ζRd,2m) = w(ξRd,2m), Lemma 5.5, Lemma 5.7, and Theorem
4.1, the injectivity of the homomorphism

ρ∗d,2m : H∗(F(Rd, 2m)/S2m ;F2) −→ H∗(Pe(Rd, 2m)/S2m ;F2),

we deduce the following facts.

Lemma 6.4. Let m ≥ 1 be an integer.
(1) If d = 2a for an integer a ≥ 1, then

w(d−1)(2m−1)(λd,m) = w(d−1)(2m−1)(ρ
∗
d,2mζRd,2m) =

w(d−1)(2m−1)(ρ
∗
d,2mξRd,2m) = ρ∗d,2m

(
w(d−1)(2m−1)(ξRd,2m)

)
6= 0.

(2) If d ≥ 2 is an integer, then

w(d−1)2m−1(λd,m) = w(d−1)2m−1(ρ∗d,2mζRd,2m) =

w(d−1)2m−1(ρ∗d,2mξRd,2m) = ρ∗d,2m
(
w(d−1)2m−1(ξRd,2m)

)
6= 0.

Furthermore, from the fact that µd,m[m] is the pull-back of the line bundle λd,1,
and the description of the cohomology of Pe(Rd, 2m)/S2m given in Section 3 we
compute µd,m[m].

Lemma 6.5. Let d ≥ 1 and m ≥ 1 be integers. Then

w(µd,m[m]) = 1 + f,

where the class f ∈ H1(Pe(Rd, 2m)/S2m ;F2) was denoted by Vm,1 in the proof of
Lemma 3.10. In particular fd = 0.

6.2. The Key Lemma and its consequences. Let m ≥ 1 and d ≥ 1 be inte-
gers. For arbitrary non-negative integers r1, . . . , rm we define the vector bundle
ψd,m[r1, . . . , rm] by:

ψd,m[r1, . . . , rm] := µd,m[1]⊕r1 ⊕ · · · ⊕ µd,m[m]⊕rm .

Now we will prove the key technical lemma of this section.

Lemma 6.6 (The Key Lemma). Let m ≥ 1, d ≥ 1 and ` be integers, and let
r1, . . . , rm be non-negative integers. If the binomial coefficient(

(r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− `
d− 1

)
(95)

is odd, then
w(d−1)(2m−1)(λ

−`
d,m ⊕ ψd,m[r1, . . . , rm]) 6= 0

as an element of the cohomology group H(d−1)(2m−1)(Pe(Rd, 2m)/S2m ;F2). Here
λ−`d,m denotes an inverse of the vector bundle λ⊕`d,m.
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Proof. We prove the claim of the lemma by induction on m ≥ 1. In the case m = 1
the condition (95) reads

(
r1−`
d−1

)
6= 0 in F2. Furthermore, ψd,1[r1] = µd,1[1]⊕r1 and

λd,1 ∼= µd,1[1]. Consequently, λ−`d,1 ⊕ ψd,1[r1] ∼= µd,1[1]⊕(r1−`), and so

w(λ−`d,1 ⊕ ψd,1[r1]) = w(µd,1[1]⊕(r1−`)) = w(µd,1[1])r1−` = (1 + f)r1−`

in H∗(Pe(Rd, 2)/S2;F2) ∼= H∗(RPd−1;F2) = F2[f ]/〈f〉. Here we use the fact that
the vector bundle µd,1[1] is the Hopf line bundle, and so w(µd,1[1]) = 1 + f . Hence,
we have that

w(d−1)(21−1)(λ
−`
d,1 ⊕ ψd,1[r1]) = wd−1(λ−`d,1 ⊕ ψd,1[r1]) =

(
r1 − `
d− 1

)
wd−1

1 6= 0.

Let m ≥ 2, and assume, as an induction hypothesis, that

w(d−1)(2m−1−1)(λ
−`
d,m−1 ⊕ ψd,m−1[r1, . . . , rm−1]) 6= 0

as an element of H(d−1)(2m−1−1)(Pe(Rd, 2m−1)/S2m−1 ;F2). Then there exists a
vector bundle $ of dimension (d− 1)(2m−1− 1) over Pe(Rd, 2m−1)/S2m−1 with the
property that for some integers N0 ≥ ` and N1 ≥ 1 there is an isomorphism of
vector bundles

$ ⊕ λ⊕`d,m−1 ⊕ τ
⊕N0

d,m−1
∼= ψd,m−1[r1, . . . , rm−1]⊕ τ⊕N1

d,m−1

∼= µd,m−1[1]⊕r1 ⊕ · · · ⊕ µd,m−1[m− 1]⊕rm−1 ⊕ τ⊕N1

d,m−1. (96)

Here τd,m−1 denotes the trivial line bundle over Pe(Rd, 2m−1)/S2m−1 . Consequently,

w(d−1)(2m−1−1)($) = w(d−1)(2m−1−1)(λ
−`
d,m−1 ⊕ ψd,m−1[r1, . . . , rm−1]) 6= 0 (97)

does not vanish — by induction hypothesis.
Now we apply (d − 1)-partial wreath square S2,d to the isomorphism of vector

bundles (96) and get the following isomorphism of vector bundles

S2,d$ ⊕ λ⊕`d,m ⊕ τ
⊕N0

d,m ⊕ µd,m[m]⊕N0−` ∼=

µd,m[1]⊕r1 ⊕ · · · ⊕ µd,m[m− 1]⊕rm−1 ⊕ τ⊕N1

d,m ⊕ µd,m[m]⊕N1 , (98)

over the base space S2,d Pe(Rd, 2m−1)/S2m−1
∼= Pe(Rd, 2m)/S2m . Indeed, by direct

inspection and using (94) and (116), we get that

S2,dτd−1,m
∼= τd,m ⊕ µd,m[m] and S2,dµd,m−1[j] ∼= µd,m[j]

for all 1 ≤ j ≤ m− 1. Consequently, from Lemma 6.2 we get that

S2λd,m−1
∼= S2(µd,m−1[1]⊕ · · · ⊕ µd,m−1[m− 1]) ∼= µd,m[1]⊕ · · · ⊕ µd,m[m− 1].

Collecting all these facts together we compute

$ ⊕ λ⊕`d,m−1 ⊕ τ
⊕N0

d,m−1 =

$ ⊕ (µd,m−1[1]⊕ · · · ⊕ µd,m−1[m− 1])⊕` ⊕ τ⊕N0

d,m−1

_

S2,d

��

S2,d$ ⊕ (µd,m[1]⊕ · · · ⊕ µd,m[m− 1])⊕` ⊕ τN0

d,m ⊕ µd,m[m]⊕N0

∼= S2,d$ ⊕ λ⊕`d,m ⊕ τ
N0

d,m ⊕ µm[m]⊕N0−`.
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On the other hand directly follows that

µd,m−1[1]⊕r1 ⊕ · · · ⊕ µd,m−1[m− 1]⊕rm−1 ⊕ τ⊕N1

d,m−1

_

S2,d

��

µd,m[1]⊕r1 ⊕ · · · ⊕ µd,m[m− 1]⊕rm−1 ⊕ τ⊕N1

d,m ⊕ µd,m[m]⊕N1 .

Thus, the isomorphism (98) holds.
For an arbitrary vector bundle η over Pe(Rd, 2m)/S2m the isomorphism of vector

bundles (98) yields the isomorphism

η ⊕ S2,d$ ⊕ λ⊕`d,m ⊕ τ
⊕N0

d,m ⊕ µd,m[m]⊕N0−` ∼=

η ⊕ µd,m[1]⊕r1 ⊕ · · · ⊕ µd,m[m− 1]⊕rm−1 ⊕ τ⊕N1

d,m ⊕ µd,m[m]⊕N1 . (99)

Take η to be stable equivalent to the vector bundle µd,m[m]⊕rm+N0−`−N1 . Then
the vector bundles

η ⊕ S2,d$ and λ−`d,m ⊕ ψd,m[r1, . . . , rm]

are stable equivalent. Indeed, if η is stable equivalent to µd,m[m]⊕rm+N0−`−N1 ,
then there exist integers M1,M2 ≥ 0, and an isomorphism

η ⊕ τ⊕M1

d,m
∼= µd,m[m]⊕rm+N0−`−N1 ⊕ τ⊕M2

d,m .

Now the isomorphism (99) implies that

η ⊕ S2,d$ ⊕ λ⊕`d,m ⊕ τ
⊕N0+M1

d,m ⊕ µd,m[m]⊕N0−` ∼=
(µd,m[1]⊕r1 ⊕ · · · ⊕ µd,m[m− 1]⊕rm−1)⊕ µd,m[m]⊕rm⊕

µd,m[m]⊕N0−`−N1 ⊕ τ⊕N1+M2

d,m ⊕ µd,m[m]⊕N1 .

Hence,

(η ⊕ S2,d$)⊕ λ⊕`d,m ⊕ τ
⊕N0+M1

d,m ⊕ µd,m[m]⊕N0−` ∼=

ψd,m[r1, . . . , rm]⊕ τ⊕N1+M2

d,m ⊕ µd,m[m]⊕N0−`,

and consequently the vector bundles η ⊕ S2,d$ and λ−`d,m ⊕ ψd,m[r1, . . . , rm] are
stable equivalent. In particular,

w(λ−`d,m ⊕ ψd,m[r1, . . . , rm]) = w(η ⊕ S2,d$) = w(µd,m[m]⊕rm+N0−`−N1 ⊕ S2,d$).

Now we continue computation of the total Stiefel–Whitney class of the vector
bundle λ−`d,m ⊕ ψd,m[r1, . . . , rm] as follows:

w(λ−`d,m ⊕ ψd,m[r1, . . . , rm]) = w(µd,m[m]⊕rm+N0−`−N1 ⊕ S2,d$)

= w(µd,m[m])⊕rm+N0−`−N1 · w(S2,d$)

Lem. 6.5
= (1 + f)rm+N0−`−N1 · w(S2,d$)

= (1 + f)rm+N0−`−N1 · s2,d($)

=
( rm+N0−`−N1∑

i=0

(
rm +N0 − `−N1

i

)
f i
)
· s2,d($)

fd=0
=

( d−1∑
i=0

(
rm +N0 − `−N1

i

)
f i
)
· s2,d($).
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From Corollary 7.17 applied to the (d− 1)(2m−1− 1)-dimensional vector bundle $
we have that

s2,d($) =
∑

0≤r<s≤N

T (wr($)⊗ ws($))+

∑
0≤r≤N

∑
0≤j≤min{N−r,d−1}

(
N − r
j

)
P (wr($))f j ,

where N = (d− 1)(2m−1 − 1).
Combining the last two equations we get

w(λ−`d,m ⊕ ψd,m[r1, . . . , rm]) =
( d−1∑
i=0

(
rm +N0 − `−N1

i

)
f i
)
·( ∑

0≤r<s≤N

T (wr($)⊗ ws($)) +

∑
0≤r≤N

∑
0≤j≤min{N−r,d−1}

(
N − r
j

)
P (wr($))f j

)
(120)
=

∑
0≤r<s≤N

T (wr($)⊗ ws($)) +

d−1∑
i=0

∑
0≤r≤N

∑
0≤j≤min{N−r,d−1}(

rm +N0 − `−N1

i

)(
N − r
j

)
P (wr($)) f i+j .

Note that
— deg(T (wr($)⊗ ws($))) ≤ 2N − 1 = (d− 1)(2m − 2)− 1, and
— deg(P (wr($))f i+j) ≤ 2N + d− 1 = (d− 1)(2m − 1).
Consequently, we have that

w(d−1)(2m−1)(λ
−`
d,m ⊕ ψd,m[r1, . . . , rm]) =

(
rm +N0 − `−N1

d− 1

)
P (wN ($)) fd−1.

Before making final arguments that the Stiefel–Whitney class

w(d−1)(2m−1)(λ
−`
d,m ⊕ ψd,m[r1, . . . , rm])

does not vanish let us review all the assumptions we have:
—
(

(r12m−2+···+rm−120)+rm−(d−1+`)(2m−1−1)−`
d−1

)
6= 0 ∈ F2 — the assumption (95)

from the statement of the lemma, and
— w(d−1)(2m−1−1)($) 6= 0 — the induction hypothesis (97).
Hence, by the induction hypothesis we know that the class P (wN ($)) fd−1 does
not vanish. For the binomial coefficient

(
rm+N0−`−N1

d−1

)
note that the isomorphism

of vector bundles (96), by evaluating dimensions, implies that

N0 −N1 = (r12m−2 + · · ·+ rm−120)− (d− 1 + `)(2m−1 − 1),

or in other word

rm +N0 − `−N1 = (r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− `.

Therefore, by the assumption (95)(
rm +N0 − `−N1

d− 1

)
6= 0 ∈ F2.
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This completes the proof that

w(d−1)(2m−1)(λ
−`
d,m ⊕ ψd,m[r1, . . . , rm]) 6= 0.

�

Remark 6.7. Observe that the proof of the previous lemma actually yields the
following equivalence:(

(r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− `
d− 1

)
6= 0 ∈ F2

if and only if
w(d−1)(2m−1)(λ

−`
d,m ⊕ ψd,m[r1, . . . , rm]) 6= 0.

Remark 6.8. The proof of Lemma 6.6 can be simplified as follows. In the step
when made a choice of the vector bundle η, to be stable equivalent to the vector
bundle µm[m]⊕rm+N0−`−N1 , we could have in addition asked that η is in addition
(d − 1)-dimensional. (Note that µm[m] is a pull-back vector bundle of the vector
bundle λd,1 over RPd−1.) Then the Stiefel–Whitney class

w(d−1)(2m−1)(λ
−`
d,m ⊕ ψd,m[r1, . . . , rm]) = w(d−1)(2m−1)(η ⊕ S2,d$)

is actually the mod 2 Euler class e(η ⊕ S2,d$) of the vector bundle η ⊕ S2,d$.
Indeed, dim(η ⊕ S2,d$) = (d − 1)(2m − 1). Thus, using the product formula for
Euler classes [80, Prop. 9.6] we have that

w(d−1)(2m−1)(η ⊕ S2,d$) = e(η ⊕ S2,d$) = e(η) · e(S2,d$).

Here e(·) denotes the mod 2 Euler class of the respected vector bundle. Now from
Corollary 7.18 and the description of the cohomology H∗(Pe(Rd, 2m−1)/S2m−1 ;F2)
of the base space we have that

w(d−1)(2m−1)(η ⊕ S2,d$) = e(η) · e(S2,d$) =(
rm +N0 − `−N1

d− 1

)
P (wN ($)) fd−1 6= 0.

Thus, there was no need to evaluate the total Stiefel–Whitney class of the vector
bundle η ⊕ S2,d$ in full.

After proving Lemma 6.6 we want to discuss how to utilize it. In other words,
for which integer parameters d ≥ 2, m ≥ 1, r1, . . . , rm ≥ 0 the assumption (95) is
satisfied.

Lemma 6.9. Let d ≥ 2, m ≥ 1 and ` be integers, and let d = 2t + e for some
integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. If
(1) ` = 1, r1 = 0, and r2 = · · · = rm = 2e, or
(2) ` = d+ 1, and r1 = · · · = rm = 2e, or
(3) ` = −(d− 1 + k2t+1) for some integer k, and r1 = · · · = rm = 0,
then (

(r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− `
d− 1

)
= 1 ∈ F2.

Proof. (1) Let ` = 1, r1 = 0, and r2 = · · · = rm = 2e. Then

(r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− ` =

2e(2m−3 + · · ·+ 20) + 2e− d(2m−1 − 1)− 1 = 2m−1(e− d) + 2e+ d− 1 =

2m−1(e− d) + d− 1 =

{
d− 1− 2m−1+t, m ≥ 2,

−1, m = 1.
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Now,
( −1
d−1

)
=F2 1 ∈ F2 and

(
d−1−2m−1+t

d−1

)
=F2

(
d−1
d−1

)
=F2 1 ∈ F2, because for m ≥ 2

we have that m− 1 + t ≥ t+ 1 and d− 1 < 2m+1.
(2) Let ` = d+ 1, and r1 = · · · = rm = 2e. Then

(r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− ` =

2e(2m−2 + · · ·+ 20) + 2e− 2d(2m−1 − 1)− d− 1 = 2m(e− d) + d− 1

= d− 1− 2m+t.

Now
(
d−1−2m+t

d−1

)
=F2

1 ∈ F2, because d−1 < 2t+1 ≤ 2t+m, and in the ring of formal
power series F2[[T ]] the following equality holds

(1 + T )d−1−2m+t

= (1 + T )d−1(1 + T )−2m+t

=

(1 + T )d−1(1 + T 2m+t

)−1 = (1 + T )d−1
∑
j≥0

T j2
m+t

.

(3) Let ` = −(d − 1 + j2t+1) for some integer k ≥ 1, and r1 = · · · = rm = 0.
Then

(r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− ` =

− (d− 1 + `)(2m−1 − 1)− ` = d− 1 + k2m+t

Hence,
(
d−1+k2m+t

d−1

)
=F2

1 ∈ F2, because d− 1 < 2m+t, and in the ring F2[[T ]] the
following equality holds

(1 + T )d−1+k2m+t

= (1 + T )d−1(1 + T )k2m+t

=

(1 + T )d−1(1 + T 2m+t

)k = (1 + T )d−1
k∑
j=0

(
k

j

)
T j2

m+t

.

�

Now from Lemma 6.6 and Lemma 6.9 we get the following particular results.

Corollary 6.10. Let d ≥ 2, m ≥ 1 and k be integers, and let d = 2t + e for some
integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. Then
(1) w(d−1)(2m−1)(λ

−1
d,m ⊕ (µd,m[2]⊕ · · · ⊕ µd,m[m])⊕2e) 6= 0,

(2) w(d−1)(2m−1)(λ
−(d+1)
d,m ⊕ (µd,m[1]⊕ · · · ⊕ µd,m[m])⊕2e) 6= 0, and

(3) w(d−1)(2m−1)(λ
d−1+k2t+1

d,m ) 6= 0.

Remark 6.11. In the case (1) of the previous corollary for e = 0 we get an
alternative proof of Lemma 5.5. On the other hand, in the case (2) for e = 0 we
have a particular case of Theorem 5.17 (3).

6.3. Additional bounds for the existence of highly regular embeddings.
In this section we use consequences of the Key Lemma to derive further bounds for
the existence of highly regular embeddings.

First, we use Corollary 6.10 to get specific results which are relevant for the
study of highly regular embeddings.

Corollary 6.12. Let d ≥ 2 and m ≥ 1 be integers, and let d = 2t + e for some
integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. Then exist integers a and b with the property
that

(d− 1)(2m − 1)− 2(2m−1 − 1)e ≤ a ≤ (d− 1)(2m − 1),

(d− 1)(2m − 1)− 2(2m − 1)e ≤ b ≤ (d− 1)(2m − 1),
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and in addition, the Stiefel–Whitney classes

wa(λ−1
d,m) 6= 0 and wb(λ

−(d+1)
d,m ) 6= 0 (100)

do not vanish.

Proof. From Corollary 6.10 (i) we have that

w(d−1)(2m−1)(λ
−1
d,m ⊕ (µd,m[2]⊕ · · · ⊕ µd,m[m])⊕2e) 6= 0. (101)

On the other hand

w(d−1)(2m−1)(λ
−1
d,m ⊕ (µd,m[2]⊕ · · · ⊕ µd,m[m])⊕2e) =

(d−1)(2m−1)∑
i=0

wi(λ
−1
d,m) · w(d−1)(2m−1)−i((µd,m[2]⊕ · · · ⊕ µd,m[m])⊕2e),

where

dim(µd,m[2]⊕ · · · ⊕ µd,m[m])⊕2e = 2e · dim(µd,m[2]⊕ · · · ⊕ µd,m[m]) =

2e(2m−2 + · · ·+ 20) = 2e(2m−1 − 1). (102)

Now (101) and (102) imply that at lease one Stiefel–Whitney class wi(λ−1
d,m) 6= 0

does not vanish for

(d− 1)(2m − 1)− i ≤ 2e(2m−1 − 1) = 2e · dim(µd,m[2]⊕ · · · ⊕ µd,m[m])

and i ≤ (d− 1)(2m − 1). Hence we proved the first claim of (100).
For the second part of (100) recall Corollary 6.10 (ii):

w(d−1)(2m−1)(λ
−(d+1)
d,m ⊕ (µd,m[1]⊕ · · · ⊕ µd,m[m])⊕2e) 6= 0. (103)

Similarly,

w(d−1)(2m−1)(λ
−(d+1)
d,m ⊕ (µd,m[1]⊕ · · · ⊕ µd,m[m])⊕2e) =

(d−1)(2m−1)∑
i=0

wi(λ
−(d+1)
d,m ) · w(d−1)(2m−1)−i((µd,m[1]⊕ · · · ⊕ µd,m[m])⊕2e),

where

dim(µd,m[1]⊕ · · · ⊕ µd,m[m])⊕2e = 2e · dim(µd,m[1]⊕ · · · ⊕ µd,m[m]) =

2e(2m−1 + · · ·+ 20) = 2e(2m−1 − 1). (104)

In the same way, now (103) and (104), imply that there exists at lease one Stiefel–
Whitney class wi(λ

−(d+1)
d,m ) 6= 0 which does not vanish where

(d− 1)(2m − 1)− i ≤ 2e(2m − 1) = 2e · dim(µd,m[1]⊕ · · · ⊕ µd,m[m])

and i ≤ (d− 1)(2m − 1). Thus, we proved the second part of (100). �

Remark 6.13. Since the vector bundle λd,m is the pull-back of the vector bundle
ζRd,2m , and w(ζRd,2m) = w(ξRd,2m), the previous corollary implies, under identical
assumptions on parameters, that

wa(ξRd,2m) 6= 0 and wb(ξ
⊕d+1
Rd,2m) 6= 0.

Next, we use Corollary 6.12 to get further insights on the dual Stiefel–Whitney
classes w(ξRd,k) and w(ξ⊕d+1

Rd,k ), but this time without restricting to the case when
k is a power of 2.
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Corollary 6.14. Let d ≥ 2 and k ≥ 1 be integers, and let d = 2t + e for some
integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. Then exist integers A and B with the property
that

(d− e− 1)(k − α(k)) + e(α(k)− ε(k)) ≤ A ≤ (d− 1)(k − 1),

(d− 2e− 1)(k − α(k)) ≤ B ≤ (d− 1)(k − 1),

and in addition, the dual Stiefel–Whitney classes

wA(ξRd,k) 6= 0 and wB(ξ⊕d+1
Rd,k ) 6= 0 (105)

do not vanish. Recall that ε(k) = 1 for k odd, and ε(k) = 0 for k even.

Proof. Let r := α(k) be the number of 1s in the binary presentation of the integer
k ≥ 1, and let k = 2k1 + · · ·+ 2kr where 0 ≤ k1 < k2 < · · · < kr. Like in the proof
of Lemma 5.6, consider a morphism between vector bundles

∏r
i=1 ξRd,2ki and ξRd,k

where the following commutative square is a pullback diagram:∏r
i=1 ξRd,2ki

Θ
//

��

ξRd,k

��∏r
i=1 F(Rd, 2ki)/S2ki

θ
// F(Rd, k)/Sk.

Recall, that the map θ is induced, up to an equivariant homotopy, from a restriction
of the little cubes operad structural map.

Thus, we have that θ∗ξRd,k ∼=
∏r
i=1 ξRd,2ki , and consequently

θ∗(w(ξRd,k)) = w
( r∏
i=1

ξRd,2ki

)
and θ∗(w(ξ⊕d+1

Rd,k )) = w
( r∏
i=1

ξ⊕d+1
Rd,2ki

)
. (106)

The product formula for Stiefel–Whitney classes [80, Pr. 4-A, p. 54] implies that

w
( r∏
i=1

ξRd,2ki

)
= w(ξRd,2k1 )× · · · × w(ξRd,2kr ),

and similarly

w
( r∏
i=1

ξ⊕d+1
Rd,2ki

)
= w(ξ⊕d+1

Rd,2k1 )× · · · × w(ξ⊕d+1
Rd,2kr ).

From Corollary 6.12 and for every 0 ≤ k1 < k2 < · · · < kr there exist integers
a1, . . . , ar, and integers b1, . . . , br, with the property that

a1 = 0, k1 = 0,

a1 ≥ (d− 1)(2k1 − 1)− 2(2k1−1 − 1)e, k1 ≥ 1,

ai ≥ (d− 1)(2ki − 1)− 2(2ki−1 − 1)e, 2 ≤ i ≤ r,

and 
b1 = (d− 1)(2k1 − 1)− 2(2k1 − 1)e = 0, k1 = 0,

b1 ≥ (d− 1)(2k1 − 1)− 2(2k1 − 1)e, k1 ≥ 1,

bi ≥ (d− 1)(2ki − 1)− 2(2ki − 1)e, 2 ≤ i ≤ r,
and in addition the dual Stiefel– Whitney classes

wai(ξRd,2ki ) 6= 0 and wbi(ξ
⊕d+1
Rd,2ki ) 6= 0.

do not vanish.
Let denotes the sums of integers a1, . . . , ar and b1, . . . , br by

A :=

r∑
i=0

ai ≥ (d− e− 1)(k − α(k)) + e(α(k)− ε(k)),
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and

B :=

r∑
i=0

bi ≥ (d− 2e− 1)(k − α(k)).

Now, from the product formula for Stiefel–Whitney classes and the Künneth for-
mula we conclude that

wA

( r∏
i=1

ξRd,2ki

)
6= 0 and wB

( r∏
i=1

ξ⊕d+1
Rd,2ki

)
6= 0.

(For details of the last argument consult for example the proof of Lemma 5.6.)
Finally, from the pull-backs (106) we conclude that

wA(ξRd,k) 6= 0 and wB(ξ⊕d+1
Rd,k ) 6= 0.

�

Combining the results of Corollary 6.14 and the approach used in the proof of
Theorem 5.21 we get the following result.

Corollary 6.15. Let d ≥ 2, k ≥ 1 and ` ≥ 1 be integers, and let d = 2t + e for
some integers t ≥ 1 and 0 ≤ e ≤ 2t− 1. Then exists an integer C with the property
that

(d− e− 1)(k − α(k)) + e(α(k)− ε(k)) + (d− 2e− 1)(`− α(`)) ≤
C ≤ (d− 1)(k + `− 2),

and in addition, the dual Stiefel–Whitney class

wC(ξRd,k × ξ⊕d+1
Rd,` ) 6= 0 (107)

does not vanish.

Proof. We start as in the proof of Theorem 5.21. To compute the dual Stiefel–
Whitney class of the product vector bundle ξRd,k × ξ

⊕(d+1)

Rd,` we apply the product
formula [80, Problem 4-A, page 54]:

w
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)

= w(ξRd,k)× w
(
ξ
⊕(d+1)

Rd,`
)
.

Hence, for fixed r ≥ 0 we have that

wr
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)

=
∑
i+j=r

wi(ξRd,k)× wj
(
ξ
⊕(d+1)

Rd,`
)

∈ Hr(F(Rd, k)/Sk × F(Rd, `)/S`;F2).

From the Künneth formula we get that each of the terms wi(ξRd,k)× wj
(
ξ
⊕(d+1)

Rd,`
)

in the previous sum belongs to a different direct summand of the cohomology

Hr(F(Rd, k)/Sk × F(Rd, `)/S`;F2) ∼=⊕
i+j=r

Hi(F(Rd, k)/Sk;F2)⊗Hj(F(Rd, `)/S`;F2).

Therefore, the following equivalence holds:

wr
(
ξRd,k × ξ

⊕(d+1)

Rd,`
)
6= 0⇐⇒ wi(ξRd,k)× wj

(
ξ
⊕(d+1)

Rd,`
)
6= 0 for some i+ j = r.

Now, from Corollary 6.14 we know that there are integers A and B such that

(d− e− 1)(k − α(k)) + e(α(k)− ε(k)) ≤ A ≤ (d− 1)(k − 1),

(d− 2e− 1)(`− α(`)) ≤ B ≤ (d− 1)(`− 1),

and
wA(ξRd,k) 6= 0 and wB(ξ⊕d+1

Rd,` ) 6= 0.
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Consequently, for C = A + B we have that wA(ξRd,k) × wB
(
ξ
⊕(d+1)

Rd,`
)
6= 0 and so

wC(ξRd,k × ξ⊕d+1
Rd,` ) 6= 0. Obviously, we have that

(d− e− 1)(k − α(k)) + e(α(k)− ε(k)) + (d− 2e− 1)(`− α(`)) ≤
C ≤ (d− 1)(k + `− 2),

and we have completed the proof of the corollary. �

Finally, using the criteria in Lemma 5.4, Lemma 5.16 and Lemma 5.20 in com-
bination with Corollary 6.14 and Corollary 6.15 we get the strongest lower bounds
for the existence of highly regular embeddings.

Theorem 6.16. Let d ≥ 2, k ≥ 1 and ` ≥ 1 be integers, and let d = 2t + e for
some integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. Then
(1) there is no k-regular embedding Rd −→ RN if

N ≤ (d− e− 1)(k − α(k)) + e(α(k)− ε(k)) + k − 1,

(2) there is no `-skew embedding Rd −→ RN if

N ≤ (d− 2e− 1)(`− α(`)) + (d+ 1)`− 2,

(3) there is no k-regular-`-skew embedding Rd −→ RN if

N ≤ (d− e− 1)(k − α(k)) + e(α(k)− ε(k))+

(d− 2e− 1)(`− α(`)) + (d+ 1)`+ k − 2.

In order to explain the strength of the previous theorem we demonstrate that
Theorem 5.14, Theorem 5.18 and Theorem 5.22 are consequences of Theorem 6.16.

Corollary 6.17. Let d ≥ 2 and k ≥ 1 be integers, and let d = 2t + e for some
integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. Then

Theorem 6.16(1) =⇒ Theorem 5.14.

Proof. We check that Theorem 6.16(1) implies all three cases of Theorem 5.14
independently.

(1) In Theorem 5.14(1) it is stated that for d being a power of 2 there is no
k-regular embedding Rd −→ RN when N ≤ d(k − α(k)) + α(k) − 1. The same
results follows from Theorem 6.16(1) by taking e = 0 and observing that in this
case

(d− e− 1)(k − α(k)) + e(α(k)− ε(k)) + k − 1 = (d− 1)(k − α(k)) + k − 1 =

(d− 1)(k − α(k)) + k − α(k) + α(k)− 1 = d(k − α(k)) + α(k)− 1.

(2) Next, in Theorem 5.14(2) it is claimed that for d being not a power of 2
there is no k-regular embedding Rd −→ RN when N ≤ 1

2 (d− 1)(k − ε(k)) + k − 1.
Since d is not a power of 2 we have that e > 0. Set that k = 2k′ + ε(k). Hence,
α(k) = α(k′) + ε(k). Now, the claim of Theorem 5.14(2) follows from Theorem
6.16(1) since the following difference is non-negative:(

(d− e− 1)(k−α(k)) + e(α(k)− ε(k)) + k− 1
)
−
(1

2
(d− 1)(k− ε(k)) + k− 1

)
=

(2t − 1− 1

2
(2t + e− 1))k − (2t − 1− e)α(k) +

(1

2
(2t + e− 1)− e

)
ε(k) =

1

2
(2t − e− 1)k − (2t − 1− e)α(k) +

1

2

(
2t − e− 1

)
ε(k) =

1

2

(
2t − e− 1

)
(k − 2α(k) + ε(k)) =

(
2t − e− 1

)
(k′ − α(k′)) ≥ 0.
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(3) Finally, Theorem 5.14(3) says that for d being even and not a power of 2 there
is no k-regular embedding Rd −→ RN when N ≤ 1

2d(k− ε(k))+k−α(k)+ ε(k)−1.
We see that this result is also a consequence of Theorem 6.16(1) by showing that
following difference is non-negative:(

(d−e−1)(k−α(k))+e(α(k)−ε(k))+k−1
)
−
(1

2
d(k−ε(k))+k−α(k)+ε(k)−1

)
=

(2t−1)k− (2t−1)α(k)+eα(k)−eε(k)− 1

2

(
2t+e

)
k+

1

2

(
2t+e

)
ε(k)+α(k)− ε(k) =

1

2

(
2t − e− 2

)
k − (2t − 2− e)α(k) +

1

2

(
2t − e− 2

)
ε(k) =

1

2

(
2t − e− 2

)
(k + ε(k)− 2α(k)) =

(
2t − e− 2

)
(k′ − α(k′)) ≥ 0.

Here we have that e ≤ 2t − 2 and ε(k) = 0, because e is even. As in the previous
computation we set k = 2k′ + ε(k) = 2k′, and so α(k) = α(k′) + ε(k) = α(k′). �

Corollary 6.18. Let d ≥ 2 and ` ≥ 1 be integers, and let d = 2t + e for some
integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. Then

Theorem 6.16(2) =⇒ Theorem 5.18.

Proof. We discuss each part of Theorem 5.18 separately.
(1) In Theorem 5.18(1) it is stated that for d = 2 and ` ≥ 2 there is no `-skew

embedding R2 −→ RN when N ≤ 4`− α(`)− 2. The same conclusion follows from
Theorem 6.16(2) because in this case d = 2t + e = 2 ⇔ t = 1, e = 0, and the
following difference vanishes:(

(d− 2e− 1)(`− α(`)) + (d+ 1)`− 2
)
−
(
4`− α(`)− 2

)
=

(`− α(`) + 3`− 2)− (4`− α(`)− 2) = 0.

(2) In Theorem 5.18(2) we have claimed that for d ≥ 1 and ` = 2 there is no
2-skew embedding Rd −→ RN when N ≤ 2γ(d) +d−1. Since we have assumed that
d = 2t + e and 0 ≤ e ≤ 2t − 1 note that 2γ(d) = 2t+1. Again, the case result can be
deduced from Theorem 6.16(2) because the following difference vanishes:(

(d− 2e− 1)(`− α(`)) + (d+ 1)`− 2
)
−
(
2γ(d) + d− 1

)
=

d− 2e− 1 + 2d+ 2− 2− 2γ(d) − d− 1 = 2d− 2γ(d) − 2e =

2t+1 + 2e− 2t+1 − 2e = 0.

(3) In Theorem 5.18(3) we considered the case when d = 2t + 0 ≥ 2 is a power
of 2 and ` ≥ 2. We proved that there is no `-skew embedding Rd −→ RN when
N ≤ 2d`− (d−1)α(`)−2. To see that Theorem 6.16(2) implies this result we show
that the following difference vanishes:(

(d− 2e− 1)(`− α(`)) + (d+ 1)`− 2
)
−
(
2d`− (d− 1)α(`)− 2

)
=

(d− 1)`− (d− 1)α(`) + (d+ 1)`− 2d`+ (d− 1)α(`) = 0.

(4) In Theorem 5.18(4) we analysed the case when d + 1 ≥ 2 is a power of 2
and ` ≥ 2. We showed that the method based of the computation of dual Stiefel–
Whitney class does not produce any non-trivial result about the existence of `-skew
embeddings Rd −→ RN . In this situation also Theorem 6.16(2) does not give any
relevant result.

(5) In Theorem 5.18(5) we studied the case where both d ≥ 5 and d + 1 are
not powers of 2 and ` ≥ 3. We showed that there cannot be `-skew embedding
Rd −→ RN for N ≤ 1

2 (2γ(d) − d − 1)(` − ε(`)) + (d + 1)` − 2. In order to see
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that Theorem 6.16(2) implies this result we show that the following difference is
non-negative:(

(d−2e−1)(`−α(`))+(d+1)`−2
)
−
(1

2
(2γ(d)−d−1)(`− ε(`))+(d+1)`−2

)
=

(2t − e− 1)
(
`− α(`)− 1

2

(
2t+1 − 2t − e− 1

)
(`− ε(`)

)
=

1

2

(
2t − e− 1

)
(`− α(`) + ε(`)) ≥ 0.

(6) In the last case, Theorem 5.18(6), we have that d ≥ 5 and d + 1 are not
powers of two, 2γ(d) − d− 1 = 2a1z where a1 ≥ 0 and z ≥ 1 is odd, and ` ≥ 3. We
proved that in this case there is no `-skew embedding Rd −→ RN for

N ≤ 1

2

(
2γ(d) − d− 1 + 2a1

)
(`− ε(`))− 2a1α(`) + (d+ 1)`− 2.

In order to see that Theorem 6.16(2) implies this result we first note that in this
case

d = 2t + e, 1 ≤ e ≤ 2t − 2, 2a1z = 2γ(d) − d− 1 = 2t − e− 1.

Now, as in the previous situations we consider the following difference and show
that it is non-negative:(

(d− 2e− 1)(`− α(`)) + (d+ 1)`− 2
)
−(1

2

(
2γ(d) − d− 1 + 2a1

)
(`− ε(`))− 2a1α(`) + (d+ 1)`− 2

)
=

(2t − e− 1)(`− α(`))

− 1

2

(
2t − e− 1

)
(`− ε(`))− 2a1−1(`− ε(`)) + 2a1α(`) =

2a1−1z(`− 2α(`) + ε(`))− 2a1−1(`− 2α(`)− ε(`)) =

2a1−1
(
(z − 1)(`− 2α(`)) + (z + 1)ε(`)

)
≥ 0.

This concludes the proof of the corollary. �

In the same way as previous two corollaries we can show the following.

Corollary 6.19. Let d ≥ 2, k ≥ 1 and ` ≥ 1 be integers, and let d = 2t + e for
some integers t ≥ 1 and 0 ≤ e ≤ 2t − 1. Then

Theorem 6.16(3) =⇒ Theorem 5.22.

6.4. Additional bounds for the existence of complex highly regular em-
beddings. In this section we derive additional consequence of Lemma 6.6 which
yields further bounds for the existence of complex highly regular embeddings. In
particular, we will improve bounds given in Theorem 5.26 and Theorem 5.28.

Let us denote by λCd,m := C ⊗ λd,m and ψC
d,m[rC1 , . . . , r

C
m] := C ⊗ ψd,m complex

versions of the real vector bundles λd,m and ψd,m[r1, . . . , rm]. Note that there is an
isomorphism of real vector bundles λCd,m ∼= λ⊕2

d,m and

ψC
d,m[rC1 , . . . , r

C
m] ∼= ψd,m[2rC1 , . . . , 2r

C
m].

The following lemma is a consequence of Lemma 6.6.

Lemma 6.20. Let m ≥ 1, dC ≥ 1 and `C ≥ 1 be integers, and let rC1 , . . . , rCm be
non-negative integers. If the binomial coefficient(

(rC1 2m−2 + · · ·+ rCm−120) + rCm − (dC − 1 + `C)(2m−1 − 1)− `C

dC − 1

)
(108)
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is odd, then

w2(dC−1)(2m−1)((λ
C
2dC−1,m)−`

C
⊕ ψC

2dC−1,m[rC1 , . . . , r
C
m]) 6= 0,

as an element of the cohomology group H2(dC−1)(2m−1)(Pe(Rd, 2m)/S2m ;F2). Here
(λC2dC−1,m)−`

C
denotes an inverse of the vector bundle (λC2dC−1,m)⊕`.

Proof. There is isomorphism of real vector bundles

(λC2dC−1,m)−`
C
⊕ ψC

2dC−1,m[rC1 , . . . , r
C
m] ∼= λ−2`C

2dC−1,m
⊕ ψ2dC−1,m[2rC1 , . . . , 2r

C
m].

Thus, it suffices to prove that

w2(dC−1)(2m−1)(λ
−2`C

2dC−1,m
⊕ ψ2dC−1,m[2rC1 , . . . , 2r

C
m]) 6= 0.

If we set that d = 2dC−1, ` = 2`C, and r1 := 2rC1 , . . . , r1 := 2rCm, then by Lemma
6.6 we have that the Stiefel–Whitney class

w2(dC−1)(2m−1)(λ
−2`C

2dC−1,m
⊕ ψ2dC−1,m[2rC1 , . . . , 2r

C
m]) =

w(d−1)(2m−1)(λ
−`
d,m ⊕ ψd,m[r1, . . . , rm]) 6= 0

does not vanish if and only if the binomial coefficient(
(r12m−2 + · · ·+ rm−120) + rm − (d− 1 + `)(2m−1 − 1)− `

d− 1

)
=(

2
(
(rC1 2m−2 + · · ·+ rCm−120) + rCm − (dC − 1 + `C)(2m−1 − 1)− `C

)
2(dC − 1)

)
is odd. Since the binomial coefficient

(
2a
2b

)
is odd if and only if the binomial coeffi-

cient
(
a
b

)
is odd, then the assumption (108) implies that the binomial coefficient(

2
(
(rC1 2m−2 + · · ·+ rCm−120) + rCm − (dC − 1 + `C)(2m−1 − 1)− `C

)
2(dC − 1)

)
is odd. Hence, w2(dC−1)(2m−1)((λ

C
2dC−1,m)−`

C ⊕ ψC
2dC−1,m[rC1 , . . . , r

C
m]) 6= 0. �

Let us denote by µC
d,m[j] := C⊗ µd,m[j], for all 1 ≤ j ≤ m, the complex version

of the real vector bundle µd,m[j]. There is an isomorphism of real vector bundles
µC
d,m[j] ∼= µd,m[j]⊕2. Now, like in the case of Lemma 6.9 and Corollary 6.10, we

deduce the following consequence of Lemma 6.20.

Corollary 6.21. Let dC ≥ 2 and m ≥ 1 be integers, and let dC = 2t + e for some
integer t ≥ 1 and 0 ≤ e ≤ 2t − 1. If d = 2dC − 1, then
(1) w2(dC−1)(2m−1)

(
(λCd,m)−1 ⊕ (µC

d,m[2]⊕ · · · ⊕ µC
d,m[m])⊕2e

)
6= 0,

(2) w2(dC−1)(2m−1)((λ
C
d,m)−(dC+1) ⊕ (µC

d,m[1]⊕ · · · ⊕ µC
d,m[m])⊕2e) 6= 0.

Proof. The proof is almost identical to the proof of Lemma 6.9. For the sake of
completeness we present the proof in detail.

(1) Let `C = 1, rC1 = 0, and rC2 = · · · = rCm = 2e. Then

(rC1 2m−2 + · · ·+ rCm−120) + rCm − (dC − 1 + `C)(2m−1 − 1)− `C =

2e(2m−3 + · · ·+ 20) + 2e− dC(2m−1 − 1)− 1 = 2m−1(e− dC) + 2e+ dC − 1 =

2m−1(e− dC) + dC − 1 ={
dC − 1− 2m−1+t, m ≥ 2,

−1, m = 1.
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Since
( −1
dC−1

)
=F2

1 ∈ F2 and
(
dC−1−2m−1+t

dC−1

)
=F2

(
dC−1
dC−1

)
=F2

1 ∈ F2, the assumption
of Lemma 6.20 is satisfied for the chosen parameters. Consequently,

w2(dC−1)(2m−1)

(
(λCd,m)−1 ⊕ (µC

d,m[2]⊕ · · · ⊕ µC
d,m[m])⊕2e

)
6= 0.

(2) Let `C = d+ 1, rC1 = 0, and rC1 = · · · = rCm = 2e. Hence

(rC1 2m−2 + · · ·+ rCm−120) + rCm − (dC − 1 + `C)(2m−1 − 1)− `C =

2e(2m−2 + · · ·+ 20) + 2e− 2dC(2m−1 − 1)− dC − 1 =

2m(e− dC) + dC − 1 = dC − 1− 2m+t.

Thus,
(
dC−1−2m+t

dC−1

)
=F2

1 ∈ F2, because dC − 1 < 2t+1 ≤ 2t+m. Consequently, the
assumption of Lemma 6.20 is satisfied for the chosen parameters, and so

w2(dC−1)(2m−1)((λ
C
d,m)−(dC+1) ⊕ (µC

d,m[1]⊕ · · · ⊕ µC
d,m[m])⊕2e) 6= 0.

�

Just as in the proof of Corollary 6.14 we can derive the following estimate for
non-vanishing of the relevant dual Stiefel–Whitney classes.

Corollary 6.22. Let dC ≥ 2 and m ≥ 1 be integers, and let dC = 2t + e for some
integer t ≥ 1 and 0 ≤ e ≤ 2t − 1. Set d = 2dC − 1. Then there exist integers a and
b with the property that

(dC − 1)(2m − 1)− 2(2m−1 − 1)e ≤ a ≤ (dC − 1)(2m − 1),

(dC − 1)(2m − 1)− 2(2m − 1)e ≤ b ≤ (dC − 1)(2m − 1),

and in addition, the dual Stiefel–Whitney classes

w2a(λCd,m) 6= 0 and w2b((λ
C
d,m)d

C+1) 6= 0,

do not vanish.

Now, using the criteria for the existence of complex k-regular embeddings and
complex `-skew embeddings given in Lemma 5.25, we can directly derive the fol-
lowing estimates — a complex analogue of Theorem 6.16.

Theorem 6.23. Let dC ≥ 2, m ≥ 1, k ≥ 1 and ` ≥ 1 be integers, and let dC = 2t+e
for some integer t ≥ 1 and 0 ≤ e ≤ 2t − 1. Set d = 2dC − 1. Then

(i) there is no complex k-regular embedding Rd −→ CN if

N ≤ (dC − 1− e)(k − α(k)) + e(α2(k)− ε(k)) + k − 1,

(ii) there is no complex `-skew embedding CdC −→ CN if

N ≤ (dC − 1− 2e)(`− α(`)) + (dC + 1)`− 2.

In a similar way as in Corollary 6.17, Corollary 6.18 and Corollary 6.19 it can
be verified that Theorem 6.23 implies Theorem 5.26 and Theorem 5.28.

7. Appendix

7.1. Operads. In this section we recall basic notions from the theory of operads
that we use. We follow the framework developed by May in [76], with some slight
modifications in the notation.

Let Top be the category of compactly generated weak Hausdorff spaces with
continuous maps as morphisms, and let Toppt denote the category of compactly
generated weak Hausdorff spaces with non-degenerate base points where the mor-
phisms are base point preserving continuous maps. Furthermore, assume that all
the products as well as function spaces are endowed with compactly generated
topology.



EQUIVARIANT COHOMOLOGY OF CONFIGURATION SPACES MOD 2 113

7.1.1. Definition and basic example. The notion of an operad and its first formal
definition appeared in work of May in 1970’s. For more details consult the original
publication [76, Sec. 1].

Definition 7.1. An operad O is given by a family of topological spaces in Top

O := {O(n) : n ≥ 0} where O(0) := {pt}

together with a family of continuous maps

µ : (O(n1)× · · · × O(nk))×O(k) −→ O(n)

where k, n1, . . . , nk ≥ 0 and n = n1 + · · ·+ nk, such that the following axioms are
satisfied:
(1) For every a ∈ O(k), b1 ∈ O(n1), . . . , bk ∈ O(nk), c1 ∈ O(m1), . . . , cn ∈ O(mn)

µ(c1, . . . , cn;µ(b1, . . . , bk; a)) = µ(d1, . . . , dk; a)

where for 1 ≤ i ≤ k

di :=

{
µ(cn1+···+ni−1+1, . . . , cn1+···+ni ; bi), ni 6= 0

pt, ni = 0.

Here n = n1 + · · ·+ nk.
(2) There exists an element 1 ∈ O(1) with the property that for every a ∈ O(n)

and every b ∈ O(k)

µ(a;1) = a, µ(1, . . . ,1; b) = b.

(3) Every space O(n) is endowed with a right action of the symmetric group Sn

that fulfills

µ(b1, . . . , bk; a · π) = µ(bπ−1(1), . . . , bπ−1(k); a) · πn1,...,nk , (109)
µ(b1 · π1, . . . , bk · πk; a) = µ(b1, . . . , bk; a) · (π1, . . . , πk),

where the permutation
— πn1,...,nk ∈ Sn is given by permuting k blocks

(1, . . . , n1)(n1 + 1, . . . , n1 + n2) · · · (n1 + · · ·nk−1 + 1, . . . , n1 + · · ·nk)

as the permutation π ∈ Sk permutes (1, . . . , k), and
— (π1, . . . , πk) ∈ Sn denotes the image of (π1, . . . , πk) ∈ Sn1

× · · · ×Snk

via the inclusion Sn1
× · · · ×Snk ↪→ Sn.

If in addition each action of the symmetric group Sn on O(n) is free the operad O
is called a S-free operad. The map µO := µ is called the structural map of the
operad O.

The defining requirement on the action of the symmetric group Sn on O(n) for
n ≥ 0, Definition 7.1(3), directly implies the following property of the structural
map.

Lemma 7.2. Let k ≥ 1 be an integer, and let n1, . . . , nk be integers such that

n1 = · · · = ni1 < ni1+1 = · · · = ni2 < · · · < nir−1+1 = · · · = nir

where 1 ≤ i1 < i2 < · · · < ir−1 < ir = k. Then
(1) The product (O(n1)× · · · × O(nk))×O(k) is endowed with a

Sn1,...,nk;k =

(Si1
ni1

oSi1)× (Si2−i1+1
ni2

oSi2−i1+1)× · · · × (Sir−ir−1+1
nir

oSir−ir−1+1)

right action.
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(2) The structural map

µ : (O(n1)× · · · × O(nk))×O(k) −→ O(n),

with n := n1 + · · · + nk, is an equivariant map with respect to the natural
inclusion map of the groups Sn1,...,nk;k ↪→ Sn.

The first and the central example of an operad is the endomorphism operad as-
sociated with any topological space in Toppt. The importance of the endomorphism
operad will be become apparent after the definition of an action of an operad on a
topological space.

Example 7.3. Let X be a topological space in Toppt. The endomorphism op-
erad EndX associated to X is defined as follows:
— EndX(n) := MorToppt(X

n, X) where n ≥ 0 and X0 := pt,
— µ(g1, . . . , gk; f) := f ◦(g1×· · ·×gk) for f ∈ EndX(k), g1 ∈ EndX(n1), . . . , gk ∈
EndX(nk), and

— (f ·π)(x1, . . . , xk) := f(xπ−1(1), . . . , xπ−1(k)) where f ∈ EndX(k), π ∈ Sk, and
(x1, . . . , xk) ∈ Xk.

The endomorphism operad is not a S-free operad.

In order to have a category of operads we introduce a notion of a morphism
between operads.

Definition 7.4. Let O and D be operads. A morphism of operads Φ: O −→ D
is a family of Sn-equivariant maps Φn : O(n) −→ D(n) such that the following
diagram commute:

(O(n1)× · · · × O(nk))×O(k)
µO

//

(Φn1
×···×Φnk )×Φk

��

O(n)

Φn

��

(D(n1)× · · · × D(nk))×D(k)
µD

// D(n)

for every collection of integers k, n1, . . . , nk ≥ 0 where n := n1 + · · ·+ nk.
The category of operads Op consists of operads as objects and morphisms of

operads as morphisms.

7.1.2. O-space. An action of an operad on a topological with a base point is defined
as follows.

Definition 7.5. Let X be a space in Toppt and let O be an operad. An action
of the operad O on the space X is a morphism of operads Θ: O −→ EndX . The
pairs (X,Θ) is called an O-space.
Amorphism of O-spaces (X,Θ) and (X ′,Θ′) is a continuous based map f : X −→
X ′ in Toppt such that for every n ≥ 0 and every a ∈ O(n) the following diagram
commutes

Xn
Θn(a)

//

fn

��

X

f

��

Y n
Θ′n(a)

// Y.

An equivalent definition of the action of an operad on a topological space is
formulated in the following elementary lemma.
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Lemma 7.6. Let X be a space in Toppt, and let O be an operad. An action
Θ: O −→ EndX of the operad O on X determines and is determined by the family
of continuous maps

Θn : Xn ×O(n) −→ X,

where Θ0 : pt −→ X is the inclusion of the base point, that satisfy the following
properties:
(1) For every k, n1, . . . , nk ≥ 0 and n := n1 + · · · + nk the following diagram

commutes

Xn × (O(n1)× · · · × O(nk))×O(k)
id×µ

//

s

��

Xn ×O(n)

Θn

$$

X

(
Xn1 ×O(n1)

)
× · · · ×

(
Xnk ×O(nk)

)
×O(k)

Θn1×···×Θnk×id
// Xk ×O(k)

Θk

::

where

s : Xn × (O(n1)× · · · × O(nk))×O(k) −→(
Xn1 ×O(n1)

)
× · · · ×

(
Xnk ×O(nk)

)
×O(k)

is the obvious shuffle homeomorphism.
(2) For every x ∈ X

Θ1(x;1) = x.

(3) For every a ∈ O(n), π ∈ Sn, and every (x1, . . . , xn) ∈ Xn

Θn(x1, . . . , xn; a · π) = Θn(xπ−1(1), . . . , xπ−1(n); a).

Furthermore, if f : (X,Θ) −→ (X ′,Θ′) is a morphism of O-spaces, then for every
n ≥ 0 the following diagram commutes

Xn ×O(n)
Θn

//

fn×id

��

X

f

��

(X ′)n ×O(n)
Θ′n

// X ′.

7.1.3. Little cubes operad. In this section we give an example of an operad whose
structural map is studied in the central part of this work.

Let I := [0, 1] ⊆ R be the unit interval, and then Id ⊆ Rd is the associated
d-cube. Denote by p := ( 1

2 , . . . ,
1
2 ) ∈ Id the centre of the d-cube. A little d-cube

is simply an embedding of a cube into Id in such a way that then corresponding
edges are parallel, see illustration in Figure 11.

Definition 7.7. Let d ≥ 1 be an integer. A little d-cube is an orientation
preserving affine embedding ~c : Id −→ Id of a d-cube that can be presented as the
product map ~c = c1 × · · · × cd where each ci : I −→ I, 1 ≤ i ≤ d, is an orientation
preserving affine embedding.

Now, the little cubes operad is defined as follows.

Definition 7.8. Let d ≥ 1 be an integer. The little d-cubes operad Cd, for
n ≥ 1, is defined by the family of topological spaces of all n-tuples of little d-cubes
whose interiors are pairwise disjoint, that is

Cd(n) := {α := (~c1, . . . ,~cn) : ~ci(int Id) ∩ ~cj(int Id) = ∅ for i 6= j}.
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~c1

~c2

~c3

~c4

~c1

Figure 11. Illustration of a 2-cube and an element of the little 2-cube operad.

The space Cd(0) is the point, containing the unique “embedding” of the empty set
into the cubde Id. The n-tuple α = (~c1, . . . ,~cn) of little d-cubes can be seen also as
a continuous map α :

∐n
j=1 I

d −→ Id, where “
∐
” denotes the disjoint union. The

space Cd(0) is assumed to be a point interpreted as the unique embedding of the
empty set into Id. The space Cd(n) is equipped with the subspace topology induced
from the space of all continuous maps

∐n
j=1 I

d −→ Id.
The remaining necessary ingredients for the definition the little d-cube operad

are given as follows.
(1) The structural map of the little d-cube operad

µ : (Cd(n1)× · · · × Cd(nk))× Cd(k) −→ Cd(n),

n = n1 + · · ·+ nk, is defined as a composition

α ◦ (β1 ] · · · ] βk) :
( n1∐
j=1

Id
)
q · · · q

( nk∐
j=1

Id
)
−→

( k∐
j=1

Id
)
−→ Id

where α ∈ C(k) and β1 ∈ Cd(n1), . . . , βk ∈ Cd(nk).
(2) The element 1 ∈ Cd(1) is the identity map id : Id −→ Id.
(3) The right action of the symmetric group Sn on the space Cd(n) is given by

(~c1, . . . ,~cn) · π := (~cπ(1), . . . ,~cπ(n)).

The little d-cubes operad is an S-free operad since for each n the symmetric group
Sn acts freely on Cd(n).

There exists an Sn-equivariant map of little d-cube operad space Cd(n) into
the configuration space F(Rd, n) given by evaluating each cube at the centre p =
( 1

2 , . . . ,
1
2 ) ∈ Id:

evd,n : Cd(n) −→ F(Rd, n), (~c1, . . . ,~cn) 7−→ (~c1(p), . . . ,~cn(p)). (110)

This map is an Sn-equivariant homotopy equivalence, see [76, Thm. 4.8].

Lemma 7.9. For integers d ≥ 1 and n ≥ 1 the evaluation at centers of cubes map
evd,n : Cd(n) −→ F(Rd, n) is an Sn-equivariant homotopy equivalence of the spaces
Cd(n) and F(Rd, n).

7.1.4. Cd-spaces, an example. In this section we give an example of a family of Cd-
spaces. More precisely, for a pointed topological space X we define an action of the
little cubes operad Cd on its d-fold loop space ΩdX. For more details consult for
example [76, Thm. 5.1].
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In order to define a Cd-action on the d-fold loop space ΩdX we use Lemma 7.6
and give a family of functions

Θd,n : (ΩdX)n × Cd(n) −→ ΩdX.

For ω1, . . . , ωn ∈ ΩdX and (~c1, . . . ,~cn) ∈ Cd(n) the loop

Θd,n(ω1, . . . , ωn;~c1, . . . ,~cn) : Id −→ X

is defined, when x ∈ Id, by

Θd,n(ω1, . . . , ωn;~c1, . . . ,~cn)(x) :=

{
ωi(~c

−1
i (x)), if x ∈ ~ci(Id) for some 0 ≤ i ≤ n,

pt, otherwise,

where pt ∈ X is the base point. In the case d = 1 the elements ω1, . . . , ωn are
pointed loops and the the map Θ1,n(ω1, . . . , ωn;~c1, . . . ,~cn) is just a concatenation
of loops ω1, . . . , ωn specified by the collection of, pairwise interior disjoint, intervals
(~c1, . . . ,~cn) ∈ C1(n). For an illustration see Figure 12. By direct inspection it can
be verified that just defined family of functions satisfies all the necessary conditions
of Lemma 7.6. Thus, for a spaceX in Toppt the d-fold loop space ΩdX is a Cd-space.

~c1 ~c2 ~c3

ω1
ω2

ω3

Figure 12. An illustration of the loop Θ1,3(ω1, ω2, ω1;~c1,~c2,~c3).

7.1.5. Cd-spaces, a free Cd-space over X. Let X be a pointed space with the base
point pt ∈ X, and let d ≥ 1 be an integer. Then we define the Cd-space associated
to X to be the quotient space

Cd(X) :=
( ∐
m≥0

Cd(m)×Sm Xm
)
/≈

where for (~c1, . . . ,~cm) ∈ Cd(m) and (x1, . . . , xm−1,pt) ∈ Xm we define equivalence
relation generated by

((~c1, . . . ,~cm−1,~cm), (x1, . . . , xm−1,pt)) ≈ ((~c1, . . . ,~cm−1), (x1, . . . , xm−1)).

The Cd-action on Cd(X) is induced from the structural maps of the little cubes
operad Cd. For more details on the definition of Cd(X), as a monad associated to
the operad Cd, see [76, Constr. 2.4].

The Cd-space Cd(X), associated to the pointed space X, can be called the free
Cd-space generated by X, because for every Cd-space Y there exists a bijective
correspondence

(morphisms of Cd-space from Cd(X) to Y )←→
(morphisms of topological space from X to Y ). (111)

Consult [76, Prop 2.8 and Lem. 2.9].
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Let X −→ ΩdΣdX be the map associated to the identity map id : ΣdX −→ ΣdX
along the adjunction relation

[A,ΩdB]pt ←→ [ΣdA,B]pt.

Here [A,B]pt denotes the set of all homotopy classes of pointed maps A −→ B
between the pointed spaces A and B. Next, let αd : Cd(X) −→ ΩdΣdX denotes
the morphism of Cd-space associated to the map X −→ ΩdΣdX with respect to
the correspondence (111). Now the Approximation theorem [76, Thm. 2.7 and
Thm. 6.1] of May states the following.

Theorem 7.10. Let d ≥ 1 be an integer, or let d = ∞. If X is a path-connected
space in Toppt, then

αd : Cd(X) −→ ΩdΣdX

is a weak homotopy equivalence.

7.1.6. Araki–Kudo–Dyer–Lashof homology operations. Following analogy with Dyer
& Lashof [45, Def. 2.2] we review basic properties of the Araki–Kudo–Dyer–Lashof
homology operations as defined by Cohen [33, Def. 5.6]. In the case p = 2 the
homology operations were first introduced by Araki & Kudo [70].

Let d ≥ 1 be an integer, or let d = ∞. Let Y be a compactly generated weak
Hausdorff space with non-degenerate base point endowed with an action of the little
cubes operad Cd. Then there exists a sequence of maps

Qi : Hj(Y ;F2) −→ Hi+2j(Y ;F2), 0 ≤ i ≤ d− 1,

called Araki–Kudo–Dyer–Lashof homology operations. Properties of these
operations are listed in the next proposition, see also [45, Thm. 2.2, Cor. 1] [33,
Sec. 1]. In the following λd−1 : Hi(Y ;F2)⊗Hj(Y ;F2) −→ Hi+j+d−1(Y ;F2) denotes
the Browder operation, consult [22] [33, Thm. 1.2].

Proposition 7.11. Let Y and Z be Cd-spaces. The following properties hold:
(1) Q0(y) = y2 for every x ∈ H∗(Y ;F2).
(2) Qi is a homomorphism for every 0 ≤ i ≤ d− 2.
(3) Qd−1 is not homomorphism in general and

Qd−1(y1 + y2) = Qd−1(y1) +Qd−1(y2) + λd−1(y1, y2)

for y1, y2 ∈ H∗(Y ;F2) with deg(y1) = deg(y2).
(4) If Y is connected and 1 ∈ H0(Y ;F2), then Qi(1) = 0 for 0 < i ≤ d− 1.
(5) The operations Qi are natural with respect to the morphisms of Cd-spaces.
(6) If yr ∈ Hr(Y ;F2), Zs ∈ Hs(Z;F2) and 0 ≤ i ≤ d− 1, then in H∗(Y × Z;F2)

holds

Qi(yr ⊗ zs) =

i∑
j=0

Qj(yr)⊗Qi−j(zs) + εn(yr, zs),

where εn(yr ⊗ zs) is the “error term.” For example, in the case when Y =
Z = ΩdΣdSL, d ≥ 2, and L ≥ 1, the “error term” vanishes.

(7) If yr ∈ Hr(Y ;F2), y′s ∈ Hs(Y ;F2) and 0 ≤ i ≤ d− 1, then in H∗(Y ;F2) holds

Qi(yr · y′s) =

i∑
j=0

Qj(yr) ·Qi−j(y′s) + ε′n(yr, y
′
s),

where “·” denotes the Pontryagin product and ε′n(yr, y
′
s) stands for the error

term. For example, in the case when Y = ΩdΣdSL, d ≥ 2, and L ≥ 1, the
error term vanishes.
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Assume that Y is still a Cd-space. Then the operations

Qi : Hj(Y ;F2) −→ Hi+2j(Y ;F2)

are defined in [33, Def. 5.6] as follows. The Cd-action on Y yields a map

Θ2 : Cd(2)× (Y × Y ) −→ Y

that behaves naturally with respect to the acton of S2
∼= Z2. Consequently, it

induces the quotient map (denoted in the same way)

Θ2 : Cd(2)×Z2 (Y × Y ) −→ Y

where the action on the product Y × Y is given by interchanging factors. The
space Cd(2) is Z2 equivariantly homotopic to the sphere Sd−1 equipped with the
antipodal actions. Hence, the cohomology and homology of Cd(2)×Z2

(Y ×Y ), with
F2-coefficients, is completely described in Section 3.3. Using the notation from
Theorem 3.7 we define

Qi(y) := (Θ2)∗
(
(y ⊗ y)⊗Z2 fi

)
for y ∈ H∗(Y ;F2) where 0 ≤ i ≤ d− 1.

7.2. The Dickson algebra. In this section we present all the facts about the
Dickson algebra that are relevant for the calculations in this paper. For this we
rely on the sources [2, Sec. III.2], [27], and [101], where some of the results we
present appeared already in the original paper of Dickson [43].

7.2.1. Rings of invariants. Let m ≥ 1 be an integer, let V be an m-dimensional
vector space over the field F2, and let Sym(V ) denotes the symmetric algebra of
V over F2. Then for a choice of a basis (x1, . . . , xm) of V there is an isomorphism
Sym(V ) ∼= F2[x1, . . . , xm]. The algebra Sym(V ) is graded by setting deg(x1) =
· · · = deg(xm) = 1. The degree of a monomial is defined in the usual way by
deg(xα1

1 · · ·xαmm ) := α1 + · · · + αm. The set of all homogeneous polynomials of
degree n is denoted by Symn(V ) where Sym0(V ) ∼= F2. Consequently, Sym(V ) ∼=⊕

n≥0 Symn(V ).
The general linear group GL(V ) ∼= GLm(F2) on the vector space V acts from

the left on Sym(V ) and preserves the introduced grading. If G is a subgroup
of GLm(F2), then Sym(V )G denotes the ring of G-invariants. In this section we
will discuss the invariants only of the full general linear group GLm(F2) and the
subgroup Lm(F2) ⊆ GLm(F2) of all lower triangular matrices with 1’s on the main
diagonal. It is a known fact that Lm(F2) is a Sylow 2-subgroup of GLm(F2). In fact,
the order of the group Lm(F2) is 2

m(m−1)
2 while its index in GLm(F2) is (2m−1)!! =

1 · 3 · 5 · · · (2m− 1).
Let (x1, . . . , xm) be a fixed basis of the vector space V , and let us introduce a

complete flag of subspaces in V by

{0} = V0 ⊆ V1 ⊆ · · · ⊆ Vm−1 ⊆ Vm = V

where Vi := span{xm, . . . , xm−i+1}, for 1 ≤ i ≤ m. Thus the complete flag we
consider is

{0} ⊆ span{xm} ⊆ span{xm, xm−1} ⊆
· · · ⊆ span{xm, xm−1, . . . , x2} ⊆ span{xm, xm−1, . . . , x2, x1}.

The rings of invariants of the polynomial ring S(V ) ∼= F2[x1, . . . , xm] with respect
to the groups Lm(F2) and GLm(F2) are denoted as follows:

Hm := Sym(V )Lm(F2) ∼= F2[x1, . . . , xm]Lm(F2),
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and
Dm := Sym(V )GLm(F2) ∼= F2[x1, . . . , xm]GLm(F2).

Assuming the previously introduced notation a result of Mùi [82, Thm. 6.4] gives
the following described the ring of invariants Hm, see also [27, Thm. 3.1].

Theorem 7.12. Let hi :=
∏
v∈Vi−1

(xm−i+1 + v) for 1 ≤ i ≤ m, a polynomial of
degree 2i−1 in Sym(V ) ∼= F2[x1, . . . , xm]. Then

Hm = F2[h1, . . . , hm].

For example, if m = 3 then

h1 = x3, h2 = x2(x2 + x3), h3 = x1(x1 + x2)(x1 + x3)(x1 + x2 + x3).

For the ring of invariants Dm we rely on a result of Dickson [43] and have the
following presentation, see also [101, Thm. 1.2].

Theorem 7.13. Let dm,0, . . . , dm,m−1, dm,m be the polynomials in F2[x1, . . . , xm]
defined as the coefficients of the polynomial

fm(T ) :=
∏
v∈V

(T + v) =

m∑
i=0

dm,i T
2i

in F2[x1, . . . , xm][T ]. Then deg(dm,i) = 2m − 2i for 0 ≤ i ≤ m, dm,m = 1, and

Dm = F2[dm,0, . . . , dm,m−1].

The polynomials dm,0, . . . , dm,m−1 are called theDickson invariants of Sym(V )
or of the polynomial ring F2[x1, . . . , xm]. For example, if m = 2 then

f2(T ) = T (T + x1)(T + x2)(T + x1 + x2) = x1x2(x1 + x2)T + (x1x2 + x2
1 + x2

2)T 2.

Hence,
d2,0 = x1x2(x1 + x2) and d2,1 = x1x2 + x2

1 + x2
2.

On the other hand h1 = x2 and h2 = x1(x1 + x2), and consequently

d2,0 = h1h2 and d2,1 = 1 · h2 + χ2h
2
1,

where χ2 ∈ GL2(F2) is the variable substitution given by the matrix
(

0 1
1 0

)
.

The formula connecting generators of the rings of invariants Hm and Dm is as
follows, see for more details [101, Prop. 1.3 (b)].

Proposition 7.14. For 0 ≤ i ≤ m− 1 and setting dm−1,−1 = 0 we have that

dm,i = (χmdm−1,i)hm + (χmdm−1,i−1)2, (112)

where χm ∈ GLm(F2) is the change of variables given by the matrix
0 0 · · · 0 1
0 0 · · · 1 0

· · ·
1 0 · · · 0 0

 .

If we set kj := χmhj for 1 ≤ j ≤ m then the relation (112) becomes

dm,i = dm−1,ikm + d2
m−1,i−1, (113)

where 0 ≤ i ≤ m − 1. It is not hard to see that k1, . . . , km are generators of the
ring of invariants with respect to the subgroup Um(F2) of GLm(F2) that consists
of all upper triangular matrices with 1’s on the main diagonal. More precisely,

Sym(V )Um(F2) ∼= F2[x1, . . . , xm]Um(F2) = F2[k1, . . . , km].
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From the relation (113) we can derive a presentation of each Dickson invariant
dm,i in term of k1, . . . , km. Indeed, let 0 ≤ r ≤ m − 1 be an integer, and let
J = (j1, . . . , jr) ∈ [m]r with 1 ≤ j1 < · · · < jr ≤ m. We denote particular
monomials in k1, . . . , kn as follows:

k[J ] := (k1 · · · kj1−1)2r (kj1+1 · · · kj2−1)2r−1

· · · (kjr+1 · · · km)20

.

Then as in [27, Thm. 4.3] we have that

dm,r =
∑

J∈[m]r : j1<···<jr

k[J ] (114)

=
∑

J∈[m]r : j1<···<jr

(k1 · · · kj1−1)2r (kj1+1 · · · kj2−1)2r−1

· · · (kjr+1 · · · km)20

.

In particular,

dm,0 = k1 · · · km and dm,m−1 = k2m−1

1 + k2m−2

2 + · · ·+ k20

m . (115)

7.2.2. The Dickson invariants as characteristic classes. Let m ≥ 1 be an integer.
Consider the sequence of group embeddings

Em := Z⊕m2

(reg)
// S2m

ι2m
// O(2m),

where
• (reg) : Z⊕m2 −→ S2m is the regular embedding that is given by the left trans-

lation action of Z⊕m2 on itself, consult [2, Ex. III.2.7], and
• ι2m : S2m −→ O(2m) is the embedding given by the permutation representa-

tion.
This sequence of embeddings induces a sequence of maps of the corresponding
classifying spaces

BEm
B(reg)

// BS2m
B(ι2m )

// BO(2m).

Let γ2m denotes the tautological vector bundle over BO(2m), and let us denote
the pullbacks as follows

ξ2m := B(ι2m)∗γ2m and ν2m := (B(ι2m) ◦ B(reg))∗γ2m .

Then the bundles γ2m , ξ2m and ν2m induce the following commutative diagram of
vector bundle morphisms:

EEm ×Em R2m //

ν2m

��

ES2m ×S2m
R2m //

ξ2m

��

EO(2m)×O(2m) R2m

γ2m

��

BEm
B(reg)

// BS2m
B(ι2m )

// BO(2m).

Recall, that the cohomology ring of the elementary abelian group Em with co-
efficients in the field F2 is a polynomial ring on m generators in degree 1, that is
H∗(Em;F2) ∼= F2[y1, . . . , ym] with deg(y1) = · · · = deg(ym) = 1.

The relationship of the introduced bundles and the Dickson invariants is given
by the following theorem, see [72, Lem. 3.26].

Theorem 7.15. The total Stiefel–Whitney class of the vector bundle ν2m is

w(ν2m) = 1 + dm,m−1 + dm,m−2 + · · ·+ dm,0,



122 BLAGOJEVIĆ, COHEN, CRABB, LÜCK, AND ZIEGLER

where dm,m−1, . . . , dm,0 are the Dickson invariants of F2[y1, . . . , ym] ∼= H∗(Em;F2).
This means that

wi(ν2m) =


dm,j , i = 2m − 2j , 0 ≤ j ≤ m− 1,

1, i = 0,

0, otherwise.

7.3. The Stiefel–Whitney classes of the wreath square of a vector bundle.
In this section we introduce notions called the wreath square of a vector bundle
[11, Sec. 3] and the (d− 1)-partial wreath square of a vector bundle. Furthermore,
we collect all necessary facts we use in Section 6. Our presentation partially follows
[11, Sec. 3] and is given in the generality necessary for our computations.

7.3.1. The wreath square and the (d − 1)-partial wreath square of a vector bundle.
Let X be a CW-complex which a priori is not finite. The product X × X has
a natural action of the group Z2 given by interchanging the copies, that is ω ·
(x1, x2) := (x2, x1), where ω generates Z2 and (x1, x2) ∈ X × X. The product
spaces (X ×X)× EZ2 and (X ×X)× Sd−1 with the diagonal Z2-actions are free
Z2-spaces. The action on the sphere Sd−1 is assumed to be antipodal. Thus, the
projection maps

p1 : (X ×X)× EZ2 −→ X ×X and p1 : (X ×X)× Sd−1 −→ X ×X
given by (x1, x1, e) 7−→ (x1, x2) are Z2-map. Here the model for EZ2 is assumed to
be the infinite sphere S∞ := colimd→∞ Sd−1 equipped with the antipodal action
inherited from the action on Sd−1.

Now, we define the functors

S2 : Topcw −→ Topcw and S2,d : Topcw −→ Topcw

that are on the objects given by

S2X := ((X ×X)× EZ2)/Z2 = (X ×X)×Z2
EZ2,

and
S2,dX := ((X ×X)× Sd−1)/Z2 = (X ×X)×Z2 S

d−1,

where X is a CW-complex and d ≥ 1 integer. For a morphism h : X −→ Y of
CW-complexes, a continuous map, we set

S2h := (h× h)×Z2
id : (X ×X)×Z2

EZ2 −→ (Y × Y )×Z2
EZ2,

and

S2,dh := (h× h)×Z2
id : (X ×X)×Z2

Sd−1 −→ (Y × Y )×Z2
Sd−1,

to be the maps induced by the product maps

(h× h)× id : (X ×X)× EZ2 −→ (Y × Y )× EZ2

and
(h× h)× id : (X ×X)× Sd−1 −→ (Y × Y )× Sd−1

by passing to the Z2-orbits.

Consider now a real n-dimensional vector bundle ξ := (E(ξ)
pξ−→ B(ξ)) over the

CW-complex B(ξ) whose fiber is F (ξ). Here we denote by E(ξ) the total space
of ξ, and by pξ the corresponding projection map. The pull-back vector bundle
p∗1(ξ × ξ) of the product vector bundle ξ × ξ along the p1:

E(p∗1(ξ × ξ)) //

��

E(ξ × ξ) ∼= E(ξ)× E(ξ)

��

(B(ξ)×B(ξ))× EZ2
p1

// B(ξ × ξ) ∼= B(ξ)×B(ξ),
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is equipped with a free Z2-action. Moreover, the projection map of the pull-back
bundle E(p∗1(ξ× ξ)) −→ (B(ξ)×B(ξ))×EZ2 is a Z2-map. Hence, after passing to
Z2-orbits we get the 2n-dimensional vector bundle S2ξ over S2B(ξ):

E(p∗1(ξ × ξ))/Z2 −→ (B(ξ)×B(ξ))×Z2 EZ2.

The bundle S2ξ is called the wreath square of the vector bundle ξ.
Next we consider the following pull-back diagram induced by the Z2-inclusion

i : Sd−1 −→ S∞:

E(((id× id)×Z2
i)∗S2ξ) //

��

E(p∗1(ξ × ξ))/Z2 = E(S2ξ)

��

(B(ξ)×B(ξ))×Z2 S
d−1

(id× id)×Z2 i
// (B(ξ)×B(ξ))×Z2 EZ2 = B(S2ξ).

The pull-back vector bundle ((id× id) ×Z2 i)
∗S2ξ is called the (d − 1)-partial

wreath square of the vector bundle ξ and is denoted by S2,dξ. In other words,

S2,dξ := ((id× id)×Z2
i)∗S2ξ,

with the base space S2,dB(ξ).
The wreath square, as well as the (d− 1)-partial wreath square, of a vector bun-

dle is natural with respect to morphisms of vector bundles. Indeed, a morphism
between vector bundles ξ −→ η induces morphisms between associated wreath
squares S2ξ −→ S2η and (d − 1)-partial wreath squares S2,dξ −→ S2,dη. These
morphisms satisfy all expected properties with respect to the composition of mor-
phisms. Furthermore, the wreath square and the (d− 1)-partial wreath square of a
vector bundle behave naturally with respect to the Whitney sum of vector bundles.
This means that for arbitrary vector bundles ξ and η there are isomorphisms of
vector bundles

S2(ξ ⊕ η) ∼= S2(ξ)⊕ S2(η) and S2,d(ξ ⊕ η) ∼= S2,d(ξ)⊕ S2,d(η). (116)

7.3.2. Cohomology of B(S2ξ) = S2B(ξ). In this section, based on the material
presented in Section 3.3, we describe the cohomology of a typical base space of the
wreath square of a vector bundle.

Let X be the base space of the vector bundle ξ, that is X = B(ξ). Assume that
X in addition is a CW-complex. Then the base space of the vector bundle S2ξ is
S2X, and also the total space of the fiber bundle

X ×X // (X ×X)×Z2
EZ2

// BZ2. (117)

Note that similarly the base space of the vector bundle S2,dξ is the total space of
the fiber bundle

X ×X // (X ×X)×Z2
Sd−1 // RPd−1. (118)

The Serre spectral sequence associated to the fiber bundle (117) has E2-term given
by

Ei,j2 (X) = Hi(BZ2;Hj(X ×X;F2)) ∼= Hi(Z2;Hj(X ×X;F2)). (119)
As discussed in Section 3.3 this spectral sequence collapses at the E2-term, that
means Ei,j2 (X) ∼= Ei,j∞ (X) for all i, j ∈ Z. For more details consult Theorem 3.4 or
[2, Thm. IV.1.7].

In the description of the total Stiefel–Whitney classes of the wreath square of a
vector bundle the following maps turn out to be very useful. At first, consider the
map (not a homomorphism)

P : Hj(X;F2) −→ H2j(X ×X;F2)Z2 ∼= E0,2j
2
∼= E0,2j

∞
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given by
P (u) := u⊗ u,

for u ∈ Hj(X;F2) and j ≥ 0 an integer. By a direct inspection we see that the
map P is not an additive map, but it is a multiplicative map. The second map we
consider is

T : Hj(X ×X;F2) −→ Hj(X ×X;F2)Z2

defined by
T (u⊗ u′) := u⊗ u′ + u′ ⊗ u,

where u⊗ u′ ∈ Hj(X ×X;F2) and j ≥ 0 is an integer. The map T is an additive
map, but not a multiplicative map.

With the help of just introduced maps P and T , based on Lemma 3.2 and
Theorem 3.4, we can describe the E∞-term of the Serre spectral sequence (77) as
follows:
— E∗,02

∼= E∗,0∞
∼= H∗(Z2;F2) ∼= F2[f ], deg(f) = 1,

— E0,∗
2
∼= E0,∗

∞
∼= H∗(X ×X;F2)Z2 ,

— E0,j
2
∼= E0,j

∞
∼= P (Hj/2(X;F2))⊕ T (Hj(X ×X;F2)) for j ≥ 2 even,

— Ei,j2
∼= Ei,j∞

∼= P (Hj/2(X;F2))⊗H∗(Z2;F2) for j ≥ 2 even, and i ≥ 1.
Furthermore, we have that the generator f of H∗(Z2;F2) annihilates the image of
the map T , that is

T (H∗(X ×X;F2)) · f = 0. (120)

Note that the Serre spectral sequence associated to the fiber bundle (118) can
be describe in a similar way — as discussed in Section 3.3.

7.3.3. The total Stiefel–Whitney class of the wreath square of a vector bundle. Let
ξ be a real n-dimensional vector bundle over the CW-complex B(ξ). To the vector
bundle ξ we associate characteristic classes

s2(ξ) := w(S2ξ) ∈ H∗(B(S2ξ);F2),

and
s2,d(ξ) := w(S2,dξ) ∈ H∗(B(S2,dξ);F2).

These are the total Stiefel–Whitney classes of the real 2n-dimensional vector bun-
dles S2ξ and S2,dξ. The assignments

ξ 7−→ s2(ξ) and ξ 7−→ s2,d(ξ)

are natural with respect to the continuous maps. This means that for a continuous
map h : K −→ B(ξ) from a CW-complex K into the base space B(ξ) of ξ the
following equalities hold

(S2h)∗(s2(ξ)) = s2(h∗ξ) and (S2,dh)∗(s2,d(ξ)) = s2,d(h∗ξ)

Here h∗ξ denotes the pull-back vector bundle of ξ along the map h.
The characteristic class s2(ξ) was calculated, in term of Stiefel–Whitney classes

of ξ, in [11, Thm. 3.4] and is given in the following theorem.

Theorem 7.16. Let ξ be a real n-dimensional vector bundle over a CW -complex.
Then

s2(ξ) = w(S2ξ) =
∑

0≤r<s≤n

T (wr(ξ) ⊗ ws(ξ)) +
∑

0≤r≤n

P (wr(ξ)) · (1 + f)n−r

In particular, ξ is 1 dimensional, then

s2(ξ) = w(S2ξ) = T (w0(ξ)⊗ w1(ξ)) + P (w0(ξ)) · (1 + f) + P (w1(ξ)) =

1 +
(
f + 1⊗ w1(ξ) + w1(ξ)⊗ 1

)
+ w1(ξ)⊗ w1(ξ).
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From the computations in Section 3.3 and the fact that by definition S2,dξ =
((id× id)×Z2

i)∗S2ξ we get the following consequence of Theorem 7.16.

Corollary 7.17. Let ξ be a real n-dimensional vector bundle over a CW -complex,
and let d ≥ 2 be an integer. Then

s2,d(ξ) = w(S2,dξ) =∑
0≤r<s≤n

T (wr(ξ)⊗ ws(ξ)) +
∑

0≤r≤n

∑
0≤j≤min{n−r,d−1}

(
n− r
j

)
P (wr(ξ))f

j .

In particular, Theorem 7.16 and Corollary 7.17 give formulas for the evaluation
of mod 2 Euler classes (top Stiefel–Whitney class) of the vector bundles S2ξ and
S2,dξ in term of the mod 2 Euler class of the vector bundle ξ. In the following we
present these formulas and show them with a direct proof which does not rely on
the previous claims.

Corollary 7.18. Let ξ be a real n-dimensional vector bundle over a CW -complex.
Then

e(S2ξ) = P (e(ξ)) or w2n(S2ξ) = P (wn(ξ)),

and
e(S2,dξ) = P (e(ξ)) or w2n(S2,dξ) = P (wn(ξ)).

In particular, if e(ξ) 6= 0, then e(S2ξ) 6= 0 and e(S2,dξ) 6= 0.

Here e(S2ξ), e(S2,dξ) and e(ξ) denote mod 2 Euler classes of the vector bundles
S2ξ, S2,dξ and ξ, respectively. Note the abuse of notation: the map P is not the
same in the formulas for e(S2ξ) and e(S2,dξ), since it operates on different spectral
sequences.

Proof. Let u ∈ Hn(D(ξ), S(ξ);F2) be the Thom class of the n-dimensional vector
bundle ξ. Here D(ξ) and S(ξ) denote respectively the disk and sphere bundles
associate to the vector bundle ξ. The mod 2 Euler class of the vector bundle ξ, by
definition, equals to e(ξ) = i∗ξ(u) where iξ : (E(ξ),∅) −→ (D(ξ), S(ξ)) is the zero
section.

Consider the following commutative diagram

Hn(D(ξ), S(ξ))
i∗ξ

//

P

��

Hn(E(ξ))

P

��

H2n(((D(ξ), S(ξ))× (D(ξ), S(ξ)))×Z2 EZ2)
(Piξ)∗

//

��

��

H2n((E(ξ)× E(ξ))×Z2 EZ2)

��

��

H2n(((D(ξ), S(ξ))× (D(ξ), S(ξ)))×Z2 S
d−1)

(Piξ)∗
//

**

H2n((E(ξ)× E(ξ))×Z2 S
d−1)

**

H2n(D(S2ξ), S(ξ))

��

i∗
S2ξ

// H2n((E(ξ)× E(ξ))×Z2 EZ2)

��

H2n(D(S2,dξ), S(ξ))
i∗
S2,dξ

// H2n((E(ξ)× E(ξ))×Z2 S
d−1)

where the coefficients are assumed to be in the field F2. Note that the curly left
arrows are isomorphism while the right ones are equalities.

We claim that P (u), appropriately interpreted, is the Thom class of the vector
bundle S2ξ, respectively S2,dξ. To check this it is enough to show that it restricts
to the generator in each fibre. Thus we can reduce to the case in which E(ξ) and
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BZ2, respectively RPd−1, are just points. Then it is an elementary fact that the
square map P :(

Hn(D(Rn), S(Rn);F2) ∼= F2

)
−→

(
H2n(D(R2n), S(R2n);F2) ∼= F2

)
maps the generator to the generator.

The assertion now follows from the commutativity of the correspond diagram:

e(S2ξ) = i∗S2ξ(P (u)) = P (i∗ξ(u)) = P (e(ξ)),

and similarly
e(S2,dξ) = i∗S2,dξ(P (u)) = P (i∗ξ(u)) = P (e(ξ)).

�

7.4. Miscellaneous calculations. In order give a smoother presentation of the
main computational components in the main body of the paper in this section we
present details of some auxiliary computations.

7.4.1. Detecting group cohomology. In this section we review some basic facts from
classical work of Quillen [90] in generality we need in this paper. For more details
consult for example [2, Sec. IV.4 andVI.1].

LetG be a finite group, and let p be a prime. The family of subgroups {Hi : i ∈ I}
of the group G detects the cohomology of G modulo Fp, or is a detecting
family of subgroups, if the homomorphism

H∗(G;Fp) −→
∏
i∈I

H∗(Hi;Fp)

induced by the restrictions resGHi is a monomorphism. If G(p) is Sylow p-subgroup
of G, then the restriction resG

G(p) is a monomorphism, and consequently G(p) detects
the cohomology of G modulo Fp.

First we recall an auxiliary lemma that is particularly useful for us, see [72,
Lem. 3.22].

Lemma 7.19. Let G be a finite group, and let p be a prime. Then G oZp is detected
by G× Zp and G× · · · ×G︸ ︷︷ ︸

p times

.

Next, let p be a prime, and let n = pm for an integer m ≥ 1. Consider symmetric
group Sn = Spm as a group of permutation of the set Z⊕mp . Then the elementary
abelian group Em of all translations (seen as permutations) of the vector space
Z⊕mp , the so called regular embedded subgroup [2, Ex. III.2.7], is isomorphic to the
elementary abelian group Z⊕mp . Let

Spm = Em,1 o · · · o Em,m ∼= Zp o · · · o Zp︸ ︷︷ ︸
m times

denotes the Sylow p-subgroup of Spm containing Em. Here Em,i ∼= Zp is the
subgroup of Em generated by the ith basis element (0, . . . , 0, 1, 0, . . . , 0) of the vector
space Z⊕mp .

Now we proceed with the following detection property of the cohomology of the
symmetric group Spm and its Sylow p-subgroup Spm , consult [2, Cor.VI.1.4].

Theorem 7.20. Let p be a prime, and let n = pm for an integer m ≥ 1.
(1) The cohomology H∗(Spm ;Fp) of the symmetric group Spm is detected modulo

Fp by the elementary abelian subgroup Em and the product subgroup

Spm−1 × · · · ×Spm−1︸ ︷︷ ︸
p times

.
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(2) The cohomology H∗(Spm ;Fp) of the Sylow p-subgroup Spm of the symmetric
group Spm is detected modulo Fp by the elementary abelian subgroup Em and
the product subgroup

Spm−1 × · · · × Spm−1︸ ︷︷ ︸
p times

.

Finally we state the classical result of Quillen about detection with the family
of elementary abelian subgroups, see [2, Thm.VI.1.2].

Theorem 7.21. Let n ≥ 1 be an integer, and let p be a prime. The cohomology
H∗(Sn;Fp) of the symmetric group Sn with Fp coefficients is detected by the family
of its elementary abelian p-subgroups.

7.4.2. The image of a restriction homomorphism. Let G be a finite group and let
H a subgroup of G. In this section we want to give a description of the image of
the restriction homomorphism

im
(

resGH : H∗(G;M) −→ H∗(H;M)
)

where M is a trivial G-module.
Let G be a (finite) group. Any contractible free G-CW complex equipped with

the right G cellular action is called a model for an EG space. The Milnor model is
given by EG = colimn∈NG

∗n where G stands for a 0-dimensional free G-simplicial
complex whose vertices are indexed by the elements of the group G and the action
on G is given by the right translation, and G∗n is an n-fold join of the 0-dimensional
simplicial complex with induced diagonal (right) action. A typical point in EG can
be presented as follows ∑

i≥1

λigi ≡ (λ1g1, λ2g2, λ3g3, . . .),

where gi ∈ G and λi ≥ 0 for all i ≥ 1, the set I := {λi 6= 0 : i ≥ 1} is finite,
and

∑
i∈I λi = 1. The quotient space BG = EG/G is called a classifying space a

the group G. For a trivial G-module M the group cohomology H∗(G;M) can be
defined as a singular cohomology H∗(BG;M).

Let H and G be (finite) groups, and let f : H −→ G be a homomorphism. Then
f induces the following G-equivariant map E(f) : EH −→ EG by∑

i≥1

λihi ≡ (λ1h1, λ2h2, λ3h3, . . .) 7−→∑
i≥1

λig(hi) ≡ (λ1f(h1), λ2f(h2), λ3f(h3), . . .)

where theH-action on G is induced by the homomorphism f . Since the map E(f) is
H-equivariant map it induces a map between quotient spaces B(f) : BH −→ BG. In
particular, if H is a subgroup of G, i : H −→ G the inclusion map, then the induced
homomorphism in cohomology B(i)∗ by definition is the restriction homomorphism
resGH , that is B(i)∗ = resGH .

We prove an auxiliary lemma following [44, Prop. I.6.14] and [2, Thm. II.1.9].

Lemma 7.22. Let G be a finite group.
(i) Any two continuous G-equivariant maps f, g : EG −→ EG are G-homotopic.
(ii) Let a ∈ G, and let ka : G −→ G be the conjugation homomorphism ka(g) :=

aga−1. Then the induced map B(k) : BG −→ BG is homotopic to the identity
id : BG −→ BG.
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Proof. (i) This is a presentation of the proof of [44, Prop. I.6.14]. For e ∈ EG let
us denote images f(e) and g(e) as follows

f(e) = (λ1(e)f1(e), λ2(e)f2(e), . . .) and g(e) = (µ1(e)g1(e), µ2(e)g2(e), . . .).

We define two additional maps f̄ , ḡ : EG −→ EG by

f̄(e) = (λ1(e)f1(e), 0, λ2(e)f2(e), 0, . . .)

and
ḡ(e) = (0, µ1(e)g1(e), 0, µ2(e)g2(e), 0, . . .).

The pairs of maps f , f̄ and g, ḡ are G-homotopic, that is f 'G f̄ and g 'G ḡ.
In order to construct a G-homotopy, for example, between f and f̄ we proceed as
follows. Let j ≥ 1 be an integer and let the G-homotopy Hj : EG × I −→ EG be
defined by

Hj(e, t) :=
(
λ1(e)f1(e), . . . , λj(e)fj(e),

tλj+1(e)fj+1(e), (1− t)λj+1(e)fj+1(e),

tλj+2(e)fj+2(e), (1− t)λj+2(e)fj+2(e), . . .
)
.

Starting with f̄(e) = H1(e, 0) and applying consecutively H1, H2, . . . we reach f(e).
Hence we have define a G-homotopy between f̄ and f . Since in the presentation of
every point e = (λ1g1, λ2g2, . . .) ∈ EG there are only finitely many non-zero λ’s the
definition we just gave is correct and the map is moreover continuous. Therefore,
f 'G f̄ and g 'G ḡ.

It suffices to prove that f̄ 'G ḡ. For this we give the G-homotopy H : EG×I −→
EG by

H(e, t) :=
(
(1− t)λ1(e)f1(e), tµ1(e)g1(e), (1− t)λ2(e)f2(e), tµ2(e)g2(e), . . .

)
.

This concludes the proof of part (i).
(ii) The homomorphisms id : G −→ G and ka : G −→ G induce G-equivariant

maps
E(id) = id: EG −→ EG and E(ka) : EG −→ EG.

From the part (i) of this lemma we have that E(id) = id and E(ka) are G-homotopic.
Consequently, B(id) = id and B(ka) are homotopic. �

Now we are ready to give a description of the image a restriction that we use in
the central part of the paper. Consult [2, Lem. II.3.1].

Lemma 7.23. Let G be a finite group, H its subgroup, NG(H) the normalizer
of H in G, WG(H) := NG(H)/H the corresponding Weyl group, and M a trivial
G-module. There is an action of WG(H) on H∗(H;M) such that

im
(

resGH : H∗(G;M) 7−→ H∗(H;M)
)
⊆ H∗(H;M)WG(H).

Proof. First we introduce an action of the normalizer NG(H) on BH. Let a ∈
NG(H), and let ka : H −→ H be a homomorphism defined by ka(h) := aha−1 for
h ∈ H. For a, b ∈ NG(H) the following relation obviously holds kab = ka ◦ kb.
Applying the functor B on the maps ka, for every a ∈ NG(H), we get an action of
NG(H) on BH. This action naturally extends to an action on the cohomology

NG(H)×H∗(H;M) −→ H∗(H;M).

In the case when a ∈ H ⊆ NG(H) from Lemma 7.22 we get that the homomor-
phism B(ka)∗ : H∗(H;M) −→ H∗(H;M) is the identity. Consequently the action
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of NG(H) factors through an action of the Weyl group WG(H), that gives us a
commutative diagram

NG(H)×H∗(H;M) //

**

H∗(H;M)

WG(H)×H∗(H;M).

55

The group NG(H) acts on BG in the identical way. Now for a ∈ NG(H) we set
ka : G −→ G to be again defined by ka(g) := aga−1 for g ∈ G. Applying the functor
B we now get an action of NG(H) on BG and consequently on H∗(G;M). In this
case Lemma 7.22 implies that each map B(ka) is homotopic to the identity. Hence,
the induced action of NG(H) on H∗(G;M) is a trivial action.
Since the action of NG(H) on BG is an extension of the action of NG(H) on BH
we have the following commutative diagram

BH
B(i)

//

B(ka)

��

BG

B(ka)

��

BH
B(i)

// BG

(121)

for every a ∈ NG(H) where i : H −→ G is the inclusion. Applying the cohomology
functor on the commutative diagram (121) we get that

B(i)∗ ◦ B(ka)∗ = B(ka)∗ ◦ B(i)∗.

Since B(i)∗ = resGH , and B(ka)∗ : H∗(G;M) −→ H∗(G;M) is the identity for every
a ∈ NG(H), we get that resGH = B(ka)∗ ◦ resGH , and consequently

im
(

resGH : H∗(G;M) 7−→ H∗(H;M)
)
⊆ H∗(H;M)NG(H) = H∗(H;M)WG(H).

�

7.4.3. Weyl groups of an elementary abelian group. In this section we identify Weyl
groups WS2m (Em) and WS2m

(Em) for every m ≥ 1. First, following Mùi [82, Proof
of Lem. II.5.1] we prove the following fact.

Lemma 7.24. Let m ≥ 0 be an integer. Then

WS2m (Em) ∼= Lm(F2).

Proof. Let κ : NS2m (Em) −→ Aut(Em) be the homomorphism defined by κ(a) := ka,
where as before ka : Em −→ Em is the conjugation automorphism ka(e) = aea−1,
e ∈ Em. The kernel of the homomorphism κ is the centralizer of Em in S2m , which
is ker(κ) = CS2m (Em). Furthermore, in our situation, CS2m (Em) = Em. Thus, there
is an exact sequence of groups

1 // Em // NS2m (Em) // im(κ) // 1. (122)

In other words NS2m (Em) is a semi-direct product Em o im(κ). Consequently,

WS2m (Em) = NS2m (Em)/Em ∼= im(κ).

Since Aut(Em) ∼= GLm(F2) we can say that im(κ) ⊆ GLm(F2) and therefore the
Weyl group WS2m (Em) can be seen as a subgroup of GLm(F2). Thus it remains to
identify im(κ), and this will be done in two steps.

First we prove that Lm(F2) ⊆ NS2m (Em) using the induction on m ≥ 1. Notice
that obviously Lm(F2) ⊆ NS2m

(Em). For m = 1 the group L1(F2) is trivial group
while E1 = S2 = NS2(E1) ∼= Z2. Let us assume that for m ≥ 2 the following
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inclusions Lm−1(F2) ⊆ NS2m−1 (Em−1) ⊆ S2m−1 holds. Consider the embedding
Lm−1(F2) −→ Lm(F2) of group given by

A 7−→
(

1 0
0 A

)
for A ∈ Lm−1(F2). Note the “difference” between zeroes in the upper matrix. Since
for every i ∈ F2 and e ∈ Fm−1

2(
1 0
0 A

)(
i
e

)
=

(
i
Ae

)
we have that Lm−1(F2) is a subgroup of δ(S2m−1) ⊆ S2m−1 × S2m−1 where δ de-
notes the diagonal embedding. An arbitrary element of the group Lm(F2) can be
presented in the form (

1 0
a A

)
where A ∈ Lm−1(F2) and a ∈ Fm−1

2 . Then for i ∈ F2 and e ∈ Fm−1
2 we have(

1 0
a A

)(
i
e

)
=

(
i

Ae+ ai

)
.

Consequently, Lm(F2) ⊆ (Lm−1(F2)·Em−1)×(Lm−1(F2)·Em−1). From the induction
hypothesis we have more

Lm(F2) ⊆ (Lm−1(F2) · Em−1)× (Lm−1(F2) · Em−1) ⊆ S2m−1 × S2m−1 ⊆ S2m .

As we have seen Lm(F2) ⊆ NS2m
(Em) and thus

Lm(F2) ⊆ NS2m (Em),

which concludes the induction.
Now we continue identification of im(κ). Since Lm(F2)∩Em = {1} we have that

the exact sequence (122) gives us an embedding of Lm(F2) into im(κ). Hence we
have the following inclusions of 2-groups (with the obvious abuse of notation)

Lm(F2) ⊆ im(κ) ⊆ GLm(F2).

The image im(κ) is a 2-group as an image of the 2-group NS2m (Em). Because
Lm(F2) is a Sylow 2-subgroup of GLm(F2) we have that Lm(F2) = im(κ) and
consequently

WS2m (Em) ∼= im(κ) ∼= Lm(F2).

�

Next, adapting the proof of the previous lemma and following [2, Ex. III.2.7] we
determine the Weyl group of Em now inside the symmetric group S2m .

Lemma 7.25. Let m ≥ 0 be an integer. Then

WS2m
(Em) ∼= GLm(F2).

Proof. Let κ : NS2m
(Em) −→ Aut(Em) be the homomorphism defined by κ(a) :=

ka, where as before ka : Em −→ Em is the conjugation automorphism ka(e) = aea−1,
e ∈ Em. As in the proof of the previous lemma ker(κ) = CS2m

(Em) = Em. Hence,
we get an exact sequence of groups

1 // Em // NS2m
(Em) // im(κ) // 1.

Consequently, NS2m
(Em) is a semi-direct product Em o im(κ) implying that

WS2m
(Em) = NS2m

(Em)/Em ∼= im(κ).

Since Aut(Em) ∼= GLm(F2), in order to complete the proof of the lemma, it suffices
to prove that im(κ) = Aut(Em). For that fix α ∈ Aut(Em), and denote by ᾱ ∈ S2m
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the permutation given with e 7−→ α(e) for e ∈ Em. Here we use the fact that S2m is
group of permutations of the set Em. Then ᾱ ∈ NS2m

(Em) and κ(ᾱ) = α. Indeed,
for e, h ∈ Em holds:

ᾱeᾱ−1(h) = (ᾱe)(α−1(h)) = ᾱ(e+ α−1(h)) = α(e+ α−1(h)) = α(e) + h.

consequently we have an equality of permutations ᾱeᾱ−1 = α(e) ∈ Em that implies
ᾱ ∈ NS2m

(Em) and κ(ᾱ) = α. This concludes the proof of surjectivity of κ and of
the lemma. �

7.4.4. Cohomology of the real projective space with local coefficients. For d ≥ 2 we
compute the cohomology of the projective space H∗(RPd−1;M) where the local
coefficient system M is additively F2 ⊕ F2, and the action of π1(RPd−1) = 〈t〉 on
M is given by t · (a1, a2) = (a2, a1) where (a1, a2) ∈ F2 ⊕ F2. We consider two
separate cases: d = 2 when π1(RPd−1) ∼= Z, and d ≥ 3 when π1(RPd−1) ∼= Z2.
First we recall the definition of the cohomology with local coefficients, consult for
example [60, Sec. 3.H].

Let X be a path-connected CW-complex, X̃ its universal cover, and let π :=
π1(X) be its fundamental group. Denote by L a local coefficient system on X, that
is a Z[π]-module. Assume that we are given a structure of Z[π]-CW-complex on X̃
with associated cellular chain complex

· · · // Cn+1(X̃)
dn+1

// Cn(X̃)
dn
// Cn−1(X̃)

dn−1
// · · ·

· · · d2
// C1(X̃)

d1
// C0(X̃) // 0 ,

where Cn(X̃) is a Z[π]-module, and dn : Cn(X̃) −→ Cn−1(X̃) is a Z[π]-module
homomorphism, for every n ∈ Z. The cohomology H∗(X;L) of X with local
coefficients in L is cohomology of the cochain complex

· · · homZ[π](Cn+1(X̃);L)oo homZ[π](Cn(X̃);L)oo homZ[π](Cn−1(X̃);L)oo

· · · homZ[π](C1(X̃);L)oo homZ[π](C0(X̃);L)oo 0 .oo

This means that

Hn(X;M) :=
ker
(

homZ[π](Cn(X̃);L)) −→ homZ[π](Cn+1(X̃);L)
)

im
(

homZ[π](Cn−1(X̃);L) −→ homZ[π](Cn(X̃);L)
) .

For d = 2 the universal cover of the projective space RP1 is the real line R1,
and the fundamental group π = π1(RP1) = 〈t〉 is the infinite cyclic group. An
associated Z[π]-CW-complex of the universal cover R̃P1 = R1 is defined as follows:
The 0-cells are all integers {xi0 := {i} : i ∈ Z}, while the 1-cells are intervals
{xi1 := [i, i + 1] : i ∈ Z}. The action of the generator t of the fundamental group
on the cells of the Z[π]-CW-complex is given by t · xij = xi+1

j for j ∈ {0, 1}. Hence,
the induced cellular chain complex of Z[π]-modules is given by

C0(R̃P1) = Z[Z] =Z[Z]-module 〈x1
0〉 and C1(R̃P1) = Z[Z] =Z[Z]-module 〈x1

1〉
where the only non-trivial boundary homomorphism d1 is defined on the generator
of C1(R̃P1) by d1(x1

1) := x1
0 − x0

0 = (t − 1) · x0
0. Thus, the cellular chain complex

we consider in this case is

0 // Z[Z]
(t−1)·

// Z[Z] // 0.
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After applying the functor homZ[Z](·,M) we get the cochain complex

0 Moo M
(t−1)·
oo 0.oo

If we recall that additivelyM = F2 ⊕ F2 by direct inspection we see that

Hr(RP1;M) ∼=


ker
(
M (t−1)·−→ M

) ∼= F2, r = 0,

M/ im
(
M (t−1)·−→ M

) ∼= F2, r = 1,

0, otherwise.

For further use we denote the generator of the group H1(RPd−1;M) by z1.
Now, let d ≥ 3 be an integer. Then the universal cover of the projective space

RPd−1 is the sphere Sd−1, and the fundamental group is π := π1(RPd−1) ∼= Z2 =

〈t〉. We associate an Z[π]-CW-complex to the universal cover R̃Pd−1 = Sd−1 as
follows: In each dimension i, where 0 ≤ i ≤ d − 1, there are two cells x0

i and
x1
i . The generator t of the fundamental group π acts on the cells by t · x0

j = x1
j

and t · x1
j = x0

j for 0 ≤ j ≤ d − 1. Thus, the induced cellular chain complex of
Z[π]-modules is given by

Cn(R̃Pd−1) = Z[Z2] =Z[Z2]-module 〈x0
n〉, for 0 ≤ n ≤ d− 1,

where the boundary homomorphism dn : Cn(R̃Pd−1) −→ Cn−1(R̃Pd−1) on the gen-
erator x0

n is

dn(x0
n) := x1

n−1 − x0
n−1 = (t− 1) · x0

n−1, for 1 ≤ n ≤ d− 1 odd,

dn(x0
n) := x1

n−1 + x0
n−1 = (t+ 1) · x0

n−1, for 1 ≤ n ≤ d− 1 even,

and otherwise zero. The cellular chain complex we obtained in this case is

0 // Z[Z2]
(t+1)·

// Z[Z2]
(t−1)·

// · · ·
(t+1)·

// Z[Z2]
(t−1)·

// Z[Z2] // 0,

when d is odd, and

0 // Z[Z2]
(t−1)·

// Z[Z2]
(t+1)·

// · · ·
(t+1)·

// Z[Z2]
(t−1)·

// Z[Z2] // 0,

when d is even.
Applying the functor homZ[Z2](·,M) we get the cochain complex which is iso-

morphic to the following cochain complex

0 Moo M
(t+1)·
oo · · ·

(t−1)·
oo M

(t+1)·
oo M

(t−1)·
oo 0,oo

when d is odd, and

0 Moo M
(t−1)·
oo · · ·

(t+1)·
oo M

(t+1)·
oo M

(t−1)·
oo 0,oo

when d is even. Since M = F2 ⊕ F2, and the homomorphisms M (t−1)·−→ M and
M (t+1)·−→ M coincide onM, we conclude that

Hr(RPd−1;M) ∼=


ker
(
M (t−1)·−→ M

) ∼= F2, r = 0,

M/ im
(
M (t−1)·−→ M

) ∼= F2, r = d− 1,

0, otherwise.

We denote the generator of the group Hd−1(RPd−1;M) by zd−1.
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7.4.5. Homology of the real projective space with local coefficients. For d ≥ 2, along
the lines of the previous section, we compute the homology of the projective space
H∗(RPd−1;M) where the local coefficient systemM is additively F2⊕F2, and the
action of π1(RPd−1) = 〈t〉 onM is given by t · (a1, a2) = (a2, a1) where (a1, a2) ∈
F2 ⊕ F2.

Like in the case of cohomology we consider two separate cases: d = 2 when
π1(RPd−1) ∼= Z, and d ≥ 3 when π1(RPd−1) ∼= Z2. First we recall the definition of
the homology with local coefficients, consult for example [60, Sec. 3.H].

For a path-connected CW-complex X let X̃ denote its universal cover, and let
π := π1(X) be its fundamental group. Denote by L a local coefficient system on X,
that is a Z[π]-module. Assume that we are given a structure of Z[π]-CW-complex
on X̃ with associated cellular chain complex

· · · // Cn+1(X̃)
dn+1

// Cn(X̃)
dn
// Cn−1(X̃)

dn−1
// · · ·

· · · d2
// C1(X̃)

d1
// C0(X̃) // 0 ,

where Cn(X̃) is a Z[π]-module, and dn : Cn(X̃) −→ Cn−1(X̃) is a Z[π]-module
homomorphism, for every n ∈ N.

The homology H∗(X;L) of X with local coefficients in L is homology of the
chain complex

· · · // Cn+1(X̃)⊗Z[π] L // Cn(X̃)⊗Z[π] L // Cn−1(X̃)⊗Z[π] L // · · ·

· · · // C1(X̃)⊗Z[π] L // C0(X̃)⊗Z[π] L // 0 .

This means that

Hn(X;M) :=
ker
(
Cn(X̃)⊗Z[π] L −→ Cn−1(X̃)⊗Z[π] L

)
im
(
Cn+1(X̃)⊗Z[π] L −→ Cn(X̃)⊗Z[π] L

) .

First we consider the case d = 2. The universal cover of the projective space RP1

is the real line R1, and the fundamental group π = π1(RP1) = 〈t〉 is the infinite
cyclic group. An associated Z[π]-CW-complex of the universal cover R̃P1 = R1

is defined as follows: The 0-cells are all integers {xi0 := {i} : i ∈ Z}, while the
1-cells are intervals {xi1 := [i, i + 1] : i ∈ Z}. The action of the generator t of the
fundamental group on the cells of the Z[π]-CW-complex is given by t · xij = xi+1

j

for j ∈ {0, 1}. Hence, the induced cellular chain complex of Z[π]-modules is given
by

C0(R̃P1) = Z[Z] =Z[Z]-module 〈x1
0〉 and C1(R̃P1) = Z[Z] =Z[Z]-module 〈x1

1〉

where the only non-trivial boundary homomorphism d1 is defined on the generator
of C1(R̃P1) by d1(x1

1) := x1
0 − x0

0 = (t − 1) · x0
0. Thus, the cellular chain complex

we consider in this case is

0 // Z[Z]
(t−1)·

// Z[Z] // 0.

After applying the functor · ⊗Z[Z]M we get the chain complex

0 // M
(t−1)·

// M // 0.
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Since additivelyM = F2 ⊕ F2 by direct inspection we see that

Hr(RP1;M) ∼=


M/ im

(
M (t−1)·−→ M

) ∼= F2, r = 0,

ker
(
M (t−1)·−→ M

) ∼= F2, r = 1,

0, otherwise.

For further use we denote the generator of the group H1(RPd−1;M) by h1.
When d ≥ 3 the universal cover of the projective space RPd−1 is the sphere

Sd−1, and the fundamental group is π := π1(RPd−1) ∼= Z2 = 〈t〉. An Z[π]-CW-
complex is associated to the universal cover R̃Pd−1 = Sd−1 as follows: In each
dimension i, where 0 ≤ i ≤ d − 1, there are two cells x0

i and x1
i . The generator

t of the fundamental group π acts on the cells by t · x0
j = x1

j and t · x1
j = x0

j for
0 ≤ j ≤ d − 1. Thus, the induced cellular chain complex of Z[π]-modules is given
by

Cn(R̃Pd−1) = Z[Z2] =Z[Z2]-module 〈x0
n〉, for 0 ≤ n ≤ d− 1,

where the boundary homomorphism dn : Cn(R̃Pd−1) −→ Cn−1(R̃Pd−1) on the gen-
erator x0

n is

dn(x0
n) := x1

n−1 − x0
n−1 = (t− 1) · x0

n−1, for 1 ≤ n ≤ d− 1 odd,

dn(x0
n) := x1

n−1 + x0
n−1 = (t+ 1) · x0

n−1, for 1 ≤ n ≤ d− 1 even,

and otherwise zero. The cellular chain complex we obtained in this case is

0 // Z[Z2]
(t+1)·

// Z[Z2]
(t−1)·

// · · ·
(t+1)·

// Z[Z2]
(t−1)·

// Z[Z2] // 0,

when d is odd, and

0 // Z[Z2]
(t−1)·

// Z[Z2]
(t+1)·

// · · ·
(t+1)·

// Z[Z2]
(t−1)·

// Z[Z2] // 0,

when d is even.
Applying the functor · ⊗Z[Z]M yields a chain complex isomorphic to the chain

complex:

0 // M
(t+1)·

// M
(t−1)·

// · · ·
(t+1)·

// M
(t−1)·

// M // 0,

when d is odd, and

0 // M
(t−1)·

// M
(t+1)·

// · · ·
(t+1)·

// M
(t−1)·

// M // 0,

when d is even. Since M = F2 ⊕ F2, and the homomorphisms M (t−1)·−→ M and
M (t+1)·−→ M coincide onM, we have that

Hr(RPd−1;M) ∼=


M/ im

(
M (t−1)·−→ M

) ∼= F2, r = 0,

ker
(
M (t−1)·−→ M

) ∼= F2, r = d− 1,

0, otherwise.

We denote the generator of the group Hd−1(RPd−1;M) by hd−1, and the generator
of the group H0(RPd−1;M) by h0.
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