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ASSEMBLY MAPS

WOLFGANG LÜCK

Abstract. We introduce and analyze the concept of an assembly map from
the original homotopy theoretic point of view. We give also interpretations in
terms of surgery theory, controlled topology and index theory. The motivation
is that prominent conjectures of Farrell-Jones and Baum-Connes about K- and
L-theory of group rings and group C∗-algebras predict that certain assembly
maps are weak homotopy equivalences.

0. Introduction

0.1. The homotopy theoretic description of assembly maps. The quickest
and probably for a homotopy theorist most convenient approach to assembly maps
is via homotopy colimits as explained in Subsection 6.3. Let F be a family of sub-
groups of G, i.e., a collection of subgroups closed under conjugation and passing
to subgroups. Let Or(G) be the orbit category and OrF (G) be the full subcat-
egory consisting of objects G/H satisfying H ∈ F . Consider a covariant functor
EG : Or(G) → Spectra to the category of spectra. We get from the inclusion
OrF (G)→ Or(G) and the fact that G/G is a terminal object in Or(G) a map

(0.1) hocolimOrF (G)E
G|OrF (G) → hocolimOr(G) E

G = EG(G/G).

It is called assembly map since we are trying to assemble the values of EG on
homogeneous spaces G/H for H ∈ F to get E(G/G).

On homotopy groups this assembly map can also be described as the map

(0.2) HG
n (pr;EG) : HG

n (EF (G);EG)→ HG
n (G/G;EG) = πn(E

G(G/G))

induced by the projection pr : EF (G)→ G/G of the classifying G-space EF (G) for
the family F , see Section 5, to G/G, where HG

n (−;EG) is the G-homology theory
in the sense of Definition 2.1 associated to EG, see Lemma 2.5.

In all interesting situations one can take a global point of view. Namely, one
starts with a covariant functor respecting equivalences E : Groupoids → Spectra

and defines for a group G the functor EG to be the composite of E with the functor
Or(G)→ Groupoids given by the transport groupoid of aG-set, see Subsection 6.4.

0.2. Isomorphism Conjectures. The Meta Isomorphism Conjecture for G, F
and EG, see Section 6, says that the assembly map of (0.1) is a weak homotopy
equivalence, or, equivalently, that the map (0.2) is bijective for all n ∈ Z.

If we take for E an appropriate functor modelling the algebraic K-theory or
the algebraic L-theory with decoration 〈−∞〉 of the group ring RG and for F the
family of virtually cyclic subgroups, we obtain the Farrell-Jones Conjecture 7.3. It

assembles Kn(RG) and L
〈−∞〉
n (RG) in terms of Kn(RH) and L

〈−∞〉
n (RH), where

H runs through the virtually cyclic subgroups of G.
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If we take for E an appropriate functor modelling the topological K-theory of
the reduced group C∗-algebra C∗

r (G) and for F the family of finite subgroups, we
obtain the Baum-Connes Conjecture 8.2. It assembles Ktop

n (C∗
r (G)) in terms of

Ktop
n (C∗

r (H)), where H runs through the finite subgroups of G.
The Farrell-Jones Conjecture 7.3 and the Baum-Connes Conjecture 8.2 are very

powerful conjectures and are the main motivation for the study of assembly maps. A
survey of a lot of striking applications such as the ones to the conjectures of Bass,
Borel, Gromov-Lawson-Rosenberg, Kadison, Kaplansky, and Novikov is given in
Subsections 7.2 and 8.4. The Farrell-Jones Conjecture 7.3 and the Baum-Connes
Conjecture 8.2 are known to be true for a surprisingly large class of groups, as
explained in Subsections 7.7 and 8.5. All of this is an impressive example how
homotopy theoretic methods can be used for problems in other fields such as algebra,
geometry, manifold theory and operator algebras.

0.3. Other interpretations of assembly maps. The homotopy theoretic ap-
proach is the best for structural purposes. The applications and the proofs of the
Farrell-Jones Conjecture 7.3 and the Baum-Connes Conjecture 8.2 require sophisti-
cated analytic, topological and geometric interpretations of the homotopy theoretic
assembly maps, for instance in terms of surgery theory, see Subsection 7.3, as forget
control maps, see Subsection 7.4, and in terms of index theory, see Subsection 8.3.
This presents an intriguing interaction between homotopy theory, geometry and
operator theory.

0.4. The universal property of the assembly map. In Section 4 we character-
ize the assembly map in the sense that it is the universal approximation from the left
by an excisive functor of a given homotopy invariant functor G-CW2 → Spectra.
This is the key ingredient in the difficult identification of the various assembly maps
mentioned in Subsection 0.3 above. It reflects the fact that in all of the Isomor-
phism Conjectures the hard and interesting object is the target and the source is
given by the G-homology of the classifying G-spaces for a specific family of sub-
groups. The source is more accessible than the target since one can apply standard
methods from algebraic topology such as spectral sequences and equivariant Chern
characters.

0.5. Relative assembly maps. Relative assembly maps are studied in Section 11.
They address the problem to make the families appearing in the various Isomor-
phism Conjectures as small as possible.

0.6. Further aspects of assembly maps. The homotopy theoretic approach to
assembly allows to relate assembly maps for various theories, such as the algebraic
K-theory and A-theory via linearization, see Subsection 7.6, algebraic K-theory of
groups rings and topological K-theory of reduced group C∗-algebras, see Subsec-
tion 8.6, and algebraicK-theory of groups rings and the topological cyclic homology
of the spherical group ring via cyclotomic traces, see Subsection 9.3. How assembly
maps can be used for computations is illustrated in Section 12 which is based on
the global point of view described in Section 10. Finally we formulate the challenge
of extending equivariant homotopy theory for finite groups to infinite groups in
Section 13.

The idea of the geometric assembly map is due to Quinn [94, 95] and its algebraic
counterpart was introduced by Ranicki [97].

0.7. Conventions. Throughout this paper G denotes a (discrete) group. Ring
means associative ring with unit. All spectra are non-connective.
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1. Some basic categories

In this section we recall some well-known basic categories.

1.1. G-CW -complexes.

Definition 1.1 (G-CW -complex). A G-CW -complex X is a G-space together with
a G-invariant filtration

∅ = X−1 ⊆ X0 ⊂ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃

n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration (i.e., a set
C ⊆ X is closed if and only if C ∩ Xn is closed in Xn for all n ≥ 0) and Xn is
obtained from Xn−1 for each n ≥ 0 by attaching equivariant n-dimensional cells,
i.e., there exists a G-pushout

∐
i∈In

G/Hi × Sn−1

∐
i∈In

qni
//

��

Xn−1

��∐
i∈In

G/Hi ×Dn

∐
i∈In

Qn
i

// Xn

A map f : X → Y between G-CW -complexes is called cellular if f(Xn) ⊆ Yn

holds for all n ≥ 0. We denote by G-CW the category of G-CW -complexes with
cellular G-maps as morphisms and by G-CW2 the corresponding category of G-
CW -pairs. For basic information about G-CW -complexes we refer for instance
to [65, Chapter 1 and 2].

1.2. The orbit category. The orbit category Or(G) has as objects homogeneous
spaces G/H and as morphisms G-maps. It can be viewed as the category of 0-
dimensional G-CW -complexes, whose G-quotient space is connected. In particular
we can think of Or(G) as a full subcategory of G-CW.

1.3. Spectra. In this paper we can work with the most elementary category Spectra
of spectra. A spectrum E = {(E(n), σ(n)) | n ∈ Z} is a sequence of pointed spaces
{E(n) | n ∈ Z} together with pointed maps called structure maps σ(n) : E(n) ∧
S1 −→ E(n+1). A map of spectra f : E→ E′ is a sequence of maps f(n) : E(n)→
E′(n) which are compatible with the structure maps σ(n), i.e., we have f(n+ 1) ◦
σ(n) = σ′(n) ◦ (f(n) ∧ idS1) for all n ∈ Z. Maps of spectra are sometimes called
functions in the literature, they should not be confused with the notion of a map
of spectra in the stable category, see [1, III.2.].

The homotopy groups of a spectrum are defined by

πi(E) := colimk→∞ πi+k(E(k)),(1.2)

where the ith structure map of the system πi+k(E(k)) is given by the composite

πi+k(E(k))
S
−→ πi+k+1(E(k) ∧ S1)

σ(k)∗
−−−→ πi+k+1(E(k + 1))
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of the suspension homomorphism S and the homomorphism induced by the struc-
ture map. A weak equivalence of spectra is a map f : E→ F of spectra inducing an
isomorphism on all homotopy groups.

2. G-homology theories and Or(G)-spectra

Let Λ be a commutative ring. Next we recall the obvious generalization of the
notion of a (generalized) homology theory to a G-homology theory.

Definition 2.1 (G-homology theory). A G-homology theory HG
∗ with values in

Λ-modules is a collection of covariant functors HG
n from the category G-CW2 of

G-CW -pairs to the category of Λ-modules indexed by n ∈ Z together with natural
transformations

∂G
n (X,A) : HG

n (X,A)→ HG
n−1(A) := H

G
n−1(A, ∅)

for n ∈ Z such that the following axioms are satisfied:

• G-homotopy invariance

If f0 and f1 are G-homotopic G-maps of G-CW -pairs (X,A) → (Y,B),
then HG

n (f0) = H
G
n (f1) for n ∈ Z;

• Long exact sequence of a pair

Given a pair (X,A) of G-CW -complexes, there is a long exact sequence

. . .
HG

n+1(j)
−−−−−→ HG

n+1(X,A)
∂G
n+1
−−−→ HG

n (A)
HG

n (i)
−−−−→ HG

n (X)

HG
n (j)
−−−−→ HG

n (X,A)
∂G
n−−→ . . . ,

where i : A→ X and j : X → (X,A) are the inclusions;
• Excision

Let (X,A) be a G-CW -pair and let f : A → B be a cellular G-map of
G-CW -complexes. Equip (X ∪f B,B) with the induced structure of a G-
CW -pair. Then the canonical map (F, f) : (X,A) → (X ∪f B,B) induces
an isomorphism

HG
n (F, f) : H

G
n (X,A)

∼=
−→ HG

n (X ∪f B,B);

• Disjoint union axiom

Let {Xi | i ∈ I} be a family of G-CW -complexes. Denote by ji : Xi →∐
i∈I Xi the canonical inclusion. Then the map

⊕

i∈I

HG
n (ji) :

⊕

i∈I

HG
n (Xi)

∼=
−→ HG

n

(
∐

i∈I

Xi

)

is bijective.

If E is a spectrum, then one gets a (non-equivariant) homology theory H∗(−;E)
by defining

Hn(X,A;E) = πn

(
(X+ ∪A+ cone(A+)) ∧E

)

for a CW -pair (X,A) and n ∈ Z, where X+ is obtained from X by adding a disjoint
base point and cone denotes the (reduced) mapping cone. Its main property is
Hn({•};E) = πn(E). This extends to G-homology theories as follows. Since the
building blocks of G-spaces are homogeneous spaces, we will have to consider a
covariantOr(G)-spectrum, i.e., a covariant functor EG : Or(G)→ Spectra, instead
of a spectrum.
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Definition 2.2 (Excisive). We call a covariant functor

E : G-CW2 → Spectra

homotopy invariant if it sends G-homotopy equivalences to weak homotopy equiv-
alences of spectra.

The functor E is excisive if it has the following four properties:

• It is homotopy invariant;
• The spectrum E(∅) is weakly contractible;
• It respects homotopy pushouts up to weak homotopy equivalence, i.e., if

the G-CW -complex X is the union of G-CW -subcomplexes X1 and X2

with intersection X0, then the canonical map from the homotopy pushout
of E(X2) ←− E(X0) −→ E(X2) to E(X) is a weak homotopy equivalence
of spectra;

• It respects disjoint unions up to weak homotopy, i.e., the natural map∨
i∈I E(Xi) → E(

∐
i∈I Xi) is a weak homotopy equivalence for all index

sets I.

One easily checks

Lemma 2.3. Suppose that the covariant functor E : G-CW2 → Spectra is excisive.
Then we obtain a G-homology theory with values in Z-modules by assigning to G-
CW -pair (X,A) and n ∈ Z the abelian group πn(E(X,A)).

A G-space X defines a contravariant Or(G)-space OG(X) by sending G/H to
mapG(G/H,X) = XH . Given a contravariant pointed Or(G)-space Y and a covari-
ant pointed Or(G)-space Z, there is the pointed space Y ∧Or(G)Z. Its construction
is explained for instance in [25, Section 1]. This construction is natural in Y and
Z. Its main property is that one obtains for every pointed space X an adjunction
homeomorphism

map(Y ∧Or(G) Z,X)
∼=
−→ morOr(G)(Y,map(Z,X))

where the source is the pointed mapping space and the target is the topological
space of natural transformations from Y to the contravariant pointed Or(G)-space
map(Z,X) sending G/H to the pointed mapping space map(Z(G/H), X). If EG

is a covariant Or(G)-spectrum, then one obtains a spectrum Y ∧Or(G) E
G. Hence

we can extend a covariant functor EG : Or(G)→ Spectra to a covariant functor

(2.4) (EG)% : G-CW2 → Spectra, (X,A) 7→ OG(X+∪A+ cone(A+))∧Or(G)E
G.

The easy proofs of the following two results are left to the reader.

Lemma 2.5. If EG is a covariant Or(G)-spectrum, then (EG)% is excisive and we
obtain a G-homology theory HG

∗ (−;EG) by

HG
n (X,A;EG) = πn((E

G)%(X,A)) = πn

(
OG(X+ ∪A+ cone(A+)) ∧Or(G) E

G
)

satisfying HG
n (G/H ;EG) = πn(E

G(G/H)) for n ∈ Z and H ⊆ G.

Lemma 2.6. Let t : E → F be a natural transformation of covariant functors
G-CW2 → Spectra. Suppose that E and F are excisive and t(G/H) is a weak
homotopy equivalence for any homogeneous G-space G/H.

Then t(X,A) : E(X,A) → F(X,A) is a weak homotopy equivalence for every
G-CW -pair (X,A).
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3. Approximation by an excisive functor

The following result follows from [25, Theorem 6.3]. Its non-equivariant version
is due to Weiss-Williams [120].

Theorem 3.1 (Approximation by an excisive functor). Let E : G-CW2 → Spectra

be a covariant functor which is homotopy invariant. Let E| : Or(G) → Spectra be
its composite with the obvious inclusion Or(G)→ G-CW2.

Then there exists a covariant functor

E% : G-CW2 → Spectra

and natural transformations

AE : E% → E;

BE : E% → E|%,

satisfying:

(1) The functor E% is excisive;
(2) The map AE(G/H) : E%(G/H) → E(G/H) is a weak homotopy equiva-

lence for every homogeneous space G/H;
(3) The map BE(X,A) : E%(X,A) → E|%(X,A) is a weak homotopy equiva-

lence for every G-CW -pair (X,A);
(4) The functor E is excisive if and only if AE(X,A) is a weak homotopy

equivalence for every G-CW -pair (X,A);
(5) The transformations AE and BE are functorial in E.

Although one does not need to understand the explicite construction of E%, AE

and BE and the proof of Theorem 3.1 for the applications of Theorem 3.1 and for
the reminder of this paper, we make some comments about it for the interested
reader.

As an illustration we firstly present a naive suggestion in the non-equivariant
case, which turns out to require too restrictive assumptions on E and therefore will
not be the final solution, but conveys a first idea. Namely, we can define a map of
pointed sets X+ ∧E({•})→ E(X) for a CW -complex X by sending an element in
the target represented by (x, e) for x ∈ X and e ∈ E({•}) to E(cx : {•} → X)(e),
where cx : {•} → X is the constant map with value x. The problem is that the only
reasonable way of ensuring the continuity of this map is to require that E itself is
continuous, i.e., the map map(X,Y ) → map(E(X)n, E(Y )n) sending f to E(f)n
has to be continuous for all n ∈ Z. But this assumption is not satisfied for the
functors E which are of interest for us and will be considered below.

The solution is to take homotopy invariance into account and to work simplicially.
Let us consider the special case, where G is trivial and X is a simplicial complex.
For any simplex σ of X we have the inclusion i[σ] : σ → X and can therefore define
maps

AE[σ]n : σ+ ∧ E(σ)n
pr+ ∧ idE(σ)n
−−−−−−−−−→ {•}+ ∧E(σ)n = E(σ)n

E(i[σ])n
−−−−−→ E(X)n;

BE[σ]n : σ+ ∧ E(σ)n
idσ+

∧E(pr)n
−−−−−−−−−→ σ+ ∧ E({•})n,

where pr denotes the projection onto {•}. Now define a space E%(X)n by glueing
the spaces σ+ ∧ E(σ)n for σ running over the simplices of X together according
to the simplicial structure, more precisely, for an inclusion j : τ → σ of simplices
we identify a point in τ+ ∧ E(τ)n with its image in σ+ ∧ E(σ)n under the obvious
map j+ ∧ E(j)n. One easily checks that the various maps AE[σ]n and BE[σ]n fit
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together to maps of pointed spaces

AE(X)n : E
%(X)n → E(X)n;

BE(X)n : E
%(X)n → E|%(X)n := X+ ∧ E({•})n,

and thus to maps of spectra

AE(X) : E%(X) → E(X)n;

BE(X) : E%(X) → E|%(X) := X+ ∧E({•}).

Notice that each map E(pr) : E(σ) → E({•}) is by assumption a weak homotopy
equivalence. This implies that BE(X) : E%(X) → E|%(X) is a weak homotopy
equivalence. Since the functor E% is excisive, the functor E% is excisive. IfX = {•},
the map AE({•}) : E%({•})→ E({•}) is an isomorphism and in particular a weak
homotopy equivalence.

Now we see, where the name assembly map comes from. In the case of a simplicial
complex X we want to assemble E(X) by its values E(σ) for the various simplices of
X , which leads to the definition of E%(X). Intuitively it is clear that E(X) carries
the same information as E|%(X) if and only if E is excisive since the condition
excisive allows to compute the values of E on X by its values on the simplices
taking into account how the simplices are glued together to yield X .

Finally one wants a definition that is independent of the simplicial structure and
actually applies to more general spaces X than simplicial complexes. Therefore one
uses simplicial sets and in particular the singular simplicial set S.X , Recall that
S.X is the functor from the category of finite ordered sets ∆ to the category of sets
Sets sending the finite ordered set [p] to the set map(∆p, Y ) for ∆p the standard
p-simplex. For the equivariant version one has to bring the orbit category into play.
So one considers for a G-space X the functor

Or(G) ×∆→ Sets, (G/H, [p]) 7→ mapG(G/H ×∆p, X).

In some sense on uses free resolution of contravariant functors Or(G)×∆→ Spaces

to get the right construction of E% and of the desired transformations AE and BE

so that the claims appearing in Theorem 3.1 can be proved. Details can be found
in [25].

4. The universal property

Next we explain why Theorem 3.1 characterizes the assembly map in the sense
thatAE : E% −→ E is the universal approximation from the left by an excisive func-
tor of a homotopy invariant functor E : G-CW2 → Spectra. Namely, let T : F→ E

be a transformation of covariant functors G-CW2 → Spectra such that F is exci-
sive. Then for any G-F -CW -pair (X,A) the following diagram commutes

F%(X)
AF(X)

≃
//

T
%(X)

��

F(X)

T(X)

��

E%(X)
AE(X)

// E(X)

and AF(X) is a weak homotopy equivalence by Theorem 3.1 (4). Hence T(X)
factorizes over AE(X) up to natural weak homotopy equivalence.

Suppose additionally that T(G/H) is a weak homotopy equivalence for every
subgroup H ⊆ G. Then both T%(X) and AF(X) are weak homotopy equivalences
by Lemma 2.6 and Theorem 3.1 (4), and hence T(X) can be identified with AE(X)
up to natural weak homotopy equivalence.
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Recall that there is a natural weak equivalence BE(X) : E%(X)
≃
−→ E|%(X), so

that one may replace in the considerations above E%(X) by E|%(X), which depends
on the values of E on homogeneous spaces only. This universal property will be the
key ingredient for the identification of various versions of assembly maps.

5. Classifying spaces for families of subgroups

We recall the notion classifying space for a family which was introduced by tom
Dieck [108].

Definition 5.1 (Family of subgroups). A family F of subgroups of a group G is
a set of subgroups of G which is closed under conjugation with elements of G and
under passing to subgroups.

Our main examples of families are the trivial family T R consisting of the trivial
subgroup, the family ALL of all subgroups, and the families FCY, CY, FIN ,
and VCY of finite cyclic subgroups, of cyclic subgroups, of finite subgroups, and of
virtually cyclic subgroups.

Definition 5.2 (Classifying G-space for a family of subgroups). Let F be a family
of subgroups of G. A model EF (G) for the classifying spaces for the family F of
subgroups of G is a G-CW -complex EF(G) that has the following properties:

(1) All isotropy groups of EF (G) belong to F ;
(2) For any G-CW -complex Y , whose isotropy groups belong to F , there is up

to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal G-space for proper
G-actions. We also write EG := EVCY(G).

Equivalently, EF (G) is a terminal object in the G-homotopy category of G-CW -
complexes, whose isotropy groups belong to F . In particular two models for EF (G)
are G-homotopy equivalent and for two families F0 ⊆ F1 there is up to G-homotopy
precisely one G-map EF0(G) → EF1(G). There are functorial constructions for
EF (G) generalizing the bar construction, see [25, Section 3 and Section 7].

Theorem 5.3 (Homotopy characterization of EF (G)). A G-CW -complex X is a
model for EF (G) if and only if for every subgroup H ⊆ G its H-fixed point set XH

is weakly contractible if H ∈ F , and is empty if H /∈ F .

A model for EALL(G) is G/G. A model for ET R(G) is the same as a model
for EG i.e, the universal covering of BG, or, equivalently, the total space of the
universal G-principal bundle. There are many interesting geometric models for
classifying spaces EG = EFIN (G), e.g., the Rips complex for a hyperbolic group,
the Teichmüller space for a mapping class group, and so on. The question whether
there are finite-dimensional models, models of finite type or finite models has been
studied intensively during the last decades. For more information about classifying
spaces for families we refer for instance to [73].

6. The Meta-Isomorphism Conjecture

In this section we formulate the Meta-Isomorphism Conjecture, from which all
other Isomorphism Conjectures such as the one due to Farrell-Jones and Baum-
Connes are obtained by specifying the parameters E and F .
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6.1. The Meta-Isomorphism Conjecture for G-homology theories. Let HG
∗

be a G-homology theory with values in Λ-modules for some commutative ring Λ.
The projection pr : EF (G)→ G/G induces for all integers n ∈ Z a homomorphism
of Λ-modules

(6.1) HG
n (pr) : H

G
n (EF (G))→ HG

n (G/G)

which is called the assembly map.

Conjecture 6.2 (Meta-Isomorphism Conjecture for G-homology theories). The
group G satisfies the Meta-Isomorphism Conjecture with respect to the G-homology
theory HG

∗ and the family F of subgroups of G, if the assembly map

HG
n (pr) : H

G
n (EF (G))→ HG

n (G/G)

of (6.1) is bijective for all n ∈ Z.

If we choose F to be the family ALL of all subgroups, then G/G is a model for
EALL(G) and the Meta-Isomorphism Conjecture 6.2 is obviously true. The point
is to find an as small as possible family F . The idea of the Meta-Isomorphism
Conjecture 6.2 is that one wants to compute HG

n (G/G), which is the unknown and
the interesting object, by assembling it from the values HG

n (G/H) for H ∈ F .

6.2. The Meta-Isomorphism Conjecture on the level of spectra. Often the
construction of the assembly map is done already on the level of spectra or can be
lifted to this level. Consider a covariant functor

EG : Or(G)→ Spectra.

Conjecture 6.3 (Meta-Isomorphism Conjecture for spectra). The group G satisfies
the Meta-IsomorphismConjecture with respect to the covariant functor EG : Or(G)→
Spectra and the family F of subgroups of G, if the projection pr : EF (G) → G/G
induces a weak homotopy equivalence

(EG)%(pr) : (E
G)%(EF (G))→ (EG)%(G/G) = EG(G/G).

Notice that (EG)%(pr) : (E
G)%(EF (G)) → (EG)%(G/G) = EG(G/G) is a weak

homotopy equivalence if and only if for every n ∈ Z the map

HG
n (pr;EG) : HG

n (EF (G);EG)→ HG
n (G/G;EG)

is a bijection, where HG
∗ (−;EG) is the G-homology theory associated to EG, see

Lemma 2.5. In other words, Conjecture 6.3 is equivalent to Conjecture 6.2 if we
take for HG

∗ the G-homology theory associated to EG.

6.3. The assembly map in terms of homotopy colimits. The assembly map
appearing in Conjecture 6.3 can be interpreted in terms of homotopy colimits as
follows. Let OrF(G) be the full subcategory of Or(G) consisting of those objects
G/H for which H belongs to F . Let EG|OrF (G) be the restriction of EG to OrF (G).
Then we get from the inclusion OrF (G) → Or(G) and the fact that G/G is a
terminal object in Or(G) a map

hocolimOrF (G)E
G|OrF (G) → hocolimOr(G) E

G = EG(G/G).

This map can be identified with (EG)%(pr) : (E
G)%(EF (G)) → (EG)%(G/G),

see [25, Section 5.2]. Again this explains the name assembly map: we try to put
the values of EG on homogeneous spaces G/H for H ∈ F together to get its value
at G/G.
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6.4. Spectra over Groupoids. In all interesting cases we will obtain EG as fol-
lows. Let Groupoids be the category of small groupoids. Consider a covariant
functor

E : Groupoids→ Spectra

which respects equivalences, i.e., it sends equivalences of groupoids to weak equiv-
alences of spectra. Given a G-set S, its transport groupoid T G(S) has S as set of
objects and the set of morphism from s0 to s1 is {g ∈ G | gs0 = s1}. Composition
comes from the multiplication in G. We get for every group G a functor

EG : Or(G)→ Spectra

by composing E with the functor Or(G)→ Groupoids, G/H 7→ T G(G/H).
Notice that a group G can be viewed as a groupoid with one object and G as

set of automorphisms of this object and hence we can consider E(G). We have
the obvious identifications E(G) = EG(G/G) = (EG)%(G/G). Moreover, for every
subgroup H ⊆ G there is an equivalence of groupoids H → T G(G/H) sending the
unique object of H to the object eH , which induces a weak homotopy equivalence
E(H)→ EG(G/H).

The various prominent Isomorphism Conjectures such as the one due to Farrell-
Jones and Baum-Connes are now obtained by specifyingE : Groupoids→ Spectra,
the group G and the family F .

7. The Farrell-Jones Conjectures

7.1. The Farrell-Jones Conjecture for K-and L-theory. Let R be a ring (with
involution). There exist covariant functors respecting equivalences

KR : Groupoids → Spectra;(7.1)

L
〈−∞〉
R : Groupoids → Spectra,(7.2)

such that for every group G and all n ∈ Z we have

πn(KR(G)) ∼= Kn(RG);

πn(L
〈−∞〉
R (G)) ∼= L〈−∞〉

n (RG).

Here Kn(RG) is the n-th algebraic K-group of the group ring RG and L
〈−∞〉
n (RG)

is the nth quadratic L-group with decoration 〈−∞〉 of the group ring RG equipped
with the involution sending

∑
g∈G rgg to

∑
g∈G rgg

−1.

The details of this construction can be found in [25, Section 2]. If we now take
these functors and the family VCY of virtually cyclic subgroups, we obtain

Conjecture 7.3 (Farrell-Jones Conjecture). A group G satisfies the K-theoretic
or L-theoretic Farrell-Jones Conjecture if for every ring (with involution) R the
assembly maps induced by the projection pr: EG→ G/G

HG
n (pr;KR) : H

G
n (EG;KR) → HG

n (G/G;KR) = Kn(RG);

HG
n (pr;L

〈−∞〉
R ) : HG

n (EG;L
〈−∞〉
R ) → HG

n (G/G;L
〈−∞〉
R ) = L〈−∞〉

n (RG),

are bijective for all n ∈ Z.

It is crucial that we use non-connective K-spectra and that the decoration for
the L-theory is 〈−∞〉, see [38].

The original version of the Farrell-Jones Conjecture appeared in [37, 1.6 on
page 257]. A detailed exposition on the Farrell-Jones Conjecture will be given
in [75], see also [78].
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7.2. Applications of the Farrell-Jones Conjecture. Here are some conse-
quences of the Farrell-Jones Conjecture. For more information about these and
other applications we refer for instance to [9, 75, 78].

7.2.1. Computations. One can carry out explicite computations of K and L-groups
of group rings by applying methods from algebraic topology to the left side given
by a G-homology theory and by finding small models for the classifying spaces of
families using the topology and geometry of groups, see Section 12.

7.2.2. Vanishing of lower and middle K-groups. If G is a torsionfree group satis-
fying the K-theoretic Farrell-Jones Conjecture 7.3, then Kn(ZG) for n ≤ −1, the

reduced projective class group K̃0(ZG), and the Whitehead group Wh(G) vanish.
This has the following consequences. Every homotopy equivalence f : X → Y

of connected CW -complexes with π1(Y ) ∼= G is simple. Every h-cobordism over
a closed manifold M of dimension ≥ 5 and G ∼= π1(M) is trivial. Every finitely
generated projective ZG-module is stably free. Every finitely dominated connected
CW -complex X with π1(X) ∼= G is homotopy equivalent to a finite CW -complex.

7.2.3. Kaplansky’s Idempotent Conjecture. If the torsionfree group G satisfies the
K-theoretic Farrell-Jones Conjecture 7.3, then G satisfies the Idempotent Conjec-
ture that for a commutative integral domain R the only idempotents of RG are 0
and 1.

7.2.4. Novikov Conjecture. IfG satisfies the L-theoretic Farrell-Jones Conjecture 7.3,
then G satisfies the Novikov Conjecture about the homotopy invariance of higher
signatures. For more information about the Novikov Conjecture we refer for in-
stance to [41, 42, 58].

7.2.5. Borel Conjecture. If G is a torsionfree group satisfying the K-theoretic and
the L-theoretic Farrell-Jones Conjecture 7.3, then G satisfies the Borel Conjecture
in dimensions ≥ 5, i.e., if M and N are closed aspherical manifolds of dimension ≥ 5
with π1(M) ∼= π1(N) ∼= G, then M and N are homeomorphic and every homotopy
equivalence from M to N is homotopic to a homeomorphism.

7.2.6. Bass Conjecture. If G satisfies the K-theoretic Farrell-Jones Conjecture 7.3,
then G satisfies the Bass Conjecture, see [9, 13].

7.2.7. Automorphism groups. The Farrell-Jones Conjecture 7.3 yields rational com-
putations of the homotopy groups and homology groups of the automorphisms
groups of an aspherical closed manifold in the topological, PL and smooth cate-
gory, see for instance instance [35], [36, Section 2] and [34, Lecture 5].

For instance, if M is an aspherical orientable closed (smooth) manifold of di-
mension > 10 with fundamental group G such that G satisfies the Farrell-Jones
Conjecture 7.3, then we get for 1 ≤ i ≤ (dimM − 7)/3

πi(Top(M))⊗Z Q =

{
center(G)⊗Z Q if i = 1;
0 if i > 1,

and

πi(Diff(M))⊗Z Q =





center(G)⊗Z Q if i = 1;⊕∞
j=1 H(i+1)−4j(M ;Q) if i > 1 and dimM odd;

0 if i > 1 and dimM even.

For a survey on automorphisms of manifolds we refer to [121].
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7.2.8. Boundary of hyperbolic groups. In [11] a proof of a conjecture of Gromov is
given in dimensions n ≥ 6 using the Farrell-Jones Conjecture 7.3 that a torsionfree
hyperbolic group with Sn as boundary is the fundamental group of an aspherical
closed topological manifold. This manifold is unique to homeomorphism. The
stable Cannon Conjecture is treated in [40].

7.2.9. Poincaré duality groups. If G is a Poincaré duality group of dimension n ≥ 6
and satisfies the Farrell-Jones Conjecture 7.3, then it is the fundamental group of an
aspherical closed homology ANR-manifold, see [11]. It is unique up to s-cobordism.
Whether it can be chosen to be an aspherical closed topological manifold, depends
on its Quinn obstruction.

7.2.10. Tautological classes and aspherical manifolds. The vanishing of tautological
classes for many bundles with fibre an aspherical manifold is proved in [44].

7.2.11. Fibering manifolds. The problem when a map from some closed connected
manifold to an aspherical closed manifold approximately fibers, i.e., is homotopic
to Manifold Approximate Fibration, is analyzed in [39].

7.3. The interpretation of the Farrell-Jones assembly map for L-theory in

terms of surgery theory. So far we have given a homotopy theoretic approach
to the assembly map. This is the easiest approach and well-suited for structural
questions such as comparing the assembly maps of various different theories, as
explained below. For concrete applications it is important to give geometric or
analytic interpretations. For instance, one key ingredient in the proof that the Borel
Conjecture follows from the Farrell-Jones Conjecture is a geometric interpretation
of the assembly for the trivial family in terms of surgery theory, notably the surgery
exact sequence, which we briefly sketch next.

Definition 7.4 (The structure set). Let N be a closed topological manifold of
dimension n. We call two simple homotopy equivalences fi : Mi → N from closed
topological manifolds Mi of dimension n to N for i = 0, 1 equivalent if there exists
a homeomorphism g : M0 →M1 such that f1 ◦ g is homotopic to f0.

The structure set S(N) of N is the set of equivalence classes of simple homotopy
equivalences M → X from closed topological manifolds of dimension n to N . This
set has a preferred base point, namely, the class of the identity id : N → N .

One easily checks that the Borel Conjecture holds for G = π1(N) for a closed
aspherical manifold N if and only if S(N) consists of precisely one element, namely,
the class of idN : N → N . The surgery exact sequence, which we will explain next,
gives a way of calculating the structure set.

Definition 7.5 (Normal map of degree one). A normal map of degree one with
target the connected closed manifold N of dimension n consists of:

• A connected closed n-dimensional manifold M ;
• A map of degree one f : M → N ;
• A (k + n)-dimensional vector bundle ξ over N ;
• A bundle map f : TM ⊕ Rk → ξ covering f .

There is an obvious normal bordism relation and we denote by N (N) the set
of bordism classes of normal maps with target N . One can assign to a normal
map f : M → N its surgery obstruction σ(f) ∈ Ls

n(ZG) taking values in the nth
quadratic L-group with decoration s, where G = π1(N) and n = dim(N). If
n ≥ 5, the surgery obstruction vanishes if and only if one can find (by doing
surgery) a representative in the normal bordisms class, whose underlying map f
is a simple homotopy equivalence. It yields a map σ : N (N) → Ls

n(ZG). There
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is a map η : Stopn (N) → N (N) which assigns to the class of a simple homotopy
equivalence f : M → N with a closed manifold M as source the normal map given
by f itself and the bundle data coming from TM and ξ = (f−1)∗TM for some
homotopy inverse f−1 of f . We denote by N (N × [0, 1], N × ∂[0, 1]) the normal
bordism classes of normal maps relative boundary. Essentially these are normal
maps (M,∂M)→ (N × [0, 1], N× ∂[0, 1]) of degree one which are simple homotopy
equivalences on the boundary. There is a surgery obstruction relative boundary
which yields a map σ : N (N × [0, 1], N × ∂[0, 1]) → Ls

n+1(ZG). There is a also a
map ∂ : Ls

n+1(ZG) → Stopn (N) which sends an element x ∈ Ls
n+1(ZG) to the class

of a simple homotopy equivalence f : M → N for which there exists a normal map
relative boundary of triads (F, f0, idN ) : (W ;M,N)→ (N× [0, 1];N×{0}, N×{1})
whose relative surgery obstruction is x. If n ≥ 5, then one obtains a long exact
sequence of abelian groups, the surgery exact sequence due to Browder, Novikov,
Sullivan and Wall

(7.6) N (N × [0, 1], N × ∂[0, 1])
σn+1
−−−→ Ls

n+1(ZG)
∂
−→ S(N)

η
−→ N (N)

σn−−→ Ls
n(ZG).

If we can show that σn+1 is surjective and σn is injective, then the Borel Conjecture
holds for G = π1(N), if N is an aspherical closed manifold of dimension n ≥ 5.

Let L be the L-theory spectrum. It has the property πn(L) = L
〈−∞〉
n (Z). Denote

by L〈1〉 its 1-connective cover. It comes with a natural map of spectra L〈1〉 → L,
which induces on πi an isomorphism for i ≥ 1, and we have πi(L〈1〉) = 0 for i ≤ 0.
There are natural identifications coming among other things from the Pontrjagin-
Thom construction

un : N (N)
∼=
−→ Hn(N ;L〈1〉) = πn(N+ ∧ L〈1〉);

un+1 : N (N × [0, 1], N × {0, 1})
∼=
−→ Hn+1(N ;L〈1〉) = πn+1

(
N+ ∧ L〈1〉).

An easy spectral sequence argument shows that the canonical map

vn : Hn(N ;L〈1〉)→ Hn(N ;L)

is injective and the canonical map

vn+1 : Hn+1(N ;L〈1〉)→ Hn+1(N ;L)

is bijective for n = dim(N).
For the remainder of this subsection we assume additionally that N is aspherical.

There is a natural identification for m = n, n+ 1, see Definition 10.1,

wm : HG
m(EG;L

〈−∞〉
Z )

∼=
−→ Hm(BG;L) = Hm(N ;L).

TheK-theoretic Farrell-Jones Conjecture applied to the torsionfree groupG implies

that Kn(ZG) for n ≤ −1, the reduced projective class group K̃0(ZG), and the
Whitehead group Wh(G) vanish. One concludes from the so called Rothenberg
sequences, see [98, Theorem 17.2 on page 146], that for m = n, n+ 1 the canonical
map

rm : Ls
m(ZG)

∼=
−→ L〈−∞〉

m (ZG)

is bijective. The up toG-homotopy unique G-map i : EG = ET R(G)→ EG induces

for all m ∈ Z an isomorphism, see Theorem 11.2 (5),

HG
m(i;L

〈−∞〉
Z ) : HG

m(EG;L
〈−∞〉
Z )

∼=
−→ HG

m(EG;L
〈−∞〉
Z ).

The L-theoretic Farrell-Jones Conjecture predicts the bijectivity of the assembly
map

HG
n (pr,L

〈−∞〉
Z ) : HG

n (EG;L
〈−∞〉
Z )

∼=
−→ HG

n (G/G;L
〈−∞〉
Z ) = L〈−∞〉

n (ZG).
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The following diagram commutes

N (N)
σn

//

un ∼=

��

Ls
n(ZG)

Hn(N ;L〈1〉)

vn

��

Hn(N ;L)

HG
n (EG;L

〈−∞〉
Z )

wn∼=

OO

∼=

HG
n (i,L

〈−∞〉
Z

)

// HG
n (EG;L

〈−∞〉
Z )

∼=

HG
n (pr,L

〈−∞〉
Z

)

// L
〈−∞〉
n (ZG)

rn∼=

OO

If we replace everywhere n by n+ 1 and in the upper left corner N (N) by N (N ×
[0, 1], N × ∂[0, 1]), we get the analogous commutative diagram. The proof of the
commutativity of these diagrams is rather involved and we refer for a proof for
instance to [59]. We conclude from these two diagrams that σn is injective and
σn+1 is bijective since vn is injective and vn+1 is bijective. Recall that this implies
the vanishing of the structure set S(N). Hence the Farrell-Jones Conjecture 7.3
implies the Borel Conjecture in dimensions ≥ 5.

For more information about L-groups and surgery theory and the arguments and
facts above we refer for instance to [18, 19, 24, 66, 97, 117].

7.4. The interpretation of the Farrell-Jones assembly map in terms of

controlled topology. We have defined the assembly map appearing in the Farrell-
Jones Conjecture as a map induced by the projection EG→ G/G for a G-homology

theory HG
∗ (X ;EG) or for the functor (EG)% : G-CW → Spectra. We have also

given a homotopy theoretic interpretation in terms of homotopy colimits and de-
scribed its universal property to be the best approximation from the left by an
excisive functor. This interpretation is good for structural and computational as-
pects but it turns out that it is not helpful for the proof that the assembly maps is
a weak homotopy equivalence. There is no direct homotopy theoretic construction
of an inverse up to weak homotopy equivalence known to the author.

For the actual proofs that the assembly maps are weak homotopy equivalences,
the interpretation of the assembly map as a forget control map is crucial. This
fundamental idea is due to Quinn.

Roughly speaking, one attaches to a metric space certain categories, to these
categories spectra and then takes their homotopy groups, where everything depends
on a choice of certain control conditions which in some sense measure sizes of cycles.
If one requires certain control conditions, one obtains the source of the assembly
map. If one requires no control conditions, one obtains the target of the assembly
map. The assembly map itself is forgetting the control condition.

One of the basic features of a homology theory is excision. It often comes from
the fact that a representing cycle can be arranged to have arbitrarily good control.
An example is the technique of subdivision which allows to make the representing
cycles for singular homology arbitrarily controlled, i.e., the diameter of the image
of a singular simplex appearing in a singular chain with non-zero coefficient can
be arranged to be arbitrarily small. This is the key ingredient in the proof that
singular homology satisfies excision. In general one may say that requiring control
conditions amounts to implementing homological properties.

With this interpretation it is clear what the main task in the proof of surjectivity
of the assembly map is: achieve control, i.e., manipulate cycles without changing
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their homology class so that they become sufficiently controlled. There is a general
principle that a proof of surjectivity also gives injectivity. Namely, proving injec-
tivity means that one must construct a cycle whose boundary is a given cycle, i.e.,
one has to solve a surjectivity problem in a relative situation. The actual imple-
mentation of this idea is rather technical. The proof that this forget control version
of the assembly map agrees up to weak homotopy equivalence with the homotopy
theoretic one appearing in the Farrell-Jones Conjecture 7.3 is a direct application
of Section 4. The same is true also for the version of the assembly map appearing
in [37, 1.6 on page 257], as explained in [25, page 239].

To achieve control one can now use geometric methods. The key ingredients are
contracting maps and open coverings, transfers, flow spaces and the geometry of
the group G.

For more information about the general strategy of proofs we refer for instance
to [2, 74, 75].

7.5. The Farrell-Jones Conjecture for Waldhausen’s A-theory. Waldhausen
has defined for a CW -complex X its algebraic K-theory space A(X) in [113, Chap-
ter 2]. As in the case of algebraic K-theory of rings it will be necessary to consider
a non-connective version. Vogell [110] has defined a delooping of A(X) yielding a
non-connective spectrum A(X) for a CW -complex X . This construction actually
yields a covariant functor from the category of topological spaces to the category
of spectra. We can assign to a groupoid G its classifying space BG. Thus we obtain
a covariant functor

(7.7) A : Groupoids→ Spectra, G 7→ A(BG),

denoted by A again. It respects equivalences, see [113, Proposition 2.1.7] and [110].
If we now take this functor and the family VCY of virtually cyclic subgroups, we
obtain the A-theoretic Farrell-Jones Conjecture

Conjecture 7.8 (A-theoretic Farrell-Jones Conjecture). A group G satisfies the
A-theoretic Farrell-Jones Conjecture if the assembly maps induced by the projection
pr : EG→ G/G

HG
n (pr;A) : HG

n (EG;A)→ HG
n (G/G;A) = πn(A(BG))

is bijective for all n ∈ Z.

The A-theoretic Farrell-Jones Conjecture 7.8 is an important ingredient in the
computation of the group of selfhomeomorphisms of an aspherical closed manifold
in the stable range using the machinery of Weiss-Williams [121]. Moreover, it is
related to Whitehead spaces, pseudo-isotopy spaces and spaces of h-cobordisms, see
for instance [31, 112, 113, 114, 115, 116, 121].

7.6. Relating the assembly maps for K-theory and for A-theory. Let X
be a connected CW -complex with fundamental group π = π1(X). Essentially by
passing to the cellular Zπ-chain complex of the universal covering one obtains a
natural map of (non-connective) spectra, natural in X , called linearization map

L(X) : A(X) → K(Zπ1(X)).(7.9)

The next result follows by combining [111, Section 4] and [112, Proposition 2.2
and Proposition 2.3].

Theorem 7.10 (Connectivity of the linearization map). Let X be a connected
CW -complex. Then:



ASSEMBLY MAPS 17

(1) The linearization map L(X) of (7.9) is 2-connected, i.e., the map

Ln := πn(L(X)) : An(X)→ Kn(Zπ1(X))

is bijective for n ≤ 1 and surjective for n = 2;
(2) Rationally the map Ln is bijective for all n ∈ Z, provided that X is aspher-

ical.

Thus one obtain a transformationL : A→ KZ of covariant functorsGroupoids→
Spectra, where KZ and A have been defined in (7.1) and (7.7). It induces a com-
mutative diagram

(7.11) HG
n (EG;A)

HG
n (pr;A)

//

HG
n (idEG;L)

��

HG
n (G/G;A) = πn(A(BG))

πn(L(BG))

��

HG
n (EG;KZ)

HG
n (pr;KR)

// Kn(ZG)

where the upper horizontal arrow is the assembly map appearing in A-theoretic
Farrell-Jones Conjecture 7.8, the lower horizontal arrow is the assembly map ap-
pearing in the K-theoretic Farrell-Jones Conjecture 7.3, and both vertical arrows
are bijective for n ≤ 1, surjective for n = 2 and rationally bijective for all n ∈ Z.
In particular the K-theoretic Farrell-Jones Conjecture 7.3 for R = Z and the A-
theoretic Farrell-Jones Conjecture 7.8 are rationally equivalent.

7.7. The status of the Farrell-Jones Conjecture. There is a more general
version of the Farrell-Jones Conjecture, the so called Full Farrell-Jones Conjecture,
where one allows coefficients in additive categories and the passage to finite wreath
products, It implies the Farrell-Jones Conjectures 7.3. For A-theory there is a so
called fiibered version which implies Conjecture 7.8. Let FJ be the class of groups
for which the Full Farrell-Jones Conjecture and the fibered A-theoretic Farrell-
Jones Conjecture holds. Notice that then any group in FJ satisfies in particular
Conjectures 7.3 and 7.8.

Theorem 7.12 (The class FJ ).

(1) The following classes of groups belong to FJ :
(a) Hyperbolic groups;
(b) Finite dimensional CAT(0)-groups;
(c) Virtually solvable groups;
(d) (Not necessarily cocompact) lattices in second countable locally compact

Hausdorff groups with finitely many path components;
(e) Fundamental groups of (not necessarily compact) connected manifolds

(possibly with boundary) of dimension ≤ 3;
(f) The groups GLn(Q) and GLn(F (t)) for F (t) the function field over a

finite field F ;
(g) S-arithmetic groups;
(h) mapping class groups;

(2) The class FJ has the following inheritance properties:
(a) Passing to subgroups

Let H ⊆ G be an inclusion of groups. If G belongs to FJ , then H
belongs to FJ ;

(b) Passing to finite direct products
If the groups G0 and G1 belong to FJ , then also G0 ×G1 belongs to
FJ ;
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(c) Group extensions
Let 1 → K → G → Q → 1 be an extension of groups. Suppose that
for any cyclic subgroup C ⊆ Q the group p−1(C) belongs to FJ and
that the group Q belongs to FJ .
Then G belongs to FJ ;

(d) Directed colimits
Let {Gi | i ∈ I} be a direct system of groups indexed by the directed
set I (with arbitrary structure maps). Suppose that for each i ∈ I the
group Gi belongs to FJ .
Then the colimit colimi∈I Gi belongs to FJ ;

(e) Passing to finite free products
If the groups G0 and G1 belong to FJ , then G0 ∗G1 belongs to FJ ;

(f) Passing to overgroups of finite index
Let G be an overgroup of H with finite index [G : H ]. If H belongs to
FJ , then G belongs to FJ ;

Proof. See [3, 4, 5, 7, 8, 10, 33, 53, 57, 102, 118, 119]. �

It is not known whether all amenable groups belong to FJ .

8. The Baum-Connes Conjecture

8.1. The Baum-Connes Conjecture. Recall that the reduced group C∗-algebra
C∗

r (G) is a certain completion of the complex group ring CG. Namely, there is a
canonical embedding of CG into the space B(l2(G)) of bounded operators L2(G)→
L2(G) equipped with the supremums norm given by the right regular representation,
and C∗

r (G) is the norm closure of CG in B(L2(G)). There is a covariant functor
respecting equivalences

(8.1) Ktop : Groupoids→ Spectra,

such that for every group G and all n ∈ Z we have

πn(K
top(G)) ∼= Ktop

n (C∗
r (G)),

where Ktop
n (C∗

r (G)) is the topological K-theory of the reduced group C∗-algebra
C∗

r (G), see [51]. If we now take this functors and the family FIN of finite sub-
groups, we obtain

Conjecture 8.2 (Baum-Connes Conjecture). A group G satisfies the Baum-Connes
Conjecture if the assembly maps induced by the projection pr : EG→ G/G

HG
n (pr;Ktop) : HG

n (EG;Ktop)→ HG
n (G/G;Ktop) = Ktop

n (C∗
r (G)).

is bijective for all n ∈ Z.

The original version of the Baum-Connes Conjecture is stated in [14, Conjec-
ture 3.15 on page 254]. There is also a version, where the ground field C is replaced
by R. The complex version of the Baum-Connes Conjecture 8.2 implies automati-
cally the real version, see [16, 105].

8.2. The Baum-Connes Conjecture with coefficients. There is also a more
general version of the Baum-Connes Conjecture 8.2, where one allows twisted coef-
ficients. However, there are counterexamples to this more general version, see [47,
Section 7]. There is a new formulation of the Baum-Connes Conjecture with coef-
ficients in [15], where these counterexamples do not occur anymore. At the time of
writing no counterexample to the Baum-Connes Conjecture 8.2 or to the version
of [15] is known to the author.
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8.3. The interpretation of the Baum Connes assembly map in terms of

index theory. For applications of the Baum-Connes Conjecture 8.2 it is essential
that the Baum-Connes assembly maps can be interpreted in terms of indices of
equivariant operators with values in C∗-algebras. Namely, one assigns to a Kas-
parov cycle representing an element in the equivariant KK-group KKG

n (C0(X),C)
in the sense of Kasparov [54, 55, 56] its C∗-valued index in Kn(C

∗
r (G)) in the sense

of Mishchenko-Fomenko [86], thus defining a map

KKG
n (C0(X),C)→ Ktop

n (C∗
r (G)),

provided that X is proper and cocompact and C0(X) is the C∗-algebra (possibly
without unit) of continuous function X → C vanishing at infinity. This is the
approach appearing in [14].

The other equivalent approach is based on the Kasparov product. Given a
proper cocompact G-CW -complex X , one can assign to it an element [pX ] ∈
KKG

0 (C, C0(X) ⋊r G), where C0(X) ⋊r G denotes the reduced crossed product
C∗-algebra associated to the G-C∗-algebra C0(X). Now define the Baum-Connes
assembly map by the composition of a descent map and a map coming from the
Kasparov product

KKG
n (C0(X),C)

jGr−−→ KKn(C0(X)⋊r G,C∗
r (G))

[pX ]⊗̂C0(X)⋊rG −
−−−−−−−−−−−→ KKn(C, C

∗
r (G)) = Ktop

n (C∗
r (G)).

This extends to arbitrary proper G-CW -complexes X by defining the source by

KG
n (C0(X),C) := colimC⊆X KG

n (C0(C),C),

where C runs through the finite G-CW -subcomplexes of Y directed by inclusion.
Hence we can take X = EG above without assuming any finiteness conditions on
EG. For some information about these two approaches and their identification, at
least for torsionfree G, we refer to [61].

One can identify the original assembly map of [14] with the assembly map ap-
pearing in Conjecture 8.2 using Section 8.2 and the fact that

colimC⊆X HG
n (C;Ktop)

∼=
−→ HG

n (X ;Ktop)

is an isomorphism. This is explained in [25, page 247-248], Unfortunately, the
proof is based on an unfinished preprint by Carlsson-Pedersen-Roe [20], where the
assembly map appearing in [14, Conjecture 3.15 on page 254] is implemented on
the spectrum level. Another proof of the identification is given in [43, Corollary 8.4]
and [88, Theorem 1.3].

8.4. Applications of the Baum-Connes Conjecture.

8.4.1. Computations. One can carry out explicite computations of topological K-
groups of group C∗-algebras and related C∗-algebras by applying methods from
algebraic topology to the left side given by a G-homology theory and by finding
small models for the classifying spaces of families using the topology and geometry
of groups. This leads to classification results about certain C∗-algebras, see for
instance [27, 32, 63, 64].

8.4.2. (Modified) Trace Conjecture. The Baum-Connes Conjecture 8.2 implies the
Trace Conjecture for torsionfree groups that for a torsionfree group G the image of

trC∗
r (G) : K0(C

∗
r (G))→ R

consists of the integers. If one drops the condition torsionfree, there is the so
called Modified Trace Conjecture, which is implied by Baum-Connes Conjecture 8.2,
see [69].
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8.4.3. Kadison Conjecture. The Baum-Connes Conjecture 8.2 implies the Kadison
Conjecture that for a torsionfree group G the only idempotent elements in C∗

r (G)
are 0 and 1.

8.4.4. Novikov Conjecture. The Baum-Connes Conjecture 8.2 implies the Novikov
Conjecture.

8.4.5. The Zero-in-the-spectrum Conjecture. The Zero-in-the-spectrum Conjecture

says, if M̃ is the universal covering of an aspherical closed Riemannian manifold M ,

then zero is in the spectrum of the minimal closure of the pth Laplacian on M̃ for
some p ∈ {0, 1, . . . , dimM}. It is a consequence of the Strong Novikov Conjecture
and hence of the Baum-Connes Conjecture 8.2, see [68, Chapter 12].

8.4.6. The Stable Gromov-Lawson-Rosenberg Conjecture. Let ΩSpin
n (BG) be the

bordism group of closed Spin-manifolds M of dimension n with a reference map
to BG. Given an element [u : M → BG] ∈ ΩSpin

n (BG), we can take the C∗
r (G;R)-

valued index of the equivariant Dirac operator associated to theG-coveringM →M
determined by u. Thus we get a homomorphism

indC∗
r (G;R) : Ω

Spin
n (BG) → Ktop

n (C∗
r (G;R)).(8.3)

A Bott manifold is any simply connected closed Spin-manifold B of dimension 8

whose Â-genus Â(B) is 1. We fix such a choice, the particular choice does not

matter for the sequel. Notice that indC∗
r ({1};R)

(B) ∈ Ktop
8 (R) ∼= Z is a genera-

tor and the product with this element induces the Bott periodicity isomorphisms

Ktop
n (C∗

r (G;R))
∼=
−→ Ktop

n+8(C
∗
r (G;R)). In particular

indC∗
r (G;R)(M) = indC∗

r (G;R)(M ×B),(8.4)

if we identify Ktop
n (C∗

r (G;R)) = Ktop
n+8(C

∗
r (G;R)) via Bott periodicity.

Conjecture 8.5 (Stable Gromov-Lawson-RosenbergConjecture). Let M be a closed
connected Spin-manifold of dimension n ≥ 5. Let uM : M → Bπ1(M) be the clas-
sifying map of its universal covering. Then M ×Bk carries for some integer k ≥ 0
a Riemannian metric with positive scalar curvature if and only if

indC∗
r (π1(M);R)([M,uM ]) = 0 ∈ Ktop

n (C∗
r (π1(M);R)).

If M carries a Riemannian metric with positive scalar curvature, then the index
of the Dirac operator must vanish by the Bochner-Lichnerowicz formula [99]. The
converse statement that the vanishing of the index implies the existence of a Rie-
mannian metric with positive scalar curvature is the hard part of the conjecture.
The unstable version of Conjecture 8.5, where one does not stabilize with Bk, is
not true in general, see [103].

A sketch of the proof of the following result can be found in Stolz [107, Section 3].

Theorem 8.6 (The Baum-Connes Conjecture implies the Stable Gromov-Law-
son-Rosenberg Conjecture). If the assembly map for the real version of the Baum-
Connes Conjecture 8.2 is injective for the group G, then the Stable Gromov-Lawson-
Rosenberg Conjecture 8.5 is true for all closed Spin-manifolds of dimension ≥ 5 with
π1(M) ∼= G.

8.4.7. Knot theory. Cochran-Orr-Teichner give in [23] new obstructions for a knot
to be slice which are sharper than the Casson-Gordon invariants. They use L2-
signatures and the Baum-Connes Conjecture 8.2. We also refer to the survey arti-
cle [22] about non-commutative geometry and knot theory.
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8.5. The status of the Baum-Connes Conjecture. Let BC be the class of
groups for which the Baum-Connes Conjecture with coefficients, which implies the
Baum-Connes Conjecture 8.2, is true.

Theorem 8.7 (Status of the Baum-Connes Conjecture 8.2).

(1) The following classes of groups belong to BC.
(a) A-T-menable groups;
(b) Hyperbolic groups;
(c) One-relator groups;
(d) Fundamental groups of compact 3-manifolds (possibly with boundary);

(2) The class BC has the following inheritance properties:
(a) Passing to subgroups

Let H ⊆ G be an inclusion of groups. If G belongs to BC, then H
belongs to BC;

(b) Passing to finite direct products
If the groups G0 and G1 belong to BC, the also G0 × G1 belongs to
BC;

(c) Group extensions
Let 1 → K → G → Q → 1 be an extension of groups. Suppose that
for any finite subgroup F ⊆ Q the group p−1(F ) belongs to BC and
that the group Q belongs to BC.
Then G belongs to BC;

(d) Directed unions
Let {Gi | i ∈ I} be a direct system of subgroups of G indexed by the
directed set I such that G =

⋃
i∈I Gi. Suppose that Gi belongs to BC

for every i ∈ I.
Then G belongs to BC;

(e) Actions on trees
Let G be a countable discrete group acting without inversion on a tree
T . Then G belongs to BC if and only if the stabilizers of each of the
vertices of T belong to BC.
In particular BC is closed under amalgamated products and HNN-
extensions.

Proof. See [4, 21, 46, 60, 85, 90, 91]. �

It is not known whether finite-dimensional CAT(0)-groups and SLn(Z) for n ≥ 3
belong to BC.

For more information about the Baum-Connes Conjecture and its applications
we refer for instance to [14, 45, 48, 49, 50, 75, 78, 87, 93, 101, 104, 109].

8.6. Relating the assembly maps of Farrell-Jones to the one of Baum-

Connes. One can construct the following commutative diagram
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(8.8) HG
n (EG;L

〈−∞〉
Z )[1/2] //

l ∼=
��

L
〈−∞〉
n (ZG)[1/2]

id ∼=
��

HG
n (EG;L

〈−∞〉
Z [1/2]) // L

〈−∞〉
n (ZG)[1/2]

HG
n (EG;Lp

Z[1/2])

i1 ∼=

��

i0 ∼=

OO

// Lp
n(ZG)[1/2]

j1∼=

��

j0∼=

OO

HG
n (EG;Lp

Q[1/2])

i2 ∼=

��

// Lp
n(QG)[1/2]

j2

��

HG
n (EG;Lp

R[1/2])

i3 ∼=

��

// Lp
n(RG)[1/2]

j3

��

HG
n (EG;Lp

C∗
r (?;R)

[1/2]) // Lp
n(C

∗
r (G;R))[1/2]

HG
n (EG;Ktop

R [1/2]) //

i4 ∼=

OO

Ktop
n (C∗

r (G;R))[1/2]

j4∼=

OO

HG
n (EG;Ktop

R )[1/2]
��

i5
��

l∼=

OO

Ktop
n (C∗

r (G;R))[1/2]
��

j5

��

∼=id

OO

HG
n (EG;Ktop

C )[1/2] // Kn(C
∗
r (G))[1/2]

where all horizontal maps are assembly maps and the vertical arrows are induced
by transformations of functors Groupoids→ Spectra. These transformations are
induced by change of rings maps except the one from K

top
R [1/2] to L

p
C∗

r (?;R)
[1/2]

which is much more complicated and carried out in [62]. This sophisticated and
key ingredient was missing in [58, Lemma 22.13 on page 196], where the existence
of such a dagram was claimed. The same remark applies also to [100, Theorem 2.7],
see [62, Subsection 1.1]. Actually, it does not exist without inverting two on the
spectrum level. Since it is a weak equivalence, the maps i4 and j4 are bijections.

For any finite group H each of the following maps is known to be a bijection
because of [97, Proposition 22.34 on page 252] and RH = C∗

r (H ;R)

Lp
n(ZH)[1/2]

∼=
−→ Lp

n(QH)[1/2]
∼=
−→ Lp

n(RH)[1/2]
∼=
−→ Lp

n(C
∗
r (H ;R)).

The natural map Lp
n(RG)[1/2]→ L

〈−∞〉
n (RG)[1/2] is an isomorphism for any n ∈ Z,

group G and ring with involution R by the Rothenberg sequence, see [98, Theo-
rem 17.2 on page 146]. Hence we conclude from the equivariant Atiyah Hirzebruch
spectral sequence that the vertical arrows i1, i2, and i3 are isomorphisms. The
arrow j1 is bijective by [96, page 376]. The maps l are isomorphisms for general
results about localizations.

The lowermost vertical arrows i5 and j5 are known to be split injective be-
cause the inclusion C∗

r (G;R) → C∗
r (G;C) induces an isomorphism C∗

r (G;R) →
C∗

r (G;C)Z/2 for the Z/2-operation coming from complex conjugation C → C.
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The following conjecture is already raised as a question in [58, Remark 23.14 on
page 197], see also [62, Completion Conjecture in Subsection 5.2].

Conjecture 8.9 (Passage for L-theory from QG to RG to C∗
r (G;R)). The maps

j2 and j3 appearing in diagram (8.8) are bijective.

One easily checks

Lemma 8.10. Let G be a group.

(1) Suppose that G satisfies the L-theoretic Farrell-Jones Conjecture 7.3 with
coefficients in the ring R for R = Q and R = R and the Baum-Connes
Conjecture 8.2. Then G satisfies Conjecture 8.9;

(2) Suppose that G satisfies Conjecture 8.9. Then G satisfies the L-theoretic
Farrell-Jones Conjecture 7.3 for the ring Z after inverting 2, if and only
if G satisfies the real version of the Baum-Connes Conjecture 8.2 after
inverting 2;

(3) Suppose that the assembly map appearing in the Baum-Connes Conjec-
ture 8.2 is (split) injective after inverting 2. Then the assembly map ap-
pearing in L-theoretic Farrell-Jones Conjecture 7.3 with coefficients in the
ring for R = Z is (split) injective after inverting 2.

9. Topological cyclic homology

Let R be a (well-pointed connective) symmetric ring spectrum and p be a prime.
There are covariant functors respecting equivalences

THHR : Groupoids → Spectra;

TCR,p : Groupoids → Spectra,

such that for every group G and all n ∈ Z we have

πn(THHR(G)) ∼= πn(THH(R[G]));

πn(TCR;p(G)) ∼= πn(TC(R[G]; p)),

where THH(R[G]) is the topological Hochschild homology and THH(R[G]; p) is
the topological cyclic homology of the group ring spectrum R[G].

9.1. Topological Hochschild homology. If we now take the functor THHR

and the family CY of cyclic subgroups, we obtain from [80, Theorem 1.19] that the
Farrell-Jones Conjecture for topological Hochschild homology is true for all groups.

Theorem 9.1 (Topological Hochschild homology). The assembly maps induced by
the projection pr : ECY(G)→ G/G

HG
n (pr;THHR) : HG

n (ECY(G);THHR)→ HG
n (G/G;THHR) = πn(THH(R[G]))

is bijective for all n ∈ Z.

9.2. Topological cyclic homology. If we take the functor TCR;p and the family
FIN of cyclic subgroups, we obtain from [79, Theorem 1.5] that the injectivity
part of the Farrell-Jones Conjecture for topological cyclic homology is true under
certain finiteness assumptions

Theorem 9.2 (Split injectivity for topological cyclic homology). Assume that one
for the following conditions hold for the family F :

(1) We have F = FIN and there is a model for EG of finite type;
(2) We have F = VCY and G is hyperbolic or virtually abelian.
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Then the assembly maps induced by the projection pr : EG→ G/G

HG
n (pr;TCR;p) : H

G
n (EG;TCR;p)→ HG

n (G/G;THHR;p) = πn(THH(R[G]; p))

is split injective for all n ∈ Z.

Moreover, we also have, see [79, Theorem 1.2]

Theorem 9.3 (Topological cyclic homology and finite groups). If G is a finite
group, then the assembly map for the family CY of cyclic subgroups

HG
n (pr;TCR;p) : H

G
n (ECY(G);TCR;p)→ HG

n (G/G;TCR;p) = πn(TC(R[G]; p))

is bijective for all n ∈ Z.

Remark 9.4 (The Farrell Jones Conjecture for topological cyclic homology is not
true in general). There are examples, where the assembly map

HG
n (pr;TCR;p) : H

G
n (EG;TCR;p)→ πn(THH(R[G]; p))

not surjective, see [79, Theorem 1.6]. At least there is a pro-isomorphism for TCR;p

with respect to the family CY, see [79, Theorem 1.4]. The complications occurring
with topological cyclic homology are due to the fact that smash products and
homotopy inverse limit do not commute in general, see [81].

9.3. Relating the assembly maps of Farrell-Jones to the one for topolog-

ical cyclic homology via the cyclotomic trace. There is an important trans-
formation from algebraic K-theory to topological cyclic homology, the so called
cyclotomic trace. It relates the assembly maps for the algebraic K-theory of ZG
to the cyclic topological homology of the spherical group ring of G and is a key
ingredient in proving the rational injectivity of K-theoretic assembly maps. The
construction of the cyclotomic trace and the proof of the K-theoretic Novikov con-
jecture is carried out in the celebrated paper by Boekstedt-Hsiang-Madsen [17].
The passage from T R to FIN , thus detecting a much larger portion of the alge-
braic K-theory of ZG and proving new results about the Whitehead group Wh(G),
is presented in [80].

For more information about topological cyclic homology we refer for instance
to [17, 30, 89].

10. The global point of view

At various occasions it has turned out that one should take a global point of view,
i.e., one should not consider each group separately, but take into account that in
general there is a theory which can be applied to every group and the values for
the various groups are linked. This appears for instance in the following definition
taken from [67, Section 1].

Let α : H → G be a group homomorphism. Given an H-space X , define the
induction of X with α to be the G-space indα X := G×αX , which is the quotient of
G×X by the rightH-action (g, x)·h := (gα(h), h−1x) for h ∈ H and (g, x) ∈ G×X .

Definition 10.1 (Equivariant homology theory). An equivariant homology theory
with values in Λ-modules H?

n assigns to each group G a G-homology theory HG
∗

with values in Λ-modules (in the sense of Definition 2.1) together with the following
so called induction structure:

Given a group homomorphism α : H → G and a H-CW -pair (X,A), there are
for every n ∈ Z natural homomorphisms

indα : HH
n (X,A)→ HG

n (indα(X,A))(10.2)

satisfying:
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• Compatibility with the boundary homomorphisms

∂G
n ◦ indα = indα ◦∂H

n ;
• Functoriality

Let β : G→ K be another group homomorphism. Then we have for n ∈ Z

indβ◦α = HK
n (f1) ◦ indβ ◦ indα : H

H
n (X,A)→ HK

n (indβ◦α(X,A)),

where f1 : indβ indα(X,A)
∼=
−→ indβ◦α(X,A), (k, g, x) 7→ (kβ(g), x) is the

natural K-homeomorphism;
• Compatibility with conjugation

For n ∈ Z, g ∈ G and a (proper) G-CW -pair (X,A) the homomorphism
indc(g) : G→G : HG

n (X,A) → HG
n (indc(g) : G→G(X,A)) agrees with HG

n (f2)
for the G-homeomorphism f2 : (X,A)→ indc(g) : G→G(X,A) which sends x

to (1, g−1x) in G×c(g) (X,A);
• Bijectivity

If ker(α) acts freely on X \A, then indα : HH
n (X,A)→ HG

n (indα(X,A)) is
bijective for all n ∈ Z.

Because of the following theorem it will pay off that in Subsection 6.4 we con-
sidered functors defined on Groupoids and not only on Or(G).

Theorem 10.3 (Constructing equivariant homology theories using spectra). Con-
sider a covariant functor E : Groupoids→ Spectra respecting equivalences.

Then there is an equivariant homology theory H?
∗(−;E) satisfying

HG
n (G/H ;E) ∼= HH

n ({•};E) ∼= πn(E(H))

for every subgroup H ⊆ G of every group G and every n ∈ Z.

Proof. See [78, Proposition 5.6 on page 793]. �

The global point of view has been taken up and pursued by Stefan Schwede on
the level of spectra in his book [106], where global equivariant homotopy theory for
compact Lie groups is developed. To deal with spectra is much more advanced and
sophisticated than with equivariant homology.

11. Relative assembly maps

In the formulations of the Isomorphism Conjectures above such as the one due
to Farrell-Jones and Baum-Connes it is important to make the family F as small as
possible. The largest family we encounter is VCY, but there are special cases, where
one can get smaller families. In particular it is desirable to get away with FIN ,
since there are often finite models for EG = EFIN (G), whereas conjecturally there
is a finite model for EG = EVCY(G) only if G itself is virtually cyclic, see [52,

Conjecture 1].
The general problem is to study and hopefully to prove bijectivity of relative

assembly map associated to two families F ⊆ F ′, i.e., of the map induced by the
up to G-homotopy unique G-map EF (G)→ EF ′(G)

asmbF⊆F ′ : HG
n (EF (G))→ HG

n (EG(G))

for a G-homology theory HG
∗ with values in Λ-modules. In studying this the global

point of view becomes useful.
The main technical result is the so called Transitivity Principle, which we explain

next. For a family F of subgroups of G and a subgroup H ⊂ G we define a family
of subgroups of H

F|H = {K ∩H | K ∈ F}.
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Theorem 11.1 (Transitivity Principle). Let H?
∗(−) be an equivariant homology

theory with values in Λ-modules. Suppose F ⊂ F ′ are two families of subgroups of
G. If for every H ∈ F ′ and every n ∈ Z the assembly map

asmbF|H⊆ALL : HH
n (EF|H (H))→ HH

n ({•})

is an isomorphism, then for every n ∈ Z the relative assembly map

asmbF⊆F ′ : HG
n (EF (G))→ HG

n (EF ′(G))

is an isomorphism.

Proof. See [78, Theorem 65 on page 742]. �

One has the following results about diminishing the family of subgroups. De-
note by VCYI the family of subgroups of G which are either finite or admit an
epimorphism onto Z with finite kernel. Obviously FIN ⊆ VCYI ⊆ VCY.

Theorem 11.2 (Relative assembly maps).

(1) The relative assembly map for K-theory

asmbT R⊆VCY : HG
n (ET R(G);KR)→ HG

n (EVCY(G);KR)

is bijective for all n ∈ Z, provided that G is torsionfree and R is regular;
(2) The relative assembly map for K-theory

asmbFIN⊆VCY : HG
n (EFIN (G);KR)→ HG

n (EVCY(G);KR)

is bijective for all n ∈ Z, provided that R is a regular ring containing Q;
(3) The relative assembly map for K-theory

asmbVCYI⊆VCY : HG
n (EVCYI

(G);KR)
∼=
−→ Hn(EVCY(G);KR)

is bijective for all n ∈ Z;
(4) The relative assembly map for K-theory

asmbFIN⊆VCY ⊗Z idQ : H
G
n (EFIN (G);KR)⊗ZQ→ HG

n (EVCY(G);KR)⊗ZQ

is bijective for all n ∈ Z, provided that R is regular;
(5) The relative assembly map for L-theory

asmbT R⊆VCY : HG
n (ET R(G);L

〈−∞〉
R )→ HG

n (EVCY(G);L
〈−∞〉
R )

is an isomorphism for all n ∈ Z, provided that G is torsionfree;
(6) There relative assembly map for L-theory

asmbFIN⊆VCYI
: HG

n

(
EFIN (G);L

〈−∞〉
R

)
→ HG

n

(
EVCYI

(G);L
〈−∞〉
R

)

is bijective for all n ∈ Z;
(7) The relative assembly map for L-theory

asmbFIN⊆VCY[1/2] : H
G
n (EFIN (G);L

〈−∞〉
R )[1/2]→ HG

n (EVCY(G);L
〈−∞〉
R )[1/2]

is bijective for all n ∈ Z;
(8) The relative assembly map for topological K-theory

asmbFCY⊆FIN : HG
n (EFCY(G);Ktop)→ HG

n (EFIN (G);Ktop)

is bijective for all n ∈ Z. This is also true for the real version;
(9) The relative assembly maps for K-theory and L-theory

asmbFIN⊆VCY : HG
n (EFIN (G);KR) → HG

n (EVCY(G);KR);

asmbFIN⊆VCY : HG
n (EFIN (G);L

〈−∞〉
R ) → HG

n (EVCY(G);L
〈−∞〉
R ),

are split injective for all n ∈ Z;
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Proof. See [12, Theorem 1.3], [6, Theorem 0.5], [28], [72, Lemma 4.2], [78, Sec-
tion 2.5], [83, Theorem 0.1 and Theorem 0.3], and [84]. �

Remark 11.3 (Torsionfree groups). A typical application is that for a torsionfree
group G and a regular ring the K-theoretic Farrell-Jones Conjecture 7.3 implies
together with Theorem 11.2 (1) that the assembly map

Hn(BG;K(R)) = πn(BG+ ∧K(R)→ Kn(RG)

is bijective for all n ∈ Z. Analogously, for a torsionfree group G the L-theoretic
Farrell-Jones Conjecture 7.3 implies together with Theorem 11.2 (5) that the as-
sembly map

Hn(BG;L〈−∞〉(R)) = πn(BG+ ∧ L〈−∞〉)→ L〈−∞〉
n (RG)

is bijective for all n ∈ Z.

12. Computationally tools

Most computations ofK- and L-groups of group rings are done using the Farrell-
Jones Conjecture 7.3 and the Baum-Connes Conjecture 8.2. The situation in
the Farrell-Jones Conjecture 7.3 is more complicated than in the Baum-Connes
setting, since the family VCY is much harder to handle than the family FIN .
One can consider HG

n (EG;KR) and HG
n (EG,EG;KR) separately because of The-

orem 11.2 (9), where one considers EG as a G-CW -subcomplex of EG. The term

HG
n (EG,EG;KR) involves Nil-terms and UNil-terms, which are hard to deter-

mine. For HG
n (EG;KR), HG

n (EG;L
〈−∞〉
R ) and HG

n (EG;Ktop) one can use the
equivariant Atyiah-Hirzebruch spectral sequence or the p-chain spectral sequence,
see Davis-Lueck [26]. Rationally these groups can often be computed explicitly
using equivariant Chern characters, see [67, Section 1]. Notice that these can only
be constructed since we take on the global point of view as explained in Section 10.
Often an important input is that one obtains from the geometry of the underlying
group nice models for EG and can construct EG from EG by attaching a tractable
family of equivariant cells.

Here are two example, where these ideas lead to a explicite computation, whose
outcome is as simple as one can hope.

Theorem 12.1 (Farrell-Jones Conjecture for torsionfree hyperbolic groups for
K-theory). Let G be a torsionfree hyperbolic group.

(1) We obtain for all n ∈ Z an isomorphism

Hn(BG;K(R)) ⊕
⊕

C

(
NKn(R)⊕NKn(R)

) ∼=
−→ Kn(RG),

where C runs through a complete system of representatives of the conju-
gacy classes of maximal infinite cyclic subgroups. If R is regular, we have
NKn(R) = 0 for all n ∈ Z;

(2) The abelian groups Kn(ZG) for n ≤ −1, K̃0(ZG), and Wh(G) vanish;
(3) We get for every ring R with involution and n ∈ Z an isomorphism

Hn(BG;L〈−∞〉(R))
∼=
−→ L〈−∞〉

n (RG).

For every j ∈ Z, j ≤ 2, and n ∈ Z, the natural map

L〈j〉
n (ZG)

∼=
−→ L〈−∞〉

n (ZG)

is bijective;
(4) We get for every n ∈ Z an isomorphism

Ktop
n (BG)

∼=
−→ Ktop

n (C∗
r (G)).
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Proof. See [82, Theorem 1.2]. �

Theorem 12.2. Suppose that G satisfies the Baum-Connes Conjecture 8.2 and K-
theoretic Farrell-Jones Conjecture 7.3 with coefficients in the ring C. Let con(G)f
be the set of conjugacy classes (g) of elements g ∈ G of finite order. We denote for
g ∈ G by CG〈g〉 the centralizer in G of the cyclic subgroup generated by g.

Then we get the following commutative square, whose horizontal maps are iso-
morphisms and complexifications of assembly maps, and whose vertical maps are
induced by the obvious change of theory homomorphisms

⊕
p+q=n

⊕
(g)∈con(G)f

Hp(CG〈g〉;C)⊗Z Kq(C)
∼=

//

��

Kn(CG)⊗Z C

��⊕
p+q=n

⊕
(g)∈con(G)f

Hp(CG〈g〉;C)⊗Z Ktop
q (C)

∼=
// Ktop

n (C∗
r (G))⊗Z C

Proof. See [67, Theorem 0.5]). �

13. The challenge of extending equivariant homotopy theory to

infinite groups

We have seen that it is important to study equivariant homology and homotopy
also for groups which are not necessarily finite. In particular equivariant KK-theory
has developed into a whole industry, which, however, does not really take the point
of view of spectra instead of K-groups and cycles into account. So we encounter

Problem 13.1. Extend equivariant homotopy theory for finite groups to infinite
groups, at least in the case of proper G-actions.

A few first steps are already in the literature. We have already explained the
notion of an equivariant homology and the existence of equivariant Chern charac-
ters, see [67], where the global point of view enters. There is also a cohomological
version, see [71]. Topological K-theory has systematically been studied in [76, 77],
and an attempt of defining Burnside rings and equivariant cohomotopy for proper
G-spaces is presented in [70]. These do include multiplicative structures.

An important ingredient in equivariant homotopy theory for finite groups is to
stabilize with unit spheres in finite-dimensional orthogonal representations. How-
ever, there are infinite groups such that any finite-dimensional representation is
trivial and therefore one has to stabilize with equivariant vector bundles, see [70,
Remark 6.17]. Or one may have to pass even to Hilbert bundles and equivariant
Fredholm operator between these, see [92] and also [77].

There are various interesting pairings on the group level in the literature, such
as Kasparov products, the action of Swan groups on algebraic K-theory and so on.
They all should be implemented on the spectrum level. So a systematical study of
higher structures for equivariant spectra over infinite groups has to be carried out
and one has to find the right equivariant homotopy category. This applies also to
multiplicative structures and smash products. First steps will be presented in [29]
using orthogonal spectra. This seems to work well for topological K-theory, but is
probably not adequate for algebraic K-theory. This remark also holds for global
equivariant homotopy theory.

A general description of Mackey structures and induction theorems in the sense
of Dress is described in [6]. There are more sophisticated Mackey structure and
transfers in the equivariant homotopy of finite groups, but it is not at all clear
whether and how they extend to infinite groups.

Topological K-theory and the Baum-Connes Conjecture make sense and are
studied also for topological groups, e.g., reductive p-adic groups and Lie groups.
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It is conceivable that also the Farrell-Jones Conjecture has an analogue for Hecke
algebras of totally disconnected groups, see [78, Conjecture 119 on page 773]. So
one can ask Problem 13.1 also for (not necessarily compact) topological groups
instead of infinite (discrete) groups.
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[108] T. tom Dieck. Orbittypen und äquivariante Homologie. I. Arch. Math. (Basel), 23:307–317,
1972.

[109] A. Valette. Introduction to the Baum-Connes conjecture. Birkhäuser Verlag, Basel, 2002.
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