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ON THE STABLE CANNON CONJECTURE

STEVE FERRY, WOLFGANG LÜCK, AND SHMUEL WEINBERGER

Abstract. The Cannon Conjecture for a torsion-free hyperbolic group G with
boundary homeomorphic to S2 says that G is the fundamental group of an
aspherical closed 3-manifold M . It is known that then M is a hyperbolic
3-manifold. We prove the stable version that for any closed manifold N of
dimension greater or equal to 2 there exists a closed manifold M together with
a simple homotopy equivalence M → N × BG. If N is aspherical and π1(N)
satisfies the Farrell-Jones Conjecture, then M is unique up to homeomorphism.

0. Introduction

0.1. The motivating conjectures by Wall and Cannon. This paper is moti-
vated by the following two conjectures which will be reviewed in Sections 1 and 2.

Conjecture 0.1 (A Conjecture on Poincaré duality groups and closed aspherical
3-manifolds by Wall). Every Poincaré duality group of dimension 3 is the funda-
mental group of an closed aspherical 3-manifold.

Conjecture 0.2 (Cannon Conjecture in the torsion-free case). Let G be a torsion-
free hyperbolic group. Suppose that its boundary is homeomorphic to S2.

Then G is the fundamental group of a closed hyperbolic 3-manifold.

We will investigate whether these conjectures are true stably. More precisely,
we ask whether for any closed smooth manifold N of dimension ≥ 2 the product
BG × N is simple homotopy equivalent to a closed smooth manifold. Notice that
for a torsionfree hyperbolic group G there is a finite CW -complex model for BG
by the Rips complex. The Whitehead group of G is known to be trivial, so the
simple homotopy type of BG is well-defined. We will also consider the analogous
questions in the in the PL and topological categories.

0.2. The main results. In the sequel Ra denotes the trivial a-dimensional vector
bundle.

Theorem 0.3 (Vanishing of the surgery obstruction). Let G be a hyperbolic 3-
dimensional Poincaré duality group.

Then there exist a closed smooth 3-manifold M and a normal map of degree one
(in the sense of surgery theory)

TM ⊕ Ra f
//

��

ξ

��

M
f

// BG

satisfying

(1) The space BG is a finite 3-dimensional CW -complex;

Date: March, 2019.
2010 Mathematics Subject Classification. 20F67, 57M99, 57P10.
Key words and phrases. Cannon Conjecture, hyperbolic groups, Poincare duality groups.

1

http://arxiv.org/abs/1804.00738v3


2 STEVE FERRY, WOLFGANG LÜCK, AND SHMUEL WEINBERGER

(2) The map Hn(f ;Z) : Hn(M ;Z)
∼=
−→ Hn(BG;Z) is bijective for all n ≥ 0;

(3) The simple algebraic surgery obstruction σ(f, f ) ∈ Ls
3(ZG) vanishes.

Notice that the vanishing of the surgery obstruction does not imply that we can
arrange by surgery that f is a simple homotopy equivalence since this works only in
dimensions ≥ 5. In dimension 3 we can achieve at least a ZG-homology equivalence.
See [29, Theorem 11.3A].

However, if we cross the normal map with a closed manifold N of dimension
≥ 2, the resulting normal map has also vanishing surgery obstruction by the prod-
uct formula and hence can be transformed by surgery into a simple homotopy
equivalence. Thus Theorem 0.3 implies assertion (1) of Theorem 0.4 below; the
proof of assertion (2) of Theorem 0.4 below will require more work.

Theorem 0.4 (Stable Cannon Conjecture). Let G be a hyperbolic 3-dimensional
Poincaré duality group. Let N be any smooth, PL or topological manifold respec-
tively which is closed and whose dimension is ≥ 2.

Then there is a closed smooth, PL or topological manifold M and a normal map
of degree one

TM ⊕ Ra

��

f
// ξ × TN

��

M
f

// BG×N

satisfying

(1) The map f is a simple homotopy equivalence;

(2) Let M̂ → M be the G-covering associated to the composite of the isomor-

phism π1(f) : π1(M)
∼=
−→ G × π1(N) with the projection G × π1(N) → G.

Suppose additionally that N is aspherical, dim(N) ≥ 3, and π1(N) is a
Farrell-Jones group.

Then M̂ is homeomorphic to R3 × N . Moreover, there is a compact

topological manifold M̂ whose interior is homeomorphic to M̂ and for which

there exists a homeomorphism of pairs (M̂, ∂M̂) → (D3 ×N,S2 ×N).

We call a group G a Farrell-Jones-group if it satisfies the Full Farrell-Jones
Conjecture. We will review what is known about the class of Farrell-Jones groups
in Theorem 4.1. For now, we mention that hyperbolic groups, CAT(0)-groups, and
the fundamental groups of (not necessarily compact) 3-manifolds (possibly with
boundary) are Farrell-Jones groups.

We have the following uniqueness statement.

Theorem 0.5 (Borel Conjecture). Let M0 and M1 be two closed aspherical man-
ifolds of dimension n satisfying π1(M0) ∼= π1(M1). Suppose one of the following
conditions hold:

• We have n ≤ 3;
• We have n = 4 and π1(M0) is a Farrell-Jones group which is good in the

sense of Freedman [28];
• We have n ≥ 5 and π1(M0) is a Farrell-Jones group.

Then any map f : M0 → M1 inducing an isomorphism of fundamental groups is
homotopic to a homeomorphism.

Proof. The Borel Conjecture is true obviously in dimension n ≤ 1. The Borel
Conjecture is true in dimension 2 by the classification of closed manifolds of di-
mension 2. It is true in dimension 3 since Thurston’s Geometrization Conjecture
holds. This follows from results of Waldhausen (see Hempel [34, Lemma 10.1 and
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Corollary 13.7]) and Turaev, see [60], as explained for instance in [40, Section 5]. A
proof of Thurston’s Geometrization Conjecture is given in [39, 47] following ideas
of Perelman. The Borel Conjecture follows from surgery theory in dimension ≥ 4,
see for instance [4, Proposition 0.3]. �

One cannot replace homeomorphism by diffeomorphism in Theorem 0.5. The
torus T n for n ≥ 5 is a counterexample, see [63, 15A]. Other counterexamples
involving negatively curved manifolds are constructed by Farrell-Jones [25, Theo-
rem 0.1].
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dation and the University of Chicago for support during numerous visits. The paper
is financially supported by the ERC Advanced Grant “KL2MG-interactions” (no.
662400) of the second author granted by the European Research Council, and by
the Cluster of Excellence “Hausdorff Center for Mathematics” at Bonn. The third
author was partially supported by NSF grant 1510178.

We thank Michel Boileau for fruitful discussions and hints and the referee who
wrote a very detailed and helpful report.

The paper is organized as follows:

Contents

0. Introduction 1
0.1. The motivating conjectures by Wall and Cannon 1
0.2. The main results 1
0.3. Acknowledgments 3
1. Short review of Poincaré duality groups 4
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1. Short review of Poincaré duality groups

Definition 1.1 (Poincaré duality group). A Poincaré duality group G of dimension
n is a group satisfying:

• G is of type FP, i.e. Z admits a finite resolution by finitely generated
projective ZG-modules;

• Hi(G;ZG) ∼=

{
0 i 6= n;

Z i = n.

1.1. Basic facts about Poincaré duality groups.

• A Poincaré duality group is finitely generated and torsion free;
• For n ≥ 4 there exist n-dimensional Poincaré duality groups which are not
finitely presented, see [19, Theorem C];

• If G is a Poincaré duality group of dimension n ≥ 3 then BG is a finitely
dominated n-dimensional Poincaré complex in the sense of Wall [62] if and

only if G is finitely presented, see [35, Theorem 1]. If K̃0(ZG) vanishes, then
BG is homotopy equivalent to finite n-dimensional CW -complex, see [61,
Theorem F];

• If G is the fundamental group of a closed aspherical manifold of dimension
n, then BG is homotopy equivalent to a finite n-dimensional CW -complex
and in particular G is finitely presented. In fact, every compact ENR of di-
mension n > 2 is homotopy equivalent to a finite n-dimensional polyhedron,
see West [68];

• To our knowledge there exists in the literature no example of a 3-dimensional
Poincaré duality group which is not homotopy equivalent to a finite 3-
dimensional CW -complex;

• Every 2-dimensional Poincaré duality group is the fundamental group of a
closed surface. This result is due to Bieri, Eckmann and Linnell, see for
instance, [23].

1.2. Some prominent conjectures and results about Poincaré duality groups.

Conjecture 1.2 (Poincaré duality groups and closed aspherical manifolds). Ev-
ery finitely presented Poincaré duality group is the fundamental group of a closed
aspherical topological manifold.

A weaker version is

Conjecture 1.3 (Poincaré duality groups and closed aspherical ENR homologyma-
nifolds). Every finitely presented Poincaré duality group is the fundamental group
of a closed aspherical ENR homology manifold.

Michel Boileau has informed us about the following two facts:

Theorem 1.4. A Poincaré duality group G of dimension 3 is the fundamental
group of a closed aspherical 3-manifold if and only if G contains a subgroup H,
which is the fundamental group of a closed aspherical 3-manifold.

Proof. Let H be a subgroup of G which is the fundamental group of an irreducible
closed 3-manifold. Suppose that the index of H in G is infinite. Then the cohomo-
logical dimension of H is smaller than the cohomological dimension of G by [59].
Since the cohomological dimension of both H and G is three, we get a contradiction.
Hence the index of H in G is finite. The solution of Thurston’s Geometrization
Conjecture by Perelman, see [47], implies that G is the fundamental group of an
irreducible closed 3-manifold, see for instance [30, Theorem 5.1]. Since a closed
3-manifold is aspherical if and only if it is irreducible and has infinite fundamental
group, Lemma 1.4 follows. �
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Moreover, Theorem 1.4 and the works of Cannon-Cooper [14], Eskin-Fisher-
Whyte [24], Kapovich-Leeb [38], and Rieffel [55] imply

Theorem 1.5. A Poincaré duality group G of dimension 3 is the fundamental
group of a closed aspherical 3-manifold if and only if it is quasiisometric to the
fundamental group of a closed aspherical 3-manifold.

The next result is due to Bowditch [11, Corollary 0.5].

Theorem 1.6. If a Poincaré duality group of dimension 3 contains an infinite
normal cyclic subgroup, then it is the fundamental group of a closed Seifert 3-
manifold.

The following result follows from the algebraic torus theorem of Dunwoody-
Swenson [22].

Theorem 1.7. Let G be a 3-dimensional Poincaré duality group. Then precisely
one of the following statements are true:

(1) It is the fundamental group of a closed Seifert 3-manifold;
(2) It splits as an amalgam or HNN extension over a subgroup Z⊕ Z;
(3) It is atoroidal, i.e., it contains no subgroup isomorphic to Z⊕ Z.

Conjecture 1.8 (Weak hyperbolization Conjecture). An atoroidal 3-dimensional
Poincaré duality group is hyperbolic.

The next result is due to Kapovich-Kleiner [37, Theorem 2].

Theorem 1.9. A 3-dimensional Poincaré duality group which is a CAT(0)-group
and atoroidal is hyperbolic.

We conclude from [9, Theorem 2.8 and Remark 2.9].

Theorem 1.10. Let G be a hyperbolic 3-dimensional Poincaré duality group. Then
its boundary is homeomorphic to S2.

1.3. High-dimensions.

Theorem 1.11 (Poincaré duality groups and ENR homology manifolds). Let G
be a finitely presented torsion-free group which is a Farrell-Jones group.

(1) Then for n ≥ 6 the following are equivalent:
(a) G is a Poincaré duality group of dimension n;
(b) There exists a closed ENR homology manifold M homotopy equivalent

to BG. In particular, M is aspherical and π1(M) ∼= G;
(2) If the statements in assertion (1) hold, then the closed ENR homology mani-

fold M appearing there can be arranged to have the DDP, see Definition 6.2;
(3) If the statements in assertion (1) hold, then the closed ENR homology man-

ifold M appearing there is unique up to s-cobordism of ENR homology man-
ifolds;

Proof. See Bartels-Lück-Weinberger [8, Theorem 1.2]. It relies strongly on the
surgery theory for ENR homology manifolds, see for instance [13, 27, 49]. �

The question whether a closed ENR homology manifold, which has dimension
≥ 5 and has the DDP, is a topological manifold is decided by Quinn’s obstruction,
see Section 8.

More information about Poincaré duality groups can be found for instance [20]
and [64].
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2. Short review of the Cannon Conjecture

The following conjecture is taken from [15, Conjecture 5.1].

Conjecture 2.1 (Cannon Conjecture). Let G be a hyperbolic group. Suppose that
its boundary is homeomorphic to S2.

Then G acts properly cocompactly and isometrically on the 3-dimensional hyper-
bolic space.

If G is torsion free, then the Cannon Conjecture 2.1 reduces to the Cannon
Conjecture for torsion free groups 0.2.

Remark 2.2. We mention that Conjecture 0.2 is open and does not follow from
Thurston’s Geometrization Conjecture which is known to be true by the work of
Perelman, see Morgan-Tian [47].

The next result is due to Bestvina-Mess [10, Theorem 4.1] and says that for the
Cannon Conjecture one just has to find some closed aspherical 3-manifold with G
as fundamental group.

Theorem 2.3. Let G be a hyperbolic group which is the fundamental group of a
closed aspherical 3-manifold M .

Then the universal covering M̃ of M is homeomorphic to R3 and its compactifica-
tion by ∂G is homeomorphic to D3, and the Geometrization Conjecture of Thurston
implies that M is hyperbolic and G satisfies the Cannon Conjecture 0.2.

Ursula Hamenstädt informed us that she has a proof for the following result.

Theorem 2.4 (Hamenstädt). Let G be a hyperbolic group G whose boundary is
homeomorphic to Sn−1.

Then G acts properly and cocompactly on Sn−1 × Rn.

Hamenstädt’s result is proved by completely different methods and does not need
the assumption that G is torsion free. It aims for n = 3 at construction of the sphere
tangent bundle of the universal covering of the conjectured hyperbolic 3-manifold
M appearing in the Cannon Conjecture 2.1, where we aim at constructing M for
BG×N for any closed manifold N with dim(N) ≥ 2.

2.1. The high-dimensional analogue of the Cannon Conjecture. The fol-
lowing result is taken from [8, Theorem A].

Theorem 2.5 (High-dimensional Cannon Conjecture). Let G be a torsion free hy-
perbolic group and let n be an integer ≥ 6. The following statements are equivalent:

(1) The boundary ∂G is homeomorphic to Sn−1;
(2) There is a closed aspherical topological manifold M such that G ∼= π1(M),

its universal covering M̃ is homeomorphic to Rn and the compactification

of M̃ by ∂G is homeomorphic to Dn;

Moreover, the aspherical manifold M appearing in assertion (2) is unique up to
homeomorphism.

In high dimensions there are exotic examples of hyperbolic n-dimensional Poinca-
ré duality groups G, see [8, Section 5]. For instance, for any integer k ≥ 2 there are
examples satisfying ∂G = S4k+1 such that G is the fundamental group of a closed
aspherical topological manifold, but not of an closed aspherical smooth manifold.
For n ≥ 6 there exists a closed aspherical topological manifold whose fundamental
group is hyperbolic but which cannot be triangulated, see [21, page 800].

We mention without giving the details that using the method of this paper one
can prove Theorem 2.5 also in the case n = 5.
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2.2. The Cannon Conjecture 0.2 in the torsion free case implies Theo-

rem 0.3 and Theorem 0.4. Let G be hyperbolic 3-dimensional Poincaré duality
group. We want to show that then all claims in Theorem 0.3 and Theorem 0.4 are
obviously true, provided that the Cannon Conjecture 0.2 in the torsion free case
holds for G.

We know already that there is a 3-dimensional finite model1 for BG and ∂G
is S2. By the Cannon Conjecture 0.2 we can find a closed hyperbolic 3-manifold
M together with a homotopy equivalence f : M → BG. Since G is a Farrell-
Jones group, f is a simple homotopy equivalence. We obviously can cover f by a
bundle map f : TM → ξ if we take ξ to be (f−1)∗TM for some homotopy inverse
f−1 : BG → M of f . Hence we get Theorem 0.3 and assertion (1) of Theorem 0.4.
It remains to prove assertion (2) of Theorem 0.4.

The universal covering M̃ is the hyperbolic 3-space. Hence it is homeomorphic

to R3 and the compactification M̃ = M̃ ∪∂G is homeomorphic to D3. In particular

M̃ is a compact manifold whose interior is M̃ and whose boundary is S2. Hence

M̃×N is a compact manifold and there is a homeomorphism (M̃×N, ∂(M̃×N))
∼=
−→

(D3 ×N,S2 ×N).

2.3. When does the Cannon Conjecture 0.2 in the torsion free case fol-

low from Theorem 0.4. Next we discuss what would be needed to conclude the
Cannon Conjecture 0.2 in the torsion free case from Theorem 0.4.

Let G be a hyperbolic group such that ∂G is S2. Then G is a 3-dimensional
Poincaré duality group by Bestvina-Mess [10, Corollary 1.3]. Fix any closed as-
pherical manifold N of dimension ≥ 2 such that π1(N) is a Farrell-Jones group.

We get from Theorem 0.4 a closed aspherical (3+dim(N))-dimensional manifold

M together with a homotopy equivalence f : M → BG × N . Let α : π1(M)
∼=−→

G×π1(N) be the isomorphism π1(f). If M
′ is any other closed aspherical manifold

together with an isomorphism α′ : π1(M
′)

∼=
−→ G × π1(N), then we conclude from

Theorem 4.1 (1a) and (2b) that π1(M) ∼= G × π1(N) is a Farrell-Jones group
and from Theorem 0.5 that there exists a homeomorphism u : M → M ′ such that
α′ ◦ π1(u) and α agree (up to inner automorphisms). Hence the pair (M,α) is
unique and thus an invariant depending on G and N only.

What does the Cannon Conjecture 0.2 tell us about (M,α) and what do we
need to know about (M,α) in order to prove the Cannon Conjecture 0.2? This is
answered by the next result.

Lemma 2.6. Assume Theorem 0.4 for a given (G,N) and consider the above
unique (M,α). The following statements are equivalent

(1) The Cannon Conjecture 0.2 holds for G;

(2) There is a closed 3-manifold M ′ and a homeomorphism h : M
∼=
−→ M ′ ×N

such that for the projection p : M ′ ×N → N the map π1(p ◦ h) agrees with

the composite π1(M)
α
−→ G× π1(N)

pr
−→ π1(N) for pr the projection;

(3) There is a closed 3-manifold M ′ and a map p : M → N with homotopy fiber

M ′ such that π1(p) agrees with the composite π1(M)
α
−→ G × π1(N)

pr
−→

π1(N) for pr the projection.
Proof. (1) =⇒ (2). By the Cannon Conjecture 0.2 there exists a closed hyperbolic
3-manifold M ′ with π(M ′) = G. Since M ′ models BG, we can find a homotopy
equivalence h : M → M ′ ×N with π1(h) = α. By Theorem 0.5 we can assume that
h is a homeomorphism.

(2) =⇒ (3) This is obvious.

1Since G is hyperbolic, K̃0(ZG) vanishes. The rest follows from Subsection1.1 above.
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(3) =⇒ (1) The long exact homotopy sequence associated to p implies that
π1(M

′) ∼= G and M ′ is aspherical. We conclude from Theorem 2.3 that M ′ is
a closed hyperbolic 3-manifold. Hence G satisfies the Cannon Conjecture 0.2. �

2.4. The special case N = T k. Now suppose that in the situation of Subsec-
tion 2.3 we take N = T k for some k ≥ 2. Then we get a criterion, where α does
not appear anymore.

Lemma 2.7. Fix an integer k ≥ 2. Let M be a closed aspherical (3+k)-dimensional
manifold with fundamental group G×Zk, where G is hyperbolic with ∂G = S2. Then
the following statements are equivalent:

(1) The Cannon Conjecture 0.2 holds for G;

(2) There is closed 3-manifold M ′ together with a homeomorphism h : M
∼=
−→

M ′ × T k;
(3) There is a closed 3-manifold M ′ and a map p : M → T k with homotopy

fiber M ′.
Proof. (1) =⇒ (2) This follows from Theorem 2.6.

(2) =⇒ (3) This is obvious.

(3) =⇒ (1) First we explain that we can assume that π1(p) : π1(M) → π1(T
k) is

surjective. Since M ′ is compact and has only finitely many path components, we
conclude from the exact long homotopy sequence that the image of π1(p) : π1(M) →
π1(T

k) has finite index. Let q : T k → T k be a finite covering such that the image of
π1(p) and π1(q) agree. Then we can lift p : M → T k to a map p′ : M → T k such that
q ◦ p′ = p. One easily checks that that π1(p

′) is surjective and the homotopy fiber
of p′ fiber is a finite covering of M ′ and in particular a closed 3-manifold. Hence
we assume without loss of generality that π1(p) is surjective, otherwise replace p
by p′.

Let K be the kernel of the map π1(p) : π1(M) ∼= G× Zk → π1(T
k) ∼= Zk. Since

M and T k are aspherical, the homotopy fiber of p is homotopy equivalent to BK.
Hence K is the fundamental group of the closed aspherical 3-manifold M ′. Define
K ′ := K ∩ {1} × Zk. This is a normal subgroup of both K and Zk if we identify
{1} × Zk = Zk.

We begin with the case, where K ′ is trivial. Then the projection pr : G× Zk →

G induces an isomorphism K
∼=−→ L for L = pr(K) ⊆ G. We conclude from

Theorem 1.4 that G is the fundamental group of a closed 3-manifold. Theorem 2.3
implies that G is the fundamental group of a closed hyperbolic 3-manifold.
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Next we consider the case where K ′ is non-trivial. Consider the following com-
mutative diagram

{1}

��

{1}

��

{1}

��

{1} // K ′ //

��

K //

��

K/K ′

��

// {1}

{1} // Zk //

��

G× Zk //

��

G

��

// {1}

{1} // Zk/K ′ //

��

Zk //

��

Q //

��

{1}

{1} {1} {1}

where the upper and the middle rows and the left and the middle columns are the
obvious exact sequences, and the map Zk/K ′ → Zk is the map making the diagram
commutative. The group Q is defined to be the cokernel of the map Zk/K ′ → Zk,
and all other arrows are uniquely determined by the property that the diagram
commutes. The so called nine-lemma, which can be proved by an easy diagram
chase, shows that all rows and columns are exact.

Since K ′ ⊆ Zk × {1} ⊆ Zk ×G, we have K ′ ⊆ cent(G × Zk). Since K ′ ⊆ K ⊆
G × Zk, we conclude K ′ ⊆ cent(K). Since K is torsionfree and K ′ is non-trivial,
the center of K contains a copy of Z. We conclude from Theorem 1.6 that there
is a closed aspherical Seifert 3-manifold S such that K = π1(N). There exists a
finite covering S → S such that S is orientable, there is a principal S1-fiber bundle
S1 → S → Fg for a closed orientable surface of genus g ≥ 1, see [58, page 436

and Theorem 2.3]. We obtain a short exact sequence {1} → π1(S
1) → π1(S) →

π1(Fg) → {1}. The center of π1(S) contains the image of π1(S
1) → π1(S1) since we

are considering a principal S1-fiber bundle S1 → S → Fg and the fiber transport is
by self-homotopy equivalences of S1 which are all homotopic to the identity. The
center cannot be larger if g ≥ 2 since cent(π1(Fg)) is trivial for g ≥ 2. If the center
is larger and g = 1, the extension has to be trivial, after possibly passing to a finite
covering of S. Hence we can arrange that there is a subgroup K ⊆ K of finite index
such that cent(K) ∼= Z and K/ cent(K) ∼= π1(Fg) holds for some g ≥ 1, or we have

K ∼= Z3; just take K = π1(S).
Next we show that cent(K) must be infinite cyclic. If cent(K) is not infinite

cyclic, then K has to be Z3. We conclude that K and hence also K/K ′ are virtually
finitely generated abelian. Since Q is abelian, we have the exact sequence 1 →
K/K ′ → G → Q → 1 and G has cohomological dimension 3, the group G cannot
be hyperbolic, a contradiction. Hence cent(K) must be infinite cyclic and and
K/ cent(K) ∼= π1(Fg) for some g ≥ 1.

We have {0} 6= K ′ ⊆ cent(K) and cent(K) ∩ K ⊆ cent(K) ∼= Z. Since K ′ is
torsion free and [K : K] is finite, cent(K) is a non-trivial torsion-free virtually cyclic
group and hence cent(K) is infinite cyclic. Since cent(K)/K ′ is a finite subgroup of
K/K ′ and K/K ′ is isomorphic to a subgroup of the torsion free group G, we have
K ′ = cent(K). The group K/(K ∩ cent(K)) is a subgroup of K/K ′ = K/ cent(K)
of finite index and admits an epimorphism onto K/ cent(K) ∼= π1(Fg) whose kernel

cent(K)/(K∩cent(K)) is finite. SinceK/(K∩cent(K)) is isomorphic to a subgroup
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of the torsion free group G, this kernel is trivial and hence K/(K ∩ cent(K)) ∼=
π1(Fg).

Since K ′ is infinite cyclic, Q contains a copy of Z of finite index. Hence we
can find a subgroup G′ of G of finite index together with a short exact sequence
{1} → K/K ′ → G′ → Z → {1}. So there exists an automorphism φ : K/K ′ →
K/K ′ such that G′ is isomorphic to the semi-direct product K/K ′ ⋊φ Z. If we

put L := K/(K ∩ cent(K)), then L ∼= π1(Fg) and L is a subgroup of finite index
of the finitely generated group K ′/K. Then L′ =

⋂
n∈Z φ

n(L) is a subgroup of
K/K ′ of finite index again which satisfies L′ ⊆ L and φ(L′) = L′ and for which

there is an isomorphism u : L′
∼=
−→ π1(Fg′ ) for some g′ ≥ 1. Let φ′ : L′ → L′ be the

automorphism induced by φ. Then G′′ := L′ ⋊φ′ Z is isomorphic to a subgroup
of G of finite index in G. Choose a homeomorphism h′ : Fg′ → Fg′ satisfying
π1(h

′) = u ◦φ′ ◦ u−1. The mapping torus Th′ is a closed aspherical 3-manifold with
π1(Th′) ∼= G′′. Theorem 1.4 shows that G is the fundamental group of a closed
3-manifold. Theorem 2.3 implies that G is the fundamental group of a closed
hyperbolic 3-manifold. �

Remark 2.8 (manifold approximate fibration). Some evidence for Lemma 2.7
comes from the conclusion of [26, Theorem 1.8] that one can find for any epimor-
phism α : π1(M) → π1(T

k) at least a manifold approximate fibration p : M → T k

such that π1(p) = α.

3. The existence of a normal map of degree one

We call a connected finite Poincaré complex X oriented if we have chosen a

generator [X ] of the infinite cyclic group H
π1(X)
n (X̃ ;Zw1(X)). Notice that we do

allow non-trivial w1(X). In this section we show

Theorem 3.1 (Existence of a normal map). Let X be a connected finite 3-dimensional
Poincaré complex. Then there exist an integer a ≥ 0 and a vector bundle ξ over X
and a normal map of degree one

TM ⊕ Ra f
//

��

ξ

��

M
f

// X

Proof. Any element c ∈ Hk(BO;Z/2) determines up to homotopy a unique map
ĉ : BSG → K(Z/2, k). It is characterized by the property that c = Hk(ĉ;Z/2)(ιk)
for the canonical element ιk ∈ Hk(K(Z/2, k);Z/2) which corresponds to idZ/2 under
the isomorphism

Hk(K(Z/2, k);Z/2) ∼= homZ(Hk(K(Z/2, k);Z),Z/2)
∼= homZ(πk(K(Z/2, k)),Z/2) ∼= homZ(Z/2,Z/2).

Next, we claim that the product of the maps given by the universal first and second
Stiefel-Whitney classes w1 ∈ H1(BO;Z/2) and w2 ∈ H2(BO;Z/2)

(3.2) ŵ1 × ŵ2 : BO → K(Z/2, 1)×K(Z/2, 2)

is 4-connected. Since BO is connected, π1(BO) ∼= π2(BSO) = Z/2 and π3(BSO) =
0, it suffices to show that πk(ŵk) : πk(BO) → πk(K(Z/2, k)) is non-trivial for k =
1, 2. This is easily proved using the fact the Hopf fibration S1 → S3 → S2 has
non-trivial second Stiefel-Whitney class. Hence for any 3-dimensional complex X
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stable vector bundles over X are classified by w1 and w2. The map induced by
composition with the map (3.2)

[X,BSO] → [X,K(Z/2, 1)×K(Z/2, 2)] = H1(X ;Z/2)×H2(X ;Z/2),

is bijective. For a vector bundle ξ with classifying map fξ the class [fξ] goes to
(w1(ξ), w2(ξ)).

We conclude from [33, page 44] that there is a closed manifold M together
with a map f : M → X such that w1(M) = f∗w1(X) and the induced map

H
π1(M)
3 (M̃ ;Zw1(M))

∼=
−→ H

π1(X)
3 (X̃ ;Zw1(X)) is an isomorphism of infinite cyclic

groups. The proof in the general case is a variation of the one for trivial w1(X)
which we sketch next. The Atiyah-Hirzebruch spectral sequence applied to the
homology theory Ω∗ given by oriented bordism yields an epimorphism

Ω3(X)
∼=
−→ H3(X ;Z), [f : M → BG] 7→ f∗([M ])

since the projection X → {•} induces an epimorphism Ω3(X) → Ω3({•}) and
there is a map of degree one from X to S3. We can choose the fundamental class
[M ] ∈ H3(M ;Zw1(M)) so that it is mapped to [X ] ∈ H3(M ;Zw1(X)) under the

isomorphism H
π1(M)
3 (M̃ ;Zw1(M))

∼=−→ H
π1(X)
3 (X̃ ;Zw1(X)).

Choose a vector bundle ξ over X with w1(ξ) = w1(X) and w2(ξ) = w1(X) ∪
w1(X). Its pull back f∗ξ satisfies w2(f

∗ξ) = w1(M) ∪ w1(M) and w1(f
∗ξ) =

w1(M). The Wu formula, see for instance [46, Theorem 11.14 on page 132], implies
w2(TM) = w1(TM) ∪ w1(TM) and hence w2(f

∗ξ) = w2(TM) and w1(f
∗ξ) =

w1(TM). Therefore TM and f∗ξ are stably isomorphic. Hence we can cover
f : M → X by a bundle map f : TM ⊕ Ra → ξ after possibly replacing ξ by
ξ ⊕ Rb. �

Notice that the sphere bundle of ξ is necessarily the Spivak normal bundle of X .
Hence we see that the Spivak normal fibration of X has a vector bundle reduction.

Next we want to figure out the simple surgery obstruction

σs(f, f) ∈ Ls
3(Z[π1(X)], w1(X))

of the normal one map of degree one appearing in Theorem 3.1. The goal is to
find one (f, f) such that σs(f, f) vanishes. Notice that the definition of the surgery
obstruction makes sense in all dimensions, in particular also in dimension 3. For
this purpose we will need the Full Farrell-Jones Conjecture.

4. Short review of Farrell-Jones groups

Recall that a group G is called a Farrell-Jones group if it satisfies the Full Farrell-
Jones Conjecture, which means that it satisfies both the K-theoretic and the L-
theoretic Farrell-Jones Conjecture with coefficients in additive categories and with
finite wreath products. A detailed exposition on the Farrell-Jones Conjecture will
be given in [44].

The reader does not need to know any details about the Full Farrell-Jones Con-
jecture since this paper is written so that FJ can be used as a black box. We
will mention the consequences which we need in this paper when they appear. For
now, we record the following important consequences for a torsion free Farrell-Jones
group G.

• The projective class group K̃0(ZG) vanishes. This implies that any finitely
presented n-dimensional Poincaré duality group has a finite n-dimensional
model for BG;

• The Whitehead group Wh(G) vanishes. Hence any homotopy equivalence
of finite CW -complexes with G as fundamental group is a simple homotopy
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equivalence and every h-cobordism of dimension ≥ 6 with G as fundamental
group is trivial;

• The negative K-groups Kn(ZG) for n ≤ −1 all vanish. Hence the decora-
tions Lǫ

n(ZG) in the L-groups do not matter;
• The L-theoretic assembly map, see (5.2),

asmbǫn(G,w) : HG
n (EG;Lǫ

Z,w) → HG
n ({•};Lǫ

Z,w) = Lǫ
n(ZG,w)

is an isomorphism for n ∈ Z and all decorations ǫ;
• The Borel Conjecture holds for closed aspherical manifolds of dimension
≥ 5 whose fundamental group is G.

The reader may appreciate the following status report.

Theorem 4.1 (The class FJ ). Let class FJ of Farrell-Jones groups has the fol-
lowing properties.

(1) The following classes of groups belong to FJ :
(a) Hyperbolic groups;
(b) Finite dimensional CAT(0)-groups;
(c) Virtually solvable groups;
(d) (Not necessarily cocompact) lattices in second countable locally compact

Hausdorff groups with finitely many path components;
(e) Fundamental groups of (not necessarily compact) connected manifolds

(possibly with boundary) of dimension ≤ 3;
(f) The groups GLn(Q) and GLn(F (t)) for F (t) the function field over a

finite field F ;
(g) S-arithmetic groups;
(h) mapping class groups;

(2) The class FJ has the following inheritance properties:
(a) Passing to subgroups

Let H ⊆ G be an inclusion of groups. If G belongs to FJ , then H
belongs to FJ ;

(b) Passing to finite direct products
If the groups G0 and G1 belong to FJ , then also G0 ×G1 belongs to
FJ ;

(c) Group extensions
Let 1 → K → G → Q → 1 be an extension of groups. Suppose that
for any cyclic subgroup C ⊆ Q the group p−1(C) belongs to FJ and
that the group Q belongs to FJ .
Then G belongs to FJ ;

(d) Directed colimits
Let {Gi | i ∈ I} be a direct system of groups indexed by the directed
set I (with arbitrary structure maps). Suppose that for each i ∈ I the
group Gi belongs to FJ .
Then the colimit colimi∈I Gi belongs to FJ ;

(e) Passing to finite free products
If the groups G0 and G1 belong to FJ , then G0 ∗G1 belongs to FJ ;

(f) Passing to overgroups of finite index
Let G be an overgroup of H with finite index [G : H ]. If H belongs to
FJ , then G belongs to FJ ;

Proof. See [1, 2, 3, 4, 6, 7, 36, 57, 65, 66]. �
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5. The total surgery obstruction

The results of this section are inspired and motivated by Ranicki’s total surgery
obstruction, see for instance [41, 51, 54]. Since we consider only aspherical Poincaré
complexes whose fundamental groups are Farrell-Jones groups, the exposition sim-
plifies drastically and we get some valuable additional information. Moreover, we
get a version of Quinn’s resolution obstruction which does not require the struc-
ture of an ENR homology manifold on the relevant Poincaré complexes. Then
the total surgery obstruction and hence Quinn’s resolution obstruction are already
determined by the symmetric signature of the finite Poincaré complex.

The main result of this section will be

Theorem 5.1. Let G be a finitely presented 3-dimensional Poincaré duality group
which is a Farrell-Jones group.

Let X be a finite 3-dimensional CW complex modeling BG. The following state-
ments are equivalent:

(1) There exists a closed aspherical topological manifold N0 with Farrell-Jones
fundamental group such that BG × N0 is homotopy equivalent to a closed
topological manifold;

(2) Let N be any closed smooth manifold, closed PL-manifold, or closed topolog-
ical manifold respectively of dimension ≥ 2. Then there is exists a normal
map of degree one for some vector bundle ξ over X

TM ⊕ Ra f
//

��

(ξ × TN)⊕ Rb

��

M
f

// X ×N

such that M is a smooth manifold, PL-manifold, or topological manifold
respectively and f is a simple homotopy equivalence.

5.1. The quadratic total surgery obstruction. Let G be a group together with
an orientation homomorphism w : G → {±1}. Then there is a covariant functor

Lǫ
Z,w : Or(G) → SPECTRA

from the orbit category to the category of spectra, where the decoration ǫ is 〈i〉
for some i ∈ {2, 1, 0,−1, . . .} ∐ {−∞}, see [54, Definition 4.1 on page 145]. Notice
that the decoration 〈i〉 for i = 2, 1, 0 is also denoted by s, h, p in the literature.
From Lǫ

Z,w we obtain a G-homology theory on the category of G-CW -complexes

HG
∗ (−;Lǫ

Z,w) such that for every subgroupH ⊆ G and n ∈ Z we have identifications

HG
n (G/H ;Lǫ

Z,w)
∼= πn(L

ǫ
Z,w(G/H)) ∼= Lǫ

n(ZH,w|H),

where Lǫ
n(ZH,w|H) denotes the n-th quadratic L-group with decoration ǫ of ZG

with the w-twisted involution, see [18, Section 4 and 7]. The projection EG → {•}
induces the so called assembly map

(5.2) asmbǫn(G,w) : HG
n (EG;Lǫ

Z,w) → HG
n ({•};Lǫ

Z,w) = Lǫ
n(ZG,w),

which is induced by the projection EG → {•}.
In the sequel we denote for a spectrum E by i(E) : E〈1〉 → E its 1-connective

cover. This is a map of spectra such that πn(i(E)) is an isomorphism for n ≥ 1
and πn(E〈1〉) = 0 for n ≤ 0. We claim that there is a functorial construction of
the 1-connective cover so that we get from the covariant functor Lǫ

Z,w : Or(G) →
SPECTRA another covariant functor Lǫ

Z,w〈1〉 : Or(G) → SPECTRA together with

a natural transformation i : Lǫ
Z,w〈1〉 → Lǫ

Z,w such that i(G/H) is a cofibration of

spectra. Then we can also define a functor Lǫ
Z,w/L

ǫ
Z,w〈1〉 : Or(G) → SPECTRA



14 STEVE FERRY, WOLFGANG LÜCK, AND SHMUEL WEINBERGER

together with a natural transformation pr : Lǫ
Z,w → Lǫ

Z,w/L
ǫ
Z,w〈1〉 such that for

every object G/H in Or(G) we obtain a cofibration sequence of spectra

Lǫ
Z,w〈1〉(G/H)

i(G/H)
−−−−−→ Lǫ

Z,w(G/H)
pr(G/H)
−−−−−−→ Lǫ

Z,w/L
ǫ
Z,w〈1〉(G/H).

For every G-CW -complex Y this induces a long exact sequence

(5.3) · · · → HG
n (Y ;Lǫ

Z,w〈1〉) → HG
n (Y ;Lǫ

Z,w)

→ HG
n (Y ;Lǫ

Z,w/L
ǫ
Z,w〈1〉) → HG

n−1(Y ;Lǫ
Z,w〈1〉) → · · ·

and we have

πn(L
ǫ
Z,w/L

ǫ
Z,w〈1〉(G/H)) ∼=

{
Lǫ
n(H ;w|H) n ≤ 0;

0 n ≥ 1.

Now consider an aspherical oriented finite n-dimensional Poincaré complex X

with universal covering X̃ → X , fundamental group G = π1(X) and orientation
homomorphism w = w1(X) : G → {±1} in the sense of [62]. We can read w from
the underlying CW -complex X as follows. For any abelian group A we denote by
Aw the ZG-module whose underlying abelian group is A and on which g ∈ G acts

by multiplication with w(g). Now we use the isomorphism Hn(C
n−∗(X̃)) ∼=Zπ Zw

coming from Poincaré duality, where Cn−∗(X̃) is the (untwisted) Zπ-dual chain
complex of the cellular Zπ-chain complex C∗(X̃) of the universal covering X̃ .

There is an equivariant version of the Atiyah-Hirzebruch spectral sequence,

whoseE2-term is given byE2
p,q = HG

p (X̃;πq(L
ǫ
Z,w/L

ǫ
Z,w〈1〉)) and which converges to

HG
p+q(X̃;Lǫ

Z,w/L
ǫ
Z,w〈1〉), see for instance [18, 4.7]. It impliesHG

n+1(X̃;Lǫ
Z,w/L

ǫ
Z,w〈1〉) =

0 and yields an isomorphism

(5.4) HG
n (X̃ ;Lǫ

Z,w/L
ǫ
Z,w〈1〉)

∼=
−→ HG

n (X̃;Lǫ
0(Z)

w).

Poincaré duality yields an isomorphism

(5.5) HG
n (X̃ ;Lǫ

0(Z)
w)

∼=
−→ H0

G(X̃ ;Lǫ
0(Z)),

where G acts trivially on Lǫ
0(Z) in H0

G(X̃ ;Lǫ
0(Z)). There is an obvious isomorphism

(5.6) H0
G(X̃;Lǫ

0(Z))
∼=
−→ H0(X ;Lǫ

0(Z)) ∼= Lǫ
0(Z).

Notice that Lǫ
0(Z) is independent of the decoration ǫ and hence we abbreviate

L0(Z) = Lǫ
0(Z). We obtain from (5.4), (5.5), and (5.6) an isomorphism

(5.7) HG
n (X̃ ;Lǫ

Z,w/L
ǫ
Z,w〈1〉)

∼=−→ L0(Z).

Its composition with HG
n (X̃ ;Lǫ

Z,w) → HG
n (X̃ ;Lǫ

Z,w/L
ǫ
Z,w〈1〉) is denoted by

(5.8) λǫ
n(X) : HG

n (X̃;Lǫ
Z,w) → L0(Z).

From the exact sequence (5.3) we obtain a short exact sequence

(5.9) 0 → HG
n (X̃ ;Lǫ

Z,w〈1〉)
HG

n (id
X̃
;i)

−−−−−−−→ HG
n (X̃ ;Lǫ

Z,w)
λǫ
n(X)

−−−−→ L0(Z).

For every ǫ there is a natural transformation

eǫ : Lǫ → L〈−∞〉
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such that eǫn := πn(e
ǫ) : Lǫ

n(ZG,w) → L
〈−∞〉
n (ZG,w) is the classical change of

decoration homomorphism and the following diagram

HG
n (X̃ ;Lǫ

Z,w)
asmbǫ

n(X)
//

HG
n (id

X̃
;eǫ)

��

HG
n ({•};Lǫ

Z,w) = Lǫ
n(ZG,w)

eǫn
��

HG
n (X̃ ;L

〈−∞〉
Z,w )

asmb〈−∞〉
n (X)

// HG
n ({•};L

〈−∞〉
Z,w ) = L

〈−∞〉
n (ZG,w)

commutes. Note that since X is aspherical, G must be torsion free. If G is a

Farrell-Jones group, then Wh(G), K̃0(ZG) and Km(ZG) for m ≤ −1 vanish and
hence all maps in the commutative diagram are isomorphisms, in particular, the
choice of the decoration ǫ does not matter.

Let N (X) be the set of normal bordism classes of degree one normal maps with
targetX . Suppose that N (X) is not empty. Consider a normal map (f, f) of degree
one with target X

TM ⊕ Ra f
//

��

ξ

��

M
f

// X

One can assign to it its simple surgery obstruction σs(f, f) ∈ Ls
n(ZG,w). (This

makes sense for all dimensions n.) Fix a normal map (f0, f0). Then there is a
commutative diagram

NTOP(X)
σs(−,−)−σs(f0,f0)

//

s0 ∼=
��

Ls
n(ZG,w)

HG
n (X̃ ;Ls

Z,w〈1〉)
HG

n (id
X̃
;i)

// HG
n (X̃ ;Ls

Z,w)

asmbs
n(X)∼=

OO

(5.10)

whose vertical arrows are bijections. The upper arrow sends the class of (f, f) to
the difference σs(f, f)−σs(f, f0). This follows from the work of Ranicki [54, Proof
of Theorem 17.4 on pages 191ff] using [16, Theorem B1]. A detailed and careful
exposition of the proof of the existence of the diagram above can be found in [41,
Proposition 14.18]. The right vertical arrow is an isomorphism, provided that G is
a Farrell-Jones group.

Now consider the composition

(5.11) µs
n(X) : N (X)

σs

−→ Ls
n(ZG,w)

asmbs
n(X)−1

−−−−−−−−→ HG
n (X̃ ;Ls

Z,w)
λǫ
n(X)

−−−−→ L0(Z),

where the map λǫ
n(X) has been defined in (5.8). From the exact sequence (5.9)

and the diagram 5.10 we conclude that there is precisely one element, called the
quadratic total surgery obstruction,

(5.12) s(X) ∈ L0(Z)

such that for any element [(f, f)] inN (X) its image under µs
n(X) is s(X). Moreover,

we get

Theorem 5.13 (The quadratic total surgery obstruction). Let X be an aspherical

oriented finite n-dimensional Poincaré complex X with universal covering X̃ → X,
fundamental group G = π1(X) and orientation homomorphism w = w1(X) : G →
{±1}. Suppose that G is a Farrell-Jones group and that N (X) is non-empty. Then:



16 STEVE FERRY, WOLFGANG LÜCK, AND SHMUEL WEINBERGER

(1) There exists a normal map (f, f) of degree one with target X whose simple
surgery obstruction σs(f, f) ∈ Ls

n(ZG,w) vanishes, if and only if s(X) ∈
L0(Z) vanishes;

(2) If X is homotopy equivalent to a closed topological manifold, then s(X) ∈
L0(Z) vanishes.

Proof. 1 The “only if”-statement is obvious. The “if”- statement is proved as
follows. The vanishing of s(X) ∈ L0(Z) implies that the element −(f0, f0) in
NTOP(X) is sent under µs

n(X) to zero. The exact sequence (5.9) implies that the

composite N (X)
σs

−→ Ls
n(ZG,w)

asmbs
n(X)−1

−−−−−−−−→ HG
n (X̃ ;Ls

Z,w) sends −(f0, f0) to an

element which is in the image of HG
n (idX̃ ; i) : HG

n (X̃ ;Ls
Z,w〈1〉) → HG

n (X̃ ;Ls
Z,w). We

conclude from the diagram (5.10) that −σs(f0, f0) lies in the image of the upper
horizontal arrow of the diagram 5.10. Therefore there is an element −(f, f) in

NTOP(X) which satisfies σs(f, f)−σs(f0, f0) = −σs(f0, f0) and hence σs(f, f) = 0.

2 If X is simply homotopy equivalent to a closed topological manifold, then there
exists an element in [(f, f)] in N (X) with σs(f, f) = 0. Now apply assertion 1. �

Notice that Theorem 5.13 (1) holds also in dimensions n ≤ 4. We are not
claiming in Theorem 5.13 (1) that that we can arrange f to be a simple homotopy
equivalence. This conclusion from the vanishing of the simple surgery obstruction
does require n ≥ 5.

5.2. The symmetric total surgery obstruction. There is also a symmetric
version of the material of Subsection 5.1. There is a covariant functor

L
ǫ,sym
Z,w : Or(G) → SPECTRA

from the orbit category to the category of spectra such that for every subgroup
H ⊆ G and n ∈ Z we have identifications

Hn(G/H ;Lǫ,sym
Z,w ) ∼= πn(L

ǫ,sym
Z,w (G/H)) ∼= Ln

ǫ (ZH,w|H ),

where Ln
ǫ (ZH,w|H) denotes the 4-periodic n-th symmetric L-group with decoration

ǫ of ZG with the w-twisted involution. The projection EG → {•} induces the
symmetric assembly map

(5.14) asmbǫ,symn (X) : HG
n (EG;Lǫ,sym

Z,w ) → HG
n ({•};Lǫ,sym

Z,w ) = Ln
ǫ (ZG,w),

which is induced by the projection X̃ → {•}.
There is a natural transformation called symmetrization of covariant functors

Or(G) → SPECTRA

(5.15) symǫ : Lǫ
Z,w → L

ǫ,sym
Z,w .

It induces the classical symmetrization homomorphisms on homotopy groups

(5.16) symǫ
n(G/H) : Lǫ

n(ZH,w|H ) → Ln
ǫ (ZH,w|H),

which are isomorphism after inverting 2, see [52, Proposition 8.2]. We obtain a
natural transformation of G-homology theories, see [18, Lemma 4.6].

(5.17) HG
∗ (−; symǫ) : HG

∗ (−;Lǫ
Z,w) → HG

∗ (−;Lǫ,sym
Z,w )

satisfying

Theorem 5.18. For every n ∈ Z and every G-CW -complex X the maps

HG
∗ (−; symǫ) : HG

n (X ;Lǫ
Z,w) → HG

n (X ;Lǫ,sym
Z,w )

are isomorphisms after inverting 2.
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The following diagram commutes

(5.19) HG
n (X̃ ;Lǫ

Z,w)
asmbǫ

n(X)
//

HG
n (EG,symǫ)

��

Lǫ
n(ZG,w)

symǫ
n(G/G)

��

HG
n (X̃;Lǫ,sym

Z,w )
asmbǫ,sym

n (X)
// Ln

ǫ (ZG,w).

There is an obvious symmetric analog of the map (5.8)

(5.20) λǫ,sym
n (X) : HG

n (X̃ ;Lǫ,sym
Z,w ) → L0(Z),

and of the short exact sequence (5.9)

(5.21) 0 → HG
n (X̃ ;Lǫ,sym

Z,w 〈1〉)
HG

n (id
X̃
;i)

−−−−−−−→ HG
n (X̃;Lǫ,sym

Z,w )
λǫ,sym
n (X)

−−−−−−→ L0(Z).

The following diagram
(5.22)

0 −→ HG
n (X̃;Lǫ

Z,w〈1〉)
HG

n (id
X̃
;i)

//

HG
n (id;symǫ〈1〉)

��

HG
n (X̃;Lǫ

Z,w)
λǫ
n(X)

//

HG
n (id

X̃
;symǫ)

��

L0(Z)

sym0

��

0 −→ HG
n (X̃ ;Lǫ,sym

Z,w 〈1〉)
HG

n (id
X̃
;i)

// HG
n (X̃ ;Lǫ,sym

Z,w )
λǫ,sym
n (X)

// L0(Z)

commutes, has exact rows, and all its vertical arrows are bijections after inverting
2 since the map (5.16) is bijective after inverting 2 and we have [18, Theorem 4.7].
Under the standard identifications

h0 : L0(Z)
∼=
−→ Z;(5.23)

h0 : L0(Z)
∼=
−→ Z,(5.24)

the map sym0 : L0(Z) → L0(Z) becomes 8 · id : Z → Z, see the proof of [52, Propo-
sition 8.2], and hence is injective. Define the symmetric total surgery obstruction

(5.25) ssym(X) ∈ L0(Z)

to be the image of s(X) defined in (5.12) under the injection sym0 : L0(Z) → L0(Z).
Theorem 5.13 implies

Theorem 5.26 (The symmetric total surgery obstruction). Let X be an aspherical

oriented finite n-dimensional Poincaré complex X with universal covering X̃ → X,
fundamental group G = π1(X) and orientation homomorphisms w = w1(X) : G →
{±1}. Suppose that G is a Farrell-Jones group and that N (X) is non-empty. Then

(1) There exists a normal map of degree one (f, f) with target X whose simple

surgery obstruction σs(f, f) ∈ Ls
n(ZG,w) vanishes, if and only if ssym(X) ∈

L0(Z) vanishes;
(2) IfX is homotopy equivalent to a closed topological manifold, then ssym(X) ∈

L0(Z) vanishes.

Now we study the main properties of the symmetric total surgery obstruction.
If A is an abelian group, denote by A/2-tors its quotient by the abelian subgroup

of elements in A, whose order is finite and a power of two. For an element a ∈ A
denote by [a]2 its image under the projection A → A/2-tors.

Next we show that ssym(X) and s(X) are determined by the image [σs,sym
G (X̃)]2

of σs,sym
G (X̃) under Ln

s (ZG,w) → Ln
s (ZG,w)/2-tors, where σs,sym

G (X̃) is the sym-
metric signature in the sense of [52, Proposition 6.3] taking into account, that G is
a torsionfree Farrell-Jones group and hence the decorations do not matter.
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Theorem 5.27. Let X be an aspherical oriented finite n-dimensional Poincaré

complex X with universal covering X̃ → X, fundamental group G = π1(X) and
orientation homomorphism w = w1(X) : G → {±1}. Suppose that G is a Farrell-
Jones group and that N (X) is non-empty.

Then there is precisely one element u ∈ HG
n (X̃ ;Ls,sym

Z,w )/2-tors such that the
injective map

asmbs,symn (X)/2-tors: HG
n (X̃ ;Ls,sym

Z,w )/2-tors → Ln
s (ZG,w)/2-tors

sends u to the element [σs,sym
G (X̃)]2 associated to the symmetric signature σs,sym

G (X̃),
and the composite

HG
n (X̃;Ls,sym

Z,w )/2-tors
λs,sym(X̃)/2-tors
−−−−−−−−−−−→ L0(Z)/2-tors

h0/2-tors
−−−−−−→ Z/2-tors = Z

sends u to 1− h0(ssym(X)) = 1− 8 · h0(s(X)).

Proof. Consider a normal map(f, f) of degree one from M to X .
Since G is a Farrell-Jones group, the assembly map asmb of (5.2) is bijective for

all n ∈ Z. The homomorphism syms
n : L

s
n(ZG,w) → Ln

s (ZG,w) sends σs(f, f)

to σs,sym
G (M) − σs,sym

G (X̃), where M → M is the pull back of the G-covering

X̃ → BG by f , see [53, Section 6]. We conclude from the commutative dia-

gram (5.19) that there is an element u′ ∈ HG
n (X̃;Ls,sym

Z,w )/2-tors whose image under

asmbs,symn (X̃)/2-tors is [σs,sym
G (M)]2 − [σs,sym

G (X̃)]2.
We conclude from the commutative diagram (5.19) that the assembly map

asmbǫ,symn (X̃) : HG
n (X̃;Lǫ,sym

Z,w ) → HG
n ({•};Lǫ,sym) = Ln

ǫ (ZG,w)

of (5.14) is an isomorphism after inverting 2 since the upper horizontal arrow is the
bijective map (5.2), and the two vertical arrows are isomorphisms after inverting 2,
see (5.16) and Theorem 5.18. Hence the map

asmbs,symn (X̃)/2-tors: HG
n (X̃ ;Ls,sym

Z,w )/2-tors → Ln
s (ZG,w)/2-tors

is injective.
We conclude from the diagram (5.22) that the image of u′ under the composite

HG
n (X̃ ;Ls,sym

Z,w )/2-tors
λs,sym(X̃)/2-tors
−−−−−−−−−−−→ L0(Z)/2-tors

h0/2-tors
−−−−−−→ Z/2-tors = Z

is h0(ssym(X)). We have 8 ·h0(s(X)) = h0(ssym(X)). Hence it suffices to show that

there is an element u′′ ∈ HG
n (X̃;Ls,sym

Z,w )/2-tors such that its image under the map

asmbs,symn (X̃)/2-tors is [σs,sym
G (M)]2 and the image of u′′ under the composite

HG
n (X̃ ;Ls,sym

Z,w )/2-tors
λs,sym
n (X)/2-tors

−−−−−−−−−−−→ L0(Z)/2-tors
h0/2-tors
−−−−−−→ Z/2-tors = Z

is 1 since then we can take u = u′′ − u′.
For simplicity we give the proof of the existence of the element u′′ only in the

special case, where w is trivial. For every n ≥ 0 and every connected CW -complex
X , the symmetric signature defines a map, see [53, Proposition 6.3],

σs,sym
n (X) : ΩTOP

n (X) → Ln
s (Z[π1(X)]), [f : M → X ] 7→ σs,sym

G (M).

Without giving the details of the proof, we claim that this natural transformation
of functors from the category of CW -complexes to the category of Z-graded abelian
groups can be implemented as a functor from the category of CW -complexes to the
category of spectra. We conclude from the general theory about assembly maps,
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see [18, Section 6] or [67], that we can lift σs,sym
n (X) over asmbs,symn (X) to a map

τs,symn (X)

HG
n (X̃ ;Ls,sym

Z,w )

asmbs,sym
n (X)

��

ΩTOP
n (X)

σs,sym
n (X)

//

τs,sym
n (X)

44
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

Ln
h(ZG)

such that τs,sym∗ (−) is a transformation of homology theories. Such a construction
seems also to be contained in [42]. Consider the map

νn(X) : ΩTOP
n (X)

dn−→ Hn(X ;Z)
−∩[X]
−−−−→ H0(X ;Z) → Z,

where the first map dn sends [f : M → X ] to f∗([M ]). The naturality of the
Atiyah-Hirzebruch spectral sequence implies that the following diagram

ΩTOP
n (X)

νn(X)
//

τs,sym
n (X)

��

Z

HG
n (X̃ ;Ls,sym

Z,w )
λs,sym(X)

// L0({•})

h0

OO

commutes. Define u′′ to be the image of f : M → X under the composite

ΩTOP
n (X)

τs,sym
n (X)

−−−−−−→ HG
n (X̃;Ls,sym

Z,w ) → HG
n (X̃;Ls,sym

Z,w )/2-tors .

Since the degree of f : M → X is one, the image of [f : M → X ] under νn(X) is 1.
An easy diagram chase shows that u′′ has the desired properties. This finishes the
proof of Theorem 5.27. �

Theorem 5.27 together with the homotopy invariance of the symmetric signature
implies the homotopy invariance of the total surgery obstruction. More precisely,
we have

Theorem 5.28 (Homotopy invariance of the total surgery obstruction). Let X be
an aspherical oriented finite n-dimensional Poincaré complex such that π1(X) is
a Farrell-Jones group and N (X) is non-empty. Let Y be a finite n-dimensional
CW -complex which is homotopy equivalent to X.

Then Y is an aspherical oriented finite n-dimensional Poincaré complex such
that π1(Y ) is a Farrell-Jones group and such that N (Y ) is non-empty. We get

s(X) = s(Y );

ssym(X) = ssym(Y ).

Proof. Choose a homotopy equivalence f : X → Y . Define w1(Y ) ∈ Hn(Y ;Z/2)
to be f∗w1(X). Then obviously Y inherits the structure of an oriented finite n-
dimensional Poincaré complex from X if we take as fundamental class [Y ] the image

of [X ] under the isomorphism H
π1(X)
n (X̃ ;Zw1(X))

∼=−→ H
π1(Y
n (Ỹ ;Zw1(Y )) induced by

f . A consequence of the basic features of the symmetric signature and G being a
torsionfree Farrell-Jones group is that the isomorphism induced by π1(f)

Ln
s (Z[π1(X)], w1(X))

∼=
−→ Ln

s (Z[π1(Y )], w1(Y ))

sends σs,sym
π1(X)(X̃) to σs,sym

π1(Y )(Ỹ ). Now apply Theorem 5.27. �

Next we show a product formula.
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Theorem 5.29 (Product formula). For each i ∈ {0, 1}, let Xi be an aspherical ori-
ented finite ni-dimensional Poincaré complex with fundamental group Gi = π1(Xi)
and orientation homomorphism vi := w1(Xi) : Gi → {±1} such that Gi is a Farrell-
Jones group and that N (Xi) is non-empty.

Then X0 × X1 is an aspherical oriented finite (n0 + n1)-dimensional Poincaré
complex with fundamental group G0 × G1 and orientation homomorphisms v :=
w1(X ×N) : G0 ×G1 → {±1} sending (g0, g1) to v0(g0) · v1(g1) such that G0 ×G1

is a Farrell-Jones group and that N (X0 ×X1) is non-empty, and we get in Z

(1 − 8 · h0(s(X0 ×X1))) = (1− 8 · h0(s(X0))) · (1− 8 · h0(s(X1))).

Proof. The product G0 ×G1 is a Farrell-Jones group by Theorem 4.1 (2b).
The tensor product gives a pairing, see [52, Section 8],

(5.30) ⊗ : Ln0

s (ZG0, v0)⊗ Ln1

s (ZG1, v1) → Ln0+n1(Z[G0,×G1], v).

Now we claim that there is a pairing

× : HG0

n0
(X̃0;L

s,sym
Z,v0

)⊗HG1

n1
(X̃1;L

s,sym
Z,v1

) → HG0×G1

n0+n1
( ˜X0 ×X1;L

s,sym
Z,v )

such that the following diagram commutes
(5.31)

Ln0
s (ZG0, v0)⊗ Ln1

s (ZG1, v1)
⊗

// Ln0+n1(Z[G0,×G1], v)

HG0
n0

(X̃0;L
s,sym
Z,v0

)⊗HG1
n1

(X̃1;L
s,sym
Z,v1

)
×

//

asmbǫ,sym
n0

(X̃0)⊗asmbǫ,sym
n1

(X̃1)

OO

λs,sym
n0

(X0)⊗λs,sym
n1

(X1)

��

HG0×G1

n0+n1
( ˜X0 ×X1;L

s,sym
Z,v )

asmbǫ,sym

n0+n1
(X̃0×X1)

OO

λs,sym

n0+n1
(X0×X1)

��

L0(Z) ⊗ L0(Z)
⊗

//

h0⊗h0 ∼=

��

L0(Z)

h0∼=

��

Z⊗ Z // Z

where the lowermost horizontal arrow is the multiplication on Z. In order to get
this diagram, one has firstly to promote the functor

L
ǫ,sym
Z,w : Or(G) → SPECTRA

to a functor

L
ǫ,sym
Z,w : Or(G) → SPECTRA

sym

to the category SPECTRA
sym of symmetric spectra. Notice that the advantage of

SPECTRA
sym in comparison with SPECTRA is that SPECTRA

sym has a functorial
smash product ∧. In the second step one has to construct a map of spectra

L
ǫ,sym
Z,w (G/H0) ∧ L

ǫ,sym
Z,w (G/H1) → L

ǫ,sym
Z,w ((G×G)/(H0 ×H1)),

which on homotopy groups induces the map

⊗ : Ln0

s (ZH0, v0|H0
)⊗ Ln1

s (ZH1, v1|H1
) → Ln0+n1

s (Z[H0 ×H1], v|H0×H1
)

under the identifications

πk(L
ǫ,sym
Z,w (G/H0)) ∼= Lk

s(ZH0, v0|H0
);

πk(L
ǫ,sym
Z,w (G/H1)) ∼= Lk

s(ZH1, v1|H1
);

πk(L
ǫ,sym
Z,w (G×G/H0 ×H1)) ∼= Lk

s(Z[H0 ×H1], v|H0×H1
),

and are natural in G/H0 and G/H1. We omit the details of this construction,
see also Remark 5.32. Now the claim follows from Theorem 5.27 and the product
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formula for the symmetric signature, see [53, Proposition 8.1 (i)], which says that

the pairing (5.30) sends σs,sym
G0

(X̃0)⊗ σs,sym
G1

(X̃1) to σs,sym
G0×G1

( ˜X0 ×X1).
[42] �

Remark 5.32 (Special case of Theorem 5.29). In the proof of Theorem 5.29 we have
not given the details of the proof of the existence of the commutative diagram (5.31).
We will need Theorem 5.29 only in the special case, where n0 = 3 and X1 is a closed
n-dimensional manifold and then the desired assertion is

ssym(X0) = ssym(X0 ×X1).

For the reader’s convenience we give a direct complete proof in this special case. We
have L0(Z) ∼= Z, L1(Z) ∼= Z/2 and Li(Z) = 0 for i = 1, 2, see [52, Proposition 7.2].
The Atiyah-Hirzebruch spectral sequence shows that the map λǫ,sym

n (X0) of (5.20)
induces an isomorphism

λǫ,sym
n0

(X0)/2-tors: H
G0

n0
(X̃0;L

ǫ,sym
Z,w )/2-tors → L0(Z)/2-tors = L0(Z)

since we assume n0 = 3. We have already shown in Theorem 5.27 that

asmbs,symn0
(X0)/2-tors: H

G0

n0
(X̃0;L

s,sym
Z,w )/2-tors → Ln0

s (ZG0, v0)/2-tors

is injective and that there is a unique element u0 ∈ HG0
n (X̃0;L

s,sym
Z,v0

) which is

mapped to 1 − h0(ssym(X0)) and to [σs,sym
G0

(X̃0)]2 under these maps. Let (f0, f0)
be a normal map from a closed 3-manifold M0 to X0. We have explained in the

proof of Theorem 5.27 that there is an element u′′
0 ∈ HG

n0
(X̃0;L

s,sym
Z,w ) whose im-

age under asmbs,symn0
(X0)/2-tors: H

G0
n0

(X̃0;L
s,sym
Z,w )/2-tors → Ln0

s (ZG0, v0)/2-tors is

σs,sym
G0

(M0) for the G0-covering M0 → M0 given by the pullback of X̃0 → X0 with
f0 and whose image under the isomorphism

h0 ◦ λǫ,sym
n0

(X0)/2-tors: H
G0

n (X̃0;L
ǫ,sym
Z,v0

)/2-tors
∼=
−→ Z

is 1. Hence we get

[σs,sym
G0

(X̃0)]2 = (1− h0(ssym(X0))) · [σ
s,sym
G0

(M0)]2.

We conclude from the product formula for the symmetric signature, see [53, Propo-
sition 8.1 (i)],

σs,sym
G0×G1

( ˜X0 ×X1) = σs,sym
G0

(X̃0)⊗ σs,sym
G1

(X̃1)(5.33)

= (1− h0(ssym(X0)) · σ
s,sym
G0

(M0))⊗ σs,sym
G1

(X1)

= (1− h0(ssym(X0))) · σ
s,sym
G0×G1

(M0 × X̃1).

As we have explained in the proof of Theorem 5.27, there exists a unique element

u′′ ∈ HG0×G1
n (X̃0 × X̃1;L

s,sym
Z,w )/2-tors, whose image under

asmbs,symn0+n1
(X0 ×X1)/2-tors: H

G0×G1

n0+n1
( ˜X0 ×X1;L

ǫ,sym
Z,w )/2-tors

→ Ln0+n1

s (Z[G0 ×G1], v0 × v1)/2-tors

is [σs,sym
G0×G1

(M0 × X̃1)]2 and whose image under

h0 ◦ λǫ,sym
n (X0 ×X1)/2-tors: H

G0×G1

n ( ˜X0 ×X1;L
ǫ,sym
Z,w )/2-tors → Z

is 1. Here we use that X1 and hence M0 ×X1 is a closed manifold. Theorem 5.27
together with (5.33) implies

(1− h0(ssym(X0 ×X1))) = 1− h0(ssym(X0))).

Hence we get ssym(X0) = ssym(X0 ×X1).
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5.3. Proof of Theorem 5.1.

Proof of Theorem 5.1. Recall from Subsection 1.1 that there is a finite 3-dimensional
Poincaré complex model X for BG. Also recall from Theorem 3.1 that N (BG) is
non-empty. The implication 2 =⇒ 1 is obviously true; the implication 1 =⇒ 2 is
proved as follows.

By assumption there are closed aspherical topological manifolds M0 and N0 and
a homotopy equivalence f0 : M0 → X ×N0. We conclude from Theorem 5.28 that
ssym(M0) = ssym(X × N0). Since M0 and N0 are closed aspherical topological
manifolds, ssym(M0) and ssym(N0) vanish by Theorem 5.26 (2). We conclude from
Theorem 5.29, or just from Remark 5.32, that ssym(X) = 0. From Theorem 5.26 (1)
we obtain a normal map of degree one (f, f) with target X and vanishing simple
surgery obstruction σs(f, f) ∈ Ls

3(ZG,w1(X)). Let N be a closed smooth manifold,
closed PL-manifold, or closed topological manifold respectively of dimension ≥ 2.
By the product formula for the surgery obstruction, see [53, Proposition 8.1(ii)], the
surgery obstruction of the normal map of degree one (f×idN , f×idTN ) obtained by
crossing (f, f) with N is trivial. Since the dimension of X ×N is greater or equal
to 5, we can do surgery in the smooth, PL, or topological category respectively
to arrange that f × idN is a simple homotopy equivalence with a closed smooth
manifold, closed PL-manifold, or closed topological manifold respectively as source.

�

6. Short review of ENR homology manifolds

A topological space X is called a Euclidean neighborhood retract or briefly an
ENR if it X is homeomorphic to a closed subset X ′ of some Euclidean space Rn

such that X ′ has an open neighborhood U in Rn that retracts to X . Such a space is
finite-dimensional, metrizable, separable, locally compact, and locally contractible.
It is an illuminating exercise using the Tietze Extension Theorem to show that
if such an X is embedded as a closed subset of any normal space, then X is a
neighborhood retract in that space.

A theorem of Borsuk says that every finite-dimensional, metrizable, separable,
locally compact, and locally contractible space X is an ENR. The one-point com-
pactification of such an X is finite-dimensional and therefore embeds in a finite-
dimensional sphere. Removing the point at infinity from both the one-point com-
pactification and the sphere yields a closed embedding of X into a Euclidean space.
In Theorem A7 of [32] a neighborhood retraction is constructed for compactX . The
argument given extends easily to noncompact X . Hatcher focuses on the compact
case in order to emphasize that compact ENRs have finitely presented fundamental
groups and finitely generated homology groups.

Definition 6.1 (ENR homology manifold). A n-dimensional ENR homology mani-
fold X (without boundary) is an ENR such that for every x ∈ X the i-th singular
homology group Hi(X,X − {x}) is trivial for i 6= n and infinite cyclic for i = n.
We call X closed if it is compact.

An ENR homology manifold in the sense of Definition 6.1 is the same as a
generalized manifold in the sense of Daverman [17, page 191], as pointed out in [8,
page 3]. Every closed n-dimensional topological manifold is a closed n-dimensional
ENR homology manifold (see [17, Corollary 1A in V.26 page 191]).

Definition 6.2 (DDP). An ENR homology manifold M is said to have the disjoint
disk property (DDP), if for one (and hence any) choice of metric on M , any ǫ > 0
and any maps f, g : D2 → M , there are maps f ′, g′ : D2 → M so that f ′ is ǫ-close
to f , g′ is ǫ-close to g and f ′(D2) ∩ g′(D2) = ∅.
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Definition 6.3 (ENR homology manifold with ENR boundary). An n-dimensional
ENR homology manifold X with boundary ∂X is an ENRX which is a disjoint union
X = intX ∪ ∂X , where

• intX is an n-dimensional ENR homology manifold, the ”interior” of the
homology manifold with boundary X ;

• ∂X is an (n− 1)-dimensional ENR homology manifold;
• for every z ∈ ∂X the singular homology group Hi(X,X \ {z}) vanishes for

all i.

This definition is rather general. It includes the “bad” closed complementary
domain of an Alexander Horned sphere embedded in S3. In our main application,
however, the boundary will be a Z-set (see below) in X .

7. A stable ENR-version of the Cannon Conjecture

Theorem 7.1 (Stable ENR-version of the Cannon Conjecture). Let G be a torsion
free hyperbolic group. Suppose that its boundary is homeomorphic to Sn−1. Let Γ be
any d-dimensional Poincaré group for some natural number d satisfying n+ d ≥ 6
which is a Farrell-Jones group.

Then there is a closed aspherical ENR homology manifold X of dimension n+ d
which has the DDP and satisfies π1(X) ∼= G× Γ.

Proof. We conclude that G × Γ is a Farrell-Jones group from Theorem 4.1 (1a)
and (2b). Since G is a Poincaré duality group of dimension n by [10, Corollary 1.3],
the product G × Γ is a Poincaré duality group of dimension n + d. Since by as-
sumption n+ d ≥ 6, we can apply Theorem 1.11. �

8. Short review of Quinn’s obstruction

In order to replace ENR homology manifolds by topological manifolds in the
above result, we will use the following result that combines work of Edwards and
Quinn, see [17, Theorems 3 and 4 on page 288], [50].

Theorem 8.1 (Quinn’s obstruction). Let X be a connected ENR homology man-
ifold. There is an invariant ι(X) ∈ 1 + 8Z, known as the Quinn obstruction, with
the following properties:

(1) If U ⊂ X is a connected non-empty open subset, then ι(U) = ι(X);
(2) Let X be an ENR homology manifold of dimension ≥ 5. Then the following

are equivalent:
• X has the DDP and ι(X) = 1;
• X is a topological manifold.

The elementary proof of the following result can be found in [8, Corollary 1.6].

Lemma 8.2. Let X be a connected ENR homology manifold with boundary ∂X. If
∂X is a manifold and dim(X) ≥ 5, then ι(intX) = 1.

Although we do not need the next result in this paper, we mention that it
follows from [54, Proposition 25.8 on page 293] using Theorem 5.27, since we assume
aspherical.

Theorem 8.3 (Relating the total surgery obstruction and Quinn’s obstruction).
Let B be an aspherical finite n-dimensional Poincaré complex which is homotopy
equivalent to an n-dimensional closed ENR homology manifold X. Suppose that
π1(B) is a Farrell-Jones group.

Then we get

i(X) = 8 · h0(s(B)) + 1 = h0(ssym(B)) + 1.
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Notice that in the situation of Theorem 8.3 the total surgery obstruction s(B) is
defined without the assumption that B is homotopy equivalent to an n-dimensional
closed ENR homology manifold and therefore does make sense for any aspherical
3-dimensional Poincaré complex, and moreover, that s(B) is a homotopy invariant,
see Theorem 5.28.

Remark 8.4. There is no example in the literature of a closed spherical ENR ho-
mology manifold which is not homotopy equivalent to a closed topological manifold.

9. Z-sets

Definition 9.1 (Z-set). A closed subset Z of a compact ENR X is called a Z-
set or a set of infinite deficiency if for every open subset U of X the inclusion
U \ (U ∩ Z) → U is a homotopy equivalence.

Any closed subset of the boundary ∂M of a compact topological manifold M
is a Z-set in M . According to [10, page 470] each of the following properties
characterizes Z-sets. Here, X is a compact metric ENR. The noncompact case
is similar, except that maps and homotopies are limited by arbitrary open covers
rather than by fixed ǫ’s.

(1) For every ǫ > 0 there is a map X → X \ Z which is ǫ-close to the identity.
(2) For every closed subset A ⊆ Z, there exists a homotopy H : X × [0, 1] → X

such that H0 = idX , Ht|A is the inclusion A → X and Ht(X \A) ⊆ X \ Z
for all t > 0.
To this, we will add:

(3) There exists a homotopy H : X × [0, 1] → X such that H0 = idX and
Ht(X) ⊆ X \ Z for all t > 0.

This last is (2) with A = ∅. Clearly, (3) implies (1) and (2) implies (3), so (3)
also suffices as a definition of Z-set. This is the definition we will use in what
follows. Condition (3) implies that for every open U ⊂ X the inclusion U \Z → U
is a homotopy equivalence. If α : Sk → U is a map, then Ht ◦α : Sk → X is a map
homotopic to α and for t > 0 its image lies in X \ Z. For t > 0 sufficiently small,
this homotopy takes place in U , so the inclusion-induced map πk(U \Z) → πk(U) is
surjective. A similar argument shows that πk(U \Z) → πk(U) is a monomorphism
– if α extends over a disk in U , push the disk off of Z. The homotopy equivalence
follows from the Whitehead Theorem, since ENR′ s have the homotopy types of
CW complexes. The next result is taken from [8, Proposition 2.5].

Lemma 9.2. Let X be an ENR which is the disjoint union of an n-dimensional
ENR homology manifold intX and an (n−1)-dimensional ENR homology manifold
∂X such that ∂X is a Z-set in X. Then X is an ENR homology manifold with
boundary ∂X.

Definition 9.3 (Compact sets become small at infinity). Consider a pair (Y , Y )
of G-spaces, G a discrete group. We say that compact subsets of Y become small at
infinity, if, for every y ∈ ∂Y := Y \Y , open neighborhood U ⊆ Y of y, and compact
subset K ⊆ Y , there exists an open neighborhood V ⊆ U of y with the property
that for every g ∈ G we have the implication g ·K ∩ V 6= ∅ =⇒ g ·K ⊆ U .

In the sequel we will choose l large enough such that the following claims are
true for the torsion free hyperbolic group G and its Rips complex Pl(G).

(1) The projection Pl(G) → Pl(G)/G is a model for the universal principal
G-bundle EG → BG and Pl(G)/G is a finite CW -complex;

(2) One can construct a compact topological space ∂G and a compactification

Pl(G) of Pl(G) such that ∂G = Pl(G) \Pl(G) holds, and Pl(G) is open and

dense in Pl(G);
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(3) Pl(G) is a compact metrizable ENR such that ∂G ⊂ Pl(G) is Z-set and

Pl(G) has finite topological dimension;

(4) Compact subsets of Y become small at infinity for the pair (Pl(G), Pl(G)).

The first claim is proved for instance in [45]. The second claim follows from [12,
III.H.3.6 on page 429, III.H.3.7(3) and (4) on page 430, III.H.3.7(4) on page 430
and III.H.3.18(4) on page 433] and [5, 9.3.(ii)]. The third claim is due to Bestvina-
Mess [10, Theorem 1.2], see also [56, Theorem 3.7]. The fourth assertion is for
instance proved in [56, page 531].

10. Pulling back boundaries

We will need the following construction which may be interesting in its own
right.

Let (Y , Y ) be a topological pair. Put ∂Y := Y \Y . Let X be a topological space
and f : X → Y be a continuous map. Define a topological pair (X,X) and a map
f : X → X , which will turn out to be continuous, as follows. The underlying set
of X is the disjoint union X ∐ ∂Y . We define the map of sets f : X → Y to be
f ∪ id∂Y . A subset W of X is declared to be open if there exist open subsets U ⊆ Y

and V ⊆ X such that W = f
−1

(U) ∪ V . We will see that this defines a topology.
Obviously X and ∅ are open. Given a collection of open subsets {Wi | i ∈ I}, their

union is again open by the following equality, if we write Wi = f
−1

(Ui) ∪ Vi for
open subsets Ui ⊂ Y and Vi ⊆ X and define open subsets U :=

⋃
i∈I Ui ⊆ Y and

V :=
⋃

i∈I Vi ⊆ X :

⋃

i∈I

Wi =
⋃

i∈I

(
f
−1

(Ui) ∪ Vi

)
=
⋃

i∈I

f
−1

(Ui) ∪
⋃

i∈I

Vi

= f
−1

(⋃

i∈I

Ui

)
∪
⋃

i∈I

Vi = f
−1

(U) ∪ V.

Given two open subsets W1 andW2, their intersection is again open by the following

equality, if we write Wi = f
−1

(Ui) ∪ Vi for open subsets Ui ⊂ Y and Vi ⊆ X for
i = 1, 2 and define open subsets U := U1 ∩U2 ⊆ Y and V :=

(
f−1(U1 ∩ Y ) ∩ V2

)
∪(

V1 ∩ f−1(U2 ∩ Y )
)
∪
(
V1 ∩ V2) ⊆ X :

W1 ∩W2

=
(
f
−1

(U1) ∪ V1

)
∩
(
f
−1

(U2) ∪ V2

)

=
(
f
−1

(U1) ∩ f
−1

(U2)
)
∪
(
f
−1

(U1) ∩ V2

)
∪
(
V1 ∩ f

−1
(U2)

)
∪
(
V1 ∩ V2

)

= f
−1

(U1 ∩ U2) ∪
((
f−1(U1 ∩ Y ) ∩ V2

)
∪
(
V1 ∩ f−1(U2 ∩ Y )

)
∪
(
V1 ∩ V2

))

= f
−1

(U) ∪ V.

Definition 10.1 (Pulling back the boundary). We say that (f, f) : (X,X) →
(Y , Y ) is obtained from (Y , Y ) by pulling back the boundary with f .

Notice that this is the smallest topology on the set X = X ∐ ∂Y for which f
is continuous and X ⊆ X is an open subset. This leads to the following universal
property of the construction “pulling back the boundary”.

Lemma 10.2. Let (Y , Y ) be a topological pair. Let X be a topological space and
f : X → Y be a continuous map. Suppose that (f, f) : (X,X) → (Y , Y ) is obtained
from (Y , Y ) by pulling back the boundary with f . Consider any pair of spaces

(X,X) and map of pairs (f, f) : (X,X) → (Y , Y ) such that X is an open subset of

X and f induces a map X \X → ∂Y := Y \ Y .



26 STEVE FERRY, WOLFGANG LÜCK, AND SHMUEL WEINBERGER

Then there is precisely one map u : X → X which induces the identity on X and

satisfies f ◦ u = f .

Proof. As a map of sets u exists and is uniquely determined by the properties that

u induces the identity on X and f ◦ u = f . Namely, for x ∈ X define u(x) = x and

for x ∈ X \ X define u(x) by f(x) ∈ ∂Y = ∂X ⊆ X. We have to show that u is

continuous, i.e., u−1(W ) ⊆ X is open for every open subset W ⊆ X . By definition

there are open subsets U ⊆ Y and V ⊆ X such that W = f
−1

(U) ∪ V . Then

u−1(W ) = f
−1

(U) ∪ V . Since f is continuous, f
−1

(U) ⊆ X is open. Since X is

open in X and the topology on X is the subspace topology of X ⊆ X, we conclude

that for any open subset V ⊆ X the subset V ⊆ X is open. Hence u−1(W ) ⊆ X is
open. �

Lemma 10.3. Let (Y , Y ) be a topological pair. Let X be a topological space and
f : X → Y be a continuous map. Suppose that (f, f) : (X,X) → (Y , Y ) is obtained
from (Y , Y ) by pulling back the boundary with f .

(1) If Y ⊆ Y is dense and the closure of the image of f in Y contains ∂Y , then
X ⊆ X is dense;

(2) Suppose that Y is compact, Y ⊆ Y is open and f : X → Y is proper. Then
X is compact;

(3) We have for the topological dimension of X

dim(X) ≤ dim(X) + dim(Y ) + 1;

(4) The map f : X → Y given by f ∪ id∂Y is continuous;
(5) The induced map f induces a homeomorphism ∂f : ∂X → ∂Y ;

(6) Let g : Z → X be a map. Suppose that (f, f) : (X,X) → (Y , Y ) and
(f ◦ g, f ◦ g) : (Z,Z) → (Y , Y ) respectively are obtained by pulling back the

boundary of (Y , Y ) with f and f ◦ g respectively. Let g : (Z,Z) → (X,X)
be obtained by pulling back the boundary of (X,X) with g.

Then we get an equality of topological spaces Z = Z and of maps f ◦ g =
f ◦ g.

Proof. (1) Consider x ∈ ∂X and a neighborhood W of x in X . We have to show

X ∩W 6= ∅. We can write W = f
−1

(U) ∪ V for open subsets U ⊂ Y and V ⊆ X .

Without loss of generality we can assume V = ∅, or, equivalently W = f
−1

(U) for
open subset U ⊂ Y . Obviously U is an open neighborhood of f(x) ∈ Y . Since by
assumption the closure of the image of f in Y contains ∂Y , we have im(f)∩U 6= ∅
and hence X ∩W 6= ∅.

(2) Let {Wi | i ∈ I} be an open covering of X. We can write Wi = f
−1

(Ui)∪Vi for
open subsets Ui ⊂ Y and Vi ⊆ X . Then {Ui∩∂Y | i ∈ I} is an open covering of ∂Y .
Since ∂Y ⊆ Y is closed and Y is compact by assumption, ∂Y is compact. Hence
there is a finite subset J ⊆ I with ∂Y ⊆

⋃
i∈J Ui. The set Y \

(⋃
i∈J Ui

)
is closed

in Y and hence compact. Since Y \
(⋃

i∈J Ui

)
is contained in Y and f : X → Y is

by assumption proper, the preimage f−1
(
Y \

(⋃
i∈J Ui

))
is also compact. Hence

there is a finite subset J ′ ⊆ I such that {Vi | j ∈ J ′} covers f−1
(
Y \

(⋃
i∈J Ui

))
.

Hence {Wi | i ∈ J ∪ J ′} covers X. This shows that X is compact.

(3) Consider any open covering W = {Wi | i ∈ I} of X. By definition there are

Ui ⊆ Y and Vi ⊆ X such that Wi = f
−1

(Ui) ∪ Vi. Now put

W∂X := {f
−1

(Ui) | i ∈ I};

WX := {Wi ∩X | i ∈ I}.
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Then W∂X ∪WX is an open covering of X , which is a refinement of W . Moreover,
WX is an open covering of X and the union of the elements in W∂X contains ∂X .
We can find an open covering VX whose covering dimension is less or equal to
dim(X) and which refines WX . We obtain an open covering {Ui | i ∈ I} ∪ {Y } of
Y , since ∂Y is contained in

⋃
i∈I Ui. We can find an open covering VY of Y which

is a refinement of {Ui | i ∈ I} ∪ {Y } and has dimension ≤ dim(Y ). Put

V∂Y := {V ∈ VY | V ∩ ∂Y 6= ∅}.

Then V∂Y is a refinement of {Ui | i ∈ I}, has covering dimension ≤ dim(Y ) and

the union of the elements in V∂Y contains ∂Y . Define f
∗
V∂X to be the collection

of open subsets of X given by {f
−1

(V ) | V ∈ V∂Y }. Then f
∗
V∂X is a refinement

of W∂X , has covering dimension ≤ dim(Y ) and the union of its elements contains
∂X = ∂Y . Put

V = WX ∪ f
∗
V∂X .

Then V is an open covering of X which refines W . Its covering dimension satisfies

dim(V) ≤ dim(VX) + dim(f
∗
V∂X) + 1 ≤ dim(X) + dim(Y ) + 1.

(4) If U ⊆ Y is open, then by definition f
−1

(U) ⊆ X is open.

(5) Obviously f : X → Y induces a bijective continuous map ∂f : ∂X → ∂Y . We

have to show that it is open. An open subset of ∂X is of the form
(
f
−1

(U)∪V
)
∩∂X

for some open subsets U ⊆ Y and V ⊆ X . Its image under ∂f is U ∩∂Y and hence
an open subset of ∂Y .

(6). Notice that as sets Z and Z agree, both look like Z ∐ ∂Y . Next we show

that the two topologies agree. A subset W of Z is open if there are open subsets

U ⊆ Y and V2 ⊆ Z with W = f ◦ g
−1

(U) ∪ V2. A subset W1 ⊆ X is open if there

exist open subsets U ⊆ Y and V1 ⊆ X with W1 = f
−1

(U) ∪ V1. A subset W2 of Z
is open, if there exist open subsets W1 ⊆ X and V2 ⊆ Z such that W2 looks like
g−1(W1) ∪ V2. This is equivalent to the existence of open subsets U ⊆ Y , V1 ⊆ X
and V2 ⊆ Z such that

W2 = g−1
(
f
−1

(U) ∪ V1) ∪ V2.

Since

g−1
(
f
−1

(U) ∪ V1) ∪ V2 = f ◦ g
−1

(U) ∪
(
g−1(V1) ∪ V2

)

and g−1(V1)∪V2 is an open subset of Z, the topology on Z is finer than the topology
on Z. So it remains to show that the topology on Z is finer than the topology on

Z. This follows from the observation that for open subsets U ⊆ Y and V2 ⊆ Z we
get

f ◦ g
−1

(U) ∪ V2 = g−1(f
−1

(U) ∪ ∅) ∪ V2.

�

Example 10.4 (One-point-compactification). Let X and Y be locally compact
Hausdorff spaces. Denote by Xc and Y c their one-point-compactification. Let
f : X → Y be a map. Denote by (X,X) the space obtained from (Y c, Y ) by
pulling back the boundary with f .

Consider first the case where f is proper. Recall that a subsetW ⊆ Y c = Y ∪{∞}
is open if it belongs to Y and is open in Y or there is a compact subset C ⊆ Y such
that W = Y c \ C. This is indeed a topology, see [48, page 184]. By construction
the underlying sets for X and Xc agree, namely, they are both given by X ∐ {∞}.
Next we compare the topologies.
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Consider an open subset W of X. We want to show that W ⊆ Xc is open. We

can write W = f
−1

(U) ∪ V for open subsets U ⊆ Y c and V ⊆ X . If ∞ does not

belong to U , then U is an already open subset of Y and f
−1

(U) = f−1(U) is an
open subset of X which implies that W ⊆ X and hence W ⊆ Xc are open. It
remains to treat the case ∞ ∈ U . From the definitions we conclude that we can
write W = f

−1
(Y c \ C) ∪ V for some compact subset C ⊆ Y and an open subset

V of Y . Since

f
−1

(Y c \ C) = X \ f−1(C)

and by the properness of f the set f−1(C) ⊆ X is compact, W is open regarded as
a subset of Xc.

This shows that the identity induces a continuous bijective map Xc → X. (One
can also deduce this directly from Lemma 10.2.)

Since Xc is compact and X is Hausdorff, this is a homeomorphism, see [48,
Theorem 5.6 in Chapter III on page 167]. Hence we get an equality of topological

spaces X = Xc and of maps f = f c.
Now consider the case where f is the constant map onto some point y0 ∈ Y .

Suppose that X is not compact, or, equivalently, that the constant map f is not

proper. The set Y c \ {y0} is open in Y c. Hence ∂X = {∞} = f
−1

(Y c \ {y0}) is
an open subset of X . Since also X ⊆ X is open, X is, as a topological space, the
disjoint union X ∐ {∞}. Since X is not compact, its one-point compactification is
not homeomorphic to X .

Remark 10.5 (Dependency on f). Example 10.4 shows that X does depend on
the choice of f . So the reader should be careful when we just write X without
including f in the notation.

Lemma 10.6. Consider a pair (Y , Y ) of G-spaces, G a discrete group, such that
compact subsets of Y become small at infinity in the sense of Definition 9.3. Let
f : X → Y be a G-map. Suppose that (X,X) is obtained from (Y , Y ) by pulling
back the boundary with f .

Then compact subsets of X become small at infinity.

Proof. Consider an element x ∈ ∂X , an open neighborhood U ⊆ X of x, and a
compact subset K ⊆ X . We can find an open neighborhood U ′ ⊆ Y of f(x) ∈ ∂Y

and an open subset W ⊆ X such that U = f
−1

(U ′) ∪W . Put L = f(K). Then
L ⊆ Y is compact. By assumption we can find an open neighborhood V ′ ⊆ U ′ of
f(x) ∈ ∂Y such that the implication g · L ∩ V ′ 6= ∅ =⇒ g · L ⊆ U ′ holds for every

g ∈ G. Put V = f
−1

(V ′). This is an open neighborhood of x ∈ ∂X with V ⊆ U .
Moreover we get for every g ∈ G

g ·K ∩ V 6= ∅ =⇒ g · L ∩ V ′ 6= ∅

=⇒ g · L ⊆ U ′ =⇒ g · f−1(L) ⊆ f
−1

(U ′) =⇒ g ·K ⊆ U.

�

Definition 10.7 (Continuously controlled over Y at ∂Y ). Consider a pair (Y , Y ) of
spaces and a homotopy equivalence f : X → Y . We call f continuously controlled
over Y at ∂Y if there exists a map u : Y → X and homotopies h : f ◦ u ≃ idY
and k : u ◦ f ≃ idX with the following property: For every z ∈ ∂Y = Y \ Y and
neighborhood U of z in Y there is an open neighborhood V of z in Y with V ⊆ U
such that the following two implications are true:

• y ∈ V =⇒ h({y} × [0, 1]) ⊆ U ;
• x ∈ f−1(V ) =⇒ f ◦ k({x} × [0, 1]) ⊆ U .
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Lemma 10.8. Let f : X → Y be a G-map of proper free G-spaces, G a discrete
group. Suppose that X is cocompact. Then f is proper.

Proof. We have the following pullback

X

��

f
// Y

��

X/G
f/G

// Y/G

where the vertical maps are principal G-bundles. Since X/G is compact, f/G is
proper. Hence f is proper by [43, Lemma 1.16 on page 14]. �

Lemma 10.9. Consider a pair (Y , Y ) of spaces such that Y is a compact ENR
and ∂Y is a Z-set in Y . Consider a homotopy equivalence f : X → Y which is
continuously controlled. Let (f, f) : (X,X) → (Y , Y ) be obtained by pulling back
the boundary along f .

Then X is an ENR and ∂X ⊆ X is a Z-set.

Proof. We will use the third characterization of Z-set from Definition 9.1. This
characterization says that if X = X ∪ ∂X with X a compact ENR and if there is
a homotopy ht : X → X with h0 = id and ht(X) ⊂ X for all t > 0, then X is an
ENR and ∂X is a Z-set in X.

The statement in [9] assumes that X is an ENR, but this is unnecessary in
connection with definition (3), since Hanner’s criterion, see [31, Theorem 7.2], says
that a compact metric space is an ENR if it is ǫ-dominated by ENRs for every
ǫ > 0. The homotopy ht above shows that the ENR X ǫ-dominates X for every
ǫ > 0.23

Let ct : Y → Y be a homotopy so that c0 = idY and ct(Y ) ⊂ Y for all t > 0.
The homotopy equivalence f has a homotopy inverse g : Y → X . The continuous
control condition means that f extends continuously by the identity on ∂X = ∂Y
to f̄ : X → Y , g extends continuously by the identity to ḡ : Y → X and there are
homotopies ht from idY to f◦g and kt from idX to g◦f which extend continuously by
the identity to h̄t and k̄t. Restricted to X and Y , all of these maps and homotopies
are proper.

For x ∈ X , let α(x) = min(diam({k̄t(x), 0 ≤ t ≤ 1}), 12 ). Set

ēt =

{
k̄t/α(x)(x) 0 ≤ t ≤ α(x), α(x) 6= 0;

ḡ ◦ ct−α(x) ◦ f̄(x) α(x) ≤ t ≤ 1 or α(x) = 0.

For t = 0 and α(x) 6= 0, we have ē0(x) = k̄0(x) = x. If t = 0 and α(x) = 0, we have
ē0(x) = ḡ ◦ c0 ◦ f̄(x) = x, since α(x) = 0 implies that k̄t(x) = x for all 0 ≤ t ≤ 1.
If t = α(x) 6= 0, ēt(x) = ḡ ◦ f̄(x) with either definition. If t = α(x), then both
definitions give ḡ ◦ f̄(x). This shows that ēt is a well-defined continuous function
with e0 = idX . For any x ∈ ∂X , α(x) = 0 and ēt(x) = ḡ◦ct◦ f̄(x) = ḡ◦ct(x). Since
ct(x) ∈ Y , ēt(x) = ḡ ◦ ct(x) ∈ X , as desired. The formula above shows that points
of X have no possibility of moving back into ∂X , so the proof is complete. �

2A map f : X → Y between metric spaces is an ǫ-domination if there is a map g : Y → X so
that the composition f ◦ g : Y → Y is ǫ-homotopic to the identity.

3Hanner’s Theorem, as stated in [31], is much more general than the version we have stated
here. Hanner’s theorem applies to ANR′ s, by which he means separable metric spaces X such
that whenever X is imbedded as a closed subset of another separable metric space Z, it is a retract
of some neighborhood in Z. In particular, X need not be even locally compact. In order to achieve
such generality, it is necessary to consider homotopy dominations limited by open covers rather
than by fixed constants ǫ.
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Lemma 10.10. Consider a G-homotopy equivalence of f : X → Y of cocompact
proper free G-spaces, G a discrete group. Suppose that Y is a subspace of the
compact G-space Y such that compact subsets become small at infinity for (Y , Y ).

Then f is continuously controlled at ∂Y .

Proof. Choose a G-map u : Y → X and G-homotopies h : f ◦u ≃ idY and k : u◦f ≃
idX . Choose a compact subset C ⊆ Y such that G · C = Y holds.

Fix a point z ∈ ∂Y = Y \ Y and an open neighborhood U of z in Y .
Since compact subsets become small at infinity for (Y , Y ), we can find an open

neighborhood V of z in Y with V ⊆ U such that for every g ∈ G we have the
implication g · h(C × [0, 1]) ∩ V 6= ∅ =⇒ g · h(C × [0, 1]) ⊆ U .

Consider y ∈ V . We can find g ∈ G with y ∈ g · C. Since y = h(y, 1) ∈
g · h(C × [0, 1]), we get g · h(C × [0, 1]) ∩ V 6= ∅. This implies g · h(C × [0, 1]) ⊆ U
and in particular h({y} × [0, 1]) ⊆ U .

The map f is proper by Lemma 10.8. Hence f−1(C) ⊆ X is compact. Let

(f, f) : (X,X) → (Y , Y ) be obtained by pulling back the boundary with f . Since
compact subsets become small at infinity for (X,X) by Lemma 10.6, we can find

an open neighborhood V ′ of z ∈ ∂X = ∂Y in X with V ′ ⊆ f
−1

(U) such that
for every g ∈ G we have the implication g · k(f−1(C) × [0, 1]) ∩ V ′ 6= ∅ =⇒

g · k(f−1(C) × [0, 1]) ⊆ f
−1

(U). Choose an open subset V ′′ ⊆ Y and an open

subset W ⊆ X with V ′ = f
−1

(V ′′) ∪W . Since the implication above remains true

if we shrink V ′, we can assume without loss of generality that V ′ = f
−1

(V ′′). In
particular V ′′ is an open neighborhood of z ∈ Y .

Consider x ∈ X with f(x) ∈ V ′′. Then x ∈ f
−1

(V ′′). We can find g ∈ G with
x ∈ g · f−1(C). Since x = k(x, 1) ∈ g · k(f−1(C) × [0, 1]), we get g · k(f−1(C) ×

[0, 1]) ∩ f
−1

(V ′′) 6= ∅. This implies g · k(f−1(C) × [0, 1]) ⊆ f
−1

(U) and hence
f ◦ k({x} × [0, 1]) ⊆ U .

�

11. Recognizing the structure of a manifold with boundary

Recall that we have discussed the basic properties of the Rips complex Pl(G)
before in Section 9.

Theorem 11.1. Let G be torsion free hyperbolic group G with boundary S2. Con-
sider a homotopy equivalence f : M → Pl(G)/G×N , where M is a closed homology
ENR-manifold, and N is a closed topological manifold of dimension ≥ 2. Denote

by pG : Pl(G) → Pl(G)/G the canonical projection. Let the G-covering M̂ → M be
the pullback with f of the G-covering pG × idN : Pl(G) × N → Pl(G)/G × N and

f̂ : M̂ → Pl(G)×N be the induced G-homotopy equivalence. Let (f̂ , f̂) : (M̂, M̂) →

(Pl(G), Pl(G)) be obtained by pulling back the boundary along f̂ .

Then M̂ is a compact ENR homology manifold whose boundary ∂M̂ is S2 × N
and a Z-set.

Proof. Recall from Section 9 that Pl(G) → Pl(G)/G is a model for the universal
principal G-bundle EG → BG and Pl(G)/G is a finite CW -complex. Hence Pl(G)
is a cocompact free proper G-space. Compact subsets of Pl(G) become small at

infinity for the pair (Pl(G), Pl(G)). The space Pl(G) is a compact metrizable ENR

and ∂Pl(G) ⊆ Pl(G) is a Z-set. We conclude from Lemma 10.9 and Lemma 10.10

that ∂M̂ ⊆ M̂ is a Z-set and M̂ is an ENR. We conclude that M̂ is compact and has
finite dimension from Lemma 10.3 (2) and (3), and Lemma 10.8. Lemma 9.2 implies



ON THE STABLE CANNON CONJECTURE 31

that M̂ is an ENR homology manifold with boundary in the sense of Definition 6.3.
�

12. Proof of Theorem 0.3 and Theorem 0.4

This section is entirely devoted to the proof of Theorem 0.3 and Theorem 0.4.
We begin with the following considerations.

Consider a hyperbolic 3-dimensional Poincaré duality groupG. Then G is torsion
free and ∂G is S2 by Theorem 1.10. Let N be a closed aspherical topological
manifold of dimension n ≥ 3 with fundamental group π. Suppose that π is a Farrell-
Jones group. Then G×π is a finitely presented (3+n)-dimensional Poincaré duality
group. We conclude that G × π is a Farrell-Jones group from Theorem 4.1 (1a)
and (2b). Since 3+n ≥ 6, we conclude from Theorem 1.11 that there is a closed ENR
homology manifold M having the DDP and a homotopy equivalence M → BG×N .

Denote by pG : Pl(G) → Pl(G)/G the canonical projection. Let the G-covering

M̂ → M be the pullback with f of the G-covering pG × idN : Pl(G) × N →

Pl(G)/G×N and f̂ : M̂ → Pl(G)×N be the induced G-homotopy equivalence. Let

(f̂ , f̂) : (M̂, M̂) → (Pl(G)×N,Pl(G)×N) be obtained by pulling back the bound-

ary along f̂ . Theorem 11.1 implies that M̂ is a compact ENR homology manifold

whose boundary, ∂M̂ is homeomorphic to S2 ×N and is a Z-set in M̂ .

We conclude from Lemma 8.2 that i(M̂) = 1. Theorem 8.1 (1) then implies that
i(M) = 1.

We conclude from Theorem 8.1 (2) and a collaring result due to Ferry and
Seebeck, which can be found in [17, Theorem 1 in Section 40 on page 285], that

M̂ is a compact topological manifold with boundary ∂M̂ = S2 ×N . M is a closed
topological manifold since it has DDP and Quinn index 1.4 )

Since ∂Pl(G) is a Z-set in Pl(G), ∂Pl(G)×N is a Z-set in Pl(G)×N . We know

already that ∂M̂ is a Z-set in M̂ . Since Pl(G) is contractible, Pl(G) is contractible.

Since f̂ is a homotopy equivalence, f̂ is a homotopy equivalence. By construction

f̂ induces a homeomorphism u : ∂M̂ = ∂Pl(G) × N = S2 × N . Since Pl(G) is

contractible, we can find a homotopy equivalence Pl(G) → D3 which is the identity

on ∂Pl(G) = S2. Hence there is a homotopy equivalence (U, u) : (M̂, ∂M̂) → (D3×
N,S2 ×N) such that u is a homeomorphism. Since π1(D

3 × N) ∼= π is a Farrell-
Jones group and 3+n ≥ 6, the relative Borel Conjecture5 holds, i.e., we can change

(U, u) up to homotopy relative ∂M̂ such that we obtain a homeomorphism of pairs

(U, u) : (M̂, ∂M̂) → (D3 ×N,S2 ×N).

Proof of Theorem 0.3. The considerations above applied in the special caseN = T 3

show that BG× T 3 is homotopy equivalent to a closed topological manifold, since
Z3 is a Farrell-Jones group by Theorem 4.1 (1b). Hence ssym(BG×T 3) vanishes by
Theorem 5.26 (2). We conclude from Theorem 5.29 or directly from Remark 5.32

4 We note that a Z-set Z in a compact ENR W is automatically 1-LCC. ENRs are locally
simply connected, so for every ǫ > 0 there is a δ > 0 so that every map α : S1

→ W with diameter

< δ extends to a map ᾱ : D2
→ W with diameter < ǫ. The Z-set property allows us to push

ᾱ(D2) off of Z by an arbitrarily small homotopy, giving the desired extension. See the discussion
following Definition 9.1 for further details.

5This is the Borel Conjecture for compact manifolds with boundary, rel boundary. The surgery
exact sequence shows that it holds in the usual dimension range whenever the assembly map is
an isomorphism.
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that ssym(BG) vanishes. We conclude from Theorem 3.1 that N (BG) is not empty.
Now Theorem 0.3 follows from Theorem 5.26 1. �

Proof of Theorem 0.4. The considerations above applied in the special caseN = T 3

show that BG× T 3 is homotopy equivalent to a closed topological manifold.
Now let N be any closed smooth manifold, closed PL-manifold, or closed topo-

logical manifold respectively of dimension ≥ 2. We conclude from Theorem 5.1
applied in the case N0 = T 3 that there exists a normal map of degree one for some
vector bundle ξ over BG

TM ⊕ Ra f
//

��

(ξ × TN)⊕ Rb

��

M
f

// BG×N

such that M is a smooth manifold, PL-manifold, or topological manifold respec-
tively and f is a simple homotopy equivalence.

The considerations above applied in the case, where N is aspherical and n ≥ 3,
imply the existence of a closed topological manifold M0, together with a homotopy
equivalence f0 : M → BG×N and a homeomorphism

(U, u) : (M̂0, ∂M̂0) → (D3 ×N,S2 ×N).

We conclude from Theorem 0.5 that M0 and M are homeomorphic. This finishes
the proof of Theorem 0.4. �
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[36] H. Kammeyer, W. Lück, and H. Rüping. The Farrell–Jones conjecture for arbitrary lattices

in virtually connected Lie groups. Geom. Topol., 20(3):1275–1287, 2016.
[37] M. Kapovich and B. Kleiner. The weak hyperbolization conjecture for 3-dimensional CAT(0)-

groups. Groups Geom. Dyn., 1(1):61–79, 2007.
[38] M. Kapovich and B. Leeb. Quasi-isometries preserve the geometric decomposition of Haken

manifolds. Invent. Math., 128(2):393–416, 1997.
[39] B. Kleiner and J. Lott. Notes on Perelman’s papers. Geom. Topol., 12(5):2587–2855, 2008.
[40] M. Kreck and W. Lück. Topological rigidity for non-aspherical manifolds. Pure and Applied

Mathematics Quarterly, 5 (3):873–914, 2009. special issue in honor of Friedrich Hirzebruch.
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