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SURVEY ON ANALYTIC AND TOPOLOGICAL TORSION

WOLFGANG LÜCK

Abstract. The article consists of a survey on analytic and topological torsion.
Analytic torsion is defined in terms of the spectrum of the analytic Laplace
operator on a Riemannian manifold, whereas topological torsion is defined
in terms of a triangulation. The celebrated theorem of Cheeger and Müller
identifies these two notions for closed Riemannian manifolds. We also deal
with manifolds with boundary and with isometric actions of finite groups.
The basic theme is to extract topological invariants from the spectrum of the
analytic Laplace operator on a Riemannian manifold.

0. Introduction

When I was asked to write a contribution to a book in honor of Bernhard Rie-
mann, I was on one side flattered, but on the other side also scared. Although
Riemann has done so much foundational and seminal work in many areas, there
was no obvious topic, where I may have something to say and on which Riemann
has worked. Moreover, I am obviously not an expert on the history of mathematics.

After some thought I decided to choose as topic analytic and topological torsion.
This is an interesting example for an interaction between analysis and topology
and this is seems to be a theme, in which Riemann was interested.. The goal is to
extract topological invariants from the spectrum of the analytic Laplace operator
on a Riemannian manifold.

Finally I had to decide on the structure of the paper and for whom it should
be written. A technical paper on latest results did not seem to be appropriate.
So I decided to tell the story how one can come from elementary considerations
about linear algebra of finite-dimensional Hilbert spaces and elementary invariants
such as dimension, trace, and determinant to topological notions, which are in
general easy, and then to their analytic counterparts, which are in general much
more difficult. Hopefully the first sections are comprehensible even for graduate
students and present some important tools and notions, which can be transferred
to the analytic setting with some effort. Moreover, this transition explains the
basic ideas underlying the analytic notions. For an advanced mathematician, who
is not an expert on analytic or topological torsion, it may be interesting to see how
this interaction between analysis and topology is developed and what its impact is.
We tried to keep the exposition as simple as possible to ensure that the paper is
accessible. This also means that for an expert on analytic and topological torsion
this article will contain no new information.

Here is a brief summary of the contents of this paper.
In the first section we recall in the framework of linear maps between finite-

dimensional Hilbert spaces basic notions such as the trace, the determinant and
the spectrum. We will rewrite the classical notion of a determinant in terms of
the Zeta-function and the spectral density function. The point will be that in this
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new form they can be extended to the analytic setting, where one has to deal with
infinite-dimensional Hilbert spaces. This is not possible if one sticks to the classical
definitions.

In the second section we consider finite Hilbert chain complexes, which are chain
complexes of finite-dimensional Hilbert spaces for which only finitely many chain
modules are not zero. For those we can define Betti numbers and torsion invariants
and give an elementary “baby” version of the Hodge de Rham decomposition.

In the third section we pass to analysis. Our first interaction between analysis
and topology will be presented by the de Rham Theorem. Then we will explain
the Hodge-de Rham Theorem which relates the singular cohomology of a closed
Riemannian manifold to the space of harmonic forms.

In the fourth section topological torsion is defined by considering cellular chain
complexes of finite CW -complexes or closed Riemannian manifolds. It can be
written in terms of the combinatorial Laplace operator in an elementary fashion
except that one has to correct the Hilbert space structure on the homology using
the isomorphisms of the third section.

The fifth section is devoted to analytic torsion. Its definition is rather compli-
cated, but it should become clear what the idea behind the definition is, in view of
the definition of the topological torsion. We will explain that topological and ana-
lytical torsion agree for closed Riemannian manifolds. If the compact Riemannian
manifold has boundary, then a correction term based on the Euler characteristic of
the boundary is needed.

In the sixth section the results of the fifth section are extended to compact
Riemannian manifolds with an isometric action of a finite group. Here a new
phenomenon occurs, namely a third torsion invariant, the Poincaré torsion, comes
into play.

In the seventh section we give a very brief overview over the literature about
analytic and topological torsion and its generalization to the L2-setting.

Acknowledgments. The paper is financially supported by the Leibniz-Award of
the author granted by the Deutsche Forschungsgemeinschaft DFG.
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1. Operators of finite-dimensional Hilbert spaces

In this section we review some well-known concepts about a linear map between
finite-dimensional (real) Hilbert spaces such as its determinant, its trace, and its
spectrum. All of the material presented in this section is accessible to a student in
his second year. Often key ideas can easily be seen and illustrated in this elementary
context. Moreover, we will sometimes rewrite a well-known notion in a fashion
which will later allow us to extend it to more general situations.

1.1. Linear maps between finite-dimensional vector spaces. Let f : V → W
be a linear map of finite-dimensional (real) vector spaces. Recall that every finite-
dimensional vector space V carries a unique topology which is characterized by

the property that any linear isomorphism f : Rn
∼=−→ V is a homeomorphism. This

definition makes sense since any linear automorphism of Rn is a homeomorphism.
In particular any linear map f : V → W of finite-dimensional vector spaces is an
operator, i.e., a continuous linear map.

We can assign to an endomorphisms f : V → V of a finite-dimensional vector
space V two basic invariants, its trace and its determinant, as follows. If we write
V ∗ = homR(V,R), then there are canonical linear maps

α : V ∗ ⊗ V → homR(V, V ), φ⊗ v 7→ (w 7→ φ(w) · v) ;
β : V ∗ ⊗ V

∼=−→ homR(V, V ), φ⊗ v 7→ φ(v).

The first one is an isomorphism. Hence we can define the trace map to be the
composite

tr : homR(V, V )
α−1

−−→ V ∗ ⊗ V
β−→ R,

and the trace of f

(1) tr(f) ∈ R

to be the image of f under this linear map. The trace has the basic properties that
tr(g ◦ f) = tr(f ◦ g) holds for linear maps f : U → V and g → V → W , it is linear,
i.e., tr(r · f + s · g) = r · tr(f) + s · tr(g), and tr(idR : R → R) = 1. We leave it to
the reader to check that these three properties determine the trace uniquely.

If n is the dimension of V , the vector space Altn(V ) of alternating n-forms
V × V × · · · × V → R has dimension one. An endomorphism f : V → V induces
an endomorphism Altn(f) : Altn(V ) → Altn(V ). Hence there is precisely one real
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number r such that Altn(f) = r · idAltn(V ) and we define the determinant of f to
be r, or, equivalently, by the equation

(2) det(f) · idAltn(f) = Altn(f).

The determinant has the properties that det(g ◦ f) = det(g) · det(f) holds for
endomorphisms f, g : V → V , for any commutative diagram with exact rows

0 // U
i

//

f

��

V
p

//

g

��

W //

h
��

0

0 // U
i

// V
p

// W // 0

we get det(g) = det(f) ·det(h) and det(idR) = 1. We leave it to the reader to check
that these three properties determine the determinant uniquely.

Notice that all of our definitions are intrinsic, we do not use bases. Of course if
we choose a basis {b1, b2, . . . , bn} for V and let A be the (n, n)-matrix describing
f with respect to this basis, then we get back the standard definitions in terms of
matrices

tr(f) =
n∑

i=1

ai,i;

det(f) =
∏

σ∈Sn

sign(σ) ·
n∏

i=1

ai,σ(i).

1.2. Linear maps between finite-dimensional Hilbert spaces. Now we con-
sider finite-dimensional Hilbert spaces, i.e., finite-dimensional vector spaces with
an inner product. Notice that we do not have to require that V is complete with
respect to the induced norm, this is automatically fulfilled. Let f : U → V be a
linear map. Its adjoint is the linear map f∗ : V → W uniquely determined by the
property that 〈f(v), w〉W = 〈v, f∗(w)〉V holds for all v ∈ V and w ∈ W . If we
choose orthonormal basis for V and W and let A(f) and A(f∗) be the matrices
describing f and f∗, then A(f)∗ is the transpose of A(f). We call an endomorphism
f : V → V selfadjoint if and only if f∗ = f . This is equivalent to the condition that
A(f) is symmetric. We call an endomorphism f : V → V positive if 〈f(v), v〉 ≥ 0
holds for all v ∈ V . This is equivalent to the existence of a linear map g : V → V
with f = g∗g. In particular every positive linear endomorphism is selfadjoint.

The following version of a determinant will be of importance for us. Let f : V →
W be a linear map of finite-dimensional Hilbert spaces, where V and W may

be different. Then f∗f : V → V induces an automorphism (f∗f)⊥ : ker(f∗f)⊥
∼=−→

ker(f∗f)⊥, where ker(f∗f)⊥ is the orthogonal complement of ker(f∗f) in U . Define

(3) det⊥(f) :=

{√
det
(
(f∗f)⊥ : ker(f∗f)⊥

∼=−→ ker(f∗f)⊥
)

if f 6= 0

1 if f = 0.

The proof of the following elementary lemma is left to the reader, or consult [65,
Theorem 3.14 on page 128 and Lemma 3.15 on page 129].

Lemma 1.1.

(1) If f : V → V is a linear automorphism of a finite-dimensional Hilbert space,

then det⊥(f) = | det(f)| for det(f) the classical determinant;
(2) Let f : U → V and g : V → W be linear maps of finite-dimensional Hilbert

spaces such that f is surjective and g is injective. Then

det⊥(g ◦ f) = det⊥(f) · det⊥(g);
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(3) Let f1 : U1 → V1, f2 : U2 → V2 and f3 : U2 → V1 be linear maps of finite-
dimensional Hilbert spaces such that f1 is surjective and f2 is injective.
Then

det⊥
(
f1 f3
0 f2

)
= det⊥(f1) · det⊥(f2);

(4) Let f1 : U1 → V1 and f2 : U2 → V2 be linear maps of finite-dimensional
Hilbert spaces. Then

det⊥(f1 ⊕ f2) = det⊥(f1) · det⊥(f2);

(5) Let f : U → V be a linear map of finite-dimensional Hilbert spaces. Then

det⊥(f) = det⊥(f∗) =

√
det⊥(f∗f) =

√
det⊥(ff∗).

1.3. The spectrum and the spectral density function. If one is only inter-
ested in finite-dimensional Hilbert spaces and in Betti numbers or torsion invariants
for finite CW -complexes, one does not need the following material of the remain-
der of this Section 1. However, we will now lay the foundations to extend these
invariants to the analytic setting or to the L2-setting, where the Hilbert spaces are
not finite-dimensional anymore.

The spectrum spec(f) of a selfadjoint operator f : V → V of finite-dimensional
Hilbert spaces consists of the set of eigenvalues λ of f , i.e., real numbers λ for which
there exists v ∈ V with v 6= 0 and f(v) = λ · v. The multiplicity µ(f)(λ) of an
eigenvalue λ is the dimension of its eigenspace

Eλ(f) := {v ∈ V | f(v) = λ · v}.

If λ ∈ R is not an eigenvalue, we put µ(f)(λ) = 0. An elementary but basic
result in linear algebra says that for a selfadjoint linear map f : V → V there exists
an orthonormal basis of eigenvectors of V . A selfadjoint linear endomorphism is
positive if λ ≥ 0 holds for each eigenvalue λ.

Next we introduce for a linear map f : U → V of finite-dimensional Hilbert
spaces its spectral density function

(4) F (f) : [0,∞) → [0,∞).

It is defined as the following right continuous step function. Its value at zero is the
dimension of the kernel of f∗f . Notice that ker(f∗f) = ker(f) since v ∈ ker(f∗f)
implies 0 = 〈f∗f(v), v)〉 = 〈f(v), f(v)〉 and hence f(v) = 0. The jumps of the
step function happen exactly at the square roots of the eigenvalues of f∗f and
the height of the jump is the multiplicity µ(f∗f)(λ) of the eigenvalue. There is a
number C ≥ 0 such that F (f)(λ) = dim(V ) holds for all λ ≥ C, for instance, take
C to be the square root of the largest eigenvalue of f∗f . Obviously f is injective if
and only if F (f)(0) = 0.

Suppose that f is already a positive operator f : V → V . Then f∗f is f2.
Moreover, F (f) has the dimension of ker(f) as value at zero and the step function
jumps exactly at those λ ∈ R which are eigenvalues of f and the height of the jump
is µ(f)(λ).

One can also define the spectral density function of a linear map f : V → W of
finite-dimensional Hilbert spaces without referring to eigenvalues in a more intrinsic
way as follows. Let L(f, λ) be the set of linear subspaces L ⊆ V such that ||f(v)|| ≤
λ · ||v|| holds for every v ∈ L. Then we from [65, Lemma 2.3 on page 74]

(5) F (f)(λ) = sup{dim(L) | L ∈ L(f, λ)}.
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1.4. Rewriting determinants. The following formula will be of central interest
for us. Let f : V → W be a linear map of finite-dimensional Hilbert spaces. Notice
that det⊥(f) > 0 so that we can consider the real number ln(det⊥(f)). The formula

(6) ln(det⊥(f)) =
1

2
·

∑

λ∈spec(f∗f),
λ>0

µ(f∗f)(λ) · ln(λ)

is a direct consequence of the fact that we have orthogonal decompositions

V =
⊕

λ∈spec(f∗f)

Eλ(f
∗f);

ker(f∗f)⊥ =
⊕

λ∈spec(f∗f),
λ>0

Eλ(f
∗f).

We can use this orthogonal decomposition to define a new linear automorphism of
V by

ln((f∗f)⊥) :=
⊕

λ∈spec(f∗f),
λ>0

ln(λ) · idEλ(f∗f) : ker(f∗f)⊥ → ker(f∗f)⊥.(7)

Then we can rephrase (6) as

(8) ln(det⊥(f)) =
1

2
· tr
(
ln((f∗f)⊥)

)
.

The following observation will be the key to define determinants also for op-
erators between not necessarily finite-dimensional Hilbert spaces, for instance for
the analytic Laplace operator acting on smooth p-forms for a closed Riemannian
manifold. Namely, we define a holomorphic function ζf : C → C by

(9) ζf (s) =
∑

λ∈spec(f∗f),
λ>0

µ(f∗f)(λ) · λ−s,

Then one easily checks using (6)

− ln(det⊥(f)) = −1

2
·

∑

λ∈spec(f∗f),
λ>0

µ(f∗f)(λ) · ln(λ)(10)

=
1

2
·

∑

λ∈spec(f∗f),
λ>0

µ(f∗f)(λ) · d

ds

∣∣∣∣
s=0

λ−s

=
1

2
· d

ds

∣∣∣∣
s=0

ζf .

In order to extend the notion of det⊥(f) in the L2-setting to the Fuglede-Kadison

determinant, it is useful to rewrite the quantity ln(det⊥(f)) in terms of an integral
with respect to measure coming from the spectral density function as follows.

Recall that F (f) is a monotone non-decreasing right-continuous function. De-
note by dF (f) the measure on the Borel σ-algebra on R which is uniquely deter-
mined by its values on the half open intervals (a, b] for a < b by dF (f)((a, b]) =
F (f)(b) − F (f)(a). The measure of the one point set {a} is limx→0+ F (f)(a) −
F (f)(a − x) and is zero if and only if F (f) is left-continuous in a. We will use

here and in the sequel the convention that
∫ b

a
,
∫ b

a+
,
∫∞

a
and

∫∞

a+
respectively means
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integration over the interval [a, b], (a, b], [a,∞) and (a,∞) respectively. An easy
computation using (6) shows

ln(det⊥(f∗f)) =

∫ ∞

0+

ln(λ) dF (f).(11)

Elementary integration theory shows that we get for dλ the standard Lebesgue
measure and any a ≥ dim(U)

(12)

∫ ∞

0+

ln(λ) dF = ln(a) · (F (a)− F (0))−
∫ a

0+

F (f)(λ) − F (f)(0)

λ
dλ.

2. Finite Hilbert chain complexes

Having in mind the cellular chain complex of a finite CW -complex, we want
to consider now finite Hilbert chain complexes. A finite Hilbert chain complex
C∗ = (C∗, c∗) consists of a collection of finite-dimensional Hilbert spaces Cn and
linear maps cn : Cn → Cn−1 for n ∈ Z such that cn ◦ cn+1 = 0 holds for all n ∈ Z

and there exists a natural number N with cn = 0 for |n| > N . A chain map of finite
Hilbert chain complexes f∗ : C∗ → D∗ is a collection of linear maps fn : Cn → Dn

for n ∈ Z such that dn ◦ fn = fn−1 ◦ cn holds for all n ∈ Z. (We do not require
that the maps fn are compatible with the Hilbert space structures.) It is obvious
what a chain homotopy and a chain homotopy equivalence of finite Hilbert chain
complexes means. The homology Hn(C∗) is the Hilbert space ker(cn)/ im(cn+1),
where ker(cn) is equipped with the Hilbert space structure coming from Cn and
ker(cn)/ im(cn+1) inherits the quotient Hilbert space structure. Define the n-th
Laplace operator

(13) ∆n = c∗n ◦ cn + cn+1 ◦ c∗n+1 : Cn → Cn.

The importance of the following notions cannot be underestimated.

Definition 2.1 (Betti numbers and torsion of a finite Hilbert chain complex). Let
C∗ be a finite Hilbert chain complex.

Define its n-th Betti number

bn(C∗) := dim(Hn(C∗)) ∈ Z≥0.

Define its torsion

ρ(C∗) := −
∑

n∈Z

(−1)n · ln
(
det⊥(cn)

)
∈ R,

where det⊥ has been introduced in (3).

2.1. Betti numbers. Next we relate these notions to the Laplace operator. The
following result is a “baby”-version of the Hodge-de Rham Theorem, see Subsec-
tion 3.2. In the sequel we equip ker(∆n) ⊆ Cn with the Hilbert space structure
induced from the given one on Cn.

Lemma 2.2. Let C∗ be a finite Hilbert chain complex. Then we get for all n ∈ Z

ker(∆n) = ker(cn) ∩ im(cn+1)
⊥,

and an orthogonal decomposition

Cn = im(c∗n)⊕ im(cn+1)⊕ ker(∆n).

In particular the obvious composite

ker(∆n) → ker(cn) → Hn(Cn)

is an isometric isomorphism of Hilbert spaces and we get

bn(C∗) = dim(ker(∆n)).
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Proof. Consider v ∈ V . We compute

〈cn(v), cn(v)〉 + 〈c∗n+1(v), c
∗
n+1(v)〉 = 〈c∗n ◦ cn(v), v〉+ 〈cn+1 ◦ c∗n+1(v), v〉

= 〈c∗n ◦ cn(v) + cn+1 ◦ c∗n+1(v), v〉
= 〈∆n(v), v〉.

Hence we get for v ∈ V that ∆n(v) = 0 is equivalent to cn(v) = c∗n+1(v) = 0. This

shows ker(∆n) = ker(cn) ∩ ker(c∗n+1) = ker(cn) ∩ im(cn+1)
⊥. The other claims are

now direct consequences. �

Remark 2.3 (Homotopy invariance of dim(ker(∆n)). Notice the following funda-
mental consequence of Lemma 2.2 that dim(ker(∆n)) depends only on the chain
homotopy type of C∗ and is in particular independent of the Hilbert space struc-
ture on C∗ since for a chain homotopy equivalence f∗ : C∗ → D∗ we obtain an
isomorphism Hn(f∗) : Hn(C∗) → Hn(D∗) and hence the equality bn(C∗) = bn(D∗).

Of course the spectrum of the Laplace operator ∆n does depend on the Hilbert
space structure, but a part of it, namely, the multiplicity of the eigenvalue 0, which
is just dim(ker(∆n)), depends only on the homotopy type of C∗.

Remark 2.4 (Heat operator). One can assign to the Laplace operator ∆n : Cn → Cn

its heat operator e−t∆n . It is defined analogously to ln(f∗f), see (7), but now each
eigenvalue λ of ∆n transforms to the eigenvalue e−tλ.

Then we obviously get

bn(C∗) = lim
t→∞

tr(e−t∆n).

2.2. Torsion for finite Hilbert chain complexes. The situation with torsion
is more complicated, but in some sense similar, as we explain next. First of all one
can rewrite torsion in terms of the Laplace operator.

Lemma 2.5. If C∗ is a finite Hilbert chain complex, then we get

ρ(C∗) = −1

2
·
∑

n∈Z

(−1)n · n · ln
(
det⊥(∆n)

)
.

Proof. From Lemma 2.2 we obtain an orthogonal decomposition

Cn = ker(cn)
⊥ ⊕ im(cn+1)⊕ ker(∆n);

∆n = ((c⊥n )
∗ ◦ c⊥n )⊕ (c⊥n+1 ◦ (c⊥n+1)

∗)⊕ 0,

where c⊥n : ker(cn)
⊥ → im(cn) is the weak isomorphism induced by cn. Now we

compute using Lemma 1.1

−1

2
·
∑

n∈Z

(−1)n · n · ln(det⊥(∆n))

= −1

2
·
∑

n∈Z

(−1)n · n · ln
(
det⊥

(
((c⊥n )

∗ ◦ c⊥n )⊕ (c⊥n+1 ◦ (c⊥n+1)
∗)⊕ 0

))

= −1

2
·
∑

n∈Z

(−1)n · n ·
(
ln
(
det⊥((c⊥n )

∗ ◦ c⊥n )
)

+ ln
(
det⊥(c⊥n+1 ◦ (c⊥n+1)

∗)
)
+ ln(det⊥(0))

)

= −1

2
·
∑

n∈Z

(−1)n · n ·
(
2 · ln

(
det⊥(cn)

)
+ 2 · ln

(
det⊥(cn+1)

))

= −
∑

n∈Z

(−1)n · ln
(
det⊥(cn)

)
.

�
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A basic property of the torsion is additivity, whose proof can be found in [65,
Theorem 3.35 (1) on page 142].

Lemma 2.6. Consider the short exact sequence of finite Hilbert chain complexes

0 → C∗
i∗−→ D∗

p∗−→ E∗ → 0. For each n ∈ Z we obtain a finite Hilbert chain complex

E[n]∗ concentrated in dimension 0, 1, and 2 which is given there by Cn
in−→ Dn

pn−→
En. The long exact homology sequence associated to 0 → C∗

i∗−→ D∗
p∗−→ E∗ → 0

can be viewed as finite Hilbert chain complex denoted by LHS∗.
Then we get

ρ(C∗)− ρ(D∗) + ρ(E∗) =

(∑

n∈Z

(−1)n · ρ(E[n]∗)

)
− ρ(LHS∗).

Let f : C∗ → D∗ be a chain map of finite Hilbert chain complexes. Let cone(f∗)
be its mapping cone whose n-th differential is given by(

−cn−1 0
fn−1 dn

)
: Cn−1 ⊕Dn → Cn−1 ⊕Dn−1.

Define the torsion of f∗ by

(14) τ(f∗) := ρ(cone(f∗)).

Lemma 2.7. Let f : C∗ → D∗ be a chain homotopy equivalence of finite Hilbert
chain complexes. Then we get

τ(f∗) = ρ(D∗)− ρ(C∗) +
∑

n∈Z

(−1)n · ln
(
det⊥(Hn(f∗))

)
.

Proof. This follows from Lemma 2.6 applied to the canonical short exact sequence
0 → D∗ → cone(f∗) → ΣC∗ → 0 using the fact that Hn(cone(f∗)) = 0 holds for
n ∈ Z. �

Lemma 2.8. Let f∗ : C∗ → D∗ be a chain map of finite contractible Hilbert chain
complexes such that fn is bijective for each n ∈ Z. Then

ρ(D∗)− ρ(C∗) =
∑

n∈Z

(−1)n · ln
(
det⊥(fn)

)
.

Proof. Because of Lemma 2.7 it suffices to show

ρ(cone(f∗)) =
∑

n∈Z

(−1)n · ln
(
det⊥(fn)

)
.

This is done by induction over the length of C∗ which is the supremum {m − n |
Cm 6= 0, Cn 6= 0}. The induction step, when the length is less or equal to one,
follows directly from the definitions. The induction step is done as follows. Let
m be the largest integer with Cm 6= 0. Let C∗|m−1 obtained from C∗ by putting
Cm = 0 and leaving the rest. Obviously f∗ : C∗ → D∗ induces a chain isomor-
phism f∗|m−1 : C∗|m−1 → D∗|m−1. Let m[C∗] be the chain complex concentrated
in dimension m whose m-th chain module is Cm. Obviously f∗ induces a chain
isomorphism m[f∗] : m[C∗] → m[D∗]. We have the obvious short exact sequence
of finite contractible Hilbert chain complexes 0 → cone(m[f∗]) → cone(f∗) →
cone([f∗|m−1) → 0. Lemma 2.6 implies

ρ(cone(f∗)) = ρ(cone(m[f∗])) + ρ
(
cone(f∗|m−1)

)
.

The induction hypothesis applies to m[C∗] and C∗|m−1 and thus we have

ρ(cone(m[f∗])) = (−1)m · ln
(
det⊥(fm)

)
;

ρ
(
cone(f∗|m−1)

)
=

∑

n∈Z,n6=m

(−1)n · ln
(
det⊥(fn)

)
.
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This finishes the proof Lemma 2.8. �

2.3. Torsion for finite based free Z-chain complexes. Let C∗ be a finite free Z-
chain complex, i.e., a Z-chain complex whose chain modules are all finitely generated
free abelian groups and for which there exists a natural number N such that cn = 0
for |n| > N . Given a finitely generated free Z-module M , we call two Z-bases B =
{b1, b2, . . . , bn} and B′ = {b′1, b′2, . . . , b′n} equivalent if there exists a permutation
σ ∈ Sn and elements ǫi ∈ {±1} for i = 1, 2, . . . , n such that b′σ(i) = ǫi · bi holds for
i = 1, 2, . . . , n. A Z-basis B = {b1, b2, . . . , bn} onM determines on R⊗ZM a Hilbert
space structure by requiring that {1⊗b1, 1⊗b2, . . . , 1⊗bn} is an orthonormal basis.
Obviously this Hilbert space structure depends only on the equivalence class [B] of
B.

We call a Z-chain complex C∗ finite based free if it is finite free and each Cn comes
with an equivalence class [Bn] of Z-bases. Then R ⊗ ZC∗ inherits the structure of
a finite Hilbert chain complex.

Lemma 2.9. Let C∗ be a finite based free contractible Z-chain complex. Then

ρ(R⊗Z C∗) = 0.

Proof. We use induction over the length of C∗ which is the supremum {m − n |
Cm 6= 0, Cn 6= 0}. The induction step, when the length is smaller than zero, is
trivial since then C∗ is trivial. The induction step is done as follows. Let n be the
smallest integer with Cn 6= 0. Then cn+1 : Cn+1 → Cn is surjective. We can choose
a map of Z-modules sn : Cn → Cn+1 with cn+1 ◦ sn = idCn

. Then the cokernel
coker(sn) is a finitely generated free and we can equip it with some equivalence
class of Z-basis. Let pr : Cn+1 → coker(sn) be the projection. We obtain a short
exact sequence of finite free Z-chain complexes by the following diagram

· · · // 0 //

��

0 //

��

Cn
id

//

sn

��

Cn

id

��

· · · cn+4
// Cn+3

cn+3
//

id

��

Cn+2

cn+2
//

id

��

Cn+1

cn+1
//

pr

��

Cn

��

· · · cn+4
// Cn+3

cn+3
// Cn+2

pr◦cn+2
// coker(sn) // 0

If we apply R⊗Z− to the chain complex represented by the upper row, we obtain a
finite Hilbert chain complex with trivial torsion. The same is true by the induction
hypothesis for the lower row since its length is smaller then the length of C∗. Hence
the claim follows from Lemma 2.6 if we can show the same for the 2-dimensional
chain complex E∗ given in dimensions 0, 1, 2 by 0 → Cn

cn−→ Cn+1
pr−→ coker(sn) →

0. Let E′
∗ be the 2-dimensional chain complex E∗ given in dimensions 0, 1, 2 by

0 → Cn → Cn ⊕ coker(sn) → coker(sn) → 0 where the differentials are the obvious
inclusion and projection and the Z-bases in dimension 1 is the direct sum of the
basis for Cn and coker(sn). Obviously we have ρ(R⊗Z E

′
∗) = 0. There is a Z-chain

isomorphism f∗ : E∗ → E∗ such that f0 and f2 are the identity. We conclude from
Lemma 2.8 that ρ(R ⊗Z E∗) = − ln

(
det⊥(idR ⊗Zf1)

)
. Since f1 is an isomorphism,

det⊥(idR ⊗Zf1) is the absolute value of the classical determinant of idR ⊗Zf1, which
is the classical determinant of f1 over Z and hence ±1. This finishes the proof of
Lemma 2.9. �

The term
∑

n∈Z
(−1)n · ln

(
det⊥(Hn(f∗))

)
appearing in Lemma 2.7 causes some

problems concerning homotopy invariance as the following example shows:
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Example 2.10 (Subdivision for [0, 1]). Consider I = [0, 1]. We specify a CW -
structure on I by defining the set of 0-cells by {0, 1/n, 2/n, . . . , (n − 1)/n, 1} and
the set of closed 1-cells by {[0, 1/n], [1/n, 2/n], . . . [(n − 1)/n, 1]} for each integer
n ≥ 1. Denote the corresponding CW -complex by I[n]. The cellular Z-chain
complex C∗(I[n]) is 1-dimensional and its first differential c[n]1 : Z

n → Zn+1 is
given by

c[n]1
(
(k1, k2, . . . , kn)

)
= (−k1,−k2 + k1,−k3 + k2, . . . ,−kn + kn−1, kn).

The kernel of c[n]1 is trivial and its image is the kernel of the augmentation

homomorphism ǫ[n] : Zn+1 → Z, (k1, k2, . . . , kn+1) 7→ ∑n+1
i=1 ki. In particular

H1(C∗(I[n])) = 0 and we get a Z-isomorphism

ǫ[n] : H0(C∗(I[n]))
∼=−→ Z

induced by ǫ[n]. The Laplace operator ∆[n]1 : R
n → Rn in degree 1 is given by the

matrix

A[n] =




2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
0 0 −1 2 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 2 −1 0
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 2




By developing along the first row we get for its classical determinant for n ≥ 4

det(A[n]) = 2 · det(A[n− 1])− det(A[n− 2]).

A direct computation shows det(A[1]) = 2, det(A[2]) = 3 and det(A[3]) = 4. This
implies det(A[n]) = n+ 1 for all n ≥ 1. Hence we get from Lemma 2.5

ρ(C∗(I[n])) = −1

2
· (−1)−1 · 1 · ln

(
det⊥(∆[n]1)

)
(15)

=
ln
(
|det(∆[n]1)|

)
)

2

=
ln(n+ 1)

2
.

This shows that ρ(C∗(I[n]) depends on the CW -structure.
We have the chain map f : I[1] → I[n] given by

f1 : Z → Zn, k 7→ (k, k, . . . , k);

f0 : Z
2 → Zn+1 (k1, k2) 7→ (k1, 0, 0, 0 . . . , k2).

It induces an isomorphism in homology since ǫ[n] ◦C0(f∗) = ǫ[1] holds. Hence it is
a Z-chain homotopy equivalence. We conclude from Lemma 2.9

ρ
(
cone(idR ⊗ZC∗(f))

)
= 0.(16)

The isomorphism ǫ[n] : H0(C∗(I[n])
∼=−→ Z induces an explicite isomorphism

α[n] : H0(R⊗Z C∗(I[n]))
∼=−→ R⊗Z H0(C∗(I[n]))

idR ⊗Zǫ[n]−−−−−−→ R⊗Z Z
∼=−→ R.

Recall that H0(R⊗Z C∗(I[n])) inherits a Hilbert space structure. Then α becomes
an isometric isomorphism of Hilbert spaces if we equip R with the Hilbert space
structure for which 1 ∈ R has norm (n + 1)−1/2, since the element (1, 1, . . . , 1) ∈
R ⊗Z C0(I[n]) = Rn+1 belongs to ker(id⊗Zǫ[n])

⊥, has norm
√
n+ 1 and its class
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in H0(R ⊗Z C∗(I[n]) is sent to (n + 1) under α[n]. Since α[n] ◦H0(f∗) = α[1], we
conclude

ln
(
(det

⊥
(H0(f))

)
= − ln(n+ 1)

2
.(17)

Notice that (15), (16), and (17) are compatible with Lemma 2.7.

Of course it cannot be desirable that ρ(C∗(I[n])) in the Example 2.10 depends on
the CW -structure. This dependency is only due to the dependency of the Hilbert
structure on the homology on the CW -structure. Therefore we can get rid of the
dependency by fixing a Hilbert space structure on the homology and view this as
an extra piece of data.

Definition 2.11 (Torsion for finite based free Z-chain complex with a given Hilbert
structure on homology). Let C∗ be a finite based free Z-chain complex. A Hilbert
space structure κ on H∗(R⊗Z C∗) is a choice of Hilbert space structure κn on each
vector space Hn(R⊗Z C∗). We define

ρ(C∗;κ) := ρ(R⊗Z C∗)+∑

n∈Z

(−1)n · ln
(
det⊥

(
id : Hn(R⊗Z C∗) → (Hn(R⊗Z C∗), κ(C∗)n)

))
,

where on the source of id: Hn(R ⊗Z C∗) → (Hn(R ⊗Z C∗), κ(C∗)n) we use the
Hilbert space structure induced by the one on R⊗Z C∗.

If we take κ to be the Hilbert space structure induced by the one on R ⊗Z C∗,
then obviously ρ(C∗;κ) agrees with ρ(R⊗Z C∗). The desired effect is the following
version of homotopy invariance.

Lemma 2.12. Let f∗ : C∗ → D∗ be a Z-chain homotopy equivalence of finite based
free Z-chain complexes. Let κ(C∗) and κ(D∗) be Hilbert space structures on H∗(R⊗Z

C∗) and H∗(R⊗Z D∗). Then we get

ρ(D∗, κ(D∗))− ρ(C∗, κ(C∗))

=
∑

n∈Z

(−1)n · ln
(
det⊥

(
Hn(idR ⊗Zf∗) : (Hn(R⊗Z C∗), κ(C∗)n)

→ (Hn(R⊗Z D∗), κ(D∗)n)
))
.

Proof. We get from Lemma 2.7 and Lemma 2.9

ρ(R⊗Z D∗)− ρ(R⊗Z C∗)

=
∑

n∈Z

(−1)n · ln
(
det⊥

(
Hn(R⊗Z f∗) : Hn(R⊗Z C∗) → Hn(R⊗Z D∗)

))
.

Hence it suffices to show for each n ∈ Z

det⊥(id : Hn(R⊗Z C∗) → (Hn(R⊗Z C∗), κ(C∗)n)
)

· det⊥
(
Hn(idR ⊗Zf∗) : (Hn(R⊗Z C∗), κ(C∗)n) → (Hn(R⊗Z D∗), κ(D∗)n)

)

= det⊥
(
Hn(idR ⊗Zf∗) : Hn(R⊗Z C∗) → Hn(R⊗Z D∗)

)

· det⊥
(
id : Hn(R⊗Z D∗) → (Hn(R⊗Z D∗), κ(D∗)n)

)
.

This follows from Lemma 1.1 (2). �

Example 2.13 (Integral Hilbert structure). Let C∗ be a finite based free Z-chain
complex. Choose for each integer n a Z-basis Bn for Hn(C∗)/ tors(Hn(C∗)). Then
we get an induced Hilbert structure κ[B∗] on Hn(R ⊗Z C∗) as follows. Obviously
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Bn induces an R-basis on R ⊗Z Hn(C∗)/ tors(Hn(C∗)). There is a canonical iso-
morphism

R⊗Z Hn(C∗)/ tors(Hn(C∗))
∼=−→ Hn(R⊗Z C∗)

We equip the target with the Hilbert space structure κ(Bn) for which it becomes
an isometric isomorphism.

Now consider a chain homotopy equivalence f∗ : C∗ → D∗ of finite based free
chain complexes. Suppose that we have chosen Z-basis Bn on H∗(C∗) and B′

n on
Hn(D∗). Notice that Hn(f) induces an isomorphism of Z-modules

Hn(C∗)/ tors(Hn(C∗))
∼=−→ Hn(D∗)/ tors(Hn(D∗))

The determinant of it with respect to the given integral bases is ±1. One easily
checks that this implies

det⊥
(
Hn(idR ⊗Zf∗) : (Hn(R⊗Z C∗), κ(Bn)) → (Hn(R⊗Z D∗), κ(B

′
n)
)
= 1.

Lemma 2.12 implies
ρ(C∗;κ(B∗)) = ρ(D∗;κ(B

′
∗)).

Hence ρ(C∗;κ(B∗)) is independent of the choice of integral basis on C∗, D∗, Hn(C∗),
and Hn(D∗) and is a homotopy invariant of the underlying finite free Z-chain com-
plexes C∗ and D∗. This raises the question what it is?

We leave it to the reader to figure out

ρ(C∗;κ(B∗)) =
∑

n∈Z

(−1)n · ln
(
| tors(Hn(C∗))|

)
.

The proof is straightforward after one has shown using the fact Z is a principal
ideal domain that C∗ is homotopy equivalent to a direct sum of Z-chain complexes
each of which is concentrated in two consecutive dimensions and given there by
m · Z → Z for some integer m ∈ Z.

3. The Hodge de Rham Theorem

Next we want to give a first classical relation between topology and analysis, the
de Rham Theorem and the Hodge-de Rham Theorem.

3.1. The de Rham Theorem. Let M be a (not necessarily compact) manifold
(possibly with boundary).

The de Rham complex (Ω∗(M), d∗) is the real cochain complex whose n-th chain
module is the real vector space of smooth n-forms on M and whose n-differential is
the standard differential for n-forms. The de Rham cohomology of M is defined by

(18) Hn
dR(M) := ker(dn)/ im(dn−1).

There is a R-chain map, natural in M ,

A∗(M) : Ω∗(M) → C∗
sing,C∞(M ;R)

with the cochain complex of M based on smooth singular simplices with coefficients
in R as target. It sends an n-form ω ∈ Ωn(M) to the element An(ω) ∈ Cn

sing,C∞(;R))

which assigns to a smooth singular n-simplex σ : ∆n → M the real number
∫
∆n

σ∗ω.

The Theorem of Stokes implies that this is a chain map. There is a forgetful chain
map

C∗
sing;C∞(M ;R) → C∗

sing(M ;R)

to the standard singular R-cochain complex, which is based on (continuous) singular
simplices with coefficients in R. Denote by H∗

sing,C∞(M ;R) the smooth singular
cohomology of M with coefficients in R which is by definition the cohomology of the
R-cochain complex C∗

sing;C∞(M ;R), and define analogously H∗
sing(M ;R). A proof

of the next theorem, at least in the case ∂M = ∅, can be found for instance in [19,
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Section V.9.], [41], [43, Theorem 1.5 on page 11 and Theorem 2.4 on page 20], [66,
Section 15], [73, Theorem A.31 on page 413].

Theorem 3.1 (De Rham Theorem). The chain map A∗ induces for a smooth
manifold M and n ≥ 0 an isomorphism, natural in M ,

Hn(A∗(M)) : H∗
dR(M)

∼=−→ Hn
sing,C∞(M ;R).

The forgetful chain map induces an isomorphism, natural in M ,

Hn
sing,C∞(M ;R)

∼=−→ Hn
sing(M ;R).

They are compatible with the multiplicative structures given by the ∧-product and
the ∪-product.
3.2. The Hodge-de Rham Theorem. Now suppose that the smooth manifold
M comes with a Riemannian metric and an orientation. Let d be the dimension of
M . Denote by

∗n : Ωn(M) → Ωd−n(M)(19)

the Hodge star-operator which is defined by the corresponding notion for oriented
finite-dimensional Hilbert spaces applied fiberwise. It is uniquely characterized by
the property ∫

M

ω ∧ ∗nη =

∫

M

〈ωx, ηx〉Altn(TxM) dvol,(20)

where ω and η are n-forms, ω has compact support, and 〈ωx, ηx〉Altn(TxM) is the
inner product on Altn(TxM) which is induced by the inner product on TxM given
by the Riemannian metric.

Define the adjoint of the exterior differential

δn = (−1)dn+d+1 · ∗d−n+1 ◦ dd−n ◦ ∗n : Ωn(M) → Ωn−1(M).(21)

Notice that in the definition of δn the Hodge star-operator appears twice and the
definition is local. Hence we can define δn without using an orientation of M , only
the Riemannian metric is needed. This is also true for the following definition.

Definition 3.2 (Laplace operator). Define the n-th Laplace operator on the Rie-
mannian manifold M

∆n = dn−1 ◦ δn + δn+1 ◦ dn : Ωn(M) → Ωn(M).

Let Ωn
c (M) ⊂ Ωn(M) be the space of smooth p-forms with compact support.

There is the following inner product on it

〈ω, η〉L2 :=

∫

M

ω ∧ ∗nη =

∫

M

〈ωx, ηx〉Altn(TxM) dvol .(22)

Recall that a Riemannian manifold M is complete if each path component of
M equipped with the metric induced by the Riemannian metric is a complete
metric space. By the Hopf-Rinow Theorem the following statements are equivalent
provided that M has no boundary: (1) M is complete, (2) the exponential map is
defined for any point x ∈ M everywhere on TxM , (3) any geodesic of M can be
extended to a geodesic defined on R, see [49, page 94 and 95]. Completeness enters
in a crucial way, namely, it will allow us to integrate by parts [48].

Lemma 3.3. Let M be a complete Riemannian manifold. Let ω ∈ Ωn(M) and
η ∈ Ωn+1(M) be smooth forms such that ω, dnω, η and δn+1η are square-integrable.
Then

〈dnω, η〉L2 − 〈ω, δn+1η〉L2 =

∫

∂M

(ω ∧ ∗n+1η)|∂M .
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Proof. Completeness ensures the existence of a sequence fn : M → [0, 1] of smooth
functions with compact support such that M is the union of the compact sets
{x ∈ M | fn(x) = 1} and ||dfn||∞ := sup{||(dfn)x||x | x ∈ M} < 1

n holds. With the
help of the sequence (fn)n≥1 one can reduce the claim to the easy case, where ω
and η have compact support. �

From now on suppose that the boundary of M is empty. Then dn and δn are
formally adjoint in the sense that we have for ω ∈ Ωn(M) and η ∈ Ωn+1(M) such
that ω, dnω, η and δn+1η are square-integrable.

〈dn(ω), η〉L2 = 〈ω, δn+1(η)〉L2 .(23)

Let L2Ωn(M) be the Hilbert space completion of Ωn
c (M). Define the space of

L2-integrable harmonic smooth n-forms

(24) Hn
(2)(M) := {ω ∈ Ωn(M) | ∆n(ω) = 0,

∫

M

ω ∧ ∗ω < ∞}.

The following two results are the analytic versions of Lemma 2.2.

Theorem 3.4 (Hodge-de Rham Decomposition). Let M be a complete Riemannian
manifold without boundary. Then we obtain an orthogonal decomposition, the so
called Hodge-de Rham decomposition

L2Ωn(M) = Hn
(2)(M)⊕ clos

(
dn−1(Ωn−1

c (M))
)
⊕ clos

(
δn+1(Ωn+1

c (M))
)
.

For us the following result will be of importance. Put

(25) Hn(M) := {ω ∈ Ωn(M) | ∆n(ω) = 0}.
This is the same as Hn

(2)(M) introduced in (24) if M is compact.

Theorem 3.5 (Hodge-de Rham Theorem). Let M be a closed smooth manifold.
Then the canoncial map

Hn(M)
∼=−→ Hn

dR(M)

is an isomorphism.

Proof. See for instance [50, Lemma 1.5.3], or [92, (4.2)]. �

The following remarks are the analytic versions of Remark 2.3 and Remark 2.4

Remark 3.6 (Homotopy invariance of dim(Hn(M))). Theorem 3.5 implies that
dim(ker(∆n)) depends only on the homotopy type of M and is in particular in-
dependent of the Riemannian metric of M . Of course the spectrum of the Laplace
operator ∆n does depend on the Riemannian metric, but a part of it, namely, the
multiplicity of the eigenvalue 0, which is just dim(Hn(M)), depends only on the
homotopy type of M .

Remark 3.7 (Heat kernel). To the analytic Laplace operator ∆n : Ω
nM → ΩnM

one can assign its heat operator e−t∆n : ΩnM → ΩnM using functional calculus.
Roughly speaking, each eigenvalue λ of ∆n transforms to the eigenvalue e−tλ. This
operator runs out to be given by a kernel, the so called heat kernel e−t∆n(x, y).
Recall that e−t∆n(x, y) is an element in homR(Alt

n(TxM),Altn(TyM)) for x, y in
M and we get for ω ∈ Ωn(M)

e−t∆n(ω)x =

∫

M

e−t∆n(x, y)(ωy) dvol .

For each x ∈ M we obtain an endomorphism e−t∆n(x, x) of a finite-dimensional real
vector space and we have the real number tr

(
e−t∆n(x, x)

)
. Then we get, see [50,

1.6.52 on page 56]

bn(M) = lim
t→∞

∫

M

tr
(
e−t∆n(x, x)

)
dvol .
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4. Topological torsion for closed Riemannian manifolds

In the section we introduce and investigate the notion of the topological torsion
for a closed Riemannian manifold.

4.1. The definition of topological torsion for closed Riemannian mani-

folds. Let M be a closed Riemannian manifold. The Riemannian metric induces
an inner product on Ωn(M), see (22), and hence a Hilbert space structure on the
finite-dimensional real vector space Hn(M). Equip Hn

sing(M ;R) with the Hilbert

space structure κn
harm(M) for which the composite of the isomorphisms (or their

inverses) of Theorem 3.1 and Theorem 3.5

Hn
sing(M ;R)

∼=−→ Hn
sing;C∞(M ;R)

∼=−→ Hn
dR(M)

∼=−→ Hn(M)

becomes an isometry. There is a preferred isomorphism

homR(H
sing
n (M ;R),R)

∼=−→ Hn
sing(M ;R).

Equip Hsing
n (M ;R) with the Hilbert space structure κharm

n (M), such that for the
induced Hilbert space structure on the dual vector space homR(H

sing
n (M ;R),R)

and the Hilbert space structure κn
harm(M) on Hn

sing(M ;R) introduced above this
isomorphisms becomes an isometry.

Fix a finite CW -complex X and a homotopy equivalence f : X → M , for in-
stance, a smooth triangulation t : K → M , i.e., a finite simplicial complex K to-
gether with a homeomorphism t : K → M such that the restriction of t to a simplex
is a smooth immersion, see [83, 99]. Recall that there is a natural isomorphism be-
tween singular and cellular homology

un(X ;R) : Hn(X ;R) := Hn(R⊗Z C∗(X))
∼=−→ Hsing

n (X ;R).

We equip Hn(X ;R) := Hn(R⊗ZC∗(X)) with the Hilbert space structure κn(f) for
which the preferred isomorphism

Hn(X ;R)
un(X;R)−−−−−→ Hsing

n (X ;R)
Hsing

n
(f ;R)−−−−−−−→ Hsing

n (M ;R)

is isometric if we equip the target with the Hilbert space structure κharm
n (M) intro-

duced above.
The cellular Z-chain complex C∗(X) inherits from the CW -structure a preferred

equivalence of Z-basis. So we can consider

ρ(C∗(X);κharm
∗ (f)) ∈ R

as introduced in Definition 2.11. Consider another finite CW -complex X ′ and
a homotopy equivalence f ′ : X ′ → M . Choose a cellular homotopy equivalence
g : X → X ′ such that f ′ ◦ g is homotopic to f . Then C∗(g) : C∗(X) → C∗(X

′) is
a Z-chain homotopy equivalence of finite based free Z-chain complexes such that
Hn(g;R) : (Hn(X ;R), κharm

n (f)) → (Hn(X
′;R), κharm

n (f ′))) is an isometric isomor-
phism for all n ≥ 0. We conclude from Lemma 2.12

ρ(C∗(X);κharm
∗ (f)) = ρ(C∗(X

′);κharm
∗ (f ′)).

Hence the following definition makes sense.

Definition 4.1 (Topological torsion of a closed Riemannian manifold). Let M be
a closed Riemannian manifold. Define its topological torsion

ρtop(M) := ρ(C∗(X), κharm
∗ (f))

for any choice of finite CW -complex X and homotopy equivalence f : X → M .
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4.2. Topological torsion of rational homology spheres. LetM be a closed ori-
ented Riemannian manifold which is a rational homology sphere, i.e., Hn(M ;Q) ∼=
Hn(S

d;Q) for d = dim(M) and n ≥ 0. We want to show

(26) ρtop(M) =
1− (−1)d

2
· ln(vol(M)) +

∑

n≥0

(−1)n · ln
(∣∣tors(Hn(M ;Z))

∣∣).

Choose a finite CW -complex X and a homotopy equivalence f : X → M . If we
equip H∗(R⊗Z C∗(X)) with the integral Hilbert space structure κZ

∗ as explained in
Example 2.13, we get from Example 2.13.

ρ(R⊗Z C∗(X);κZ

∗) =
∑

n≥0

(−1)n · ln
(∣∣tors(Hn(M ;Z))

∣∣).

Hence we get

ρtop(M) = ρ(X ;κharm
∗ )

= ρ(X ;κharm
∗ )− ρ(X ;κZ

∗) + ρ(X ;κZ

∗) +

= ρ(X ;κharm
∗ )− ρ(X ;κZ

∗) +
∑

n≥0

(−1)n · ln
(∣∣tors(Hn(M ;Z))

∣∣).

Lemma 2.12 implies

ρ(X ;κharm
∗ )− ρ(X ;κZ

∗)

= ln
(
det⊥

(
id : H0(R⊗Z C∗(X)), κZ

0 (X)) → H0(R⊗Z C∗(X)), κharm
0 (X))

)

+(−1)d · ln
(
det⊥

(
id : Hd(R⊗Z C∗(X)), κZ

d(X)) →
Hd(R⊗Z C∗(X)), κharm

d (X))
)
.

Let 1 ∈ Hsing
0 (M ;Z) and [M ] ∈ Hsing

d (M ;Z) be the obvious generators of

the infinite cyclic groups Hsing
0 (M ;Z) and Hsing

d (M);Z). They determine ele-
ments in the 1-dimensional vector spaces H0

sing(M ;R) = homZ(H0(M ;Z),R) and

Hd
sing(M ;R) = homZ(Hd(M ;Z),R). Their image under the composite

Hn
sing(M ;R)

∼=−→ Hn
sing;C∞(M ;R)

∼=−→ Hn
dR(M)

∼=−→ Hn(M)

is the constant function c1 : M → R with value 1 and dvol
vol(M) for dvol the volume

form M for n = 0, d. The norm of c1 and dvol
vol(M) with respect to norm coming

from (22) is

||c1||L2 =

√∫

M

c1 ∧ ∗d(c1) =
√∫

M

dvol =
√
vol(M),

and
∣∣∣∣
∣∣∣∣

dvol

vol(M)

∣∣∣∣
∣∣∣∣
L2

=

√∫

M

dvol

vol(M)
∧ ∗d

(
dvol

vol(M)

)
=

√∫

M

dvol

vol(M)2
=

√
1

vol(M)
.

This implies

ln
(
det⊥

(
id : H0(R⊗Z C∗(X)), κZ

0 (X)) → H0(R⊗Z C∗(X)), κharm
n (X))

)

=
ln(vol(M))

2

and

ln
(
det⊥

(
id : Hd(R⊗Z C∗(X)), κZ

d(X)) → Hd(R⊗Z C∗(X)), κharm
d (X))

)

=
− ln(vol(M))

2
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Now (26) follows.

4.3. Further properties of the topological torsion. Lemma 2.12 implies

Lemma 4.2. Let f : M → N be a homotopy equivalence of closed Riemannian
manifolds. Then

ρtop(N)− ρtop(M) =
∑

n≥0

(−1)n · det⊥
(
Hsing

n (f ;R) : Hsing
n (M,κharm

n (M))

→ Hn(N ;R), κharm
n (N))

)
.

Remark 4.3 (Twisting with finite-dimensional orthogonal representations). In gen-
eral the topological torsion does depend on the Riemannian metric, see Lemma 4.2.
Nevertheless the name topological torsion is justified since this dependency is well
understood and depends only on Hn(M ;R).

Notice that at least H0(M ;R) cannot be trivial for a smooth manifold. However,
there are prominent cases, where one can specify a orthogonal finite-dimensional
representation V of π1(M) for a closed Riemannian manifold M such that the V -

twisted singular homology H
π1(M)
n (M ;V ) vanishes for all n ≥ 0. One can also

define a V -twisted topological torsion ρ(M ;V ). If H
π1(M)
n (M ;V ) vanishes for all

n ≥ 0, then ρ(M ;V ) does not depend on the Riemannian metric at all, and only
on the simple homotopy type of M .

Remark 4.4 (Poincaré duality). A direct computation using Poincaré duality and
the Universal Coefficient Theorem show that in the situation of Subsection 4.2 the
topological torsion vanishes if the dimension of M is even. This is true in general.
Namely, ifM is a closed Riemannian manifold of even dimension, then ρtop(M) = 0.

Remark 4.5 (Product formula). Let M be closed Riemannian manifolds. Then

ρtop(M ×N) = χ(M) · ρtop(N) + χ(N) · ρtop(M).

One can more generally investigate the behavior of the topological torsion under
fiber bundles, see [69].

Remark 4.6 (Compact manifolds with boundary and glueing formula). The topo-
logical torsion is also defined for compact Riemannian manifolds with boundary.
One has to put the right boundary conditions on the space of harmonic forms so
that Theorem 3.5 remains true.

Consider compact Riemannian manifolds M and N together with a diffeomor-

phism f : ∂M
∼=−→ ∂N . Equip M , N , ∂N , and M ∪f N with Riemannian metrics.

Then one obtains the glueing formula

ρtop(M ∪f N) = ρtop(M) + ρtop(N)− ρtop(∂M) + ρ(LHS∗),

where LHS∗ is the Hilbert chain complex given by the long exact homology se-
quence

. . . → Hsing
n (∂M ;R) → Hsing

n (M ;R)⊕Hsing
n (N ;R)

→ Hsing
n (M ∪f N ;R) → Hsing

n−1(∂M ;R) → . . .

for which each homology group is equipped with the harmonic Hilbert space struc-
ture κharm. This follows from Lemma 2.6 and Lemma 2.12.
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5. Analytic torsion for closed Riemannian manifolds

Recall that we showed that the Betti number of a finite CW -complex X is the
dimension of the kernel of the combinatorial Laplace operator ∆n : R⊗Z Cn(X) →
R ⊗Z Cn(X). This triggered the question whether the Betti number bn(M) of a
closed Riemannian manifold is the dimension of the kernel of the analytic Laplace
operator ∆n : Ω

n(M) → Ω(M). We saw that the answer is positive, see Theo-
rem 3.5.

Next we want to apply the same line of thought to torsion. We know how
to express the topological torsion in terms of the combinatorial Laplace operator
by Lemma 2.5, namely for a finite CW -complex X and a homotopy equivalence
X → M we get for the combinatorial Laplace operator ∆n : Cn(X) → Cn(X) the
formula

ρtop(M) := −1

2
·
∑

n≥0

(−1)n · n · ln
(
det⊥(∆)n

)

+
∑

n≥0

(−1)n · ln
(
det⊥

(
id : Hn(R⊗C C∗) → (Hn(R⊗C C∗), κ

harm
n )

))
.

One can hope that the rather complicated correction term given by the sum of
terms involving κharm

∗ is not necessary in the analytic setting, since the analytic
Laplace operator ∆n : Ω

n(M) → Ωn(M) is closely related to harmonic forms. This
suggests to try to make sense of the following expression involving the analytic
Laplace operator

ρan(M) := −1

2
·
∑

n≥0

(−1)n · n · ln
(
det⊥(∆n)

)
.

The problem is that the analytic Laplace operator ∆n acts on infinite-dimensional
vector spaces and therefore the expression det⊥(∆n) is a priori not defined. To
give it nevertheless a meaning, one has to take a closer look on the spectrum of the
analytic Laplace operator ∆n for a closed Riemannian manifold.

5.1. The spectrum of the Laplace operator on closed Riemannian mani-

folds. Let M be a closed Riemannian manifold. Next we record some basic facts
about the spectrum of the analytic Laplace operator ∆n : Ω

n(M) → Ωn(M). De-
note by Eλ(∆n) = {ω ∈ Ωn(M) | ∆n(ω) = λ · ω} the eigenspace of ∆n for λ ∈ C.
We call λ an eigenvalue of ∆n if Eλ(∆n) 6= 0. It turns out that each eigenvalue
λ of ∆n is a real number satisfying λ ≥ 0. Notice that Eλ(∆n) and Eµ(∆n) are
orthogonal in L2Ωn(M) for λ 6= µ since we get from (23) for ν0, ν1 ∈ Ωn(M)

(27) 〈∆n(ν0), ν1〉L2 = 〈ν0,∆n(ν1)〉L2 ,

and hence we get for ω ∈ Eλ(∆n) and η ∈ Eµ(∆n)

λ · 〈ω, η〉L2 = 〈λ ·ω, η〉L2 = 〈∆n(ω), η〉L2 = 〈ω,∆n(η)〉L2 = 〈ω, µ ·η〉L2 = µ · 〈ω, η〉L2 .

Moreover, we have the orthogonal decomposition
⊕

λ≥0

Eλ(∆n) = L2Ωn(M).

We define the n-th-Zeta-function for s ∈ C

ζn(s) =
∑

λ>0

dimR(Eλ(∆n)) · λ−s,(28)

where λ runs through all eigenvalues of ∆n with λ > 0. Of course it is a priori
not clear whether this sums converges. However, the following result holds, see for
instance [50, Section 1.12].
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Lemma 5.1. The Zeta-function ζn converges absolutely for s ∈ S = {s ∈ C |
Real(s) > dim(M)/2} and defines a holomorphic function on S. It has a mero-
morphic extension to C which is analytic in zero and whose derivative at zero
d
ds

∣∣
s=0

ζn(s) lies in R.

5.2. The definition of analytic torsion for closed Riemannian manifolds.

In view of Lemma 5.1 the following definition make sense. It is due to Ray-
Singer [89] and motivated by (10) and Lemma 2.5.

Definition 5.2 (Analytic torsion). LetM be a closed Riemannian manifold. Define
its analytic torsion

ρan(M) :=
1

2
·
∑

n≥0

(−1)n · n · d

ds

∣∣∣∣
s=0

ζn(s).

Remark 5.3 (Analytic torsion in terms of the heat kernel). One can rewrite the
analytic torsion also in terms of the heat kernel by

ρan(M ;V ) :=
1

2
·
∑

n≥0

(−1)n · n · d

ds

1

Γ(s)
·
∫ ∞

0

ts−1 · θn(M)⊥ dt

∣∣∣∣
s=0

,

where

θn(M)(t) :=

∫

M

tr
(
e−t∆n(x, x)

)
dvol;

θn(M)⊥ = θn(M)(t)− dimR(Hn(M ;R));

Γ(s) =

∫ ∞

0

ts−1e−tdt for Real(s) > 0,

the Gamma-function Γ(s) is defined for s ∈ C by meromorphic extension with poles
of order 1 in {n ∈ Z | n ≤ 0} and satisfies Γ(s+ 1) = s · Γ(s) and Γ(n+ 1) = n! for
n ∈ Z, n ≥ 0, see for instance [65, Section 3.5.1].

5.3. Analytic torsion of S1 and the Riemann Zeta-function. Fix a positive
real number µ. Equip R with the standard metric and the unit circle S1 with
the Riemannian metric for which R → S1, t 7→ exp(2πiµ−1t) is isometric. Then
S1 has volume µ. The Laplace operator ∆1 : Ω1(R) → Ω1(R) sends f(t)dt to
−f ′′(t)dt. By checking the µ-periodic solutions of f ′′(t) = −λf(t), one shows that
∆1 : Ω1(S1) → Ω1(S1) has eigenspaces

Eλ(∆1) =





spanR{fndt, gndt} for λ = (2πµ−1n)2, n ≥ 1;

spanR{dt} for λ = 0;

{0} otherwise,

where fn(exp(2πiµ
−1t)) = cos(2πµ−1nt) and gn(exp(2πiµ

−1t)) = sin(2πµ−1nt).
Denote by

ζRiem(s) =
∑

n≥1

n−s(29)

the Riemannian Zeta-function. We have

ζ1(s) =
∑

n≥1

2 · (2πµ−1n)2)−s.
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As ζRiem(0) = − 1
2 and ζ′Riem(0) = − ln(2π)

2 hold (see Titchmarsh [96]), we obtain

ρan(S
1) =

1

2
·
∑

n≥0

(−1)n · n · d

ds

∣∣∣∣
s=0

ζn(s)

= −1

2
· d

ds

∣∣∣∣
s=0

ζ1(s)

= − d

ds

∣∣∣∣
s=0


∑

n≥1

((2πµ−1n)2)−s




= − d

ds

∣∣∣∣
s=0

(
exp(−2 · ln(2πµ−1) · s) · ζRiem(2s)

)

= −
(

d

ds

∣∣∣∣
s=0

exp(−2 · ln(2πµ−1) · s)
)
· ζRiem(0)

− exp(−2 · ln(2πµ−1 · 0) · d

ds

∣∣∣∣
s=0

ζRiem(2s)

= 2 · ln(2πµ−1) · ζRiem(0)− 2 · d

ds

∣∣∣∣
s=0

ζRiem(s)

= 2 · ln(2πµ−1) · −1

2
− 2 · − ln(2π)

2
= − ln(2π) + ln(µ) + ln(2π)

= ln(µ).

Notice that this agrees with ρtop(S1) by (26).

5.4. The equality of analytic and topological torsion for closed Riemann-

ian manifolds: The Cheeger-Müller Theorem. The following celebrated re-
sult was proved independently by Cheeger [37] and Müller [79].

Theorem 5.4 (Equality of analytic and Reidemeister torsion). Let M be a closed
Riemannian manifold. Then

ρan(M) = ρtop(M).

It was already known before the final proof of Theorem 5.4 that the differ-
ence ρan(M)− ρtop(M) is independent of the Riemannian metric and ρan(M) and
ρtop(M) satisfies analogous product formulas so that the desired equality holds for
a product M × N if it holds for both M and N . Müller’s strategy was to show
that the difference ρan(M)− ρtop(M) depends only on the bordism class of M and
then verify the equality on generators of the oriented bordism ring. He also uses an
interesting result of Dodziuk and Patodi [42, Theorem 3.7] that the eigenvalues of
the combinatorial Laplace operator ∆n(K) of a smooth triangulation K of M con-
verge to the eigenvalues of the analytic Laplace operator ∆n(M) if the mesh, which
is the supremum over the distances with respect to the metric coming from the
Riemannian metric of any two vertices spanning a 1-simplex, of the triangulation
K goes to zero.

5.5. The relation between analytic and topological torsion for compact

Riemannian manifolds. Let M be a compact Riemannian manifold. Suppose
that its boundary ∂M is written as disjoint union ∂0M

∐
∂1M , where ∂iM itself

is a disjoint union of path components of ∂M . In particular ∂iM itself is a closed
manifold. We will assume that the Riemannian metric on M is a product near
the boundary and we will equip ∂M with the induced Riemannian metric. By
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introducing appropriate boundary condition for the Laplace operator one can define
ρan(M,∂0M) and ρtop(M,∂0M). The next result is proved in [63, Corollary 5.1].

Theorem 5.5 (The relation between analytic and topological torsion for compact
Riemannian manifolds). We get under the conditions above

ρan(M,∂0M) = ρtop(M,∂0M) +
ln(2)

2
· χ(∂M).

Example 5.6 (Unit interval). Equip I = [0, 1] with the standard metric scaled by
µ > 0. The volume form is then µdt. The analytic Laplace operator ∆1 : Ω

1I →
Ω1I maps f(t)dt to −µ−2f ′′(t)dt. Denote by Eλ(∆1(I)) and Eλ(∆1(I, ∂I)) the
eigenspace of ∆1 for λ ≥ 0, where for ∆1(I) and ∆1(I, ∂I) respectively we require
for a 1-form f(t)dt the boundary condition f(0) = f(1) = 0 and f ′(0) = f ′(1) = 0
respectively. If λ = (πµ−1n)2 for n ∈ Z, n ≥ 1, then

Eλ(∆1(I)) = spanR{sin(πnt)dt};
Eλ(∆1(I, ∂I)) = spanR{cos(πnt)dt)},

and Eλ(∆1(I)) = Eλ(∆1(I, ∂I) = 0 if λ is not of this form. As ζRiem(0) = − 1
2 and

ζ′Riem(0) = − ln(2π)
2 hold (see Titchmarsh[96]), we get

ζ1(I) = ζ1(I, ∂I) =

(
π

µ

)−2s

· ζRie(2s).

This implies

ρan(I) = ρan(I, ∂I) = ln(2µ).

A calculation similar to the one of Subsection 4.2 shows

ρtop(I) = ρtop(I, ∂I) = ln(µ).

This is compatible with Theorem 5.5 since χ(∂I) = 2.

Remark 5.7 (Twisting with finite-dimensional orthogonal representations). For an
orthogonal finite-dimensional representation V of π1(M) for a compact Riemannian
manifold M one can also define the V -twisted analytic torsion ρan(M,∂0M ;V ) and
V -twisted topological torsion ρtop(M,∂0M ;V ). Theorem 5.5 generalizes to

ρan(M,∂0M ;V ) = ρtop(M,∂0;V ) +
ln(2)

2
· dimR(V ) · χ(∂M).

Remark 5.8 (Elliptic operators and indices). The Euler characteristic term in The-
orem 5.5 can be interpreted as the index of the de Rham complex. This leads to
the following question.

Let P ∗ be an elliptic complex of partial differential operators. Denote by ∆(P ∗)∗
the associated Laplace operator. It is an elliptic positive self-adjoint partial differ-
ential operator in each dimension. Hence its analytic torsion ρan(P

∗) can be defined
as done before for the ordinary Laplace operator. Suppose that the complex P ∗

restricts on the boundary of M to an elliptic complex ∂P ∗ in an appropriate sense.
Can one find a more or less topological invariant ρtop(P

∗) such that the following
equation holds

ρan(P
∗) = ρtop(P

∗) +
ln(2)

2
· index(∂P ∗).

If we take P ∗ to be the de Rham complex and put ρtop(P
∗) to be the topological

torsion ρtop(M), then the equation above just reduces to Theorem 5.5.
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6. Equivariant torsion for actions of finite groups

Throughout this section G is a finite group. Let M be a compact Riemann-
ian manifold. Suppose that its boundary ∂M is written as the disjoint union
∂0M

∐
∂1M , where ∂iM itself is a disjoint union of path components of ∂M . Let

G be a finite group acting by isometries on M .
Let RepR(G) be the real representation ring of G. Denote by K1(RG)Z/2 the

Z/2-fixed point set of the Z/2-action onK1(RG) which comes from the involution of
rings RG → RG,

∑
g∈G rg ·g 7→∑

g∈G rg ·g−1. Then one can define the equivariant
analytic torsion

ρGan(M,∂1M) ∈ R⊗Z RepR(G),

the equivariant topological torsion

ρGtop(M,∂1M) ∈ K1(RG)Z/2,

the Poincaré torsion

ρGpd(M,∂1M) ∈ K1(RG)Z/2,

and the equivariant Euler characteristic

χG(∂M) ∈ R⊗Z RepR(G).

The analytic torsion ρGan(M,∂0M) is defined analogously to the analytic torsion in
the non-equivariant case, one just takes into account that the eigenspaces Eλ(∆n)
determine elements in RepR(G) and counts it as an element in RepR(G) instead of
only counting its dimension. The topological torsion is defined in terms of the cellu-
lar chain complex of an equivariant triangulation. The equivariant Euler character-
istic χG(∂0M) is given by

∑
n≥0(−1)n · [Hn(∂M ;R)] taking again into account that

Hn(∂M ;R) is a finite-dimensional G-representation. A new phenomenon is rep-
resented by the Poincaré torsion ρGpd(M,∂0M) which measures the deviation from
equivariant Poincaré duality being simple. It is defined in terms of the ZG-chain
map − ∩ [M ] : Cdim(M)−∗(M,∂1M) → C∗(M,∂0M) which is a Z-chain homotopy
equivalence but not necessarily a ZG-chain homotopy equivalence. If M has no
boundary and has odd dimension, or if G acts freely, then ρGpd(M,∂0M) vanishes.

Denote by R̂epR(G) the subgroup of RepR(G) generated by the irreducible rep-
resentations of real or complex type. The following result is proved in [63, Theo-
rem 4.5].

Theorem 6.1 (Equivariant torsion). Suppose that the Riemannian metric on M
is a product near the boundary. Then there is an isomorphism

Γ1 ⊕ Γ2 : K1(RG)Z/2
∼=−→ R⊗Z RepR(G)⊕ (Z/2⊗Z R̂epR(G),

and we have

ρGan(M,∂1M) = Γ1

(
ρGtop(M,∂1M)

)
− 1

2
· Γ1

(
ρGpd(M,∂1M)

)
+

ln(2)

2
· χG(∂M),

and

Γ2

(
ρGtop(M,∂1M)

)
= Γ2

(
ρGpd(M,∂1M)

)
= 0.

Remark 6.2 (The strategy of proof). Let M be a compact G-manifold with G
invariant Riemannian metric which is a product near the boundary. Then its double
M ∪∂M M inherits a G× Z/2-action and a G× Z/2-invariant metric. It turns out

that the equivariant torsion ρ
G×Z/2
an (M ∪∂M M) carries the same information as

ρGan(M) and ρGan(M,∂M) together. This is also true for ρ
G×Z/2
top (M ∪∂M M) but

the concrete formulas are different for the topological and analytical setting, the

difference term is essentially ln(2)
2 · χG(∂M). Thus one can reduce the case of a

compact G-manifold to the a case of a closed G× Z/2-manifold.
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Lott-Rothenberg [61] handled the odd-dimensional case without boundary using
ideas of Cheeger [37] and Müller [79]. They noticed that in the even-dimensional
case the analytic and topological torsion do not agree without computing the cor-
rection term, which turns out to be the Poincaré torsion.

Remark 6.3 (Unit spheres in representations). The Poincare duality torsion can
be used to reprove the celebrated result of de Rham [40] that two orthogonal G-
representations V and W are isometrically RG-isomorphic if and only if their unit
spheres are G-diffeomorphic, see [63, Section 5]. Similar proofs can be found in
Rothenberg [93] and Lott-Rothenberg [61]. The result is an extension of the classi-
fication of lens spaces which is carried out for example in Cohen [38] and Milnor [77].

The result of de Rham does not hold in the topological category. Namely, there
are non-linearly isomorphic G-representations V and W whose unit spheres are
G-homeomorphic, see Cappell-Shaneson [32]), and also [33, 34, 51].

However, if G has odd order, G-homeomorphic implies G-diffeomorphic for unit
spheres in G-representations as shown by Hsiang-Pardon [52] and Madsen-Rothen-
berg [72].

Example 6.4 (S1 with complex conjugation). Fix a positive real number µ. Equip
R with the standard metric and the unit circle S1 with the Riemannian metric
for which R → S1, t 7→ exp(2πiµ−1t) is isometric. Then S1 has volume µ. Let
Z/2 act on S1 by complex conjugation. We get by a direct computation, see [63,
Example 1.15]

ρZ/2an (S1) = ln(µ) · ([R] + [R−]) ∈ R⊗Z RepR(Z/2),

where R is the trivial 1-dimensional real Z/2-representation and R− is the 1-
dimensional Z/2-representation for which the generator of Z/2 acts by − idR. We
obtain in K1(R[Z/2])

Z/2 by a direct computation, see [63, Example 3.25],

ρ
Z/2
top (S

1) = [µ/2 · id : R → R] + [2µ · id : R− → R−];

ρ
Z/2
pd (S1) = [4 · id : R → R] + [1/4 · id : R− → R−].

This is compatible with Theorem 6.1.

Example 6.5 (S1 with antipodal action). Fix a positive real number µ. Equip R

with the standard Riemannian metric and the unit circle S1 with the Riemannian
metric for which R → S1, t 7→ exp(2πiµ−1t) is isometric. Then S1 has volume
µ. Let Z/2 act on S1 by the antipodal map which sends z to −z. This is a free
orientation preserving action. Then

ρZ/2an (S1) = ln(µ) · [R[Z/2]];
ρ
Z/2
top (S

1) = [µ · id : R[Z/2] → R[Z/2]];

ρ
Z/2
pd (S1) = 0.

As an illustration we state the following corollary of Theorem 6.1 and basic con-
siderations about Poincaré duality, which explains the role of the Poincaré torsion
that does not appear in the non-equivariant setting, see [63, Corollary 5.6].

Corollary 6.6. Let M be a Riemannian G-manifold with invariant Riemannian
metric. Suppose that M is closed and orientable and G acts orientation preserving.

(1) If dim(M) is odd , we have

ρGan(M) = Γ1(ρtop(M));

ρGpd(M) = 0;



SURVEY ON ANALYTIC AND TOPOLOGICAL TORSION 25

(2) If dim(M) is even, we get

ρan(M) = 0;

ρGtop(M) =
ρGpd(M)

2
.

Remark 6.7 (Twisting with equivariant coefficient systems). There are also versions
of the notions and results of this section for appropriate equivariant coefficient
system as explained in [63].

7. Outlook

7.1. Analytic torsion. There are many important papers about analytic torsion
and variations of it in the literature. We have to leave it to the reader to figure
out the relevant authors and papers since an appropriate discussion would go far
beyond the scope of this article. At least we give a list of references which is far
from being complete. They concern for instance determinant lines, holomorphic
versions, higher versions, equivariant versions, singular spaces, algebraic varieties,
and hyperbolic manifolds, see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 39, 44, 45, 46, 47, 57, 58, 59, 60, 74, 78,
80, 81, 82, 90, 98, 103, 104, 105].

7.2. Topological torsion. Also for topological torsion there are many important
papers in the literature. In particular Whitehead torsion and Reidemeister torsion
have been intensively studied. Again we have to leave it to the reader to figure
out the relevant authors and papers since an appropriate discussion would go far
beyond the scope of this article. At least we give a list of references which is far from
being complete, they concern for instance s-cobordisms, knot theory, classification
of manifolds, equivariant versions, and higher versions, see [2, 3, 35, 36, 38, 53, 54,
55, 56, 62, 64, 70, 71, 75, 76, 77, 84, 85, 86, 87, 88, 91, 94, 95, 97, 100, 101, 102].

7.3. L2-versions. The next level is to pass to non-compact spaces, essentially to
a G-covering M → M for a closed Riemannian manifold M and the induced G-
invariant Riemannian metric on M or to a G-covering X → X for a finite CW -
complex X , where G is a (not necessarily finite) discrete group. This requires
to extend our basic invariants of finite-dimensional Hilbert spaces of Sections 1
and 2 to an appropriate setting of infinite dimensional Hilbert spaces taking the
cocompact free proper group action on M or X into account. Here group von
Neumann algebras play a key role. The first instance where this has been carried
out is the paper by Atiyah [1]. Generalizations of the ideas about the spectral
density function presented in Subsection 1.3 and 1.4. come into play and lead
for instance to the notion of the Fuglede-Kadison determinant, which generalizes
the classical determinant to this setting. The material presented in Subsection 1.3
and 1.4 is helpful if one wants to understand the L2-versions.

All this leads to the notions of L2-Betti numbers and of L2-torsion, which have
been intensively studied in the literature and have many applications to problems
arising in topology, geometry, group theory and von Neumann algebras. A dis-
cussion of these L2-invariants would go far beyond the scope of this article. For
more information about the circle of these ideas and invariants we refer for instance
to [65, 67, 68].
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