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THE L2-ALEXANDER TORSION OF 3-MANIFOLDS

JÉRÔME DUBOIS, STEFAN FRIEDL, AND WOLFGANG LÜCK

Abstract. We introduce L2-Alexander torsions for 3-manifolds, which can be
viewed as a generalization of the L2-Alexander invariant of Li–Zhang. We state
the L2-Alexander torsions for graph manifolds and we partially compute them
for fibered manifolds. We furthermore show that given any irreducible 3-manifold
there exists a coefficient system such that the corresponding L2-torsion detects the
Thurston norm.

1. Introduction

Given a prime 3–dimensional manifold N and φ ∈ H1(N ;R), we use L2-torsions to
define an invariant

τ (2)(N, φ) : R+ → [0,∞)

which is called the full L2-Alexander torsion of (N, φ). We will see that τ (2)(N, φ)(t =
1) determines the volume of N . Here the volume of N is the sum of the hyperbolic
pieces in the JSJ–decomposition of N . In the paper, we are mostly interested in the
limits of τ (2)(N, φ) when t goes to 0 and to ∞. Especially, we will prove that for
graph manifolds and fibered spaces these limits determine the Thurston norm of the
manifold. As a corollary, we reprove a result obtained by Ben Aribi [BA13a, BA13b]
which asserts that the L2-Alexander torsion detects the unknot.

1.1. The L2-Alexander torsion. An admissible triple (N, φ, γ) consists of a prime
orientable compact 3–dimensional manifold N with empty or toroidal boundary, a
class φ ∈ H1(N ;R) = Hom(π1(N),R) and a homomorphism γ : π1(N) → G such
that φ : π1(N) → R factors through γ. We say that an admissible triple (N, φ, γ) is
rational if φ ∈ H1(N ;Q) is a rational cohomology class.

Given an admissible triple (N, φ, γ) we use the L2–torsion, see e.g. [Lü02] for details,
to introduce in Section 4.2 the L2-Alexander torsion τ (2)(N, φ, γ) which is a function

τ (2)(N, φ, γ) : R+ → [0,∞).

We say that two functions f, g : R+ → [0,∞) are equivalent, written as f
.
= g, if

there exists an r ∈ R, such that f(t) = trg(t) for all t ∈ R+. The equivalence class of
τ (2)(N, φ, γ) is a well–defined invariant of (N, φ, γ). If γ is the identity homomorphism,
then we will drop it from the notation, i.e., we just write τ (2)(N, φ).
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As we explained in more detail in [DFL15], the L2-Alexander torsion τ (2)(N, φ, γ)
can be viewed as a ‘twisted’ invariant of the pair (N, φ), and in particular, as we
explain in can be viewed as a generalization of the classical Alexander polynomial of
a knot cousin to the twisted Alexander polynomial [Li01, FV10] and the higher-order
Alexander polynomials [Co04, Ha05] of 3-manifolds.

Given any φ ∈ H1(N ;R), if we take t = 1 and γ = id we obtain the usual L2-torsion
of a 3-manifold. The following theorem is now a slight reformulation of a theorem by
the third author and Schick [LS99, Theorem 0.7].

Theorem 1.1. If N is a prime 3–manifold with empty or toroidal boundary, then for
any φ ∈ H1(N ;R) we have

(1) τ (2)(N, φ, id)(t = 1) = exp
(

1

6π
Vol(N)

)
,

where Vol(N) denotes the sum of the volumes of the hyperbolic pieces in the JSJ
decomposition.

We make two remarks on the differences between the above formulation and the
formulation of [LS99, Theorem 0.7].

(1) If N is a prime 3–manifold N with empty or toroidal boundary, then either
N ∼= S1×D2 or the boundary ofN is incompressible. (See e.g., [Ne99, p. 221]).

(2) In this paper we also use a slightly different convention for L2-torsions com-
pared to [LS99]. Tracing through the differences one notices, that the L2-
torsions differ by a sign, a factor of 1

2
and by taking the logarithm.

1.2. The degree of the L2-Alexander torsion. We are interested in the behavior
of the L2-Alexander torsion for the limits t→ 0 and t→ ∞. We say that a function
f is monomial in the limit if there exist d,D ∈ R and non-zero real numbers c, C
such that

lim
t→0

f(t)

td
= c and lim

t→∞

f(t)

tD
= C.

We refer to deg f(t) := D − d as the degree of f . Furthermore we say f is monic if
c = C = 1.

Note that the notion of being monomial in the limit, being monic and the degree
only depend on the equivalence class of the function.

1.3. Calculations of the L2-Alexander torsion. In order to state our results on
L2-Alexander torsions for certain classes of 3-manifolds we need one more definition.
Let N be a 3–manifold and let φ ∈ H1(N ;Z) = Hom(π1(N),Z). The Thurston norm
of φ is defined as

xN (φ) = min{χ−(Σ) |Σ ⊂ N properly embedded surface dual to φ}.
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Here, given a surface Σ with connected components Σ1 ∪ · · · ∪Σk, we define χ−(Σ) =∑k
i=1max{−χ(Σi), 0}. Thurston [Th86] showed that xN defines a (possibly degener-

ate) norm on H1(N ;Z). It can be extended to a norm on H1(N ;R) which we also
denote by xN .

In Section 8.1 we will prove the following theorem.

Theorem 1.2. Let N 6= S1 ×D2, S1 × S2 be a graph manifold. For any non-trivial
φ ∈ H1(N ;R) and any representative τ of τ (2)(N, φ) we have

τ(t)
.
=

{
1, if t ≤ 1
txN (φ), if t ≥ 1.

In particular τ (2)(N, φ) is monomial in the limit and it is monic of degree xN(φ).

Let N be a 3–manifold and let φ ∈ H1(N ;Q) = Hom(π1(N),Q) be non–trivial.
We say that φ is fibered if there exists a fibration p : N → S1 and an r ∈ Q such that
the induced map p∗ : π1(N) → π1(S

1) = Z coincides with r · φ. In Section 8.3 we will
recall the definition of the entropy h(φ) ≥ 1 of a fibered class. With this definition we
can now formulate the following theorem which we will prove, in a somewhat more
generalized form, in Section 8.3.

Theorem 1.3. Let (N, φ, γ) be a rational admissible triple with N 6= S1×D2, S1×S2

such that φ ∈ H1(N ;Q) is fibered. We denote by h(φ) the entropy of the fibered class
φ. There exists a representative τ of τ (2)(N, φ, γ) such that

τ(t) =

{
1, if t < 1

h(φ) ,

txN (φ), if t > h(φ).

In particular τ (2)(N, φ, γ) is monomial in the limit and it is monic of degree xN(φ).

If N is hyperbolic and φ is a primitive fibered class, then Kojima–McShane [KM14,
Theorem 1] showed, with slightly different notation, that

ln(h(φ)) · xN (φ) ≥ 8 ·
1

6π
Vol(N).

By Theorems 1.1 and 1.3 this translates into

lim
tցh(φ)

τ (2)(N, φ, id)(t) ≥
(
τ (2)(N, φ, id)(1)

)8
.

We summarize everything we know about τ (2)(N, φ, id) of a fibered class in Fig-
ure 1. At the moment we have no information for the values of τ (2)(N, φ, id) for
t ∈ [1/h(φ), 1) and t ∈ (1, h(φ)]. We suspect that the function is continuous and
convex.
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Figure 1. Partial graph of τ (2)(N, φ) for N hyperbolic and φ fibered.

1.4. The symmetry of L2-Alexander torsions. For completeness we recall the
main result of [DFL14]. In that paper we showed that if (N, φ, γ) is an admissible
triple, then for any representative τ of τ (2)(N, φ, γ) there exists a k ∈ R such that

τ(t−1) = tk · τ(t).

Put differently, the main theorem of [DFL14] says that the L2-Alexander torsion is
symmetric. This result can in particular be viewed as an analogue of the fact that
the ordinary and the twisted Alexander polynomials of 3-manifolds are symmetric.
(See [HSW10, FKK12]).

1.5. The L2-Alexander torsion of knot complements. An important special
case is given by knot exteriors. Let K be an oriented knot in S3. We denote by
νK an open tubular neighborhood of K and we refer to X(K) := S3 \ νK as the
exterior of K. Furthermore we denote by φK ∈ H1(X(K);Z) = Hom(π1(X(K)),Z)
the epimorphism which sends the oriented meridian to 1. If γ : π1(X(K)) → G is a
homomorphism such that (X(K), φK , γ) forms an admissible triple, then we write

τ (2)(K, γ) := τ (2)(X(K), φK , γ) : R
+ → [0,∞).

It follows from the symmetry result of Section 1.4 that τ (2)(K, γ) does not depend on
the orientation of K. Of particular interest is the invariant τ (2)(K) := τ (2)(K, id). We
will see in Section 7.2 that the resulting L2-Alexander torsion is basically the same
as the L2-Alexander invariant introduced by Li and Zhang [LZ06a, LZ06b].

The calculations from the previous section also specialize to the case of knots. For
example, Theorem 1.2 implies that for any (iterated) torus knot K we have

τ (2)(K)
.
= (t 7→ max{1, t2 genus(K)−1}),
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where genus(K) denotes the minimal genus of a Seifert surface ofK. This equality was
first proved by Ben Aribi [BA13a, BA13b] and generalizes an earlier result of the first
author and Wegner [DW10, DW15]. The combination of Theorem 1.2 together with
the aforementioned work of the third author and Schick [LS99] gives us the following
theorem which states that the L2-Alexander torsion detects the unknot. (We refer to
Section 8.2 for details.) This result was first proved by Ben Aribi [BA13a, BA13b].

Theorem 1.4. A knot K ⊂ S3 is trivial if and only if τ (2)(K)
.
= (t 7→ max{1, t}−1).

For knots it is enlightening to consider the coefficient system given by the abelian-
ization γ = φK ∈ H1(X(K);Z) = Hom(π1(X(K),Z). In order to state the result we
factor the Alexander polynomial ∆K(z) ∈ Z[z±1] as

∆K(z) = C · zm ·
k∏

i=1

(z − ai),

with some C ∈ Z \ {0}, m ∈ Z and a1, . . . , ak ∈ C \ {0}. In Section 7.3 we prove that

τ (2)(K, γ)(t)
.
= C ·

k∏

i=1

max{|ai|, t} ·max{t, 1}−1.

In particular τ (2)(K, γ) is a piecewise monomial function that is determined by the
ordinary Alexander polynomial.

1.6. The L2-Alexander torsion and the Thurston norm. In this final section
we want to relate the L2-Alexander torsion to the Thurston norm for more general
types of 3-manifolds. In this context we can not show that L2-Alexander torsions are
monomial in the limit. In Section 6 we will therefore generalize the notion of degree
from functions that are monomial in the limit to more general types of functions.

With that definition of a degree we can show that L2-Alexander torsions corre-
sponding to certain epimorphisms γ give lower bounds on the Thurston norm. More
precisely, we will prove the following theorem in Section 9.

Theorem 1.5. Let (N, φ, γ : π1(N) → G) be an admissible triple with N 6= S1 ×D2

and N 6= S1 × S2. If G is virtually abelian, i.e., if G admits a finite index subgroup
that is abelian, then

deg τ (2)(N, φ, γ) ≤ xN (φ).

Using the virtual fibering theorem of Agol [Ag08, Ag13], Liu [Liu13], Przytycki–
Wise [PW12, PW14] and Wise [Wi12a, Wi12b] we will prove that there exists a
homomorphism γ onto a virtually abelian group such that the L2-Alexander torsion
in fact determines the Thurston norm. More precisely, we have the following theorem
which is proved in Section 10.

Theorem 1.6. Let N be a prime 3-manifold with empty or toroidal boundary that
is not a closed graph manifold. There exists an epimorphism γ : π1(N) → G onto
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a virtually abelian group such that the projection map π1(N) → H1(N ;Z)/torsion
factors through γ and such that for any φ ∈ H1(N ;R) the function τ (2)(N, φ, γ) is
monomial in the limit with

deg τ (2)(N, φ, γ) = xN (φ).

The paper is organized as follows. In Section 2 we introduce the Fuglede–Kadison
determinant and recall several of its key properties. In Section 3 we use the Fuglede–
Kadison determinant to introduce the L2-torsion of a complex over a real group ring.
The main object of study of this paper, the L2-Alexander torsion, is introduced in
Section 4. In Section 5 we discuss several basic properties of the L2-Alexander torsion,
for example we show that it behaves well under the JSJ-decomposition. In Section 6
we introduce the notion of the degree of a function R+ → [0,∞) which will later on
play a key role. In Section 7 we relate the L2-Alexander torsion to the L2-Alexander
invariant of knots that was introduced by Li–Zhang [LZ06a, LZ06b, LZ08]. We also
discuss in what sense the L2-Alexander torsion can be viewed as a generalization
of the classical Alexander polynomial of a knot. In Section 8 we calculate the L2-
Alexander torsion for graph manifolds, i.e. we prove Theorem 1.2 which together with
standard results in knot theory and Theorem 1.1 gives a new proof of Theorem 1.4.
In Section 8 we also give a partial calculation of the L2-Alexander torsion for fibered
manifolds, providing the proof of Theorem 1.3. In the last part of the paper we are in-
terested in the relationship between the L2-Alexander torsion and the Thurston norm.
More precisely, in Section 9 we prove Theorem 1.5 which states that degrees of the
L2-Alexander torsion give lower bounds on the Thurston norm and in Section 10 we
prove Theorem 1.6, which says that L2-Alexander torsions detect the Thurston norm.

Added in proof. Very recently the authors [FL15] and independently Yi Liu [Liu15]
showed that the full L2-Alexander torsion detects the Thurston norm. Liu also proved
several other interesting results, for example he showed that the full L2-Alexander
torsion is continuous and that it is monomial in the limit.

Conventions. We assume, unless we explicitly say otherwise, that all groups are
finitely generated and that all 3–manifolds are orientable, compact and connected
and that the boundary is either empty or toroidal.

Given a ring R we will view all modules as left R-modules, unless we say explicitly
otherwise. Furthermore, given anm×n-matrix A over R, by a slight abuse of notation,
we denote by A : Rm → Rn the R-homomorphism of left R-modules obtained by right
multiplication with A and thinking of elements in Rm as the only row in a 1 × m-
matrix.

Acknowledgments. The first author would like to warmly thanks University Paris
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versity Blaise Pascal for its financial support. The second author gratefully acknowl-
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2. Hilbert N (G)-modules and the Fuglede–Kadison determinant

In this section we will recall the definition and some basic properties of Hilbert
N (G)-modules and the Fuglede–Kadison determinant. These will play a key role in
the definition of the L2-torsion of a chain complex in the next section.

At a first reading of the paper it is enough to know that given any group G and any
matrix A over R[G] (which is not necessarily a square matrix) one can, under slight
technical assumptions, associate to A its Fuglede–Kadison determinant detN (G)(A) ∈
R+. Some of the key properties of the Fuglede–Kadison determinant are summarized
in Proposition 2.1.

2.1. The dimension of Hilbert N (G)–modules. Let G be a group. We denote
by N (G) the algebra of G–equivariant bounded linear operators from l2(G) to l2(G).
Following [Lü02, Definition 1.5] we define a Hilbert N (G)-module to be a Hilbert
space V together with a linear isometric left G-action such that there exists a Hilbert
space H and an isometric linear G-embedding of V into the tensor product of Hilbert
spaces H ⊗ l2(G) with the G-action given by the G-action on the second factor. A
map of Hilbert N (G)-modules f : V →W is a bounded G-equivariant operator.

For example, the Hilbert space l2(G)m with the obvious left G–action is a Hilbert
N (G)-module with H = Rm. In the following we will view elements of l2(G)m as
row vectors with entries in l2(G). In particular, if A is an m × n-matrix over R[G],
then A acts by right multiplication on l2(G)m. Here, as indicated already in the
conventions, we view elements in l2(G)m as row vectors. The matrix A thus defines
a map l2(G)m → l2(G)n. This map is in fact a map of Hilbert N (G)-modules.

Let V be a Hilbert N (G)-module. One can associate to V the von Neumann
dimension dimN (G)(V ) ∈ [0,∞]. We will not recall the definition, instead we refer
to [Lü02, Definition 1.10] for details. We only note that the von Neumann dimension
has many of the usual properties of dimensions. For example, if V is a Hilbert N (G)-
module, then dimN (G)(V ) = 0 if and only if V = 0. We refer to [Lü02, Theorem 1.12]
and [Lü02, Theorem 6.29] for many more properties.

2.2. Definition of the Fuglede–Kadison determinant. Let G be a group and
let A be an m × n-matrix over the group ring R[G]. In this section we recall the
definition of the Fuglede–Kadison determinant of A.
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As we mentioned above A defines a map of HilbertN (G)-modules l2(G)m → l2(G)n.
We consider the spectral density function of A which is defined as

FA : R → [0,∞)

λ 7→ sup

{
dimN (G)(L)

∣∣∣∣
L ⊂ l2(G)m a Hilbert N (G)-submodule of l2(G)m

such that ‖Ax‖ ≤ λ · ‖x‖ for all x ∈ L

}
.

By [Lü02, Section 2] the function FA is a monotone non–decreasing right–continuous
function. Clearly FA(λ) = 0 for λ < 0.

In the following let F : R → [0,∞) be a monotone non–decreasing, right–continuous
bounded function. We then denote by dF the unique measure on the Borel σ–algebra
on R which has the property that for a half open interval (a, b] with a < b we have

dF ((a, b]) = F (b)− F (a).

Now we return to the m × n-matrix A over the group ring R[G]. (We could con-
sider more generally matrices over the von Neumann algebra N (G), but we restrict
ourselves to matrices over R[G].)

The Fuglede–Kadison determinant of A is defined as

detN (G)(A) :=

{
exp

(∫
(0,∞)

ln(λ)dFA

)
, if

∫
(0,∞)

ln(λ)dFA > −∞,

0, if
∫
(0,∞)

ln(λ)dFA = −∞.

We say A is of determinant class if
∫
(0,∞)

ln(λ)dF > −∞. It follows immediately

from [Lü02, Section 3.7] that this definition agrees with the definition given, in a
more general setup, in [Lü02, Section 3.2].

2.3. Properties of the Fuglede–Kadison determinant. For future reference we
recall in the following two propositions some of the main properties of the Fuglede–
Kadison determinant. Both propositions follow easily from the definitions and from [Lü02,
Theorem 3.14].

Proposition 2.1. Let G be a group and let A be a matrix over R[G]. The following
assertions hold.

(1) Swapping two columns or two rows of A does not change the Fuglede–Kadison
determinant.

(2) Adding a column of zeros or a row of zeros does not change the Fuglede–
Kadison determinant.

(3) Right multiplication of a column by ±g with g ∈ G does not change the
Fuglede–Kadison determinant.

(4) If G is a subgroup of a group H, then we can also view A as a matrix over
R[H ] and

detN (H)(A) = detN (G)(A).

(5) If A is a matrix over R such that the usual determinant det(A) is non-zero,
then detN (G)(A) = | det(A)|.
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(6) We denote by A the matrix which is obtained by applying the involution of G,
g 7→ g−1, to each entry of A. Then

detN (G)

(
A
t
)
= detN (G)(A).

Let Ĝ ⊂ G be a subgroup of index d and let f : V → W be a homomorphism

between two based free left-R[G] modules. We pick representatives for G/Ĝ. Mul-
tiplying the basis elements with all the representatives turns V and W into based

free left-R[Ĝ]-modules. In particular, if A is a k × l-matrix over R[G] then the above

procedure turns A into dk×dl-matrix which we denote by ιĜG(A). The fact that there

is some slight indeterminacy in the definition of ιĜG(A), which stems from our need to

pick representatives for G/Ĝ, will not play a role.

Proposition 2.2. Let Ĝ ⊂ G be a subgroup of finite index and let f : V → W be a
homomorphism between two based free left-R[G] modules. Then

detN (Ĝ)(f) = detN (G)(f)
[G:Ĝ].

In particular f is of determinant class viewed as a map of Hilbert-N (Ĝ)-modules
if and only if it is of determinant class viewed as a map of Hilbert-N (G)-modules.

Equivalently, if A is a matrix over R[G], then detN (Ĝ)

(
ιĜG(A)

)
= detN (G)(A)

[G:Ĝ].

2.4. The rank of a square matrix. Let G be a group and let A be a k× k-matrix
over R[G]. We define the rank of A as follows:

rankG(A) := k − dimN (G)

(
l2(G)k/l2(G)kA

)
.

Note that by [Lü02, Lemma 2.11(11)] we have rankG(A
t
A) = rankG(A). We say that

A has full rank if rank(A) = k.
We have the following characterization of matrices of full rank which is an imme-

diate consequence of [Lü02, Theorem 1.12 (1) and (2)].

Lemma 2.3. Let G be a group and let A be a k × k-matrix over R[G]. Then A has
full rank if and only if the map l2(G)k → l2(G)k given by right multiplication by A is
injective.

2.5. Properties of the regular Fuglede–Kadison determinant. Given a square
matrix A over R[G] we define the regular Fuglede–Kadison determinant as

detrN (G)(A) :=

{
detN (G)(A), if G has full rank,
0, otherwise.

The following proposition collects several key properties of the regular Fuglede–
Kadison determinant. The proposition is again a straightforward consequence of
the definitions and of [Lü02, Theorems 1.12 and 3.14].
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Proposition 2.4. Let G be a group and let A be a k × k-matrix over R[G]. The
following assertions hold.

(1) We have detrN (G)(A) 6= 0 if and only if A is of determinant class and it has
full rank.

(2) If we swap two columns or two rows of A, then the regular Fuglede–Kadison
determinant stays unchanged.

(3) If we multiply a row or a column of A by λ ∈ R \ {0}, then the regular
Fuglede–Kadison determinant is multiplied by |λ|.

(4) Right multiplication of a column or left multiplication of a row by some g ∈ G
does not change the regular Fuglede–Kadison determinant.

(5) If G is a subgroup of a group H, then we can also view A also as a matrix
over R[H ] and

detrN (H)(A) = detrN (G)(A).

(6) If A is a matrix over R, then detrN (G)(A) = | det(A)|, where det(A) ∈ R

denotes the usual determinant. In particular, detrN (G)(id) = 1.

(7) If Ĝ is a finite index subgroup of G, then

detr
N (Ĝ)

(
ιĜG(A)

)
= detrN (G)(A)

[G:Ĝ].

(8) If A is a square matrix over R[G] of the same size as A, then

detrN (G)(A · B) = detrN (G)(A) · det
r
N (G)(B).

(9) If B is an l × l-matrix and C is an l × k-matrix, then

detrN (G)

(
A 0
C B

)
= detrN (G)(A) · det

r
N (G)(B).

2.6. The class G. In order to state the next theorem we need the notion of a ‘sofic’
group. This class of groups was introduced by Gromov [Gr99]. We will not recall the,
somewhat technical, definition, but we note that by [Gr99] and [ES06, Theorem 1]
the following hold:

(1) the class of sofic groups contains the class of residually amenable groups,
(2) any subgroup and any finite index extension of a sofic group is again sofic.

It follows from (1) that the following classes of groups are sofic:

(1) residually finite groups,
(2) 3-manifold groups, since they are residually finite, see [Hem87], and
(3) virtually solvable groups.

Here recall that if P is a property of groups, then a group is said to be virtually P if
the group admits a finite index normal subgroup that satisfies P.

The following theorem was proved by Elek and Szabó [ES05]. (See also [Lü94,
Sc01, Cl99] for special cases.)

Theorem 2.5. Let G be a group that is sofic. The following assertions hold.
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(1) Any square matrix over Q[G] is of determinant class.
(2) If A is a square matrix over Z[G], then detN (G)(A) ≥ 1.
(3) If A is an invertible matrix over Z[G], then detN (G)(A) = 1.

Proof. Let G be a group that is sofic. By the main result of [ES05] any square matrix
A over Z[G] is of determinant class with detN (G)(A) ≥ 1.

If A admits an inverse matrix B over Z[G], then it follows from Proposition 2.4
that

detN (G)(A) ·detN (G)(B) = detrN (G)(A) ·det
r
N (G)(B) = detrN (G)(AB) = detrN (G)(id) = 1.

By the above both detN (G)(A) and detN (G)(B) are at least one, it follows that
detN (G)(A) = 1.

Finally, if A is a square matrix over Q[G], then we can write A = r ·B with r ∈ Q

and B a matrix over Z[G]. It follows immediately from the aforementioned result
of [ES05] and from the definitions that A is also of determinant class. �

Now we denote by G the class of all sofic groupsG. To the best of our knowledge it is
not known whether there exist finitely presented groups that are not sofic. Moreover,
we do not know whether any matrix A over any real group ring is of determinant
class.

2.7. The Fuglede–Kadison determinant and the Mahler measure. In general
it is very difficult to calculate the Fuglede–Kadison determinant of a matrix over
a group ring R[G]. In this section we recall and make use of the well-known fact
(see [Lü02, Ra12]) that if G is free abelian, then the Fuglede–Kadison determinant
can be expressed in terms of a Mahler measure.

First, let p ∈ R[z±1
1 , . . . , z±1

k ] be a multivariable Laurent polynomial. If p = 0, then
its Mahler measure is defined as m(p) = 0. Otherwise the Mahler measure of p is
defined as

m(p) := exp

(
1

(2π)k

∫ 2π

0

. . .

∫ 2π

0

ln
∣∣p
(
eit1 , . . . , eitk

)∣∣ dt1 . . . dtk
)
.

Note that the Mahler measure is multiplicative, i.e., for any non-zero multivariable
Laurent polynomials p, q we have m(pq) = m(p) ·m(q). If p ∈ R[z±1] is a one-variable

polynomial then we can write p(z) = D · zn ·
∏l

i=1(z − bi), where D ∈ R, n ∈ Z and
b1, . . . , bl ∈ C. It follows from Jensen’s formula (see e.g. [Ah78, p. 207]) that

(2) m(p) = |D| ·
l∏

i=1

max{1, |bi|}.

If H is a free abelian group of rank k and p ∈ R[H ] is non-zero, then we pick an

isomorphism f : Zk
∼=

//H which induces an isomorphism R[Zk] = R[z±1
1 , . . . , z±1

k ] ∼=
R[H ] and we define the Mahler measure of p as m(p) := m(f−1

∗ (p)). Note that this is
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independent of the choice of f . Also note that ifH is the trivial group and p ∈ R\{0},
then m(p) = |p|.

The following lemma relates the regular Fuglede-Kadison determinant for free
abelian groups to the Mahler measure.

Lemma 2.6. Let H be a free abelian group and let A be a square matrix over R[H ].
Then

detrN (H)(A) = m(detR[H](A))

where detR[H](A) ∈ R[H ] is the usual determinant of the matrix A.

Proof. Let H be a free abelian group and let A be a k × k-matrix over R[H ]. It
follows from Lemma 2.3 that A has full rank if and only if multiplication by A is an
injective map on R[H ]k. But the latter is of course equivalent to det(A) ∈ R[H ] being
non-zero.

Now we suppose that det(A) 6= 0. By the above we have detrN (H)(A) = detN (H)(A),
and the desired equality detN (H)(A) = m(det(A)) is proved in [Ra12, Section 1.2],
building on [Lü02, Exercise 3.8]. �

Given a finite set S we denote by R[S] the R-vector space spanned freely by the
elements of S. Given n ∈ N we denote by M(n,R[S]) the set of all n × n-matrices
with entries in R[S]. Note that M(n,R[S]) is a finite dimensional real vector space
and we endow it with the usual topology. Now we have the following useful corollary
to Lemma 2.6.

Corollary 2.7. Let G be a group that is virtually abelian. Then for any finite subset
S of G the function

detrN (G) : M(n,R[S]) → [0,∞)

is continuous.

Proof. Since G is virtually abelian (and finitely generated by our convention) there

exists in particular a finite index subgroup Ĝ that is torsion-free abelian.

We pick representatives g1, . . . , gd for G/Ĝ. Given a matrix A over R[G] we define

the matrix ιĜG(A) over R[Ĝ] using this ordered set of representatives. It is straight-

forward to verify that there exists a finite subset Ŝ of Ĝ such that the map

ιĜG : M(n,R[G]) → M(dn,R[Ĝ])

restricts to a map

ιĜG : M(n,R[S]) → M(dn,R[Ŝ])

and that this map is continuous. By Proposition 2.4 it thus suffices to show that

detr
N (Ĝ)

: M(n,R[Ŝ]) → [0,∞)

is continuous. But the continuity of this function is a consequence of Lemma 2.6 and
the continuity of the Mahler measure of multivariable polynomials of bounded degree,
see [Bo98, p. 127]. �
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Finally we conclude with the following lemma.

Lemma 2.8. Let G be a group, g ∈ G an element of infinite order and let t ∈ R+.
Then

detrN (G)(1− tg) = max{1, t}.

Proof. By Proposition 2.4 (2.4) we have detrN (G)(1 − tg) = detrN (〈g〉)(1 − tg). By

Lemma 2.6 we know that detrN (〈g〉)(1 − tg) equals the Mahler measure of 1 − tg,

viewed as a polynomial in g. By (2) we have m(1 − tg) = m((−t)(g − t−1)) =
| − t| ·max{1, t−1} = max{1, t}. �

3. The L2–torsion of complexes over group rings

In this section we recall the definition of the L2–torsion of a complex over a real
group ring R[G]. This definition will then be used in the next section to define
the L2-Alexander torsion. We also provide two computational tools to compute the
L2–torsion which will be used later.

3.1. Definition of the L2–torsion of complexes over group rings. First we
recall some definitions (see [Lü02, Definitions 1.16 and 3.29]). Let G be a group and
let

0 //Cn
∂n

//Cn−1
//. . . //C1

∂1
//C0

//0

be a complex of length n of finitely generated free based left R[G]-modules. Here by
‘based’ we mean that all the Ci’s are equipped with a basis as free left R[G]-modules.
Note that the basing turns each l2(G) ⊗R[G] Ci naturally into an N (G)-module and
the resulting boundary maps id⊗∂i : l2(G) ⊗R[G] Ci → l2(G) ⊗R[G] Ci−1 are maps of
N (G)-modules. Given i ∈ {0, . . . , n} we write

Zi(C∗) := Ker
{
l2(G)⊗R[G] Ci

id⊗∂i−−−→ l2(G)⊗R[G] Ci−1

}
,

Bi(C∗) := Im
{
l2(G)⊗R[G] Ci+1

id⊗∂i+1
−−−−→ l2(G)⊗R[G] Ci

}
,

Hi(C∗) := Zi(C∗)/Bi(C∗),

where Bi(C∗) denotes the closure of Bi(C∗) in the Hilbert space l2(G)⊗R[G] Ci. Fur-
thermore we denote by

b
(2)
i (C∗) := dimN (G)Hi(C∗)

the i-th L2-Betti number of C∗. We say that the complex C∗ is weakly acyclic if all
its L2-Betti numbers vanish.

If the complex is not weakly acyclic, or if at least one of the boundary maps is not
of determinant class, then we define τ (2)(C∗) := 0. (Note that this convention differs



14 JÉRÔME DUBOIS, STEFAN FRIEDL, AND WOLFGANG LÜCK

from the one used in [Lü02].) If the complex is weakly acyclic and if the boundary
maps are of determinant class then its L2–torsion is defined as follows:

τ (2)(C∗) :=

n∏

i=1

detN (G)(∂i)
(−1)i ∈ (0,∞).

Note that we take the multiplicative inverse of the exponential of the L2–torsion
defined in the monograph [Lü02]. Our convention of using the multiplicative inverse
follows the convention for 3-manifolds established in [Tu86, Tu01, Tu02a] and as
we will see later on, our present choice matches the conventions used in the earlier
literature [BA13a, BA13b, DW10, DW15, LZ06a, LZ06b, LZ08] on L2-Alexander
invariants of knots.

3.2. Calculating L2–torsions using square matrices. The following two lemmas
are analogues to [Tu01, Theorem 2.2].

Lemma 3.1. Let G be a group. Let

0 //R[G]k
B

//R[G]k+l
A

//R[G]l //0

be a complex. Let L ⊂ {1, . . . , k + l} be a subset of size l. We write

A(L) := rows in A corresponding to L,
B(L) := result of deleting the columns of B corresponding to L.

If detrN (G)(A(L)) 6= 0, then

τ (2)(based complex) = detrN (G)(B(L)) · detrN (G)(A(L))
−1.

Proof. We obtain the following short exact sequence of R[G]-chain complexes (written
as columns) where i and p are the canonical inclusions and projections corresponding
to L.

0 // 0 //

��

0 //

��

0 //

��

0

0 // 0 //

��

R[G]k
id

//

B
��

R[G]k //

B(L)
��

0

0 // R[G]l
p

//

A(L)
��

R[G]k+l
i

//

A
��

R[G]k //

��

0

0 // R[G]l
id

//

��

R[G]l //

��

0 //

��

0

0 // 0 // 0 // 0 // 0
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If we apply l2(G) ⊗R[G] −, we obtain a short exact sequence of Hilbert N (G)-chain
complexes. Now the claim follows by a direct application of the weakly exact long l2-
homology sequences and the sum formula for L2-torsion to it, see [Lü02, Theorem 1.21
on page 27 and Theorem 3.35 on page 142]. �

Lemma 3.2. Let G be a group. Let

0 //R[G]j
C

//R[G]k
B

//R[G]k+l−j
A

//R[G]l //0

be a complex. Let L ⊂ {1, . . . , k + l − j} be a subset of size l and J ⊂ {1, . . . , k} a
subset of size j. We write

A(J) := rows in A corresponding to J,
B(J, L) := result of deleting the columns of B corresponding to J

and deleting the rows corresponding to L
C(L) := columns of C corresponding to L.

If detrN (G)(A(J)) 6= 0 and detrN (G)(C(L)) 6= 0, then

τ (2)(based complex) = detrN (G)(B(J, L)) · detrN (G)(A(J))
−1 · detrN (G)(C(L))

−1.

Proof. The proof of this lemma is very similar to the proof of Lemma 3.1. First
one puts the given complex of length three into a vertical short exact sequence of
complexes where the complex on top has length two and the complex at the bottom
has length one. Then one applies multiplicativity of L2-torsions. Finally one applies
Lemma 3.1 to the complex of length two. The end result is the desired formula. We
leave the details to the reader. �

3.3. The L2-torsion and the Mahler measures. Given a free abelian group H
we denote by R(H) the quotient field of R[H ]. For f = pq−1 ∈ R(H) we define
m(f) := m(p)m(q)−1. Given a chain complex of based R[H ]-modules C∗ we denote
by τ(C∗) ∈ R(H) the Reidemeister torsion of R(H) ⊗R[H] C∗ as defined in [Tu01,
Section I]. Note that by definition τ(C∗) = 0 if and only if R(H) ⊗R[H] C∗ is not
acyclic.

We can now formulate the following useful proposition.

Proposition 3.3. Let H be a free abelian group and let C∗ be a chain complex of
based R[H ]-modules. Then

τ (2)(C∗) = m
(
τ(R(H)⊗R[H] C∗)

)
.

Proof. LetH be a free abelian group and let (C∗, c∗) be a chain complex of based R[H ]-
modules. We observe from [Lü02, Lemma 1.34 on page 35] that C∗ is L

2-acyclic if and

only if C
(0)
∗ := R(H)⊗R[H]C∗ is acyclic. (To be precise, [Lü02, Lemma 1.34 on page 35]

works with the quotient field C(H) over C[H ], but it is clear that C(H) ⊗R[H] C∗ is

acyclic if and only if R(H)⊗R[H]C∗ is acyclic.) Put differently, τ (2)(C∗) = 0 if and only

if m(τ(C
(0)
∗ )) = 0. Hence we can assume without loss of generality that both torsions
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are non-zero. This implies that C
(0)
∗ is contractible as an R(H)-chain complex and

we can choose an R(H)-chain contraction γ. Then by [Tu01, Theorem 2.6] we have

τ(C(0)
∗ ) = detR(H)

(
(c+ γ)ev : C

(0)
ev → C

(0)
odd

)
∈ R(H)×.

Clearing denominators we can find an element x ∈ R[H ] and R[H ]-homomorphisms
γ′n : Cn → Cn+1 such that over the quotient field R(H) the composite of lx ◦ γn is γ′n,
where lx is left multiplication with x. We get

τ(C(0)
∗ ) = detR[H]((lx◦c+γ

′)ev : Cev → Codd) ·detR[H](lx : Codd → Codd)
−1 ∈ R(H)×.

On the other hand, we conclude from [Lü02, Lemma 3.41 on page 146] applied to the
weak chain contraction given by (γ′, lx) that

τ (2)(C∗) = detN (H)((lx◦c+γ
′)ev : Cev → Codd) · detN (H)(lx : Codd → Codd)

−1 ∈ (0,∞).

Now the claim follows from Lemma 2.6. �

4. Admissible triples and the L2-Alexander torsion

After the preparations from the last two sections we can now introduce the L2-
Alexander torsion of 3-manifolds.

4.1. Admissible triples. Let π be a group, φ ∈ Hom(π,R) a non-trivial homomor-
phism and γ : π → G a homomorphism. We say that (π, φ, γ) form an admissible
triple if φ : π → R factors through γ, i.e., if there exists a homomorphism G → R

such that the following diagram commutes:

π

φ   
❅

❅

❅

❅

❅

❅

❅

γ
// G

��

R.

Note that if γ : π → G is a homomorphism such that the projection map π →
H1(π;Z)/torsion factors through γ, then (π, φ, γ) is an admissible triple for any φ ∈
Hom(π,R).

If N is a prime 3–manifold, φ ∈ H1(N ;R) = Hom(π1(N),R) and γ : π1(N) → G,
then we say that (N, φ, γ) form an admissible triple if (π1(N), φ, γ) form an admissible
triple. Note that this is consistent with the definition given in the introduction.

Let (π, φ, γ : π → G) be an admissible triple and let t ∈ R+. We consider the ring
homomorphism

κ(φ, γ, t) : Z[π] → R[G]
n∑
i=1

aiwi 7→
n∑
i=1

ait
φ(wi)γ(wi).

Note that this ring homomorphism allows us to view R[G] and N (G) as Z[π]-right
modules via right multiplication. Given a matrix A = (aij)ij over Z[π] we furthermore
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write

κ(φ, γ, t)(A) :=
(
κ(φ, γ, t)(aij)

)
ij
.

4.2. Definition of the L2-Alexander torsion of CW–complexes and mani-

folds. Let X be a finite CW–complex. We write π = π1(X). Let φ ∈ H1(X ;R) =
Hom(π,R) and let γ : π → G be a homomorphism to a group such that φ factors
through γ. Finally let t ∈ R+. Recall that κ(φ, γ, t) : Z[π] → R[G] defines a right

Z[π]-module structure on R[G] and N (G). Now we denote by X̃ the universal cover

of X . The deck transformation induces a natural left Z[π]–action on C∗(X̃). We con-

sider the chain complex R[G]⊗Z[π]C∗(X̃) of left R[G]-modules, where the R[G]-action
is given by left multiplication on R[G]. Now we pick an ordering and an orientation

of the cells of X and we pick a lift of the cells of X to X̃ . Note that the chosen lifts,

orderings and orientations of the cells endow each R[G]⊗Z[π] Ci(X̃) with a basis as a
free left R[G]-module. We then denote by

τ (2)(X, φ, γ, t) ∈ [0,∞)

the corresponding torsion, as defined in Section 3. Thus we obtain a function

τ (2)(X, φ, γ) : R+ → [0,∞)
t 7→ τ (2)(X, φ, γ, t)

that we call the L2-Alexander torsion of (X, φ, γ). It follows immediately from the
definitions, Proposition 2.1 that the function τ (2)(X, φ, γ) does not depend on the
orderings and the orientations of the cells. On the other hand, using [Lü02, Theo-
rem 3.35 (5)] one can easily show that a change of lifts changes the L2-Alexander
torsion function by multiplication by t 7→ tr for some r ∈ R. Put differently, the
equivalence class of τ (2)(X, φ, γ) : R+ → [0,∞) is a well-defined invariant of (X, φ, γ).

Let (N, φ, γ) be an admissible triple. We pick a CW–structure X for N . We define

τ (2)(N, φ, γ) := τ (2)(X, φ, γ) : R+ → [0,∞).

A priori this definition depends on the choice of the CW–structure, but fortunately
the following lemma says that its equivalence class is in fact an invariant of (N, φ, γ).

Lemma 4.1. The equivalence class of τ (2)(N, φ, γ) is a well-defined invariant of
(N, φ, γ).

Proof. The statement of the lemma follows from a standard circle of ideas. Therefore
we only give a sketch of the proof. Suppose X and Y are two CW–structures for
N . We denote by f : X → Y the corresponding homeomorphism. The argument
of [Lü02, Theorem 3.96 (1)] shows that there exists a square matrix A over Z[π1(N)]
that represents the Whitehead torsion of f in Wh(π1(N)) and such that

τ (2)(X, φ, γ) = τ (2)(Y, φ, γ) · detrN (G)(κ(φ, γ, t)(A))
−1.
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By Chapman’s Theorem [Ch74, Theorem 1] the Whitehead torsion of f is trivial. This
implies that A represents the trivial element in the Whitehead group Wh(π1(N)).
This in turn means by [Mi66, Lemma 1.1] that there exists an n such that

(
A 0
0 idn

)
= D ·

k∏

i=1

Ei,

where D is a diagonal matrix with diagonal entries in π1(N) and E1, . . . , Ek are
elementary matrices, i.e. they are square matrices that agree with the identity matrix
except for one off-diagonal entry. It follows from Proposition 2.4 (4), (8) and (9) that

detrN (G)(κ(φ, γ, t)(A))
.
= 1,

which by the above proves the desired equality of L2-Alexander torsions. �

If γ = id: π1(N) → π1(N) is the identity map, then we drop γ from the notation,
i.e., we write τ (2)(N, φ) := τ (2)(N, φ, id) and we refer to it as the full L2-Alexander
torsion of (N, φ).

Remark. In the above discussion we restricted ourselves to t ∈ R+. Verbatim the
same discussion shows that we could also take t ∈ C \ {0}, which then gives rise
to a function τ (2)(N, φ, γ) : C \ {0} → [0,∞). But it follows from the argument of
Li–Zhang [LZ06a, Theorem 7.1] and Dubois–Wegner [DW15, Proposition 3.2] that
for any t ∈ C \ {0} we have τ (2)(N, φ, γ)(t) = τ (2)(N, φ, γ)(|t|). Therefore we do not
loose any information by restricting ourselves to viewing τ (2)(N, φ, γ) as a function
on R+.

5. Basic properties of the L2-Alexander torsion

In this section we will state several results on L2-Alexander torsions which can be
proved easily using standard results on L2-torsions. These results will nonetheless be
crucial in our later discussions.

First, we recall that we say that two functions f, g : R+ → [0,∞) are equivalent,
written as f

.
= g, if there exists an r ∈ R, such that f(t) = trg(t) for all t ∈ R+. Note

that if two functions are equivalent, then the evaluations at t = 1 agree.
The following lemma is an immediate consequence of the definitions and of Propo-

sition 2.1 (5).

Lemma 5.1. Let (N, φ, γ : π → G) be an admissible triple and let ϕ : G → H be a
monomorphism. Then

τ (2)(N, φ, ϕ ◦ γ)
.
= τ (2)(N, φ, γ).

The lemma in particular shows that for L2-Alexander torsion we can restrict our-
selves to γ being an epimorphism. The next lemma follows immediately from the
definitions:
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Lemma 5.2. Let (N, φ, γ) be an admissible triple, and let r ∈ R, then

τ (2)(N, rφ, γ)(t)
.
= τ (2)(N, φ, γ)(tr).

Lemma 5.3. Let (N, φ, γ : π = π1(N) → G) be an admissible triple. Let p : N̂ → N

be a finite regular cover such that Ker(γ) ⊂ π̂ := π1(N̂). We write φ̂ := p∗φ and we
denote by γ̂ the restriction of γ to π̂. Then

τ (2)(N̂ , φ̂, γ̂)(t)
.
=

(
τ (2)(N, φ, γ)(t)

)[N̂ :N ]
.

Proof. We write π = π1(N) and π̂ := π1(N̂). We first note that by Lemma 5.1 we

can and will assume that γ is surjective. Now we write Ĝ := Im(γ̂).

We pick a CW–structure X for N and we denote by X̂ the cover ofX corresponding
to the finite cover N̂ of N . We furthermore denote by X̃ the universal cover of X ,

which is of course also the universal cover of X̂ .
We pick lifts of the cells of X to X̃ . These turn R[G] ⊗Z[π] C∗(X̃) into a chain

complex of based free left R[G]-modules. We also pick representatives for π/π̂. By
taking all the translates of the above lifts of the cells by all the representatives we

can view R[Ĝ] ⊗Z[π̂] Ci(X̃) as a chain complex of based left R[Ĝ]-modules. For the

remainder of this proof we view τ (2)(N, φ, γ) and τ (2)(N̂ , φ̂, γ̂) as defined using these
bases.

Now we fix a t ∈ R+. Henceforth we view R[G] as a right Z[π]-module via κ(φ, γ, t),

and we view R[Ĝ] as a right Z[π̂]-module via κ(φ̂, γ̂, t). For each i we consider the
map

R[Ĝ]⊗Z[π̂] Ci(X̃) → R[G]⊗Z[π] Ci(X̃)∑
i pi ⊗ σi 7→

∑
i pi ⊗ σi.

It is straightforward to see that these maps are well-defined maps of left R[Ĝ]-modules.

Furthermore, it follows easily from the assumption Ker(γ) ⊂ π̂ := π1(N̂) that these

maps are in fact isomorphisms of left R[Ĝ]-modules. Finally note that the maps are
obviously chain maps.

It follows from [Lü02, Theorem 1.35 (9)] that R[Ĝ]⊗Z[π̂] Ci(X̃) is weakly acyclic if

and only if R[G]⊗Z[π] Ci(X̃) is weakly acyclic. Thus we can restrict ourselves to the
case that both are weakly acyclic. It then follows from Proposition 2.2 that

τ (2)(N̂ , φ̂, γ̂)(t) = τ
(
R[Ĝ]⊗Z[π̂] Ci(X̃)

)[N̂ :N ]

=
(
τ
(
R[G]⊗Z[π] Ci(X̃)

))[N̂ :N ]

=
(
τ (2)(N, φ, γ)(t)

)[N̂ :N ]
.

�

It follows immediately from the definitions that if (N, φ, γ) is an admissible triple,
then so is (N,−φ, γ) and τ (2)(N,−φ, γ)(t)

.
= τ (2)(N, φ, γ)(t−1). In [DFL14] we
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proved the following theorem, which together with the above discussion implies that
τ (2)(N,−φ, γ)

.
= τ (2)(N, φ, γ).

Theorem 5.4. Let (N, φ, γ) be an admissible triple and let τ be a representative of
τ (2)(N, φ, γ). Then there exists an r ∈ R such that

τ(t−1) = tr · τ(t) for any t ∈ R>0.

Furthermore, if φ ∈ H1(N ;Z), then there exists a representative τ of τ (2)(N, φ, γ)
and an n ∈ Z with n ≡ xN(φ) mod 2 such that

τ(t−1) = tn · τ(t) for any t ∈ R>0.

We conclude this section with a discussion of the L2-Alexander torsions of 3-
manifolds with a non-trivial JSJ decomposition.

Theorem 5.5. Let N be a prime 3–manifold and φ ∈ H1(N ;R). We denote by
T1, . . . , Tk the collection of JSJ tori and we denote by N1, . . . , Nl the JSJ pieces. Let
γ : π1(N) → G be a homomorphism such that the restriction to each JSJ torus has
infinite image. For i = 1, . . . , l we denote by φi ∈ H1(Ni;R) and γi : π1(Ni) → G the
restriction of φ and γ to Ni. Then

τ (2)(N, φ, γ)
.
=

l∏

i=1

τ (2)(Ni, φi, γi).

In the proof of Theorem 5.5 we will need the following lemma.

Lemma 5.6. Let T be a torus, let φ ∈ H1(T ;R) and let γ : π1(T ) → G be a homo-
morphism with infinite image such that φ factors through γ. Then

τ (2)(T, φ, γ)
.
= 1.

Proof. We first note that by Lemma 5.1 we can assume that γ is surjective. In
particular this implies G is an infinite, finitely generated abelian group. Note that G
contains a finite index subgroup which is free abelian. Since a finite cover of a torus
is once again a torus we can by Lemma 5.3 assume, without loss of generality, that
G is already free abelian.

Now we pick a CW-structure for T with one 0–cell p, two 1–cells x, y and one 2–cell
i. We write π = π1(T ), we denote T̃ the universal cover of T and we denote by x and
y the elements in π defined by the eponymous cells. Note that for appropriate lifts
of the cells the based chain complex C∗(T̃ ;Z) is isomorphic to

0 → Z[π]

(
1− y x− 1

)

−−−−−−−−−−−→ Z[π]2



1− x
1− y





−−−−−−→ Z[π] → 0.
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Let t ∈ R+. Now we tensor the above chain complex with R[G], viewed as a Z[π]-
module via the representation κ(φ, γ, t). We obtain the chain complex

C∗ := 0 → R[G]

(
1− tφ(y)γ(y) tφ(x)γ(x)− 1

)

−−−−−−−−−−−−−−−−−−−−−−→ R[G]2



1− tφ(x)γ(x)
1− tφ(y)γ(y)





−−−−−−−−−−−−→ R[G] → 0.

of based R[G]-modules. It follows immediately from Lemmas 2.8 and 3.1 that the
L2-torsion of this complex is always one. Put differently, τ (2)(T, φ, γ)

.
= 1.

�

Now we can give the proof of Theorem 5.5.

Proof of Theorem 5.5. We can and will pick a CW-structure for N such that each
JSJ torus, and thus also each JSJ component, corresponds to a subcomplex.

Let t ∈ R+. We view N (G) as a right Z[π1(N)]-module via κ(φ, γ, t) and as
a module over each Z[π1(Ti)] and each Z[π1(Ni)] via restriction. Since the restric-
tion of γ to each JSJ torus has infinite image it follows from Lemma 5.6 that each

N (G)⊗Z[π1(Ti)] C∗(T̃i) is weakly acyclic. It then follows from a Mayer–Vietoris argu-

ment that the chain complex N (G)⊗Z[π1(N ] C∗(Ñ) is weakly acyclic if and only if all

of the N (G) ⊗Z[π1(Ni)] C∗(Ñi) are weakly acyclic. In particular the theorem holds if
one of the chain complexes is not weakly acyclic.

Thus we can now assume that all of the above chain complexes are weakly acyclic.
The theorem then follows from Lemma 5.6 and the multiplicativity of L2-torsions
for short exact sequences, see [Lü02, Theorem 3.35 (1)]. (Recall once again that the
L2-torsion in [Lü02] is minus the logarithm of our L2-torsion.) �

6. The degree of functions

In this section we introduce the degree of a function R+ → [0,∞). Later on we
will study the degree of the L2-Alexander torsion and we will say that the degree of
the function plays a role similar to the degree of a polynomial.

Let f : R+ → [0,∞) be a function. If f(t) = 0 for arbitrarily small t, then we define
the degree of f at 0 to be deg0(f) := ∞. Otherwise we define the degree of f at 0 to
be

deg0(f) := lim inf
t→0

ln(f(t))

ln(t)
∈ R ∪ {−∞}.

Similarly, if f(t) = 0 for arbitrarily large t, then we define the degree of f at ∞ to be
−∞. Otherwise we define the degree of f at ∞ as

deg∞(f) := lim sup
t→∞

ln(f(t))

ln(t)
∈ R ∪ {∞}.

We follow the usual convention of extending addition on R partly to R∪{−∞}∪{∞},
i.e.
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(1) for a ∈ R we define a +∞ := a and a + (−∞) := −∞, and
(2) we define ∞+∞ := ∞ and −∞+ (−∞) := −∞.

As usual we also define a − b := a + (−b). If deg∞(f)− deg0(f) is defined, then we
define the degree of f as

deg(f) := deg∞(f)− deg0(f).

If deg∞(f)− deg0(f) is undefined, then we set deg(f) := −∞.
In the following we say that a function f : R+ → [0,∞) is piecewise monomial if

we can find 0 = t0 < t1 < t2 · · · < tk < tk+1 := ∞, d0, . . . , dk ∈ Z and furthermore
non-zero real numbers C0, . . . , Ck such that

f(t) = Cit
di for all t ∈ [ti, ti+1) ∩ R+.

We say that a function f : R+ → [0,∞) is eventually monomial if there exist 0 = s <
S <∞, d,D ∈ R and non-zero real numbers c, C such that

f(t) = ctd for t ∈ (0, s) and f(t) = CtD for t ∈ (S,∞).

Finally we recall that a function f : R+ → [0,∞) is monomial in the limit if there
exist d,D ∈ R and non-zero real numbers c, C such that

lim
t→0

f(t)

td
= c and lim

t→∞

f(t)

tD
= C.

We summarize some properties of the degree function in the following lemma. We
leave the elementary proof to the reader.

Lemma 6.1. Let f, g : R+ → [0,∞) be functions.

(1) If f = 0 is the zero function, then we have deg∞(f) = −∞ and deg0(f) = ∞
and thus deg(f) = −∞−∞ = −∞.

(2) If f is monomial in the limit with d and D as in the definition, then deg(f) =
D − d.

(3) If f = art
r+ar+1t

r+1+ · · ·+ast
s is a polynomial with ar 6= 0 and as 6= 0, then

deg(f) = s− r.
(4) If one of f or g is monomial in the limit, then deg(f · g) = deg(f) + deg(g).
(5) If deg(f) ∈ R, then deg( 1

f
) = − deg(f).

(6) If f
.
= g, then deg(f) = deg(g).

(7) If s ∈ [0,∞) and if deg(f) ∈ R, then deg(f s) = s deg(f).

7. The L2-Alexander torsion for knots

In this section we will study the L2-Alexander torsion for knots, in particular we
will relate it to the L2-Alexander invariant that was introduced by Li–Zhang [LZ06a,
LZ06b, LZ08]. We will also prove a relationship between L2-Alexander torsions and
the classical Alexander polynomial of a knot.

First recall that given an oriented knot K ⊂ S3 we denote by νK an open tubular
neighborhood of K and that we refer to X(K) = S3 \ νK as the exterior of K.



THE L
2-ALEXANDER TORSION OF 3-MANIFOLDS 23

Observe that X(K) is a compact 3-manifold whose boundary consists in a single
torus ∂νK. Furthermore we denote by φK ∈ H1(X(K);Z) = Hom(π1(X(K)),Z) the
usual abelianization which is the epimorphism which sends the oriented meridian to 1.
An admissible homomorphism is a homomorphism γ : π1(X(K)) → G such that φK
factors through γ. Note that if γ is admissible, then (X(K), φK, γ) is an admissible
triple and we define

τ (2)(K, γ) := τ (2)(X(K), φK , γ) : R
+ → [0,∞).

If γ is the identity homomorphism, then we write τ (2)(K) := τ (2)(K, γ) and we refer
to τ (2)(K) as the full L2-Alexander torsion of K.

It follows from the symmetry of the L2-Alexander torsion, see the discussion pre-
ceding Theorem 5.4, that these definitions do not depend on the orientation of K.
We will henceforth only work with unoriented knots, and given a knot K we mean
by φK either one of the two generators of H1(X(K);Z) = Hom(π1(X(K)),Z). Note
that either choice of φK sends the meridian of K to ±1. It will not matter which of
the two possible choices for φK we take.

In Section 7.1 we show how one can use Fox derivatives in the calculation of
τ (2)(K, γ). In Section 7.2 we will use this calculation to show that the full L2-
Alexander torsion of K is basically the same as the L2-Alexander invariant of Li–
Zhang. In Section 7.3 we will use γ = φK as the coefficient system and we will
see that the resulting L2-Alexander torsion is determined by the ordinary Alexander
polynomial ∆K(z) ∈ Z[z±1] of K.

7.1. Fox derivatives. In the following we denote by F the free group with generators
g1, . . . , gk. We then denote by ∂

∂gi
: Z[F ] → Z[F ] the Fox derivative with respect to gi,

i.e., the unique Z-linear map such that

∂gi
∂gi

= 1,
∂gj
∂gi

= 0 for i 6= j and
∂uv

∂gi
=
∂u

∂gi
+ u

∂v

∂gi
for all u, v ∈ F .

We refer to [Fo53] for the basic properties of the Fox derivatives.
We can now formulate the following lemma which can be viewed as a slight gener-

alization of [DW10, Theorem 3.2] and [DW15, Theorem 3.5].

Lemma 7.1. Let K be a knot and let π = π1(X(K)) denote its group. Consider an
admissible homomorphism γ : π → G and let 〈g1, . . . , gk | r1, . . . , rk−1〉 be a deficiency
one presentation for π. (We could for example take a Wirtinger presentation for π.)

We denote by B =
(∂rj
∂gi

)
the (k − 1) × k–matrix over Z[π] that is given by taking

all Fox derivatives of all relations. We pick any i ∈ {1, . . . , k} such that γ(gi) is an
element of infinite order. We denote by Bi the result of deleting the i-th column of
B. Then we have

τ (2)(K, γ)
.
= detrN (G)(κ(φK , γ, t)(Bi)) ·max{1, tφK(gi)}−1.
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Proof. We write φ = φK . We denote by Y the 2–complex with one 0–cell, k 1–cells
and k − 1 2–cells that corresponds to the given presentation. The 2–complex Y is
simple homotopy equivalent to X(K). This statement seems to be well-known, but
the only proof we are aware of in the literature is given in [FJR11, p. 458]. (The
argument in [FJR11] builds on on the fact that π1(X(K)) is locally indicable as
proved by Howie [Ho82] and the fact that the Whitehead group of π vanishes, which
in turn is a consequence of the Geometrization Theorem.) The argument at the end
of Section 4.2 shows that we can use Y to calculate τ (2)(K).

It follows basically from the definition of the Fox derivatives that we can lift the

cells of Y to the universal cover Ỹ such that the chain complex C∗(Ỹ ;Z) is isomorphic
to

0 //Z[π]k−1 B
//Z[π]k





1− g1
...

1− gk





//Z[π] //0 .

Again we refer to [Fo53] for details. This implies that for any t ∈ R+ the chain

complex R[G]⊗Z[π] C∗(Ỹ ) is isomorphic to

0 //R[G]k−1
κ(φ,γ,t)(B)

//R[G]k





1− tφ(g1)γ(g1)
...

1− tφ(gk)γ(gk)





//R[G] //0 .

Since γ(gi) has infinite order it follows from Lemma 2.8 that detrN (G)

(
1− tφ(gi)γ(gi)

)
=

max{1, tφ(gi)}. The lemma now follows immediately from Lemma 3.1. �

7.2. The L2-Alexander invariant of Li–Zhang. Let K be a knot. We pick a
Wirtinger presentation 〈g1, . . . , gk | r1, . . . , rk−1〉 for π = π1(X(K)). We denote by

B = (
∂rj
∂gi

) the (k− 1)× k–matrix over Z[π] that is given by taking all Fox derivatives

of all relations. We pick any i ∈ {1, . . . , k} and we denote by Bi the result of deleting

the i-th column of B. The L2-Alexander invariant ∆
(2)
K of K is then defined as the

function
∆

(2)
K : C \ {0} → [0,∞)

t 7→ detrN (G)

(
κ(φ, γ, t)(Bi)

)
.

This invariant was first introduced by Li–Zhang [LZ06a, Section 7] and [LZ06b, Sec-
tion 3], using slightly different conventions. In these papers it is also implicitly proved

that the function ∆
(2)
K , as an invariant of K, is well-defined up to multiplication by

a function of the form t 7→ |t|n with n ∈ Z. Furthermore, Li–Zhang [LZ06a, LZ06b]
implicitly, and Dubois–Wegner [DW15, Proposition 3.2] explicitly showed that for

any t ∈ C \ {0} we have ∆
(2)
K (t) = ∆

(2)
K (|t|). To be consistent with our other conven-

tions we henceforth view ∆
(2)
K as a function defined on R+. (Recall that at the end
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of Section 4.2 we already remarked that the aforementioned result of Li–Zhang and
Dubois–Wegner was the reason why we view τ (2)(N, φ, γ) as a function on R+, even
though a priori one could also view it as a function on C \ {0}.)

It now follows from Lemma 7.1 and the fact that every generator of a Wirtinger
presentation is a meridian that

τ (2)(K)
.
= ∆

(2)
K ·max{1, t}−1.

This shows that the full L2-Alexander torsion and the L2-Alexander invariant are
essentially the same invariant.

7.3. The L2-Alexander torsion and the one-variable Alexander polynomial.

We will now see that given a knot K the ordinary Alexander polynomial ∆K(z) ∈
Z[z±1] determines the L2-Alexander torsion corresponding to the abelianization. More
precisely, we have the following proposition.

Proposition 7.2. Let K be a knot and let ∆K(z) ∈ Z[z±1] be a representative of the
Alexander polynomial of K. We write

∆K(z) = C · zm ·
k∏

i=1

(z − ai),

where C ∈ Z \ {0}, m ∈ Z and a1, . . . , ak ∈ C \ {0}. Then

τ (2)(K, φK)
.
= C ·

k∏

i=1

max{|ai|, t} ·max{1, t}−1.

Note that the proposition can also be proved using Proposition 3.3 and the fact
that the Reidemeister torsion of a knot corresponding to the abelianization equals
∆K(z) · (z − 1)−1, see [Tu01] for details.

Proof. Let K be a knot. We write φ = φK ∈ H1(X(K);Z) = Hom(π1(X(K)), 〈z〉).
Let 〈g1, . . . , gk | r1, . . . , rk−1〉 be a Wirtinger presentation for π = π1(X(K)). Again

we denote by B = (
∂rj
∂gi

) the (k − 1)× k–matrix over Z[π] that is given by taking all

Fox derivatives of all relations. We pick any i ∈ {1, . . . , k} and we denote by Bi the
result of deleting the i-th column of B.

Now we apply the ring homomorphism φ : Z[π] → Z[〈z〉] = Z[z±1] to all entries of
Bi and we denote the resulting matrix by Ai(z). Note that by [CF63, Chapter VIII.3]
we have det(Ai(z)) = ∆K(z).

Given t ∈ R+ we denote by Ai(tz) the matrix over R[z±1] that is given by sub-
stituting z by tz. Similarly we denote by ∆K(tz) the polynomial over R[z±1] which
is given by substituting z by tz. It follows immediately from the definitions that
κ(φ, φ, t)(Bi) = Ai(tz). Also note that det(Ai(tz)) = ∆K(tz).
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By Lemmas 7.1 and by the discussion in Section 3.3 we have

τ (2)(K, φK)(t)
.
= detrN (〈z〉)(Ai(tz)) ·max{1, t}−1

= m(det(Ai(tz)) ·max{1, t}−1

= m(∆K(tz)) ·max{1, t}−1

= m
(
C · (zt)m

∏k
i=1(tz − ai)

)
·max{1, t}−1

.
= m

(
C · (zt)m

∏k
i=1(z − ait

−1)
)
·max{1, t}−1

.
= C ·

∏k
i=1max{1, t−1 · |ai|} ·max{1, t}−1

.
= C ·

∏k
i=1max{t, |ai|} ·max{1, t}−1.

�

We obtain the following corollary:

Corollary 7.3. Given any knotK the L2-Alexander torsion τ (2)(K, φK) is a piecewise
monomial function with

deg τ (2)(K, φK) = deg∆K(t).

Furthermore τ (2)(K, φK) is monic if and only if ∆K(t) is monic.

Proof. Let ∆(z) = ∆K(z) ∈ Z[z±1] be a representative of the Alexander polynomial

of K. We write ∆(z) = C · zm ·
∏k

i=1(z − ai), where C ∈ Z \ {0}, m ∈ Z and
a1, . . . , ak ∈ C such that |a1| ≤ |a2| ≤ · · · ≤ |ak|. By Proposition 7.2 we have

τ (2)(K, φK)
.
= θ(t) := C ·

k∏

i=1

max{|ai|, t} ·max{1, t}−1.

It follows immediately that τ (2)(K, φK) is a piecewise polynomial. Note that

θ(t) = C · tk, for t ≥ max{1, |a1|, . . . , |ak|}, and

θ(t) = C ·
∏k

i=1 |ai|, for t ≤ min{1, |a1|, . . . , |ak|}.

Thus we see that

deg τ (2)(K, φK) = deg θ = k.

It is well–known that the Alexander polynomial is symmetric, i.e., ∆K(z) = zl∆K(z
−1)

for some l ∈ Z. It follows in particular that the set of zeros is closed under inver-
sion, i.e. {a1, . . . , ak} = {a−1

1 , . . . , a−1
k } as a set with multiplicities. This implies

that
∣∣∣
∏k

i=1 ai

∣∣∣ = 1. It now follows that τ (2)(K, φK) is monic if and only if ∆K(z) is

monic. �

Remark. Proposition 7.2 shows that the L2-Alexander torsion τ (2)(K, φK) contains a
lot of the essential information of the ordinary Alexander polynomial ∆K(t). Nonethe-
less, some information gets lost. For example, let K = Tp,q be the (p, q)-torus knot.



THE L
2-ALEXANDER TORSION OF 3-MANIFOLDS 27

It is well-known, see e.g. [Ro90], that

∆Tp,q(t) =
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
.

This is a polynomial of degree (p− 1)(q − 1) and all the zeros are roots of unity. It
thus follows from Proposition 7.2 that

τ (2)(Tp,q, φK) = max{1, t}(p−1)(q−1)−1.

(In fact we will see in Theorem 8.4 that this equality holds for any admissible epi-
morphism γ.) In particular, if we consider the torus knots T3,7 and T4,5, then it is
now straightforward to see that all L2-Alexander torsions agree, but that the ordinary
Alexander polynomials are different.

8. Calculations of L2-Alexander torsions for special classes of

3-manifolds

In this section we first give a complete calculation of the L2-Alexander torsion for
graph manifolds which allows us to reprove the fact that the L2-Alexander torsion
detects the unknot. Then we give a partial calculation of the L2-Alexander torsion
for fibered classes.

8.1. L2-Alexander torsions of graph manifolds. First we recall that a graph
manifold is a 3-manifold for which all its JSJ components are Seifert fibered spaces.
The following theorem gives the computation of the L2-Alexander torsions of Seifert
fibered spaces. The proof of the theorem builds on [Lü02, Theorem 3.105] and the
details can be found in [Her15].

Theorem 8.1. Let (N, φ, γ) be an admissible triple with N 6= S1 × D2 and N 6=
S1 × S2. Suppose that N is a Seifert fibered 3-manifold such that the image of a
regular fiber under γ is an element of infinite order, then

τ (2)(N, φ, γ)
.
= max{1, txN (φ)}.

Now we obtain the following result which is a slight refinement of Theorem 1.2.

Theorem 8.2. Let (N, φ, γ) be an admissible triple with N 6= S1 × D2 and N 6=
S1 × S2. Suppose that N is a graph manifold and that given any JSJ component of
N the image of a regular fiber under γ is an element of infinite order, then

τ (2)(N, φ, γ)
.
= max{1, txN (φ)}.

In particular τ (2)(N, φ, γ) is monomial in the limit with degree xN(φ) and furthermore
τ (2)(N, φ, γ) is monic.

Proof. We denote by Ni, i = 1, . . . , k the JSJ components of N , which by assumption
are Seifert fibered spaces. Note that for each i we have Ni 6= S1×D2 and Ni 6= S1×S2.
For i = 1, . . . , k we write φi = φ|Ni

and we write γi = γ|π1(Ni). By our assumption
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on γ and by Theorem 8.1 we have τ(Ni, φi, γi)
.
= max{1, txNi

(φi)}. Furthermore, note
that the Seifert fibered structure of a Seifert fibered 3-manifold restricts to a fibration
of any boundary torus. It follows from our assumption on γ that the restriction of γ
to any JSJ torus has infinite image. Thus it follows from Theorem 5.5 that

τ (2)(N, φ, γ)
.
=

k∏

i=1

τ (2)(Ni, φ, γi)
.
=

k∏

i=1

max{1, txNi
(φi)} = max

{
1, t

∑k
i=1 xNi

(φi)
}
.

The theorem follows from [EN85, Proposition 3.5] which says in our situation that

k∑

i=1

xNi
(φi) = xN (φ).

�

8.2. Applications to knot theory. We denote by K the minimal set of oriented
knots that contains the unknot and that is closed under the connect sum operation
and under cabling. Note that K contains torus knots, and more generally iterated
torus knots. We recall the following well-known lemma.

Lemma 8.3. Let K be a knot. The following statements are equivalent:

(1) K lies in K.
(2) the knot exterior X(K) = S3 \ νK is a graph manifold with the property that

the regular fiber of any Seifert fibered piece is non-zero in H1(X(K);Z).
(3) X(K) is a graph manifold.

Here the implication (1) ⇒ (2) is not hard to verify. The implication (2) ⇒ (3) is
trivial and the implication (3) ⇒ (1) is [Go83, Corollary 4.2].

We can now state and prove the following theorem.

Theorem 8.4. Let K be a knot in the set K. For any admissible epimorphism
γ : π1(X(K)) → G we have

τ (2)(K, γ)
.
= max

{
1, t2 genus(K)−1

}
.

In particular, if K = Tp,q is the (p, q)-torus knot, then

τ (2)(Tp,q, γ)
.
= max

{
1, t(p−1)(q−1)−1

}
.

Proof. First note that if K is the trivial knot, then X(K) = S1×D2. In this case we
identify π1(X(K)) with the infinite cyclic group generated by µ. Since X is simple
homotopy equivalent to a circle it follows from the definitions and from Lemma 2.8
that

τ (2)(K, γ)
.
= τ (2)

(
0 //R[〈µ〉]

1−tµ
//R[〈µ〉] //0

)
.
= max{1, t}−1.

Now let K be a non-trivial knot. It is well-known and straightforward to show
that in this case the equality xX(K)(φK) = 2 genus(K) − 1 holds. Now we suppose



THE L
2-ALEXANDER TORSION OF 3-MANIFOLDS 29

that K lies in K. By Lemma 8.3 the knot exterior X(K) is a graph manifold with
the property that the regular fiber of any Seifert fibered piece represents is non-zero
in H1(X(K);Z). Since γ is admissible we can appeal to Theorem 8.2 to obtain the
desired result. The statement for torus knots follows from the well-known fact that
the genus of the (p, q)-torus knot is 1

2
(p− 1)(q − 1). �

The combination of Theorems 1.1 and 8.4 and Lemma 8.3 immediately implies
Theorem 1.4.

8.3. Fibered classes and the L2-Alexander torsion. Let G be a group with finite
generating set S. Given g ∈ G we denote by ℓS(g) the minimal length of a word in S
representing g. In this paper the entropy of a homomorphism f : G → G is defined
as

h(f) := max
{
lim sup
n→∞

(
ℓS(f

n(g))
) 1

n

∣∣∣ g ∈ S
}
.

Note that the entropy is independent of the choice of S. We refer to [FLP79, p. 185]
for details. (Note though that we take the exponential of the entropy as defined
in [FLP79].)

Now let Σ be a surface and let f : Σ → Σ be a self-diffeomorphism. Choose x ∈ Σ
and a path w in X from f(x) to x. Define the entropy h(f) of f to be the entropy of
the group automorphism

α(f, x, w) : π1(Σ, x)
π1(f,x)

//π1(Σ, f(x))
tw

//π1(Σ, x) ,

where tw is given by conjugation with the path w. One easily checks that this defi-
nition is independent of the choice of x and w and the entropy h(f) depends only on
the homotopy class of f .

Remark. If Σ is a closed surface with χ(Σ) < 0 and if f is pseudo-Anosov, then
by [FLP79, p. 195] the entropy h(f) equals the dilatation of f .

Given a 3-manifold N and a primitive fibered class φ we define h(φ) as the entropy
of the corresponding monodromy. More generally, for a fibered class φ ∈ H1(N ;Q)
we pick an r ∈ Q>0 such that rφ is a primitive integral class and we define

h(φ) := h(rφ)
1
r .

Before we state the next theorem, recall that in Section 2.6 we said that G denotes
the class of all sofic groups. We also mentioned that the class G is known to contain
practically all groups we are interested in, in particular the fundamental groups of
3-manifolds.

Now we have the following theorem which is a generalization of Theorem 1.3 in the
introduction.
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Theorem 8.5. Let (N, φ, γ) be an admissible triple with N 6= S1×D2 and N 6= S1×S2

such that φ ∈ H1(N ;Q) is fibered and such that G ∈ G. There exists a representative
τ of τ (2)(N, φ, γ) such that

τ(t) =

{
1, if t < 1

h(φ) ,

txN (φ), if t > h(φ).

In particular τ (2)(N, φ, γ) is monomial in the limit with degree xN(φ) and furthermore
τ (2)(N, φ, γ) is monic.

The proof of Theorem 8.5 will require the remainder of Section 8.3. The key
ingredient from the theory of Fuglede–Kadison determinants is a theorem of Caray–
Farber–Mathai [CFM97]. In order to state the theorem we need to introduce a few
more definitions. Given a group G we denote by GL(n,N (G)) the group of invertible
n×n–matrices with entries in N (G). Secondly, if f ∈ N (G) then we write trG(f) :=
〈f(e), e〉l2(G), where e ∈ l2(G) denotes the unit element and 〈−,−〉l2(G) denotes the
inner product on l2(G). Furthermore, if A = (aij) is an n × n–matrix over N (G),
then we define

trG(A) :=
n∑

i=1

trG(aii).

We can now formulate the following theorem of Caray–Farber–Mathai [CFM97, The-
orem 1.10 (e)].

Theorem 8.6. Let G be a group, let t ∈ R+ and let

A : [0, t] → GL(n,N (G))
s 7→ A(s)

be a continuous piecewise smooth map, then

detrN (G)(A(t)) = detrN (G)(A(0)) · exp

(∫ t

0

Re trG

(
A(s)−1 ·

d

ds
A
∣∣
s

)
ds

)
.

Let G be a group. Before we continue we need to introduce a norm of matrices
over the group ring R[G]. First given p =

∑
g∈G agg ∈ R[G] we write

|p|1 :=
∑

g∈G

|ag|

and given an n× n-matrix A = (aij) over R[G] we write

‖A‖1 := n ·max
{
|aij|1

∣∣ i, j = 1, . . . , n
}

and we define

h(A) := lim
k→∞

(
‖Ak‖1

) 1
k .

The existence of the limit hereby follows from Fekete’s subadditive lemma and the
following elementary lemma.
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Lemma 8.7. Let A and B be two n× n-matrices over R[G]. Then

‖AB‖1 ≤ ‖A‖1 · ‖B‖1.

Proof. First, by [Pa77, Lemma 2.1.5 on p. 35] given any p, q ∈ R[G] we have the
inequality

|pq|1 ≤ |p|1 · |q|1.

The desired inequality for the matrices now follows from this inequality and the fact
that any entry of AB is a sum of at most n products of entries in A and B. �

Proposition 8.8. Let G be a group in G, let φ : G → Z be an epimorphism, and
let y ∈ G be an element with φ(y) = 1. We write H = Ker(φ). Let P,Q be two
n × n-matrices over Z[H ] which are invertible over Z[H ]. Then for T = h(yQP−1),
we have

detrN (G)(P − tyQ) =

{
1, if t < 1

T
,

tn, if t > T.

Proof. We write A = QP−1 and T = h(yA). Since G ∈ G it follows from Proposi-
tion 2.4 and Theorem 2.5 that

detrN (G)(P − tyQ) = detrN (G)(id−tyQP
−1) · detrN (G)(P ) = detrN (G)(id−tyA).

Now let s ∈ (0, 1
T
). It follows easily from the definition of h(yA) and from Lemma 8.7

that the power series
∞∑

i=0

si(yA)i

converges in the operator norm and that it is an inverse to P (s) = id−syA.
For any t ∈ (0, 1

T
) we can thus apply Theorem 8.6 and we obtain that

detrN (G)(id−tyA) = detrN (G)(P (t))

= detrN (G)(P (0)) · exp
(∫ 1

0
Re trG

(
P (s)−1 d

ds
P |s

)
ds
)

= exp
(∫ 1

0
Re trG ((

∑∞
i=0(tyA)

i) (−yA)) dt
)

= exp
(∫ 1

0
Re trG (

∑∞
i=0−t

i(yA)i+1) dt
)
.

Note that

trG

( ∞∑

i=0

−ti(yA)i+1

)
=

∞∑

i=0

trG(−t
i(yA)i+1).

Also note that any entry of (yA)i+1 is of the form

l∑

j=1

ajgj with a1, . . . , al ∈ Z and g1, . . . , gl ∈ G,
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where φ(g1) = · · · = φ(gl) = i + 1. It follows immediately that trG(−ti(yA)i+1) = 0
for all i ≥ 0. Thus we see that

detrN (G)(id−tyA) = 1 for all t ∈
(
0, 1

T

)
.

Now suppose that t > T . It follows from Theorem 2.5 and from the above that

detrN (G)(id−tyA) = detrN (G)

(
tAy(t−1y−1A−1 − id)

)

= tn detrN (G)(Ay) detrN (G)(t
−1y−1A−1 − id) = tn.

�

Now we are finally in a position to prove Theorem 8.5.

Proof of Theorem 8.5. Let (N, φ, γ : π1(N) → G) be an admissible triple with N 6=
S1 ×D2 and N 6= S1 × S2 such that φ ∈ H1(N ;Q) is fibered and such that G ∈ G.
By Lemma 5.2 and by the definition of the entropy of a rational fibered class we only
need to consider the case that φ is a primitive.

We denote by Σ the fiber and we denote by f : Σ → Σ the monodromy correspond-
ing to the primitive fibered class φ.

If χ(Σ) ≥ 0, then xN(φ) = 0 and N is a graph manifold. Thus the statement follows
immediately from the calculation of the L2-Alexander torsion for graph manifolds
given in Theorem 8.2.

For the remainder of this paper we assume that χ(Σ) < 0. Since χ(Σ) < 0 there
exists a fixed point p ∈ Σ of the monodromy f . We pick a CW-structure for Σ with
one 0-cell p, n 1-cells g1, . . . , gn and one 2-cell which by a slight abuse of notation
we denote again by Σ. By another slight abuse of notation we denote the elements
in π1(Σ, p) represented by g1, . . . , gn by the same symbols. It is well-known, see e.g.
[Th86, Theorem 3], that a fiber surface is Thurston norm minimizing, in particular,
in our context this means that n− 2 = −χ(Σ) = xN (φ).

In the following we compute the entropy using the generating set S = {g1, . . . , gn}
of π1(Σ, p). By definition we have

h(f) = max
{
lim sup
m→∞

(
ℓS(f

m
∗ (gi))

) 1
m

∣∣∣ i = 1, . . . , n
}
,

where f∗ denotes the induced map on π1(Σ, p). We write T = h(f). We will prove
the following claim.

Claim. For any ǫ > 0 there exists a representative τ of τ (2)(N, φ, γ) such that

τ(t) =

{
1, if t ∈

(
0, 1

T+ǫ

)
,

tn−2, if t > T + ǫ.

This claim implies Theorem 8.5. Indeed, we already mentioned that n−2 = χN(φ).
Furthermore any two representatives of τ (2)(N, φ, γ) that coincide at some point t 6= 1
are necessarily the same. Put differently, the representatives for each ǫ > 0 are in
fact always the same representative of τ (2)(N, φ, γ).
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Now we turn to the proof of the claim. Let ǫ > 0. By the definition of h(f) there
exists an m ∈ N such that

(
ℓS(f

m
∗ (gi))

) 1
m < h(f) + ǫ

for i = 1, . . . , n.

We denote by p : N̂ → N them-fold cyclic cover ofN corresponding to the subgroup

π̂ := Ker{π1(N)
φ
−→ Z → Zm}. We write φ̂ := p∗φ and we denote by γ̂ the restriction

of γ to π̂. By Lemma 5.3 we have

τ (2)(N̂, φ̂, γ̂)(t)
.
=

(
τ (2)(N, φ, γ)(t)

)m
.

We write ψ = 1
m
φ̂. Note that ψ is a primitive fibered class of N̂ . By Lemma 5.2 we

have
τ (2)(N̂, ψ, γ̂)(t)

.
= τ (2)(N̂, φ̂, γ̂)(t1/m).

Putting everything together we see that now it suffices to prove the following claim.

Claim. There exists a representative τ of τ (2)(N̂ , ψ, γ̂)(t) such that

τ(t) =

{
1, if t ∈

(
0, 1

T+ǫ

)
,

tn−2, if t > T + ǫ.

Given a map r : Σ → Σ we denote by

M(Σ, r) := Σ× [−1, 1] / (x,−1) ∼ (r(x), 1)

the corresponding mapping torus. Note that M(Σ, r) has a canonical projection map
M(Σ, r) → S1 = [−1, 1]/{−1} ∼ {1} and we refer to the induced epimorphism
π1(M(Σ, r)) → π1(S

1) = Z as the canonical epimorphism to Z. It is clear that two
homotopic maps r0, r1 : Σ → Σ give rise to homotopy equivalent mapping tori.

Recall that we denote by f : Σ → Σ the monodromy corresponding to φ. This
means that we can identify N with M(Σ, f) in such a way that φ ∈ H1(N ;Z) =
Hom(π1(N),Z) agrees with the canonical epimorphism π1(M(Σ, f)) → Z. By the
standard theory of covering spaces of fibered manifolds we can then also identify
the m-fold cyclic cover N̂ of N with M(Σ, fm) in such a way that the primitive

class ψ = 1
m
φ̂ ∈ H1(N̂ ;Z) = Hom(π1(N̂),Z) agrees with the canonical epimorphism

π1(M(Σ, fm)) → Z.
By the Cellular Approximation Theorem the diffeomorphism fm is homotopic to a

cellular map s. In fact one can see ‘by hand’ that c can be chosen such that s(p) = p
and such that each s(gi) is represented by the path traced out by the word fm∗ (gi) in
the generators g1, . . . , gn.

Now we write I = [−1, 1]. Given a cell c of Σ we denote by c× I the corresponding

product cell of Σ × I. Furthermore we denote by µ the element in π̂ = π1(N̂) =
π1(M(Σ, s), p) that is represented by the loop p × I. Note that the product CW-
structure on Σ × I descends to a CW-structure on M(Σ, s). By the above we know

that N̂ =M(Σ, fm) is homotopy equivalent toM(Σ, s). Since the Whitehead group of



34 JÉRÔME DUBOIS, STEFAN FRIEDL, AND WOLFGANG LÜCK

fibered 3-manifolds is trivial, see [Wa78], these two spaces are in fact simple homotopy

equivalent. Thus we have τ (2)(N̂, ψ, γ̂)(t)
.
= τ (2)(M(Σ, s), ψ, γ̂)(t).

Now we collect the cells of M(Σ, s) according to their dimensions and we order
them as follows:

{Σ× I} {Σ, g1 × I, . . . , gn × I} {g1, . . . , gn, p× I} {p}.

It is straightforward to see that for an appropriate lift of the above ordered sets of
cells of M(Σ, s) to the universal cover, the resulting chain complex of the universal
cover is isomorphic to

0 //Z[π̂]
B3

//Z[π̂]⊕ Z[π̂]n
B2

//Z[π̂]n ⊕ Z[π̂]
B1

//Z[π̂] //0

where

B3 =
(
1− µ ∗ . . . ∗

)
, B2 =

(
∗ ∗

idn−µA ∗

)
, B1 =

(
∗

1− µ

)
,

and where in turn the (i, j)-entry of the n × n-matrix A is given by ∂(fm)∗(gi)
∂gj

and

where the ∗’s indicate matrices of an appropriate size. Note that each entry of the
i-th row of A is a sum of at most ℓS(f

m
∗ (gi)) elements in {g±1

1 , . . . , g±1
n }, possibly

equipped with a minus sign. It thus follows immediately from the definitions and our
choice of m that

‖A‖1 ≤ h(f) + ǫ.

Clearly ‖µA‖1 = ‖A‖1. Thus we obtain that

‖µA‖1 ≤ h(f) + ǫ.

By Lemma 8.7 we also have ‖(µA)k‖1 ≤ ‖µA‖k1 for any k ∈ N. Putting everything
together this implies that

(3) h(µA) = lim
k→∞

(
‖(µA)k‖1

) 1
k ≤ ‖µA‖1 ≤ h(f) + ǫ.

By Lemma 2.8 we have detrN (G)(1−tγ̂(µ))
−1 = max{1, t}. Therefore by the definitions

and by Lemma 3.2 we have

τ(N̂ , ψ, γ̂)

.
= τ (2)

(
R[G]

κ(ψ,γ̂,t)(B3)
//R[G]⊕ R[G]n

κ(ψ,γ̂,t)(B2)
//R[G]n ⊕ R[G]

κ(ψ,γ̂,t)(B1)
//R[G]

)

= detrN (G)

(
1− tγ̂(µ)

)−1
· detrN (G)

(
id−tγ̂(µ)γ̂(A)

)
· detrN (G)

(
1− tγ̂(µ)

)−1

= max{1, t}−2 · detN (G)

(
id−tγ̂(µ)γ̂(A)

)
.

By appealing to Proposition 8.8 we see that for T̂ = h(γ̂(µA)) we have

τ(t) =

{
1, if t ∈ (0, 1/T̂ ),

tn−2, if t > T̂ .
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It follows easily from the definitions that for any square matrix B over Z[π̂] we
have h(γ̂(B)) ≤ B. In particular we obtain the inequality h(γ̂(µA)) ≤ h(µA). By

combining this with the inequality (3) we see that T̂ = h(γ̂(µA)) ≤ h(f) + ǫ. This
concludes the proof of the claim and thus also of the theorem. �

9. The L2-Alexander torsion gives a lower bound on the Thurston

norm

The goal of this section is to prove Theorem 1.5. For the convenience of the reader
we recall the statement.

Theorem 1.5. Let (N, φ, γ) be an admissible triple with N 6= S1 × D2 and also
N 6= S1 × S2 where γ is an epimorphism onto a virtually abelian group. Then

deg τ (2)(N, φ, γ) ≤ xN (φ).

Theorem 1.5 is an immediate consequence of the following two propositions. Here
note that the first proposition holds without the assumption that the image of γ is vir-
tually abelian. We also expect the second statement to hold without any restrictions,
but as of now we can not provide a proof.

Proposition 9.1. Let (N, φ, γ : π1(N) → G) be an admissible triple with N 6= S1×D2

and N 6= S1 × S2. We write H = Ker(φ : G→ Z) and we pick µ ∈ G with φ(µ) = 1.
Then there exist k, l ∈ N with k − l = xN (φ) and a square matrix A over Z[H ] such
that

t 7→ max{1, t}−l · detrN (G)

(
A+ tµ

(
idk 0
0 0

))

is a representative of τ (2)(N, φ, γ).

Proposition 9.2. Let G be a virtually abelian group and let φ : G → Z be an epi-
morphism. We write H = Ker(φ : G → Z). Let µ ∈ G with φ(µ) = 1 and let A be a
square matrix over Z[H ]. Then

deg

(
t 7→ max{1, t}−l · detrN (G)

(
A + tµ

(
idk 0
0 0

)))
≤ k − l.

9.1. Proof of Proposition 9.1. Later on we will need the following somewhat tech-
nical lemma.

Lemma 9.3. Let G be a group and let φ : G → Z be an epimorphism. We write
H = Ker(φ : G → Z) and we pick µ ∈ G with φ(µ) = 1. Suppose we are given a
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square matrix of the form




P1 ∗ ∗ P2

0 idn −trν idn 0
∗ X Y ∗
P3 ∗ ∗ P4




where P1, P2, P3 and P4 are matrices over Z[G], ν ∈ G satisfies φ(ν) = r, where X
and Y are n× n-matrices over Z[H ], and where all other ∗’s indicate matrices over
Z[H ] of an appropriate size. (The vertical and horizontal lines have no mathematical
meaning, they are just added to make the matrices more digestible.) Then there exists
an (r + 1)n× (r + 1)n-matrix A over Z[H ] and further matrices over Z[H ] indicated
by ∗ such that

detrN (G)




P1 ∗ ∗ P2

0 idn −trν idn 0
∗ X Y ∗
P3 ∗ ∗ P4


 = detrN (G)




P1 ∗ P2

∗ A+ tµ

(
idrn 0
0 0

)
∗

P3 ∗ P4




for any t ∈ R+.

Proof. Throughout the proof ∗ will always indicate a matrix over Z[H ]. We consider
the following equalities:

detrN (G)




P1 ∗ ∗ P2

0 idn −trν idn 0
∗ X Y ∗
P3 ∗ ∗ P4




= detrN (G)




P1 ∗ ∗ P2

0 idn −trµr idn 0
∗ X Y ν−1µr ∗
P3 ∗ ∗ P4



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= detrN (G)




P1 ∗ 0 0 0 ∗ P2

0 idn 0 . . . 0 −trµr idn 0

0 0 idn
. . . −tr−1µr−1 idn 0

0 0
. . .

. . . 0
... 0

0 0 0 idn −tµ idn 0
∗ X . . . 0 0 Y ν−1µr ∗
P3 ∗ 0 0 0 ∗ P4




= detrN (G)




P1 ∗ 0 0 0 ∗ P2

0 idn −tµ idn . . . 0 0 0

0 0 idn
. . . 0 0

0 0
. . .

. . . −tµ idn
... 0

0 0 0 idn −tµ idn 0
∗ X . . . 0 0 Y ν−1µr ∗
P3 ∗ 0 0 0 ∗ P4




.

Here, we first multiplied the third block column by ν−1µr on the right. The equality
is thus a consequence of Proposition 2.4 (4). Then we inserted an identity matrix
in the center and new entries in the block column on the second to the right, the
second equality is thus a consequence of Proposition 2.4 (2) and (9). Finally for
k = 3, . . . , r+1 we multiplied the k-th block row by −tµ and added it to the previous
block row. Therefore the last equality is a consequence of Proposition 2.4 (8) and (9).

By swapping the rows appropriately and multiplying them by −1 we get the matrix
of the desired form. By Proposition 2.4 these procedures do not change the regular
Fuglede–Kadison determinant. �

Lemma 9.4. Let G be a group and let φ : G → Z be an epimorphism. Let µ ∈ G
with φ(µ) 6= 0 and let w ∈ Ker(φ). Then for any t ∈ R+ we have

detrN (G)

(
1 −tµ
1 −w

)
= max{1, t}.

Proof. We first note that by subtracting the first row from the second row and by
multiplying the second row by −w−1 on the left we turn the given matrix into the
matrix (

1 −tµ
0 1− tw−1µ

)
.

Note that φ(w−1µ) 6= 0, in particular w−1µ is an element of G of infinite order. The
lemma follows immediately from Proposition 2.4 and Lemma 2.8. �

We are now ready to give the proof of Proposition 9.1.

Proof of Proposition 9.1. Let (N, φ, γ : π1(N) → G) be an admissible triple with N 6=
S1 ×D2 and N 6= S1 × S2. We write H = Ker(φ : G → Z) and we pick µ ∈ G with
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φ(µ) = 1. It follows easily from [Tu02b, Section 1] that we can find an oriented surface
Σ ⊂ N with components Σ1, . . . ,Σl and non-zero r1, . . . , rl ∈ N with the following
properties:

(1) r1[Σ1] + · · ·+ rl[Σl] is dual to φ,

(2)
∑l

i=1−riχ(Σi) ≤ xN(φ),
(3) N \ Σ is connected.

For i = 1, . . . , l we pick disjoint oriented tubular neighborhoods Σi × [0, 1] and we
identify Σi with Σi × {0}. We write M := N \ ∪li=1Σi × (0, 1). We pick once and

for all a base point p in M and we denote by Ñ the universal cover of N . We write
π = π1(N, p). For i = 1, . . . , l we also pick a curve νi based at p which intersects Σi
precisely once in a positive direction and does not intersect any other component of
Σ. Note that φ(νi) = ri. By a slight abuse of notation we denote γ(νi) also by νi.
Finally for i = 1, . . . , l we write ni = −χ(Σi) + 2.

Following [Fr14, Section 4] we pick an appropriate CW–structure for N and we pick
appropriate lifts of the cells to the universal cover. The resulting boundary maps are
described in detail [Fr14, Section 4]. In order to keep the notation manageable we
now restrict to the case l = 2.

It follows from the discussion in [Fr14, Section 4] and the definitions that

τ(t) := τ (2)
(
0 → R[G]4

B3−→ R[G]4+2n1+2n2+s B2−→ R[G]4+2n1+2n2+s B1−→ R[G]4 → 0
)

is a representative for τ (2)(N, φ, γ), where s ∈ N and where B3, B2, B1 are matrices of
the form

B3 =

n1 n2 1 1 1 1 s+ n1 + n2

1 ∗ 0 1 −tr1ν1 0 0 0
1 0 0 1 −z1 0 0 ∗
1 0 ∗ 0 0 1 −tr2ν2 0
1 0 0 0 0 1 −z2 ∗

B2 =

1 1 n1 n1 n2 n2 1 1 s
n1 ∗ 0 idn1 −tr1ν1 idn1 0 0 0 0 0
n2 0 ∗ 0 0 idn2 −tr2ν2 idn2 0 0 0
1 0 0 ∗ 0 0 0 0 0 0
1 0 0 0 ∗ 0 0 0 0 0
1 0 0 0 0 ∗ 0 0 0 0
1 0 0 0 0 0 ∗ 0 0 0

s+n1+n2 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
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B1 =

1 1 1 1
1 1 −tr1ν1 0 0
1 0 0 1 −tr2ν2
n1 ∗ 0 0 0
n1 0 ∗ 0 0
n2 0 0 ∗ 0
n2 0 0 0 ∗
1 1 −x1 0 0
1 0 0 1 −x2
s ∗ ∗ ∗ ∗

with x1, x2, z1, z2 ∈ γ(H) and where all the entries of the matrices marked by ∗ lie in
Z[γ(H)]. Here we use the slightly non-standard, but hopefully useful notation, that
the top row indicates the size of the block columns and the left column indicates the
size of the block rows. The actual matrix is thus the matrix below the horizontal line
and to the right of the vertical line. (Note that in [Fr14] we view the elements of
R[G]n as column vectors whereas we now view them as row vectors.)

It follows from Lemma 9.4 and Proposition 2.4 that

detrN (G)




1 −tr1ν1 0 0
1 −z1 0 0
0 0 1 −tr2ν2
0 0 1 −z2


 = max{1, tr1+r2}.

If we write ∗i×j for an i× j-matrix, then it follows from Lemma 3.2 that τ(t) equals

max{1, tr1+r2}−1·detrN (G)



idn1 −tr1ν1 idn1 0 0 0
0 0 idn2 −tr2ν2 idn2 0
∗ ∗ ∗ ∗ ∗(n1+n2+s)×s


·max{1, tr1+r2}−1

which we can rewrite as

max{1, tr1+r2}−1·detrN (G)




idn1 −tr1ν1 idn1 0 0 0
∗n1×n1 ∗n1×n1 ∗ ∗ ∗

0 0 idn2 −tr2ν2 idn2 0
∗ ∗ ∗n2×n2 ∗n2×n2 ∗
∗ ∗ ∗ ∗ ∗s×s



·max{1, tr1+r2}−1.

Now we set l = 2r1 + 2r2 and k = r1n1 + r2n2. It is then straightforward to see that
if we apply Lemma 9.3 twice then we can turn the above matrix into a matrix of the
desired form. We leave the elementary details to the reader. �

9.2. Proof of Proposition 9.2. It is clear that the following proposition, together
with elementary properties of the degree function, implies Proposition 9.2.



40 JÉRÔME DUBOIS, STEFAN FRIEDL, AND WOLFGANG LÜCK

Proposition 9.5. Let G be a virtually abelian group. Let m ≥ k be natural numbers.
Let A be an m×m-matrix over Z[G] and let B be a k × k-matrix over Z[G]. Then

deg

(
t 7→ detrN (G)

(
A+ t

(
B 0
0 0

)))
≤ k.

Proof of Proposition 9.5. For t ∈ R+ we define

f(t) := detrN (G)

(
A+ t

(
B 0
0 0

))
.

It suffices to prove the following claim.

Claim.

deg0(f(t)) ≥ 0 and deg∞(f(t)) ≤ k.

We start out with deg0(f(t)). If f(t) = 0 for arbitrarily small t, then there is noth-
ing to prove. Now we suppose that this is not the case. It follows from Corollary 2.7
that

lim
t→0

f(t) = lim
t→0

detrN (G)

(
A+ t

(
B 0
0 0

))

= detrN (G) lim
t→0

(
A+ t

(
B 0
0 0

))
= detrN (G) (A) ∈ [0,∞).

In particular we see that ln(f(t)) is bounded from the above for sufficiently small t.
It follows that

deg0(f(t)) = lim
t→0

ln f(t)

ln t
≥ 0.

Now we turn to deg∞(f(t)). We write

A =

(
A1 A2

A3 A4

)

where A1 is a k × k-matrix. It then follows from Proposition 2.4 and Corollary 2.7
that

lim
t→∞

1
tk
f(t) = lim

t→∞

1
tk
detrN (G)

(
A1 + tB A2

A3 A4

)

= lim
t→∞

detrN (G)

(
t−1A1 +B t−1A2

A3 A4

)

= detrN (G) lim
t→∞

(
t−1A1 +B t−1A2

A3 A4

)

= detrN (G)

(
B 0
A3 A4

)
∈ [0,∞).
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Thus it follows that ln
(

1
tk
f(t)

)
is bounded from the above for sufficiently large t. Now

we see that

deg∞(f(t)) = lim
t→∞

ln f(t)

ln t
= lim

t→∞

ln
(
tk 1
tk
f(t)

)

ln t
= k + lim

t→∞

ln
(

1
tk
f(t)

)

ln t
≤ k.

This concludes the proof of the claim and thus of the proposition. �

10. The L2-Alexander torsion detects the Thurston norm

In Section 8.2 we had already seen that ‘most’ L2-Alexander torsions detect the
Thurston norm of a graph manifold. In this section we will show that also for all other
prime 3-manifolds there exists an L2-Alexander torsion which detects the Thurston
norm. More precisely, the goal of this section is to prove the following theorem from
the introduction.

Theorem 1.6. Let N be a prime 3-manifold that is not a closed graph manifold.
Then there exists an epimorphism γ : π1(N) → G onto a virtually abelian group such
that the projection map π1(N) → H1(N ;Z)/torsion factors through γ and such that
for any φ ∈ H1(N ;R) the function τ (2)(N, φ, γ) is monomial in the limit with

deg τ (2)(N, φ, γ) = xN (φ).

10.1. The Virtual Fibering Theorem. Before we state the Virtual Fibering The-
orem of Agol [Ag08] we need to recall a few definitions. First of all, given a 3-manifold
N we say that a class φ ∈ H1(N ;R) is quasi-fibered if φ is the limit of fibered classes
in H1(N ;Q). We will also use the notion of a group π being residually finite ratio-
nally solvable (RFRS ). In fact, as we will soon seen, for the purpose of this paper
one can treat this notion as a black box. Thus we provide the definition only for
completeness’ sake. A group is RFRS if there exists a filtration of π by subgroups
π = π0 ⊇ π1 ⊇ π2 · · · such that

(1)
⋂
i πi = {1},

(2) for any i the group πi is a normal, finite-index subgroup of π,
(3) for any i the map πi → πi/πi+1 factors through πi → H1(πi;Z)/torsion.

The following is a straightforward consequence of the virtual fibering theorem of
Agol [Ag08, Theorem 5.1] (see also [FK14, Theorem 5.1] and [FV12, Corollary 5.2]).

Theorem 10.1. Let N be a prime 3-manifold. Suppose that π1(N) is virtually RFRS.

Then there exists a finite regular cover p : N̂ → N such that for every class φ ∈
H1(N ;R) the class p∗φ ∈ H1(N̂ ;R) is quasi-fibered.

The following theorem was proved by Agol [Ag13] and Wise [Wi12a, Wi12b] in the
hyperbolic case. It was proved by Liu [Liu13] and Przytycki–Wise [PW14] for graph
manifolds with boundary and it was proved by Przytycki–Wise [PW12] for manifolds



42 JÉRÔME DUBOIS, STEFAN FRIEDL, AND WOLFGANG LÜCK

with a non-trivial JSJ decomposition and at least one hyperbolic piece in the JSJ
decomposition.

Theorem 10.2. If N is a prime 3-manifold that is not a closed graph manifold, then
π1(N) is virtually RFRS.

10.2. Continuity of degrees. Given a group G, a homomorphism φ : G → R and
t ∈ R+ we consider the ring homomorphism

κ(φ, t) : R[G] → R[G]
n∑
i=1

aigi 7→
n∑
i=1

ait
φ(gi)gi.

As usual, given a matrix A over R[G] we define κ(φ, t)(A) by applying κ(φ, t) to each
entry of A.

Recall that in Section 6 we associated to many functions f : R+ → [0,∞) a degree
deg(f) with values in R∪{±∞}. Now we endow R∪{±∞} with the usual topology,
i.e., the topology on R with a ‘point at infinity on the left’ and a ‘point at infinity on
the right’.

We have the following proposition.

Proposition 10.3. Let G be a virtually abelian group and let A be a square matrix
over Z[G] such that detrN (G)(A) 6= 0. Then the map

Hom(G,R) → R ∪ {±∞}

φ 7→ deg

(
R+ → [0,∞)
t 7→ detrN (G)

(
κ(φ, t)(A)

)
)

takes values in [0,∞) and it is a (possibly degenerate) norm.

Before we continue, recall that given a free abelian group F and p ∈ R[F ] we
denote by m(p) the Mahler measure. In the proof of Proposition 10.3 we will need
the following lemma.

Lemma 10.4. Let F be a free abelian group and let p ∈ R[F ] be non-zero. We write
p =

∑
f∈F af · f . Then for any φ ∈ Hom(F,R) we have

deg
(
t 7→ m(κ(φ, t)(p))

)
= max{φ(f)− φ(g) | f, g ∈ F with af 6= 0 and ag 6= 0}.

Proof. Let φ ∈ Hom(F,R). We denote by

S := {f ∈ F | af 6= 0}

the support of p =
∑

f∈F af · f . We write

d = min{φ(s) | s ∈ S} and D = max{φ(s) | s ∈ S}.

Now we sort the summands of p according to their φ-values. More precisely, since
φ takes only finitely many values on S we can find p1, . . . , pr ∈ R[Ker(φ)] and
g1, . . . , gr ∈ F with

d = φ(g1) < φ(g2) < · · · < φ(gr) = D
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such that p = p1g1 + · · ·+ prgr. Note that p1 6= 0 and pr 6= 0 by definition of d and
D. By the continuity of the Mahler measure, see Corollary 2.7 and [Bo98, p. 127], we
have

lim
t→∞

m(κ(φ, t)(p))

tD
= lim

t→∞
m

(
p1g1

tφ(g1)

tD
+ · · ·+ prgr

tφ(gr)

tD

)

= m
(
lim
t→∞

(
p1g1

tφ(g1)

tD
+ · · ·+ prgr

tφ(gr)

tD

))
= m(prgr) 6= 0.

It thus follows that deg∞(t 7→ m(κ(φ, t)(p))) = D. Basically the same argument also
shows that deg0(t 7→ m(κ(φ, t)(p))) = d. Putting these two equalities together gives
the desired result. �

We can now give the proof of Proposition 10.3.

Proof of Proposition 10.3. Let G be a virtually abelian group. There exists a finite
index subgroup F that is torsion-free abelian. We pick representatives g1, . . . , gd
for G/F . Given a matrix B over R[G] we define the matrix ιFG(B) over R[F ] as
in Section 2.3, using this ordered set of representatives. It follows easily from the
definitions that for any φ ∈ Hom(G,R) and any t ∈ R+ we have

(4) ιFG(κ(φ, t)(A)) = κ(φ|F , t)
(
ιFG(A)

)
.

Now we denote by p ∈ Z[F ] the determinant of ιFG(A). It follows from (4), Proposi-
tion 2.4 and Lemma 2.6 that

(5) detrN (G)

(
κ(φ, t)(A)

)
= m

(
κ(φ, t)(p)

) 1
[G:F ] for any φ ∈ Hom(G,R) and t ∈ R+.

If we apply (5) to t = 1, then we see that our assumption that detrN (G)(A) 6= 0 implies
in particular that p 6= 0. Furthermore, by the combination of (5) and Lemma 6.1 (7)
it suffices to show that the map

Hom(F,R) → R ∪ {±∞}
ψ 7→ deg

(
t 7→ m(κ(ψ, t)(p))

)

takes values in [0,∞) and that it is a (possibly degenerate) norm. But since p 6= 0
this is an immediate consequence of Lemma 10.4. �

10.3. The proof of Theorem 1.6.

Proof. Let N be a prime 3-manifold which is not a closed graph manifold. It follows

from Theorems 10.1 and 10.2 that there exists a finite regular cover p : N̂ → N such

that given any φ ∈ H1(N ;R) the pull-back p∗φ ∈ H1(N̂ ;R) is quasi-fibered.

Now we denote by γ̂ : π1(N̂) → H := H1(N̂ ;Z)/torsion the canonical epimorphism.
By Theorem 8.5 we have

(6) deg τ (2)(N̂ , γ̂, ψ) = xN̂ (ψ) for any fibered ψ ∈ H1(N̂ ;Q).
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It follows from Proposition 10.3 and from the fact that xN̂ is a norm that both sides
of (6) are continuous in ψ. It thus follows that we also have

deg τ (2)(N̂, γ̂, ψ) = xN̂ (ψ) for any quasi-fibered ψ ∈ H1(N̂ ;R).

In particular the equality holds for any p∗φ with φ ∈ H1(N ;R).
Now we consider the projection homomorphism

γ : π1(N) → G := π1(N)/Ker{γ̂ : π1(N̂) → H}.

(Note that Ker{γ̂ : π1(N̂) → H} is characteristic in π1(N̂) hence it is normal in
π1(N).) It follows from the above, from Lemma 5.3 and the multiplicativity of the
Thurston norm under finite covers (see Gabai [Ga83, Corollary 6.13]), that for any
φ ∈ H1(N ;R) we have

deg τ (2)(N, γ, φ) =
1

[N̂ : N ]
deg τ (2)(N̂, γ̂, p∗φ) =

1

[N̂ : N ]
xN̂(p

∗φ) = xN(φ).

�
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[Lü02] W. Lück, L2-invariants: theory and applications to geometry and K-theory, Ergebnisse der

Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 44.
Springer-Verlag, Berlin, 2002.

[LS99] W. Lück and T. Schick, L2-torsion of hyperbolic manifolds of finite volume, Geom. Funct.
Anal. 9 (1999), no. 3, 518–567.

[Mi66] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.
[Ne99] W. Neumann, Notes on geometry and 3-manifolds, Bolyai Soc. Math. Stud., 8, Low dimen-

sional topology (Eger, 1996/Budapest, 1998), 191–267, János Bolyai Math. Soc., Budapest,
1999.

[Pa77] D. Passman, The algebraic structure of group rings, John Wiley & Sons. XIV (1977).
[PW12] P. Przytycki and D. Wise, Mixed 3-manifolds are virtually special, Preprint (2012).
[PW14] P. Przytycki and D. Wise, Graph manifolds with boundary are virtually special, Journal of

Topology 7 (2014), 419-435.
[Ra12] J. Raimbault, Exponential growth of torsion in abelian coverings, Algebr. Geom. Topol. 12

(2012), 1331–1372.
[Ro90] D. Rolfsen, Knots and Links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc.,

Houston, TX, 1990.
[Sc01] T. Schick, L2-determinant class and approximation of L2–Betti numbers, Trans. Amer. Math.

Soc. 353 (2001), 3247–3265.
[Th86] W. P. Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339:

99–130 (1986)
[Tu86] V. Turaev, Reidemeister torsion in knot theory, Russian Math. Surveys 41 (1986), no. 1,

119–182.
[Tu01] V. Turaev, Introduction to combinatorial torsions, Birkhäuser, Basel, (2001)
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pus des Cézeaux - B.P. 80026, 63171 Aubière cedex, France

E-mail address : jerome.dubois@math.univ-bpclermont.fr

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

E-mail address : sfriedl@gmail.com

Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn,

Germany

E-mail address : wolfgang.lueck@him.uni-bonn.de


	1. Introduction
	1.1. The L2-Alexander torsion
	1.2. The degree of the L2-Alexander torsion
	1.3. Calculations of the L2-Alexander torsion
	1.4. The symmetry of L2-Alexander torsions
	1.5. The L2-Alexander torsion of knot complements
	1.6. The L2-Alexander torsion and the Thurston norm
	Conventions.
	Acknowledgments.

	2. Hilbert N(G)-modules and the Fuglede–Kadison determinant
	2.1. The dimension of Hilbert N(G)–modules
	2.2. Definition of the Fuglede–Kadison determinant
	2.3. Properties of the Fuglede–Kadison determinant
	2.4. The rank of a square matrix
	2.5. Properties of the regular Fuglede–Kadison determinant
	2.6. The class G
	2.7. The Fuglede–Kadison determinant and the Mahler measure

	3. The L2–torsion of complexes over group rings
	3.1. Definition of the L2–torsion of complexes over group rings
	3.2. Calculating L2–torsions using square matrices
	3.3. The L2-torsion and the Mahler measures

	4. Admissible triples and the L2-Alexander torsion
	4.1. Admissible triples
	4.2. Definition of the L2-Alexander torsion of CW–complexes and manifolds

	5. Basic properties of the L2-Alexander torsion
	6. The degree of functions
	7. The L2-Alexander torsion for knots
	7.1. Fox derivatives
	7.2. The L2-Alexander invariant of Li–Zhang
	7.3. The L2-Alexander torsion and the one-variable Alexander polynomial

	8. Calculations of L2-Alexander torsions for special classes of 3-manifolds
	8.1. L2-Alexander torsions of graph manifolds
	8.2. Applications to knot theory
	8.3. Fibered classes and the L2-Alexander torsion

	9. The L2-Alexander torsion gives a lower bound on the Thurston norm
	9.1. Proof of Proposition ??
	9.2. Proof of Proposition ??

	10. The L2-Alexander torsion detects the Thurston norm
	10.1. The Virtual Fibering Theorem
	10.2. Continuity of degrees
	10.3. The proof of Theorem ??

	References

