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ESTIMATES FOR SPECTRAL DENSITY FUNCTIONS OF

MATRICES OVER C[Zd]

LÜCK, W.

Abstract. We give a polynomial bound on the spectral density function of a
matrix over the complex group ring of Zd. It yields an explicit lower bound on
the Novikov-Shubin invariant associated to this matrix showing in particular
that the Novikov-Shubin invariant is larger than zero.

1. Introduction

1.1. Summary. The main result of this paper is that for a (m,n)-matrix A over
the complex group ring of Zd the Novikov-Shubin invariant of the bounded Z

d-

equivariant operator r
(2)
A : L2(Zd)m → L2(Zd)n given by right multiplication with

A is larger than zero. Actually rather explicit lower bounds in terms of elementary
invariants of the minors of the matrix A will be given. This is a direct consequence

of a polynomial bound of the spectral density function of r
(2)
A which is interesting

in its own right. It will play a role in the forthcoming paper [1], where we will
twist L2-torsion with finite dimensional representations and it will be crucial that
we allow complex coefficients and not only integral coefficients.

Novikov-Shubin invariants were originally defined analytically in [10, 11]. More
information about them can be found for instance in [8, Chapter 2].

Before we state the main result, we need the following notions.

1.2. The width and the leading coefficient. Consider a non-zero element p =
p(z±1

1 , . . . , z±1
d ) in C[Zd] = C[z±1

1 , . . . , z±1
d ] for some integer d ≥ 1.

There are integers n−
d and n+

d and elements qn(z
±1
1 , . . . , z±1

d−1) in C[Zd−1] =

C[z±1
1 , . . . , z±1

d−1] uniquely determined by the properties that

n−
d ≤ n+

d ;

qn−

d
(z±1

1 , . . . , z±1
d−1) 6= 0;

qn+
d
(z±1

1 , . . . , z±1
d−1) 6= 0;

p(z±1
1 , . . . , z±1

d ) =

n+
d
∑

n=n−

d

qn(z
±1
1 , . . . , z±1

d−1) · znd .

In the sequel denote

w(p) = n+
d − n−

d ;

q+(p) = qn+
d
(z±1

1 , . . . , z±1
d−1).
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Define inductively elements pi(z
±1
1 , . . . , z±1

d−i) in C[Zd−i] = C[z±1
1 , . . . , z±1

d−i] and
integers wi(p) ≥ 0 for i = 0, 1, 2, . . . , d by

p0(z
±1
1 , . . . , z±1

d ) := p(z±1
1 , . . . , z±1

d );

p1(z
±1
1 , . . . , z±1

d−1) := q+(p)

pi := q+(pi−1) for i = 1, 2 . . . , d;

w0(p) := w(p)

wi(p) := w(pi) for i = 1, 2 . . . , (d− 1).

Define the width of p = p(z±1
1 , . . . , z±1

d ) to be

wd(p) = max{w0(p), w1(p), . . . , wd−1(p)},(1.1)

and the leading coefficient of p to be

lead(p) = pd.(1.2)

Obviously we have

wd(p) ≥ wd(p1) ≥ wd(p2) ≥ · · · ≥ wd(pd) = 0;

lead(p) = lead(p1) = . . . = lead(p0) 6= 0.

Notice that pi, wd(p) and lead(p) do depend on the ordering of the variables
z1, . . . , zd.

Remark 1.3 (Leading coefficient). The name “leading coefficient” comes from the
following alternative definition. Equip Z

d with the lexicographical order, i.e., we
put (m1, . . . ,md) < (n1, . . . , nd), if md < nd, or if md = nd and md−1 < nd−1,
or if md = nd, md−1 = nd−1 and md−2 < nd−2, or if . . ., or if mi = ni for
i = d, (d − 1), . . . , 2 and m1 < n1. We can write p as a finite sum with complex
coefficients an1,...,nd

p(z±1 , . . . , z±d ) =
∑

(n1,...,nd)∈Zd

an1,...,nd
· zn1

1 · zn2
2 · · · · · znd

d .

Let (m1, . . .md) ∈ Zd be maximal with respect to the lexicographical order among
those elements (n1, . . . , nd) ∈ Zd for which an1,...,nd

6= 0. Then the leading coeffi-
cient of p is am1,...,md

.

1.3. The L1-norm of a matrix. For an element p =
∑

g∈Zd λg · g ∈ C[Zd] define

||p||1 :=
∑

g∈G |λg |. For a matrix A ∈ Mm,n(C[Z
d]) define

||A||1 = max{||ai,j ||1 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.(1.4)

The main purpose of this notion is that it gives an a priori upper bound on the

norm r
(2)
A : L2(Zd) → L2(Zd), namely, we get from [8, Lemma 13.33 on page 466]

||r(2)A || ≤ m · n · ||A||1.(1.5)

1.4. The spectral density function. Given A ∈ Mm,n(C[Z
d]), multiplication

with A induces a bounded Zd-equivariant operator r
(2)
A : L2(Zd)m → L2(Zd)n. We

will denote by

F
(

r
(2)
A

)

: [0,∞) → [0,∞)(1.6)

its spectral density function in the sense of [8, Definition 2.1 on page 73], namely,
the von Neumann dimension of the image of the operator obtained by applying the

functional calculus to the characteristic function of [0, λ2] to the operator (r
(2)
A )∗r

(2)
A .

In the special case m = n = 1, where A is given by an element p ∈ C[Zd], it can be
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computed in terms of the Haar measure µTd of the d-torus T d see [8, Example 2.6
on page 75]

F
(

r
(2)
A

)

(λ) = µTd

(

{(z1, . . . , zd) ∈ T d | |p(z1, . . . , zd)| ≤ λ}
)

.(1.7)

1.5. The main result. Our main result is:

Theorem 1.8 (Main Theorem). Consider any natural numbers d,m, n and a non-
zero matrix A ∈ Mm,n(C[Z

d]). Let B be a quadratic submatrix of A of maximal
size k such that the corresponding minor p = detC[Zd](B) is non-trivial. Then:

(1) If wd(p) ≥ 1, the spectral density function of r
(2)
A : L2(Zd)m → L2(Zd)n

satisfies for all λ ≥ 0

F
(

r
(2)
A

)

(λ)− F
(

r
(2)
A

)

(0)

≤ 8 ·
√
3√

47
· k · d · wd(p) ·

(

k2k−2 · (||B||1)k−1 · λ
| lead(p)|

)

1
d·wd(p)

.

If wd(p) = 0, then F
(

r
(2)
A

)

(λ) = 0 for all λ < | lead(p)| and F
(

r
(2)
A

)

(λ) = 1
for all λ ≥ | lead(p)|;

(2) The Novikov-Shubin invariant of r
(2)
A is ∞ or ∞+ or a real number satis-

fying

α
(

r
(2)
A

)

≥ 1

d · wd(p) ,

and is in particular larger than zero.

It is known that the Novikov-Shubin invariants of r
(2)
A for a matrix A over the

integral group ring of Zd is a rational numbers larger than zero unless its value is
∞ or ∞+. This follows from Lott [5, Proposition 39]. (The author of [5] informed
us that his proof of this statement is correct when d = 1 but has a gap when d > 1.
The nature of the gap is described in [6, page 16]. The proof in this case can be
completed by the same basic method used in [5].) This confirms a conjecture of
Lott-Lück [7, Conjecture 7.2] for G = Zd. The case of a finitely generated free
group G is taken care of by Sauer [12].

Virtually finitely generated free abelian groups and virtually finitely generated
free groups are the only cases of finitely generated groups, where the positivity of
the Novikov-Shubin invariants for all matrices over the complex group ring is now
known. In this context we mention the preprints [2, 3], where examples of groups
G and matrices A ∈ Mm,n(ZG) are constructed for which the Novikov-Shubin

invariant of r
(2)
A is zero, disproving a conjecture of Lott-Lück [7, Conjecture 7.2].

1.6. Example. Consider the case d = 2, m = 3 and n = 2 and the (3, 2)-matrix
over C[Z2]

A =

(

z31 −1 1
2 · z1 · z22 − 16 z2 z1z2

)

Let B be the (2, 2)-submatrix obtained by deleting third column. Then k = 2,

B =

(

z31 −1
2 · z1 · z22 − 16 z2

)

and we get

p := detC[Z2](B) = z31 · z2 + 2 · z1 · z22 − 16.

Using the notation of Section 1.2 one easily checks p1(z1) = 2 · z1, wd(p) = 2,
and lead(p) = 2. Obviously ||A||1 = max{|1|, | − 1|, |2| + |16|, |1|} = 18. Hence
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Theorem 1.8 implies for all λ ≥ 0

F
(

r
(2)
A

)

(λ) − F
(

r
(2)
A

)

(0) ≤ 192 ·
√
2√

47
· λ 1

4 .

α
(

r
(2)
A

)

≥ 1

4
.

1.7. Acknowledgments. This paper is financially supported by the Leibniz-Preis
of the author granted by the Deutsche Forschungsgemeinschaft DFG. The author
wants to thank the referee for his useful comments.

2. The case m = n = 1

The main result of this section is the following

Proposition 2.1. Consider an non-zero element p in C[Zd] = C[z±1
1 , . . . , z±1

d ]. If

wd(p) = 0, then F
(

r
(2)
A

)

(λ) = 0 for all λ < | lead(p)| and F
(

r
(2)
A

)

(λ) = 1 for all

λ ≥ | lead(p)|. If wd(p) ≥ 1, we get for the spectral density function of r
(2)
p for all

λ ≥ 0

F
(

r(2)p

)

(λ) ≤ 8 ·
√
3√

47
· d · wd(p) ·

(

λ

| lead(p)|

)
1

d·wd(p)

.

For the case d = 1 and p a monic polynomial, a similar estimate of the shape

F
(

r
(2)
p

)

(λ) ≤ Ck ·λ
1

k−1 can be found in [4, Theorem 1], where the k ≥ 2 is the num-
ber of non-zero coefficients, and the sequence of real numbers (Ck)k≥2 is recursively
defined and satisfies Ck ≥ k − 1.

2.1. Degree one. In this subsection we deal with Proposition 2.1 in the case d = 1.
We get from the Taylor expansion of cos(x) around 0 with the Lagrangian re-

mainder term that for any x ∈ R there exists θ(x) ∈ [0, 1] such that

cos(x) = 1− x2

2
+

cos(θ(x) · x)
4!

· x4.

This implies for x 6= 0 and |x| ≤ 1/2
∣

∣

∣

∣

2− 2 cos(x)

x2
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

2 · cos(θ(x) · x)
4!

· x2

∣

∣

∣

∣

≤
∣

∣

∣

∣

2 · cos(θ(x) · x)
4!

∣

∣

∣

∣

· |x|2 ≤ 1

12
· 1
4
=

1

48
.

Hence we get for x ∈ [−1/2, 1/2]

47

48
· x2 ≤ 2− 2 cos(x).(2.2)

Lemma 2.3. For any complex number a ∈ Z we get for the spectral density function
of (z − a) ∈ C[Z] = C[z, z−1]

F
(

r
(2)
z−a

)

(λ) ≤ 8 ·
√
3√

47
· λ for λ ∈ [0,∞).

Proof. We compute using (1.7), where r := |a|,

F
(

r
(2)
z−a

)

(λ) = µS1{z ∈ S1 | |z − a| ≤ λ}
= µS1{z ∈ S1 | |z − r| ≤ λ}
= µS1{φ ∈ [−1/2, 1/2] | | cos(φ) + i sin(φ)− r| ≤ λ}
= µS1{φ ∈ [−1/2, 1/2] | | cos(φ) + i sin(φ)− r|2 ≤ λ2}
= µS1{φ ∈ [−1/2, 1/2] | (cos(φ) − r)2 + sin(φ)2 ≤ λ2}
= µS1{φ ∈ [−1/2, 1/2] | r · (2 − 2 cos(φ) + (r − 1)2 ≤ λ2}.
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We estimate using (2.2) for φ ∈ [−1/2, 1/2]

r · (2− 2 cos(φ)) + (r − 1)2 ≥ r · (2− 2 cos(φ)) ≥ 47

48
· φ2.

This implies for λ ≥ 0

F
(

r
(2)
z−a

)

(λ) = µS1{φ ∈ [−1/2, 1/2] | r · (2− 2 cos(φ) + (r − 1)2 ≤ λ2}

≤ µS1{φ ∈ [−1/2, 1/2] | 47
48

· φ2 ≤ λ2}

= µS1

{

φ ∈ [−1/2, 1/2]

∣

∣

∣

∣

∣

|φ| ≤
√

48

47
· λ
}

≤ 2 ·
√

48

47
· λ

=
8 ·

√
3√

47
· λ.

�

Lemma 2.4. Let p(z) ∈ C[Z] = C[z, z−1] be a non-zero element. If wd(p) = 0,

then F
(

r
(2)
p

)

(λ) = 0 for all λ < | lead(p)| and F
(

r
(2)
p

)

(λ) = 1 for all λ ≥ | lead(p)|.
If wd(p) ≥ 1, we get

F
(

r(2)p

)

(λ) ≤ 8 ·
√
3√

47
· wd(p) ·

(

λ

| lead(p)|

)
1

wd(p)

for λ ∈ [0,∞).

Proof. If wd(p) = 0, then p is of the shape C · zn, and the claim follows directly
from (1.7). Hence we can assume without loss of generality that wd(p) ≥ 1. We
can write p(z) as a product

p(z) = lead(p) · zk ·
r
∏

i=1

(z − ai)

for an integer r ≥ 0, non-zero complex numbers a1, . . . , ar and an integer k.
Since for any polynomial p and complex number c 6= 0 we have for all λ ∈ [0,∞)

F
(

r
(2)
c·p

)

(λ) = F
(

r(2)p

)

(

λ

|c|

)

,

we can assume without loss of generality lead(p) = 1. If r = 0, then p(z) = zk

for some k 6= 0 and the claim follows by a direct inspection. Hence we can assume
without loss of generality r ≥ 1. Since the width, the leading coefficient and the
spectral density functions of p(z) and z−k · p(z) agree, we can assume without loss
of generality k = 0, or equivalently, that p(z) has the form for some r ≥ 1

p(z) =
r
∏

i=1

(z − ai).

We proceed by induction over r. The case r = 1 is taken care of by Lemma 2.3.
The induction step from r − 1 ≥ 1 to r is done as follows.

Put q(z) =
∏r−1

i=1 (z − ai). Then p(z) = q(z) · (z − ar). The following inequality
for elements q1, q2 ∈ C[z, z−1] and s ∈ (0, 1) is a special case of [8, Lemma 2.13 (3)
on page 78]

F
(

r
(2)
q1·q2

)

(λ) ≤ F
(

r(2)q1

)

(λ1−s) + F
(

r(2)q2

)

(λs).(2.5)

We conclude from (2.5) applied to p(z) = q(z) · (z − ar) in the special case s = 1/r

F
(

r(2)p

)

(λ) ≤ F
(

r(2)q

)

(λ
r−1
r ) + F

(

r
(2)
z−ar

)

(λ1/r).
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We conclude from the induction hypothesis for λ ∈ [0,∞)

F
(

r(2)q

)

(λ) ≤ 8 ·
√
3√

47
· (r − 1) · λ 1

r−1 ;

F
(

r
(2)
z−ar

)

(λ) ≤ 8 ·
√
3√

47
· λ.

This implies for λ ∈ [0,∞)

F
(

r(2)p

)

(λ) ≤ F
(

r(2)q

)

(λ
r−1
r ) + F

(

r
(2)
z−ar

)

(λ1/r)

≤ 8 ·
√
3√

47
· (r − 1) ·

(

λ
r−1
r

)
1

r−1

+
8 ·

√
3√

47
· λ 1

r

≤ 8 ·
√
3√

47
· (r − 1) · λ 1

r +
8 ·

√
3√

47
· λ 1

r

=
8 ·

√
3√

47
· r · λ 1

r .

�

2.2. The induction step. Now we finish the proof of Proposition 2.1 by induction
over d. If wd(p) = 0, then p is of the shape C · zn1

1 · zn2
2 · · · · · znd

d , and the claim
follows directly from (1.7). Hence we can assume without loss of generality that
wd(p) ≥ 1. The induction beginning d = 1 has been taken care of by Lemma 2.4,
the induction step from d− 1 to d ≥ 2 is done as follows.

Since F
(

r
(2)
p

)

(λ) ≤ 1, the claim is obviously true for λ
| lead(p)| ≥ 1. Hence we can

assume in the sequel λ
| lead(p)| ≤ 1.

We conclude from (1.7) and Fubini’s Theorem applied to T d = T d−1×S1, where
χA denotes the characteristic function of a subset A and p1(z

±
1 , . . . , z±1

d−1) has been
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defined in Subsection 1.2

(2.6)

F
(

r(2)p

)

(λ)

= µTd

(

{(z1, . . . , zd) ∈ T d | |p(z1, . . . , zd)| ≤ λ}
)

=

∫

Td

χ{(z1,...,zd)∈Td| |p(z1,...,zd)|≤λ} dµTn

=

∫

Td−1

(
∫

S1

χ{(z1,...,zd)∈Td| |p(z1,...,zd)|≤λ} dµS1

)

dµTd−1

=

∫

Td−1

χ{(z1,...,zd−1)∈Td−1| |p1(z1,...,zd−1)≤| lead(p)|1/d·λ(d−1)1/d}

·
(∫

S1

χ{(z1,...,zd)∈Td| |p(z1,...,zd)|≤λ} dµS1

)

dµTd−1

+

∫

Td−1

χ{(z1,...,zd−1)∈Td−1| |p1(z1,...,zd−1)>| lead(p)|1/d·λ(d−1))/d}

·
(∫

S1

χ{(z1,...,zd)∈Td| |p(z1,...,zd)|≤λ} dµS1

)

dµTd−1

≤
∫

Td−1

χ(z1,...,zd−1)| |p1(z1,...,zd−1)|≤| lead(p)|1/d·λ(d−1)1/d} +

max

{∫

S1

χ{(z1,...,zd)∈Td| |p(z1,...,zd)|≤λ} dµS1

∣

∣

∣

∣

(z1, . . . , zd−1) ∈ T d−1

with |p1(z1, . . . , zd−1)| > | lead(p)|1/d · λ(d−1)/d

}

.

We get from the induction hypothesis applied to p1(z1, . . . , zd−1) and (1.7) since
λ

| lead(p)| ≤ 1, wd(p1) ≤ wd(p) and lead(p) = lead(p1)

(2.7)
∫

Td−1

χ(z1,...,zd−1)| |p1(z1,...,zd−1)|≤| lead(p)|1/d·λ(d−1)1/d}

=

∫

Td−1

χ(z1,...,zd−1)| |p1(z1,...,zd−1)|≤| lead(p1)|1/d·λ(d−1)1/d}

= F
(

r(2)p1

)(

| lead(p1)|1/d| · λ(d−1)/d
)

≤ 8 ·
√
3√

47
· (d− 1) · wd(p1) ·

( | lead(p1)|1/d · λ(d−1)/d

| lead(p1)|

)

1
(d−1)·wd(p1)

=
8 ·

√
3√

47
· (d− 1) · wd(p1) ·

(

λ

| lead(p1)|

)
1

d·wd(p1)

=
8 ·

√
3√

47
· (d− 1) · wd(p1) ·

(

λ

| lead(p)|

)
1

d·wd(p1)

≤ 8 ·
√
3√

47
· (d− 1) · wd(p) ·

(

λ

| lead(p)|

)
1

d·wd(p1)

≤ 8 ·
√
3√

47
· (d− 1) · wd(p) ·

(

λ

| lead(p)|

)
1

d·wd(p)

.
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Fix (z1, . . . , zd−1) ∈ T d−1 with |p1(z1, . . . , zd−1)| > lead(p)1/d·λ(d−1)/d. Consider
the element f(z±1

d ) := p(z1, . . . zd−1, z
±
d ) ∈ C[z±d ]. It has the shape

f(z±d ) =

n+
∑

n=n−

qn(z1, . . . , zd−1) · znd .

The leading coefficient of f(z±1
d ) is p1(z1, . . . zd−1) = qn+(z1, . . . , zd−1). Hence we

get from Lemma 2.4 applied to f(z±1
d ) and (1.7) since λ

| lead(p)| ≤ 1, wd(f) ≤ wd(p)

and | lead(f)| = |p1(z1, . . . zd−1))| > | lead(p)|1/d · λ(d−1)/d

(2.8)
∫

S1

χ{(z1,...,zd)∈Td| |p(z1,...,zd)|≤λ} dµS1

=

∫

S1

χ{zd∈S1| |f(zd)|≤λ} dµS1

=
8 ·

√
3√

47
· wd(f) ·

(

λ

lead(f)

)
1

wd(f)

≤ 8 ·
√
3√

47
· wd(f) ·

(

λ

lead(p)1/d · λ(d−1)/d

)
1

wd(f)

=
8 ·

√
3√

47
· wd(f) ·

(

λ

lead(p)

)
1

d·wd(f)

≤ 8 ·
√
3√

47
· wd(p) ·

(

λ

lead(p)

)
1

d·wd(p)

.

Combining (2.6), (2.7) and (2.8) yields for λ with λ
| lead(p)| ≤ 1

F
(

r(2)p

)

(λ) ≤ 8 ·
√
3√

47
· (d− 1) · wd(p) ·

(

λ

| lead(p)|

)
1

d·wd(p)

+
8 ·

√
3√

47
· wd(p) ·

(

λ

| lead(p)|

)
1

d·wd(p)

=
8 ·

√
3√

47
· d · wd(p) ·

(

λ

| lead(p)|

)
1

d·wd(p)

.

This finishes the proof of Proposition 2.1.

3. Proof of the main Theorem 1.8

Now we can complete the proof of our Main Theorem 1.8. We need the following
preliminary result

Lemma 3.1. Consider B ∈ Mk,k(C[Z
d]) such that p := detC[Zd](B) is non-trivial.

Then we get for all λ ≥ 0

F
(

r
(2)
B

)

(λ) ≤ k · F
(

r(2)p

)(

||r(2)B ||k−1 · λ
)

.

Proof. In the sequel we will identify L2(Zd) and L2(T d) by the Fourier transfor-
mation. We can choose a unitary Zd-equivariant operator U : L2(Zd)k → L2(Zd)k

and functions f1, f2, . . . , fk : T
d → R such that 0 ≤ f1(z) ≤ f2(z) ≤ . . . ≤ fk(z)

holds for all z ∈ T d and we have the following equality of bounded Zd-equivariant
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operators L2(Zd)k = L2(T d)k → L2(Zd)k = L2(T d)k, see [9, Lemma 2.2]

(r
(2)
B )∗ ◦ r(2)B = U ◦























r
(2)
f1

0 0 · · · 0 0

0 r
(2)
f2

0 · · · 0 0

0 0 r
(2)
f3

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · r
(2)
fk−1

0

0 0 0 · · · 0 r
(2)
fk























◦ U∗.(3.2)

Since p 6= 0 holds by assumption and hence the rank of B over C[Zd](0) is maximal,

we conclude from [8, Lemma 1.34 on page 35] that r
(2)
B and hence r

(2)
fi

for each
i = 1, 2, . . . , k are weak isomorphisms, i.e., they are injective and have dense images.
We conclude from [8, Lemma 2.11 (11) on page 77 and Lemma 2.13 on page 78]

F (r
(2)
B )(λ) = F

(

(r
(2)
B )∗ ◦ r(2)B

)

(λ2) =

k
∑

i=1

F (r
(2)
fi

)(λ2).

For i = 1, 2, . . . , k we have f1(z) ≤ fi(z) for all z ∈ T d and hence F
(

r
(2)
fi

)

(λ) ≤
F
(

r
(2)
f1

)

(λ) for all λ ≥ 0. This implies

F
(

r
(2)
B

)

(λ) ≤ k · F
(

r
(2)
f1

)(λ2).(3.3)

Let B∗ ∈ Mk,k(C[Z
d) be the matrix obtain from B by transposition and applying

to each entry the involution C[Zd] → C[Zd| sending ∑g∈G λg · g to
∑

g∈G λg · g−1.

Then
(

r
(2)
B

)∗
= r

(2)
B∗ . Since (r

(2)
B )∗ ◦ r(2)B = r

(2)
BB∗ and detC[Zd](BB∗) = detC[Zd](B) ·

detC[Zd](B
∗) = p · p∗ holds, we conclude from (3.2) the equality of functions T d →

[0,∞]

pp∗ =

k
∏

i=1

fi.

Since sup{|fi(z)| | z ∈ T d} agrees with the operatornorm ||r(2fi || and we have

||r(2)B ||2 = ||(r(2)B )∗r
(2)
B || = max

{

||r(2)fi
||
∣

∣ i = 1, 2, . . . , k} = ||r(2)fk
||, we obtain the

inequality of functions T d → [0,∞]

pp∗ ≤
(

k
∏

i=2

||r(2)fi
||
)

· f1 ≤
(

||r(2)B ||2
)k−1 · f1.

Hence we get for all λ ≥ 0

F
(

r
(2)
pp∗

)

(

(

||r(2)B ||k−1λ
)2
)

= F
(

r
(2)
pp∗

)

(

||r(2)B ||2
)k−1

λ2
)

≥ F
(

(||r(2)B ||2
)k−1 · r(2)f1

)(

||r(2)B ||2
)k−1 · λ2

)

= F
(

r
(2)
f1

)(λ2).

This together with (3.3) and [8, Lemma 2.11 (11) on page 77] implies

F
(

r
(2)
B

)

(λ) ≤ k · F
(

r
(2)
f1

)(λ2)

≤ k · F
(

r
(2)
pp∗

)

(

(

||r(2)B ||k−1λ
)2
)

≤ k · F
(

r(2)p

)(

||r(2)B ||k−1λ
)

.

�
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Proof of the Main Theorem 1.8. (1) In the sequel we denote by dimN (G) the von
Neumann dimension, see for instance [8, Subsection 1.1.3]. The rank of the matrices

A andB over the quotient fieldC[Zd](0) is k. The operator r
(2)
B : L2(Zd)k → L2(Zd)k

is a weak isomorphism, and dimN (Zd)(im(r
(2)
A )) = k because of [8, Lemma 1.34 (1)

on page 35]. In particular we have F
(

r
(2)
B

)

(0) = 0.

Let i(2) : L2(Zd)k → L2(Zd)m be the inclusion corresponding to I ⊆ {1, 2, . . . ,m}
and let pr(2) : L2(Zd)n → L2(Zd)k be the projection corresponding to J ⊆ {1, 2, . . . , n},
where I and J are the subsets specifying the submatrix B. Then r

(2)
B : L2(Zd)k →

L2(Zd)k agrees with the composite

r
(2)
B : L2(Zd)k

i(2)−−→ L2(Zd)m
r
(2)
A−−→ L2(Zd)n

pr(2)−−−→ L2(Zd)k.

Let p(2) : L2(Zd)m → ker(r
(2)
A ))⊥ be the orthogonal projection onto the orthogonal

complement ker(r
(2)
A )⊥ ⊆ L2(G)m of the kernel of r

(2)
A . Let j(2) : im(r

(2)
A ) → L2(G)n

be the inclusion of the closure of the image of r
(2)
A . Let (r

(2)
A )⊥ : ker(r

(2)
A )⊥ →

im(r
(2)
A ) be the Zd-equivariant bounded operator uniquely determined by

r
(2)
A = j(2) ◦ (r(2)A )⊥ ◦ p(2).

The operator (r
(2)
A )⊥ is a weak isomorphism by construction. We have the decom-

position of the weak isomorphism

r
(2)
B = pr(2) ◦ r

(2)
A ◦ i(2) = pr(2) ◦j(2) ◦ (r(2)A )⊥ ◦ p(2) ◦ i(2).(3.4)

This implies that the morphism p(2)◦i(2) : L2(Zd)k) → ker(r
(2)
A )⊥ is injective and the

morphism pr(2) ◦j(2) : im(r
(2)
A ) → L2(Zd)k has dense image. Since we already know

dimN (G)

(

im(r
(2)
A )
)

= k = dimN (G)

(

L2(Zd)k
)

, the operators p(2) ◦ i(2) : L2(Zd)k →
ker(r

(2)
A )⊥ and pr(2) ◦j(2) : im(r

(2)
A ) → L2(Zd) are weak isomorphisms. Since the

operatornorm of pr(2) ◦j(2) and of p(2) ◦ i(2) is less or equal to 1, we conclude
from [8, Lemma 2.13 on page 78] and (3.4)

F
(

r
(2)
A

)

(λ)− F
(

r
(2)
A

)

(0)

= F
(

(r
(2)
A )⊥

)

(λ)

≤ F
(

pr(2) ◦j(2) ◦ (r(2)A )⊥ ◦ p(2) ◦ i(2)
)(

|| pr(2) ◦j(2)|| · ||p(2) ◦ i(2)|| · λ
)

= F
(

r
(2)
B

)(

|| pr(2) ◦j(2)|| · ||p(2) ◦ i(2)|| · λ
)

≤ F
(

r
(2)
B

)

(λ).

Put p = detC[Zd](B). If wd(p) = 0, the claim follows directly from Proposition 2.1.
It remains to treat the case wd(p) ≥ 1. The last inequality together with (1.5)
applied to B, Proposition 2.1 applied to p and Lemma 3.1 applied to B yields for
λ ≥ 0

F
(

r
(2)
A

)

(λ) − F
(

r
(2)
A

)

(0)

≤ F
(

r
(2)
B

)

(λ)

≤ k · F
(

r(2)p

)(

||r(2)B ||k−1 · λ)
≤ k · F

(

r(2)p

)(

(k2 · ||B||1)k−1 · λ)

≤ 8 ·
√
3√

47
· k · d · wd(p) ·

(

k2k−2 · (||B||1)k−1 · λ
| lead(p)|

)

1
d·wd(p)

.
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This finishes the proof of assertion (1). Assertion (2) is a direct consequence of
assertion (1) and the definition of the Novikov-Shubin invariant. This finishes the
proof of Theorem 1.8. �
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