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ESTIMATES FOR SPECTRAL DENSITY FUNCTIONS OF
MATRICES OVER C|Z¢]

LUCK, W.

ABSTRACT. We give a polynomial bound on the spectral density function of a
matrix over the complex group ring of Z¢. It yields an explicit lower bound on
the Novikov-Shubin invariant associated to this matrix showing in particular
that the Novikov-Shubin invariant is larger than zero.

1. INTRODUCTION

1.1. Summary. The main result of this paper is that for a (m,n)-matrix A over
the complex group ring of Z? the Novikov-Shubin invariant of the bounded Z9-
equivariant operator 7“542): L2(Z3)™ — L*(Z4)™ given by right multiplication with
A is larger than zero. Actually rather explicit lower bounds in terms of elementary
invariants of the minors of the matrix A will be given. This is a direct consequence
of a polynomial bound of the spectral density function of rf) which is interesting
in its own right. It will play a role in the forthcoming paper [I], where we will
twist L2-torsion with finite dimensional representations and it will be crucial that
we allow complex coefficients and not only integral coefficients.

Novikov-Shubin invariants were originally defined analytically in [10, [[T]. More
information about them can be found for instance in [8] Chapter 2].

Before we state the main result, we need the following notions.

1.2. The width and the leading coefficient. Consider a non-zero element p =

p(zfﬁl, ce zdil) in C[Z%)] = (C[zfd, ce zdil] for some integer d > 1.
There are integers n; and n, and elements qn(zlﬂ, ce zdifl) in C[z971] =
(C[zfd, e ,z;t_ll] uniquely determined by the properties that
ng < njl';
Q- (zlil, cee zfit_ll) %+ 0
q,+ (zlil, cee zdi_ll) %+ 0
i
p(zfd, e ,zéd) = Z qn(zfd, cey zéﬂll) -2y
n=ng

In the sequel denote

w(p) = ng—ng;
+ +
q+(p) = qndJr(Zl 15---azdj1)'
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Define inductively elements p;(z5!, ..., zfit_li) in C[z¢~1] = C[zi, .. ., sz_li] and
integers w;(p) > 0 for : =0,1,2,...,d by
po(zlil,...,z;ltl) = p(zlil,...,zfitl),
pa L 2gh) a*(p)
pi = qt(pi_1) fori=1,2...,d;
wo(p) = w(p)

—~ o~

p) = wp;) fori=1,2...,(d-1).

w;(p)
Define the width of p = p(zfﬁl, ce zdﬂ) to be

(1.1) wd(p) = max{wo(p), w1(p), ..., wa-1(p)},
and the leading coefficient of p to be
(1.2) lead(p) = pa.

Obviously we have
wd(p) = wd(p1) = wd(p2) = -+ = wd(pg) = 0;
lead(p) = lead(py) = ... =lead(po) # 0.
Notice that p;, wd(p) and lead(p) do depend on the ordering of the variables

Ry ”d-

Remark 1.3 (Leading coefficient). The name “leading coefficient” comes from the
following alternative definition. Equip Z? with the lexicographical order, i.e., we

put (miy,...,mq) < (n1,...,nq), if mqg < ng, or if mg = ng and mg—1 < ng_1,
or if mqg = ng, mg_1 = ng_1 and mg_o < ng_o, or if ..., or if m; = n; for
t=4d,(d—1),...,2 and m; < ny;. We can write p as a finite sum with complex
coefficients ap, ... n,
+ +\ n n ng
p(zi,...,27) = E Qnyomg - 20 252 e 2N,

(n1yeema) €24

Let (my,...mq) € Z% be maximal with respect to the lexicographical order among
those elements (ny,...,ng) € Z? for which a,, ., # 0. Then the leading coeffi-
cient of p is am,,....my-

.....

1.3. The L'-norm of a matrix. For an element p = D geziNg 9 € C[Z% define
Ipll1 :==>_,eq | Ag]- For a matrix A € M, ., (C[Z4]) define

(1.4) Al = max{[laij[h |1 <i<m,1<j<n}

The main purpose of this notion is that it gives an a priori upper bound on the
norm ) L2(Z4) — L2(Z%), namely, we get from |8, Lemma 13.33 on page 466]

(1.5) P2 < men- |4

1.4. The spectral density function. Given A € M,, ,(C[Z%]), multiplication
with A induces a bounded Z?-equivariant operator rff) c L2(Z4™ — L2(Z%)". We
will denote by

(1.6) F(r): [0,00) — [0,00)

its spectral density function in the sense of [8 Definition 2.1 on page 73], namely,
the von Neumann dimension of the image of the operator obtained by applying the
functional calculus to the characteristic function of [0, A?] to the operator (rff) )*rff).
In the special case m = n = 1, where A is given by an element p € C[Z%], it can be
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computed in terms of the Haar measure jipa of the d-torus 7% see [8, Example 2.6
on page 75|

17 FE)N = wpa({(zeei2a) € T Ip(en, .- 2a) < AD).

1.5. The main result. Our main result is:

Theorem 1.8 (Main Theorem). Consider any natural numbers d,m,n and a non-
zero matriz A € My, o(C[Z%]). Let B be a quadratic submatriz of A of maximal
size k such that the corresponding minor p = detczq) (B) is non-trivial. Then:

(1) If wd(p) > 1, the spectral density function of rf): L2(z8™ — L}z
satisfies for all A >0

F(rP)Yo) — F(r$)0)
8 .

B

<

1
L2k—2 (||B||1)k71 A Tvde)
-k-d-wd(p) - ( ) .
(?) Mead(p)|

7“542))()\) =0 for all X\ < |lead(p)| and F(rff))()\) =1

5

If wd(p) = 0, then F
for all X > |lead(p)|;

(2) The Novikov-Shubin invariant of rf) is 00 or oo™ or a real number satis-
fying

—

@) 1
) 2 TGy

and is in particular larger than zero.

It is known that the Novikov-Shubin invariants of rf) for a matrix A over the

integral group ring of Z? is a rational numbers larger than zero unless its value is
oo or co™. This follows from Lott [5, Proposition 39]. (The author of [5] informed
us that his proof of this statement is correct when d = 1 but has a gap when d > 1.
The nature of the gap is described in [6, page 16]. The proof in this case can be
completed by the same basic method used in [5].) This confirms a conjecture of
Lott-Liick [7, Conjecture 7.2] for G = Z9. The case of a finitely generated free
group G is taken care of by Sauer [12].

Virtually finitely generated free abelian groups and virtually finitely generated
free groups are the only cases of finitely generated groups, where the positivity of
the Novikov-Shubin invariants for all matrices over the complex group ring is now
known. In this context we mention the preprints [2, B3], where examples of groups
G and matrices A € M, ,(ZG) are constructed for which the Novikov-Shubin

invariant of rff) is zero, disproving a conjecture of Lott-Liick [7, Conjecture 7.2].

1.6. Example. Counsider the case d = 2, m = 3 and n = 2 and the (3, 2)-matrix

over C[Z?]
3
. 27 -1 1
A= (2~zl~z§16 29 2’12’2)

Let B be the (2,2)-submatrix obtained by deleting third column. Then k = 2,
3
_ 23 -1
B= (2~zl~z§16 22)

p = detc[zz] (B) = z? c2o+ 221 Z% — 16.

and we get

Using the notation of Section one easily checks pi(z1) = 2 - z1, wd(p) = 2,
and lead(p) = 2. Obviously ||4][1 = max{|1],| — 1|,|2| + |16],|1|} = 18. Hence
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Theorem [ implies for all A > 0

F(rY) = F(ri)0) < ﬁ-ﬁ.
04(7’542)) > i

1.7. Acknowledgments. This paper is financially supported by the Leibniz-Preis
of the author granted by the Deutsche Forschungsgemeinschaft DFG. The author
wants to thank the referee for his useful comments.

2. THE CASEm=n=1

The main result of this section is the following

Proposition 2.1. Consider an non-zero element p in C[Z%) = C[zif, ..., 2. If

wd(p) = 0, then F(r (2 ))()\) = 0 for all X < |lead(p)| and F(rff))( A) =1 for all
A > |lead(p)|. If wd(p) > 1, we get for the spectral density function of 7“1(72) for all
A>0

F(r®)(x) < 8% d-wd(p) - <7| 1eaz(p)|)d’ww.

For the case d = 1 and p a monic polynomial, a similar estimate of the shape
F(r](f))()\) < Cj-AF1 can be found in [4, Theorem 1], where the k > 2 is the num-
ber of non-zero coefficients, and the sequence of real numbers (Cy)x>2 is recursively
defined and satisfies Cy > k — 1.

2.1. Degree one. In this subsection we deal with Proposition2Ilin the case d = 1.
We get from the Taylor expansion of cos(z) around 0 with the Lagrangian re-
mainder term that for any = € R there exists 6(z) € [0, 1] such that

x_2 N cos(f(x) - x) oy

cos(z) =1— 5 10

This implies for = # 0 and |z| < 1/2

2 —2cos(z) _ |2 cos(f(z) - ) 22| < 2-cos(f(z) - @) | 2f? < 11 1
2 4! 4! 12 4 48
Hence we get for x € [-1/2,1/2]
47
2.2 — <2-2
(2.2) R - cos(z).

Lemma 2.3. For any complex number a € Z we get for the spectral density function

of (z —a) € C|Z] = Clz, 27|

F(r §2)a)()\) < % A for A €[0,00).

Proof. We compute using (7)), where r := |a|,

F(ri2)(\) = psi{zeS' ||z —al <A}
= ps{zeS'||z—r <A}
= s {6 € [~1/2,1/2] | |cos(e) + isin(¢) — | < A}
= pgi{p e [~1/2,1/2]| | cos(¢) + isin(p) — r|> < \?}
= s {o € [-1/2,1/2] | (cos(¢) —r)? +sin(9)? < A?}
= psi{p€[-1/2,1/2] | r- (2 - 2cos(9) + (r — 1)* < A%},
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We estimate using [2.2) for ¢ € [-1/2,1/2]
7 (2 —=2cos(p)) + (r—1)2 >r-(2—2cos(¢)) > — - ¢
This implies for A > 0
F(rP)0) = pe{oe[=1/2,1/2]| r- (2 —2cos(¢) + (r — 1)> < A%}

47
< ps{oel1/21/2) 5 0* <X
= s {¢e[—1/2,1/2] |¢|s@-x}
48
< 2. E.)\
_ 83
- S

O

Lemma 2.4. Let p(z) € C[Z] = Clz,27!] be a non-zero element. If wd(p) = 0,
then F(r$”)(A) = 0 for all A < |lead(p)| and F(r$”)(A) =1 for all A > |lead(p)|.
If wd(p) > 1, we get

o e) 8- VB oy A \w® - -
PO <557 a0 () a0

Proof. Tf wd(p) = 0, then p is of the shape C -z, and the claim follows directly
from (L). Hence we can assume without loss of generality that wd(p) > 1. We
can write p(z) as a product

p(e) = lead(p) - - T[ = — )

for an integer r > 0, non-zero complex numbers a1, ..., a, and an integer k.
Since for any polynomial p and complex number ¢ # 0 we have for all A € [0, 00)

FrE)() = F(r®) (i> |

]

we can assume without loss of generality lead(p) = 1. If r = 0, then p(z) = 2*

for some k # 0 and the claim follows by a direct inspection. Hence we can assume
without loss of generality » > 1. Since the width, the leading coefficient and the
spectral density functions of p(z) and z=% - p(z) agree, we can assume without loss
of generality k = 0, or equivalently, that p(z) has the form for some r > 1
p() = [ - ).
i=1

We proceed by induction over r. The case r = 1 is taken care of by Lemma
The induction step from » — 1 > 1 to r is done as follows.

Put ¢(z) = [[/Z, (z — a;). Then p(z) = ¢(2) - (z — a,). The following inequality
for elements ¢, g2 € C[z,27!] and s € (0,1) is a special case of [8, Lemma 2.13 (3)
on page 78]

2 —s s
(2.5) F(rgle)N) < F(rP) )+ F(r) (0).
We conclude from (Z3) applied to p(z) = ¢q(z) - (z — a,) in the special case s = 1/r

r—1

F(rP)(\) < FE@)WT)+FEP, ) ().
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We conclude from the induction hypothesis for A € [0, c0)

F(rP)\) < — (r—1) A7T;
P )0 < S

This implies for A € [0, 00)

Fr)(N) < FEr@) )+ P02, )
83 AN I RRVE R
< —47-(r—1)-()\r) Fe X

IN
S
|
.
N~—
>

2.2. The induction step. Now we finish the proof of Proposition 2.1l by induction
over d. If wd(p) = 0, then p is of the shape C - 21" - 257 - --- - 2]/, and the claim
follows directly from (7). Hence we can assume without loss of generality that
wd(p) > 1. The induction beginning d = 1 has been taken care of by Lemma 24
the induction step from d — 1 to d > 2 is done as follows.

Since F(r,(f)) (M) <1, the claim is obviously true for WM > 1. Hence we can

: A
assume in the sequel Mead@)] < 1.

We conclude from (L7) and Fubini’s Theorem applied to 7% = T9~! x S, where
x4 denotes the characteristic function of a subset A and pl(zli, . ,zf_ll) has been
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defined in Subsection

- MTd({(Zlv"'aZd) € T | |p(751,---,2d)| < >‘})

..... za)|<A} dprn

Il
S—
=9
>
=
Iy
5
I8
<N
g
m
~
_&
<
5
N
g

.....

/ (/ X{(21,eer2a) T |p(21,es2a) | <A} dM51> dpira—
Tdfl Sl

- /Td*l X{(21,--,2d4—1) €T |p1(21,...,2a—1) <] lead(p)| /@ - A(d=1)1/d}

< /d L X(z1,es2a-1)] [P1(21500sza—1) | <[ lead (p)|1/4- A(d=11/d} +
-

(Zl, ceeyZd—1) € 71

with [py (21, ..., z4-1)| > |lead(p)|*/* - /\(dl)/d}-

We get from the induction hypothesis applied to p1(z1,...,24—1) and (1) since
Ileaiii\(p)\ <1, wd(p1) < wd(p) and lead(p) = lead(p;)

2.7)

/Td—l X(z1,.sza=1)| [P1(21,.-,2a—1)|<|lead(p) |1/ 4 A(d=D1/d}

— /Td—l X(21,o2d—1)] |P1(21,-2a—1)| < | lead(py ) [1/d-A(d=1)1/d}
= F(r{2)(|lead(p)|/?] - A= D/4)
8-V3

< ——-(d—1) -wd(p1) - (

N

V3

V3

V3

|lead(p )| /4 - >\(d1>/d> @D wamn
| lead(py)]

4;
\']

oo
w

\ TwATD
- = (d—1)-wd(p) - (m)

A~
\]

0]
w

4;
\']

\ TG
_ ? (d—1) - wd(py) - (m)

\ TG
?.(d—l)'Wd(P)' (m)

o N T
?.(dl).wd(p)'<m) '

0¢]
w

INA
Ny
s

0]
w

INA
~
BN
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Fix (21,...,24—1) € T4 with |p; (zl, oy 2d—1)| > lead(p)/4-A4=1/d_ Consider
the element f(25") :=p(21,...24-1,25) € (C[zd] It has the shape

+
n
fz3) = Z an (21, oy 2d—1) - 2}
n=n-
The leading coefficient of f(zdil) is p1(21,...2a-1) = qn, (21, ..,24-1). Hence we

get from Lemma 24 applied to f(zétl) and (7)) since \1%7?1(1))\ <1, wd(f) < wd(p)
and |lead(f)| = |p1(21, ... za-1))| > |lead(p)[*/@ - A(@=1)/d

2.8)
/S1 X{(21,0020) €T |p(21,.sza)| <A} QST

= X{za€8"| |f(za)|<A} AHist

wac
(1ead )
a0
<lead 1/d . \(d— 1)/d>
Twan
(1ead )

wi(e) <1ead(p) > o '

Combining ([26), (Z1) and 23] yields for A with |1ea7i1\(p)\ <1

83 : o
@D wd)- (W)

8-v3 A\ 7w
+— . Wd . -
7 Vi (|1ead<p>|>

8. by d-wd(p)
- m""‘”d(p)'<|lead<p>|> |

This finishes the proof of Proposition 211

oo
* g
LI

.&

IN

E\'

| I
5, 5};

Fr@)m) <

w

&

3. PROOF OF THE MAIN THEOREM [L.]]

Now we can complete the proof of our Main Theorem [ We need the following
preliminary result

Lemma 3.1. Consider B € My, (C[Z%]) such that p := detgza)(B) is non-trivial.
Then we get for all A > 0

F(rg)O) < k- Fr?) (151 - 3).

Proof. In the sequel we will identify L?(Z?) and L?(T?) by the Fourier transfor-
mation. We can choose a unitary Z?-equivariant operator U: L?(Z%)* — L2(Z4)*
and functions f1, fa,..., fr: T — R such that 0 < f1(z) < fa(2) < ... < fr(2)
holds for all z € T¢ and we have the following equality of bounded Z%-equivariant
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operators L?(Z4)F = L2(T4F — L2(Z4)F = L2(T4)*, see [9 Lemma 2.2]

o0 - 00

o 0 - 0 o0

o o0 P 0 0

3.2) ) orP =Uo fo oU*.
0 0 0 20
k—1
0 0 0 o P
k

Since p # 0 holds by assumption and hence the rank of B over C[Z4](®) is maximal,

we conclude from [8, Lemma 1.34 on page 35| that r( ) and hence rf) for each
i=1,2,...,k are weak isomorphisms, i.e., they are injective and have dense images.
We conclude from [8 Lemma 2.11 (11) on page 77 and Lemma 2.13 on page 78]

PO = F () or) 32 ZF

For i = 1,2,...,k we have fi(z) < fi(z) for all z € T and hence F(T;Q))()\) <
F(r?)(A) for all A > 0. This implies
2 2
(3.3) F(ri)(\) < k- F@rP)o2).
Let B* € My, (C[Z%) be the matrix obtain from B by transposition and applying
to each entry the involution Cl2% — C[Z%| sending Y e Ag- 910 Y pcqrg 97"
Then (Tg)) = TB Since (rg))* o rg) = rgg* and detcze)(BB*) = detgza(B) -

detcpza) (B*) = p - p* holds, we conclude from ([B.2)) the equality of functions T —
[0, oc]

k
" =[] 5+
i=1
. d . (2
Since sup{[fi(z)| | = € T} agrees with the operatornorm ||} || and we have
2k, (2 2 , 2 .
||7° )||2 = ||(7°J(9)) rgg)|| = max{||r§ci)|| ’ i=1,2,...,k} = ||T§ck)||, we obtain the

inequality of functions 7% — [0, oo

k
< <HQ||T§§’II> A< (DI
Hence we get for all A > 0 :
Flr) ((R51F0%) = i) (I517)"182)
F A1) @) (191" 22)
= FFrPH).
This together with (B3]) and [8, Lemma 2.11 (11) on page 77] implies

A

Y

FrP)O) < k-F@r)Ho)
< kPR (1))
< k-FE@) (SN,
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Proof of the Main Theorem[L8 () In the sequel we denote by dimar(g) the von
Neumann dimension, see for instance [8, Subsection 1.1.3]. The rank of the matrices

A and B over the quotient field C[Z4](Y) is k. The operator Tg) : L2(Z4F — L2(Z24)*
is a weak isomorphism, and dlmN(Zd)(1m(rf4))) = k because of [8, Lemma 1.34 (1)
on page 35]. In particular we have F(r ](3))(0) = 0.

Let i®®: L2(Z4)k — L?(Z4)™ be the inclusion corresponding to I C {1,2,...,m}
and let pr(® : L2(Z%)" — L?(Z%)* be the projection corresponding to J C {1,2,...,n},
where I and J are the subsets specifying the submatrix B. Then r(2) L3z —
L*(Z4)* agrees with the composite

(2) L2(Zd) LQ(Zd) LQ(Zd)n pr? L2(Zd)
Let p®): L2(ZH)™ — ker(rff)))L be the orthogonal projection onto the orthogonal
complement ker(r)+ C L2(G)™ of the kernel of r(Z). Let j@: im(r(?) — L2(G)"
be the inclusion of the closure of the image of rff). Let (7,1(42))1_. ker(r f)) —

(2))

im(r

be the Z%-equivariant bounded operator uniquely determined by
R CIR )

The operator (7"1(42))L is a weak isomorphism by construction. We have the decom-

position of the weak isomorphism

(3.4) rg) =pr?o rff) 0i® =pr®oj® o (rf))J‘ op® o0,

This implies that the morphism p®oi(®: L2(Z)%) — ker(r?))* is injective and the

morphism pr® oj®: im(r?)) — L2(Z4)* has dense image. Since we already know
dimy () (im(rff))) = k = dimy()(L*(Z4)*), the operators p(?) o i(2): L2(Z4)*

ker(rZ) and pr® oj®: im(r) — L2(Z?) are weak isomorphisms. Since the
operatornorm of pr(® oj® and of p® o i(? is less or equal to 1, we conclude
from [8 Lemma 2.13 on page 78] and (B.4))

F(rf)() —F( 2)(0)

= F(E)H) 0
F(pr® oj® o ) op® o i@) (|| pr® oj || - [|p@ 0 i@ || - A)
(

<
= F<”MmH”w”HHﬂ”m®nw)
< F(Tg)) (N).

Put p = deteze)(B). If wd(p) = 0, the claim follows directly from Proposition 211
It remains to treat the case wd(p) > 1. The last inequality together with (LA
applied to B, Proposition 21l applied to p and Lemma [B] applied to B yields for
A>0

FrE) ) - F(r) (0)

< <@x>
= (f»mr|k1A>
< kPP (R 1Bl N
8'_‘/5, d-w . k2k=2 . (||B||1)F1 - A Ty
: VAT b @) < | lead(p)| > .
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This finishes the proof of assertion (). Assertion () is a direct consequence of
assertion () and the definition of the Novikov-Shubin invariant. This finishes the

proof of Theorem 0
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