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Abstract

We study the Fadell–Husseini index of the configuration space F (Rd, n) with respect to various
subgroups of the symmetric group Sn. For p prime and k ≥ 1, we compute IndexZ/p(F (Rd, p);Fp) and
partially describe Index(Z/p)k(F (Rd, pk);Fp). In this process we obtain results of independent interest,
including: (1) an extended equivariant Goresky–MacPherson formula, (2) a complete description of
the top homology of the partition lattice Πp as an Fp[Zp]-module, and (3) a generalized Dold theorem
for elementary abelian groups.

The results on the Fadell–Husseini index yield a new proof of the Nandakumar & Ramana Rao
conjecture for primes. For n = pk a prime power, we compute the Lusternik–Schnirelmann category
cat(F (Rd, n)/Sn) = (d− 1)(n− 1). Moreover, we extend coincidence results related to the Borsuk–
Ulam theorem, as obtained by Cohen & Connett, Cohen & Lusk, and Karasev & Volovikov.

Keywords: Configuration spaces, equivariant Goresky–MacPherson formula, equivariant cohomology,
Fadell–Husseini index, Lusternik–Schnirelmann category.
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1 Introduction and statement of main results

1.1 Configuration spaces

The configuration space of n labeled points in the topological space X is the space

F (X,n) = {(x1, . . . , xn) ∈ X
n : xi 6= xj for all i 6= j} ⊂ Xn.

The symmetric group Sn naturally acts on F (X,n) by permuting the points x1, . . . , xn.
We refer to F. Cohen [15] and Fadell & Husseini [29] for background on configuration spaces as well

as for references to the external literature in this context.
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1.2 The Fadell–Husseini index

In this paper the focus is on the Fadell–Husseini index of the configuration space F (Rd, n) with respect
to different subgroups G of the symmetric group Sn.

Let G be a finite group acting on the space Y , and let R be a commutative ring with unit. The
Fadell–Husseini index of Y with respect to the group G and coefficients R is the kernel ideal of the map
in equivariant cohomology induced by the G-equivariant map pY : Y → pt:

IndexG(Y ;R) := ker
(
p∗Y : H∗

G(pt, R) −→ H∗
G(Y,R)

)
= ker

(
H∗(BG,R) −→ H∗(EG×G Y,R)

)
.

The main property of the Fadell–Husseini index is that it yields a necessary condition for the existence
of a G-equivariant map Y → Z, namely, that IndexG(Z;R) ⊆ IndexG(Y ;R) must hold.

To study the Fadell–Husseini index of the configuration space F (Rd, n), we have to understand the
Serre spectral sequence associated to the fibration

F (Rd, n) −→ EG×G F (Rd, n) −→ BG

whose E2-term is given by

Er,s2 = Hr(BG;Hs(F (Rd, n);R)) ∼= Hr(G;Hs(F (Rd, n);R)).

Here H∗ denotes the cohomology with local coefficients where the local coefficient system is given by the
action of π1(BG) ∼= G on the cohomology H∗(F (Rd, n);R).
In order to compute this spectral sequence we need to determine
• the E2-term of the spectral sequence. For this we need to determine the R[G]-module structure on
the cohomology H∗(F (Rd, n);R), see Sections 2 and 3;
• the rows of the E2-term of the spectral sequence as H∗(G;R)-modules, see Sections 6;
• the differentials of this spectral sequence as H∗(G;R)-morphisms, see Section 4 and 6.

Utilizing all these data, we derive in Section 6 the following results for a prime p:
(1) the complete description of the Fadell–Husseini index of the configuration space F (Rd, p) with respect

to the group Z/p ≤ Sp and coefficients Fp, in Theorem 6.1;
(2) a partial estimate of the Fadell–Husseini index of the configuration space F (Rd, pk) with respect to the

regularly embedded subgroup (Z/p)k of the symmetric groupSpk and coefficients Fp, in Theorem 6.3;
(3) for n = pk a prime power, the existence of a non-zero element in the difference

H
(d−1)(n−1)

S
(p)
n

(pt;Z)\Index
S

(p)
n

(F (Rd, n);Z).

This last result is not obtained via spectral sequence calculations. Instead, using our results from [10,

Section 4], we identify the non-zero obstruction element for the existence of an S
(p)
n -equivariant map

F (Rd, n)→ S(W
⊕(d−1)
n ) with the appropriate Euler class of the vector bundle

W⊕(d−1)
n −→ F (Rd, n)×

S
(p)
n
W⊕(d−1)
n −→ F (Rd, n)/S(p)

n ,

where S
(p)
n is a p-Sylow subgroup and Wn a specific orthogonal representation.

1.3 Further results

As a by-product of the Fadell–Husseini index calculations, we reprove some known facts and obtain new
results that are of independent interest. For example, we get:
(1) an equivariant Goresky–MacPherson formula, in Theorem 2.1;
(2) the R[Sn]-module structure on the cohomology of the configuration space H∗(F (Rd, n);R), in The-

orem 3.1;
(3) an extended generalization of Dold’s theorem for elementary abelian groups, in Theorem 4.2;
(4) for a prime p the Fp[Z/p]-module structure on the top homology of the proper part of the partition

lattice Πp, in Corollary 6.2.
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1.4 Applications

We are interested in the following two conjectures, one from convex geometry and the other from algebraic
topology.
• The Nandakumar & Ramana–Rao conjecture: For any planar convex body K and any natural
number n > 1 there exists a partition of the plane into n convex pieces P1, . . . , Pn such that

area(P1 ∩K) = · · · = area(Pn ∩K) and perimeter(P1 ∩K) = · · · = perimeter(Pn ∩K).

• The Lusternik–Schnirelmann category of the configuration space F (Rd, n)/Sn of unordered pairwise
distinct points in Rd is equal to the cohomological dimension of the configuration space F (Rd, n),
i.e.,

cat(F (Rd, n)/Sn) = (d− 1)(n− 1).

This has been conjectured by Roth [50, Conjecture 1.3]. (See also Karasev [38, Lemma 6 and
Theorem 9] for partial results.)

The results on the Fadell–Husseini index are used in Section 8 as the main ingredient to give a new proof of
the Nandakumar & Ramana–Rao conjecture for n = p and give a proof of the second conjecture for n = pk,
where p is a prime. The partial calculation of the Fadell–Husseini index in the case n = pk, Section 7,
allows us to extend and improve Borsuk–Ulam type coincidence results by Cohen & Connett [17], Cohen
& Lusk [19], and Karasev & Volovikov [41].

1.5 Connections with classical results on configuration spaces

In this section we point out connections and overlaps of our results with classical results by F. Cohen,
P. May and F. Cohen & L. Taylor.

1.5.1 Cohomology of the configuration space as a module

The configuration space F (X,n) admits a free action of the symmetric group Sn. Consequently, both
homology H∗(F (X,n);R) and cohomology H∗(F (X,n);R) of the configuration space, with coefficients
in any ring R, have the natural structure of an R[G]-module for any subgroup G of Sn.

Frederick Cohen, in his landmark paper from 1976 [15, Section 7], described the F[Sn]-module struc-
ture on H∗(F (Rd, n);F) and H∗(F (Rd, n);F), where F denotes an arbitrary field, as follows. The basis for
(co)homology of the configuration space that arose from the work of Fadell & Neuwirth {βi,j} was modi-
fied to a basis {αi,j} that allowed the author to describe the action in a concise way [15, Lemma 7.1]. The
action of an arbitrary transposition τr = (r, r+1) on this basis was given in [15, Proposition 7.2, Corollary
7.4]. A more systematic description of the module structure on the cohomology H∗(F (Rd, n);R), in the
language of the representation theory, was given by F. Cohen & Taylor in 1993 [20, Sections 3 and 5].
Further on, a description of the top (d − 1)(n− 1)-th (co)homology of the configuration space F (Rd, n)
as a Z[Sn]-module in the language of Lie algebras was given by F. Cohen in [16, Theorem 6.1].

A paper by Ossa from 1996 presented similar results: It described the action of transpositions on the
generators of H∗(F (Rd, n);Z) and decomposed H∗(F (Rd, n);Q) into a direct sum of induced represen-
tations [48, Section 2].

1.5.2 Cohomology of the quotient configuration spaces

The cohomology of the quotient configuration space F (X,n)/G for a subgroup G of the symmetric group
Sn, with coefficients in the ring R, can be studied via the Serre spectral sequence of the fibration

F (X,n) −→ EG×G F (X,n) −→ BG,

with the E2-term given by

Er,s2 = Hr(BG;Hs(F (X,n);R)) ∼= Hr(G;Hs(F (X,n);R)).

The key ingredient in the computation of this spectral sequence is the R[G]-module structure on the
coefficients H∗(F (X,n);R).
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In the case when p is an odd prime, using the previously described action of the transpositions on the
cohomology H∗(F (Rd, p);Fp ⊗ signε), ε = 0, 1 (twisted, or not, with the sign representation) F. Cohen
in [15, Sections 5 and 8 to 11] analyzed the spectral sequences associated to the fibrations

F (Rd, p) −→ EZ/p×Z/p F (R
d, p) −→ BZ/p and F (Rd, p) −→ ESp ×Sp

F (Rd, p) −→ BSp.

The corresponding morphism of spectral sequences induced by the restriction turns out to be a monomor-
phism between E2-terms. One of many results derived in this framework is the following isomorphism of
algebras [15, Theorem 5.2]:

H∗(F (Rd, p)/Sp;Fp) ∼= H≤(d−1)(p−1)(Sp;Fp), (1)

which holds for odd integers d ≥ 3. An analogous result in the case of the twisted coefficients Fp ⊗ sign
was given in [15, Theorem 5.3].

The paper of Ossa [48, Section 3] gave a brief account of these results.

1.5.3 Fadell–Husseini index of the configuration space

The Fadell–Husseini index of the configuration space F (Rd, n), with respect to a subgroup G of the
symmetric group Sn and coefficients in the ring R, is the kernel ideal

IndexG(F (Rd, n);R) := ker
(
H∗
G(pt, R)→ H∗

G(F (R
d, n), R)

)
.

From the results of F. Cohen in [15], assuming that p is an odd prime, the following informations
about the Fadell–Husseini index of the configuration space can be deduced:

(A) The Vanishing theorem [15, Theorem 8.2] can be used to derive that

IndexZ/p(F (R
d, p);Fp) = H≥(d−1)(p−1)+1(Z/p;Fp).

(B) The description (1) of the cohomology H∗(F (Rd, p)/Sp;Fp) given in [15, Theorem 5.2] implies that
for an odd integer d ≥ 3

IndexSp
(F (Rd, p);Fp) = H≥(d−1)(p−1)+1(Sp;Fp).

Further on, let us consider the vector bundle ξd,n given by

Rn −→ F (Rd, n)×Sn
Rn −→ F (Rd, n)/Sn,

where Sn acts on Rn by permuting the coordinates. Then:

(C) F. Cohen & Handel, using the little cube operad proved in [18, Lemma 3.2] that in the case when
n is a power of 2

wn−1(ξ2,n) /∈ IndexSn
(F (R2, n);F2).

Here wn−1(ξ2,n) denotes the (n− 1)-th Stiefel–Whitney class of the vector bundle ξ2,n.
(D) In the case when both d and n are powers of 2, Chisholm extended the result of F. Cohen & Handel

and proved in [14, proof of Lemma 3] that

wd−1
n−1(ξd,n) /∈ IndexSn

(F (Rd, n);F2).

(E) With some additional work, using the result of Gromov in [33, Non-vanishing lemma 5.1 and Remark
after it], one can obtain that in the case when n is a power of 2 and d ≥ 2:

wd−1
n−1(ξd,n) /∈ IndexSn

(F (Rd, n);F2).

Acknowledgments
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2 An Equivariant Goresky–MacPherson formula

The main result of this section is the following theorem that is a generalization of a result by Sundaram
& Welker [58, Theorem 2.5, page 1397]; explanations and the proof will follow below.

Theorem 2.1 (Equivariant Goresky–MacPherson formula). Let ρ : G→ O(d) be an orthogonal action of
a finite group G on the Euclidean space E ∼= Rd. Consider a G-invariant arrangement of linear subspaces
A = {V1, . . . , Vk} in E. Assume that

(R) The coefficient ring R is a principal ideal domain and for every V ∈ L>0̂
A the homology groups

H∗(∆(0̂, V );R) are free R-modules; and

(C) The arrangement A is a c-arrangement for some integer c > 1.

Then:
(i) For the homology of the link of the arrangement A there is an isomorphism of R[G]-modules

Hi(DA;R) ∼=
⊕

r+s=i

⊕

V ∈L>0̂
A
/G

indGGV
H̃r−1(∆(0̂, V );R)⊗R H̃s(S(V );R),

where S(V ) denotes the unit sphere in the linear subspace V .
(ii) For the cohomology of the complement of the arrangement A there is an isomorphism of R[G]-

modules

Hi(MA;R) ∼= R⊗
⊕

r+s=d−i−2

⊕

V ∈L>0̂
A /G

indGGV
H̃r−1(∆(0̂, V );R)⊗R H̃s(S(V );R),

where R is the R[G]-module whose underlying R-module is R and for which g ∈ G acts by g · r :=
detR(ρ(g))r.

Here we use the convention that H̃−1(∅;R) = R.
If we would like to drop the condition (C) on the arrangement and still have the same description of

the R[G]-module structure of the cohomology of the complement we need to strengthen the condition on
the coefficients.

Corollary 2.2. Let ρ : G → O(d) be an orthogonal action of a finite group G on the Euclidean space
E ∼= Rd. Consider a G-invariant arrangement of linear subspaces A = {V1, . . . , Vk} in E. Assume that
the coefficient ring R is a field of characteristic prime to the order of G. Then:
(i) For the homology of the link of the arrangement A there is an isomorphism of R[G]-modules

Hi(DA;R) ∼=
⊕

r+s=i

⊕

V ∈L>0̂
A /G

indGGV
H̃r−1(∆(0̂, V );R)⊗R H̃s(S(V );R),

where S(V ) denotes the unit sphere in V .
(ii) For the cohomology of the complement of the arrangement A there is an isomorphism of R[G]-

modules

Hi(MA;R) ∼= R⊗
⊕

r+s=d−i−2

⊕

V ∈L>0̂
A
/G

indGGV
H̃r−1(∆(0̂, V );R)⊗R H̃s(S(V );R),

where R is the R[G]-module whose underlying R-module is R and for which g ∈ G acts by g · r :=
detR(ρ(g))r.

2.1 Arrangements

Let d > 0 be a fixed integer and E = Rd the Euclidean space. An arrangement in E is any finite collection
A of linear subspaces of E. To any arrangement A = {V1, . . . , Vk} we associate:
• the union of the arrangement A to be the topological space UA := V1 ∪ · · · ∪ Vk;
• the complement of the arrangementA to be the topological spaceMA := E\(V1∪· · ·∪Vk) = E\UA;
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• the link of arrangement A to be the topological space DA := S(E) ∩ UA, where S(E) ≈ Sd−1

denotes the unit sphere in E with the center in the origin;
• the intersection lattice of the arrangement A to be the partially ordered set LA of all intersections
of elements of the arrangement A partially ordered by reversed (!) inclusion and augmented with
the space E as the minimum of LA, i.e., 0̂ := E and 1̂ = V1 ∩ · · · ∩ Vk.

The formula of Goresky and MacPherson [31, Theorem III.1.3.A], [64, Theorem 2.2] describes the
(co)homology of the complement of the arrangement in terms of combinatorial data, namely the homology
of lower intervals of the intersection lattice:

H̃i(MA;R) ∼=
⊕

V ∈L>0̂
A

H̃codim(V )−i−2(∆(0̂, V );R) (2)

where the coefficients are taken in a commutative ring with unit R. Here ∆(0̂, V ) stands for the order
complex of the open interval (0̂, V ) of the lattice LA. The Goresky–MacPherson isomorphism (2) factors
in the following way:

H̃i(MA;R) ∼= H̃i(S(E)\DA;R) (3)
∼= H̃dim(E)−2−i(DA;R) (4)

∼=
⊕

V ∈L>0̂
A

H̃codim(V )−i−2(∆(0̂, V );R). (5)

The first isomorphism is a consequence of the radial deformation retraction of MA onto S(E)\DA, while
the second one is the Alexander duality isomorphism. The final isomorphism was obtained in the work
of Goresky and MacPherson [31] as an application of stratified Morse theory. On the other hand, in [64,
Theorem 2.4] the homotopy type of the link DA of the arrangement was determined:

DA ≃
∨

V ∈L>0̂
A

∆(0̂, V ) ∗ Sdim(V )−1. (6)

This also implies the last isomorphism (5) of the Goresky–MacPherson isomorphism factorization.

2.2 Equivariant arrangements

Now consider an orthogonal action of a finite groupG on the Euclidean space E via a fixed homomorphism
ρ : G→ O(d). An arrangement A = {V1, . . . , Vk} is G-invariant if for every V ∈ A and every g ∈ G we
have g ·V ∈ A. Thus, the union of the arrangement UA and its complementMA are G-invariant subspaces
of E. Moreover, since the action of G is orthogonal, the link of the arrangement DA is also a G-invariant
subspace of the G-invariant sphere S(E). The action of the group G on the arrangement A also induces
an action on the cohomology of its complement. We want to describe the R[G]-module structure of
the cohomology ring H∗(MA;R). To isolate the main difficulty let us analyze the factorization of the
Goresky–MacPherson isomorphism for a G-invariant arrangement A.

The action of the group G on E is orthogonal and so the first isomorphism is induced via a G-
equivariant radial deformation retraction MA → S(E)\DA. Consequently, the first isomorphism (3) is
an isomorphism of R[G]-modules.

The Alexander duality map is a G-equivariant map up to an “orientation character.” The duality map
is given by α 7→ α ∩O where O is the fundamental class of the sphere S(E) and “∩” is the usual “cap”-
pairing relating homology with cohomology. Therefore, in order to transform the second isomorphism
into an isomorphism of R[G]-modules we have to take into account the associated orientation character.
This means that we need to know how the fundamental class O is transformed by the action of the group
G. Since the action of G on E is orthogonal we have that g · O = detR(ρ(g))O, for each g in G. Here
detR is evaluated in the ring R. In many cases of interest for this paper the orientation character will be
trivial and so the second isomorphism (4) will also be an isomorphism of R[G]-modules.

It remains to deal with an equivariant version of the third isomorphism (5). For that, following the
setup of Sundaram and Welker [58, Section 2], we adapt the diagram approach presented in [64].
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2.3 The diagram approach

Let us fix an orthogonal action of the group G on the Euclidean space E = Rd, d > 0, and a G-invariant
arrangement A = {V1, . . . , Vk}.

Any partially ordered set (P,≤) can be considered as a small category with the objects coinciding
with the elements of the poset, ObP := P , and a unique morphism p → q whenever q ≤ p in P . We
abuse notation by making no distinction between a poset and its induced small category. Moreover, for
every subposet Q of P , there is a natural inclusion poset map, or functor, iPQ : Q→ P .

The arrangement A induces a covariant functor, or a diagram of spaces, X : L>0̂
A → Top in the

following way:

◦ XV := S(E) ∩ V ≈ Sdim(V )−1, for every V ∈ L>0̂
A , and

◦ XV⊆W : (XV = S(E) ∩ V ) −→ (XW = S(E) ∩W ) is the inclusion map, for every relation V ⊆ W in

L>0̂
A .

Here L>0̂
A denotes the small category induced by the intersection lattice, and Top the category of topolog-

ical spaces. For a detailed account of the notions introduced and some applications consult [63] or [64].
The orthogonal action of the group G induces an additional structure on the diagram X. The inter-

section lattice LA becomes a G-set. Indeed, for any g ∈ G:

W = Vi1 ∩ · · · ∩ Vir ∈ LA =⇒ g ·W = (g · Vi1 ) ∩ · · · ∩ (g · Vir ) ∈ LA,

V ⊆W in LA =⇒ g · V ⊆ g ·W in LA.

Moreover, for every relation V ⊆ W in L>0̂
A and every group element g ∈ G the following diagram

commutes:

XV
g·

//

XV ⊆W

��

Xg·V

Xg·V ⊆g·W

��

XW g·
// Xg·W

We introduce two topological spaces associated to the diagram of an arrangement. The following
definitions can be directly generalized for any diagram of spaces over a small category C, that is, a
covariant functor C → Top.

• The colimit of a diagram X : L>0̂
A → Top is defined to be the quotient space

colim
L>0̂

A

X :=
∐

V ∈L>0̂
A

XV / ∼,

where “∼” is generated by all relations of the form

x ∼ y ⇔ (∃V ⊆W in L>0̂
A ) x ∈ V, y ∈ W, XV⊆W (x) = y.

In the case when all the maps in the diagram are inclusions, as it is in the case of the diagram
associated to an arrangement, the colimit of the diagram coincides with the union. Thus the colimit

of the diagram X : L>0̂
A → Top is the link of the arrangement A, i.e., colim

L>0̂
A

X = DA.

• The homotopy colimit of the diagram X : L>0̂
A → Top is defined as:

hocolim
L>0̂

A

X :=
∐

V ∈L>0̂
A

∆(0̂, V ]× XV / ∽ (7)

where the equivalence relation “∽” is defined as follows. For simplicity let use denote by

X :=
∐

V ∈L>0̂
A

∆(0̂, V ]× XV and Y :=
∐

V⊆W in L>0̂
A

∆(0̂,W ]× XV .

Consider the maps α : Y → X and β : Y → X given by the component maps:

αW⊇V : ∆(0̂,W ]× XV −→ ∆(0̂,W ]× XW , (p, a) 7−→ (p,XV⊆W (a));

βW⊇V : ∆(0̂,W ]× XV −→ ∆(0̂, V ]× XV , (p, a) 7−→ (∆
(
i
(0̂,V ]

(0̂,W ]

)
(p), a).

7



for every relation V ⊆W in L>0̂
A . Here ∆

(
i
(0̂,V ]

(0̂,W ]

)
denotes the map between order complexes induced

by the inclusion i
(0̂,V ]

(0̂,W ]
of posets. Now the equivalence relation “∽” is given by α(p, x) ∽ β(p, x),

for every (p, x) ∈ Y .
The projection to the second factor, in the definition of homotopy colimit (7), induces a natural map

hocolim
L>0̂

A

X −→ colim
L>0̂

A

X

called the projection map. The central property of this map is that under certain conditions for general
diagrams over small categories it induces a homotopy equivalence [63, Proposition 3.1]

hocolim
L>0̂

A

X ≃ colim
L>0̂

A

X.

Thus, instead of studying the link of an arrangement, one can then consider the homotopy colimit of the
diagram induced by the arrangement.

The group G induces additional structure on the intersection lattice of the arrangement A and on the
diagram X. Consequently, the action of the group G can be defined on both colim

L>0̂
A

X and hocolim
L>0̂

A

X

such that:
• the G-action on colim

L>0̂
A

X coincides with the G-action induced on the link DA, and

• the projection map hocolim
L>0̂

A

X −→ colim
L>0̂

A

X is a G-homotopy equivalence [58, Lemma 2.1].

Therefore, in order to understand the G-module structure on the homology of the link DA we will study
the G-module structure on the homology of the homotopy colimit hocolim

L>0̂
A

X of the arrangement A.

This will be done using the spectral sequence converging to the homology of the homotopy colimit of
a diagram introduced by Segal [53, Proposition 5.1], see also [24, Theorem 4.7], [64, Theorem 3.5]. In
the present situation, the additional structure imposed by the group action can be retrieved by a careful
study of the spectral sequence convergence.

2.4 A spectral sequence argument

Let R be a commutative ring with unit. For a simplicial complex K and r ≥ 0 an integer, let K(r) stand
for the r-skeleton subcomplex of K.

Let us consider the family of G-invariant subspaces {Xr : r ≥ 0} of the homotopy colimit of the
diagram X defined by

Xr :=
∐

V ∈L>0̂
A

∆(0̂, V ](r) × XV / ∽r

where the equivalence relation “∽r” is the restriction of the relation “∽.” The following sequence of
inclusions of G-invariant subspaces

X0 ⊆ X1 ⊆ · · · ⊆ Xd = hocolim
L>0̂

A

X (8)

defines a G-invariant filtration of the homotopy colimit.
The homology spectral sequence associated to the filtration (8), has the E1-term

E1
r,s = Hr+s(Xr, Xr−1;R),

and for the differential

∂1 : E1
r,s = Hr+s(Xr, Xr−1;R) −→ E1

r−1,s = Hr+s−1(Xr−1, Xr−2;R)

the boundary map of the long exact sequence of the triple (Xr, Xr−1, Xr−2).
The G-action on the filtration (8) implies the following R[G]-module decomposition of the E1-term:

E1
r,s = Hr+s(Xr, Xr−1;R) ∼=

⊕

(V0<···<Vr)∈(∆(L>0̂
A

))(r)/G

indGGVr
H̃s(XVr

;R)
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where GVr
denotes the subgroup of G that stabilizes the element Vr ∈ L

>0̂
A . Consider an (r + s)-chain

(V0 < · · · < Vr)×c of the space (V0 < · · · < Vr)×XVr
where c is a cycle. The evaluation of the differential

∂1 on this chain is given by

∂1((V0 < · · · < Vr)× c) =

r−1∑

i=1

(−1)i(V0 < · · · < V̂i < · · · < Vr)× c+ (9)

(−1)r(V0 < · · · < Vr−1)× (XVr⊆Vr−1)#(c).

Here (XVr⊆Vr−1)# denotes the map on the chain level induced by the inclusion map XVr⊆Vr−1 : XVr
→

XVr−1 . Since all the maps XV⊆W are positive codimension inclusions of spheres, all the maps in homology

(XVr⊆Vr−1)∗ : H̃s(XVr
;R) −→ H̃s(XVr−1 ;R)

vanish. Therefore, the differential ∂1 is determined by the expression in line (9), i.e., without losing
generality we can assume that

∂1((V0 < · · · < Vr)× c) =
r−1∑

i=1

(−1)i(V0 < · · · < V̂i < · · · < Vr)× c.

Recalling the notion of the Whitney homology of a poset [6, Section 5, pages 120-122] [57, Section 1,
pages 227-229], we conclude that the differential ∂1 is the boundary operator of the Whitney homology of
the intersection lattice with coefficients in R[GV ]-modules H∗(XV ;R). Moreover, using [6, Theorem 5.1,
page 121] or [57, Theorem 1.2, page 229], we have the following description of the E2-term:

E2
r,s
∼=

⊕

V ∈∆(L>0̂
A )/G

indGGV
H̃r−1(∆(0̂, V ); H̃s(XVr

;R)).

In order to avoid confusion when comparing references, we note that Björner’s definition of the Whitney
homology in [6] has dimension shift +1 with respect to the Whitney homology as defined by Sundaram
in [57].

Recall that we assume the condition (R) that the coefficient ring R is a principal ideal domain and

additionally for every V ∈ L>0̂
A the homology groups H∗(∆(0̂, V );R) are free R-modules. The universal

coefficient theorem implies that there is an isomorphism of R[G]-modules

E2
r,s
∼=

⊕

V ∈L>0̂
A /G

indGGV
H̃r−1(∆(0̂, V );R)⊗R H̃s(XV ;R).

The spectral sequence we consider converges to the homology of the link H∗(DA;R). On the other hand,
the homotopy type of the link is given by (6), and consequently its homology as an R-module is known.
The condition (R) implies the equality

∑

r+s=n

rankRE
2
r,s = rankRHn(DA;R),

where rankR denotes the rank of a module over the principal ideal domain R. Therefore the spectral
sequence collapses at the E2-term, i.e., E2

∗,∗ = E∞
∗,∗. So we conclude

Lemma 2.3. There is an ascending filtration of R[G]-modules

F−1,n+1 = {0} ⊆ F0,n ⊆ F1,n−1 ⊆ · · · ⊆ Fn−1,1 ⊆ Fn,0 = Hn(DA;R),

such that we have isomorphisms of R[G]-modules

Fr,s/Fr−1,s+1
∼= E∞

r,s = E2
r,s
∼=

⊕

V ∈L>0̂
A
/G

indGGV
H̃r−1(∆(0̂, V );R)⊗R H̃s(XV ;R).
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2.5 c-arrangements

If we forget the G-action and use the condition (R), we obtain an isomorphism of R-modules

Hn(DA;R) ∼=
⊕

r+s=n

⊕

V ∈L>0̂
A /G

indGGV
H̃r−1(∆(0̂, V );R)⊗R H̃s(XV ;R). (10)

An important observation is that this isomorphism does not automatically become an isomorphism of
R[G]-modules. This is the case if R is a field of characteristic prime to the order of G, and we conclude
the proof of Corollary 2.2.

We are also interested in the modular case, i.e., the characteristic of R will divide the order of G. In
order to ensure that (10) is an R[G]-isomorphism, we make an extra assumption on the arrangement,
namely the condition (C) that the arrangement is a c-arrangement for a some c > 1 in the following
sense.

Definition 2.4 (c-arrangement). The arrangement A is called a c-arrangement for some integer c > 1,
if codimRVi = c, for all i ∈ {1, . . . , k}, and for every pair of elements V ⊆ W in the intersection lattice
c | codimR(V ⊆W ).

In [31, Proposition in Section III.4.1] it was proved that the intersection lattice LA of every c-
arrangement A is also a geometric lattice. In particular, this means that for each open interval (V,W )
in LA

H̃i(∆(V,W );R) = 0 for all i 6= dim∆(V,W ) and any coefficients R.

If this additional assumption holds, as the filtration (8) grows from Xm−1 to Xm, the contribution to the
homology of the homotopy colimit comes from all V ∈ LA such that codimV = c(m+ 1) and it appears
at the position (m, dimV − 1) = (1c codimV − 1, dimV − 1) in dimension

1
c codimV + dimV − 2 = d− 2− (1 − 1

c )codimV = d
c − 2 + (1− 1

c ) dimV.

Since c > 1, the contribution always comes in dimensions where there was no previous contribution from
smaller elements of the filtration. Therefore, under the assumptions (R) and (C), we get for every n
that in the filtration appearing in Lemma 2.3 there is at most one index r for which Fr,n−r 6= Fr−1,n+1−r.
Hence the isomorphism (10) is an R[G]-isomorphism by Lemma 2.3. This finishes the proof of assertion (i)
of Theorem 2.1.

As we have seen, the Alexander duality isomorphism is an equivariant map up to the orientation
character. Therefore assertion (ii) of Theorem 2.1 follows from assertion (i). This finishes the proof of
Theorem 2.1.

3 Cohomology of the configuration space as an R[Sn]-module

In this section we consider the configuration space F (Rd, n) as the complement of an Sn-invariant ar-
rangement. Here Sn denotes the group of permutations on n letters. Using the Equivariant Goresky–
MacPherson formula from Theorem 2.1 (ii) we describe the R[Sn]-module structure on the cohomology
of the configuration space F (Rd, n) with coefficients in an appropriate ring R.

Different descriptions of the Sn-equivariant structure on cohomology of the configuration space
F (Rd, n) can be found, in the landmark paper [15, Section 7] of Fred Cohen, book by Fadell & Hus-
seini [29, Part II, Chapter V], the paper of F. Cohen & Taylor [20] and in the paper by Arone [3,
Proposition 2.1 and Lemma 2.2].

3.1 Configuration spaces

For a topological space X , the configuration space of n distinct points is defined to be

F (X,n) := {(x1, . . . , xn) ∈ X
n : xi 6= xj for all i < j} ⊂ Xn.
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The symmetric group Sn acts on Xn and consequently on F (X,n) by permuting the factors in the
product Xn. For i < j, let us denote:

Li,j(X) := {(x1, . . . , xn) ∈ X
n : xi = xj}

and
Bn(X) := {σ · L1,2(X) : σ ∈ Sn} = {Li,j(X) : 1 ≤ i < j ≤ n}.

Then the configuration space can be viewed as the complement of the subspace arrangement Bn

F (X,n) = Xn\
⋃
Bn(X) = Xn\

⋃

σ∈Sn

σ · L1,2(X) = Xn\
⋃

1≤i<j≤n

Li,j(X).

When X is the Euclidean space Rd, the configuration space F (Rd, n) is a complement of the linear
subspace arrangement Bn,d := Bn(Rd).

3.2 Partitions

Let Πn denote the lattice of all partitions of the set [n] := {1, . . . , n} ordered by refinement (induced
by inclusion of the blocks). The minimum of Πn is the partition 0̂ := {{1}, {2}, . . . , {n}} given by all
singletons and the maximum is 1̂ := {[n]}. Thus a typical element of Πn is a partition {P1, . . . , Pk} of
the set [n] where P1 ∪ · · · ∪ Pk = [n] and Pi ∩ Pj = ∅ for all i < j. We assume that there are no empty
sets in the presentation of a partition. The number of (non-empty) blocks of the partition π is also called
its size, denoted by size(π).

The poset Πn\{0̂} is isomorphic to the intersection poset of the arrangement Bn,d for any d ≥ 1. The
correspondence between the elements of these posets is given by

{P1, . . . , Pk} ←→ V{P1,...,Pk},d :=
{
(x1, . . . , xn) ∈ (Rd)n : xi = xj if i, j ∈ Pr for some 1 ≤ r ≤ k

}

=
⋂

r∈{1,...,k}
i,j∈Pr ; i<j

Li,j(Rd).

In what follows, we do not distinguish between the partition {P1, . . . , Pk} and its associated linear sub-
space V{P1,...,Pk},d.

When we speak about topological properties of a lattice L, we always have the order complex of its
proper part L̄ := L\{0̂, 1̂} in mind, [7, Section 4, page 287]. The homotopy type of the partition lattice
Πn is known:

∆(Πn\{0̂, 1̂}) = ∆(Π̄n) ≃
∨

(n−1)!

Sn−3. (11)

Consult for example [7, Theorem 1.5(b), page 279 or Proposition 4.1, page 288].
When necessary, we use notation ΠX to denote the partition lattice of the finite set X . The set X is

also called the ground set for the partition lattice ΠX . In particular Πn = Π[n] and ΠX ∼=poset Π|X|.

3.3 Lower intervals

Now we describe the topology of the lower intervals of the partition lattice Πn. Consider a fixed partition
π := {P1, . . . , Pj} of size j of [n] and denote by:
• ai(π) the size of the block Pi, i ∈ {1, . . . , j};
• bi(π) the number of blocks of size i, i ∈ {1, . . . , n}.

Following Stanley [54, page 317] we obtain that

[0̂, π] = [0̂, Vπ,d] ∼= ΠP1 × · · · ×ΠPj
∼= Πa1(π) × · · · ×Πaj(π)

∼= Π
b1(π)
1 × · · · ×Πbn(π)n .

Here for a poset P its 0-power P 0 is the poset with only one element, i.e., minimum and maximum of P
coincide. Furthermore, from Walker [62, Theorem 6.1(d)], with Π̄1 = Π̄2 = ∅ and “K ∗ ∅ = K”, it follows
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that

∆(0̂, Vπ) ≃ Σk−1
(
∆(Π̄P1) ∗ · · · ∗∆(Π̄Pj

)
)

(12)

≈ Σk−1
(
∆(Π̄a1(π)) ∗ · · · ∗∆(Π̄aj(π))

)

≈ Σk−1
(
∆(Π̄1)

∗b1(π) ∗ · · · ∗∆(Π̄n)
∗bn(π)

)
.

Here Σ denotes the suspension.
The stabilizing subgroup of the partition π is the subgroup

(Sn)π := (S1 ≀Sb1(π))× · · · × (Sn ≀Sbn(π))

of the symmetric group Sn. For br = 0, the group Sbr ≀Sbr(π) is trivial. Only the maximal and minimal

element, the partitions 1̂ = {[n]} and 0̂ = {{1}, . . . , {n}}, are stabilized by the complete symmetric group
Sn. Now (Sn)π acts on the lower interval [0̂, Vπ,d] and consequently on its homology. Using Wachs [61,
Theorem 5.1.5, page 588], we obtain the R[(Sn)π]-module structure on the homology of the lower interval
[0̂, Vπ,d]:

H̃r(∆(0̂, Vπ,d);R) ∼=
⊕

i1+···+ij+2j−2=r

H̃i1(∆(Π̄a1(π));R)⊗ · · · ⊗ H̃ij (∆(Π̄aj(π));R).

Moreover, this homology is non-trivial if and only if r = n− j − 2, and

H̃n−j−2(∆(0̂, Vπ,d);R) ∼= H̃a1(π)−3(∆(Π̄P1 );R)⊗ · · · ⊗ H̃aj(π)−3(∆(Π̄Pj
);R)

∼= H̃a1(π)−3(∆(Π̄a1(π));R)⊗ · · · ⊗ H̃aj(π)−3(∆(Π̄aj (π));R)

∼= H̃1−3(∆(Π̄1);R)
⊗b1(π) ⊗ · · · ⊗ H̃n−3(∆(Π̄n);R)

⊗bn(π)

∼= H̃−2(∆(Π̄1);R)
⊗b1(π) ⊗ · · · ⊗ H̃n−3(∆(Π̄n);R)

⊗bn(π) (13)

assuming that H̃−2(∅;R) = H̃−1(∅;R) = R. The group (Sn)π acts componentwise, meaning that each
factor H̃j−3(∆(Π̄j);R)

⊗bj(π) in the tensor product is an R[Sj ≀Sbj(π)]-module in a natural way.

3.4 The cohomology of the configuration space as R[Sn]-module

Theorem 3.1. Let n > 1 and d > 1 are integers. Let R be a principal ideal domain. Then

Hi(F (Rd, n);R) 6= 0 if and only if i = (d− 1)(n− j) for some j ∈ {1, . . . , n}.

For j ∈ {1, . . . , n− 1} there is an isomorphism of R[Sn]-modules

H(d−1)(n−j)(F (Rd, n);R) ∼=

R⊗
⊕

π∈(Πn\{0̂})/Sn

size(π)=j

indSn

(Sn)π
H̃−2(∆(Π̄1);R)

⊗b1(π) ⊗ · · · ⊗ H̃n−3(∆(Π̄n);R)
⊗bn(π) ⊗RVπ,d

where R is the R[Sn]-module whose underlying R-module is R and for which g ∈ Sn acts by g · r :=
detR(g)r, and RVπ,d

is the R[(Sn)π]-module whose underlying R-module is R and for which g ∈ (Sn)π
acts by g · r := detR(g|Vπ,d

)r.

Proof. The homotopy equivalences (11) and (12) imply that all the assumptions of the Equivariant
Goresky–MacPherson formula 2.1 hold. Now apply Theorem 2.1 (ii) and formula (13).

Remark 3.2. Observe that for every subgroup G of Sn a similar theorem can be stated that describes the
cohomology of the configuration space F (Rd, n) with the coefficients in the ring R as an R[G]-module.
The proof would be identical.

Remark 3.3. The structure of the cohomology of the configuration space F (Rd, n) described in Theorem
3.1, in the case R = Z, can be directly related to the results of F. Cohen & Taylor given in [20, Section
3, Theorem 3.9] via the following dictionary:
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Partition of [n] π P

Number of blocks in the partition k π0(P)

A direct summand in H∗(F (Rd, n);Z) H̃n−k−2(∆(0̂, Vπ,d);Z)⊗R⊗RVπ,d
T (P , d)

Stabilizing subgroup of the partition (Sn)π Σ(P)

A direct summand in a module decomposition R⊗ indSn

(Sn)π
H̃n−k−2(∆(0̂, Vπ,d);Z)⊗RVπ,d

T (Lµ, d)|
Σn

Remark 3.4. Consider the natural inclusion of the partition lattices i
Πn+1

Πn
: Πn → Πn+1 given by

π := (P1, . . . , Pj) 7−→ π′ := (P1, . . . , Pj , {n+ 1})

where (P1, . . . , Pj) is a partition of [n]. Let 1 ≤ j ≤ n and Π
{j}
n denotes the anti-chain of all partitions of

size j. Then i
Πn+1

Πn
includes the anti-chain Π

{j}
n into the anti-chain Π

{j+1}
n+1 .

If Sn → Sn+1 is a monomorphism of groups induced from the set inclusion [n]→ [n+1], then i
Πn+1

Πn

is an Sn-equivariant map. Hence, for every π ∈ Πn the inclusion i
Πn+1

Πn
induces an Sn-equivariant poset

isomorphism between the open intervals (0, Vπ)→ (0, Vπ′).

Now, Theorem 3.1 implies that the inclusion i
Πn+1

Πn
induces a monomorphism of R[Sn]-modules:

Φn,ℓ : H
(d−1)ℓ(F (Rd, n);R)→ H(d−1)ℓ(F (Rd, n+ 1);R),

when d ≥ 2, n ≥ 1 and 1 ≤ ℓ ≤ n− 1,

Observe that for 2(j + 1) > n + 1 each partition in Π
{j+1}
n+1 must have at least one part of length 1.

Therefore, the Sn+1-orbit of the image i
Πn+1

Πn
(Π

{j}
n ) of the anti-chain Π

{j}
n equals Π

{j+1}
n+1 . Consequently,

the Sn+1-orbit of the image Φn,ℓ(H
(d−1)ℓ(F (Rd, n);R)) equals H(d−1)ℓ(F (Rd, n+ 1);R) when l < n+1

2 .
These two properties, derived from Theorem 3.1, are manifestations of “Representation stability”

phenomena of Church and Farb. More precisely, these are “Injectivity” and “Surjectivity” properties in
the language of [21, Definition 1.1] and [22, Definition 2.3].

3.5 The special case G = (Z/p)k

Finally, we discuss the special case when n = pk is a power of a prime p. Moreover, let G ∼= (Z/p)k be
a subgroup of Sn given by the regular embedding (reg): G → Sn, [1, Example 2.7 on page 100]. The
regular embedding is given by the left translation action of (Z/p)k on itself. To each element g ∈ (Z/p)k

we associate permutation Lg : (Z/p)k → (Z/p)k from Sym((Z/p)k) ∼= Spk given by Lg(x) = g + x. In
this special case we are interested in partitions of [n] that are stabilized by the whole group G.

Let H be a non-zero subgroup of G and m := |G/H |. Then H acts on [n]. Let O1, . . . , Om be the
orbits of the H-action on [n] and πH be the element of Πn corresponding to the partition {O1, . . . , Om}.
If πH is considered as an element of the intersection lattice of an arrangement, it will be denoted by VH,d,
where (Rd)n is assumed to be the ambient space of the corresponding arrangement, i.e.,

VH,d :=
{
(x1, . . . , xn) ∈ (Rd)n : xi = xj if i, j ∈ Or for some 1 ≤ r ≤ m

}
= ((Rd)n)H . (14)

All the blocks in the partition {O1, . . . , Om} are of the same size |H |. A partition π of [n] is stabilized
by G if and only if there is a non-zero subgroup H of G such that π = πH .

As we have already seen

[0, πH ] ∼=H-poset ΠO1 × · · · ×ΠOm
∼=H-poset ΠH × · · · ×ΠH︸ ︷︷ ︸

m times

∼=poset Π|H| × · · · ×Π|H|︸ ︷︷ ︸
m times

,

and consequently

∆(0, πH) ≃ Σm−1
(
∆(Π̄|H|) ∗ · · · ∗∆(Π̄|H|)︸ ︷︷ ︸

m times

)
.

Therefore, the i-th reduced homology of ∆(0, πH) is non-trivial if and only if i = n−m− 2, and

H̃n−m−2(∆(0, πH);R) ∼= H̃|H|−3(∆(Π̄|H|);R)
⊗G/H ∼= H̃|H|−3(∆(Π̄H);R)⊗G/H (15)

is the “tensor induced” R[G]-module obtained from the R[H ]-module H̃|H|−3(∆(Π̄|H|);R), see [27, Chap-

ter 5.1, page 45]. Here the H-action on H̃|H|−3(∆(Π̄|H|);R) is induced from the action of H on the
partition lattice ΠH .
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4 Differentials in the Serre spectral sequence of the Borel con-

struction

Fix a prime p. Let IG denote the family of all Fp[G]-modules that are Fp[G]-isomorphic to finite direct

sums of Fp[G]-modules of the shape indGH N for some subgroupH ⊆ G,H 6= G and some Fp[H ]-moduleN .
In particular we assume that 0 ∈ IG. In our case coinduced and induced Fp[G]-modules coincide, [13,
Proposition III.5.9 page 70], therefore we do not distinguish between them. Define a wider family of
Fp[G]-modules FIG to consist of those Fp[G]-modules M for which there exists an integer r > 0 and a
(finite) filtration of M by Fp[G]-modules

0 =M0 ⊆M1 ⊆ · · · ⊆Mr =M

such that all quotients Mi/Mi−1 belong to IG.
The main result of this section treats the Serre spectral sequence for the Borel construction of the

G-space X , i.e., for the fibration X −→ EG×G X −→ BG:

Theorem 4.1. Let G = (Z/p)k be an elementary abelian group and n be a natural number. Let X be a
connected G-space such that Hi(X ;Fp) ∈ FIG for every i ∈ {1, . . . , n}. Then for every r ≥ 0 and every
s ∈ {2, . . . , n+ 1} the differential

∂s : E
r,s−1
s (EG×G X) −→ Er+s,0s (EG×G X)

vanishes. Consequently,
IndexG(X ;Fp) ⊆ H

≥n+2
G (pt;Fp).

An immediate consequence of the previous theorem is an extension of the generalized Dold theorem
for elementary abelian groups from [8, Theorem 16, page 1934].

Theorem 4.2 (Generalized Dold theorem). Let G = (Z/p)k be an elementary abelian group and let n
be a natural number. Let X and Y be connected G-spaces. Suppose that Hi(X ;Fp) ∈ FIG for every

1 ≤ i ≤ n, and π∗
X : Hj

G(pt;Fp)→ Hj
G(Y ;Fp) is not injective for some 1 ≤ j ≤ n+ 1.

Then there is no G-equivariant map X → Y .

The proof of Theorem 4.1 needs some preparation.
The cohomology of the group G = (Z/p)k with coefficients in the field Fp is given by:

H∗((Z/2)k ;F2) = F2[t1, . . . , tk], deg tj = 1,

H∗((Z/p)k ;Fp) = Fp[t1, . . . , tk]⊗ Λ[e1, . . . , ek], deg tj = 2, deg ei = 1, for p > 2,

where Λ[e1, . . . , ek] denotes the exterior algebra generated by elements e1, . . . , ek.
The cohomology algebra H∗(G;Fp) contains the maximal multiplicative set

SG := (polynomial part of H∗(G;Fp))\{0} =

{
F2[t1, . . . , tk]\{0}, for G = (Z/2)k ,
Fp[t1, . . . , tk]\{0}, for G = (Z/p)k and p > 2.

The central property [35, Proof of Proposition 1, page 45] [8, Lemma 15] of the multiplicative set SG and
the class of elementary abelian groups is that

⋂

H∈SubG

ker
(
resGH : H∗(G;Fp) −→ H∗(H ;Fp)

)
∩ SG 6= ∅; (16)

here SubG stands for the collection of all proper subgroups of the group G, i.e., all the subgroups different
from G.

We call an endomorphism f : M → M of a graded abelian group nilpotent of degree ≤ d if fd = 0,
and nilpotent if it is nilpotent of degree ≤ d for some natural number d.
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Lemma 4.3.
(i) If 0→ L

i
−→M

p
−→ N → 0 is an exact sequence of Fp[G]-modules and L and N belong to FIG, then

M also belongs to FIG.
(ii) Consider the following diagram of graded abelian groups, where the horizontal maps are degree

preserving, while the vertical maps do not necessarily preserve the degree:

M0
i

//

f0

��

M1
p

//

f1

��

M2

f2

��

M0
i

// M1
p

// M2

Suppose that the rows are degreewise exact at M1, and that f0 and f2 are nilpotent of degree ≤ d0
resp. ≤ d2. Then f1 is nilpotent of degree ≤ (d0 + d2).

(iii) Let f : N → N be an endomorphism of the graded abelian group N which is nilpotent of degree ≤ d.
If M ⊆ N is a graded abelian subgroup with f(M) ⊆ M , then f |M : M → M and the induced map
f : N/M → N/M are nilpotent of degree ≤ d.

Proof. (i) By assumption we can choose filtrations 0 = L0 ⊆ L1 ⊆ · · · ⊆ Lr = L and 0 = N0 ⊆
N1 ⊆ · · · ⊆ Ns = N such that each quotient belongs to IG. Define Mk = i(Lk) for k = 0, 1, 2 . . . , r and
Mk = p−1(Nk−r) for k = (r+1), . . . , (r+s). Then we obtain a filtration 0 =M0 ⊆M1 ⊆ · · · ⊆Mr+s =M
such that each quotient belongs to IG. Hence M belongs to FIG.

(ii) Consider x ∈M1. Then p ◦ f
d2
1 (x) = (f2)

d2 ◦ p(x) = 0. Hence there exists y ∈ N0 with i(y) = fd21 (x).
We conclude that fd0+d21 (x) = fd01 ◦ f

d2
1 (x) = fd21 ◦ i(y) = i ◦ fd00 (y) = 0. Hence f1 is nilpotent of degree

≤ (d0 + d2).

(iii) This is obvious.

Lemma 4.4. Let M be an Fp[G]-module in FIG. Consider an element ξ ∈ H∗(G;Fp) which is mapped to
zero under the restriction map resGH : H∗(G;Fp)→ H∗(H ;Fp) for every H ∈ SubG. Then multiplication
with ξ is a nilpotent map ξ : H∗(G;M)→ H∗(G;M).

Proof. We use induction over n for which there exists an Fp[G]-filtration 0 =M0 ⊆M1 ⊆ · · · ⊆Mn =M
such that each quotient belongs to IG. The induction beginning n = 0 is trivial. In the induction
step from n to n + 1 we consider the exact a sequence 0 −→ Mn −→ M −→ M/Mn → 0. It induces
a sequence H∗(G;Mn) −→ H∗(G;M) −→ H∗(G;M/Mn) which is exact at H∗(G;M). By induction
hypothesis ξ : H∗(G;Mn) → H∗(G;Mn) is nilpotent. In order to show that ξ : H∗(G;M) → H∗(G;M)
is nilpotent, using Lemma 4.3 (ii), it is enough to prove that ξ : H∗(G;M/Mn) → H∗(G;M/Mn) is
nilpotent. Since M/Mn belongs to IG, it suffices to show that ξ : H∗(G; indGHN) → H∗(G; indGH N) is
trivial for any subgroup H ∈ SubG and any Z[H ]-module N . By Shapiro’s Lemma [13, Proposition 6.2,

page 73] there is an isomorphism α : H∗(G; indGHN)
∼=
−→ H∗(H ;N) such that α(ξ · x) = resGH(ξ) · α(x)

holds for all x ∈ H∗(G; indGHN). Since resGH(ξ) = 0 by assumption, the claim follows.

Proof of Theorem 4.1. Because of (16) we can choose 0 6= ξ ∈ SG ∩
⋂
α∈Λ ker(resGHα

). The Serre spectral
sequence comes with a module structure over the graded ring H∗(G;Fp). The E2-term looks like E∗,s

2 =
H∗(G;Hs(X ;Fp)). Hence multiplication with ξ induces a nilpotent map ξ : E∗,s

2 → E∗,s
2 for 1 ≤ s ≤ n

by Lemma 4.4. Since all differentials are H∗(G;Fp)-maps, we conclude from Lemma 4.3 (iii) that there
is a natural number d such that the map ξd : E∗,s

r → E∗,s
r given by multiplication with ξd is trivial for all

1 ≤ s ≤ n and r ≥ 2. Notice for the sequel that for every x ∈ Er,s−1
2 we have ∂s(ξ

d · x) = ξd · ∂s(x), and
hence ξd · ∂s(x) = 0.

Now we show by induction that ∂s : E
r,s−1
s (EG ×G X) −→ Er+s,0s (EG ×G X) vanishes for s ∈

{2, . . . , n+1}. The induction beginning s = 2 follows from the fact that the map ξd : E∗,0
2 = H∗(G;Fp)→

E∗,0
2 = H∗(G;Fp) is injective since ξ belongs to SG. Finally we explain the induction step from s − 1

to s ≥ 3. By induction hypothesis all differentials landing in the 0-th row in the Ei-term are triv-
ial for i ≤ s − 1. Hence E∗,0

s = E∗,0
2 = H∗(G;R). Now the same argument as above shows that

∂s : E
r,s−1
s → Er+s,0s is trivial.
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5 Equivariant obstruction theory, Euler classes and Lusternik–

Schnirelmann category

5.1 Equivariant primary obstructions and Euler classes

Let G be a finite group and X be a free G-CW complex. Consider an orthogonal G-representation W .
Denote by ξ the associated vector bundle X ×G W −→ X/G and by S(ξ) the related sphere bundle
X ×G S(W ) −→ X/G.

Lemma 5.1. There is a one-to-one correspondence between sections of the sphere bundle S(ξ) : X ×G
S(W ) −→ X/G and G–equivariant maps from X → S(W ).

Proof. Given a G–equivariant map f : X → S(W ), we obtain a section of S(ξ) by taking the G-quotient
of the map X → X × S(W ), x 7→ (x, f(x)).

Let s : X/G → X ×G S(W ) be a section of S(ξ). Consider the following diagram whose squares are
pullbacks

s∗p∗X
s

//

��

p∗X
p

//

��

X

��

X/G
s
// X ×G S(W )

p
// X/G.

There is a canonical isomorphism of G-coverings over X ×G S(W ) from X × S(W ) → X ×G S(W ) to
p∗X → X ×G S(W ). Since p ◦ s = id, we obtain a preferred isomorphism of G-coverings over X/G from
X → X/G to s∗p∗X → X/G. Hence the G-equivariant map s can be identified with a G-equivariant
map X → X × S(W ). Its composition with the projection X × S(W ) → S(W ) yields a G-equivariant
map X → S(W ).

Now suppose that X is a d-dimensional connected free G-CW -complex for d = dim(W ). Let
w : G → {±1} be the orientation homomorphism of W , i.e., w(g) is 1 if g acts orientation preserving
and is −1 otherwise. The first Stiefel-Whitney class w1(ξ) ∈ H1(X/G;Z/2) is given by the composition

w1(ξ) : π1(X/G)
∂
−→ G

w
−→ {±1}, where ∂ is the classifying map associated to the G-covering X → X/G.

There is the notion of the Euler class

e(ξ) ∈ Hd(X/G;Z)

where Hd(X/G;Z) is the cohomology of X/G with coefficients in the local coefficient system Z, which
assigns to y ∈ X/G the (d− 1)-st homotopy group of the fiber of S(ξ) over y. It is defined as the primary
obstruction to the existence of a section of S(ξ) and is a characteristic class. See for instance [32], where
further references, e.g., [55] and [59], are given. The orientable case, i.e., w1 is trivial, is treated in [44,
§ 9 and § 12].

There is a natural identification

Hd(X/G;Z) ∼= Hd(X/G;Zw1(ξ))

whereHd(X/G;Zw1(ξ)) is Hd
(
homZ[π1(X/G)](C∗(X̃/G),Zw1(ξ))

)
for the Z[π1(X/G)]-module Zw1(ξ) whose

underlying abelian group is Z and for which g acts by multiplication with w1(X/G)(g). Moreover, there
is a natural identification

Hd(X/G;Zw1(ξ)) ∼= Hd
G(X ;Zw) := Hd

(
homZG(C∗(X),Zw)

)
.

The primary equivariant obstruction for the existence of a G-equivariant map X → S(W ) is an element
(see [26, page 120])

γG(X,S(W )) ∈ Hd
G(X ;Zw).

The reduction of coefficients Zw to Z/2 defines the (mod 2)-primary obstruction

γG
Z/2(X,S(W )) ∈ Hd

G(X ;Z/2)
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in a natural way.
The proof of the next lemma consists of unravelling the definitions of the primary obstruction for the

existence of a section of S(ξ) and the equivariant primary obstruction for the existence of a G-equivariant
map X → S(W ) using Lemma 5.1 and the fact that cells in X/G correspond to equivariant cells in X .

Lemma 5.2. Let X be a d-dimensional connected free G-CW -complex for d = dim(W ). Then the
composite of natural isomorphisms

Hd(X/G;Z)
∼=
−→ Hd(X/G;Zw1(ξ))

∼=
−→ Hd

G(X ;Zw)

maps the Euler class e(ξ) to the equivariant primary obstruction γG(X ;S(W )).

The reduction of twisted coefficients to Z/2 yields a similar identification of the (mod 2)-primary
obstruction with the appropriate Stiefel–Whitney class.

Lemma 5.3. Let X be a d-dimensional connected free G-CW -complex for d = dim(W ). Then the natural
isomorphism

Hd(X/G;Z/2)
∼=
−→ Hd

G(X ;Z/2)

maps the top Stiefel–Whitney class wd(ξ) to the equivariant (mod 2)-primary obstruction γG
Z/2(X ;S(W )).

5.2 Restriction and transfer

Lemma 5.4. Let G be a finite group and H ⊆ G be a subgroup. Consider a Z[G]-chain complex
C∗ = (Cn, cn) and a Z[G]-module M . Denote by res the restriction from G to H.

Then for any n there is a restriction homomorphism

res: Hn
(
homZ[G](C∗,M)

)
→ Hn

(
homZ[H](resC∗, resM)

)
,

and a transfer homomorphism

trf : Hn
(
homZ[H](resC∗, resM)

)
→ Hn

(
homZ[G](C∗,M)

)
,

with the property that
trf ◦ res = [G : H ] · id.

Proof. Choose a map of sets s : G/H → G such that the composite pr ◦s with the projection pr: G→ G/H
is the identity. Given a Z[H ]-map φ : resCn → resM , define a Z[G]-map

trfn(φ) : Cn →M, x 7→
∑

gH∈G/H

s(gH) · φ(s(gH)−1 · x).

This definition is actually independent of the choice of s, as the following calculation for another section
s′ shows

s′(gH) · φ(s′(gH)−1x) = s(gH) · s(gH)−1 · s′(gH) · φ(s′(gH)−1 · x)

= s(gH) · φ
(
s(gH)−1 · s′(gH) · s′(gH)−1 · x

)

= s(gH) · φ(s(gH)−1x).

The collection of the maps trfn yields a Z[H ]-cochain map trf∗ : homZ[H](resC∗, resM)→ homZ[G](C∗,M)
by the following calculation for φ ∈ homZ[H](resC∗, resM) and x ∈ Cn+1 using the fact that the differ-
entials of C∗ are G-equivariant

trfn(φ)(cn+1(x)) =
∑

gH∈G/H

s(gH) · φ
(
s(gH)−1 · cn+1(x)

)

=
∑

gH∈G/H

s(gH) · (φ ◦ cn+1)
(
s(gH)−1 · x

)

= trfn(φn ◦ cn+1).
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The desired transfer map trf : Hn
(
homZ[H](resC∗, resM)

)
→ Hn

(
homZ[G](C∗,M)

)
is obtained by apply-

ing cohomology to the cochain map trf∗.
In order to prove that trf ◦ res = [G : H ], it suffices to show that for any Z[G]-map φ : Cn →M

trfn ◦ res(φ) =
∑

gH∈G/H

s(gH) · φ
(
s(gH)−1 · x

)

=
∑

gH∈G/H

s(gH) · s(gH)−1 · φ(x)

=
∑

gH∈G/H

φ(x)

= [G : H ] · φ.

This finishes the proof of Lemma 5.4.

5.3 Lusternik–Schnirelmann category

The Lusternik–Schnirelmann category cat(X) of a space X is the least integer n for which X can be
covered by n+ 1 open subsets U1, U2, . . . , Un+1 such that the inclusions Ui → X are nullhomotopic.

The sectional category secat(p) of the fibration F → E
p
→ B is the minimal integer n for which B can be

covered by n + 1 open subsets U1, U2, . . . , Un+1 such that each restriction fibration F → p−1(Ui) → Ui
admits a section si : Ui → p−1(Ui). Originally, the notion of sectional category was introduced by Schwarz
in [52] under the name genus.

A few key properties of the Lusternik–Schnirelmann and sectional category that we use are stated in
the next lemma.

Lemma 5.5.
(1) If X is homotopy equivalent to Y , then cat(X) = cat(Y ).
(2) If p : X → Y is a covering, then cat(X) ≤ cat(Y ).
(3) If X is an (n− 1)-connected CW -complex, then cat(X) ≤ 1

n dim(X).

(4) If F → E
p
→ B is a fibration, then secat(p) ≤ cat(B).

Let X be a topological space and R be a commutative ring with unit. The category weight of the
element u ∈ H∗(X ;R) is

wgt(u) :=

{
max{k : p∗k−1(u) = 0}, if the maximum exists,
∞, otherwise.

Here pk−1 : Gk−1 → X denotes the (k − 1)st Ganea fibration [30]. This definition of the category weight
is due to Rudyak [51] and Strom [56]. For more details consult [23, Section 2.7, page 62; Section 8.3,
page 240]. Properties of the category weight that we use are collected in the lemma that follows [23,
Proposition 8.22, pages 242–243, page 259], [50, Proposition 2.2(3)].

Lemma 5.6. Let R be a commutative ring with unit.
(1) If 0 6= u ∈ Hℓ(X ;R), then wgt(u) ≤ cat(X).
(2) Let f : X → Y be a continuous map and u ∈ Hℓ(Y ;R). If 0 6= f∗(u) ∈ Hℓ(X ;R), then wgt(u) ≤

wgt(f∗(u)).
(3) Let G be a finite group. If 0 6= u ∈ Hℓ(BG;R), then ℓ ≤ wgt(u).

(4) Let F → E
p
→ B be a fibration that is a pullback of a fibration F → Ê

p̂
→ B̂ along the map f : B → B̂.

If Ê is contractible, 0 6= u ∈ Hℓ(B̂;R) and f∗(u) 6= 0, then wgt(u) ≤ secat(p).

The main result of this section is the following theorem.

Theorem 5.7 (Lusternik–Schnirelmann category). Let G be a finite group and let p be a prime. Let X be
a free d-dimensional connected G-CW -complex and letW be a d-dimensional orthogonal G-representation
with unit sphere S(W ). Suppose that a p-Sylow subgroup G(p) acts orientation preserving on S(W ). (This
is automatically satisfied if p is odd.) Suppose that there exists no G-equivariant map X → S(W ) and
that every torsion element in Hd

G(X ;πd−1(S(W ))) has p-power order.
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(1) The Lusternik–Schnirelmann category cat(X/G) of the quotient space is

cat(X/G) = d.

(2) Let Y be a free G-space. If there exists a G-equivariant map h : X → Y , then the Lusternik–
Schnirelmann category cat(Y/G) of the quotient space satisfies

cat(Y/G) ≥ d.

Proof. Since there is no G-equivariant map X → S(W ), the equivariant primary obstruction

γG(X,S(W )) ∈ Hd
G(X ;πd−1(S(W )))

is non-trivial. Here πd−1(S(W )) ∼=Ab Z is considered as a G-module that need not be trivial. On the
other hand, by assumption, πd−1(S(W )) is a trivial G(p)-module. The restriction homomorphism

resGG(p) : H
d
G(X ;πd−1(S(W )))→ Hd

G(p)(X ;Z)

maps γG(X,S(W )) to γG
(p)

(X,S(W )). Since every torsion element in Hd
G(X ;πd−1(S(W ))) has p-power

order the composition

trfGG(p) ◦ resGG(p) = [G : G(p)] · id : Hd
G(X ;πd−1(S(W )))→ Hd

G(X ;πd−1(S(W )))

is an injection. Thus, resG
G(p) : H

d
G(X ;πd−1(S(W ))) → Hd

G(p)(X ;Z) is injective and γG
(p)

(X,S(W )) ∈

Hd
G(p)(X ;Z) is non-trivial.
(1) Let ξ be the vector bundle X×G(p) W −→ X/G(p) and η be the vector bundle EG(p)×G(p) W −→

BG(p). Choose a classifying map f : X/G(p) → BG(p) for the G(p)-covering X → X/G(p). Then ξ is
isomorphic to f∗η, and there is the following pullback diagram:

X ×G(p) W //

ξ

��

EG(p) ×G(p) W

η

��

X/G(p) f
// BG(p).

By Lemma 5.2 the Euler class e(ξ) ∈ Hd(X/G(p);Z) is non-trivial. The naturality property of Euler
classes implies that Hd(f) : Hd(BG(p);Z)→ Hd(X/G(p);Z) maps e(η) to e(ξ). Since e(ξ) is non-trivial,
using Lemma 5.6, we have that

d ≤ wgt(e(η)) ≤ wgt(e(f∗η)) = wgt(e(ξ)) ≤ cat(X/G(p)).

Furthermore, the quotient map X/G(p) → X/G is a covering and therefore by Lemma 5.5 we get

cat(X/G(p)) ≤ cat(X/G) ≤ dim(X/G) = d.

(2) Let ĥ : X/G(p) → Y/G(p) be the quotient map. Consider χ the bundle Y ×G(p) W −→ Y/G(p) and
g : Y/G(p) → BG(p) a classifying map for the G(p)-covering Y → Y/G(p). Then χ is isomorphic to g∗η.

The composition l := g ◦ ĥ is homotopic to the classifying map f . Consequently, ξ is isomorphic to l∗η.
The relationship between these bundles can be illustrated by the following diagram:

X ×G(p) W //

ξ

��

Y ×G(p) W //

χ

��

EG(p) ×G(p) W

η

��

X/G(p) ĥ
// Y/G(p) g

// BG(p).

The naturality property of Euler classes implies that

e(η)
Hd(g)

// e(χ)
Hd(ĥ)

// e(ξ).

We have seen that e(ξ) 6= 0. Therefore, e(χ) 6= 0 and so by Lemmas 5.5 and 5.6

d ≤ wgt(e(η)) ≤ wgt(e(g∗η)) = wgt(e(χ)) ≤ cat(Y/G(p)) ≤ cat(Y/G).

This concludes the proof of the theorem.
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6 Fadell–Husseini index of the configuration space

Now we start our study of the Fadell–Husseini ideal-valued index of the configuration space F (Rd, n)
with respect to different subgroups of the symmetric group:
• IndexZ/p(F (Rd, p);Fp) ⊆ H∗(Z/p;Fp) for p prime, d > 1 and Z/p acting on F (Rd, p) by a cyclic
shift,
• Index(Z/p)k(F (R

d, pk);Fp) ⊆ H∗((Z/p)k;Fp) for p prime, d > 1 and (Z/p)k acting on F (Rd, pk) as
a subgroup of Spk that acts on [pk] = {1, . . . , pk} via the regular embedding (reg) : (Z/p)k → Spk .

In this section we will obtain a complete answer in case when n is a prime.
To study the index of the configuration space F (Rd, n) with respect to some subgroup G of the

symmetric group Sn we will consider the Serre spectral sequence of the fibration

F (Rd, n) −→ EG×G F (R
d, n) −→ BG.

6.1 Fadell–Husseini index, definition and a few basic properties

First we collect some basic properties of the Fadell–Husseini index that will be used below. For more
details and for proofs of the listed properties consult [28], [60] and [9].

Let G be a finite group and R be a commutative ring with unit. For a G-space X and a ring R,
we define the Fadell–Husseini index of X to be the kernel ideal of the map in equivariant cohomology
induced by the G-equivariant map pX : X → pt:

IndexG(X ;R) := ker
(
p∗X : H∗

G(pt;R) −→ H∗
G(X ;R)

)

= ker
(
H∗(G;R) −→ H∗(EG×G X ;R)

)
.

The Serre spectral sequence of the fibration X −→ EG ×G X −→ BG gives the presentation of the
homomorphism p∗X : H∗(G;R)→ H∗(EG×G X ;R) as the composition

H∗(G;R) −→ E∗,0
2 −→ E∗,0

3 −→ E∗,0
4 −→ · · · −→ E∗,0

∞ ⊆ H∗(EG×G X ;R).

The k-th partial Fadell–Husseini index of X is defined by

Index1G(X ;R) := {0},

IndexrG(X ;R) := ker
(
H∗(BG;R)→ E∗,0

r

)
, r ≥ 2.

The partial Fadell–Husseini indexes filter the Fadell–Husseini index

Index1G(X ;R) ⊆ Index2G(X ;R) ⊆ · · · ⊆ IndexG(X ;R),

with
⋃
r∈N

IndexrG(X ;R) = IndexG(X ;R). The (partial) Fadell–Husseini indexes satisfy the following
properties:
• Monotonicity: If there is a G-equivariant map X → Y then

IndexrG(X ;R) ⊇ IndexrG(Y ;R) and IndexG(X ;R) ⊇ IndexG(Y ;R).

• Additivity: If (X1 ∪X2, X1, X2) is an excisive triple of G-spaces, then

Indexr1G (X1;R) · Index
r2
G (X2;R) ⊆ Indexr1+r2G (X1 ∪X2;R),

and
IndexG(X1;R) · IndexG(X2;R) ⊆ IndexG(X1 ∪X2;R).

• The General Borsuk–Ulam–Bourgin–Yang theorem: If there is a G-equivariant map f : X → Y and
a closed G-invariant subspace Z ⊆ Y then

Indexr1G (f−1(Z);R) · Indexr2G (Y \Z;R) ⊆ Indexr1+r2G (X ;R),

and
IndexG(f

−1(Z);R) · IndexG(Y \Z;R) ⊆ IndexG(X ;R).
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6.2 Calculation of IndexZ/p(F (Rd, p);Fp)

The result we present in this part can also be deduced from the Vanishing Theorem of F. Cohen [15,
Theorem 8.2, page 268].

Let us denote the cohomology of the group Z/p with coefficients in Fp for a prime p, as in Section 4,
by

H∗(Z/2;F2) = F2[t], deg t = 1,
H∗(Z/p;Fp) = Fp[t]⊗ Λ[e], deg t = 2, deg e = 1 and p odd.

Theorem 6.1. Let p be a prime and d > 1. Then,

IndexZ/p(F (R
d, p);Fp) = H≥(d−1)(p−1)+1(Z/p;Fp) =

{
〈t(d−1)(p−1)+1〉, for p = 2,

〈e t
(d−1)(p−1)

2 , t
(d−1)(p−1)

2 +1〉, for p odd.

Proof. (1) The Equivariant Goresky–MacPherson formula, Theorem 2.1 (ii), applied to the configuration
space with acting group Z/p and with coefficients Fp implies that the non-zero cohomology as an Fp[Z/p]-
module has the following description

H(d−1)(p−j)(F (Rd, p);Fp) ∼=
⊕

π∈(Πp\0̂)/(Z/p),
size(π)=j

ind
Z/p
(Z/p)π

H̃−2(∆(Π̄1);Fp)⊗b1(π)⊗ · · · ⊗ H̃p−3(∆(Π̄p);Fp)⊗bp(π)

for 1 ≤ j ≤ p− 1.
In this case the “orientation” representations from Theorem 3.1 are trivial due to the choice of the

acting group and related coefficients. The maximal partition 1̂ = {[p]}, of size 1, is the only partition
stabilized by the whole group Z/p. The contribution of the maximal partition to the cohomology of
the configuration space appears in dimension (d − 1)(p − 1). Moreover, there is an isomorphism of
Fp[Z/p]-modules

H(d−1)(p−1)(F (Rd, p);Fp) ∼= H̃p−3(∆(Π̄p);Fp).

Since Hi(F (Rd, p);Fp) ∈ IZ/p for 1 ≤ i ≤ (d − 1)(p − 1) − 1, Theorem 4.1 can be applied to the Serre
spectral sequence of the fibration

F (Rd, p) −→ EZ/p×Z/p F (R
d, p) −→ BZ/p.

We obtain that for every r ≥ 0 and every s ∈ {2, . . . , (d− 1)(p− 1)} the differential

∂s : E
r,s−1
s (EZ/p×Z/p F (R

d, p)) −→ Er+s,0s (EZ/p×Z/p F (R
d, p))

vanishes. Hence Hs(G;Fp) = Esr,0 = E∞
s,0 for s ≤ (d− 1)(p− 1). This implies

IndexZ/p(F (R
d, p);Fp) ⊆ H≥(d−1)(p−1)+1(Z/p;Fp).

The E2-term of this spectral sequence can be described further. In this case the family IZ/p is just the

family of all free Fp[Z/p]-modules. Therefore, Hℓ(Z/p;M) = 0 for all M ∈ IZ/p and l > 0. Consequently

Er,s2 = Hr(Z/p;Hs(F (Rd, p);Fp)) = 0, (17)

for all r > 1 and 0 < s < (d− 1)(p− 1).

(2) The configuration space F (Rd, p) is a free Z/p-space, so F (Rd, p)/(Z/p) ≃ EZ/p×Z/p F (Rd, p). The
spectral sequence we consider converges to

H∗(EZ/p×Z/p F (R
d, p);Fp) ∼= H∗(F (Rd, p)/(Z/p);Fp).

Since Hi(F (Rd, p)/(Z/p);Fp) = 0 for at least i > dimF (Rd, p) = dp and Hi(F (Rd, p);R) 6= 0 if and only
if i = (d− 1)(p− k) for some k ∈ {1, . . . , p} (see Theorem 3.1), we know that the differential

∂(d−1)(p−1)+1 : E
r,(d−1)(p−1)
(d−1)(p−1)+1(EZ/p×Z/p F (R

d, p)) −→ E
r+(d−1)(p−1)+1,0
(d−1)(p−1)+1 (EZ/p×Z/p F (R

d, p))
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is NOT zero for some r ≥ 0.
As we have already seen in (11), the cohomology group

H(d−1)(p−1)(F (Rd, p);Z) ∼= H̃p−3(∆(Π̄p);Z) ∼=Ab Z(p−1)!

has no p-torsion. Therefore, a result of Allday, Hanke and Puppe in [2, Theorem 2, page 3276 or
Proposition 4, page 3281] can be applied to our situation providing the following decomposition of Fp[Z/p]-
modules when p > 2:

H(d−1)(p−1)(F (Rd, p);Fp) ∼= H̃p−3(∆(Π̄p);Fp) ∼= T ⊕ F ⊕A. (18)

Here T is a trivial Fp[Z/p]-module, F is a free Fp[Z/p]-module and A stands for a direct sum of kernels
of the augmentation map K := ker(ǫ : Fp[Z/p] −→ Fp).

Since all differentials ∂ℓ are H∗(Z/p;Fp)-module maps then the description of the E2-term given in
(17) implies that ∂ℓ = 0 for all ℓ ∈ {1, . . . , (d − 1)(p − 1)}. The only possible non-trivial differential is
∂(d−1)(p−1)+1. Consequently,

Er,s2 = Er,sℓ

for all r, s ∈ Z and ℓ ∈ {1, . . . , (d− 1)(p− 1)}. In particular,

E
∗,(d−1)(p−1)
(d−1)(p−1)+1 = E

∗,(d−1)(p−1)
2 = H∗(Z/p;T ⊕ F ⊕A) = H∗(Z/p;T )⊕H∗(Z/p;F )⊕H∗(Z/p;A).

The H∗(Z/p;Fp)-modules H∗(Z/p;T ) and H∗(Z/p;F ) have generators in dimension 0, and H∗(Z/p;Fp)-

module H∗(Z/p;A) has generators in dimensions 0 and 1. Therefore, the generators of the E
∗,(d−1)(p−1)
(d−1)(p−1)+1-

row as an H∗(Z/p;Fp)-module appear in the E
0,(d−1)(p−1)
(d−1)(p−1)+1-term if p = 2, and in the E

0,(d−1)(p−1)
(d−1)(p−1)+1 and

E
1,(d−1)(p−1)
(d−1)(p−1)+1-term if p is an odd prime.

Since the E∞ term should not have any non-trivial entries above the dp diagonal, then the differential
∂(d−1)(p−1)+1 has to be non-trivial. The differential ∂(d−1)(p−1)+1 is completely determined by its values
on the generators that appear at the position (0, (d − 1)(p− 1)) for p = 2, and in the (0, (d− 1)(p− 1))
and (1, (d− 1)(p− 1)) positions for p > 2. Thus decomposition (18) for p > 2 can be made more precise:

H(d−1)(p−1)(F (Rd, p);Fp) ∼= H̃p−3(∆(Π̄p);Fp) ∼= Fp[Z/p]
(p−1)!−p+1

p ⊕K. (19)

Indeed, having in mind that the differential ∂(d−1)(p−1)+1 always lands in an Fp vector space of dimension
one, we have that

• if T 6= 0 then E
2l+1,(d−1)(p−1)
∞ 6= 0 for all l > 0, a contradiction;

• if A = K⊕a and a > 1, then E
l,(d−1)(p−1)
∞ 6= 0 for all l ≥ 0, a contradiction;

• if A = 0 and T = 0, then El,0∞ 6= 0 for all l ≥ 0, also a contradiction.
Finally, when p = 2 the result is obtained directly from the fact that H̃−1(∆(Π̄2);F2) = H̃−1(∅;F2) ∼= F2

is a trivial F2[Z/2]-module.

(3) Let p > 2 be an odd prime and ε denotes a generator of the group Z/p. The exact sequence of
Fp[Z/p]-modules

0 −→ Fp
1+ε+···+εp−1

−−−−−−−−−→ Fp[Z/p] −→ K −→ 0

induces a long exact sequence in cohomology of the group Z/p, [13, Proposition 6.1, pages 71-72]. This
exact sequence yields the following description of H∗(Z/p;K) as an H∗(Z/p;Fp)-module

H∗(Z/p;K) ∼= H∗+1(Z/p;Fp),

for ∗ ≥ 0. Thus as an H∗(Z/p;Fp)-module H∗(Z/p;K) is generated by two elements a ∈ H0(Z/p;K)
and b ∈ H1(Z/p;K) such that
• a spans H0(Z/p;K) ∼= Fp as a vector space over Fp,
• b spans H1(Z/p;K) ∼= Fp as a vector space over Fp,
• ti · a spans H2i(Z/p;K) as a vector space over Fp,
• ti · b spans H2i+1(Z/p;K) as a vector space over Fp,
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• e · a = 0 ∈ H1(Z/p;K) and ti · a = e ti−1 · b ∈ H2i(Z/p;K).
Here “·” denotes the action of H∗(Z/p;Fp). Now the index of the configuration space is generated as an
ideal by the ∂(d−1)(p−1)+1 images of elements a and b, i.e.,

IndexZ/p(F (R
d, p);Fp) = 〈∂(d−1)(p−1)+1(a), ∂(d−1)(p−1)+1(b)〉 = 〈e t

(d−1)(p−1)
2 , t

(d−1)(p−1)
2 +1〉.

A similar, but simpler, argument implies the result for p = 2.

An important consequence of the previous index calculation is a description of the top homology of
the partition lattice Πp as an Fp[Zp]-module.

Corollary 6.2. Let p be an odd prime. Then

H̃p−3(∆(Π̄p);Fp) ∼= Fp[Z/p]
(p−1)!−p+1

p ⊕K.

6.3 Estimate of Index(Z/p)k(F (Rd, pk);Fp), k > 1

Using the notation of Section 4 we have that

H∗((Z/2)k ;F2) = F2[t1, . . . , tk], deg tj = 1

H∗((Z/p)k ;Fp) = Fp[t1, . . . , tk]⊗ Λ[e1, . . . , ek], deg tj = 2, deg ei = 1 and p odd.
(20)

Recall that we consider the action of the group (Z/p)k on the configuration space F (Rd, pk) via
the regular embedding (reg) : (Z/p)k → Spk as described in [1, Example 2.7, page 100]. The regular
embedding is given by the left translation action of (Z/p)k on itself. To each element g ∈ (Z/p)k we
associate permutation Lg : (Z/p)k → (Z/p)k from Sym((Z/p)k) ∼= Spk given by Lg(x) = g + x.

We prove the following estimate. (Note that the following theorem and its proof are also valid for
k = 1, but in this case Theorem 6.1 is a sharper result.)

Theorem 6.3. Let p be a prime, d > 1 and k > 1. Then,

Index(Z/p)k(F (R
d, pk);Fp) ⊆ H≥(d−1)(pk−pk−1)+1((Z/p)k;Fp).

Proof. Again, the Equivariant Goresky–MacPherson formula, Theorem 2.1 (ii), now applied for the group
(Z/p)k and with coefficients Fp, implies that the positive non-zero cohomology of the configuration space
as an Fp[(Z/p)k]-module can be described as

H(d−1)(pk−j)(F (Rd, pk);Fp) ∼=
⊕

π∈(Π
pk

\0̂)/(Z/p)k

size(π)=j

ind
(Z/p)k

((Z/p)k)π
H̃−2(∆(Π̄1);Fp)

⊗b1(π) ⊗ · · · ⊗ H̃pk−3(∆(Π̄pk);Fp)
⊗b

pk
(π)

where 1 ≤ j ≤ pk − 1. Again, the “orientation” representations from Theorem 3.1 are trivial due to the
choice of the acting group and related coefficients.

The key observation is that
size(π) > pk−1 =⇒ ((Z/p)k)π 6= (Z/p)k.

Actually more is true, consult Section 3.5:

size(π) not a power of p =⇒ ((Z/p)k)π 6= (Z/p)k.

Therefore, Hi(F (Rd; pk);Fp) ∈ I(Z/p)k for all 1 ≤ i ≤ (d − 1)(pk − pk−1) − 1. As before, Theorem 4.1
implies that in the Serre spectral sequence of the fibration

F (Rd; pk) −→ E(Z/p)k ×(Z/p)k F (R
d, pk) −→ B(Z/p)k
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the differentials

∂s : E
r,s−1
s (E(Z/p)k ×(Z/p)k F (R

d, pk)) −→ Er+s,0s (E(Z/p)k ×(Z/p)k F (R
d, pk))

vanish for all s ∈ {2, . . . , (d− 1)(pk − pk−1)} and all r ≥ 0. Therefore,

Er,02 (E(Z/p)k ×(Z/p)k F (R
d, pk)) = Er,0∞ (E(Z/p)k ×(Z/p)k F (R

d, pk)) ∼= Hr((Z/p)k;Fp)

for all r ∈ {0, . . . , (d− 1)(pk − pk−1)}. Consequently the claim of theorem follows:

Index(Z/p)k(F (R
d, pk);Fp) ⊆ H

≥(d−1)(pk−pk−1)+1((Z/p)k;Fp).

In terms of the partial Fadell–Husseini indexes we just proved that

Index1(Z/p)k(F (R
d, pk);Fp) = · · · = Index

(d−1)(pk−pk−1)+1

(Z/p)k
(F (Rd, pk);Fp) = {0}.

The estimate obtained in the previous theorem is an extension of Cohen’s results in [15].

7 Fadell–Husseini index, II

LetG := (Z/p)k andN := (d−1)(pk−pk−1). In this section we study the partial index of the configuration
space

IndexN+2
G (F (Rd, pk);Fp) = ker(H∗(BG;Fp)→ E∗,0

N+2(EG×G F (R
d, pk))).

In particular we prove the following theorem.

Theorem 7.1. Let G := (Z/p)k and N := (d− 1)(pk − pk−1). Then
(i) IndexN+2

G (F (Rd, pk);Fp) 6= {0},
(ii) IndexN+2

G (F (Rd, pk);Fp) ∩HN+1(BG;Fp) 6= {0}, i.e., the homomorphism

HN+1(BG;Fp)→ EN+1,0
N+2 (EG×G F (Rd, pk))

is not injective.

7.1 IndexG(F (Rd, pk);Fp) as a GLk(Z/p)-invariant ideal

Some properties of the Fadell–Husseini index of the configuration space are proved in this section. They
will not be used in the proof of Theorem 7.1, but may be interesting and useful for other situations.

Lemma 7.2. Let G be any finite group, X a G-space and R a commutative ring with unit. Consider a
group automorphism ϕ : G→ G such that there exists a ϕ-equivariant self homotopy equivalence f : X →
X, i.e., for every g ∈ G and x ∈ X

f(g · x) = ϕ(g) · x.

Then the induced map ϕ∗ : H∗(BG;R)
∼=
−→ H∗(BG;R) respects the Fadell–Husseini index and the partial

Fadell–Husseini indices, that is,

ϕ∗
(
IndexG(X ;R)

)
= IndexG(X ;R) and ϕ∗

(
IndexrG(X ;R)

)
= IndexrG(X ;R),

for all r ≥ 2.

Proof. The group automorphism ϕ induces a ϕ-equivariant map Φ: EG→ EG which is unique up to a ϕ-
equivariant homotopy. This follows from the universal property of EG since both spaces, EG and ϕ∗EG,
are models for EG, where ϕ∗EG is obtained from EG by twisting the group action with ϕ. We obtain
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the following commutative diagram where the horizontal maps are ϕ-equivariant homotopy equivalences
and the vertical arrows are the canonical projections:

EG×X
Φ×f

//

��

EG×X

��

EG
Φ

// EG

Dividing out the G-actions yields the commutative diagram:

EG×G X
Φ×f

//

pr ≃

��

EG×G X

pr≃

��

BG
Φ

// BG

(21)

where the vertical maps are the canonical projections and the horizontal maps are homotopy equiva-
lences. Applying cohomology yields a commutative diagram whose vertical maps are the same and whose
horizontal arrows are isomorphisms (and thus bijections):

H∗(EG×G X ;R) H∗(EG×G X ;R)∼=

H∗(Φ×f ;R)
oo

H∗(BG;R)

H∗(pr;R)

OO

H∗(BG;R)

H∗(pr;R)

OO

∼=

H∗(Φ;R)=ϕ∗

oo

This implies that

ϕ∗
(
IndexG(X ;R)

)
= ϕ∗

(
ker(H∗(pr;R))

)
= ker(H∗(pr;R)) = IndexG(X ;R).

The commutative diagram (21) defines an automorphism of the Borel construction fibration X →
EG ×G X → BG. Consequently it induces an automorphism of the associated Serre spectral sequence
such that the following diagram commutes:

E∗,0
r (EG×G X ;R) E∗,0

r (EG×G X ;R)
E∗,0

r (Φ×f ;R)
oo

E∗,0
2 (EG×G X ;R)

OO

E∗,0
2 (EG×G X ;R)

E∗,0
2 (Φ×f ;R)

oo

OO

H∗(BG;R)

OO

H∗(BG;R)

OO

∼=

H∗(Φ;R)=ϕ∗

oo

Therefore,
ϕ∗

(
IndexrG(X ;R)

)
= IndexrG(X ;R).

Recall that the groupG := (Z/p)k acts on the configuration space F (Rd, pk) via the regular embedding
(reg) : G→ Spk . The normalizer of the group G in Spk is the semi-direct product N(G) = G⋊Aut(G) ∼=
G⋊GLk(Z/p), consult [1, Example 2.7, page 100]. The group N(G) acts on G via conjugation, η · g :=
ηgη−1, for η ∈ N(G) and g ∈ G. The first factor in the semi-direct product N(G) = G ⋊ Aut(G) acts
trivially on G and the N(G)-action on G factorizes over the projectionN(G)→ GLk(Z/p) to the standard
GLk(Z/p)-action on G. This action defines an action of Aut(G) ∼= GLk(Z/p) on the group cohomology
H∗(G;Fp) which under the projection above corresponds to the obvious GLk(Z/p)-action.
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Theorem 7.3. Let G := (Z/p)k and k > 1. Then
(1) IndexG(F (Rd, pk);Fp) is a GLk(Z/p)-invariant ideal in H∗(G;Fp),
(2) IndexrG(F (R

d, pk);Fp) is a GLk(Z/p)-invariant ideal in H∗(G;Fp), for any r ≥ 2.

Proof. Let η ∈ Aut(G) ⊂ N(G) ⊂ Spk be a permutation and ϕη : G → G the automorphism ϕη(g) :=
ηgη−1. It defines a ϕη-equivariant selfhomotopy equivalence F (Rd, pk)→ F (Rd, pk) as the restriction of

the homomorphism f : (Rd)p
k

→ (Rd)p
k

given by

f(x1, . . . , xpk) := (xη(1), . . . , xη(pk)). (22)

Indeed, for g ∈ G ⊂ Spk we have that

f(g · (x1, . . . , xpk)) = f(xg(1), . . . , xg(pk)) = (xηg(1), . . . , xηg(pk))
= (xηgη−1η(1), . . . , xηgη−1η(pk)) = ηgη−1 · (xη(1), . . . , xη(pk))
= ϕη(g) · (xη(1), . . . , xη(pk)) = ϕη(g) · f(x1, . . . , xpk).

Thus, according to Lemma 7.2, the indexes are GLk(Z/p)-invariant ideals.

7.2 Proof of Theorem 7.1

In Theorem 6.3 we estimated the partial index, up to the page EN , by detecting the differentials that
land in the 0-row of the Serre spectral sequence of the fibration

F (Rd, pk) −→ EG×G F (Rd, pk) −→ BG.

Thus, the next step is to consider the EN+1-page of the spectral sequence and to understand
• the cohomology HN(F (Rd, pk);Fp) as an Fp[G]-module,

• the cohomology H∗(G;HN (F (Rd, pk);Fp)) = E∗,N
2 as an H∗(G;Fp)-module by identifying the

H∗(G;Fp)-module generators, and finally

• the differential ∂N+1 : Eℓ,NN+1 −→ E0,N+ℓ+1
N+1 on at least one of the previously identified H∗(G;Fp)-

module generators in the N -th row of the (N + 1)st page, Eℓ,NN+1, (l ≥ 0).
In this way we will show that the homomorphism

HN+1(BG;Fp)→ EN+1,0
N+2 (EG×G F (Rd, pk))

is not injective.

7.2.1

The Equivariant Goresky–MacPherson formula, Theorem 2.1 (ii), gives the description of the N -th co-
homology of the configuration spaces F (Rd, pk) as an Fp[G]-module:

HN (F (Rd, pk);Fp) ∼=
⊕

π∈(Π
pk

\0̂)/G

size(π)=pk−1

indGGπ
H̃−2(∆(Π̄1);Fp)

⊗b1(π) ⊗ · · · ⊗ H̃pk−3(∆(Π̄pk );Fp)
⊗b

pk
(π). (23)

In Section 3.5 we pointed out that for all partitions π of [pk] of size pk−1 the following equivalence
holds:

Gπ = G⇐⇒ There exists a subgroup H ⊆ G of order p with π = πH .

Therefore, according to the isomorphism (15) the decomposition (23) has the following additional splitting

HN(F (Rd, pk);Fp) ∼=
⊕

H<G : |H|=p

H̃p−3(∆(Π̄H);Fp)⊗G/H ⊕
⊕

Hλ 6=G

IndGHλ
Mλ

∼=
⊕

H<G : |H|=p

H̃p−3(∆(Π̄p);Fp)⊗G/H ⊕
⊕

Hλ 6=G

IndGHλ
Mλ (24)
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for some Fp[Hλ]-modules Mλ. Since the second sum is over all proper subgroups of G, it might happen
that some of the modules Mλ are zero.

Now the E∗,N
2 -row of the spectral sequence as an H∗(G;Fp)-module decomposes as follows:

E∗,N
2 = H∗(G;HN (F (Rd, pk);Fp))

∼=
⊕

H<G : |H|=p

H∗
(
G; H̃p−3(∆(Π̄H);Fp)

⊗G/H
)
⊕

⊕

Hλ 6=G

H∗(G; IndGHλ
Mλ)

∼=
⊕

H<G : |H|=p

H∗
(
G; H̃p−3(∆(Π̄p);Fp)⊗G/H

)
⊕

⊕

Hλ 6=G

H∗(G; IndGHλ
Mλ). (25)

It is important that the E∗,N
N+1-row is a sub-quotient of the E∗,N

2 -row and that the H∗(G;Fp)-module

structure on E∗,N
N+1-row comes from the one on the E∗,N

2 -row. Using the same argument as in the
proof of Theorem 4.1, we conclude that the ∂N+1 differential vanishes on the second summand of the
decomposition (25).

Therefore we need to understand the H∗(G;Fp)-module structure on the first summand. Since the
first summand is a direct sum over all subgroups H of G of order p, it suffices to describe the generators
of the H∗(G;Fp)-module

H∗
(
G; H̃p−3(∆(Π̄H);Fp)⊗G/H

)
∼= H∗(G; H̃p−3(∆(Π̄p);Fp)⊗G/H)

for a particular subgroup H . The subgroup H ∼= Z/p acts on ΠH ∼=poset Πp by the multiplication of H
on the ground set of the partition lattice H , i.e., by the cyclic shift when H is identified with Z/p. Recall
that Corollary 6.2 describes the homology of the partition lattice as an Fp[H ] = Fp[Z/p]-module:

H̃p−3(∆(Π̄p);Fp) ∼= Fp[Z/p]
(p−1)!−p+1

p ⊕K

where K is the kernel of the augmentation map. To simplify the notation we denote the Fp[Z/p]-free

part by F := Fp[Z/p]
(p−1)!−p+1

p .

7.2.2

Now we start with the description of

H∗
(
G; H̃p−3(∆(Π̄H);Fp)⊗G/H

)
∼= H∗

(
G; H̃p−3(∆(Π̄p);Fp)⊗G/H

)
= H∗

(
G; (F ⊕K)⊗G/H

)

as an H∗(G;Fp)-module.
The main tool is the graded isomorphism due to Nakaoka [45] and Leary [42, Theorem 2.1, page 192]

H∗
(
G;M⊗G/H

)
∼= H∗

(
G/H ;H∗(H,M)⊗G/H

)
(26)

whereM is any Fp[H ]-module. Before proceeding further let us explain how the graded isomorphism (26)
is a consequence of [42, Theorem 2.1, page 192]. If we take:

R = Fp , X = BH , E = E(G/H) , Ω = G/H , S = G/H,

then the graded isomorphism of [42, Theorem 2.1, page 192] reads off as the isomorphism (26). This
isomorphism is obtained from the E2 collapsing Lyndon–Hochschild–Serre (LHS) spectral sequence of the
exact sequence of groups 1 −→ H −→ G −→ G/H −→ 1 with coefficients in the Fp[G]-module M⊗G/H .

The action of

H∗(G;Fp) ∼= H∗(G;F⊗G/H
p ) ∼= H∗(G/H ;H∗(H,Fp)⊗G/H) ∼= H∗(G/H ;H∗(H,Fp))

on
H∗(G;M⊗G/H) ∼= H∗(G/H ;H∗(H,M)⊗G/H)

27



can be obtained from the action of the LHS spectral sequence with coefficients in Fp on the same LHS
spectral sequence but now with M⊗G/H coefficients.

Consider the LHS spectral sequence of the exact sequence of groups 1 −→ H −→ G −→ G/H → 1

with coefficients in Fp ∼= F⊗G/H
p . The E2-term and also E∞-term are given by

Ei,j∞ = Ei,j2 = Hi(G/H ;Hj(H ;Fp)) ∼= Hi(G/H ;Fp)⊗Fp
Hj(H ;Fp)

since Hj(H ;Fp) is a trivial Fp[G/H ]-module and the exact sequence of groups that induces the LHS
spectral sequence splits.

Let us make a choice of the generators of the cohomology in the following way:
• H∗(G/H ;Fp) = Fp[t2, . . . , tk]⊗ Λ[e2, . . . , ek], deg(ei) = 1 and deg(ti) = 2 for p > 2,
• H∗(G/H ;Fp) = Fp[t2, . . . , tk], deg(ti) = 1 for p = 2,
• H∗(H ;Fp) = Fp[t1]⊗ Λ[e1], deg(e1) = 1 and deg(t1) = 2 for p > 2, and
• H∗(H ;Fp) = Fp[t1], deg(t1) = 1 for p = 2.

The convergence of the spectral sequence E∗,∗
∞ =⇒ H∗(G;Fp) gives us the following presentation of the

group cohomology for p > 2:

H∗(G;Fp) ∼=
(
Fp[t2, . . . , tk]⊗ Λ[e2, . . . , ek]

)
⊗
(
Fp[t1]⊗ Λ[e1]

)
. (27)

Since our choice of generators depends on the subgroup H let us additionally introduce the notation

eH := e1 and tH := t1

when p > 2, and tH := t1 for p = 2.
The E2 = E∞-term of this LHS spectral sequence for p an odd prime that converges to H∗(G;Fp) is

depicted in Figure 1.

3 1⊗ e1t1 . . . . . .

2 1⊗ t1 e2 ⊗ t1, . . . , ek ⊗ t1 t2 ⊗ t1, . . . , tk ⊗ t1

1 1⊗ e1 e2 ⊗ e1, . . . , ek ⊗ e1 t2 ⊗ e1, . . . , tk ⊗ e1

0 1 e2, . . . , ek t2, . . . , tk

0 1 2

Figure 1: E2 = E∞-term of the LHS spectral sequence with Fp coefficients for p > 2

Next consider the LHS spectral sequence of the exact sequence 1 −→ H −→ G −→ G/H −→ 1, but
now with coefficients in (F ⊕K)⊗G/H . Again by [42, Theorem 2.1, page 192], the E2 = E∞-term in this
case is

Ei,j∞ = Ei,j2 = Hi
(
G/H ;Hj(H ;F ⊕K)⊗G/H

)
= Hi

(
G/H ; (Hj(H ;F )⊕Hj(H ;K))⊗G/H

)
.

According to [5, Proposition 3.15.2.(iii), page 97], the Fp[G/H ]-module of coefficients decomposes in the
following way:

(Hj(H ;F )⊕Hj(H ;K))⊗G/H =

{
(H0(H ;F )⊕H0(H ;K))⊗G/H , for j = 0,

Hj(H ;K)⊗G/H , for j > 0,

∼=

{
H0(H ;F )⊗G/H ⊕H0(H ;K)⊗G/H ⊕B, for j = 0,

Hj(H ;K)⊗G/H , for j > 0,

where B is a direct sum of Fp[G/H ]-modules induced by the inclusion L/H → G/H for proper subgroups
L of G with H < L < G. Here we use the fact that F is a free Fp[H ]-module and so Hj(H ;F ) = 0 for
all j > 0.

Moreover, since H ∼= Z/p = 〈ε〉, F = Fp[Z/p]m where m := (p−1)!−p+1
p , and

K = ker(Fp[Z/p]
ǫ
−→ Fp) ∼= Fp[Z/p]/(1 + ε+ · · ·+ εp−1)Fp
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we have that

(Hj(H ;F )⊕Hj(H ;K))⊗G/H ∼=

{
(Fmp )⊗G/H ⊕ F⊗G/H

p ⊕B, for j = 0,

F⊗G/H
p , for j > 0,

∼=

{
(Fmp )⊗G/H ⊕ Fp ⊕B, for j = 0,
Fp, for j > 0.

Consequently

Ei,j∞ = Ei,j2 =

{
Hi(G/H ; (Fmp )⊗G/H)⊕Hi(G/H ;Fp)⊕Hi(G/H ;B), for j = 0,
Hi(G/H ;Fp), for j > 0.

The LHS spectral sequence with (F ⊕K)⊗G/H coefficients for p > 2 is given in Figure 2 in such a way
that the action of the LHS spectral sequence with Fp coefficients is apparent.

4 0 0 0 . . . 0 0 . . . 0

3 0 T1 · t1 0 0 . . . 0 0 . . . 0

2 0 T1 · e1 0 0 . . . 0 0 . . . 0

1 0 T1 0 0 T1 · e2, . . . , T1 · ek 0 0 T1 · t2, . . . , T1 · tk 0

0 E1 E1 · e2, . . . , E1 · ek E1 · t2, . . . , E1 · tk

0 1 2

Figure 2: E2 = E∞-term of the LHS spectral sequence with (F ⊕K)⊗G/H coefficients for p > 2

For p > 2, there are only two generators E1 and T1 of the H∗(G;Fp)-module structure, appearing in
positions E1 ∈ E0,0

∞ and T1 ∈ E0,1
∞ , that can have non-zero image along the differential. These generators

are subject to the following relation
E1 · t1 = T1 · e1.

All other generators appearing in the shaded regions of the picture are mapped to zero by the differential
since they are all annihilated by e1 and t1 in H∗(G;Fp). In the case p = 2 there is only one relevant
generator T1 appearing in the position E0,0

∞ .

Thus, for every subgroup H of G of order p there are elements eH and tH of degree 1 and 2 respectively
in H∗(G;Fp), and
◦ two generators of the Nth row of the Serre spectral sequence of the Borel construction

EH,d ∈ E
0,N
2 = E0,N

N+1 and TH,d ∈ E
1,N
2 = E1,N

N+1

that satisfy the following relation
EH,d · tH = TH,d · eH . (28)

and can be mapped non-trivially by the differential ∂N+1 for p > 2; and there is
◦ only one generator of the Nth row of the Serre spectral sequence of the Borel construction

TH,d ∈ E
0,N
2 = E0,N

N+1

that might have non-zero image along the differential ∂N+1 for p = 2.
Since we determined all the generators of the E∗,N

2 -row, as an H∗(G;Fp)-module, we can describe the
(N + 2)nd partial index in the following way.

Lemma 7.4.

IndexN+2
G (F (Rd, pk);Fp) =

{
〈{∂N+1(EH,d), ∂N+1(TH,d) : H < G, |H | = p}〉, for p > 2,
〈{∂N+1(TH,d) : H < G, |H | = p}〉, for p = 2.
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7.2.3

We now introduce ingredients that are used in the evaluation of ∂N+1 on the generators.
Consider the following real G-representation

Wpk = {(a1, . . . , apk) ∈ Rp
k

: a1 + · · ·+ apk = 0}

that is a sub-representation of the regular real G-representation Rp
k

=
⊕

g∈G gR. The Euler class, with

Fp coefficients, ζ := e(Wpk) ∈ H
pk(G;Fp) of the vector bundle Wn −→ EG×GWn −→ BG was computed

in [43] and for p > 2 is given by

ζ =
( ∏

(α1,...,αk)∈Fk
p\{0}

(α1t1 + · · ·+ αktk)
) 1

2

while for p = 2 we have that

ζ =
∏

(α1,...,αk)∈Fk
2\{0}

(α1t1 + · · ·+ αktk).

Since the square root in Fp[t1, . . . , tk] is not uniquely determined we choose for ζ, when p > 2, an arbitrary
square root. This will not matter when we later consider submodules generated by it. Following [9,
Proposition 3.11, page 1338] it can be seen that

IndexG(S(Wpk );Fp) = 〈ζ〉 ⊆ H
∗(G;Fp).

Now let us state the following rather simple observation in a slightly more general setting.
Let ρ : G → O(d) define an orthogonal action of a finite group G on the Euclidean space E ∼= Rd. In
addition, let A be a G-invariant arrangement in E with a G-invariant sub-arrangement B. This means
that the arrangement B is G-invariant arrangement and B ⊆ A. Thus, we have G-equivariant maps
induced by inclusions

DB −→ DA and S(E)\DA −→ S(E)\DB.

Consequently, by the monotonicity property of Fadell–Husseini index, we have that

IndexG(S(E)\DA;R) ⊇ IndexG(S(E)\DB;R), (29)

for any ring R.

7.2.4

As we have seen in Lemma 7.4, to determine the relevant partial index it suffices to determine the elements
∂N+1(EH,d) and ∂N+1(TH,d) when p > 2 and the element ∂N+1(TH,d) when p = 2.

Consider the G = (Z/p)k-invariant sub-arrangement BH,d of the arrangement Bpk,d defined by

BH,d := {Li,j ∈ Bpk,d : Li,j ⊇ VH,d}

where VH,d was previously introduced in (14). The maximum of the intersection poset of the sub-

arrangement BH,d is the subspace VH,d = (Rdp
k

)H . The complement S(Rdp
k

)\DBH,d
is G-invariant.

Since G acts transitively on the set [pk], and every element of the group G is of order p, we get

F (Rd, pk) =
⋂

H≤G:|H|=p

S(Rdp
k

)\DBH,d
and Bpk,d =

⋃

H≤G:|H|=p

BH,d.

In addition consider the subspace VH,d as a one-element G-invariant arrangement Cd := {VH,d}. As
we have seen, there are G-equivariant maps induced by inclusions

S(Rdp
k

)\DB
pk,d
−→ S(Rdp

k

)\DBH,d
−→ S(Rdp

k

)\DCd
. (30)
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If we recall that F (Rd, pk) ≃G S(Rdp
k

)\DB
pk,d

and observe that

S(Rdp
k

)\DCd
= S(Rdp

k

)\S(VH,d) ≃G S(V ⊥
H,d)

we obtain the following index inequalities:

IndexG(F (Rd, pk);Fp) ⊇ IndexG(S(Rdp
k

)\DBH,d
;Fp) ⊇ IndexG(S(V

⊥
H,d);Fp). (31)

Here V ⊥
H,d denotes the orthogonal complement of the G-invariant vector space VH,d inside Rdp

k

. More is
true: By the Equivariant Goresky–MacPherson formula the first inclusion of (30) induces an injection of
Fp[G]-modules

H̃p−3(∆(Π̄p);Fp)
⊗G/H ∼= HN (S(Rdp

k

)\DBH,d
;Fp)

−→ HN (S(Rdp
k

)\DB
pk,d

;Fp) ∼= HN(F (Rd; pk);Fp). (32)

Consequently, the generators of the H∗(G;Fp)-module

H∗(G; H̃p−3(∆(Π̄p);Fp)⊗G/H) ∼= H∗(G;HN (S(Rdp
k

)\DBH,d
;Fp))

are mapped injectively onto the generators of the H∗(G;Fp)-module

H∗(G;HN (S(Rdp
k

)\DB
pk,d

;Fp)) ∼= H∗(G;HN (F (Rd; pk);Fp))

that correspond to the subgroup H in the decomposition (24). Thus we have computed the index of the

complement S(Rdp
k

)\DBH,d
.

Lemma 7.5.

IndexG(S(Rdp
k

)\DBH,d
;Fp) = IndexN+2

G (S(Rdp
k

)\DBH,d
;Fp)

=

{
〈∂N+1(EH,d), ∂N+1(TH,d)〉, for p > 2,
〈∂N+1(TH,d)〉, for p = 2.

(33)

7.2.5

The next step on our path to determine IndexG(S(Rdp
k

)\DBH,d
;Fp) is to obtain the index of the sphere

S(V ⊥
H,d). According to [9, Proposition 3.11, page 1338] it is enough to find the Euler class of the vector

bundle V ⊥
H,d −→ EG×G V

⊥
H,d −→ BG. There is a G-equivariant map

S(V ⊥
H,d) ≃G Rdp

k

\VH,d −→ Rdp
k

\Dd ≃G S(W
⊕d
pk

)

where Dd is the diagonal {(x1, . . . , xpk) ∈ Rdp
k

: x1 = · · · = xpk}. In other words, V ⊥
H,d is a direct

summand of W⊕d
pk

. Therefore,

〈e(V ⊥
H,d)〉 = IndexG(S(V

⊥
H,d);Fp) ⊇ IndexG(S(W

⊕d
pk

);Fp) = 〈e(W
⊕d
pk

)〉 = 〈ζd〉,

that is, the Euler class e(V ⊥
H,d) divides the Euler class e(W⊕d

pk
) = ζd. The group H acts freely on the

sphere S(V ⊥
H,d) via the inclusion homomorphism H → G. Therefore, resGH e(V ⊥

H,d) 6= 0 in H∗(H ;Fp).
Using the facts that
• e(V ⊥

H,d) divides e(W
⊕d
pk

) = ζd,

• resGH e(V
⊥
H,d) 6= 0 in H∗(H ;Fp), and

• codimVH,d = dimV ⊥
H,d = pk−1(p− 1)d = deg e(V ⊥

H,d),
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we conclude that e(V ⊥
H,d) = ζdH where for p > 2

ζH =
( ∏

{(α1,...,αk)∈Fk
p : resG

H
(α1t1+···+αktk) 6=0}

(α1t1 + · · ·+ αktk)
) 1

2
,

and in case p = 2

ζH =
∏

{(α1,...,αk)∈Fk
2 : resG

H
(α1t1+···+αktk) 6=0}

(α1t1 + · · ·+ αktk).

7.2.6

In order to prove that IndexN+2
G (F (Rd, pk);Fp) does not vanish, according to Lemmas 7.4 and 7.5, it

suffices to prove that IndexG(S(Rdp
k

)\DBH,d
;Fp) is not zero for at least one order p subgroup H of G.

Consider the subgroup H of G determined by the presentation of H∗(G;Fp) as given in (27):

H∗(G;Fp) ∼=
(
Fp[t2, . . . , tk]⊗ Λ[e2, . . . , ek]

)
⊗
(
Fp[t1]⊗ Λ[e1]

)

∼=
(
Fp[t2, . . . , tk]⊗ Λ[e2, . . . , ek]

)
⊗H∗(H ;Fp).

The complement of the arrangement S(Rdp
k

)\DBH,d
is a fixed point free space with respect to the action

of the group G. Indeed, the link of the arrangement DBH,d
contains the H-fixed point set S(Rdp

k

)H of

the sphere S(Rdp
k

). Now the cohomological characterization of the fixed point set for the action of an
elementary abelian group [26, Proposition 3.14, page 196] implies that

IndexG(S(Rdp
k

)\DBH,d
;Fp) 6= 0.

Consequently, Lemma 33 implies that
• ∂N+1(EH,d) 6= 0 or ∂N+1(TH,d) 6= 0 for p > 2, and
• ∂N+1(TH,d) 6= 0 for p = 2.

Thus the first part of the theorem is proved for all p, while the second one is proved only for p = 2.

In order to complete the proof of the second part of the theorem we need to prove that ∂N+1(EH,d) 6= 0.
In the case p > 2 the second inclusion of (31) gives

〈∂N+1(EH,d), ∂N+1(TH,d)〉 = IndexG(S(Rdp
k

)\DBH,d
;Fp) ⊇ IndexGS(S(V

⊥
H,d);Fp) = 〈ζ

d
H〉.

The class ζdH ∈ Fp[t1, . . . , tk] is a polynomial and belongs to the index IndexG(S(Rdp
k

)\DBH,d
;Fp).

Therefore, the relation (28) implies that
• ∂N+1(TH,d) ∈ Fp[t1, . . . , tk] is a polynomial,
• ∂N+1(TH,d) divides ζ

d
H , and

• ∂N+1(EH,d) · tH = ∂N+1(TH,d) · eH .

Since the multiplication by eH on the set of polynomials in E∗,0
N+1 = H∗(G;Fp) is an injection, the

assumption ∂N+1(EH,d) = 0 yields the following contradiction:

0 6= ∂N+1(TH,d) · eH = ∂N+1(EH,d) · tH = 0.

Thus, ∂N+1(EH,d) 6= 0 and Theorem 7.1 is proved.

8 A few applications

In this section we present four applications of the methods we have developed. Further applications and
extensions of the results below can be found in [11] and [12].

32



8.1 The Nandakumar & Ramana Rao conjecture

The problem of Nandakumar & Ramana Rao, posed in 2006 in [46], can be stated as follows.

Conjecture 8.1 (Nandakumar & Ramana Rao). For a given planar convex body K and any natural
number n > 1 there exists a partition of the plane into n convex pieces P1, . . . , Pn such that

area(P1 ∩K) = · · · = area(Pn ∩K) and perimeter(P1 ∩K) = · · · = perimeter(Pn ∩K).

Nandakumar & Ramana Rao [47] gave the answer for n = 2, relying on the intermediate value
theorem. The case of n = 3 was resolved by Bárány, Blagojević & Szűcs [4] using more advanced
topological methods.

Let Conv(Rd) denotes the metric space of all d-dimensional convex bodies in Rd with the Hausdorff
metric. The conjecture of Nandakumar & Ramana Rao can be naturally generalized in the following way.

Conjecture 8.2 (Generalized Nandakumar & Ramana Rao). For a given convex body K in Rd, an
absolutely continuous probability measure µ on Rd, any natural number n > 1 and any n− 1 continuous
functions ϕ1, . . . , ϕn−1 : Conv(Rd) → R, there exists a partition of Rd into n convex pieces P1, . . . , Pn
such that

µ(P1 ∩K) = · · · = µ(Pn ∩K)

and for every i ∈ {1, . . . , n− 1}

ϕi(P1 ∩K) = · · · = ϕi(Pn ∩K).

The next steps in solving both the original and the generalized Nandakumar & Ramana Rao conjecture
were done first by Karasev [40], Hubard & Aronov [36] and Blagojević & Ziegler in [10]. They observed

that both conjectures would hold if there is no Sn-equivariant map F (Rd, n) → S(W
⊕(d−1)
n ). Here Wn

denotes the Sn-representation {(x1, . . . , xn) ∈ Rn : x1 + · · · + xn = 0} where the action is given by
permuting the coordinates.

In this section, we offer a proof that both the original and the generalized Nandakumar & Ramana
Rao conjecture holds for n a prime number by proving the following theorem.

Theorem 8.3. Let n = p be a prime number, d ≥ 2 and Z/p the subgroup of Sp generated by the
permutation (12 . . . p). Then there is no Z/p-equivariant map

F (Rd, p)→ S(W⊕(d−1)
p ).

Consequently, there is no Sp-equivariant map F (Rd, p)→ S(W
⊕(d−1)
p ).

Proof. Let us assume that there exists a Z/p-equivariant map f : F (Rd, p)→ S(W
⊕(d−1)
p ). Then accord-

ing to the Monotonicity property of the Fadell–Husseini index, Section 6.1, we have that

IndexZ/p(F (R
d, p);Fp) ⊇ IndexZ/p(S(W

⊕(d−1)
p )).

The index of the configuration space F (Rd, p) was computed in Theorem 6.1 and

IndexZ/p(F (R
d, p);Fp) = H≥(d−1)(p−1)+1(Z/p;Fp) =

{
〈t(d−1)(p−1)+1〉, for p = 2,

〈e t
(d−1)(p−1)

2 , t
(d−1)(p−1)

2 +1〉, for p odd.

On the other hand, the sphere S(W
⊕(d−1)
p ) is a free Z/p-space and therefore

EZ/p×Z/p S(W
⊕(d−1)
p ) ≃ S(W⊕(d−1)

p )/(Z/p)

and consequently

Hℓ(EZ/p×Z/p S(W
⊕(d−1)
p )) = 0 for all ℓ > dimS(W⊕(d−1)

p ) = (d− 1)(p− 1)− 1.
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Therefore,

IndexZ/p(S(W
⊕(d−1)
p );Fp) = ker

(
H∗(BZ/p;Fp)→ H∗(EZ/p×Z/p S(W

⊕(d−1)
p );Fp)

)

⊇ H≥(d−1)(p−1)(BZ/p;Fp).

In particular, t
(d−1)(p−1)

2 ∈ IndexZ/p(S(W
⊕d−1
p );Fp) for p > 2, and t(d−1)(p−1) ∈ IndexZ/p(S(W

⊕d−1
p );Fp)

for p = 2. This is a contradiction to the Monotonicity property of the Fadell–Husseini index since

t
(d−1)(p−1)

2 /∈ IndexZ/p(F (R
d, p);Fp)

in case p > 2 and for p = 2
t(d−1)(p−1) /∈ IndexZ/p(F (R

d, p);Fp).

Thus, for every d ≥ 2 there is no Z/p-equivariant map F (Rd, p)→ S(W
⊕(d−1)
p ).

8.2 The Lusternik–Schnirelmann category of unordered configuration spaces

In this section using the results from Section 5.3 and [10] we study the Lusternik–Schnirelmann category
of unordered configuration spaces F (Rd, n)/Sn as well as sectional category of the covering F (Rd, n)→
F (Rd, n)/Sn.

Theorem 8.4.
(1) Let p be an odd prime and n = pk for some k ≥ 1. Then for every d ≥ 2

cat(F (Rd, n)/Sn) = (d− 1)(n− 1).

(2) Let n = 2k for some k ≥ 1. Then for every odd d ≥ 3

cat(F (Rd, n)/Sn) = (d− 1)(n− 1).

Proof. The Lusternik–Schnirelmann category is a homotopy invariant, therefore instead of the configu-
ration space F (Rd, n) we can consider any Sn-CW model. Here we use the (d − 1)(n − 1)-dimensional
model F(d, n) derived in [10]. It was proved in [10, Theorem 1.2] that there exists an Sn-equivariant

map F(d, n) → S(W
⊕(d−1)
n ) if and only if n is not a prime power. Moreover, in [10, Corollary 4.3] the

following equivariant cohomology group was calculated:

H
(d−1)(n−1)
Sn

(
F(d, n);π(d−1)(n−1)−1(S(W

⊕(d−1)
n ))

)
=

{
Z/p if n = pk is a prime power,

0 otherwise.

Since under both sets of assumptions (1) and (2) the action of the p-Sylow subgroup S
(p)
n preserves

orientation on S(W
⊕(d−1)
n ), we can apply Theorem 5.7(1) and conclude the proof.

Corollary 8.5. Let p be a prime, M be any topological space and f : Rd →M be an injective continuous
map.
(1) If p is an odd prime and n = pk for some k ≥ 1, then for every d ≥ 2

cat(F (M,n)/Sn) ≥ (d− 1)(n− 1).

(2) If n = 2k for some k ≥ 1, then for every odd integer d ≥ 3
cat(F (M,n)/Sn) ≥ (d− 1)(n− 1).

Proof. Since f is an injective map it induces an Sn-equivariant map fn : F (Rd, n) → F (M,n) defined
by

fn(x1, . . . , xn) := (f(x1), . . . , f(xn)).

The claim of the corollary now follows from Theorems 5.7(2) and 8.4.
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8.3 Existence of equivariant maps

In [10, Theorem 1.2], it was proved that there exists an Sn-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n ) if

and only if n is not a prime power.
Let G := Z/n be the cyclic subgroup of Sn generated by the permutation (1 2 . . . n). In this section

we consider the question when there exists a Z/n-equivariant map F (Rd, n) → S(W
⊕(d−1)
n ) where the

action is induced via the inclusion Z/n→ Sn.

Theorem 8.6. Let n ≥ 2 and d ≥ 2 be integers. Then a Z/n-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n )

exists if and only if n is not a prime.

Proof. We will prove the following claims:

(i) If n = p is a prime, then there is no Z/n-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n );

(ii) if n is not a prime power, then a Z/n-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n ) exists;

(iii) if n = pk is a power of an odd prime p with k > 1, and (n, d) 6= (9, 2), then a Z/n-equivariant map

F (Rd, n)→ S(W
⊕(d−1)
n ) exists;

(iv) if n = 2k for k > 1, and d > 1 is odd, then a Z/n-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n ) exists;

(v) if d, d′≥ 2, then a Z/n-equivariant map F (Rd, n) → S(W
⊕(d−1)
n ) exists if and only if a Z/n-

equivariant map F (Rd
′

, n)→ S(W
⊕(d′−1)
n ) exists.

The last claim implies the existence of Z/n-equivariant maps in the “prime power” cases not covered by
the claims (3) and (4), and thus completes the proof of the theorem.

(i) This is the content of Theorem 8.3.
(ii) Let us assume that n is not a prime power and denote M := (d − 1)(n − 1). There exists an M -
dimensional Z/n-CW model F(d, n) of the configuration space F (Rd, n) derived in [10]. Therefore it

suffices to prove the existence of a Z/n-equivariant map F(d, n)→ S(W
⊕(d−1)
n ). Since

• F(d, n) is an M -dimensional free Z/n-CW complex,

• the dimension of the Z/n-sphere S(W⊕(d−1)
n ) is M − 1, and

• the sphere S(W
⊕(d−1)
n ) is (M − 1)-simple and (M − 2)-connected,

the existence of a Z/n-equivariant map F(d, n) → S(W
⊕(d−1)
n ) is equivalent to the vanishing of the

primary equivariant obstruction element

γZ/n := γZ/n(F(d, n), S(W⊕(d−1)
n )) ∈ HM

Z/n

(
F(d, n);πM−1(S(W

⊕(d−1)
n ))

)
.

For each subgroupH ≤ Z/n the restriction res(γZ/n) = γH is the primary equivariant obstruction element
with respect to the group H . Since for each non-trivial subgroup H ≤ Z/n the set of H fixed points

S(W
⊕(d−1)
n )H of the sphere S(W

⊕(d−1)
n ) is non-empty, we have res(γZ/n) = γH = 0. Consequently, for

each non-trivial subgroup H ≤ Z/n

[Z/n : H ] · γZ/n = trf ◦ res(γZ/n) = 0. (34)

The restriction and transfer we use here are considered in Lemma 5.4. Thus, the equivariant obstruction
element vanishes, i.e., γZ/n = 0. Therefore, for n not a prime power there exists a Z/n-equivariant map

F (Rd, n)→ S(W
⊕(d−1)
n ).

(iii)-(iv) As in the previous case, the existence of the Z/n-equivariant map F (Rd, n) → S(W
⊕(d−1)
n ) is

completely determined by the primary obstruction

γZ/n := γZ/n(F(d, n), S(W⊕(d−1)
n )) ∈ HM

Z/n

(
F(d, n);πM−1(S(W

⊕(d−1)
n ))

)
.

In all the cases we consider M is even and the coefficient Z/n-module πM−1(S(W
⊕(d−1)
n )) ∼= Z is trivial.

Thus, by Lemma 5.3, the primary obstruction γZ/n coincides with the Euler class e(ξZ/n) of the vector
bundle ξZ/n:

W⊕(d−1)
n → F(d, n)×Z/nW

⊕(d−1)
n → F(d, n)/(Z/n).

The Euler class e(ξZ/n) is the pullback of the Euler class e(W
⊕(d−1)
n ) ∈ HM (BZ/n;Z) of the vector bundle

W⊕(d−1)
n → EZ/n×Z/nW

⊕(d−1)
n → BZ/n
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along the classifying map f : F(d, n)→ EZ/n. We will now show that in all cases covered by (3) and (4)

the element e(ξZ/n) = f∗(e(W
⊕(d−1)
n )) vanishes, by proving that e(W

⊕(d−1)
n ) = 0.

For every cyclic group the reduction of coefficient ring homomorphism Z → Z/n induces an isomor-
phism

H2i(Z/n;Z) ∼= H2i(Z/n;Z/n)

for every i ≥ 1. Consequently, the Euler class e(W
⊕(d−1)
n ) vanishes if and only if its Z/n reduction

eZ/n(W
⊕(d−1)
n ) vanishes.

The existence of the isomorphism of Z/n-representations Wn ⊕ R ∼= R[Z/n] allows us to decompose
Wn into irreducible ones. Here R denotes the trivial 1-dimensional real Z/n-representation, while R[Z/n]
denotes the regular one. Now we can apply [37, Theorem 3.3, page 285] to get that eZ/n(W

⊕(d−1)
n )

vanishes in all the cases we consider. Consequently, both the Euler class e(W
⊕(d−1)
n ) and the primary

obstruction γZ/n vanish, so the Z/n-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n ) exists.

(v) The existence of a Z/n-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n ) can be discussed via the equivariant

obstruction theory set-up of [10]. For example, in the case n = 4 the existence of a Z/4-equivariant map

F (Rd, 4) → S(W
⊕(d−1)
4 ) is equivalent to the solvability of the following system of linear equations in

integer variables x[...]:

x[1|234] + x[1|342] + x[1|243] + x[1|234] + x[12|34] + x[13|24] + x[14|23]+

x[14|23] + x[13|24] + x[12|34] + x[123|4] + x[124|3] + x[134|2] + x[123|4] = 1

x[1|243] + x[1|432] + x[1|243] + x[1|234] + x[12|43] + x[13|24] + x[14|23]+

x[14|23] + x[13|24] + x[12|43] + x[123|4] + x[124|3] + x[143|2] + x[124|3] = 1

x[1|324] + x[1|342] + x[1|243] + x[1|324] + x[12|34] + x[13|24] + x[14|32]+

x[14|32] + x[13|24] + x[12|34] + x[132|4] + x[124|3] + x[134|2] + x[132|4] = 1

x[1|342] + x[1|342] + x[1|423] + x[1|324] + x[12|34] + x[13|42] + x[14|32]+

x[14|32] + x[13|42] + x[12|34] + x[132|4] + x[142|3] + x[134|2] + x[134|2] = 1

x[1|423] + x[1|432] + x[1|423] + x[1|234] + x[12|43] + x[13|42] + x[14|23]+

x[14|23] + x[13|42] + x[12|43] + x[123|4] + x[142|3] + x[143|2] + x[142|3] = 1

x[1|432] + x[1|432] + x[1|423] + x[1|324] + x[12|43] + x[13|42] + x[14|32]+

x[14|32] + x[13|42] + x[12|43] + x[132|4] + x[142|3] + x[143|2] + x[143|2] = 1.

Generally, the existence of a Z/n-equivariant map F (Rd, n) → S(W
⊕(d−1)
n ) is equivalent to the van-

ishing of the equivariant obstruction cocycle calculated in [10, Lemma 4.1]. Here we assume the natural
restriction of the Sn action to the Z/n action. The vanishing of the equivariant obstruction cocycle is
equivalent to the integer solvability of a system of (n − 1)! linear equations (generated by the facets of
the model F(d, n)) in (n− 1)!(n− 1) integer variables (corresponding to the ridges of the model F(d, n)).
Since the system of the equations does not depends on d, as proved in [10, Lemma 4.1], we conclude that

the answer, that is, the existence of the Z/n-equivariant map F (Rd, n)→ S(W
⊕(d−1)
n ), does not depend

on d, for d ≥ 2.

In the proof of Theorem 8.6(2) we did not need the condition (34) to be satisfied for all non-trivial
subgroups of Z/n. It suffices that the condition (34) holds for some choice of p-Sylow subgroups of a
group where p ranges over all prime divisors of the group order. Having this in mind the proof of the
statement (2) of the previous theorem with small modification yields the proof of the sufficiency part
of [10, Theorem 1.2]:

Theorem 8.7. If n is not a prime power then there exists an Sn-equivariant map

F (Rd, n)→ S(W⊕(d−1)
n ).

Let us point out that the first reasoning of this type was used by Özaydin in his remarkable unpublished
paper [49].
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8.4 On coincidence theorems of Cohen, Connett, and Lusk

In this section we use calculations presented in Section 7 to extend/improve the results of Cohen &
Connett [17, Theorem 1, page 218], Cohen & Lusk [19, Theorem 1 and 2, page 245], and Karasev &
Volovikov [41, Theorem 7.1, page 1050].

In this section p is a prime, k > 1 is an integer, and G denotes the elementary abelian group (Z/p)k.
Moreover, the class of Fp[G]-modules FIG, that we use in theorem that follows, was introduced in
Section 4.

Theorem 8.8. Let X be a Hausdorff free G-space, d ≥ 2 be an integer, and f : X → Rd be a continuous
map. If Hi(X ;Fp) ∈ FIG for every 0 < i ≤ (d − 1)(pk − pk−1), then there exist x ∈ X and g ∈ G\{1}
such that

f(x) = f(g · x).

Proof. Let us consider a continuous G-equivariant map ψ′ : X → indG{1}(R
d) defined by

x 7→
∑

g∈G

f(g−1 · x)g.

Here we denote by indG{1}(R
d) ∼= (Rd)p

k

the induced G-representation from the trivial G-representation

Rd.
If the theorem is not true, then for every x ∈ X and every g ∈ G\{1} we have that f(x) 6= f(g · x).
Consequently, the map ψ′ factors through the configuration space F (Rd, pk), i.e., the following diagram
of G-equivariant maps commutes:

X

ψ

##
●
●
●
●
●
●
●
●
●
●

ψ′

// indG{1}(R
d) ∼= (Rd)p

k

F (Rd, pk).

i
66♠♠♠♠♠♠♠♠♠♠♠♠

Now using the Fadell–Husseini index we prove that the G-equivariant map ψ : X → F (Rd, pk) cannot
exist.

From the assumption that Hi(X ;Fp) ∈ FIG for 0 < i ≤ (d − 1)(pk − pk−1), using Theorem 4.1, we
conclude that

IndexG(X ;Fp) ⊆ H
≥(d−1)(pk−pk−1)+2(BG;Fp).

On the other hand, Theorem 7.1 implies that there exists a non-zero element

v ∈ IndexG(F (Rd, pk);Fp) ∩H(d−1)(pk−pk−1)+1(BG;Fp).

Therefore, the existence of the element v implies that

IndexG(F (Rd, pk);Fp) * IndexG(X ;Fp)

and consequently, by the basic monotonicity property of the Fadell–Husseini index, there cannot be a
G-equivariant map ψ : X → F (Rd, pk). This concludes the proof of the theorem.

Let X be a Hausdorff free G-space, d > 2 be an integer and f : X → Rd be a continuous map. Set

A(X, f) := {x ∈ X : f(x) = f(g · x) for some g ∈ G\{1}}.

Along the lines of the proofs of Cohen & Lusk [19, Theorem 2] and our Theorem 8.8 the following result
can be obtained.

Theorem 8.9. Let X be a closed m-dimensional manifold equipped with a free G-action, d > 2 be an
integer and f : X → Rd be a continuous map. If Hi(X ;Fp) ∈ FIG for 0 < i ≤ (d − 1)(pk − pk−1), then
the covering dimension of the set A(X, f) can be estimated from below by

cdimA(X, f) ≥ m− (d− 1)(pk − pk−1)− 1.
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