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ON THE GROUP COHOMOLOGY OF THE SEMI-DIRECT

PRODUCT Zn ⋊ρ Z/m AND A CONJECTURE OF

ADEM-GE-PAN-PETROSYAN

MARTIN LANGER AND WOLFGANG LÜCK

Abstract. Consider the semi-direct product Zn ⋊ρ Z/m. A conjecture of
Adem-Ge-Pan-Petrosyan predicts that the associated Lyndon-Hochschild-Serre
spectral sequence collapses. We prove this conjecture provided that the Z/m-
action on Zn is free outside the origin. We disprove the conjecture in general,
namely, we give an example with n = 6 and m = 4, where the second differ-
ential does not vanish.

Introduction

Throughout this paper let G ∼= Z/m be a finite cyclic group of order m and let
L ∼= Zn be a finitely generated free abelian group of rank n. Let ρ : G → autZ(L)
be a group homomorphism. It puts the structure of a ZG-module on L. Let Γ be
the associated semi-direct product L⋊ρ G. We will make the assumption that the
G-action of G on L is free outside the origin unless stated explicitly differently.

Here is a brief summary of our results. We will show that the Tate cohomology

Ĥi(G; Λj(L)) vanishes for all i, j for which i + j is odd. This will be the key
ingredient for computations of the topological K-theory of the group C∗-algebra of
Γ which will be carried out in a different paper, generalizing previous calculations
of Davis-Lück in the special case where m is a prime. We determine the group
cohomology of Γ in high dimensions using classifying spaces for proper actions. A
conjecture due to Adem-Ge-Pan-Petrosyan says that the Lyndon-Hochschild-Serre
spectral sequence associated to the semi-direct product L ⋊ρ G collapses. We will
prove it under the assumption mentioned above. Without this assumption we give
counterexamples.

0.1. Tate cohomology. In the sequel Λj = Λj
Z
stands for the j-th exterior power

of a Z-module.

Theorem 0.1 (Tate cohomology). Suppose that the G-action on L is free outside
the origin, i.e., if for g ∈ G and x ∈ L we have gx = x, then g = 1 or x = 0.

Then we get for the Tate cohomology

Ĥi(G; Λj(L)) = 0

for all i, j for which i + j is odd.

Theorem 0.1 will be proved in Section 1.
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0.2. Motivation. Davis-Lück [9] have computed the topological K-(co-)homology
of BΓ and BΓ and finally the topologicalK-theory of the reduced group C∗-algebra
C∗

r (Γ) in the special case that m is a prime. The result is:

Theorem 0.2 ([9, Theorem 0.3]). Suppose that m = p for a prime p. Suppose that
G acts freely on L outside the origin. Then

(i) There exists an integer s uniquely determined by (p− 1) · s = n;
(ii) If p = 2, then

Km(C∗
r (Γ))

∼=

{
Z3·2n−1

m even;

0 m odd;

(iii) If p is odd, then

Km(C∗
r (Γ))

∼=

{
Zdev m even;

Zdodd m odd,

where

dev =
2(p−1)s + p− 1

2p
+

(p− 1) · ps−1

2
+ (p− 1) · ps;

dodd =
2(p−1)s + p− 1

2p
−

(p− 1) · ps−1

2
;

(iv) In particular Km(C∗
r (Γ)) is always a finitely generated free abelian group.

This computation is interesting in its own right but has also interesting conse-
quences. For instance, the (unstable) Gromov-Lawson-Rosenberg Conjecture holds
for Γ in dimensions ≥ 5 (see [9, Theorem 0.7]). Davis-Lück are planning to apply a
version of Theorem 0.2 for the algebraic K- and L-theory of the integral group ring
of G to the classification of total spaces of certain torus bundles over lens spaces.
The starting point of the proof of Theorem 0.2 is Theorem 0.1 in the special case
m = p.

Recent work of Cuntz-Li [7] and [8] on the topological K-theory of C∗-algebras
arising from number theory triggered the question whether Theorem 0.2 can be
extended to the general case, i.e., to the case where m is any natural number.
This question is also interesting in its own right. But it can only be attacked if
Theorem 0.1 holds, and this will be proved in this paper. The situation relevant
for the work of Cuntz and Li is the case where L is the ring of integers O of an
algebraic number field K, G is the finite cyclic group µ of roots of unity in K×,
and ρ : µ→ aut(O) comes from the multiplication in O. Obviously µ acts freely on
O outside the origin.

0.3. Group cohomology. We will compute the group cohomology of Γ in suffi-
ciently large dimensions by using the classifying space for proper actions, namely,
we will prove in Section 2:

Theorem 0.3. Suppose that G acts freely on L outside the origin. Let M be
a complete system of representatives of the conjugacy classes of maximal finite
subgroups of Γ. Then we obtain for 2k > n an isomorphism

H2k(Γ)
ϕ2k

−−→
⊕

(M)∈P

H̃2k(M),

where ϕ2k is the map induced by the various inclusions M → Γ for M ∈ M. For
2k + 1 > n we get

H2k+1(Γ) ∼= 0.
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0.4. On a conjecture of Adem-Ge-Pan-Petrosyan. We will analyze the fol-
lowing conjecture due to Adem-Ge-Pan-Petrosyan [1, Conjecture 5.2]).

Conjecture 0.4 (Adem-Ge-Pan-Petrosyan). The Lyndon-Hochschild-Serre spec-
tral sequence associated to the semi-direct product L⋊ρG collapses in the strongest
sense, i.e., all differentials in the Er-term for r ≥ 2 are trivial and all extension
problems at the E∞-level are trivial. In particular we get for all k ≥ 0

Hk(Γ;Z) ∼=
⊕

i+j=k

Hi(G;Hj(L)).

This conjecture is known to be true if m is squarefree (see [1, Corollary 4.2])
or if there exists a so called compatible group action (see Definition 4.10 and [2,
Definition 2.1 and Theorem 2.3]).

We will prove a positive and a negative result concerning Conjecture 0.4.

Theorem 0.5 (Free actions). Conjecture 0.4 is true, provided that the G-action
on L is free outside the origin.

The proof of Theorem 0.5 will be given in Section 5.

Theorem 0.6 (Conjecture 0.4 is not true in general). Consider the special case
n = 6 and m = 4, where ρ is given by the matrix




0 1 0 0 0 0
−1 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 1
0 0 0 0 −1 0




Then the second differential in the Lyndon-Hochschild-Serre spectral sequence asso-
ciated to the semi-direct product L⋊ρG is non-trivial. In particular Conjecture 0.4
is not true.

Theorem 0.6 will be proved in Section 6 based on the analysis of the cohomology
classes [αs] due to Charlap-Vasquez [6] presented in Section 4. These classes can be
used to describe the second differential in the Lyndon-Hochschild-Serre spectral se-
quence and are obstructions to the existence of a compatible group action the sense
of [2, Definition 2.1] (see Definition 4.10). The next result is an easy consequence
of Theorem 0.6 and will be proved also in Section 6.

Corollary 0.7. (i) If m is divisible by four, we can find for G ∼= Z/m an L
such that the second differential in the Lyndon-Hochschild-Serre spectral
sequence associated to the semi-direct product L⋊ρ G is non-trivial;

(ii) If m is not divisible by four, then for all L the second differential in the
Lyndon-Hochschild-Serre spectral sequence associated to the semi-direct
product L⋊ρ G is trivial.

Remark 0.8 (Reformulation of Conjecture 0.4). In view of Corollary 0.7 a very
optimistic guess is that Conjecture 0.4 of Adem-Ge-Pan-Petrosyan is true if and
only if m is not divisible by four.

0.5. Group cohomology and the equivariant Euler characteristic. In Sec-
tion 7 we relate the group cohomology of Γ to the G-Euler characteristic of L\EΓ,
where EΓ is the classifying space for proper actions.
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Notations and conventions. All our modules will be left modules. Some of our
results hold in more general situations than considered in the introduction; in such
cases we will use the letter K for arbitrary finite groups, whereas G is used for
cyclic groups only.

Given a chain complex P∗ of modules over ZL, we denote by P∗[n] the shifted
chain complex given by

(
P∗[n]

)
i
= Pn+i with differential ∂P [n] = (−1)n∂P . A map

of two chain complexes f : P∗ → Q∗ is an element of

hom∗(P,Q) =
∏

i∈Z

homZL(P∗+i, P∗),

and for such an f we write df = ∂Qf − (−1)nf∂P . With this notation, f is a chain
map if and only if df = 0.

Suppose we are given a group homomorphism ρ : K → autZ(L); it puts the
structure of a ZK-module on L. For every k ∈ K, we write ρk for the associated
automorphism of L, and we define τk = Zρk to be the corresponding ring auto-
morphism of ZL. Whenever P is a ZL-module, we denote by P k the ZL-module
obtained from P by restricting scalars with the ring automorphism τk. This con-
struction extends in an obvious way to chain complexes of ZL-modules, leaving the
differentials unchanged.

In the special case K = G = Z/mZ, we fix a generator t of G and write ρ = ρt

and τ = τ t for short.

Acknowledgements. The work was financially supported by the HCM (Hausdorff
Center for Mathematics) in Bonn, and the Leibniz-Award of the second author.

1. Proof of Theorem 0.1

This section is devoted to the proof of Theorem 0.1. Its proof needs some prepa-
ration.

Lemma 1.1. Let p be a prime and let r be a natural number. Put ζ = exp(2πi/pr).
Then the ring Z(p)[ζ] ∼= Z[ζ](1−ζ) is a discrete valuation ring.

Proof. Recall from [15, Lemma 10.1 in Chapter I on page 59] that the ideal (1 −
ζ)Z[ζ] is a prime ideal in Z[ζ], and that (1− ζ)(p−1)pr

= p ε for some unit ε ∈ Z[ζ].
Since Z[ζ] is the ring of integers in the algebraic number field Q[ζ], it is a Dedekind
domain (see [15, Theorem 3.1 in Chapter I on page 17 and Proposition 10.2 in
Chapter I on page 60]). Since the localization of a Dedekind ring at one of its
prime ideals is a discrete valuation ring (see [4, Theorem 9.3 on page 95]), it is
enough to prove the isomorphism of rings Z(p)[ζ] ∼= Z[ζ](1−ζ).

Let K be the set of positive integers not divisible by p, and observe that Z(p)[ζ] =

K−1Z[ζ]. Under the unique ring map Z[ζ] → Z/pZ mapping ζ to 1, elements of
K map to non-zero elements, and elements of (1 − ζ)Z[ζ] map to 0; therefore,
K ∩ (1− ζ)Z[ζ] = ∅, so the injective map Z[ζ]→ Z[ζ](1−ζ) induces an injective map

K−1Z[ζ]→ Z[ζ](1−ζ). We want to show that this map is surjective.
Consider both sides as subrings of Q[ζ], and let a, b ∈ Z[ζ] with b /∈ (1 − ζ)Z[ζ];

we want to show that a
b is in the image of that map. Since a

b ∈ Q[ζ], there is some

positive integer l with w := l · ab ∈ Z[ζ]. Let us write l = k · pi with k ∈ K; then

w · b = k · pi · a = k · (1 − ζ)j · a · e

for some integer j ≥ 0 and some unit e ∈ Z[ζ]. Since (1− ζ) generates a prime ideal
which does not contain b, we conclude that w = (1− ζ)jw′ for some w′ ∈ Z[ζ] and
therefore k · ab = w′e−1, which lies in Z[ζ]. �

Next we prove the following reduction.
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Lemma 1.2. It suffices to prove Theorem 0.1 and Theorem 0.5 in the special case,
where m = pr for some prime number p and natural number r and L = Z(ζ)k =⊕k

i=1 Z(ζ) for some natural number k, where ζ = exp(2πi/rk).

Proof. Fix a prime p. LetGp be the p-Sylow subgroup ofG. ObviouslyGp is a cyclic
group of order pr for some natural number r. Let Q be the quotient (Z/n)/(Z/p).
Obviously Q is a cyclic group of order prime to p, namely of order m/pr. Hence
we obtain an isomorphism

Ĥi(G; Λj(L))(p) = Ĥi(Gp; Λ
j(L))Q.

This is proved at least for cohomology and i ≥ 1 in [5, Theorem 10.3 on page 84]
and extends to Tate cohomology. Since an abelian group A is trivial if and only if
A(p) is trivial for all primes p, it suffices to prove Theorem 0.1 for Gp for all primes
p. In other words, we can assume without loss of generality m = pr.

Let t ∈ G be a generator. Let T = 1 + tp
r−1

+ t2p
r−1

+ · · · + t(p−1)pr−1

∈ ZG.

Then tp
r−1

fixes T · x for each x ∈ L, so by assumption T · x = 0 ∈ L. Therefore,
T ·L = 0, and L is a ZG/T ·ZG-module. Now the ring epimorphism pr : ZG→ Z[ζ]
sending a fixed generator t of G to ζ = exp(2πi/pr) is surjective and contains T in
its kernel. Since ZG/T · ZG and Z[ζ] are finitely generated free abelian groups of
the same rank, pr induces a ring isomorphism

pr : ZG/T · ZG
∼=
−→ Z[ζ].(1.3)

We have seen before that Z[ζ] is a Dedekind domain. Every finitely generated
torsion-free module over a Dedekind domain is a direct sum of ideals (see [14,
Lemma 1.5 on page 10 and remark on page 11]), so L ∼= I1 ⊕ · · · ⊕ Ik for some
ideals Ij ⊆ Z[ζ]. Now Ij ⊗ Z(p) is an ideal in Z(p)[ζ] which is a discrete valuation
ring (see Lemma 1.1). Since a discrete valuation ring is a principal ideal domain

with a unique maximal ideal (see [4, Proposition 9.2 on page 94]), L(p)
∼=

(
Z(p)[ζ]

)k

as modules over Z(p)[ζ]. This implies that Λj
Z(p)

(L(p)) and Λj
Z(p)

((Z[ζ](p))
k) are

isomorphic as ZG-modules. For any ZG-module M , the map M → M(p) induces

an isomorphism Ĥ∗(G,M) = Ĥ∗(G,M)(p) ∼= Ĥ∗(G,M(p)). Therefore,

Ĥ∗(G,Λj(L)) ∼= Ĥ∗
(
G, (Λj(L)(p)

)
∼= Ĥ∗

(
G,Λj

Z(p)
(L(p))

)

∼= Ĥ∗
(
G,Λj

Z(p)
((Z[ζ](p))

k)
)
∼= Ĥ∗

(
G,Λj(Z[ζ]k)(p)

)
∼= Ĥ∗

(
G,Λj(Z[ζ]k)

)
.

Hence it suffices to prove Theorem 0.1 in the case m = pr and L = Z[ζ]k.
The argument in the proof applies also to Theorem 0.5. �

Recall that a permutation ZG-module is a ZG-module of the shape Z[S] for some
finite G-set S. The main technical input in the proof of Theorem 0.1 will be:

Proposition 1.4. Suppose m = pr for some prime number p and natural number
r. For j ≥ 0 there is a long exact sequence of ZG-modules

0→ P → F1 → · · · → Fj → ΛjZ[ζ]→ 0

where P is a permutation ZG-module and the Fi’s are free ZG-module

Proof. Define the ZG-module A = ZG/(1 − tp
r−1

) · ZG. Note that we obtain
from (1.3) the short exact sequence of ZG-modules

0→ A→ ZG→ Z[ζ]→ 0
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whose underlying sequence of free Z-modules splits. We therefore get a long exact
sequence of Z-modules

(1.5) 0→ ΓjA→ Γj−1A⊗ Λ1ZG→ Γj−2A⊗ Λ2ZG→ . . .

· · · → Γ1A⊗ Λj−1ZG→ ΛjZG→ ΛjZ[ζ]→ 0.

(see [3, Definition V.1.6 and Corollary V.1.15]), which is in fact a sequence of ZG-
modules. Here, ΓjA denotes the j-th divided powers on A (see, e.g., [3, I.4]). Our
aim is to write this sequence as a direct sum of several sequences, each of which
has one of the following properties:

• it either does not contribute to ΛjZ[ζ], or
• all its middle terms are free ZG-modules.

For this we introduce a grading as follows. Define a Z-basis of A by taking A =

{[1], [t], [t2], . . . , [tp
r−1−1]}. Let S′ be the additive semi-group of functions (i.e.,

maps of sets) Z/pr−1Z→ N, where N is the set of non-negative integers. There is a
unique way of turning Γ∗A into an S′-graded ring such that the degree of [ti] ∈ Γ1A
is the function in S′ sending [i] to 1 and all other elements to 0. Explicitly, the

degree of the Z-basis element a
[e1]
1 . . . a

[em]
m (with ai ∈ A for all i, ei ≥ 0) is given

by the function

Z/pr−1Z ∋ [i] 7→
∑

as=[ti]

es.

Similarly, there is a unique S′-graded ring structure on Λ∗ZG such that the degree of
ti ∈ Λ1ZG is the function in S′ sending [i mod pr−1] to 1 and all other elements to 0.
We therefore get an induced S′-grading on Γ∗A⊗Λ∗ZG (by requiring |a⊗b| = |a|+|b|
for homogeneous a, b), which restricts to an S′-grading on Γj−iA⊗ ΛiZG.

We claim that the differential of the exact sequence (1.5) respects this grading.

To verify this, note that a Z-basis element a
[e1]
1 . . . a

[em]
m ⊗ b1 ∧ · · · ∧ bi is mapped

to a
[e1−1]
1 . . . a

[em]
m ⊗ (T · a1) ∧ b1 ∧ · · · ∧ bi plus other terms of similar shape. Note

here that T · a1 is a well-defined element in ZG, and its a sum of elements having
the same degree in S′ as a1.

On the other hand, the G-action does not quite respect the grading; in fact,
multiplication by t corresponds to a shift of the degree function Z/pr−1Z → N.
We therefore define S = S′/(Z/pr−1Z), where Z/pr−1Z acts on the functions in
S′ by shifting. We get an induced S-grading on Γj−iA ⊗ ΛiZG, and now both
the G-action and the differential of (1.5) respect this grading. Therefore the exact
sequence is a direct sum of exact sequences, one for each element of S. For σ ∈ S
let us write Eσ =

(
. . .

)
σ
for the degree-σ-part of the exact sequence, i.e.,

· · · → (Γj−iA⊗ ΛiZG)σ → · · · → (ΛjZG)σ → (ΛjZ[ζ])σ → 0.

The proof is now completed by applying the following Lemma 1.6 because ΓjA is
a permutation module. �

Lemma 1.6. Let σ ∈ S be represented by f ∈ S′. If f(w) < p for all w ∈ Z/pr−1Z,
then the module (Γj−iA⊗ΛiZG)σ is free as ZG-module for 0 < i ≤ j. If f(w) ≥ p
for some w, then Λj(Z[ζ])σ = 0.

Proof. For the first part, it is enough to check that the action of tp
r−1

on the

canonical Z-basis elements β = a
[e1]
1 . . . a

[em]
m ⊗ b1 ∧ · · · ∧ bi for ar ∈ A, er ≥ 0

and bs ∈ G = Z/pr has no fixed points. Suppose that tp
r−1

β = β. Then for each

l ∈ {0, 1, . . . , p− 1} there exists u(l) ∈ {1, 2, . . . , i} with tlp
r−1

b1 = bu(l). Obviously

bu(l) = bu(l′) if and only if l = l′ since β 6= 0 and tlp
r−1

b1 = tl
′pr−1

b1 ⇔ l = l′. We
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conclude where b1 ∈ Z/pr−1 is the reduction of b1 ∈ G = Z/pr

f(β)(b1) =

m∑

r=1

f(a[er ]r )(b1) +

i∑

s=1

f(bs)(b1) ≥

p−1∑

l=0

f(bu(l))(b1)

=

p−1∑

l=0

f(tlp
r−1

b1)(b1) =

p−1∑

l=0

1 = p.

For the second assertion we need to check that the map (ΛjZG)σ → ΛjZ[ζ] is zero,
so let us start with an element β = b1 ∧ b2 ∧ · · · ∧ bj in (ΛjZG)σ for bs ∈ G. Fix
w ∈ Z/pr−1 with f(w) ≥ p. Then p ≤ j and by possible renumbering the bs-s,

we can arrange that b1, b2, . . . , bp belong to the set {tw, tw+pr−1

, . . . , tw+(p−1)pr−1

}.
Furthermore, they are pairwise different (otherwise β = 0), so we may assume that

bl = tw+lpr−1

for all l = 1, 2, . . . , p. Recall that T = 1 + tp
r−1

+ t2p
r−1

+ · · · +

t(p−1)pr−1

∈ ZG. Then T · b1 = b1 + b2 + · · ·+ bp, so that β = (T · b1)∧ b2 ∧ · · · ∧ bj ,
but the latter maps to zero in ΛjZ[ζ]. This finishes the proof of Lemma 1.6 and
hence of Proposition 1.4. �

Now we can finish the proof of Theorem 0.1.

Proof of of Theorem 0.1. By Lemma 1.2 we can assume without loss of generality
that m = pr and L = Z[ζ]k for ζ = exp(2πi/pr). We will show by induction over k
that for k ≥ 1 and j1, j2, . . . jk ≥ 0 there exists a long exact sequence of ZG-modules

(1.7) 0 → P → F1 → · · · → Fj1+···+jk → Λj1Z[ζ] ⊗ · · · ⊗ ΛjkZ[ζ] → 0,

where P is a direct summand in a permutation module. Then Theorem 0.1 follows
since there is the exponential law

Λ∗(X ⊕ Y ) ∼= Λ∗(X)⊗ Λ∗(Y ),(1.8)

Shapiro’s Lemma (see [5, (5.2) on page 136]) saying that for a subgroup H ⊆ G we
have

Ĥi(G;Z[G/H ]) ∼= Ĥi(H ;Z),

the computation

Ĥi(Z/m;Z) = 0 for i odd,

the formula

Ĥi(G;M1 ⊕M2) ∼= Ĥi(G;M1)⊕ Ĥi(G;M2),

and the isomorphism (see [5, (5.1) on page 136])

Ĥi
(
G; Λj1Z[ζ]⊗ · · · ⊗ ΛjkZ[ζ]

)
∼= Ĥi+j1+j2+···+jk(G;P ).

The induction beginning k = 1 has already been taken care of in Proposition 1.4.
The induction step from k− 1 to k ≥ 2 is done as follows. By induction hypothesis
there exists exact sequences of ZG-modules

0→ P → F1 → · · · → Fj1+···+jk−1
→ Λj1Z[ζ]⊗ · · · ⊗ Λjk−1Z[ζ]→ 0.

and

0→ Q→ F ′
1 → · · · → F ′

jk
→ ΛjkZ[ζ]→ 0.

where P and Q are permutation modules. Since Λj1Z[ζ]⊗· · ·⊗Λjk−1Z[ζ] is finitely
generated free as Z-module, we obtain an exact sequence of ZG-modules

0→ Λj1Z[ζ] ⊗ · · · ⊗ Λjk−1Z[ζ]⊗Q→ Λj1Z[ζ]⊗ · · · ⊗ Λjk−1Z[ζ] ⊗ F ′
1

→ · · · → Λj1Z[ζ]⊗· · ·⊗Λjk−1Z[ζ]⊗F ′
jk → Λj1Z[ζ]⊗· · ·⊗Λjk−1Z[ζ]⊗ΛjkZ[ζ]→ 0,
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where all the modules except the one at the beginning and the one at the end are
finitely generated free ZG-modules. Analogously we we obtain an exact sequence
ZG-modules

0→ P ⊗Q→ F1⊗Q→ · · · → Fj1+···+jk ⊗Q→ Λj1Z[ζ]⊗ · · · ⊗Λjk−1Z[ζ]⊗Q→ 0,

where all the modules except the one at the beginning and the one at the end are
finitely generated free ZG-modules and P⊗Q is a permutation module. Splicing the
last two long exact sequences together yields the desired long exact sequence (1.7)
of ZG-modules. This finishes the proof of Theorem 0.1. �

2. The cohomology of Γ

In this section we present a computation of the group cohomology of the semi-
direct product Γ = L⋊φG in high degrees provided that G acts freely on L outside
the origin. It is independent of the Lyndon-Hochschild-Serre spectral sequence but
uses classifying spaces for proper actions. For a survey on classifying spaces for
families and in particular for the classifying space for proper actions we refer for
instance to [11].

Here we will only need the following facts. A model EΓ for proper Γ-actions is
a Γ-CW -complex whose isotropy groups are all finite and whose H-fixed point set
is contractible for every finite subgroup H ⊆ Γ. Such a model exists and is unique
up to Γ-homotopy. We will denote by BΓ the quotient Γ\EΓ.

Now we are ready to prove Theorem 0.3.

Proof of Theorem 0.3. Since the G-action on L is free outside the origin, every
non-trivial finite subgroup H ⊆ Γ is contained in a unique maximal finite subgroup
M and for every maximal finite subgroup M ⊆ Γ we have NΓM = M (see [12,
Lemma 6.3]. We obtain from [13, Corollary 2.11] a cellular Γ-pushout

∐
M∈M Γ×M EM

i0
//

∐
M∈M

prM

��

EΓ

f

��∐
M∈M Γ/M

i1
// EΓ

(2.1)

where i0 and i1 are inclusions of Γ-CW -complexes, prM is the obvious Γ-equivariant
projection and M is a complete system of representatives the set of conjugacy
classes of maximal finite subgroups of Γ. Taking the quotient with respect to the
Γ-action yields the cellular pushout

∐
M∈M BM

j0
//

∐
M∈M

prM

��

BΓ

f

��∐
M∈M pt

j1
// BΓ

where j0 and j1 are inclusions of CW -complexes, prM is the obvious projection. It
yields the following long exact sequence for k ≥ 0

(2.2) 0→ H2k(BΓ)
f
∗

−→ H2k(Γ)
ϕ2k

−−→
⊕

(M)∈M

H̃2k(M)

δ2k
−−→ H2k+1(BΓ)

f
∗

−→ H2k+1(Γ)→ 0

where ϕ∗ is the map induced by the various inclusions M ⊂ Γ for M ∈ M and

H̃2k(M) is reduced cohomology, i.e., H̃2k(M) = H2k(M) for k ≥ 1 and H̃0(M) = 0.
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One can construct a model for EΓ whose dimension as a Γ-CW -complex is
n (see [11, Example 5.26]). Namely, one can take R ⊗Z L with the obvious Γ-
action coming from the L-action given by translation and the G-action coming

from G
ρ
−→ autZ(L) → autR(R ⊗Z L), where the second map comes from applying

R⊗Z −. Now Theorem 0.3 follows. �

3. The Relation of Conjecture 0.4 and Theorem 0.1

Lemma 3.1. Suppose that G acts freely outside the origin on L. Then Theorem 0.1
is true if and only if the differentials in the Lyndon-Hochschild-Serre spectral se-
quence associated to Γ = G⋊φ G vanish.

Proof. The cup-product induces isomorphisms ΛjH1(L)
∼=
−→ Hj(L), natural with

respect to automorphisms of L, for j ≥ 0. By the universal coefficient theorem we

obtain an isomorphism L∧ := homZ(L,Z)
∼=
−→ H1(L) which is natural with respect

to automorphisms of L. Putting this together we obtain an isomorphism, natural
with respect to automorphisms of L,

ΛjL∧ ∼=
−→ Hj(L).

We first show that Theorem 0.1 implies the vanishing of all the differentials.
From Theorem 0.1 we conclude that E2

i,j = 0 for i + j odd and i ≥ 1 since the
Tate cohomology in dimensions i ≥ 1 coincides with cohomology. Hence by the
checkerboard pattern of the E2-term the only non-trivial differentials which can
occur are those who start at the vertical axis or end at the horizontal axis at a point
in odd position on the axis. To show that all these differentials vanish, we have
to prove that all edge homomorphisms are trivial. This boils down to show of the
projection pr : Γ → G and for the inclusion i : L→ Γ that the map pr∗ : Hr(G) →
Hr(Γ) is injective and the map i∗ : Hr(Γ) → Hr(L)G is surjective for odd r. The
map pr∗ is injective since pr has a section. Let i! : Hr(L)→ Hr(Γ) be the transfer
map. Its composition with i∗ : Hr(Γ) → Hr(L)G is the map Hr(L) → Hr(L)G

given by multiplication with the norm element N :=
∑

g∈G g, and the cokernel of

this map is isomorphic to Ĥ0(G;Hr(L)) (see [5, (5.1) on page 134]). By assumption

Ĥ0(G;Hr(L)) vanishes for odd r. Hence i∗ ◦ i! is surjective in odd dimensions and
hence i∗ is surjective in odd dimensions. This finishes the proof that all differentials
in the Leray-Hochschild-Serre spectral sequence vanish.

Now suppose that all differentials vanish. Then Theorem 0.5 holds by the follow-
ing argument. We know that H2m+1(Γ) vanishes for 2m+ 1 > n by Theorem 0.3.
Since all differentials in the Leray-Serre spectral sequence vanish, we conclude that

Ĥi(G;Hj(L)) = Hi(G;Hj(L)) = 0 for i ≥ 1, i+j odd and i+j > n. Since the Tate

cohomology is 2-periodic for finite cyclic groups, this implies that Ĥi(G;Hj(L)) = 0
holds for all i, j with i+ j odd. �

Remark 3.2. Notice that Theorem 0.5 and Lemma 3.1 give another proof of
Theorem 0.1 independent of the one presented in Section 1.

4. The cohomology classes [αs]

Next we introduce certain cohomology classes which will be used to describe
the second differential in the Lyndon-Hochschild-Serre spectral sequence and are
obstructions to the existence of a compatible group action in the sense of [2, Def-
inition 2.1]). We will also give a description in terms of endomorphism of free
groups.
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4.1. The definition of the classes [αs]. Let ρ : L → L be the automorphism of
L given by multiplication with a fixed generator t of the cyclic group G of order
m. Denote by τ = Zρ : ZG → ZG the ring automorphism of ZL induced by ρ.
Obviously ρm = idL and τm = idZL.

Let (P∗, ∂) be a projective resolution over ZL of the trivial module Z with the
additional property that the complex homZL(P∗,Z) has trivial differentials. As
usual, let τ∗ denote the endofunctor of the category of ZL-modules given by pulling
back scalars along τ . Then P∗ and τ∗P∗ both are projective ZL-resolutions of the
trivial module Z, so there is a chain map z : τ∗P∗ → P∗ lifting the identity of Z.
Then H∗(L) = homZL(P∗,Z) = homZL(τ

∗P∗,Z) gets a ZG-module structure via
the map homZL(z, idZ). Note that H∗(L) ∼= Λ∗L∧ as ZG-modules.

Now the m-fold composition zm is a ZL-chain map P∗ → P∗ lifting the identity
of Z. Therefore there is a ZL-chain homotopy y : P∗ → P∗[1] with dy = ∂y + y∂ =
zm − 1. This induces a map

αs : H
s+1(L) ∼= homZL(Ps+1,Z)

homZL(y,idZ)
−−−−−−−−→ homZL(Ps,Z) ∼= Hs(L).

We claim that αs is a G-equivariant map. To see this, consider the map zy −
yz : τ∗P∗ → P∗[1]. Since

d(zy − yz) = z(dy)− (dy)z = z(zm − 1)− (zm − 1)z = 0,

it is a chain map. Therefore, it must be null-homotopic, so there is a map x : τ∗P∗ →
P∗[2] with dx = ∂x− x∂ = zy− yz. Since homZL(P∗,Z) has trivial differential, we
get 0 = homZL(dx, idZ) = homZL(zy−yz, idZ), proving that αs is indeed ZG-linear.

We can think of αs as an element

αs ∈ Ext0ZG(H
s+1(L), Hs(L)) = homZG(H

s+1(L), Hs(L)).

Using the obvious pairing coming from the tensor product over Z (with the diagonal
G-action)

Exti
ZG(M1,M2)⊗ Extj

ZG(N1, N2)→ Exti+j
ZG (M1 ⊗Z N1,M2 ⊗Z N2)

and the generator of the group Ext2
ZG(Z,Z) = H2(G) ∼= Z/m given by the extension

Z→ ZG
1−t
−−→ ZG→ Z for the fixed generator t ∈ G, we obtain the desired class

[αs] ∈ Ext2
ZG(H

s+1(L), Hs(L)).(4.1)

It is not hard to check that the classes [αs] are independent of the choices of P∗,
z, and y.

4.2. The second differential. Notice that we have for ZG-modules M1 and M2

a pairing

ExtiZG(Z,M1)⊗ Extj
ZG(Z, homZ(M1,M2))→ Exti+j

ZG (Z,M2)

coming from the cup product with respect to the pairing M1 ⊗Z homZ(M1,M2)→
M2 sending m1 ⊗ f to f(m1).

Lemma 4.2. The map

Hr(G,Hs+1L)
−·[αs]·(−1)r

−−−−−−−−→ Hr+2(G,H∗L)

given by taking products:

Hr(G,Hs+1L) = ExtrZG(Z, H
s+1L)→ Extr+2

ZG (Z, HsL) = Hr+2(G,HsL)

u 7→ u · [αs] · (−1)
r

is the d2-differential of the Lyndon-Hochschild-Serre spectral sequence.
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Let us remark here that this is shown in a slightly different setup in [16, Corollary
2]. For convenience of the reader, we give a proof here which is adapted to our
situation.

To do so, we use the results of [6]. Define a G-system (see [6, Definition in I.1
on page 534]) to consist of maps A(g) ∈ homZL(P∗, P

g
∗ ) for every g ∈ G and

U(g, h) ∈ homZL(P∗, P
gh
∗ ) for every pair (g, h) ∈ G × G, such that the following

conditions hold:

ǫA(g) = ǫ, where ǫ is the augmentation of P∗,

dA(g) = 0 for all g ∈ G,

dU(g, h) = A(gh)−A(g)A(h) for all g, h ∈ G.

In our case, we can define A(ti) = zm−i for i = 1, . . . ,m− 1 and A(1) = 1, and we
put

U(ti, tj) =

{
0 if i+ j > m or i = 0 or j = 0;

−yzi+j−m otherwise.

In [6, II.2], characteristic classes are constructed as follows. By the universal coeffi-
cient theorem, Hn(L,X) ∼= homZ(Hn(L), X) for all Z-free modules X with trivial
L-action. Choose a cocycle fn ∈ homZL(Pn, Hn(L)) (where Hn(L) is regarded as
module with trivial L-action) representing the identity map in homZ(Hn(L), Hn(L)).
For each g ∈ G, there is some Fn−1

g ∈ homZL(Pn−1, Hn(L)) with fn ◦An(g)−fn =

Fn−1
g ∂n. In our case, the differential on homZL(P∗, X) is zero for every Z-free

module X with trivial L-action, so we can assume that Fg = 0.
Now [6, Equation (2) in I.2 on page 536] reduces to the definition

un(g, h) = (gh)∗[f
nUn−1(h

−1, g−1)] ∈ homZL(Pn−1, Hn(L))

for all g, h ∈ G, where (gh)∗ is the action of gh on homologyHn(L), so that u
n(g, h)

equals the composition

P gh
n−1

Un−1(h
−1,g−1)

−−−−−−−−−−→ Pn
fn

−−→ Hn(L)
gh
−→ Hn(L).(4.3)

Then un(g, h) is a cocycle defining a cohomology class wn(g, h) ∈ Hn−1(L,Hn(L)).
By [6, Theorem 1 in II.2.1 on page 537] the collection of these cohomology classes
defines a class vn ∈ H2(G,Hn−1(L,Hn(L))). We would like to compare this class
with our [αn]. To do so, note that by the universal coefficient theorem, Hn(L) ∼=
homZ(Hn(L),Z), and let us denote by D the isomorphism

D : homZ(H
n(L), Hn−1(L))→ homZ(Hn−1(L), Hn(L))

given by dualizing. Also, the universal coefficient theorem gives us an isomorphism
homZ(Hn−1(L), Hn(L)) ∼= Hn−1(L,Hn(L)).

Lemma 4.4. When we apply H2(G,−) to the G-linear isomorphism

γ : homZ(H
n(L), Hn−1(L))

D
−→ homZ(Hn−1(L), Hn(L))

∼=
−→ Hn−1(L,Hn(L)),

then under the resulting map the class [αn] maps to the class vn.

Proof. Let B∗ be the bar resolution, whose modules are given by Bs = (ZG)⊗(s+1)

with G acting on the first factor. Then Bs is ZG-free on generators (g1, . . . , gs)
with gi ∈ G, and the differential is given by

(g1, . . . , gs) 7→ g1(g2, . . . , gs)+

s−1∑

r=1

(−1)r(g1, . . . , grgr+1, . . . , gs)+(−1)s(g1, . . . , gs−1).

Let F∗ be the standard free resolution

· · · → ZG
1−t
−−→ ZG

tm−1+···+t+1
−−−−−−−−−→ ZG

1−t
−−→ ZG.
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Then vn is represented by un ∈ homZG(B2, H
n−1(L,Hn(L))), and the first step

will be to find a representative for vn in homZG(F2, H
n−1(L,Hn(L))). Note that

we can construct a map of augmented chain complexes F∗ → B∗ as follows:

. . . // F2
tm−1+···+t+1

//

17→−
∑m−1

i=0 (ti,t)

��

F1
1−t

//

17→−(t)

��

F0

17→()

��

// Z

. . . // B2
// B1

// B0
// Z

We therefore find a cocycle in homZG(F2, H
n−1(L,Hn(L))) by evaluating un at

−
∑m−1

i=0 (ti, t). From (4.3) we see that un is zero at most of the terms (note the
definition of Un), the only remaining part is

−un(t−1, t) = −[fnUn−1(t
m−1, t)] = [fny].

This means that the G-linear map 1 7→ [fny] ∈ Hn−1(L,Hn(L)) is a cocycle in
homZG(F2, H

n−1(L,Hn(L))) representing vn.

Recall the isomorphism Hn−1(L,Hn(L))
∼=
−→ homZ(Hn−1(L), Hn(L)): Given any

cocycle c ∈ homZL(Pn−1, Hn(L)), we can form

idZ⊗ZLc : Z⊗ZL Pn−1 → Z⊗ZL Hn(L) ∼= Hn(L).

Passing to the homology of the complex Z⊗ZLP∗ yields a map Hn−1(L)→ Hn(L),
the image of the class [c] in homZ(Hn−1(L), Hn(L)). We have the natural isomor-
phism

Z⊗ZL − ∼= homZ(homZL(−,Z),Z)(4.5)

for all the modules we are interested in, so the differential of Z ⊗ZL P∗ is zero.
Therefore, the class [fny] corresponds to the composition

Hn−1(L)
idZ ⊗ZLy
−−−−−→ Hn(L)

idZ ⊗ZLfn

−−−−−−→ Hn(L),

where the second map is the identity by definition of fn. Therefore, the G-linear
map F2 → homZ(Hn−1(L), Hn(L)), 1 7→ idZ⊗ZLy represents the class vn. But
by (4.5) we have D(αn) = D(homZL(y, idZ)) = idZ⊗ZLy. �

We continue with the proof of Lemma 4.2. By [6, Proposition 2 and Theorem 4
in I.3 on page 539 and 540], the d2-differential can be described as follows. The G-

linear isomorphism ϑ : Hq(L)
∼=
−→ H0(L,Hq(L)) induces a map θ : Hp(G,Hq(L))

∼=
−→

Hp(G,H0(L,Hq(L))). On the other hand, we have the class vq ∈ H2(G,Hq−1(L,Hq(L))).
The pairingHq(L)⊗Hq(L)→ Z induces a productH0(L,Hq(L))⊗Hq−1(L,Hq(L))→
Hq−1(L). Then for a class χ ∈ Ep,q

2 = Hp(G,Hq(L)) we have

d2(χ) = (−1)pθ(χ) ∪ vq.

To finish the proof of Lemma 4.2 it is therefore enough to show that the diagram

Hq(L)⊗ homZ(H
q(L), Hq−1(L))

ev
//

ϑ⊗γ

��

Hq−1(L)

H0(L,Hq(L))⊗Hq−1(L,Hq(L)) // Hq−1(L)

(4.6)

commutes, where γ is as in Lemma 4.4. To see this, let X , Y and Z be finitely
generated free Z-modules with trivial L-action, and let a map Z → Y ∧ be given.
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Then we have a commutative diagram

X ⊗ homZ(X,Z) //

��

Z

��

X ⊗ homZ(Z
∧, X∧)

��

X ⊗ homZ(Y,X
∧) // Y ∧

(4.7)

where the left-hand side vertical maps are given by dualizing and the natural map
Y → (Y ∧)∧; the horizontal arrows are evaluation maps. We also have the natural
diagram

X ⊗ homZ(Hq−1(L), Y ) //

∼=

��

homZ(Hq−1(L), X ⊗ Y )

∼=

��

H0(L,X)⊗Hq−1(L, Y )
∪

// Hq−1(L,X ⊗ Y )

(4.8)

This commutes because by naturality, it is enough to consider the case X = Y = Z

which is a tautology. Now we put things together and obtain

Hq(L)⊗ [Hq(L), Hq−1L]
ev

//

��

(a)

Hq−1(L)

��

Hq(L)⊗ [Hq−1(L), H
q(L)∧] //

(b)

[Hq−1(L),Z]

Hq(L)⊗ [Hq−1(L), H
q(L)∧] //

��

(c)

[Hq−1(L), H
q(L)⊗Hq(L)∧]

ev∗
//

��

(d)

[Hq−1(L),Z]

��

H0(L,Hq(L))⊗Hq−1(L,Hq(L)∧)
∪

// Hq−1(L,Hq(L)⊗Hq(L)∧)
ev∗

// Hq−1(L)

where we wrote [X,Y ] for homZ(X,Y ). The square (a) is (4.7) for X = Hq(L),
Y = Hq−1(L), Z = Hq−1(L), and Z → Y ∧ is the map from the universal coefficient
theorem. The square (b) commutes by definition, (d) commutes by naturality of
the universal coefficient theorem, and (c) is (4.8) for the case X = Hq(L) and
Y = Hq(L)∧. A quick check asserts that the “outer square” agrees with (4.6), up
to another application of the universal coefficient theorem Hq(L)∧ ∼= Hq(L). This
finishes the proof of Lemma 4.2.

Remark 4.9. Note that the second differential can also be identified with the
composite

Hr(G,Hs+1L)
Hr(G,αs)
−−−−−−→ Hr(G,HsL)→ Hr+2(G,HsL),

where the second map is the map coming from taking the cup product with the
generator of the group H2

ZG(G,Z), which is the two-periodicity isomorphism if
r ≥ 1. Since we have first fixed a choice of generator of G and then chosen the
generatorH2

ZG(G,Z) accordingly, the map above is indeed independent of the choice
of generator of G.
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4.3. Obstructions for the existence of a compatible group action. These
classes serve as obstructions for the existence of a compatible action in the sense
of [1, Definition 2.1]. Let us recall their definition here.

Definition 4.10 (Compatible group action). Let K be an arbitrary group acting
Z-linearly on the abelian group A. Suppose that P∗ → Z is a free resolution of the
trivial ZA-module Z over ZA. Then we say that P∗ admits a compatible K-action
if there is an augmentation-preserving chain map tk : P∗ → P∗ for each k ∈ K such
that the following conditions are satisfied:

(1) tk(p · a) = ak · tk(p) for all a ∈ A, k ∈ K, p ∈ P∗, where ak denotes the
action of k on A,

(2) tktk′ = tkk′ for all k, k′ ∈ K,
(3) t1 = 1P∗

.

Notice that (1) is equivalent to saying that tk ∈ homZL(P∗, P
k
∗ ).

Now let G be the cyclic group of order m as before. The following lemma is
an immediate consequence of the definitions and one should think of a compatible
action just as described below. A free resolution P∗ is called special if the differential
of the complex homZL(P∗,Z) is zero.

Lemma 4.11. There is a compatible action of G on a special free resolution P∗ if
and only if the chain map z can be chosen in such a way that zm = 1. If this is the
case, then all the Ext-classes [αs] for s ≥ 0 are zero.

Let {e1, e2, . . . , en} be a basis of the abelian a group L. We denote by (l) (with
l ∈ L) the Z-basis elements of ZL; in particular, (0) is the unit of the ring ZL.
From now on, we will have a particular projective ZL resolution P∗ of the trivial
ZL-module Z in mind, namely, the Koszul complex, which is defined as follows. As
ZL-module, Pi is free of rank

(
n
i

)
with generators [i1, i2, . . . , ii], 1 ≤ i1 < i2 < · · · <

ii ≤ n. The differential ∂ is given by

[i1, i2, . . . , ii] 7→
i∑

j=1

(−1)j−1
(
(0)− (ej)

)
· [i1, . . . , îj , . . . , ii].

Lemma 4.12. Let m = 4, n = 3, and let ρ be given by the integral matrix
(

0 1 0
−1 0 1
0 0 1

)
.

Then [α1] 6= 0, and so there is no compatible G-action in this case. Nevertheless,
the associated Lyndon-Hochschild-Serre spectral sequence collapses.

Proof. We start by writing down the beginning of an explicit choice of chain map
z : τ∗P∗ → P∗. Let z : τ

∗P0 → P0 be the map τ−1, and define

z : τ∗P1 → P1

[1] 7→ [2]

[2] 7→ −(−e1)[1]

[3] 7→ [1] + (e1)[3].

Let us determine z4 : P1 → P1. We have

[1]
z
−→ [2]

z
−→ −(−e1)[1]

z
−→ −(−e2)[2]

z
−→ [1].

Notice here, for instance, that z(−(−e2)[2]) = −(ρ
−1(−e2))·z([2]) = (e1)(−e1)[1] =

[1]. From the computation we get z4([1]) = [1] and z4([2]) = [2]. Now,

[3]
z
−→ [1] + (e1)[3]

z
−→ [2] + (e2)([1] + (e1)[3]) = (e2)[1] + [2] + (e1 + e2)[3].
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Therefore, z4 maps [3] to

−(−e1 − e2)[1]− (−e2)[2] + (−e1 − e2)
(
(e2)[1] + [2] + (e1 + e2)[3]

)

=
(
(−e1)− (−e1 − e2)

)
· [1] +

(
−(−e2) + (−e1 − e2)

)
· [2] + [3]

Now we start choosing y. Let y : P0 → P1 be the zero map. Furthermore, we can
put y([1]) = y([2]) = 0. For y([3]), we have to choose a lift of z4([3])− [3] along ∂;
one such lift is

y([3]) = (−e1 − e2) · [1, 2]

Now we will show that [α1] ∈ Ext2ZG(Λ
2L∧, L∧) ∼= Ext2ZG(Z, homZ(Λ

2L∧, L∧)) is
non-zero. For any two ZG-modules U, V , we have a natural pairing

homZ(U, V )⊗ (U ⊗ V ∧)→ Z

given by f ⊗ (u⊗v) 7→ v(f(u)). Consider the exterior cup product followed by that
map:

Ext2
ZG(Z, homZ(U, V ))⊗ homZG(Z, U ⊗ V ∧)

∪
−→ Ext2

ZG(Z,Z)
∼= Z/4Z.

Now put U = Λ2L∧ and V = L∧, and denote by e∧1 , e
∧
2 , e

∧
3 the dual basis for

e1, e2, e3. Then

a = (e∧1 ∧ e∧2 )⊗ (e1 + e2 + 2e3)− (e∧1 ∧ e∧3 )⊗ e3 + (e∧2 ∧ e∧3 )⊗ (e2 + e3)

is a G-invariant element of U ⊗V ∧. Under the pairing homZ(U, V )⊗ (U ⊗V ∧)→ Z

mentioned above we get α1 ⊗ a = 2. This implies [α1] ∪ a = 2 ∈ Z/4Z, and hence
[α1] 6= 0.

The collapse of the spectral sequence was noted in [1, page 350]. �

Remark 4.13. If n ≤ 2, then there always exists a compatible group action on
the Koszul resolution by [2, Theorem 3.1]. Hence our example for a lattice without
compatible group action on the Koszul resolution appearing in Theorem 4.12 has
minimal rank, namely n = 3.

4.4. An approach via free groups. Let us establish a connection to free groups.
Denote by Fn the free group in n letters x1, . . . , xn. Let π : Fn → L be the surjection
xi 7→ ei, where {e1, . . . , en} is a basis of L. Recall that for every group X , we have
the lower central series

X = Γ1X ⊃ Γ2X ⊃ Γ3X ⊃ · · · ,

where ΓiX is defined inductively by Γi+1X = [X,ΓiX ] for i ≥ 1. In particular
Γ2X is the commutator subgroup [X,X ] and Γ2Γ2X is commutator subgroup of
the commutator subgroup of X . Denote by Γ3/Γ2X the quotient Γ2X/Γ3X =
[X,X ]/[X, [X,X ]]. Notice that kerπ = Γ2Fn. The map π also induces a map
Fn/Γ2Γ2Fn → L.

Theorem 4.14. Let K be an arbitrary group acting on the lattice L. There is a
compatible K-action on the Koszul resolution P∗ if and only if the K-action on L
can be lifted to a K-action on Fn/Γ2Γ2Fn.

For the proof we need some preparation. Let ι : L →֒ ZL = P0 be the inclusion
of sets given by l 7→ (0) − (l), and define the subset M ⊂ ZLn = P1 to be M =
∂−1(ι(L)), so that we get a commutative diagram

M
�

�

//

a

����

ZLn

∂

��

L
�

�

ι
// ZL
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We define a new monoid structure on M by m1 ⋄m2 = m1+m2− (∂m1) ·m2. This
element of P1 indeed lies in the subset M , because if ∂mi = (0)− (li) then

∂(m1 +m2 − (∂m1) ·m2) = ∂(m1) + ∂(m2)−
(
(0)− (l1)

)
· ∂(m2)(4.15)

= (0)− (l1) + (l1)((0)− (l2)) = (0)− (l1 + l2).

The composition ⋄ is associative, and 0 ∈ P1 serves as unit element of M . Equa-
tion (4.15) shows that a : M → L is a homomorphism of monoids.

Remark 4.16 (Geometric picture). At this point, it might be helpful to have
a geometric picture in mind. Let X be the CW-complex with a 0-cell for every
element of L and a 1-cell joining l and l + ei for every l and every i = 1, 2, . . . , n.
One should think of X as the “grid” in Rn. Then the cellular chain complex is
given by ZL in dimension 0, and ZLn in dimension 1, where the Z-basis element
corresponding to [i]l belongs to the 1-cell from l to l + ei. Then the differential of
the cellular chain complex is exactly the differential ∂ : ZLn → ZL of the Koszul
complex. The elements of M can then be thought of those 1-chains which can be
written as a sum of cycles and a single path joining 0 and some l ∈ L. The function
a : M → L returns the endpoint l, and the equation m1 ⋄m2 = m1 +m2 · (a(m1))
shows that the product ⋄ simply translates m2 in such a way that the two paths
can be concatenated, the path of m1 ⋄m2 being the concatenation of the two paths.
This makes it clear that a is a homomorphism of monoids.

Lemma 4.17. The monoid M is a group generated by the ZL-basis elements of
P1 = ZLn.

Proof. Let ai = [i] be the ZL-basis elements of P1, and define the elements āi =
−(−ei) · [i] (with i = 1, 2, . . . , n). In our geometric picture ai and āi correspond to
paths from 0 to ei and −ei, respectively. Note that ai ⋄ āi = āi ⋄ ai = 0, and define
T to be the submonoid of M generated by all these elements. We first of all prove
that for every l ∈ L, there are elements γl, γ̄l ∈ T with a(γl) = l, γl ⋄ γ̄l = γ̄l ⋄γl = 0
and γl + l · γ̄l = 0 ∈ P1. This is true for l = ei (because we can then take ai and
āi), and if it is true for l, k ∈ L, then γk+l = γl ⋄ γk and γ̄k+l = γ̄k ⋄ γ̄l do the job.
Geometrically, we have shown so far that for every l ∈ L there is a path γl in T
joining 0 and l, and the reverse path γ̄l also belongs to T .

Now let s ∈ M ; we want to show that s ∈ T . By passing to s ⋄ γ̄a(s), we can
assume that a(s) = 0. Geometrically this means that we close the path of s by
joining the endpoint a(s) with our chosen path γ; then we obtain a new element
consisting of cycles only.

But restricted to a−1(0) = ker(∂ : P1 → P0) = ∂(P2), ⋄ is just the ordinary
addition in P1, so it is enough to prove s ∈ T for the elements

s = l · ∂[i, j] = l[j]− (ei + l)[j]− l[i] + (ej + l)[i] with i < j and l ∈ L.

But γl ⋄ t ⋄ γ̄l = l · t ∈ P1 for every t ∈ M with a(t) = 0, so if we prove that
∂[i, j] = aj ⋄ ai ⋄ āj ⋄ āi then we are done. In the space X , both sides correspond
to the path running around the unit square in ei × ej-direction, but let us give a
formal proof. Using a(āj) = −ej , a(aj) = ej and a(ai) = ei we get successively

āj ⋄ āi = āj + (−ej) · āi

ai ⋄ (āj ⋄ āi) = ai + (ei)
(
āj + (−ej) · āi

)

aj ⋄ (ai ⋄ (āj ⋄ āi)) = aj + (ej)

(
ai + (ei)

(
āj + (−ej) · āi

))

= aj + (ej)ai + (ei + ej)āj + (ei)āi

= [j] + (ej)[i]− (ei)[j]− [i].

The last expression agrees with ∂[i, j]. �
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Lemma 4.18. For every element k ∈ K, the inclusions of sets M →֒ ZLn and
L →֒ ZL induce a bijection of commutative diagrams



of groups

M //

a

��

M

a

��

L
ρk

// L





1:1
←→





ZLn //

∂

��

(τk)∗ZLn

∂

��

ZL
τk

// (τk)∗ZL

of ZL-modules





Proof. First of all, we show that restriction along the inclusions gives us a well-
defined map Ψ from the right to the left. Let us start with a map f : ZLn →
(τk)∗ZLn such that ∂f = τk∂. If m ∈ M , then ∂f(m) = τk∂m = τk

(
(0) −

(a(m))
)
= (0)− (ρka(m)), and therefore f(m) ∈M , and a(f(m)) = ρka(m) so that

we get a commutative square as desired. The restriction f ′ of f is indeed a group
homomorphism:

f ′(m1) ⋄ f
′(m2) = f(m1) + f(m2)− (∂f(m1)) · f(m2)

= f(m1) + f(m2)− (τk(∂m1))) · f(m2)

= f(m1 +m2 − (∂m1) ·m2) = f ′(m1 ⋄m2).

Ψ is injective because any two different f differ at some ZL-basis element [j] which
belongs toM , so that the restrictionM →M still sees the difference. Ψ is surjective
because given f ′ : M →M , we can define f on basis elements by [j] 7→ f ′([j]) and
get a commutative diagram as needed; then f ′ is the restriction of f because of
Lemma 4.17. �

We still have to identify the group M .

Lemma 4.19. The surjective map Fn → M sending the generator xi to the gen-
erator ai has kernel Γ2Γ2Fn.

Proof. Denote the kernel in question by N , and let U be the kernel of the surjective

mapM
a
−→ L; this is the same as the kernel of ∂ : ZLn → ZL. We get a commutative

diagram

N // Γ2Fn
//

��

U

��

N // Fn
//

��

M

a

��

L L

We need to find the kernel of the map Γ2Fn → U . Let X be the CW-complex from

Remark 4.16. In the cellular chain complex ZLn ∂
−→ ZL, U agrees with the 1-cycles,

and since there are no 2-cells, we get U = H1(X). Furthermore, taking 0 ∈ L ⊂ X
as basepoint, we have π1(X) = Γ2Fn, and the map π1(X) = Γ2Fn → U = H1(X)
is the Hurewicz map. Therefore, N = Γ2π1(X) = Γ2Γ2Fn. �

Proof of Theorem 4.14. If there is a compatible action of K on the Koszul complex,
we in particular get maps fk : P1 → (τk)∗P1 for every k ∈ K, satisfying fkl = fkfl
for all k, l ∈ K. Then Lemma 4.18 tells us that the K-action on L lifts to a K-
action on M . Conversely, given a K-action on M , the same Lemma provides us
with compatible maps fk, and we get a compatible action by [1, Theorem 3.1]. �

Corollary 4.20. If the map ρ : L→ L given by multiplication with a generator of
G ∼= Z/m can be lifted to a map f : Fn → Fn such that fm = 1, then there is a
compatible G-action on P∗.
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Example 4.21 (Permutation modules). Suppose that L is a permutation module,
so there is a Z-basis e1, . . . , en and ρ acts as ei 7→ eσ(i) for some permutation σ.
Then ρ can be lifted by defining f(xi) = xσ(i). This yields the compatible action
described in [1, Theorem 3.2].

Example 4.22 (Syzygies of permutation modules). Let d be a divisor of m, and
put L = ZG/(1 + td + t2d + · · ·+ tm−d). Then L has a Z-basis e0, e1, . . . , em−d−1,
and ρ acts as follows:

ei 7→ ei+1 for i = 0, . . . ,m− d− 2

em−d−1 7→ −e0 − ed − e2d − · · · − em−2d

We can lift this action to Fn by defining f(xi) = xi+1 for i = 0, 1, . . .m − d − 2,
and f(xm−d−1) = x−1

0 x−1
d . . . x−1

m−2d. In order to check that fm = 1, note that

fd(xm−d−1)) = fd−1(f(xm−d−1) = fd−1(x−1
0 x−1

d . . . x−1
m−2d) = x−1

d−1x
−1
2d−1 . . . x

−1
m−d−1,

and so fd+1(xm−d−1) = x−1
d x−1

2d . . . x−1
m−2df(x

−1
m−d−1) = x0, which implies fm(x0) =

x0.
For d = 1 we get the augmentation ideal L = I ⊂ Z(ZG), which was dealt with

in [1, Proposition 3.3].

We record the for us main important example in

Lemma 4.23. In the case L = Z[ζ] there exists a compatible group action on the
Koszul resolution.

Proof. This follows from Example 4.22 and (1.3). �

The approach via free groups also provides us with a technique for computing
the cohomology class [α1].

Lemma 4.24. Let G = Z/mZ be a cyclic group acting on the lattice L. If the
homomorphism of groups f : Fn → Fn is a lift of ρ−1 : L → L, then the map
of sets ϕ : Fn → Fn, x 7→ fm(x)x−1 induces a commutative diagram of group
homomorphisms

Γ2/Γ3Fn
�

�

//

0

��

Fn/Γ3Fn
//

ϕ

��

L

0

��

Γ2/Γ3Fn
�

�

// Fn/Γ3Fn
// L

and the Z-dual of the connecting homomorphism of the snake lemma L→ Γ2/Γ3Fn
∼=

Λ2L yields the cohomology class −[α1].

Proof. As a map ϕ : Fn → Fn/Γ3Fn we have for x, y ∈ Fn

ϕ(xy) = fm(x)fm(y)y−1x−1

= fm(x)x−1[x, fm(y)y−1]fm(y)y−1

∈ fm(x)x−1fm(y)y−1 · Γ3Fn.

Therefore, ϕ is a group homomorphism Fn → Fn/Γ3Fn. Furthermore, if y is in
Γ3Fn then so is fm(y)y−1, so ϕ induces a homomorphism Fn/Γ3Fn → Fn/Γ3Fn.
The map Γ2/Γ3f : Γ2/Γ3Fn = Λ2L→ Γ2/Γ3Fn = Λ2L is Λ2ρ−1, so that we indeed
get a diagram as claimed.

The map f induces a map M → M which in turn gives us a map τ∗ZLn →
ZLn by Lemma 4.18. The latter can be extended to a map of chain complexes
z : τ∗P∗ → P∗, and we can find a map y : P∗ → P∗+1 with y0 = 0 and dy = zm− 1.
We claim that − idZ⊗ZLy1 is the map L→ Λ2L of the statement; then we are done
because of homZ(idZ⊗ZLy1,Z) = homZL(y1, idZ) = α1.
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Recall from the proof of Lemma 4.19 that the kernel U of ∂ : P1 → P0 is the
kernel of the map a : M → L, and we have a map p : Γ2Fn → U . The map P2 =

ZL⊗Λ2L
ǫ⊗id
−−−→ Λ2L factors as P2

∂
−→ U

v
−→ Λ2L for some map v. When we view U as

the cycles of the spaceX (as in the proof of Lemma 4.19), then v maps every cycle to
its “area”. The map v is ZL-linear when we equip Λ2L with the trivial ZL-module

structure. Now we claim that the composition Γ2Fn
p
−→ U

v
−→ Λ2L = Γ2/Γ3Fn is the

projection map multiplied by (−1). To see this, let us start with γuγ−1 with γ ∈ Fn

and u ∈ Γ2Fn. Then p(γuγ−1) = γ⋄p(u)⋄γ−1, and the latter is easily verified to be
p(u) · (a(γ)) ∈ P1; since v is ZL-linear, v(p(γuγ−1)) = v(p(u)) and v(p([γ, u])) = 0.
We have therefore shown that vp maps Γ3Fn to 0, and now it is enough to verify
that [xi, xj ] maps to −ei ∧ ej . But p([xi, xj ]) = ai ⋄ aj ⋄ a

−1
i ⋄ a

−1
j = −∂[i, j], so we

have proved the claim.
Finally we show that idZ⊗ZLy1 is the desired map. Start with a generator [i] ∈

P1; in fact, [i] ∈M and xi maps to [i] under the map π : Fn →M . By construction
of z, the element fm(xi) ∈ Fn maps to zm1 ([i]) under π, and π(fm(xi)x

−1
i ) =

zm1 ([i])−[i]. Furthermore, fm(xi)x
−1
i ∈ Γ2Fn and p(fm(xi)x

−1
i ) = zm1 ([i])−[i] ∈ U .

Now the composite

P1
y1
−→ P2 = ZL ⊗Z Λ2L

ǫ⊗id
−−−→ Z⊗Z Λ2L = Λ2L

applied to [i] is the same as

v∂y1([i]) = v(zm1 [i]− [i]) = vp(fm(xi)x
−1
i ),

and we are done. �

Example 4.25. The lemma makes it even easier to compute α1 in Lemma 4.12.

The map ρ−1 is given by the matrix
(

0 −1 1
1 0 0
0 0 1

)
, so we can lift this to the free group

as

f : F3 → F3

x1 7→ x2

x2 7→ x−1
1

x3 7→ x1x3

Then f4 maps x1 to x1, x2 to x2, and

x3 7→ x1x3 7→ x2x1x3 7→ x−1
1 x2x1x3 7→ x−1

2 x−1
1 x2x1x3 = [x−1

2 , x−1
1 ]x3

Therefore, the map L→ Λ2L sends e1, e2 to 0 and e3 to −e1 ∧ e2, which is indeed
−α1 of what we already computed in Lemma 4.12.

5. Proof of Theorem 0.5

Proof of Theorem 0.5. Because of Lemma 1.2 it suffices treat the special case, where

m = pr for some prime number p and natural number r and L = Z(ζ)k =
⊕k

i=1 Z(ζ)
for some natural number k. By Lemma 4.23 there exists a compatible group action.
Now we can apply [2, Theorem 2.3]). �

6. A counterexample

In this section we prove the existence of a counterexample, namely, Theorem 0.6.
Some preparations are needed.

The next lemma shows that the maps αs can be assumed to be of a special form.
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Lemma 6.1. Let z0 = τ−1 and y0 = 0. Suppose that z1 : τ
∗P1 → P1 and y1 : P1 →

P2 are given such that ∂z1 = z0∂ and ∂y1 = zm1 − 1. Then one can extend z and y
in such a way that ∂y+y∂ = zm−1 and the map αs is the Z-dual of the composition

ΛsL→ L⊗ Λs−1L
α∧

1 ⊗1
−−−−→ Λ2L⊗ Λs−1L

µ
−→ Λs+1L.

Here, the first and the last map are the comultiplication and the multiplication of
Λ∗L, respectively (see, e.g., [3, I.2]).

Proof. This follows readily from [6, Theorem 6 on in II.1 page 543] and its proof,
but for convenience we give an adapted version of the proof here. Notice that Pi =
ZL⊗ZΛ

iL, and we therefore get a multiplication • on P∗ by tensoring the algebras
ZL and Λ∗L. This turns (P∗, ∂) and (τ∗P∗, ∂) into graded commutative differential
graded algebras, and there is a unique way of extending z1 multiplicatively and
ZL-linearly. Explicitly, it is given by the formula

l · [i1, i2, . . . , ii] 7→ ρ−1(l) · z1([i1]) • · · · • z1([ii]).

One easily checks that z is a chain map. Since this map is multiplicative, we get
that zm is given by

zm : l · [i1, i2, . . . , ii] 7→ l · zm1 ([i1]) • · · · • z
m
1 ([ii]).

Now we define y to be the ZL-linear map given by

y : [i1, i2, . . . , ii] 7→
i∑

j=1

(−1)j−1zm1 ([i1]) • · · · • z
m
1 ([ij−1]) • y1([ij ]) • [ij+1] • · · · • [ii].

(6.2)

Next we show that ∂y+y∂ = zm−1 as maps Ps → Ps for s = 0, 1, 2 . . .. We proceed
by induction over s. The induction beginning s = 0, 1 follows from the definitions
and assumptions, the induction step from s−1 to s ≥ 2 is done as follows. Consider
α = [i1, . . . , ia] with a ≥ 1 and i1 < · · · < ia and β = [j1, . . . , jb] with b ≥ 1 and
j1 < · · · < jb such that a+ b = s and ia < j1. Then

y(α • β) = y(α) • β + (−1)|α|zm(α) • y(β)(6.3)

by definition. This observation generalizes as follows: let us call a pair α, β ∈ Ps

admissible if we can write α =
∑

r xr [i
r
1, . . . , i

r
a] and β =

∑
s ys[j

s
1 , . . . , j

s
b ] with

ir1 < · · · < ira < js1 < · · · < jsb and xr , ys ∈ ZL for all r, s. Then (6.3) holds, and
every element in Ps is a linear combination of elements of the form α•β with (α, β)
admissible, so it is enough to prove (∂y+ y∂)(α • β) = (zm− 1)(α • β) in that case.

We directly deduce from (6.3) that

∂y(α • β) = ∂y(α) • β − (−1)|α|y(α) • ∂β + (−1)|α|∂zm(α) • y(β) + zm(α) • ∂y(β).

On the other hand, ∂(α • β) = ∂α • β + (−1)|α|α • ∂β, and since the pairs (∂α, β)
and (α, ∂β) are admissible as well, we can use (6.3) again and get

y(∂(α • β)) = y(∂α) • β− (−1)|α|zm(∂α) • y(β) + (−1)|α|y(α) • ∂β+ zm(α) • y(∂β).

Adding these equations using the induction hypothesis ∂y + y∂(α) = (zm − 1)(α)
and ∂y + y∂(β) = (zm − 1)(β), we get

(∂y + y∂)(α • β) = (zm − 1)(α) • β + zm(α) • (zm − 1)(β) = (zm − 1)(α • β).

Having defined y and z and shown ∂y+y∂ = zm−1, we are now ready to finish the
proof of Lemma 6.1. Notice that there is a natural isomorphism homZL(X,Z) ∼=
homZ(Z⊗ZLX,Z) for ZL-modulesX , so it remains to compute ȳ = idZ⊗ZLy. Using
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the fact that idZ⊗ZLz
m is the identity, we get from (6.2) that ȳi : Λ

iL→ Λi+1L is
given by

ei1 ∧ · · · ∧ eii 7→
i∑

j=1

(−1)j−1ei1 ∧ · · · ∧ ȳ1(eij ) ∧ · · · ∧ eii .

This agrees with the composition given in the statement of the lemma. �

Theorem 6.4. Suppose that L = X ⊕ Λ2X∧ for some ZG-module X whose un-
derlying Z-module is free of finite rank. If in the Lyndon-Hochschild-Serre spectral
sequence the d2-differential

H∗(G,H3(L))→ H∗(G,H2(L))

is zero, then the class [αX
1 ] ∈ Ext2

ZG(Λ
2X∧, X∧) vanishes.

Proof. Let L = X ⊕ Y for ZG-modules X and Y . We know that X ⊗ Y is a
direct summand of Λ2L as ZG-module from the exponential law (1.8), and similarly
Λ2X⊗Y is a direct summand of Λ3L. In the the sequel we denote by ι the inclusions
of and by π obvious projections onto direct summands.

Next we prove that the diagram

Λ2L
α∧

2
// Λ3L

π

��

X ⊗ Y

ι

OO

(αX
1 )∧⊗id

// Λ2X ⊗ Y

(6.5)

commutes if we choose the maps z, y carefully. To do so, let PX
∗ , PY

∗ be the Koszul
complexes associated with X and Y , respectively, and choose maps zX1 : ZX ⊗Z

X → ZX ⊗Z X , yX1 : ZX ⊗Z X → ZX ⊗Z Λ2X , zY1 : ZY ⊗Z Y → ZY ⊗Z Y , and
yY1 : ZY ⊗Z Y → ZY ⊗Z Λ2Y . Define

zL1 =
(
idZL⊗ZXzX1

)
⊕
(
idZL⊗ZY z

Y
1

)
: τ∗(ZL⊗ L)→ ZL⊗Z L;

yL1 =
(
idZL⊗Zι

)
◦
((
idZL⊗ZXyX1

)
⊕
(
idZL⊗ZY y

Y
1

))
: ZL ⊗Z L→ ZL ⊗Z Λ2L.

By definition, the diagram

L
idZ ⊗ZLyL

1
// Λ2L

X

ι

OO

idZ ⊗ZXyX
1

// Λ2X

ι

OO

commutes (and similarly for Y ). Now we use Lemma 6.1 to get maps zL and yL,.

It remains to show that X ⊗ Y
ȳX⊗id
−−−−→ Λ2X ⊗ Y equals the composition

X ⊗ Y
ι
−→ Λ2L

∇
−→ L⊗ L

ȳL⊗id
−−−−→ Λ2L⊗ L

µ
−→ Λ3L

π
−→ Λ2X ⊗ Y

where ȳL = idZ⊗ZLy, ∇ is the comultiplication and µ the multiplication of Λ∗L.
So let us start with a⊗ b ∈ X ⊗ Y ; then ȳL⊗ 1 ◦∇ maps it to ȳ(a)⊗ b− ȳ(b)⊗ a ∈
Λ2X ⊗ Y ⊕Λ2Y ⊗X ⊂ Λ2L⊗L. But πµ is the identity on the first summand and
zero on the second one. We have therefore shown that (6.5) commutes.
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Dualizing the diagram (6.5) yields

Λ2L∧

��

Λ3L∧
αL

2
oo

X∧ ⊗ Y ∧

∼=

��

Λ2X∧ ⊗ Y ∧

OO

αX
1 ⊗id

oo

homZ(Y,X
∧) homZ(Y,Λ

2X∧)

∼=

OO

homZ(idY ,αX
1 )

oo

Now put Y = Λ2X∧. Then the bottom rowmaps idΛ2X∧ to αX
1 ∈ homZ(Λ

2X∧, X∧).
This implies that the map

Ext2
ZG

(
idZ, homZ(idΛ2X∧ , αX

1 )
)
: Ext2

ZG

(
Z, homZ(Λ

2X∧,Λ2X∧)
)

→ Ext2
ZG

(
Z, homZ(Λ

2X∧, X∧)
)
∼= Ext2

ZG

(
Λ2X∧, X∧)

)

contains the class [αX
1 ] in its image. The second differential d2 is by assumption

zero and agrees by Lemma 4.2 with the composite

Ext2
ZG(idZ, α

L
2 ) : Ext2

ZG(Z,Λ
3L∧)→ Ext2

ZG(Z,Λ
2L∧)

∼=
−→ Ext4

ZG(Z,Λ
2L∧),

where the last map is the periodicity isomorphism. We conclude from the dia-
gram above that the map Ext2ZG

(
idZ, homZ(idΛ2X∧ , αX

1 )
)
is trivial and hence [αX

1 ]
vanishes. �

Proof of Theorem 0.6. This follows directly from Theorem 6.4 and Lemma 4.12.
�

In order prove Corollary 0.7, we need:

Lemma 6.6. Let G′ → G be a surjection of finite cyclic groups, and let us regard
any ZG-module as ZG′-module via this map.

(i) For every ZG-module X whose underlying Z-module is free, the induced
map H2(G,X)→ H2(G′, X) is injective;

(ii) Let L be a ZG-module as above; then the class [αG
1 ] maps to the class [αG′

1 ]
under the map H2(G, homZ(Λ

2L,L))→ H2(G′, homZ(Λ
2L,L)).

Proof. (i) The spectral sequence for the extension Z/dZ→ Z/dmZ→ Z/mZ yields
an exact sequence

· · · → H0(Z/m,H1(Z/dZ, X))→ H2(Z/mZ, X)→ H2(Z/dmZ, X)→ · · · .

Since X is torsion-free and Z/d acts trivially on it, H1(Z/dZ, X) and hence also
the first group are trivial, and therefore the second map is injective.

(ii) This follows from [6, I.2, Theorem 3 in I.2 on page 538]. �

Proof of Corollary 0.7. (i) This follows from Theorem 0.6 and Lemma 6.6.

(ii) This follows from [6, Corollary in II.1 on page 543], Lemma 4.2 and Lemma 4.4.
�

7. Group cohomology and the equivariant Euler characteristic

In this section we relate the cohomology of Γ to the equivariant Euler character-
istic of the finite G-CW -complex L\EΓ.

Let Sw(G) be Swan’s group, i.e., generators are isomorphism classes [M ] of ZG-
modules M which are finitely generated as abelian groups, and every short exact
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sequence 0 → M0 → M1 → M2 → 0 of such modules yields the relation [M0] −
[M1] + [M2] = 0. Next we define a homomorphism

ĥ : Sw(G)→ Q>0(7.1)

to the multiplicative group of positive rational numbers. It sends the class of a ZG-

module M which is finitely generated as abelian group to |Ĥ0(G;M)|

|Ĥ1(G;M)|
. Notice that

Ĥi(G;M) is a finite group for such M . In order to show that this is well-defined,
we have to check for an exact sequence 0→ M0 →M1 → M2 → 0 of ZG-modules
which are finitely generated as abelian groups

|Ĥ0(G;M1)|

|Ĥ1(G;M1)|
=
|Ĥ0(G;M0)|

|Ĥ1(G;M0)|
·
|Ĥ0(G;M2)|

|Ĥ1(G;M2)|
.

This follows from the induced long exact sequence (see [5, (5.1) in VI.5 on page 136])

· · · → Ĥi(G;M0)→ Ĥi(G;M1)→ Ĥi(G;M2)

→ Ĥi+1(G;M0)→ Ĥi+1(G;M1)→ Ĥi+1(G;M2)→ · · ·

which is compatible with the cup-product (see [5, (5.6) in VI.5 on page 136]), and

from the 2-periodicity of the Tate cohomology Ĥi(G;M)
∼=
−→ Ĥi+2(G;M) coming

from the cup-product with a generator of Ĥ0(G;Z) ∼= Z/m (see [5, Theorem 9.1
in VI.9 on page 154]).

Given a ZG-module M which is finitely generated as abelian group, define its
homological Euler characteristic by

χG
h (M) :=

∑

i≥0

(−1)i · [Hi(M)] ∈ Sw(G).(7.2)

Lemma 7.3. We get for all integers k with 2k > n

ĥ
(
χG
h (L)

)
=
|H2k(Γ)|

|H2k+1(Γ)|
.

Proof. Let E∗,∗
r be the Er-term in the Lyndon-Hochschild-Serre spectral sequence

associated to Γ = L⋊φG. Notice for the sequel that Ei,j
2 = Hi(G;Hj(L)) vanishes

for j > n and is finite for i > 0 and hence the same statement holds for Ei,j
r for

r = 3, 4 . . . and r =∞.
We first show for r ≥ 2 the following equality

∏

i,j,i+j∈{2k,2k+1}

|Ei,j
r |

(−1)i+j

=
∏

i,j,i+j∈{2k,2k+1}

|Ei,j
r+1|

(−1)i+j

.(7.4)

Notice that Ei,j
r vanishes if i or j is negative. The differentials in the Er-term yield

for non-negative integers a and b ZG-chain complexes C
(a,b)
∗ of ZG-modules which

are finitely generated as abelian groups if we put

C∗ = Ea+r·∗,b−(r−1)·∗
r

If a + b > n, then C
(a,b)
∗ is a finite-dimensional chain complex of finite abelian

groups and hence we get
∏

l∈Z

|C
(a,b)
l |(−1)l =

∏

l∈Z

∣∣Hl(C
(a,b)
∗ )

∣∣(−1)l

.

Since Hl(C
(a,b)
∗ ) = E

a+r·l,b−(r−1)·l
r+1 , we conclude provided that a+ b > n holds

∏

l∈Z

∣∣Ea+r·l,b−(r−1)·l
r

∣∣(−1)l

=
∏

l∈Z

∣∣Ea+r·l,b−(r−1)·l
r+1

∣∣(−1)l

.
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If we let a run through {0, 1, . . . , (r− 1)} and b through {2k+ j | j = 0, 1} and take
the product of the equalities above raised to the (−1)a+j-th power for these values,
we conclude

r−1∏

a=0

1∏

j=0

∏

l∈Z

∣∣Ea+r·l,2k+j−(r−1)·l
r

∣∣(−1)a+j+l

=

r−1∏

a=0

1∏

j=0

∏

l∈Z

∣∣Ea+r·l,2k+j−(r−1)·l
r+1

∣∣(−1)a+j+l

.

One easily checks

a+ j + l ≡ 0 mod 2 ⇔ 2k − (a+ r · l) ≡ 2k + j − (r − 1) · l mod 2

a+ j + l ≡ 1 mod 2 ⇔ 2k + 1− (a+ r · l) ≡ 2k + j − (r − 1) · l mod 2

In the Lyndon-Hochschild-Serre spectral sequence the cup product with a gener-
ator µ ∈ E2,0

2 = H2(G;H0(L)) = H2(G) ∼= Z/m induces isomorphisms Ei,j
2 =

Hi(G;Hj(L))
∼=
−→ Ei+2,j

2 = Hi+2(G;Hj(L)) for i > 0 and j ≥ 0. All differentials
starting or ending at E2,0

r are zero since the edge homomorphism H2(G)→ H2(Γ)

is injective. Hence E2,0
2 = E2,0

r = E2,0
∞ and the cup product with µ induces iso-

morphisms Ei,j
r

∼=
−→ Ei+2,j

r for i + j > n since an isomorphism of chain complexes
induces an isomorphism on homology. This implies

∣∣Ea+r·l,2k+j−(r−1)·l
r

∣∣(−1)a+j+l

=
∣∣Ea+r·l,2k−(a+r·l)

r

∣∣(−1)2k

if a+ j + l ≡ 0 mod 2;
∣∣Ea+r·l,2k+j−(r−1)·l

r

∣∣(−1)a+j+l

=
∣∣Ea+r·l,2k+1−(a+r·l)

r

∣∣(−1)2k+1

if a+ j + l ≡ 1 mod 2,

and analogously for r replaced by (r + 1). Hence we obtain

r−1∏

a=0

1∏

c=0

∏

l∈Z

∣∣Ea+r·l,2k+c−(a+r·l)
r

∣∣(−1)c

=

r−1∏

a=0

1∏

c=0

∏

l∈Z

∣∣Ea+r·l,2k+c−(a+r·l)
r+1

∣∣(−1)c

.

But this is the same as the desired equality (7.4) since there is the bijection

{(a, c, l) | a ∈ {0, 1, . . . , r−1}, c ∈ {0, 1}, l ∈ Z} → {(i, j) | i, j ∈ Z, i+j ∈ {2k, 2k+1}}

given by (a, c, l) 7→ (a+ r · l, 2k + c− (a+ r · l)). This finishes the proof of (7.4).
We conclude from (7.4) by induction over r ≥ 2.

∏

i,j,i+j∈{2k,2k+1}

|Ei,j
2 |

(−1)i+j

=
∏

i,j,i+j∈{2k,2k+1}

|Ei,j
∞ |

(−1)i+j

.

Since the termsEi,j
∞ are quotients of a filtration ofHi+j(Γ) andEi,j

2 = Hi(G;Hj(L)),
this implies

∏

i,j,i+j∈{2k,2k+1}

|Hi(G;Hj(L))|(−1)i+j

=
|H2k(Γ)|

|H2k+1(Γ)|
.
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Since Ĥi(G,Hj(L)) ∼= Hi(G;Hj(L)) ∼= Ĥi+2(G,Hj(L)) ∼= Hi+2(G;Hj(L)) holds
for i > 0, we conclude

ĥ
(
χG
h (L)

)
= ĥ

(∑

j≥0

(−1)j ·Hj(L)

)

=

1∏

i=0

∏

j≥0

∣∣Ĥi(G;Hj(L))
∣∣(−1)i+j

=
∏

i,j,i+j∈{2k,2k+1}

|Hi(G;Hj(L))|(−1)i+j

=
|H2k(Γ)|

|H2k+1(Γ)|
.

�

Let A(G) be the Burnside ring of G, i.e., the Grothendieck construction applied
to the semi-ring of isomorphisms classes of finite G-sets under disjoint union and
cartesian product. Given a finite G-CW -complex X , define its G-Euler character-
istic

χG(X) ∈ A(G)(7.5)

by the sum
∑

c(−1)
dim(c) · [t(c)], where c runs though the equivariant cells of X ,

dim(c) is the dimension of c and t(c) is given by the orbit though one point in
the interior of c. If c is obtained by attaching G/H × Dk, then dim(c) = k and
t(c) = G/H . Let

r : A(G) → Sw(G)(7.6)

be the map sending the class of a finite G-set S to the associated ZG-permutation
module Z[S] with S as Z-basis.

Lemma 7.7. Let X be a finite G-CW -complex. Then

r(χG(X)) = χG
h (X).

Proof. This follows from the following computation in Sw(G) based on the fact that
Ck(X) ∼=ZG

⊕
c,dim(c)=k Z[t(c)]

r(χG(X)) = r

(∑

c

(−1)dim(c) · [t(c)]

)

=
∑

c

(−1)dim(c) · Z[t(c)]

=
∑

k≥0

(−1)k · [Ck(X)]

=
∑

k≥0

(−1)k · [Hk(X)]

= χG
h (X).

�

Theorem 7.8 (Group cohomology and the equivariant Eulercharacteristic). Let k
be an integer such that 2k > n. Then H2k(Γ) and H2k+1(Γ) are finite and

|H2k(Γ)|

|H2k+1(Γ)|
= ĥ ◦ r

(
χG(L\EΓ)

)

where the homomorphism of abelian groups given by the composite ĥ ◦ r : A(G) →
Q>0 sends [G/H ] to |H |.
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Proof. We compute

ĥ ◦ r
(
[G/H ]

)
=

Ĥ0(G;Z[G/H ])

Ĥ1(G;Z[G/H ])
=

Ĥ0(H ;Z)

Ĥ1(H ;Z)
=
|H |

1
= |H |.

Now apply Lemma 7.3 and Lemma 7.7. �

Remark 7.9 (L2-Euler characteristic). In [10, Definition 6.83 and Definition 6.84
on page 281] a Burnside group A(Γ) and a Γ-CW -Euler characteristic

χΓ(EΓ) ∈ A(Γ)(7.10)

is defined. There is a homomorphism of groups

q : A(Γ) → A(G)(7.11)

which sends the class [S] of a proper cocompact Γ-set S to the class [L\S] of the
finite G-set L\S. One easily checks

q
(
χΓ(EΓ)

)
= χG(L\EΓ).

There is an injective homomorphism called global L2-character map (see [10, Defi-
nition 6.86 on page 282])

chΓ : A(Γ)→
∏

(K)

Q(7.12)

where (K) runs through the conjugacy classes of finite subgroups of Γ. It is ratio-
nally an isomorphism. Since Γ is amenable, we conclude from [10, Lemma 6.93 on
page 284])

chΓ
(
χΓ(EΓ)

)
(K)

=

{
0 if |WΓK| =∞;

1
|WΓK| if |WΓK| <∞.

(7.13)

where WΓK := NΓK/K.

Example 7.14 (G-action has non-trivial fixed point). Suppose that LG 6= 0. Then
|WΓK| = 0 for all finite subgroups K ⊆ Γ, and we conclude from Theorem 7.8 and
Remark 7.9 for 2k > n

|H2k(Γ) = |H2k+1(Γ)|.

Example 7.15. Suppose that m = p for a prime p. If G acts not free outside the
origin on L, we conclude from Example 7.14.

|H2k(Γ)| = H2k+1(Γ)|.

Suppose that G acts free outside the origin on L. Let P be a complete set of
representatives of the conjugacy classes (P ) of finite non-trivial subgroups P ⊆ Γ.

Notice that for each P the projection Γ→ G induces an isomorphism P
∼=
−→ G ∼= Z/p

and we haveWΓP = {1}. We conclude from Remark 7.9 by inspecting the definition

of the global character map chΓ (see [10, Example 6.94 on page 184])

χΓ(EΓ) =
−|P|

p
· [Γ] +

∑

P∈P

[Γ/P ] ∈ A(Γ).

and hence

χG(L\EG) = −
|P|

p
· [G] + |P| · [G/G] ∈ A(G).

We mention that

|P| = |H1(G;L)| =
∣∣(L\EΓ)G

∣∣ = ps
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by [9, Lemma 1.9], where s is the integer uniquely determined by N = (p − 1) · s.
Theorem 7.8 implies for 2k > n

|H2k(Γ)|

|H2k+1(Γ)|
= ps.

All this is consistent with the computation in Theorem 0.3 for 2k > n

H2k(Γ) =
∏

(P )∈P

H2k(M) ∼=
∏

P∈P

Z/p

H2k+1(Γ) = 0.
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