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0. Introduction. 

The main goal of algebraic topology is the translation of problems and phenomena from 

geometry to algebra. In favourable cases we obtain a computable algebraic invariant 

which decides a given geometric question. A classical example is the classification of 

compact connected closed orientable surfaces by the genus. 

This book is devoted to the connection between transformation groups and algebraic K- 

theory. We shall construct invariants such as the equivariant finiteness obstruction, 

Whitehead torsion, and Reidemeister torsion taking values Lnalgebraic K-groups. We de- 

fine injections or isomorphisms to the algebraic K-groups from groups such as finite- 

ness obstruction groups, Whitehead groups, representation rings, homotopy representa- 

tion groups or units of the Burnside ring. These are used to answer questions of the 

following type: 

When is a finitely dominated G-CW-complex G-homotopy equivalent to a finite G-CW- 

complex? Under which conditions is a G-homotopy equivalence between finite G-CW-com- 

plexes simple? Is a given equivariant h-cobordism trivial? When are two semilinear G- 

discs G-diffeomorphic? Under which conditions are the unit spheres of two orthogonal 

G-representations G-diffeomorphic? When are two oriented G-homotopy representations 

oriented G-homotopy equivalent? Is a given oriented G-homotopy representation oriented 

G-homotopy equivalent to the unit sphere of a complex G-representation? 

These questions will be treated in detail. They are related to the general problem of 

classifying group actions on manifolds. This problem and in particular its connections 

to algebraic K-theory are the basic motiviation for this book. We concentrate on deve- 

loping the algebra. The algebraic tools and techniques presented here have applications 

to G-manifolds besides the one to the questions above . They will not be worked out, as 

this would exceed the scope of this book, but are discussed in the comments. 

Roughly speaking, most of the material of chapter ! can be found in the literature 

whereas chapters ~ and III mainly contain unpublished work. The study of modules over 

a category was initiated by Bredon [1967], where an equivariant obstruction theory 

for extending G-maps was established, and by tom Dieck [1981], where the equivariant 

finiteness obstruction and the diagonal product formula were studied for finite groups 
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and simply connected fixed point sets. The author wants to express his deep gratitude 

to Prof. Tammo tom Dieck for his encouragement and generous help. 

The book is based on a course given by the author in the winter term 1986/87 and on 

the author's Habilitationsschrift, G6ttingen 1989. 

The author thanks Christiane Gieseking and Margret Rose Schneider for typing the manus- 

cript. 

We briefly summarize the main results and constructions. 

0.i. Modules over a category. 

Let F be a EI-category, i.e., F is a small category whose endomorphisms are iso- 

morphisms. A RF-module M is a contravariant functor F --~ R-MOD into the category 

of modules over the commutative ring R . The functor category MOD-RF of RF-modules 

is abelian. We reduce the study of RF-modules, their K-theory and homological algebra 

to the study of R[x]-modules for x ~ Ob F and R[x] the group ring R[Aut(x)]iby the 

Cofiltration Theorem 9.39. and Filtration Theorem 16.8. The Cofiltration resp. Fil- 

tration Theorem assigns to a projective RF-module P of finite tpye resp. RF-module 

M of finite length a natural cofiltration 

--~ --~ --~ P = {0} P = Pn Pn-I "'" o 

resp. natural filtration 

--~ M 1 --~ ... --~ M = M {0} = M °  n 

such that the kernel of P'I --* Pi-I resp. cokernel of M i --~ Mi+ 1 can be expressed 

in terms of R[x]-modules S P resp. Res M which themselves are naturally constructed 
X X 

from P resp. M . The Cofiltration Theorem implies the SPlitting Theorem 10.34. 

for algebraic K-theory of RF-modules 

K n ( R F )  = _ ~ K n ( R [ x ] )  
x~isF 

where x runs over the set Is F of isomorphism classes of objects and n ~ Z . 

As a special case we obtain the well-known splitting of the equivariant Whitehead 

group of a G-spacB. For finite F and R a field of characteristic 0 the Filtra- 
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tration Theorem gives a second Splitting Theorem 16.29. for algebraic K-theory of 

RF-modules. These two Splitting Theorems are related by a K-theoretic Moebius inversion 

16.29. In geometry this corresponds to switching between the isovariant and equivariant 

setting, or between the two stratifications {X H I H c G} and {X H [ H c G} of a G- 

space X . Besides the K-theoretic application we also obtain a computation of Ext- 

n 
groups EXTRF(M,N) by a spectral sequence whose E2-term is given by Ext-groups over 

the various group rings R[x] (see 17.18. and 17.28.). We introduce and study gene- 

ralized Swan homomorphisms in section 19. 

The algebra of RF-modules for F the discrete fundamental category H/(G,X) (see 8.15.) 

of a G-space X is the main ingredient for constructing and computing certain alge- 

braic invariants of G-spaces and the K-groups in which they take values. 

0.2. Invariants for G-spaces. 

Here is a list of the most important invariants we will construct for G-spaces and 

G-maps. 

name symbol value group defined for page 

Euler characteristic xG(x> uG(x) finitely dominated i00, 278, 
resp. G-space X 360 
U(G) 

multiplicative Euler 
characteristic 

hx(X) II Q*/Z* finitely dominated 
(H) G-space X 

mx(X) II Q*/Z* special G-space X 
(H) 

hx(X)I/m ~(G) ~ finitely dominated G- 
= 17[ Z/IGI* space X 

(H) 

hx(f)~m ~(G) e G-map between finitely 
dominated G-spaces 

368 

368 

387 

387 

finiteness ob- 
struction 

oG(x) Ko(ZH/(G,X)) finitely dominated G- 
space X resp. 

K (ZOrG) 
o 

278, 360 

reduced finite- 
ness obstruction 

fi(x) 

wG(x) 

Ko (ZH/(G,X)) finitely dominated 
G-space X r esp. 

K (ZOr G) 
o G 
Wa (x) 

278, 360 

52 
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name symbol value group defined for page 

(equivariant) G(f) Wh(ZH/(G,Y)) 
Whitehead torsion resp. 

Wh(ZOrG) 

G-homotopy equivalence 
of finite G-CW-complexes 
resp. G-manifolds 
f : X--~Y 

284, 360 

~eo(f ) WhG (y) 68 geo 

isovariant Whitehead ~so(B,M,S) Wh~so(M) Isovariant h-cobordism 85 
torsion (B,M,N) 

Reidemeister pG(x) W~(~Or G) Finite G-CW-complex 362 
torsion with round structure X 

pG(M) Wh(BOrG) M a closed Riemannian G- 375 
manifold satisfying 18.43. 

p~L(M) KI(NG)Z/2 M a Riemannian G-manifold 376 

KI(QOrG) 
reduced Reidemeister p-[X} KI(Z(IGI~r~ G) Finitely dominated G- 363 
torsion space X with round 

structure 

G KI(BG)Z/2 Riemannian G-manifold M 377 Poincar4 torsion ppD(M) 

We compute the value groups in terms of algebraic K-groups of certain grouprings 

and state sum, product, diagonal product, join and restriction formulas. The reduced 

finiteness obstruction is the obstruction for a finitely dominated G-space X to be 

G-homotopy equivalent to a finite G-CW-complex. The Whitehead torsion is the obstruc- 

tion of a G-homotopy equivalence of finite G-CW-complexes to be simple. Both inva- 

riants are defined geometrically and algebraically and these two approaches are identi- 

fied by isomorphisms waG(x) --~ Ko(Z~/(G,X)) and Wh~eo(X) --~ Wh(ZH/(G,X)) . Cer- 

tain relations between these invariants are established. Roughly speaking, Whitehead 

torsion is the difference of Reidemeister torsion, the reduced Reidemeister torsion 

is a refinement of the finiteness obstruction. 

0.3. Maps between geometric groups and K-groups. 

We give a list of maps relating geometrically defined groups to algebraic K-groups. 

They connnect geometry with algebraic K-theory. We denote injections by >--~ and 
~ 

isomorphisms by ~% ~ : 
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: waG(x) ® uG(x) ~ Ko(ZH/(G,X)) 283 

$ : waG(x) m • Ko(ZH/(G,X)) 283 

: Wh eo(X) -- ~ Wh(ZH/(G,X)) 286 

: Wh~so(X ) ~ ~ whG(M) 86 
P 

: whG(y×Tn+I) ~n+l = K?n(Y)geo ~--~--• KGn(ZH/(G,X)) 299 

: A(G)* --• Wh(ZOr G) 131 

SW : C(G)* , KI(@OrG)/KI(Z(IGI)OrG ) 385 

SW °  : Inv(G) >--• KI(~OrG)/KI(Z(IGI)OrG) 386 

SW : C(G)* • K (ZOrG) 385 
o 

G p~ : Rep~(G) >---* Wh(@OrG) 373 

p-G : V~(G,Dim) >--• KI(~OrG)/KI(Z(IGI)OrG) 401 

p-G : v~V(g,Dim) >--• K(G) 404 

0.4. Applications to geometry 

We restate the Isovariant s-Cobordism Theorem 4.42. saying that isovariant h-cobordisms 

are classified by their isovariant Whitehead torsion. We relate the isovariant and 

equivariant setting by an homomorphism ~ : WhOso(M) --• whG(M) . Provided that the 

weak gap conditions 4.49. are satisfied, we show that ~ is injective and determine 

its image and thus get the Equivariant s-Cobordism Theorem 4.51. We give counter- 

examples to the Equivariant s-Cobordism Theorem 4.51. without the weak gap hypothesis 

in Example 4.56. 

We prove for a finite group G of odd order that the transfer on K °  and Wh induced 

by the sphere bundle of a G-vector bundle vanishes under mild conditions (see 15.29.). 

These transfer maps appear e.g. in the comparison of isovariant and equivariant White- 

head groups and in the involution defined on them by reversing h-cobordisms. 

We construct an homomorphism p~ : Rep~(G) --• Wh(@OrG), IV] --• pG(s(v ® V)) and 

prove injectivity in 18.38. Hence spheres of real G-representations are classified up 

to G-diffeomorphism by Reidemeister torsion. This reproves de Rham's theorem that two 
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G-representations are RG-isomorphic if and only if their spheres are G-diffeomeorphic. 

A G-homotopy representation X is a finite-dimensional G-CW-complex such that 

X H = S n(H) holds for H c G . Given two G-homotopy representations X and Y 

with dimX H = dimyH for all H c G , we want to determine the set IX,Y] G of G- 

homotopy classes of G-maps between them. If we have choosen a coherent orientation, 

then 

DEG : [X,Y] G ~ II Z , [f] ~ (deg fH)(H ) 
(H) 

is an injection. We give in Theorem 20.38. a set of congruences describing the image 

of DEG and hence [X,Y] G which can be computed from the difference of the reduced 

Reidemeister torsion p-G(y) _ p-G(x ) by generalized Swan homomorphisms. In particular 

we get that G-homotopy representations are classified up to oriented G-homotopy equi- 

valence by an absolute invariant, the reduced Reidemeister torsion. 

0.5. On the concept of the book. 

We have tried to keep the book fairly self-contained. We give the definitions, results 

and proofs in full generality and illustrate them by examples. At the end of each 

section there is a comment where the material of the section is put into context with 

the work of other mathematicians, further applications are discussed and additional 

references are given. More information and results are contained in the exercises. 

We advise the reader to at least read through them. 

This expansive way of writing means that the sections contain much more material and 

results in much larger generality than needed for the following sections of specific 

applications. Therefore we have tried to give the reader, who is only interested in 

a specific question, the possibility to pick out a single section and read it without 

knowing the others. Here is some advice for such a reader. 

The chapters II and III are independent of chapter I. If one is interested in the 

algebra only, one may skip chapter I completely. 

In chapter I one may begin with one of the sections 3, 4, or 5 directly as they are 

independent of one another and sections 1 and 2 are quite elementary. 
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Nearly all notions and results are stated for Lie groups G and proper G-actions 

without any assumptions about the connectivity of the fixed point sets. The notational 

and technical difficulties decrease considerably if G is a finite group and the 

fixed point sets are empty or simply connected. In this case a summary of the in- 

variants defined for G-spaces in chapter II is given in section 18 including their 

basic properties. Moreover, section 8 is in this case of no importance, as everything 

takes place over the orbit category. In particular this restriction does no harm if 

one studies G-homotopy representations. 

If one is interested in the finiteness obstruction and torsion only over the group 

ring resp. for the universal covering of a G-space without group action, one may 

directly begin with section Ii and 12 thinking of RF as RG, and similarly for the ma- 

terial about the Swan homomorphism for group rings and its liftin~ in section 19. 

An experienced reader can start with section 18 without having looked at the pre- 

vious sections since the necessary input from them is reviewed in the beginning of 

section 18. Although section 20. makes use of section 18 and 19, section 20 can be 

read without knowing section 18 and 19 because only the formal properties of Reide- 

meister torsion and Swan homomorphism but not their explicit constructions are needed. 
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CHAPTER I 

G E O M E T R I C A L L Y  D E F I N E D  I N V A R I A N T S  

Summary 

In the first section we collect elementary facts about G-CW-complexes for G a to- 

pological group. We prove the Slice Theorem 1.37. and 1.38. and deal in Corollary 1.40 

with path lifting along the projection p : X --~ X/G . In Theorem 1.23. we show for 

a G-CW-complex X that X is proper if and only if the isotropy group G x is com- 

pact for all x ~ X . 

We prove the Equivariant Cellular Approximation Theorem 2.1. and the Equivariant 

Whitehead Theorem 2.4. in section 2. We give criterions for a G-space to have the G- 

homotopy type of a G-CW-complex in Corollary 2.8., Corollary 2.11. and Proposition 

2.12. and examine G-push outs of G-maps and their connectivity in Lemma 2.13. 

In section 3 we introduce the finiteness obstruction wG(y) ~ waG(y) of a finitely 

dominated G-space geometrically. We call Y finitely dominated if there is a finite 

G-CW-complex X and G-maps r : X --~ Y and i : Y ~ X satisfying r o i =G id. 

Elements in the abelian group waG(y) are represented by G-maps f : X --~ Y with a 

finitely dominated G-space as source and Y as target. Addition is given on re- 

presentatives by the disjoint union. The zero element is represented by ~ --~ Y and 

wG(y) by id : Y --~ Y . 

Theorem 3.2. 

a) Let X be a finitely dominated G-space, Then X i_~s G-homotopy equivalent to 

a finite G-CW-complex if and only if wG(x) vanishes. 

b) The finiteness obstruction is a G-homotopy Snvariant. 

c) The finiteness obstruction is additive on G-push outs. D 

A typical situation, where the finiteness obstruction comes in, is the following. 

Suppose X is a finitely dominated G-space for which we want to construct a (compact 

smooth) G-manifold M with M =G X . As any such M is a finite G-CW-complex, the 

vanishing of wG(y) is a necessary condition. Often constructions of G-spaces give 



finitely dominated G-spaces but not necessarily finite G-CW-complexes. 

In section 4 we extend the geometric construction of Whitehead group and Whitehead 

torsion due to Cohen [1973] and StScker [1970] to the equivariant setting following 

lllman [1974]. A G-homotopy equivalence f : X --~ Y between finite G-CW-eomplexes 

is called simple if it is G-homotopic to a composition of so called elementary ex- 

pansions and collapses. It determines an element G(f) , its (equivariant) Whitehead 

torsion, in the Whitehead ~roup WhG(y) by its mapping cylinder. Elements in whG(y) 

are represented by pairs of finite G-CW-complexes (X,Y) such that the inclusion 

Y --~ X is a G-homotopy equivalence. Addition is given by the G-push out along Y 

and the zero element by (Y,Y) . 

Theorem 4.8. 

a) A G-homotopy equivalence f : X --~ Y between finite G-CW-complexes is simple 

if and only if TG(f) vanishes. 

b) f =G g => G(f) = G(g) 

c) G is additive on G-push outs. 

d) TG(gof) = G(g) + g, G(f) o 

Let f : X --~ Y be a G-homeomorphism of finite G-CW-complexes. If G is trivial, 

f is simple by Chapman [1973]. This is not true for non-trivial G in general (see 

Example 4.25. and 4.26.). 

If G is a compact Lie group and M a (compact, smooth) G-manifold, we define 

a preferred simple structure on M (cf. lllman [1978], [1983], Matsumoto-Shiota 

[1987]). Hence for any G-homotopy equivalence f : M --~ N between G-manifolds its 

Whitehead torsion is defined. It vanishes if f is a G-diffeomorphism. 

A cobordism (B,M,N) of G-manifolds is an isovariant h-cobordism resp. (equivariant) 

h-cobordism if the inclusions M --~ B and 

valences resp. G-homotopy equivalences. 

We introduce the isovariant Whitehead group 

torsion 

N --~ B are isovariant G-homotopy equi- 

~so(B,M,N) 

WhOso(M) and the isovariant Whitehead 

of an isovariant h-cobordism. We restate the Isovariant s-Co- 
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bordism Theorem 4.42. saying that ~so(B,M,N) 6 Wh~so(B,M,N) classifies isovariant 

h-cobordisms over M up to G-diffeomorphism relative M , if dim MH/WH ~ 5 (i.e. 

the dimension of any component of MH/WH is not smaller than 5) for all H E Iso M 

holds (see Browder-Quinn [1973]. Hauschild [1978], Rothenberg [1978]). We construct 

an homomorphism 

4.43. ~(M) : WhOso(M) ~ whG(M) 

satisfying ~(M)(T~so(B,M,N)) = ~G(M --~ B) (see Proposition 4.44.). This leads to 

(cf. Araki-Kawakubo [1988]) 

Theorem 4.51. The Equivariant s-Cobordism Theorem. Let M 

fying the weak gap condition 4.49. such that dim MH/WH ~ 5 

Then 

a) 

b) 

be a G-manifold satis- 

holds for H 6 Iso M . 

Any h-cobordism over M is an isovariant h-cobordism. 

~(M) is splSt injective with a certain direct summand whG(M) c whG(M) as 

image. 

c) Wh~(M) classifies h-cobordisms over M up to G-diffeomorphism relative M 

Because of this result equivariant Whitehead torsion is important for the classifi- 

cation of G-manifolds. It is in general much easier to handle with the equivariant 

Whitehead torsion than with the isovariant one. If one wants to show that two G-mani- 

folds M and N are G-diffeomorphic, the general strategy is to construct an h-co- 

bordism (B,M,N) by equivariant surgery and then apply Theorem 4.51. As an illustra- 

tion we mention the classification of semilinear discs M (i.e. G-manifolds M such 

that for H c G the pair (MH,sM H) is homotopy equivalent to (D k S k-l) for 

appropriate k ~ 0) due to Rothenberg [1978] in Theorem 4.55. Such M is classified 

by the ~G-isomorphism type of TM for x ~ M G and the Whitehead torsion of 
x 

STM --~ M \ int DTM up to G-diffeomorphism, provided that M satisfies the weak x x 

gap conditions 4.49. and dim MH/WH ~ 6 for H ~ Iso M . The assumption 4.49. in 

Theorem 4.51. is necessary (see Example 4.56.). 

In section 5 we introduce the (equivariant) Euler characteristic xG(x) ~ uG(x) and 

show that it is a G-homotopy invariant and additive under G-push out in Theorem 5.4. 



We define Euler ring 

Lie group. 

4 

U(G) = U G ({point}) and Burnside ring A(G) for G a compact 

All the invariants above satisfy sum formulas for G-push outs and are G-homotopy 

invariant. It turns out that they can be characterized just by these two formal 

properties as universal functorial additive invariants (see Theorem 6.7,, 6.9., and 

6.11.). 

In section 7 we derive from this characterization a product formula 7.1., a restric- 

tion formula 7.25, and a diagonal product formula 7.26. for the finiteness obstruc- 

tion, Whitehead torsion and Euler characteristic in a simple geometric manner. This 

requires a careful analysis for the problem h~w to assign to the restriction res X 

of a finite G-CW-c0mplex X to a subgroup H of the compact Lie group G a H- 

simple structure (see 7.10o). This is a non-trivial question if G/H is not finite, 

see e.g. the case where X is a homogeneous G-space G/K . It is remarkable that 

the geometric description of the restriction formula for infinite G/H and of the dia- 

gonal product formula for infinite G are much easier than the algebraic oneewe 

will develop in section 14. 

The diagonal product formula is the main ingredient in constructing an homomorphism 

7.39. ~ : A(G)* • whG({point}) . 

A unit in the Burnside ring represented by a G-self equivalence f : SV ---+ SV of 

the unit sphere of an orthogonal G-representation is sent by ~ to (I-#(SV))-I~G(f) . 

No G is known where ~ is non-trivial. This map appears in the study of G-homo- 

topy representations in section 20 and in equivariant surgery (see Dovermann-Rothen- 

berg [1988]). 

If X is a finitely dominated G-space, X ~ S 1 is G-homotopy equivalent'to a finite 

G-CW-complex by the product formula. This can directly be seen from Mather's trick 

which is used to define a geometric Bass-Heller-Swan in~ection 

7.34. ~ : waG(y) ~ whG(y x S I) . 

It relates finiteness obstruction and Whitehead torsion (cf. Ferry [1981a], 



Kwasik [1983])and leads to a geometric definition of equivariant negative K-Broups 

(Definition 7.36., Theorem 7.38.). These appear for example as obstruction groups 

for equivariant transversality in Madsen-Rothenberg [1985a]. 

~ 

In section 8 we deal with lifting a G-action to a G-action on the universal covering 

which extends the ~l(X)-action and covers the G-action, where G is an extension 

and G denote the components of the of ~I(X) and G (Theorem 8.1.). If G O o 

identity, we study the square 

8.8. :x ~. :X/G 
0 

1 i 
X ~ XIG 

O 

In particular the space X/Go is important as it is simply connected and carries 

the action of the discrete group ~ (G) = G/G (Lemma 8.9,). We will read off a 
O O 

lot of algebraic information from the ~o(G)-space X/Go . We derive from 8.8. an 

e x p l i c i t  d e s c r i p t i o n  of  the  k e r n e l  and coke rne l  of  ~I(X) - -~  ~I(X/G) in Propo- 

sition 8.10. (cf. Armstrong [1983]). 

We organize the book-keeping of the components of the various fixed point sets in- 

cluding their fundamental groups, universal coverings, WH-actions and diagrams 

corresponding to 8.8. All these data are codified in the discrete fundamental cate- 

gory H/(G,X) (Definition 8.28.). The notion of the cellular ZH/(G,X)-chain complex 

(Definition 8~37.) is the main link between geometry and algebra. It is the compo- 

sition of the discrete universal covering functor X/ : H/(G,X) --~ {CW-complexes} 

(Definition 8.30° ) and the functor "cellular chain complex". The algebra of modules 

over a category is modelled upon it. 



I. G-CW-complexes 

We introduce the equivariant version of a CW-complex and collect its 

main properties. We will deal also with the case where G is not compact 

and treat proper actions. The Slice Theorem will be proved. 

Convention 1.1. We always work in the cateqory of compactly generated 

spaces (see Steenrod [1967] or Whitehead [1978], p. 17 - 21). We recall 

that a compactly generated space X is a Hausdorff space such that a sub- 

set A c X is closed if and enly if its intersection with any compact 

subset is closed, o 

In this section G is a topoloqical qroup (which is assumed to be com- 

pactly generated by convention 1.1). A topoloqical qroup which is a 

Hausdorff space and locally compact is compactly generated. Examples 

are Lie groups (see Bredon [1972] I.I for the definition). We always 

assume that a subgroup H c G is closed. 

Definition 1.2. Let (X,A) be a pair of G-spaces such that A/G is a Haus- 

dorff space. A relative G-CW-complex structure on (X,A) consists of 

a) a f i l t r a t i o n  A = X _ ]  c X O c X 1 c X 2 c . . .  __0f x = U x 
n 

n = - I  

a n d  

b) a collection {e~ I il £ In} of G-subspaces e~ c X for each n ~ O 
- -  l n 

with the properties: 

i) X has the weak topoloqy with respect to the filtration {Xnln ~ -I}. 

i.e., B c X is closed if and only if B N X n c X n is closed for any 

n a -I, 

ii) For each n >- O there is a G-push-out 



±i 
i6I n 

±± 
iEI n 

I II qi 

G/Hi sn~1 i E I n 
x > Xn. I 

[ n I II Qi 
i6I n 

G/H i x D n > X n 

such that e~ = On(G/Hi int D n) --i X . 

If A i_~s empty we call X a G-CW-complex. o 

n 
The G-subspace X n is the n-skeleton of (X,A). The G-subspaces e i are 

called the open cells. The number n is its dimension and the conjugacy 

class of subgroups (H i ) its type. The map q~ is an attaching map and 

the p~ir (Q~,q~) : G/H i x (Dn,S n-l) ~ (Xn,Xn_ I) a characteristic map 

O n ~ n sn-1 for e~ We call ~n:= (G/H i x D n) a closed cell and De =qi(G/Hi x ) z" i i 

its boundary, we emphasize that the filtration and the open cells are 

part of the structure of a relative G-CW-complex but not the attaching 

or characteristic maps. An isomorphism f : (X,A) ~ (Y,B) of relative 

G-CW-complexes is a G-homeomorphism of pairs respecting the skeletal 

filtration and mapping open cells bijectively to open cells. 

Here is a list of basic facts proved later. 

1.3. The open and closed ceils are already determined by the skeletal 

filtration. Namely, the open cells e~ are the G-components of 

X n\Xn_ I, i.e. the lifts of the components of (X n\ Xn_I)/G. The 

closed cell e~l is the closure of e~l in X and ~e~ = e~ \e hi. In par- 

ticular e~ is open in X n and e~ i is closed in X. A subset C c X is 

closed if and only if C N A in A and C N ~n in e~ is closed o 
i 

1.4. Let H c G be normal and (X,A) a relative G-CW-complex such that A/H 

is a Hausdorff space. Then (X/H,A/H) has a canonical G/H-CW-struc- 



ture if one of the followinq conditions holds; 

a) H is compact. 

b) G x is compact for each x 6 X\A, 

c) G/H is discrete. 

Namely, the n-skeleton is Xn/H and the open n-cells are 

{e~/H I i 6 In} , if X n is the n-skeleton and [e~ I il 6 I n } the open 

n-cells of X. D 

1.5. If (X,A) is a relative G-CW-comDlex, the inclusion A ~ X is a G-co- 

fibration. D 

A G-space X is obtained from the G-sDace A by attachinq n-dimensional 

cells if there is a G-push-out 

II G/H i x S n-1 ....... ~ A 
i6I 

: f 
±I G/H i x D n ~ X 

i£I 

1.6. Let A be a (compactly qenerated) G-space such that A/G is a Haus- 

dorff space. Then A/G is also compactly qenerated (Steenrod [1967] 2.6). 

Let (X,A) be a G-pair with a G-filtration {X n I n ~ -1}, X_1 = A, X = Ux n 

such that X has the weak topoloqy with respect to this filtration and 

X n is obtained from Xn_ I by attachinq n-dimensional cells. Then X is 

compactly generated and (X,A) a relative G-CW-complex. o 

Example 1.7. Let G be a finite qroup and X be a CW-complex. Suppose that 

G acts cell preserving on X, i.e. if e is an open cell of X,then ge is 

again an open cell and ge = e implies, that lq : e ~ e x ~ qx is the 

identityj for all q E G. Then X is a G-CW-complex (compare Bredon [1972] 

III.1). m 



Example 1.8. Let G be a finite group and V be an orthogonal G-represen- 

tation. The unit sphere SV has the following G~CW-complex structure. 

Choose a base {el,...,em}. Let X be the convex hull of 

{±gei I g 6 G, I ~ i s m}. Its boundary ~X is G-homeomorphic to SV by 

radial projection so that it suffices to define a G-CW-complex struc- 

ture on ~X. Now there is a simplicial complex structure on ~X such that 

G acts simplicia!ly. Consider its first barycentric subdivision. Then 

for any simplex o with go = o multiplication with g induces the identity 

on it (Bredon [1972] III 1.1). NOW apply 1.7. o 

1.9. Let G be a compact Lie group and M a G-manifold, i.e. M is a com- 

pact C~-manifold and G acts by a C° -map G x M ~ M. Then M has the struc- 

ture of a G-CW-complex. Moreover, a G-trianqu!ation can be constructed 

(see Illman [1983] p. 500). o 

To prove the statements 1.3 to 1.6 we need some material about G-cofib- 

rations and G-push-outs. 

A G-map i : A ~ X is called a G-cofibration if i(A) is closed in X and 

for any G-space Y, G-maps f : X ~ Y and h : A x I ~ Y with f0i = h 
o 

there is a G-map h : X x I ~ Y satisfying h o(i x id)= h and ho = f 

i 
AxO ~ ½ XxO 

Y 

Let (X,A) be a G-pair. It is called a G-NDR (G-neighbourhood deformation 

retract) if there are G-maps u : X ~ I and h : X x I ~ X satisfying: 
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-I i) A = u (O). 

ii) h = id. o 

iii) htIA = id A for t 6 I. 

iv) hi(x) 6 A for u(x) < I. 

Lemma 1.10. 

a) If i : A ~ X is a G-cofibration then i is a closed embeddinq, i.e. 

i(A) is closed in X and i : A ~ i(A) ~ G-homeomorphism. 

b) Let (X,A) be a G-pair. Then i : A ~ X is a G-cofibration if and 

only i_~f (X,A) i_~s ~ G-NDR. 

Proo~ analogous to the non-equivariant case (Strjm [1966], Steenrod 

[1967], 7.1.) 

A square 

f 
A ~,Y 

F 
X ; Z  

of G-spaces is a G-push-out if for each pair of G-maps f' : y ~ U 

and j' : X ~ U with f'f = j'j there is a G-map u : Z ~ U uniquely 

determined by uJ = f' and uF = j' 

Lemma 1.11. Let j : A ~ X be a G-cofibration. Then a G-push-out Z is 

@iven by the adjunction space Y Uf X which is compactly qenerated. J i_~s 

a G-cofibration. 

Proof: For G = I see Steenrod [1967] 8.5. m 

Let X be a G-space and H c G a (closed) subqroup. For x 6 X let its iso- 

tropy group G x be {q £ G I qx = x}. It is closed in G. Let the H-fixed 

point set X H be {x 6 X I G x m H}, X >H be {x 6 X I G x = H, G x ~ H} and 
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X H be {x E X I G x H}. Then X H and X >H = X H. = are closed in X and xH\x >H 

If H and K are subgroups we call H subconjuqated to K if gHg -I c K holds 

for suitable g and write (H) c (K). Define X (H) = Ix 6 X ! (G x) m (H)}, 

x>(H) = (X 6 X I (G x) = (H) r (G x) • (H)} and ×(H) = {x 6 X I (G x) = (H)}. 

Then X (H) X >(H) and X(H ) are G-subs~aces and x(H)\x >(H) , _ = X(H ) • 

For H c G let NH be its normalizer {g 6 G I ~H~ -I = H} and WH = NH/H its 

Weyl group. The G-action on X induces WH-actions on X H, X >H and X H. 

Lemma 1.12. Let i : A ~ X be a G-cofibration. 

a) Its restriction to H c G is a H-cofibration. 

b) For H c G the map i H : A H ~ X H is a WH-cofibration. 

c) The map i/H : A/H ~ X/H is a G/H-cofibration if A/H and X/H are 

Hausdorff spaces and H c G normal. 

Proof: Use Lemma 1.10. For G-NDR-s the statements are obvious, The as- 

sumption about A/H and X/H in c) quarantees that they are compactly ge- 

nerated (Steenrod [1967] 2.6). [] 

Lemma 1.13. Consider the G-push-out 

f 
A 

F 
X 

Y 

Assume that j is a G-cofibration. 

a) The restriction t__o K c G is a K-push-out. 

b) Takin@ the H-fixed point set Yields ~ WH-push-out. 

c) Let H c G be normal and A/H, X/H and Y/H be Hausdorff spaces. Then 

w__ee get a G/H-push-out by dividing out the H-action. 

Proof. We only verify c). We must show that F/H + J/H : X/H + Y/H ~ Z/H 

is an identification. This follows from the fact that for a H-map 
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u : A ~ B,which is an identification, also u/H : A/H ~ B/H is an 

identification. 

A ~ B 

prAi IPrB 
A/H ~ B/H 

u/H 

Namely, pr A and u/H o pr A = pr B o u are identifications. The map j/H is a 

G/H-cofibration by Lemma 1.12. c). s 

Now we come to the proof of 1.3. to 1.6. Recall that X n is the G-push- 

out 

It qi 

it G/H i S n-1 
× ~ Xn_ 1 

i t  G / H  i × D n ~ X n 

and j is a G-cofibration. Hence Xn_1 ~ X n is a G-cofibration. Now 1.5 

follows from the equivariant version of Whitehead [1978] I. 6.3. In 1.6. 

the only problem is to show that X is compactly generated. One shows in- 

ductively using Lemma 1.11. that each X n is compactly generated and ap- 

plies Whitehead [1978] I. 6.3. 

By Lemma 1.12. and 1.13. we have the G/H-push-out with j/H a cofibration 
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II qi/H 
(G/H i )/H x S n~1 Xn~ I/H 

xt Oi/H 
]I (G/Hi)/H x D n Xn/H 

The conditions appearing in 1.4. guarantee that HH i is closed in G (tom 

Dieck [1987], 1.3.1.). Since H is normal, HH i is a closed subgroup in G 

so that (G/Hi)/H is G/H-homeomorphic to the compactly generated G/H- 

space (G/H)/(HHi/H). Now 1.4. follows using Whitehead [1978] 1.6.4. to 

verify that X/H has the weak topology with respect to {Xn/H I n ~ -I}. 

For 1.3. consider the push-out above for H = G 

31 qi/G 
/I S n Xn_ I/G 

/I D n Xn/G 

As above one shows that Xn/G is a Hausdorff space so that Qi/G(Dn) CXn/G 

is compact and in particular closed. Then ~ni = Qi(G/Hi x D n) c X n is 

closed in X n. Now it is easy to prove 1.3. 

Example 1.14. Let G be the multiplicative group of positive real num- 

bers. Define an action 

p : G x~ ~ ~ (g,r) ~ gr 

Then ~/G is not a Hausdorff space. Let q : G x S °  ~ ~ be the G-map in- 

duced from the inclusion S °  c ~. Consider the G-push-out 
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q 
GxS °  ) ]R 

GxD I Q 3 X 

J 

Then Q(G x D I) c X is open but not closed in X since image q is open but 

not closed (compare 1.3.). [] 

Remark 1.15. In the definition of a G-CW-complex given f,e, in Illman 

-n 
[1974] 1.2. it is part of the definition of a G-CW-complex that e i is 

closed in X. Hence our definition requires less. But we have proven by 

1.3. that both definitions agree, However, we have gained that in 1.6. 

attach arbitrarily cells and have not to care whether Q(G/HixD n) we can 

is always closed. This is very pleasant when we want to make a G-map 

highly connected by attaching cells, a 

Now we need some basic facts about proper maps and proper actions. 

A map f : X ~ Y is proper if f is closed and f-1(y) is compact for any 

y £ Y. A general reference for proper maps is Bourbaki [1961] I.IO.. A 

map f : X ~ Y between compactly generated spaces is proper if and on- 

ly if f-1(C) is compact for any compact C c Y (use Bourbaki [1961] 

I.IO.2. proposition 6). 

Lemma 1.16. 

a) Consider maps f : X ~ Y and g : Y ~ Z. 

i) I_~f f and g are proper, then gf i_~s proper. 

ii) If gf is proper, f i_~s proper. 

iii~ I_~f gf i__ss proper and f surjective, then g i__ss proper. 

b) I_~f f : X ~ Y i__ss proper and B c Y then the induced map f-1 (B) ~ B 

i_~s proper. I_ff f is proper and A c X is closed f IA : A ~ Y i__ss pro- 

per. 
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c) If f : X ~ Y and f' : X' ~ Y' are proper then f x f' : X x X' 

y x y' is proper. If f : X ~ Y and g : X ~ Z are proper, then 

f x g : X ~ y x Z is proper. 

d) A projection pr : X x y ~ Y i__ss proper if and only i_~f X i__ss compact. 

e) Consider a push-out 

f 
A %X 

f f j J 
F 

Y ~ g 

I_~f j is a closed embedding and f i_~s proper then F is proper. 

f) Consider a pull-back 

F 
Z ) X 

If f is proper, then F is proper. 

g) Let {Xn J n ~ -I] resp. {Yn I n ~ -1} be a closed filtration for X 

resp. Y such that X resp. Y has the weak topology. Let f : X -- Y 

be a map such that f(Xn\Xn_ I) c yn\Yn_l holds for n ~ -I. Assume that 

each map fn : Xn ~ Yn i_~s proper. Then f i__ss proper. 

Proof: The verification of a), b), c) and d) given in Bourbaki [1961] 

I. I0 is easily carried over to compactly generated spaces. 

e) Given C c y the subset F(C) c Z is closed if and only if 

C U f-lf(c N A) c y is closed and f(C N A) c X is closed. 

f) Consider the commutative diagram 



FxP 

16 

idxf 
XxY ~ XxA 

F 
7, ~ X 

The map id x f is proper by assumption and c). From the explicit con- 

struction of a model for Z as the preimage of the diagonal under 

f x p : X x y ~ A x A we derive that F xp is a closed embedding and 

hence proper. Now apply a). 

g) is left to the reader. D 

Definition 1.17. A G-space X is proper if the map 

is proper. [] 

0 x : G x X -- X x X (g,x) ~ (x,gx) 

Lemma 1.18. If G is compactpany G-space is proper. 

Proof: The projection pr : G x X ~ X is proper (Lemma 1.16 d). Com- 

posing it with the G-homeomorphism G x X ~ G x X (g,x) ~ (g,gx)~ de- 

fines a proper map p : G x X ~ X by Lemma 1.16 a. Then 8 x = pr x p is 

proper by Lemma 1.16 c. o 

Lemma 1.19. Let X be a proper G-space. Then X/G belongs also to the 

category o_~f compactly generated spaces. We have for x 6 X: 

i) G ~ X g ~ gx i_~s proper. 

ii) G x i_ss compact. 

iii) The map G/G x ~ Gx gG x ~ gx is a G-homeomorphism. 

iv) The orbit Gx is closed in X. 

Proof: Bourbaki [1961] III. 4.2. proposition 3 + 4. 

Lemma 1.19 shows that the G-space ~ of Example 1.14 is not proper. 
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Lemma 1.20. Let X be a proper G-space and C ~ compact space with trivial 

G-action. Then any G-map G/H x C ~ X i_~s proper. I__nn particular its image 

is closed in X. 

Proof: The subgroup H is compact by Lemma 1.19. so that G ~ G/H is 

proper (Bourbaki [1961] III.4.1. cor°  2). Hence we can assume H = 1 by 

Lemma 1.16. a and c. 

Let D c X be the compact subset f({e} x C) and f : C ~ D be the induced 

map. By Lemma 1.16. the maps id x f : G x C ~ GxD, v : G x D ~ D x X 

(g,x) ~ (x,gx) and pr : D x X ~ X and hence their composition f are 

proper. D 

Lemma I .21. Consider the G-push-out such that Y and X i are proper G- 

spaces, fi i_~s proper and Ji a G-cofibrati0n, 

II f. l i6I 
li A i ) Y 

i£I I 
I II Ji J 

i6I 

II X i ) Z 
i6I F 

Then Z is a proper G-space. 

Proof: If C c Z is compact C D F(X i~A i) • @ holds only for finitely 

many i 6 I as (Xi,A i) is a G-NDR-pair. Hence we can assume that I is 

finite. Write X = 
i6I 
±I X i. Consider the diagram 

e z 
GxZ .... ~2 ZxZ 

]' I id x (FILJ) F x Fit J x J 

0Xit 8y 
G x (XitY) = GxXitG x y % X x XitYxY 

By Lemma I. 11. J is a G-cofibration and hence a closed embedding by 

Lemma 1.10. Then J x J is proper (Lemma 1.16. c). The map F x F is proper 
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by Lemma I. 16. c and e. Since X and Y are proper G-spaces by assumption 

e Z o id x (F/.iJ) = (F x F /.t J x j) o (SXll~y) is proper (Lem/na 1.16. a). 

Then 8 z is proper (Lemma 1.16. a). o 

Lemma 1.22. Let {Xn I n ~ -I} b__ee a closed filtration of X such that X 

has t h e  w e a k  t o p o l o g y .  I f  e a c h  X i s  p r o p e r ,  t h e n  X i s  p r o p e r .  
n ~ ~ 

Proof: Use Lemma 1.16. g and Steenrod [1967] 10.3. o 

Theorem 1.23. Let (X,A) be a relative G-CW-complex. Then X is a proper 

G-space if and only if A i__ss proper and G x compact for all x 6 X ~ A. I__nn 

particular ~ G-CW-complex X i~s proper if and only if G x i__ss compact for 

each x 6 X. 

Proof: One shows inductively that any X n is proper. If H is compact,G/H 

is a proper G-space. By Lemma 1.16. the G-space G/H x D n is proper. Now 

the induction step follows from Lemma 1.20. and 1.21. Finally apply 

Lemma 1.22. to show that X is proper, o 

1.24. Let X be a free G-CW-complex. Then X is proper by Theorem 1.23. 

Since X is free,this is equivalent to image~Sx)C X x X being closed and 

the map imageCSx) ~ G (x,gx) ~ g being continuous (tom Dieck [1987] 

1.3.20). We will show in Theorem 1.37. that X is locally trivial so that 

X ~ X/G is a principal G-bundle (see Husemoller [1966], 4.2.2). By 

1.4. X/G is a CW-complex. o 

1.25. This process can be reserved. Let p : E ~ B be a principal G- 

bundle and A c B a subspace. Then a relative CW-complex structure on 

(B,A) lifts to a G-CW-complex structure on (E,p-I(A)). Namely, let E n be 

-1 n 
p (Bn). If {ei I i E I n } are the open n-cells of (B,A), let {p-1(e~) I 

i E In} be the open n-cells of (E,p-I(A)). Since B has the weak topolo- 

gy with respect to {Bn I n ~ -I} the same is true for E and {En J n ~ -I] 

(see Whitehead h978] , XIII.4.1). 

Now B n is the G-push-out 
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it S n-1 q • ~, Bn_ I 
i6I 

n f 
Q 

i t  D n 
n 

i 6 I  
n 

By the Lemma I .26. below we obtain a G-push-out by the pull-back con- 

B struction applied to Pn : En n 

q E n ) En_ I 

QE ~ E 
n ~ n 

= JE n 

Since D n is contractible, there is a G-homeomorphism of G-pairs 

(Q En, q E n) ~ it G x (Dn,S n-l) (Husemoiler [1966], 5.10.3.). Q 
i£I n 

Lemma 1.26. Consider the push-out with j a cofibration 

f 
A , , ~  Y 

x ,,,~ z 
F 

Let p : E ~ Z be a fibration. Then the pull-back construction [ields 

push-out with ~ a cofibration. 
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• • ~ , 
f J E ) J E 

F E -~ E 

Proof: The map j is a cofibration by Whitehead [1978] 1.7.14. It remains 

to show that J U~ F : J E Uf~j~ E F E ~ E is an identification. By 

assumption J Uf F : Y Uf X ~ Z is an identification. By Steenrod 

[1967] 4.4. id x (j Uf F) and hence 

(id x J) U(id x f) (id x F) : E x B I Uid x f E x B 2 ~ E x B is an identifi- 

cation. Restricting it to {(e,p(e)) I e 6 E} c E x B yields just J U~ F. D 

1.27. If (X,A) is a relative G-CW-complex and (Y,B) a relative G'-CW- 

complex then (X,A) x (Y,B) has a relative G x G'-CW-complex structure. 

The k-skeleton (X x Y)k is U x n x Ym" Then {(X x Y)k J k ~ -I} is a 
n+m=k 

closed filtration of X x y such that X x Y has the weak topology (Steenrod 

[1967] 10.3.). 

fm If {e~ J i E I n ] are the open n-cells of X and { j I j E Jm ] the open m-cells 

of Y then {e; x f~ I i E I n j £Jm' n+m=k) are the open k-cells of X x Y. 
3 

The characteristic map for e; x fm is the product of the ones for e~ 
3 z 

and f;,if we identify (G/H i x D n) x (G'/H~ x D m) and (G x G')/(H i x Hi) x 

D n+m. D 

1.28. Let (X,A) be a relative G-CW-complex. A relative G-CW-subcomplex 

(Y,B) is a pair satisfying 

i) Y is a G-subspace of X. 

ii) B is a closed subspace of A. 

iii) Y is the union of A and a collection of open cells whose boundaries 

also belong to Y. 

Then (Y,B) itself is a relative G-CW-complex with Yn = Xn D Y and Y is 
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closed in X. If A and B are empty,(X,Y) is called a ~air of G-CW- com- 

plexes, a 

1.29. Consider the G-push-out 

f 
A % Y 

X ~ Z 

Let (X,A) be a relative G-CW-complex. Then there is a relative G-CW- 

complex structure on (Z,Y) such that the relative homeomorphism (F,f) 

maps X n to Z n and open cells bijectively to open cells. 

Assume that (X,A) is a pair of G-CW-complexes and f is cellular i.e. 

f(An) c Yn for all n ~ O. Then we get the structure of a pair of G-CW- 

complexes on (Z,Y). 

In particular X/A is a G~CW-complex if (X,A) is a pair of G-CW-complexes. 

Given a cellular G-map f : X ~ Y between G-CW-complexes its mapping 

cylinder and mapping cone get G-CW-structures by 1.27. and the construc- 

tion above, s 

1.30. Consider the space map(X,Y) of maps X ~ Y topologized as in 

Steenrod [1967] §5 . If X and Y are G-spaces, G acts on map(X,Y) by 

f ~ 1 o f o ig_l where 1 is multiplication with G. The G-fixed point 
g g 

set map(X,Y) G c map(x,y) consists of all G-maps f : X ~ Y. Consider 

the maps 

and 

: map(G/H,X) G ~ X H ~ ~ ~(eH) 

X H : ~ map(G/H,X) G x (@(x) : gH ~ gx) 

Use Steenrod [1967] 5.2. and 5.8. to show that they are continuous. Hence 

and ~ are inverse homeomorphisms, a 



22 

we need some facts about homogenous spaces. 

Lemma 1.31. Let H and K be subgroups of G. 

a) There is an equivariant map G/H ~ G/K if and only if (H) = (K) 

holds. 

b) I_~f g £ G an d g-IHg c K, then we ~gt a well defined G~ma P 

R :G/H ~ G/K g'H ~ g'gK g 

c) Every G-map G/H ~ G/K is of the form R . We have Rg g 

only if g-lg, 6 K holds. 

= Rg, if and 

d) Assume that G i__ss compact or that G is a Lie group and H c G compact. 

Then we have g-IHg c H ~ g-IHg = H for any g £ G and obtain a homeo- 

morphism of topological groups 

G 
WH ~ map (G/H,G/H) gH ~ Rg_1 

Proof: a), b) and c) are verified in tom Dieck [1987] I.I.14. The proof 

of d) for compact G can be found in Bredon [1972] O.1.9. Let G be a Lie 

group and H compact. Suppose g-IHg c H for g 6 G. Then g-IHg is a sub- 

manifold of H. This implies g-lHg = H because for a connected submani- 

fold M of a connected manifold N with dim M = dim M already M = N holds 

and H has finitely many components. Finally apply 1.30. 

Example 1.32. We want to illustrate by this example that the conditions 

in Lemma 1.31. d) are necessary. 

Let G c GL(2, ~) be the Lie group of matrices over ~ of the shape 

a 

0 a -I 
a,b 6 3~, a • O 

Denote by H c G the subgroup of all matrices A with a = I and b 6 Z~. 

One easily checks 
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-I 2 (a b > <1 n> Ia b > /I a nh 

' 0  a - 1  0 1 0 a "1 = \0 1 j 

Hence AHA -I c H is equivalent to a 2 £ ~ whereas AHA -I = H is equivalent 

to a = ±I. This gives a counterexample with G a Lie group. 

^ 

If we substitute ~ by the p-adic rationals ~p and ~ by the p-adic num- 

bers Zp we obtain a counterexample where H is compact. 

The next result is one of the main properties of Lie groups. 

Theorem 1.33. Let G be a Lie group and H and K b_~e subgroups. Suppose 

that H i_~s compact. 

Then G/K H i__ss th__~e disjoint union of its WH-orbits or, equivalently, 

(G/KH)/wH is discrete. If G i__ss compact, G/K H is the disjoint union of 

finitely many WH-orbits. 

Proof: If G is compact this is shown in Bredon [1972] II.5.7. By in- 

specting the proof we see that it works also for G a Lie group and com- 

pact H if the result in Bredon [1972] II.5.6. is still true. But this 

is verified for G a Lie group and H compact in Montgomery-Zippin [1955], 

p. 216. D 

1.34. Let H be a subgroup of G. If (X,A) is a relative H-CW-complex,then 

(ind X, ind A) = G x H (X,A) has a canonical relative G-CW-complex struc- 

ture. This follows from the identity G x H H/K = G/K. o 

1.35. Let G be a Lie group and H a subgroup with dim H = dim G. Consider 

the restriction res G/K of the homoqenous G-space G/K. Since G/H is dis- 

crete (res G/K)/H is discrete. Hence res G/K is a disjoint union of ho- 

mogenous H-spaces and has therefore a canonical H-CW-structure. This 

carries over to G-CW-complexes. If (X,A) is a relative G-CW-complex 

then res (X,A) has a canonical relative H-CW-structure. 
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The assumption dim H = dim G is essential. For example, a homogenous G- 

space G/K has exactly one G-CW-structure. If dim G Z I it is not obvious 

that G/K just as a space has a CW-complex structure and that there is 

even a canonical one. We will have to deal at several places with the 

problem that the restriction of a G-CW-complex to a subgroup H with 

dim H < dim G has no obvious H-CW-structure. o 

1.36. Let G be a Lie group and H c G compact. For each K c G we have a 

canonical WH-CW-structure on G/K H by Theorem 1.33. Henoe for any relative 

G-CW-complex (X,A) there is a canonical relative WH-CW-structure on 

(X H A M) o 
t 

We make some remarks about slices. Let G be a topological group and X a 

G-space. A slice S at x 6 X is a Gx-SUbspace S c X such that GS is an 

open neighbourhood for x and ~ : G x G S ~ GS a G-homeomorphism. Then 
x 

GS is called a tube around the orbit Gx. 

Theorem 1.37. Slice Theorem for G-CW-complexes. 

Let G be a topological group and (X,A) a relative G-CW-complex. Assume 

that A is proper, there is a slice a 6 S c A i__nn A for any a 6 A and G x 

i__ss compact for each x 6 X~A. Then there is a slice S at x in X for each 

x 6 X. 

Proof: Let x 6 X be given. Choose n ~ -I such that x lies in X n but not 

in Xn_ I. We construct inductively for m = n, n + 1,... Gx-SUbSets S m c X m 

such that Sm+ I D X m = Sm, GS m is open in X m and ~m : GXG Sm ~ GSm' 
x 

g,y ~ gy is a G-homeomorphism. Notice for the sequel that X is a proper 

G-space by Theorem 1.23. 

The induction begin m = n follows for n = -I from the assumption about 

A. If n Z O holds there is an open cell e n containing x. Since e n is 

open in X n and G-homeomorphic to G/G x x int D it suffices to find a slice 

around any point (gGx,Y) 6 G/G x x int D. But for any open neighbourhood 
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U of y in int D the Gx-Set gG x x U is a slice. 

We come to the induction step from m - I to m for m ~ I ~ n°  Consider 

the G-push-out 

11 
i6I 

/I 
iEI 

ii qi 
i6I 

x S m-1 G/Hi ) Xm- I 

i £ I  
G/H i x D m ~, X m 

Let U i c G/H i x S m-1 be qi1(Sm_1 ). Define V i c G/H.I x D m as 

{(gHi,tu) J (g~,u) 6 U i, I/2 < t S I}. Notice that U i and V i are Gx-SUb- 

sets and V i is Gx-homeomorphic to U i x ]I/2,1]. Define S m as the union 

Sm_ I U iU6 1 Qi(Vi). we have by construction Sm N Xm_ I = Sm_ I. 

By assumption ~m-1 : G x G Sm_ I ~ GSm_ 1 
x 

l o w i n g  d i a g r a m  c o m m u t e s  

is a G-homeomorphism. The fol- 

~U i 
G x G U i > GU 

X 

id x G qiJUi 
x I 

G x G qi(Ui) > qi(GUi) 
x ~m_11G x G qi(Ui) 

x 

qiJGUi 

The map ~Ui is bijective and continuous, ~m_ITG x G qi(Ui) a G-homeomor- 
x 

phism and the vertical maps are proper by Lemmata 1.16. and 1.20. since 
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G x is compact and therefore Y ~ Y/G x is proper for any Gx-Space Y 

( s e e  t o m  D i e c k  [ 1 9 8 7 ]  1 . 3 . 6 . ) .  T h e n  ~U. i s  p r o p e r  b y  Lemma 1 . 1 6 .  a)  a n d  
l 

hence a G-homeomorphism. Since V i is G-homeomorphic to U i x ]I/2,1] also 

~V. i s  a G - h o m e o m o r p h i s m .  B e c a u s e  GSm_ 1 c Xm_ 1 i s  o p e n  GU i c G / H  i x S m-1 t t 
1 

c X are open and we have a G-push-out GV i c G/H i x D m a n d  GS m m 

/i GU 
1 

i6I 

I 
II GV. 

iEI i 

GSm_ I 

~, GS 
m 

Now the inverse maps of ~0m_ I , ~Ui, ~V.1 induce a G-map GS m -~ G x G S m 
x 

such that both compositions with ~0 m : G x G 
X 

GS ~ GS are the identi- 
m m 

ty. Hence ~0 m is a G-homeomorphism onto the open subset GS m c X m. This 

finishes the induction step. 

Now we give the final limit argument. Of course we define our slice 

S c X as the Gx-SUbspace U S m. Let # : G x G S ~ GS be the obvious 
m~n x 

G-map. Since GS N X m is GSm, GS m c X m is open and X has the weak topo- 

logy with respect to {X m I m ~ n}, GS is open in X and GS has the weak 

topology with respect to {GSm I m ~ n}. Hence the collection of G-maps 

~-I 
m 

GS m ~ G x G S ~ G x G S induce an inverse GS ~ G x S of ~. 
x m x Gx 

Hence ~ is the desired G-homeomorphism. 
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A Hausdorff space X is completely regular if for any x E X and neigh- 

borhood U there is a continuous function f : X ~ [O,1] with f(x) = O 

and f(X~U) = 1. A Hausdorff space X is completely regular if and only 

if it is homeomorphic to a subspace of a compact space (Tychonoff, see 

Schubert [1964] 1.9.2., Satz I). 

Theorem 1.38. Slice Theorem. 

Let G be a Lie group and X a completely regular proper G-space. Then 

there is a slice at x for any x E X. 

Proof: Palais [1961]. The definition of a proper G-space given there 

and the one we use agree by tom Dieck [1987], 1.3.21. Also the defini- 

tion of a slice in Palais [1961] and our are equivalent by Palais [1961], 

p. 306. A proof for compact G can also be found in Bredon [1972], 

II.5.4., Montgomery-Yang [1957], Mostow [1957]. m 

The slice theorem has fundamental meaning for the theory of transfor- 

mation groups (see for example tom Dieck [1987] 1.5.). We are especial- 

ly interested in path lifting. 

Preposition 1.39. Let X be a proper completely regular G-space and G b_~e 

a Lie group. Then any path u : I - X/G can be lifted to a path v : I ~ X, 

i.e. p 0 v = u for the projection p : X - X/G . 

Proof: For compact G this is proved in Montgomery-Yang [1957] or Bredon 

[1972] II.6.2. We show how we can reduce the problem to compact G. Be- 

cause X is proper X/G is again compactly generated and especially a 

Hausdorff space (Lemma 1.19). Since image u is compact we can assume 

without loss of generality that image u lies in GS for a slice S. Then 
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GS/G is homeomorphic to S/G x so that it suffices to lift the path along 

S ~ S/G x. But G x is compact, o 

Corollary 1.40. Let G b_~e ~ topo!o~ical group and X ~ proper G-space such 

that G/G x i_ss path connected for some x £ X. Assume either that X is a 

G-CW-complex or that G i__{s ~ Lie group and x completely regular. Then: 

a) p~ : ~l(X,x) ~ ~I(X/G,xG) is sur~ective. 

b) If X i__ss simply connected then also X/G. o 

Corollary 1.40. is sharpened in Proposition 8.10 and 8.12. 

Proposition 1.41. Le__~t G b~e ~ topological group and (X,A) a relative G- 

CW-complex. Let B c A be a G-subspace and U ann open G-nei~hbourhood of 

B i__nn A such that i : B ~ U is ~ stronq G-deformation retraction (i.e. 

there is a G-map r : U ~ B with r o i = id and i o r ~G id rel. B). 

Consider a__nn open G-neighbourhood V of B i__nn X with B c clos U c V. 

Then there is an open neighbourhood W o_~f B i__nn X with B c U c W c clos 

W c V such that B ~ W is ~ strong G-deformation retraction. 

Proof: We leave the proof to the reader as the technique is the same as 

in the proof of Theorem 1.37. There we have described how to thicken a 

c X such that Sm_ 1 ~ S is a G-subset Sm_ 1 c Xm_ I to a G-subset S m m m 

strong G-deformation retraction. See also Lundell-Weingram [1969] II. 

6.1. in the non-equivariant case. o 

We close this section with some terminology. A relative G-CW-complex 

(X,A) is n-dimensional if X = X holds and finite-dimensional if it is n 

n-dimensional for some n. It is finite if there are only finitely many 

open cells. We call it skeletal-finite if each X n is finite. In the 

literature this is often named of finite type but we prefer skeletal- 

finite to avoid confusion with the notion'of finite orbit type"intro- 

duced later. If G and A are compact,then (X,A) is finite,if and only if 

X is compact. One should notice that G is a zero-dimensional finite G- 
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CW-complex but just as a space G is not a zero-dimensional or finite 

CW-complex in general. 

Comments 1.42. The notion of a CW-complex is due to J. H. C. Whitehead 

[1949] and can be found in nearly any text book on algebraic topology. 

Its extension to the equivariant case is carried out in tom Dieck [1987] 

II.1. + 2., Illman [1974] and Matumoto [1971]. We have compared their 

definitions with our in Remark 1.15. 

Of course the main interesting case is the one of a compact Lie group 

where a lot of the proofs above are much simpler. For example, the set 

Q~(G/H x D n) is compact and hence closed (compare 1.3.). Therefore the 

reader might wonder why we also include the more general case. One rea- 

son is the following. Consider a G-CW-complex X with fundamental group 

= ,i x. Then there is an extension of Lie groups 1 ~ ~ ~ ~ ~ G ~ I and 

a ~-CW-structure on ~ such that the ~-action on ~ extends the ~-action 

on ~ and covers the G-action. If ~ happens to be infinite ~ is not com- 

pact. However, if G acts properly on X, then ~ acts properly on ~. There- 

fore we are forced not only to study actions of compact Lie groups,but 

proper actions of Lie groups,since the passage to the universal cover- 

ing is very important. We will see that most of the important proper- 

ties of G-CW-complexes for compact Lie groups carry over to proper G- 

CW-complexes for Lie groups. Proper acticnsof ncn~ctgroups are inter- 

esting for their own right and appear in the literature (see for example 

Bourbaki [ 1961 ] III.4., Connolly-Kozniewski [ 1986], [ 1988] , 

Connolly-Prassidis [ 1987 ] . 
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Exercises 1.43. 

1. A G-CW-complex X is finite if and only if X/G is compact. 

2. Let X be a G-CW-complex and Y a H-CW-complex. Define their join X * Y 

by CX x y U X x y X x CY if CX is the cone over X. Show that there is a 

canonical G x H-CW-complex structure on it. 

3. Equip SO(3)/SO(2) with at least two different WSO(2)-CW-complex- 

structures. 

4. Let G be a finite p-group and X a finite G-CW-complex. Show for the 

Euler-characteristic X 

x(X) ~ x(X G) mod p 

If G is a torus prove X(X) = x(xG). 

5. Let G be a n-dimensional compact Lie group. If X is G-CW-complex of 

dimension m, then the singular homology groups Hi(X) vanish for 

i > n +m. Is the converse true? 

6. Let G be a compact Lie group acting on the (compactly generated) 

space X. Then: 

a) X/G is compactly generated. 

b) p : X ~ X/G is proper. 

c) G x X ~ X (g,x) ~ g-x is proper. 

7. If H is a (closed) subgroup of G and X a proper G-space then X is a 

proper H-space. 

8. Let f : X ~ Y be a surjective proper G-map. If X is a proper G- 

space then also Y. 

9. Let H be a subgroup of G. Then G acts properly on G/H if and only if 

H is compact. 

10. The action of SL(2,C) on the Riemann sphere S 2 = f U {~} 
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qa b I az+b 
, Z ~ CzU+d 

is not proper. 

11. Let G be a Lie group and X a proper completely regular G-space. 

Assume that all orbits have type G/H. Then the orbit map X ~ X/G 

is the projection of a fibre bundle with fibre G/H and structure 

group WH. 

12. Let G be a Lie group and f : X ~ Y a bijective map between com- 

pletely regular proper G-spaces. If f/G : X/G ~ Y/G is a homeo- 

morphism then f is a G-homeomorphism. 

13. Let G be a Lie group and X a completely regular G-space. If X is 

prope~ X (H) is closed in X for all H c G. 

14. Prove Corollary 1.40. in the case of a G-CW-complex. Hint: 

X1/G ~Gis l-connected. 
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2. Maps between G-CW-complexes. 

We consider G-maps between G-CW-complexes. We state an equivariant Cel- 

lular Approximation Theorem and Whitehead Theorem and give criterions 

for a G-map to be a G-homotopy equivalence. We deal with G-CW-approxi- 

mations and G-spaces of the G-homotopy type of a G-CW-complex like G- 

ENR-s. 

A G-map f : (X,A) ~ (Y,B) between relative G-CW-comp!exes is called 

cellular if f(X n) c Yn holds. Let G be a topological group. 

Theorem 2.1. (Cellular Approximation Theorem) 

a) Let (X,A) and (Y,B) be relative G-CW-complexes and f : (X,A) ~ (Y,B) 

be a G-map. Suppose that f restricted to the relative G-CW-subcom- 

plex (X',A') is cellular. 

Then f i_~s G-homotopic relative X' to a cellular G-map. 

b) Let f and g : (X,A) ~ (Y,B) be cellular G-maps which are G-homo- 

topic. Then there is a cellular G-homotopy between them. 

Proof: See Whitehead [1978] II.4.6. for the non-equivariant case. A proof 

for G-CW-complexes is given in tom Dieck [1987], II.2. 

The set of isotropy groups of a G-space X is Iso X = {Gx I x 6 X}. It is 

closed under conjugation because Gg x = gGxg-1. Let Con G be the set 

{(H) I H c G} of conjuqacy classes of subgroups Q f G. Given ~ c Con G 

we call X of orbit type ~ if {(H) I H 6 Iso X} ~ ~ holds. We say X has 

finite orbit type if it is of orbit type ~ for finite ~ . 

Recall that a map f : X ~ Y is n-connected if ~i(f) : ~i(x,x) 

i(Y,fx) is bijective for i < n and surjective for i = n for all x 6 X. 

It is a weak homotopy equivalence if ~ i(f) is bijective for all i~ O and 

x6X. 
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In the following let H~ be an additive generalized homology theory satis- 

fying theEilenberg-Steenrod axioms except the dimension axiom and ful- 

fills additionally the additivity axiom (H~(IIX i) = ~ H~(X i) for ar- 
I I 

bitrary I) (see Whitehead [1978] XII.6.). It is obvious what homologi- 

c_al n-connected and weak homoloqy equivalence means. 

Consider ~ c Con G and a function ~ : ~ ~ ~. We call a G-map 

f : X ~ Y (homological) (7 ,~ )-connected if fH is (homological) 

~(H)-connected for each (H) £ ~ If • = Con G and ~ the constant 

function with value n, we say, that f is (G,n)-connected. If fH is a 

weak homology resp. homotopy equivalence for each (H) 6 ~ we call f a 

weak ~ -G-homology resp.-homotopy e~uivalence. In the case ~ = Con G 

we omitt ~ . 

The definition of a G-CW-complex is settled in such a way that the fol- 

lowing technique can be carried out (see 1.6.). 

2.2. Consider a G-map f : A ~ Y, a subset ~ c Con G and a function 

: ~ ~ 70 . Assume that A/G is a Hausdorff space. Suppose that we 

are given for each (H) 6 ~ a set S(H) = {u(i,H) I i 6 I(H)} such that 

u(i,H) 6 ~ (fH,x) for some x £ X H holds. Represent each u(i,H) by (H) 
a diagram 

S ~ (H)-I (~(i,H) ~, AH 

Q(i,H) 
D ~ (H) ~, yH 

This is the same as a diagram of G-spaces 
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G/H S 9 (H)~I q(i,H) x % A 

I ,1 
G/H x D ~(H) Q(i,H) 3 Y 

Let F : X ~ Y be given by the G-push-out where li runs over 

{i J i E I(H) , (H) 6 ~ }. 

llq (i,H) 

ILG/H x S ~ (H)-I ) A 

.U.G/H ~ D '~(~)  

lIQ(i,H) 

Then (X,A) is a relative G-CW-complex (1.6.). We say that F is obtained 

from f by attachin~ cells according to ~ , ~ ,{S(H) r (H) 6 Con G}. If 

A is already a G-CW-complex we can assume by the Cellular Approximation 

Theorem 2.1. that image q(i,H) lies in A (H)_I. Then (X,A) is even a 

pair of G-CW-complexes. 

Let 9- : ~ ~ ~ be the function ~ -(H) = ~ (H)-I. Suppose that f is 

(~ , ~ -)-connected. Moreover assume for any (H) 6 ~ and x £ A H that a 

set of generators of ~ (H) (fH,x) is contained in S(H). Then F : X ~ Y 

is (~ ,9 )-connected (compare Whitehead [1978], p. 211 - 216). 

If we do such a process or even an iteration of it,we say that we make 

f highly connected by attachin@ cells. [] 

if f : Y ~ Z is a G-map we denote by [f] its G-homotopy class. Let 

[X,Y] G be the set of G-homotopy classes of G-maps X ~ Y. If (X,A) is 
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a relative G-CW-complex, let dim X H be the integer n, if X H = X H but 
n 

X H , X H ~. n n-1 holds. If no such n exists we write dim X H = 

Proposition 2.3. Let ~ c Con G and a function m : ~r ~ ~ b_~e ~iven. 

Then the followin~ statements for a G-map f : Y ~ Z are equivalent 

provided that Y/G is a Hausdorff space. 

i) f is (~, 9 )-connected. 

ii) Let X be a G-CW-comp!ex of orbit type ~ and f. : [X,Y] G ~ [X,Z] G 

be the induced map. Then f. is bijective if dim X H < m(H) for all 

(H) 6 ~ holds and surjective if dim X H ~ ~(H) for all (H) 6 

is valid. 

iii) There is a relative G-CW-comp!ex (Y,Y) and an extension f : ~ ~ Z 

of f such that each cell G/H x D n satisfies (H) 6 ~ and n > m (H) 

and f is a weak ~ -G-homotopy equivalence. 

Proof: i) = iii). Make f highly connected by attaching cells. 

-X H X H- iii) = i). It suffices to check that ( , n ] is n-connected for a G-CW- 

complex X. This is easily reduced to the case X = Xn+ 1. Then X H is given 

as a push-out 

A ~ X H 
n 

B ) X H 
n+l 

such that A is a strong deformation retraction of a neighbourhood in B 

and (B,A) is n-connected. Now the result follows from Blakers-Massey 

excision theorem (see tom Dieck-Kamps-Puppe [1970], p. 211~. 

ii) = i). Use the identification [G/H x sn,x] G = [sn,xH]. 

i) = ii) see tom Dieck [1987], II.2.6. [] 

In particular any G-space Y has a G-CW-approximation (X,f) i.e. a G-CW- 
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complex X together with a weak G-homotopy equivalence f. Namely, apply 

Proposition 2.3. to ~ = Con G, ~ - -I and ~ ~ Y. A space X has a 

natural CW-approximation by the geometric realization of the associated 

semi-simplicial complex (see Lamotke [1968] p. 218, May [1967] 16.6., 

Milnor [1957]. This is carried over to the equivariant case in Matumoto 

[1984]. 

Theorem 2.4. The Equivariant Whitehead Theorem. 

Let f : X ~ Y b~e a G-map between G-CW-complexes such that fH is a weak 

homotopy equivalence for all H £ Iso X U Iso Y. Then f is ~ G-homotopy 

equivalence. 

Proof: The map f~ : [Y,X] G ~ [y,y]G is bijective by Proposition 2.3. 

Hence there is g : Y ~ X with f o g ~G idy. Since also 

g~ : [X,Y] G ~ [X,X] G is bijective there is h : X ~ Y with 

g o h ~G idx" Hence g o f ~G g o f o g o h ~G g o h ~G idx so that f has the 

G-homotopy inverse g. 

Assumption 2.5. Assume for the G-space X: 

i) X has finite orbit type. 

ii) X >(H) ~ X (H) is a G-cofibration for H 6 Iso X. 

iii) X H ~ XH/WH is a numerable principal WH-bundle in the sense of 

Dold [1963], i.e. locally trivial over an open cove~ which has a 

subordinate locally finite partition of unit~ and X H is a proper 

WH-space. 

There is the following variant of Theorem 2.4. 

Theorem 2.6. Let G b__ee ~ compact Lie group. Let f : X ~ Y be a G-map 

between G-spaces satisfying 2.5. Then f is a G-homotopy equivalence if 

and only if fH X H yH : ~ is a homotopy equivalence for any 

H 6 Iso X U Iso Y. 
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Proof: See tom Dieck [1979] 8.2.4. In the proof assumption 2.5. ii) is 

demanded for any H c G and fH is supposed to be a homotopy equi- 

valence for all H c G. By inspecting the arguments one recognizes that 

our assumptions are sufficient, o 

Remark 2.7. Theorem 2.6. seems also to be true for G an arbitrary Lie 

group if X and Y are proper completely regular G-spaces since the exis- 

tence of slices is still true (Theorem 1.38.). o 

Corollary 2.8. Let G be a compact Lie group and Y be a G-space satis- 

fying assumption 2.5. Then Y has the G-homotopy type of~ ~ G-CW-complex 

X with Iso X = Iso Y if and only if Y H has the homotopy type of a CW- 

complex for any H £ Iso Y. 

Proof: By Proposition 2.3. there is a G-CW-complex X of orbit type 

~ = {(H) I H 6 Iso Y} and a weak ~ -G-homotopy equivalence f : X ~ Y. 

Since X H and yH are homotopic to CW-complexes for H 6 ISO Y the map fH 

is a homotopy equivalence for any H 6 Iso Y. Then f is a G-homotopy equi- 

valence by Theorem 2.6. o 

Remark 2.9. Let G be a compact Lie group. A G-ENR (Euclidean Neighbour- 

hood Retract) is a G-space which is G-homeomorphic to a G-retract of some 

open G-subset in a G-representation. A G-ENR satisfies assumption 2.5. 

(see tom Dieck [1979] 8.2.5.). A finite G-CW-complex and a compact smooth 

G-manifold are compact G-ENR-s. All these statements can be derived from 

the next result, o 

Proposition 2.10. Let G be ~ compact Lie group. Let X be a G-space which 

is separable metric and finite-dimensional. Then X is a G-ENR if and on- 

ly if X i_~s a locally compact G-space of finite orbit type and x H is a 

(non-equivariant) ENR for any H 6 Iso X. 

Proof: Jaworowski [1976]. o 
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Corollary 2.11. Let G be a compact Lie group. Then a G-ENR has the G- 

homotopy type of a G-CW-complex of finite orbit type. 

Proof: Each ENR has the homotopy type of a CW-complex (Milnor [1959]). 

Now apply Corollary 2.8. [] 

Proposition 2.12. Let G be a topological group and Y a G-space. Consider 

a subset ~ c Con G. Then Y has the G-homotopy type of a G-CW-complex 

X of orbit type ~ if and only if Y is dominated by a G-CW-complex X of 

orbit type ~ (i.e., there are G-maps r : X ~ Y and i : Y ~ X with 

r o i ~G idy) 

Proof: Choose such domination (X,r,i) of Y. By attaching cells G/H x D n 

with (H) 6 ~ we get an extension ~ : X ~ Y of r : X ~ Y such that 

is a weak~ -G-homotopy equivalence and (X,X) a pair of G-CW-complexes. 

Let [ : Y ~ X be the composition of i with the inclusion. Then 

o [ =G idy. The G-map i o r : X ~ X is a weak ~-G-homotopy equiva- 

lence and X a G-CW-complex of orbit type~ . Then [ o ~ and hence ~ is a 

G-homotopy equivalence by the Equivariant Whitehead Theorem 2.4. [] 

Lemma 2.13. Let G be a topological group. Consider the commutative dia- 

[ram of G-spaces with G-cofibrations i and j. 

X 2 < X o ~ X 1 

J 
Y2 < Yo ~ YI 

Let f : X ~ Y be the G-map induced on the G-push-outs of the rows. 

Assume for fo,fl and f2 one of the followin q properties 

a) fi i_~s (~,~connected. 

b) fi i_~s homolo~ical (~)-connected. 

c) fi is a weak ~-G-homotopy equivalence. 
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d) fi is a weak ~-G-homoloqy-equivalence. 

e) f~ is a homotopy equivalence for any H c G with 

f) fi is a G-hom0topy equivalence. 

(H) ~ T 

Then f has the same propert[. 

Proof: 

a) We reduce a) to c). Suppose a) holds for each f.. Then one can con- 
1 

struct using Proposition 2.3. a new diagram with [ a G-cofibration 

X2 "/ 

Y2 ~ 

o 

o 

Y o ~ Y1 

such that fi is a weak ~ -G-homotopy equivalence extending fi and 

(Xi,Xi) is a relative G-CW-complex with cells G/H x D n satisfying 

(H) 6 ~ and n > ~ (H) for i = O,1,2, Then the same is true for the 

G-push-out ~ : y ~ X and f : Y ~ X by c). Hence f is (~ , ~ )- 

connected by Proposition 2.3. 

b) This follows from Lemma 1.12. and 1.13., the Map Excision Theorem for 

a homology theory (Whitehead [1978] XII.6.7.) and the long homology 

sequence of pairs. 

c) Because of Lemma 1.12. + 1.13. we can assume G = {I}. Now apply 

Bousfield-Kan [1972] XII 3.1. and XII 4.2. 

d) follows from b). 

e) Brown [1968] p. 249 or tom Dieck [1971] Lemma I. 

f) The non-equivariant proof in e) carries over directly, s 

Proposition 2.14. Let G b_~e ~ compact Lie group @n d f : x ~ Y be a G- 

map between G-spaces satisfying assumption 2.5. Assume for an[ 

H 6 Iso X U Iso Y that one of the following statements holds 
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a) fH is n-connected. 

b) fH i_~s h0molo~ical n-connected. 

c) fH is a weak homotopy e~uivalence. 

d) fH is ~ wea___~k homology e~uiva!gnc 9. 

e) fH is a homotopy equivalence. 

Then this holds for any H c G. I__nn the case e) w_~e know already from 

Thgorem 2.6. that f is a G-homot0py equivalence. 

Proof: The proof is done using an important technique, induction over 

the orbit bundles. Choose a numeration {(HI),(H2),...,(Hr)} of 

{(H) I H 6 Iso X U Iso Y} such that (H i ) c (Hj) ~ i Z j holds. The in- 

duction runs over r. The begin r = O is trivial, the step from r - I to 

r is done as follows. Write H = H 
r 

r-1 (Hi) r-1 (H i ) 
Let X be U X and Y be U Y . For any H c G the H-fixed point 

i=I i=I 

set X H is ~ X g where X g is the preimage of the diagonal under 
g 6H 

X ~ X x X x ~ (x,gx). Hence X H is closed. Since G is compact 

X (H) = G °  X H is closed because G x X ~ X is a closed map (Bredon [1972] 

I.I.2.). Therefore x(H),x >(H) and X are closed G-subspaces of X. More- 

over, X = X U X (H) and X >(H) = X N X (H) so that we have the G-push-out 

2.15. x > ( H ) .  

2 
x (HI x 

Let f, f>(H) and f(H) be the G-maps induced by f so that f is their G- 

push-out. The G-spaces X >(H) and X have at least one orbit type less 

than X. By induction hypothesis ~K and (f>(H))K have property a), b), 

c), resp. d) for any K c G. Because of Lemma 2.13. it suffices to prove 
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for any K c G that (f(H))K has property a), b), c) resp. d) for each 

K c G. 

Consider the square 

2.16. G/H K xWH X >H , (x>(H)) K 

x ~ (x (~) K G/H K Xwt t ) ) 

where the horizontal maps send (gH,x) to gx. Since (x>(H)) K and (x(H)) K 

are closed in X and G x X ~ X (g,x) ~ gx is closed (Bredon [1972] 

X H (X>(H) K (x(H)) K is closed and espe- I.I.2.) the map G/H K xWH it ) 

cially an identification. Now it is easy to check that 2.16. is a push- 

out so that (f(H))K is the push-out of id xWH fH, id xWH f>H and (~(H))K 

(~(H))K T~ map - has proDertv a), b), c) resp. d) by induction hypothesis 

and also fH and f>H since (x>(H)) H is X >H. If we can show that then 

fH id xWH and id xWH f>H satisfy a), b), c) resp. d) then an application 

of Lemma 2.13. finishes the proof of Proposition 2.14. But this claim 

follows from the lemma below applied to X = G/H K since G/H K is a compact 

free smooth WH-manifold and hence a free WH-CW-complex by 1.9. [] 

Lemma 2.17. Let G be a topological group and X a G-CW-complex of orbit 

type ~ c Con G. Let G operate o__nn X from the ri@ht. Consider a G-map 

f : Y ~ Z between proper G-spaces satisfying one o_~f the followin~ 

statements for all(HI6 ~. 

a) f/H : Y/H ~ Z/H is n-connected. 

b) f/H i__{s homolo@ical n-connected. 

c) f/H is a weak homotopy equivalence. 

d) f/H is a weak homology e~uivalence. 

Then id x G f : X x G Y ~ X x G Z has the same property. 
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Proof: We show inductively over n that Lemma 2.17. holds if X = X n. we 

leave it to the reader to carry out the final limit argument using 

Milnor [1962] or Whitehead [1978] xIII 1.3. Notice that Y and Z are 

proper so that Y/H and Z/H are again compactly generated by Lemma 1.19. 

We have the G-push-out 

]_tG/H i x S n-1 ~ Xn_ 1 
I 

I I 
IIG/H i x D n ~ X 
I n 

with j a G-cofibration. Crossing it with Y yields again a G-push-out 

with j x ida G-cofibration (Steenrod [1967] 4.4. and 7.3.). Since 

(G/H i x S n-l) x G Y is homeomorphic to Y/H i x S n-l, the spaces 

(G/H i x S n-l) x G Y and (G/H i x D n) x G Y are compactly generated by Lemma 

1.19. We can assume that Xn_ I x G Y is compactly generated by induction 

hypothesis. Hence we get by Lemma 1.12. and 1.13. a push-out with 

j x G ida cofibration 

(IIG/H i x S n-l) x G y ) Xn_ I x G y 
I 

(JIG/H i x D n) x G y ) X n x G y 
I 

Because of Lemma 2.13. and the induction hypothesis it suffices to show 

that 

id x G f: (IIG/H i x D n) x G y ~ (IIG/H i x D n) x G Z 
I I 
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satisfies a), b), c) resp. d). But this follows from the assumption 

about f/H i since (G/H i × D n) x G Y is naturally homotopy equivalent to 

Y/H.. [] 
l 

Corollary 2.18. Let G be a compact Li e group and Y be a G-space satis- 

fying assumption 2.5. Then there is a G-CW-approximation (X,f) by ~ G- 

CW-complex of finite orbit type satisfying Iso X = Iso Y. 

Proof: Because of Proposition 2.3. there is a G-CW-complex X of orbit 

type ~ = {(H) I H 6 Iso Y} and a weak ~-G-homotopy equivalence 

f : X ~ Y. Then f is a weak G-homotopy equivalence by Proposition 

2.14. 

Comments 2.19. A variant of Theorem 2.6. is shown for G-ANR-s in James- 

Segal [1978]. Corollary 2.11. is proved for G-ANR-s in Murayama [1983] 

13.3. More information about G-spaces of the homotopy type of a G-CW- 

complex can be found in Waner [1980a]. 

A lot of results of this section are of the type that a G-map f is a 

(weak) G-homotopy equivalence if fH is a (k~ak) homotopy equivalence for 

any H c G occuring as isotropy group. In fact, some work is done to en- 

sure that it suffices to look at isotropy groups only. One reason is to 

obtain Corollary 2.18. as we need finite orbit type to apply the impor- 

tant technique of induction over the orbit bundle. Another application 

is equivariant surgery. Consider a G-map f : M ~ N between G-manifolds 

such that for simplicity M H and N H are connected for each H c G. By equi- 

variant surgery we can achieve at best that fH is a weak homotopy equi- 

valence for each H 6 Iso M = Iso N. Hence we need an extra result tell- 

ing us that f is a G-homotopy equivalence. 

In the case of a finite group G there is for any K c G an H £ Iso M = 

Iso N with M K = M H and N K = N H so that obviously fK is a weak homotopy 

equivalence for all K c G. However, if G is a compact Lie group, one 

cannot argue in this fashion. A counter-example is G = S0(3) and M the 
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sphere in 2 3 ~ 2 3 where G acts on each 2 3 in the obvious way, Then there 

is no H 6 Iso M with M = M H. D 

Exercises 2.20. 

I. Let X be the subspace of 2 2 given by the union of {(x, sin ~), 

x 6 [0,1]} U {0} x [-2,1] U [0,1] x {-2} U {I} x [-2,1]. Show using Cech 

cohomology that the projection onto a point p : X ~ {*} is a weak 

homotopy equivalence but not a homotopy equivalence. Does X have the 

homotopy type of a CW-complex? (see Wallace [1970] p. 232). 

2. Consider the G-push-out with j a G-cofibration: 

f 
A ~Y 

X "> Z 

Assume that A,X,Y have the G-homotopy type of a G-CW-complex resp. 

finite G-CW-complex resp. finite dimensional G-CW-complex resp. ske- 

letal-finite G-CW-complex. Then the same is true for Z. 

Is the analogous statement for weak G-homotopy type true? 

3. Let ~r c Con G be given. Consider a G-CW-complex Y of orbit type 

such that yH is contractible for all (H) 6 ~ 

a) If X is any G-CW-complex of orbit type ~ then there is precisely 

one G-homotopy class of G-maps X ~ Y. 

b) If Y' has the same properties as Y then Y and Y' are G-homotopy- 

e~civalent. 

c) Assume for any H,K c G that (H),(K) 6~ implies (H N K) 6 ~ . Let 

A be II G/H and Y the countable infinite join • A. Then Y is 
(H) £~ 

a G-CW-complex of orbit type~ such that yH is contractible for 
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(H) C 3 ~ . 

(compare tom Dieck [1974], tom Dieck [1987] 1,6,~ Elmendorf [1983]) 

4. Let G be a compact Lie group and M a compact smooth G-manifold. Show 

that M has the G-homotopy type of a finite G-CW-complex using the 

following hints (see also 1.9.). 

Use induction over the orbit bundle. Let H be minimal in the usual or- 

dering of the orbit types. Then M(H ) = M (H) is a closed G-submanifold 

in M. Use the smooth G/H-bundle G/H ~ M(H ) ~ M(H)/G (see Bredon 

[1972] VI. 2.5.) and the fact that the (non-equivariant) smooth compact 

manifold M(H)/G has the homotopy type of a finite CW-complex to show 

that M(H ) is G-homotopic to a finite G-CW-complex. Let ~ be the normal 

bundle of M(H ) in M. By induction hypothesis the sphere bundle S~ and 

hence the disc bundle D~ have the G-homotopy type of a finite G-CW- 

complex. Identify D9 with a tubular neighbourhood of M(H ) in M (Bredon 

[1972] VI. 2.2.). If M' is M~int D~ , we can view M as the G-push-out 

of D~ ~ S~ - M'. Now apply the induction hypothesis to M' and 

exercise 2 above. 

5. The product of a G-cofibration with a H-cofibration is a G x H-co- 

fibration. The product of a G-push out with j a G-cofibration and a 

H-space is a G x H-push-out with j x ida G xH-cofibration. 

6. Disprove or prove for a map f : Y ~ Z. 

a) If f~ : [X,Y] ~ IX,Z] is bijective for any finite-dimensional 

CW-complex X then f is a weak homotopy equivalence. 

b) as in a) but only for finite X. 

Let X + c~2 be the cone of {(~,0) I n = 1,2,3,...} U {(O,O)} over 7. 

(O,1) and X- = {(a,b) E ~2 ~ (-a,-b) 6 X}. Show 

a) The inclusion j : (0,O) ~ X'is no cofibration. 

± X ± b) The projections p : ~ {(O,O)} are homotopy equivalences. 
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c) The map p+ - X + v p : v X- --~ {(O,O)} induced between the push-outs of 
j j id id 

X + {(O,O)} ~ X- and {(O,0)}< {(0,O)} ~{(O,O)} is not a 

homotopy equivalence (compare Lemma 2.13.). 

8. Give an example of a ~/2-space which does not satisfy assumption 2.5. 

9. We say that two G-spaces X and Y have the same weak G-homotopy type 

if there is a G-CW-complex Z together with weak G-homotopy equiva- 

lences Z ~ X and Z ~ Y. Show that this defines an equivalence 

relation. Is the following relation ~ an equivalence relation 

X N y ~ there is a weak G-homotopy equivalence X ~ Y. 

10. Let G be a compact Lie group and X be a G-space satisfying assumption 

2.5. Suppose for H 6 Iso X that X H is simply connected and the singu- 

homology groups Hi(xH) are finitely generated for i ~ O. Then X lar 

has a skeletal-finite CW-approximation (Y,f) with Iso X = Iso Y. D 
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3. The geometric finiteness obstruction 

We recall that a G-CW-complex is finite if it has only finitely many 

n A finite domination (X,r,i) of a G-space open cells ei, n ~ O, i 6 I n . 

Y consists of a finite G-CW-complex X and G-maps r : X ~ Y and 

i : Y ~ X satisfying r o i ~G id. If Y has such a finite domination Y 

is finitely dominated. In this section we deal with the following ques~ 

t ion. 

Problem 3.1. When is a finitely dominated G-space G-homotopy equivalent 

to a finite G-CW-complex? o 

We have already shown in Proposition 2.12. that a finitely~ated G- 

space has the G-homotopy type of a G-CW-complex of finite orbit type. 

The approach to problem 3.1.,we describe in this section, is geometric. 

It is motivated by the geometric treatment of the equivariant Whitehead 

torsion we explain in section four. Later we also give algebraic ap- 

proaches and show that both agree. The advantage of the geometric treat- 

ment is that it is completely elementary and all the formal properties 

of the equivariant finiteness obstruction can be derived quickly. 

The goal of this section is to construct a functor from the category of 

G-spaces into the category of abelian groups 

Wa G : {G-spaces} ~ {abel. gr.} 

O . . 
and a function w assigning an element wG(x) 6 waG(x) to any finitely 

dominated G-space such that the following holds: 

Theorem 3.2. 

a) Obstruction property. 

Let X b_~e ~ finitely dominated G-space. Then X i_~s G-homotopy equiva- 

lent to a finite G-CW-complex if and only if wG(x) vanishes. 
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b) Homotopy invariance. 

i) If f : X ~ Y is ~ G-homotopy e~uivalence between finitely do- 

minated G-spaces, then f, : waG(x) ~ waG(y) sends wG(x) t__oo 

wG(y). 

ii) f =G f' ~ f* = f~" 

c) Additivity. 

If the followin@ di@gram is a G-push-out of finitely dominated G- 

spaces and k ~ G-cofibration 

k 
-X 2 X O 

J2 

X I ~ X 
Jl 

then: 

G 
w (X) = JI~wG(Xl ) + J2~wG(x2 ) - Jo,wG(Xo ) . o 

Given a G-space Y, consider the set of all G-maps f : X ~ Y with a 

finitely dominated G-space X as source. We define an equivalence relaticn 

N . Namely, fo : Xo ~ Y and f4 : X 4 ~ Y are equivalent if there is 

a commutative diagram 

io Jo 

( ~ X I _ X 0 

Jl ii 

X 2 ~ = X 3 : % X 4 
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such that Jo and Jl are G-homotopy equivalences, i O and i I are inclu- 

sions and (XI,X o) and (X3,X 4) are finite relative G-CW-complexes. In 

other words, X I and X 3 is obtained from X o and X 4 by attaching finitely 

many cells. Obviously ~ is symmetric and reflexive. The main difficulty 

in the proof of Theorem 3.2 is the verification of transitivity. 

We introduce some notation. We symbolize a diagram 

k 

X n ~ Xn+1 

f n ~  ~ n + 1  

Y 

by c resp. ~ if k is an inclusion and (Xn+1,Xn) a finite relative G-CW- 

complex resp. k is a G-homotopy equivalence. If k points in the other 

direction we write of course D resp. - . The diagram defining ~ corres- 

ponds to the chain c ~ - D. Hence we have to show that c ~ ~ ~ c ~ ~ 

can be reduced to c ~ - m without changing the ends. This can be done 

by a sequence of operations which again do not alter the maps at the 

ends: 

I)==~c= 

Use the G-push-out to substitute 

X'( "X : )X" \ l /  
Y 

b y  

X' ~ ~ X"' ~ ~ X" 

Y 
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2) m ~ = ~ m 

AS in I ) 

3) - -~ - - 

Glue the mapping cylinders together 

4) c c ~ c  

obvious 

5) -~ c =~ ~ c -~ ~ 

c stands for 

j i 
X' ) X ~ )X" 

Y 

Let k be a G-homotopy inverse of j. Since i is a G-cofibration by 1.5. 

there is a G-homotopy h : X" x I ~ Y with h O~ X = f' o k and h I = f". 

Now consider 

k i io ii 
X'~ -.- X ¢ ~ X" X" --~ ) xI < 

Y 

X" 

These operations make sense because of the following conclusions of 1.5, 
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1.29 and Lemma 2.13. 

3.3. Consider the G-push-out with j the inclusion of a relative G-CW- 

complex 

f 
A ..... ~IY 

X '~ Z 
F 

If f is a G-homotopy equivalence then F is a G-homotopy equivalence. If 

(X,A)  i s  f i n i t e ,  f i n i t e - d i m e n s i o n a l ,  r e s p .  s k e l e t a l  f i n i t e  r e l a t i v e  G-  
C W - c o m p l e x  t h e n  a l s o  ( Z , Y ) .  

T h e  f o l l o w i n g  c a l c u l a t i o n  f i n i s h e s  t h e  p r o o f  t h a t  ~ i s  a n  e q u i v a l e n c e  
relation 

C ~  

NOW we define waG(y) as the set of equivalence classes of such maps in- 

to Y. D i s j o i n t  u n i o n  d e f i n e s  t h e  s t r u c t u r e  o f  a n  a b e l i a n  s e m i - g r o u p  o n  

it with zero element represented by ~ ~ Y. Given [f] 6 waG(y) repre- 

sented by f : X ~ Y we have to construct an inverse. Choose a domina- 

tion ( Z , r , i )  o f  X. L e t  C i a n d  C r b e  t h e  m a p p i n g  c y l i n d e r s .  T h e r e  i s  a 

a G-map F : C i ~ X with F ~ X = id X and F [ Z = r. Then an inverse of 

[ f ]  i s  g i v e n  b y  t h e  c l a s s  o f  t h e  c o m p o s i t i o n  

F UX F f 
C i U x C i ~ X ~ Y 
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Namely, one easily constructs a commutative diagram (use Lemmata 4.11., 

4.17., 4.18.) 

Xll C i U x Cic ;C r U Z C i U X Ci~ Z ,~ _'@ 

Y 

A map g : Y ~ Z induces an abelian group homomorphism 

g~ : waG(y) ~ waG(z) by composition. Hence we have defined a co- 

variant functor 

3.4. Wa G : {G-spaces} - {abel. gr.} 

Define the geometric finiteness obstruction of a finitely dominated G- 

space 

3.5. wG(x) 6 waG(x) 

by the class of id : X ~ X. 

Proof of theorem 3.2. 

a) The if-statement is the non-trivial part. Suppose wG(x) = O for the 

finitely dominated G-space X. Then there is a co~utative diagram 

i 
X c ~ Y 

X 

such that (Y,X) is a finite relative G-CW-complex and Y is G-homotopy 

equivalent to a finite G-CW-complex Z. The mapping cylinder C i is a G- 



ezist for all integers k = 0, *1, f 2,.  . ., and can be calculated using the following recursive formu- 
lae: 

1 c k =  -{ n ( - a - - ~ ) ~ a t  - P k n ~ ~ - ~  , k =1 ,2 ,3 , . . . ,  1 (2.26) 
1 + kn 

and 
1 c-k-1 = -{-+a - ~ ) - ~ a i  + (1 - kn)c-k}, k = 1,2,3, . . . ,  ( 2 . 2 ~ )  

Pkn  
where 

1 
co = na:, 

and 

2 - cos(%)n 
Q,  = tan-' ( 

s i n ( 2 ) a  ). 

C-1 = < 

x + c o s ( F ) n  s, = tan-' ( 
s i n ( F ) ~  ). 

1 - 1  (5): 
2 ( - ~ ) ! - l ~ ~ , s i n ( ~ ) n ) ] ~  , 

j=1 
if n is even; 

m -  a  - 
2 j  + 1 - -  - z)  + 2 ( - ~ ) ! - 1 2  R, cos(7)r+ 

,=o 
1 - 8  - 

2 j  + 1 (5)' 
2 ( - ~ ) + - 1 2  S, sin(-)TI] , 

1=0 
n 

\ if n is odd. 

Proof: As in the preceding proof, co follows directly from (2.2a). Using (2.2a) and the 
substitution t = P(xn - 1) yields 

By considering the partial fraction decomposition of &, the above integral can be evaluated 
and then (2.2d) is obtained. The recurrence formula follows using integration by parts with 

u = t k ,  k # 0, and v = -n(-/3 - t ) ;  

Remark. The recurrence formula (2.2b) is used to compute ck for positive k > 1; (2.2~)  is 
used to  compute ck for negative k 5 -2. 
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This finishes the proof of %'heorem 3,2. [] 

The construction above, at least as an abelian semi-group, makes also 

sense in other situations. Namely, let D G be the functor 

3.6. D G : {G-spaces] ~ {abel. semi-gr.} 

we get by a construction analogous to the one for Wa G if we consider 

G-maps f : X ~ Y for X a G-space of the G-homotopy type of a G-CW- 

complex and change the equivalence relation by 

X O c X I ~ (XI,X O) is a relative G-CW-complex which is finite-dimen- 

sinal resp. skeletal-finite 

f 
X I ~ X 2 ~ f is a G-homotopy equivalence 

Moreover, we define for a G-space X of the G-homotopy type of a G-CW- 

complex 

3.7. dG(x) E DG(x) 

by the class of id : X ~ X. The verification that DG(x) is a well-de- 

fined abelian semi-group is the same as for waG(x). 

Proposition 3.8. A G-CW-c0mp!ex X is G-homotopy equivalent to a finite- 

dimensional resp. skeletal finite G-CW-complex if and only if 

dG(x) 6 DG(x) vanishes. 

We will later show that a G-CW-complex of finite orbit type is finitely 

dominated if and only if it is finite-dimensional and skeletal finite. 

Hence we obtain in principal also an invariant to decide whether a G- 

space is finitely dominated. We will deal with this problem later. 

The main difficulty, however, is that we cannot prove the existence of 

inverse elements in DG(x). In particular the proof for additivity also 

breaks down. The following example shows that we get a contradiction if 

DG(X) were an abelian group and fulfilled additivity. 



55 

Example 3.9. Let X be a finitely dominated G-CW-complex, Consider the 

two G-push-outs 

X× ~I e ~ Xx I @ "~ ~ XxO 

X× I '} XxS 1 Xx I ---~ X× ~I 

We get from additivity and homotopy invariance that wG(x x S I) vanishes 

in waG(x x SI). Hence X x S I is G-homotopy equivalent to a finite G-CW- 

complex. We will deal with this phenomenon more extensively later. 

If DG(x) were an abelian group and additivity were true,the same argu- 

ment would prove for any G-CW-complex X that dG(x× S I) vanishes. Hence 

X x S I would be up to hcmotopy finite-dimensional. Since X x~ ~ X x S I is a 

covering and ~ contractible,X itself would be G-homotopy equivalent to 

a finite-dimensional G-CW-complex, a contradiction, s 

If we restrict ourselves to G-CW-complexes X which are dominated by a 

finite-dimensional resp. skeletal-finite G-CW-complex we would get an 

abelian group and additivity as for Wa G . However, we would obtain the 

zero-functor since we later prove that such X has already the G-homoto- 

py type of a finite-dimensional resp. skeletal-finite G-CW-complex. 

Now we indicate how the computation of waG(y) is reduced to the case 

G = I. We define an homomorphism 

3.10. ~(H) : wal(EwH xWH yH) ~ waG(y) 

as the composition 

(I) (2) (3) (4) 
WaI(EwH xWH yH) ~ waWH(EwH x yH) ~ waWH(yH) > waNH(yH) ) 

(5) 
Wa G(G XNH yH) ) Wa G(Y) 
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Here and elsewhere EG is the classifying space and G ~ EG ~ BG the 

universal principal G-bundle of a topological group G (see Husem~ller 

[1966], 5.10.5). It is determined by the property that EG is contrac- 

tible. The map (I) is given by the pull-back construction applied to 

yH (see 1 25.) It the WH-principal bundle WH ~ EWH × yH ~ EWH xWH . . 

is an isomorphism, an inverse is given by dividing out the group action 

(1.24.). The homomorphism (2) and (5) are induced by the ca- 

nonical maps EWH × yH ~ yH and G ×NH yH ~ Y. Restriction with 

NH ~ WH and induction with NH ~ G defines (3) and (4). We later 

prove 

Theorem 3.11. 

a) There is a natural isomorphism 

@ ~(H) : 
(H) 6 Con G (H) 6 Con G 

Wa I (EWH xWH yH) waG(y) 

b) Let Z be a space such that ~l(Z,z) is finitely presented for all 

z 6 Z. Then there exists a natural isomorphism 

~o(~1 (C)) ~ Wa I (Z) a 
c 6 ~o(Z) 

Hence the computation of waG(y) is reduced to the computation of re- 

duced projective class groups of integral group rinqs. 

Remark 3.1 2. We have already mentioned that a compact G-CW-complex X is 

finite. However a compact finitely dominated G-space X is not-necessari- 

ly G-homotopy equivalent to a finite G-CW-complex although it is G-homo- 

topy equivalent to a finitely dominated G-CW-complex. Namely, any 
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finitely dominated CW-complex is homotopy equivalent to a compact space 

(see Ferry [1981 b] ). ~oreover there are compact locally smooth topo- 

logical G-manifolds with non-vanishing finiteness obstruction (see 

Dovermann-Rothenberg [1988], quinn [1982]). D 

Comments 3.13. The geometric approach to the finiteness obstruction can 

be found in L~ck [1987 b]. We will later give an algebraic treatment and 

show that they agree. Other references for an algebraic approach to the 

equivariant finiteness obstruction are Andrzejewski [1986], Baglivo 

[1978], tom Dieck [1981], ~zuka [1984], Kwasik [1983] and LUck [1983]. 

They are based on Wall [1965] and Wall [1966] where the non-equivariant 

finiteness obstruction is introduced. Wall's articles seem to be moti- 

vated by Swan [1960 b]. 

In Swan [1960 b] the finiteness obstruction plays a role in the construc- 

tion of a finite free G-CW-complex X for a finite group G such that X is 

homotopic to S n. By homological algebra finitely dominated free G-CW- 

complexes X with X ~ S n are established and the finiteness obstruction 

comes into decide whether X can be choosen to be finite. This is essen- 

tial if one wants to substitute X by a G-manifold and finally by the 

standard sphere with a free G-action. This leads to the space form prob- 

lem (see for example madsen-Thomas-Wall [1976]). 

Further examples where finiteness obstructions naturally appear are the 

theory of ends of manifolds (Ouinn [1979], [1982], Siebenmann [1965]), 

actions on discs (Oliver [1975], [1976], [1977], [1978]). equivariant 

surgery (Oliver-Petrie [1982]), the theory of homotopy representations 

(tom Dieck-Petrie [1982])r existence of equivariant handle decompositions 

for topological G-manifolds (Steinberger-West [1985]) 

The construction of the finiteness obstruction makes also sense in the 

controlled setting using the ideas in Chapman [1983], section 3. This 

is related to the construction in Chapman ([1983], section 1 by a con- 

trolled Bass-Heller-Swan homomorphism (cf. section 7). 
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Exercises 3.14. 

i. Consider the G-push-out with j a G-cofibration 

f 
A ....... ~ Y 

j J 

X '~ Z 
F 

If A,X and Y are finitely dominated then Z is finitely dominated. 

2. Let G be a compact Lie group and X a G-sPace satisfying assumption 

2.5. Suppose for any H 6 Iso X that there is a WH-homotopy equiva- 

lence of pairs (xH,x >H) ~ (Z,Y) into a finite relative WH-CW-com- 

plex. Show that X is a G-homotopy equivalent to a finite G-CW-complex. 

3. Let G be a path-connected topological group and X a G-CW-complex such 

that X I consists of a single G-fixed point x. Consider the ~-chain 

complex C whose differentials are boundary operators in exact sequen- 

ces of triples 

... ~ ~n+l(Xn+1,Xn,X) ~ ~n(Xn,Xn_1,x) ~ ... 

Show that H~(C) is the singular homology of X/G. 

4. Let X be a finite dimensional Tn-cw-complex of finite orbit type such 

that X H is simply connected and H,(xH;~) finitely generated for H ~ G. 

Show that X is Tn-homotopy equivalent to a finite Tn-cw-complex, 

Hint: ~ (m) = {0] 
o 

5. Let G ~ E ~ E/G be a principal G-bundle. Define inverse isomor- 

phisms 
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waG(E)~ ~WaI(E/G) 

by dividing out the group action and the null back construction. 

6. Let G be a path-connected topological group and X be a free simply 

connected finitely dominated G-space. Suppose that Hi(X/G) is finite- 

ly generated for i ~ O and zero for large i. Then X is G-homotopy 

equivalent to a finite G-CW-complex. 

7. Let X be a finitely dominated CW-complex which is not homotopy equi- 

valent to a finite CW-complex. Let G be a compact Lie group with 

dim G a 1. 

Show that G x X is a finitely dominated G-CW-complex but not G-homo- 

topy equivalent to a finite G-CW-complexjwhereas its restriction to 

any finite subqroup H is H-homotopy eauivalent to a finite H-CW-com- 

plex. 

8~ Let H be a (closed) subgroup of the compact Lie group G. Let X be a 

G-CW-complex and res X its restriction to H. If X is finite, skeletal 

finite, finite-dimensional resp. finitely dominated then res X has 

the H-homotopy type of a H-CW-complex with the same property. 

9~ Let X be a simply connected finitely dominated G-CW-complex and Y a 

finite free G-CW-complex. Then X x V with the diagonal G-action is G- 

homotopy equivalent to a finite G-CW-complex. 

i0. Let X be a finitely dominated G-CW-complex°  Show that X is G- 

homotopy equivalent to a finite-dimensional G-CW-complex (Hint: 

Consider X × S I) 
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We introduce the equivariant version of a simple homotopy eouivalence 

and define geometrically the equivariant whitehead group and the ob- 

struction for a G-homotopy equivalence to be simple, its equivariant 

Whitehead torsion. The main properties like homotopy invariance and 

additivity are verified. We also deal with simple structures ( resp. 

simple G-homotopy type), especially on G-manifolds. We state the equi- 

variant s-cobordism theorem and rela£e isovariant Whitehead torsion to 

equivariant Whitehead torsion. Let G be a topoloqical group. 

Geometric construction of Wb~tghea d group and Whitehead torsion. 4.A°  

4.1. Consider the G-push out 

q 
A %, ~< 

I 
Q 

B ~ Y 

Suppose that (B,A) is a pair of G-CW-complexes, j is the inclusion and 

q is cellular. If Y is equipped with a G-CW-complex structure isomorphic 

to the one defined in 1.29 we call this G-push out a cellular G-push- 

out. n 

Example 4.2. Let f : X ~ Y be a G-map. Its mapping cylinder Cyl(f) is 

defined as the G-push out 

f 
X ~ Y 

X × I ~ Cyl (f) 

Let i : X ~ Cyl(f) be the canonical inclusion f s i~. 

is the G-push-out 

The mapp~ ~e of f 
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x {.} 

Cyl (f) ~ Cone(f) 

The canonical inclusions i : X ~ Cyl(f), j : Y ~ Cyl(f) and 

~ Cone(f) are G-cofibrations by Lemma 1.11 and j is a G-homotopy 

equivalence by Lemma 2.13. The canonical retraction r : Cyl(f) ~ Y of 

j is given by 

f 
x , ,  ~¥ 

 Cyl(f) 

If X and Y are G-CW-complexes and f is cellularsequi P Cyl(f) and Cone(f) 

with the G-CW-complex structure making the two G-push-outs above cellu- 

lar. Here we use the G-CW-complex structure on X x I of 1.27. Notice 

that all the canonical inclusions and retractions above are cellular. 

Let n ~ 1 be given. We equip (Dn,D n-1 ) with the following structure of a 

pair of CW-complexes. The zero-skeleton is a point and the n-2-skeleton 

is S n-2 obtained by attaching a (n-2)-cell trivially. We get D n-1 from 

S n-2 by attaching a (n-1)-cell and the (n-1)-skeleton S n-1 of D n b v 

attaching one more (n-1)-cell using the identity S n-2 ~ ~n-2 in both 

cases. We end up with D n by attaching a n-cell to gn-1 by the identity. 
Consider the G-push-out 

G/H D n-1 q x > x 

G/H x D n ~ y 
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such that X is a G-CW-complex and q(G/H x S n-2) c Xn_ 2 and 

q(G/H x D n-l) c Xn_ 1 holds. Notice that q needs not to be cellular. Never- 

theless the process described in 1.29. defines a G-CW-structure on Y 

such that (Y,X) is a pair of G-CW-complexes. Notice that Y is obtained 

from X by attaching a (n-1)-cell and n-cell in a specific way. If Y has 

a G-CW-complex structure isomorphic to the one above we call j : X ~ Y 

an elementary expansion. 

Lemma 4.3. Let j : A ~ X be a G-cofibration. Then j is a G-homotopy 

equivalence if and only if there is a strong G-deformation retraction 

r : X ~ A, i.e. ~ G-homotopy equivalence r wit h r o j = id A and 

j o r ~G idx rel j(A). 

Proof: Whitehead [1978] 1.5.9. o 

Hence there is a strong G-deformation retraction r : X ~ A if 

j : A ~ X is an elementary expansion. If ~ is a second one r and 

are G-homotopic relative j(A) because of r ~G r 0 j o ~ ~ ~ rel 9(A). We 

call any such strong G-deformation r : X ~ A an elementary qollaps~. 

Let f : X ~ X' and g : A' ~ A be isomorphisms of G-CW-complexes and 

j : A ~ X and r : X ~ A G-maps. Then j is an elementary expansion 

if and only if f 0 j 0 g, is, and analogously for r as an elementary col- 

lapse. 

A G-map (j,id) : (X,A) ~ (Y,A) between pairs of G-CW-complexes is an 

expansion relative A if it is a finite cow,position of elementary expan- 

sions. 

X = X o ~ X I ~ X 2 

We symbolize this by X ~Y re! A. 

X ~- Y 
r 

A G-map (r,id) : (Y,A) ~ (X,A) between pairs of G-CW-complexes is a 

collapse relative A if it is a finite composition of elementary collapses 
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Y * Y2 * "'" * Y = X Y = Yo I r 

We write Y~X rel A. 

A finite composition of expansions and collapses relative A 

X = X O ~X I ~X 2 ... ~X r = Y 

is called a formal deformation relative A and symbolized by X/~ Y rel A. 

Definition 4.4. ~ G-map (f,id) : (X,A) ~ (Y,A) between pairs of G-CW- 

complexes is a simple G-homotopy equivalence relative A if it is G-homo- 

topic relative A to a formal G-deformation relative A. 

W__ee speak of a simple G-homotopy equivalence if A i_~s empty. D 

We want to study in this section 

Problem 4.5. When is a G-homotopy equivalence simple? [] 

We will construct a covariant functor 

4.6. Wh G : {G-CW-compl.} ~ {abel. gr.} 

and a function assigning to any G-homotopy equivalence f : X 

tween finite G-CW-complexes an element 

4.7. TG(f) 6 whG(y) 

called its Whitehead torsion,such that the following holds. 

Theorem 4.8. 

a) Obstruction property. 

G-homotopy equivalence f : X 

i_~s simple if and only if TG(f) 

b) H omotopy invariance. 

i) 

Y be- 

Y between finite G-CW-complexes 

6 whG(y) vanishes. 

If f,g : X ~ Y are G-homotopy equivalences between finite G-CW- 
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complexes then f ~ g ~ TG(f) = T G(g) 

ii) If f,g : X ~ Y are G-homotopic then f~ =g~ : whG(x) ~ whG(y). 

c) Additivity 

Consider the followin~ map between cellular G-push-outs of finite G- 

CW-complexes such i I and k I are inclusions of G-CW-complexes and fo' 

fl,f2 and f G-homotopy equivalences 

i I 

i 2 

X o ~ X 2 

YI ~ Y 
Jl 

92 

G Then rG(f) = j1~zG(fl ) + j2~T (f2) - Jo~TG(fo ) . 

d) Logarithmic Property 

Le__~t f : X ~ Y an.__dd g : Y ~ Z b_~e G-homotoDy equivalences between 

finite G-CW-complexes. Then rG(g o f) = TG(g) + g G(f). D 

Some preparations are needed. 

Lemma 4.9. Consider the diagram of G-spaces 

q 
A .... ) X ~ U 

j~ I ~ J II i 

B 3 Y ~V 
Q 
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Let I be the left, II the right and III the outer square. 

a) Let I be a G-push-out. Then II is a G-push-out if and only if III i__ss 

G-push-out. 

b) Let I be a cellular G-push-out with respect t__oo j, i.e. j is the in- 

clusion of G-CW-complexes. Then II is a cellular G-push-out with re- 

spect t_~o J if and only i_~f III is a cellular G-push-out with respect 

to j. 

d) Let j and q be inclusions of G-CW-complexes. Then I is a cellular G- 

push-out with respect t__oo j if and only if I is a cellular G-push-out 

with respect t__oo q. 

Proof: left to the reader. 

Lemma 4.10. Let (X,A) and (Y,A) b__ee pairs of G-CW-complexes with X/~y 

rel A and f : A ~ B be a cellular G-map. Then 

B Uf X~ B Uf Y rel B 

Proof: It suffices to treat the case where Y is obtained from X by an 

elementary expansion. Now apply Lemma 4.9. several times to the diagram 

G/H x D n-1 

,L 
G/H x D n 

f 
A ---~ B 

X ) B Uf X 

; 1 
Y ~ B  Uf Y 

Lemma 4.11. Let f : X ~ Y be a cellular G-map between G-CW-complexes 

and A ~ G-CW-subcomplex of X 

a) If (X,A) i__ss relatively finite, then 

Cyl(flA) ~Cyl(f) 

b) If X is finite, then 
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Y ~Cyl(f) 

c) If (X,A) i__ss relatively finite, then . 

A x I U X x {k} ~X x I for k = O,1 

d) If X is finite then 

X x {k} ~X x I for k = O,1 

Proof: a) It suffices to treat the case where X~A contains only one cell 

G/H x S n-1 ~ A 

G/H x D n ~ X 

Crossing it with I yields again a cellular G-push-out. Recall that the 

mapping cylinder is defined as a cellular G-push-out. By Lemma 4.9. we 

get a cellular G-push-out 

G/H × (S n-1 x I Usn_I D n) b Cyl(flA) 

G/H x D n x I ~ Cyl(f) 

Notice that (D n x i,S n-1 x I U D n) and (Dn+I,D n) are isomorphic. 
sn-1 

b), c) and d) follow from a). [] 

Lemma 4.12. Let f and g : A ~ B be cellular G-maps and (X,A) a relative 

finite pair of G-CW-complexes. If f and g are G-homotopic, then: 

B Uf X/~ B Ug X rel B 

Proof: Let h : A x I ~ B be a cellular G-homotopy between f and g 

(Theorem 2.1.). We get from Lemma 4.10. and 4.11. c) 
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BUf X = B U h (X UAx O A x I) ~B U h (X x I) rel B 

and 

B Ug X = B U h (X UAx I A x I) ~B U h (X x I) rel B 

Lemma 4.13. Let (X,A) and (Y,A) be relatively finite pairs of G-CW-com- 

plexes such that the inclusions are G-homotopy equivalences. 

a) Then (X U A Y,A) is a relative finite pair of G-CW-complexes such that 

the inclusion is a G-homotopy equivalence. 

b) X/~ X' tel A and Y~ Y' rel A implies X U A Y/b X' U A Y' rel A 

Proof: a) Lemma 2.13. 

b) follows from Lemma 4.10. D 

Lemma 4.14. Let A c B c X b_~e a triple of G-CW-complexes such that the 

inclusions are G-homotopy equivalences and (X,A) relatively finite. Let 

r : B ~ A b~e any strong G-deformation retraction. Then 

X~L B U A (A U r X) rel A 

Proof: Let i : A --B be the inclusion. We get from Lemma 4.12. 

X = B Uid X = B Uio r X rel B 

The claim follows from 

B Uio r X = B U A (A U r X) rel A 

Now we can define whG(A) of a G-CW-complex A. Namely0we consider the 

equivalence relation on all relative finite pairs of G-CW-complexes 

(X,A) with A ~, ) X a G-homotopy equivalence given by (X,A)/~ (Y,A) rel A. 

Let whG(A) be the set of equivalence classes. Addition is given by 

(X,A) + (Y,A) = (X U A Y,A). It is well-defined by Lemma 4.13. The class 

of (A,A) is the zero-element. An inverse of the class of (X,A) is given 

as follows. 
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Choose a strong G-deformation retraction r : X ~ A. Let p : A x I ~ A 

be the projection. Our candidate is (A U r (A Up Cyl(r)),A). We have 

A x I ~Cyl(r) (Lemma 4.11. a) 

A U Cyl(r) ~A tel A (Lemma 4.10.) 
P 

Consider the triple (A,X,A Up Cyl(r)). All inclusions are G-homotopy 

equivalences. We get from Lemma 4.14. 

A/~ A Up Cyl(r)/~ X U A (A U r A Up Cyl(r)) rel A 

This finishes the construction of the abelian group whG(A). If f : A ~ B 

is a G-map, define f~ : whG(A) ~ whG(B) by (X,A) ~ (B Uf X,B). This 

is well-defined by Lemma 4.10. so that Wh G becomes a covariant func- 

tor {G-CW-compl.} ~ abelian groups. 

Definition 4.15. Let f : X ~ Y be a G-map between finite G-CW-com- 

plexes. Define its Whitehead torsion 

G T (f) 6 whG(y) 

by the class of (Y Ug Cyl(g),Y) for any cellular G-map g which is G- 

homotopic t_~o f. We call whG(y) the Whitehead group of Y. [] 

The proof that Definition 4.15. makes sense needs some preparation. 

Lemma 4.16. Let (X,A) be a relative finite pair of G-CW-complexes and 

f : X ~ Y be a cellular G-map. If A~X holds,w__ee ~et 

X U A Cyl(fJA) ~Cyl(f) 

Proof: It suffices to treat the case of an elementary expansion 

G/H x D n-1 ~ A 

G / H  x D n ) X 
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We get from Lemma 4.9. a G-push-out 

G/H x (D n Xsn_l[S n-1 x I)) • X U A Cyl(flA) 

I ,F 
G/H x D n ) x I Cyl (f) 

Lemma 4.17. 
f fl fn-1 

Let X O ~ X I ~ X 2 ~ .... ~ X n be cellular G-maps between 

~ X their composition. Then finite G-CW-complexes. Denote by f : X °  n 

Cyl(f) /~ Cyl(f o) UX1 Cyl(f I) UX2 ... Cyl(fn_ I) rel Xol i X n 

Proof: We only treat the case n = I. Let p : Cyl(f O) ~ X I be the pro- 

jection and g : Cyl(f o) ~ X 2 be the composition fl o p. Notice that 

gtX1 = fl o fo" We get 

X I ~Cyl (fo) (Lemma 4.11. b) 

Cyl(g) ~Cyl(fo ) UXl Cyl(fl ) 

CyI(f I o fo ) ~Cyl(g) 

(Lemma 4.16.) 

(Lemma 4.11. a) D 

Lemma 4.18. Let f an d g : X ~ Y be G-homotopic cellular G-maps between 

finite G-CW-complexes. Then 

Cyl(f)/~ Cyl(g) rel X± ±  Y 

Proof: Let h : X x I ~ Y be a cellular G-homotopy between f and g. We 

have by Lemma 4.11. d) 

Xx{k} ~XxI 

Now Lemma 4.16. implies 

Cyl(f) UX~o~X x I ~Cyl(h) ~Cyl(g) UX~I} X x I 

NOW apply Lemma 4.10. to the projections X x I ~ X. o 
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Lemma 4.12. and Lemma 4.18• ensure that Definition 4.15o makes sense, 

Notice that T G (f) can be written as 

4.19. T G (f) = g,(Cyl(g) ,X) 

for any cellular G-map g with g ~-G f" 

Proof of Theorem 4.8. 

b) Lemma 4.12. and Lemma 4.18. 

a) Let f : X ~ Y be a simple G-homotopy equivalence, We show rG(f) =O 

Without loss of generality we can assume that f is cellular. Simple 

means that f is G-homotopic to a formal deformation 

X = X °  ~X I ~X 2 ~... X n = Y 

Let gi : Xi ~ Xi+ I be the corresponding G-map and g : X ~ Y the 

composition of the gi-s. We prove 

4.20. Cyl (gi) h X i 

If gi is an elementary expansion, 4.20. follows from Lemma 4.10. and 

4.11. d) 

X I. = X I. x {O} ~X i x I ~X i x I Ugi Xi+1 = Cyl(gi ) 

If gi is an elementary collapse Lemma 4.16. implies 4.20. 

X i = X i x {o} ~Xi+ I x I U X i = Cyl(giFXi+ I) U X i ~Cyl(g i) 

We conclude from Lemma 4.17. and Lemma 4.18. 

Cy!(f)/~ Cyl(g) ~ Cyl(go ) UXI ..... Cyl(gn_l ) re! X 

An iterated application of 4.20. yields 

This proves 

Cyl(go ) UXI Cyl(gl ) UX2 ... Cyl(gn_1 ) /~ X rel X 

(Cyl(g) ,X) = O in whG(x) and by 4.19. TG(f) = O. 
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Now consider a G-homotopy equivalence f : X ~ Y between finite G-CW- 

G 
comPlexes with T (f) = O. We want to show that f is simple, We can as- 

sume f to be cellular. Since f~:whG(x) ~ whG(y) is an isomorphism 

TG(f) = 0 implies 

Cyl(f)/~, X rel X 

Hence the inclusion i : X ~ Cyl(f) is a formal deformation. We know 

from Lemma 4.11. b) that the inclusion Y ~ Cyl(f) is a formal defor- 

mation so that the projection p : Cyl(f) ~ Y is G-homotopic to a for- 

mal deformation. Hence f = p o i is G-homotopic to a formal deformation 

meaning that f is simple. 

d) Consider the G-homotopy equivalences f : X ~ Y and g : Y ~ Z be- 

tween finite G-CW-complexes. We claim TG(g o f) = T G(g) + g,~G(f). Con- 

sider the triple (Cyl(f) Uy Cyl(g),Cyl(f),X). If r : Cyl(f) ~ X is 

a retraction, we get in whG(x) by Lemma 4.14. 

r~(Cyl(f) Uy Cyl(g),Cyl(f)) + (Cyl(f),X) = (Cyl(f) Uy Cyl(g),X) 

If j : Y ~ Cyl(f) is the inclusion,we get from Lemma 4.17. 

r~j,(Cyl(g),Y) + (Cyl(f),X) = (Cyl(g o f),X) 

f~l By Theorem 4.8. b) r,j, = isince r o j o f ~G id. Applying g,f, to 

the equation above yields 

G(g) + g~ G(f) = TG(g o f) 

c) Since f,:whG(x) ~ WhG(y) is an isomorphism by Theorem 4.8. b) it 

suffices to prove in whG(x) 

(Cyl(f),X) = (X UXI Cyl(f I) ,X) + (X UX2 Cyl(f2),X) - (X U Xo Cyl(f° )'X) 

By an iterated application of Lemma 4.9. we obtain a diagram such 

that all squares in it are cellular G-push-outs 
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4.21 . 

Xo ~ X2 

X I ~ X Cyl(f o) ~ Cyl(f 2) 

Cyl (fl) 5 Cyl (f) 

By Lemma 4.11. b) we have 

Cyl(f 2) ~ Cyl(k : Cyl(f o) ~ Cyl(f2)) 

and by Lemma 4.10. 

Cyl(f) ~ Cyl(f) Ucyl(f2 ) Cyl(k) 

Hence we obtain from Lemma 4.10. in whG(x) 

(X UX2 Cyl(f2),X) = (X UX2 Cyl(k),X) 

(Cy!(f),X) = (Cyl(f) Ucyl(f2 ) Cy!(k),X) 

Write Y = Cyl(f) Ucyl(f2 ) Cyl(k), Y2 = X UX2 Cyl(k), YI = X UXI Cyl(f I) 

and Yo = X U x Cyl(fo). Then we must show 
o 

4.22. (Y,X) = (YI,X) + (Y2,X) - (Yo,X) 

We get from 4.21. and Lemma 4.9. that Yo,Y1,Y2 are G-subcomplexes of Y 

with Y = YI U Y2 and Yo = YI n Y2" 

Let r : Y ~ X be a retraction. Then we get from Lemma 4.14. in whG(x) 
o 

(Y,X) = r~ (Y,Yo) + (Yo,X) 

(YI,X) = r,(YI,Y o) + (Yo,X) 

(Y2,X) = r.(Y2,Y o) + (Yo,X) 
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U Y2 and Yo = YI N Y2 we have ~n whG(y) 

(Y,Yo) = (YI,Yo) + (Y2,Yo) 

These equations implies 

(Y,X) - (Yo,X) = (YI,X) -(Yo~X) + (Y2~X) - (Yo~X) 

and hence 4.22. 

This finishes the construction of the Whitehead group of a G-CW-complex 

and the Whitehead torsion of a G-homotopy equivalence between finite G- 

CW-complexes and the proof of Theorem 4.8. m 

Let Q be the Hilbert cube H I, 
i=o 

Theorem 4.23. Let f : X * Y b_~e ~ map between finite CW-complexes. Then 

f i__ss ~ simple homotopy equivalence if and ~nly if f x id : x x Q ~ y x Q 

is homotopic t__oo a__nn h gmeomorphism. 

Proof: Chapman [1973]. o 

Corollary 4.24. Topolo@ical invariance of (non-equivariant) Whitehead 

torsion. 

Let f : X ~ Y be a homeomorphism between finite CW-complexes. The n f 

is a simple homotopy equivalenqe, o 

The topological invariance of the Whitehead torsion does not hold in the 

equivariant case. We give an outline of two counter examples. 

Example 4.25. The starting point is the question whether two topological- 

ly conjugatedG-representation of a finite group G are already linearly 

isomorphic. This is true if G has odd order (Hsiang-Pardon [1982], 

Madsen-Rothenberg ~985a] . Counterexamp!es for G of even order are 

constructed in Cappell-Shaneson [1982], Cappell-Shaneson-Steinberger- 

Weinberger-West [1988] 

Choose a G-homeomorphism f : V • W between G-representations, 
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which are not linearly isomorphic. Substituting V by V O =V~V~ ~9~ 

and W by W °  =W ~W ~ 6 ~  yields a G-homeomorphism fo : SVo ~ SWo 

between the spheres of two G-representations such that V and W are 
o o 

not linearly isomorphic, WH acts orientation preserving on SV~ and SW~ 

and X(SV~) = x(SW~) = 0 for all H c G. Under these circumstances the 

Reidemeister torsion p(SV o) and p(SW o) is defined. We explain it late~ 

Assume that fo : SVo ~ SW O has trivial Whitehead torsion. Since 

p(V O) - p(W O) is a function of TG(fo)l we have p(V o) = P(Wo). Later we 

reprove the result of de Rham that p(V o) = p(W o) implies that V o and W o 

are linearly isomorphic, a contradiction. Hence fo is a G-homeomorphism 

SV O ~ SW °  but not simple, u 

Example 4.26. The Hauptvermutung says that two homeomorphic simplicial 

complexes &re already PL-homeomorphic (see Rourke-Sanderson [1972] I 

for the definition of a PL-space and PL-homeomorphism). A counterexample 

is given in Milnor [1961] (see also Stallings [1968]). In Milnor [1961] 

two finite G-CW-complexes X and Y together with a G-homeomorphism are 

constructed such that the Reidemeister tersion p(X) and p(Y) are defined 

and do not agree. Hence f is not a simple G-homotopy equivalence. D 

We can extend Wh G to a covariant functor 

4.27. Wh G : {G-spaces} ~ label, gr.} 

Namely, define whG(z) = lim WhG(X) for a G-space Z, where the limit runs 

over all G-CW-approximations (X,f) of Z. 

4B. Simple structures on G-spaces 

Given a G-space Z, consider all pairs (X,f) consisting of a finite G-CW- 

complex X and a G-homotopy equivalence f : X ~ Z. We call (X,f) and 

(Y,g) equivalent if g,~G(g-1 o f) 6 whG(z) vanishes. This is a well-de- 

fined equivalence relation by Theorem 4.8. A simple structure on a G- 

space Z is an equivalence class ~ of such pairs (X,f). 
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Let f : (Zo,~o) ÷ (Z1,~I) be a G-homotopy equivalence between G-spaces 

with simple structures. Choose representatives (Xi,f i) for ~i" Define 

4.28. TG(f) 6 whG(z) 

fiTG(f~ I by rG(f) := o f o fo). This is well-defined by Theorem 4.8. 

Regard the G-push-out with Jl a G-cofibration 

J2 
4.29. Z o 3 Z 2 

z I ~ z 

Assume that Z i has a simple structure ~i for i = O,1,2. We want to assign 

to Z a simple structure ~. 

Choose a commutative diagram 

4.30. 
i I i 2 

X I ~ ~ X °  ~ X 2 

O Z ~Z 2 
Zl < Jl o J2 

satisfying 

i) X i is a finite G-CW-complex. 

ii) i I is an inclusion of finite G-CW-complexes and i 2 is cellular. 

iii) fi is a G-homotopy equivalence. 

iv) (Xi,f i) represents ~i" 

Let f : X + Z be the G-map induced on the G-push-outs. Then X is a fi- 

nite G-CW-complex and f is a G-homotopy equivalence. Let ~ be the simple 

structure ~ on Z given by (X,f). If Z is equipped with ~ we call 4.29. a 
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G-push-out of G-spaces with simple structure. 

The following construction guarantees that a diagram 4.30. exists. Lemma 

4.32. ensures that ~ does only depend on t o, ~1 and ~2 but not on the 

choices above. 

4.31. Consider the G-push-out 4.29. Assume that we are given G-CW-appro- 

ximations (Xi,f i) for z i (i =O,1,2). Choose a cellular G-map gi : Xo ~ Xi 

satisfying fi o gi ~G Ji o fo for i = 1,2. Let k i : X °  ~ Cy!(g i) be the 

canonical inclusion and pr i : Cyl(g i) ~ X i be the canonical projection. 

We have fi o pr i 0 k i ~G Ji 0 fo" Since k i is a G-cofibration we can change 

fi 0 Pr i G-homotopically into fl : Cyl(g i) ~ Z i such that the following 

diagram commutes 

Jl J2 
Z I 4 .... D Z °  b Z 2 

! f !  ! fl o f2 

Cyl(gl) i ~ XO ¢ ~ Cyl(g2) 
k I k o 

! 
Then (Cyl(gi),f i) is a G-CW-approximation of Z i. If Z i has the G-homotopy 

type of a G-CW-complex then f{, f' and f½ are G-homotopy equivalences 
o 

(Theorem 2.4.). If X i is finite, skeletal-finite, finite-dimensional resp. 

finitely dominated then also Cyl(gi). If X i is finite and fi a G-homotopy 

equivalence,(Xi,f i) and (Cyl(g~,fl) define the same simple structure on 

Z i by Lemma 4.11. b). 

Consider the commutative diagram 
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i I i 2 

XI < ~ X O ~ X 2 

9 1 9 2 

Z I ~ ~ Z o ~ Z 2 

gl go g2 
k I k 2 

YI < % Yo } Yo 

Assume 

a) X i and Yi are finite G-CW-complexes fmr i = O,1,2. 

b) i I and k I are inclusions of finite G-CW-complexes and Jl a G-cofi- 

bration. 

c) fi and gi are G-homotopy equivalences for i = O,1,2. 

Let Z be the G-push-out 

Jl 

Z o ~ ) Z 1 

z 2 . . . .  ~ z  
12 

Define X and Y similarly. Let f : X ~ Z and g : Y ~ Z be the induced 

maps. 

Lemma 4.32. Then X and Y are finite G-CW-complexes and f and g are G- 

homotopy equivalences. Moreover we have in Wh G (Z) 

Proof: We can assume that i2, J2 and k 2 are also G-cofibrations, other- 

wise substitute them by the inclusion of mappinq cvlinders. Now we can 

construct a diagram 
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Jl J2 
Z I ~ ~ Z o C ) Z 2 

k 1 k 2 
YI ( .m YO C ~ Y2 

such that h i is a G-homotopy inverse for gi" Let h : Z ~ Y be the in- 

duced G-homotopy equivalence. We get from Theorem 4.8. 

h~ I T G (h 4 f) = 

1 h-lrG(h fo ) = or o r o o 

TG( -I fl ) + - 0 f2 ) - 11~gI~ gl 0 12~g2~rG (g21 

lo~go~rG(go I o fo ) 

g~rG(g -1 o h -I) = 

- G -I - 
11~g1~TG(gl I °  h11) + 12wg2~ r (g2 °  h2 I) - 

1 TG. -I - 
o~go~ (go o ho 1) = O 

G I TG h-1 g~Y (g- o f) = g~ (g-1 0 o h o f) = 

G I h-1 -I -I g~T (g- o ) + g~g~ h~ rG(ho f) = 

- G -I fo ) 11~gI TG(gl I o fl ) + 12~g2 rG(g21 o f2 ) - io~goe ~ (go o 

Now one easily extends Theorem 4.8. for finite G-CW-complexes to spaces 

with simple structure. 

Theorem 4.33. 

a) Obstruction property 

Let f : (X,~) + (Y,n) be a G-homotopy equivalence between G-spaces with 

simple structures. Then the follqwin @ statements are equivalen %. 

i) G(f) = O. 



79 

ii) There are representatives (A,u) and (B,v) of 

-1 
that v o f o u : A + B is simple. 

and n such 

iii) For any representatives (A,u) and (B,v) o_~f 

-I 
composition v o f o u : A + B is simple. 

and D the 

b) Homotopy invariance 

G TG(g) i) f ~ g ~ r (f) = 

ii) f -~ g ~ f~ = g~ 

c) Additivity 

Consider the commutative diagram o_~f G-space with simple structures 

i2 f2 
X o ~ X 2 - 

X 1 ) X ~ f Yo '~ Y2 

YI 3 Y 
k I 

Assume that the sequences are G-push-outs of G-spaces with simple struc- 

tures. Let i I and Jl be G-cofibrations and fo' f1' f2 and f b__ee G-homoto- 

py equivalences. Then: 

y G(f) = kl TG(fl) + k2 TG(f2) - ko yG(fo) 

d) Logarithmic property 

Let f : (X,~) + (Y,~) and g : (Y,~) + (Z,~) b__ee G-homotopy equivalen- 

ces between G-spaces with simple structures. Then we have: 

TG(g o f) = TG(g) + g, rG(f) o 
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4.34. If G is a finite group, the existence and uniqueness of a smooth 

equivariant triangulation of a compact smooth G-manifold M (possibly 

with non-empty boundary) is proved by Ii!man [1978]. Hence M has a pre- 

fered simple structure ~M" If f : M ~ N is a G-homotopy equivalence 

between smooth compact G-manifoldswwe can define its Whitehead torsion. 

4.35. TG(f) 6 whG(N) 

by TG(f : (M,~ M) + (N,~N)). We have then for any G-diffeomorphism 

f : M ~ N that TG(f) vanishes, o 

If G is a compact Lie group the existence of an equivariant triangulation 

of a compact smooth G-manifold is shown in Illman [1983]. The necessary 

uniqueness statement can be derived from Matumoto-Shiota [7987]. 

4.36. Let G be a compact Lie group. We give now an in comparison with 

4.34 elementary construction how to assign to any compact smooth G-mani- 

fold M a simple structure ~M such that for any G-diffeomorphism f : M ~ N 

T G the Whitehead torsion TG(f) := (f : (M,~ M) ~ (N,~N)) vanishes. In 

particular this construction shows that a compact smooth G-manifold M is 

G-hcmotopy equivalent to a finite G-CW-complex. The only input will be 

the existence and uniqueness of tubular neighbourhoods (see Bredon [1972] 

VI 2) and the non-equivariant triangulation theorem, or in other words 

that we already know such a construction for G = I. 

We use induction over the orbit types {(HI),(H2),...,(Hr)} = {(H) 6 

Con G I H E Iso M}. Notice that M has finite orbit type (see tom Dieck 

[1987] 1.5.11.). The induction runs over r. In the begin r = I write 

H = H I. Then we have a G/H-fibre bundle with WH as structure group 

p : M ~ M/G (see Bredon [1972] II.5.8.). 

Let f : X ~ Y be a G-homotopy equivalence between G-spaces such that 

X ~ X/G and Y ~ Y/G are G/H-fibre bundles with WH as structure group. 

Suppose that X/G and Y/G are finite CW-complexes and f/G : X/G ~ Y/G. 
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4C~ Simple structures on G-manifolds. 

is simple. Then the CW-structures on X/G and Y/G lift to G-CW-complex 

structures on X and Y (compare 1.25.) and f : X + Y is a simple G-ho- 

motopy equivalence. Hence any simple structure ~M/G lifts uniquely to a 

simple structure ~M on M. Define SM by this process where ~M/G on the 

non-equivariant compact smooth manifold M/G comes from a triangulation. 

Let f : M + N be a G-diffeomorphism. Then f/G : M/G ÷ N/G is a 

diffeomorphism so that T {I} (f/G : (M/G,$M/G) ÷ (N/G,~N/G)) vanishes. 

Hence TG(f : (M,~M) + (N,~N)) is zero. This finishes the induction be- 

gin. 

. = M (H) In the induction step from r -I to r we write H = H I Then M(H ) = 

G • M H is a closed G-submanifold of M (see Bredon [1972] VI 2.5.). Let 

be the normal bundle of M(H ) in M. A tubular nei~hbourhood of M(H ) in M 

is a G-embedding 

¢ : D + M 

such that # restricted to the zero section induces the identity 

M(H ) + M(H ) and the differential of ~ at the zero section induces the 

identity ~ ÷ D (compare Br~cker-J~nich [1973], 12.10.). Choose an equi- 

variant Riemannian metric on D so that the sphere bundle Sv and disc 

bundle DD are defined. Let M be M~ ~(int D~) Then M is the G-push-out 

4.37. 
~f s~ 

s~ c ~ 

D~) = '~ M 
~ID~ 

Moreover, D~ is the G-push-out 

S~ 

S~xI 

P 

i(S) 

P 
) D~ 
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where p is the projection and P(y,t) = t • y. By induction hypotheses 

there are simple structures ~S~ on S~ and ~ on M. Equip D~ and M with 

simple structures ~D~ and ~M such that the two G-push-outs above become 

G-push-outs of spaces with simple structures. Notice that then 

(M(H),~M(H)) + (D~,~D) has torsion zero. We must show that this is 

independent of the choice of the Riemannian metric and the tubular 

neighbourhood. 

Let S~', D~', M' and 9': ~ + M be induced by a second choice. Then o 

there is a G-diffeotopy 4 : M x I ÷ M and a pair of G-diffeomorphisms 

(F,f) : (D~,S~) ÷ (D~',S~') such that 4o = id and 41 0 ~ = ~' o F holds 

and F(t • y) = t • F(y) is valid for t 6 [0,1] and y 6 D9 (compare Br~cker- 

J~nich [1973] 12.13, Bredon [1972], p. 3.12.). Consider the commutative 

diagrams 

S~ ~M(H ) id 

S~ × I ...... ~D~ • M(H ) 

S~' ×I. ~D'~ 

D~ ...... ~ M S~' ~M' 

Now an iterated application of Theorem 4.33. shows that the induced 
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simple structure ~M and ~M' agree since the induction hypotheses 

applies to Sv, Sv', M, M' and M(H ) . 

Let f : M + N be a G-diffeomorphism. We want to show TG(f) = O. Let 

~M and u N be the normal bundles of M(H ) in M and N(H ) in N and 

vf : v M + u N the bundle map induced by f. Choose tubular neighbour- 

hoods ~M : UM + M and #N : VN ÷ N and Riemannian metrics such that 

~N o vf = f o ~M and 9f is an isometry. Now the claim follows from Theorem 

4.33. applied to the diagrams 

SUM= ~ M~ fT~ 

D9 M e ~, M 'SVNC ) 

Du N ~ ) N 

S~M - ~ M(H) ~_ f(H) 

Sv M x I ~ Dr.. ~ 7 Sv.. ~ N 
) ~ uuf N - (H) 

Su N × I ~ Du N 

and the induction hypotheses applied to f(H)' fIM : M + N and Svf. 

We leave it to the reader to check that the choice of the numeration 

{ (H I) .... ,(Hr)} does not play a role. 

4.D. Isovariant and equivariant s-cobordism theorems 

Next we come to the equivariant s-cobordism theorem which is an important 
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tool for classification of G-manifolds. In the sequel G is a compact 

Lie group. Recall that a G-manifold M is a compact smooth manifold to- 

gether with a smooth G-action. We will make frequently use of the simple 

structure we have assigned to a G-manifold M in 4.36. 

4.38. A cobordism (B,M,N) between the G-manifolds M and N is a G-mani- 

fold B together with embeddings i M : M + ~B and i N : N ÷ ~B such 

that ~B = image i M U image i N and iM(~M) = image i M N image i N = iN(~N) 

holds. In the sequel we often identify M with image i M. We call (B,M,N) 

an h-cobordism if the inclusions M + B and N ÷ B are strong G-de- 

formation retractions. We want to give criterions for the existence of 

a G-diffeomorphism f : B ÷ M x I such that f restricted to M is the in- 

clusion M ÷ M x {O}. Notice that this would imply that i : M + B is 

an isovariant strong G-deformation retraction (i. e. there is an iso- 

variant G-map r : B ~ M such that r o i = id and i o r is isovariantly 

G-homotopic to id : B ~ B). Recall that a G-map f : X ~ Y is iso- 

variant if G x = Gfx holds for all x E X. Hence we consider isovariant h- 

cobordisms (B,M,N), i. e. a cobordism (B,M,N) such that M ~ B and 

N ~ B are isovariant G-deformation retractions, o 

Lemma 4.39. Let (B~M,N) be a cobordism. 

a) It is an h-cobordism if and only if M H B H and N H B H ~ are weak 

homotopy equivalences for H 6 Iso B. 

b) It is an isovariant h-cobordism if and only i_~f M H ~ B H and N H ~ B H 

are weak homotopy equivalences for H £ Iso B. 

Proof: a) This follows from Theorem 2.4. and Lemma 4.3. 

b) Hauschild [1978] Satz V.3. D 

Consider an isovariant h-cobordism (B,M,N). Define the isovariant White- 

head group 
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4.40 Wh~so(M ) = ~ whWH(MH ) 
(H) e Con G 

H e Iso M 

Inductively over the number of orbit types of M , we define the isovariant 

Whitehead torsion 

441 •  so(B,M,N) e WhOso(M) 

If B has only one orbit type (H) then B H = B H is a (compact) free WH- 

G M whiGso(M) whWH(MH ) be the equivariant White- manifold. Let • iso(B, ,N) e = 

head torsion £H*-I TWH( £H ) for the inclusion £H : MH --~ B H. In the in- 

duction step choose H e Iso B such that K e Iso B, (H) c (K) implies 

(H) = (K). Then B(H)=B (H) is a (compact) G-submanifold of B and analogously 

for M(H )=M (H) c M and N(H )=N (H) ¢ N (see Bredon [1972]VI.2.5.). Let v B 

be the normal bundle of B(H ) in B and define v M and v N analogously. Iden- 

tify the disc bundles with tubular neighbourhoods. Define B=B\intD~ B , 

M=M\int Dv M and N= (N\intD~ N) U Sv B. Since BK -* BK' MK -* MK and 

NK --~ N K are homotopy equivalences for K e Iso B, we obtain from Lemma 

4.39. an isovariant h-cobordism (B,M,N) with one orbit type less. By in- 

W G duction hypotheses ~Gso(B'M'N) ~ whG±so(M) is defined. Let i,: Hiso(M) 

--~ WhOso(M) be given by the inclusion i : M --~ M and j : whWH(MH ) --~ 

--~ WhGso(M) the obvious split injection. Now define 

G . G -I(TWH(~ H Iso(B,M,N) = (B,M,N)) + JO£H, 1,(~is o : M H ---* BH)) 

We leave it to the reader to show that this is independent of the various 

choices like (H) , v M .... 

Theorem 4.42. (The Isovariant s-Cobordism Theorem). Let M be a G-mani- 

fold such that the dimension of any component o_ff MH/WH for H e Iso M i__ss 

not smaller than 5. 

a) (B,M,N) is an isovariant h-cobordism with ~o(B,M,N)=0, if and only if 

there is a G-diffeomorphism ¢ : (B,M,N) --~ (M×I,M×{0}, aM×IuM× {I} ) 
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such that elM is the identity M ~ M× {O]. 

G G 
b) Each element in Wh so(M) can be realized as ~Iso(B,M,N) for an iso- 

variant h-cobordism (B,M,N) . 

c) WhOso(M) classifies G-diffeomorphism classes relative M of isovariant 

h-cobordisms (B,M,N). 

Proof: This follows by induction over the orbit type from the non-equi- 

variant case. See also Browder-Ouinn [1973] 1.4., Hauschild [1978] V.4., 

Rothenberg [1978] 3.4. o 

Now we want to relate isovariant Whitehead torsion and equivariant White- 

head torsion. We will define for an isovariant h-cobordism (B,M,N) an 

homomorphism 

~(M) : WhOso(M)± whG (M) 4.43. 

and prove 

I 
Proposition 4.44. }(M) : Wh so(M) ÷ whG(M) sends TIso(B,M,N) t_oo 

the equivariant Whitehead torsion £,i G(~) of the inclusion £ : M--~B 

We define ~ (M) and prove Proposition 4.44. simultanously by induction 

over the orbit type. In the induction step choose H 6 Iso B and define 

G (B,M,N). Let (B,M,N) as in the definition of Tis °  

Wh WH 4.45. k : (M H) ~ whG(M) 

be induced by restriction with NH + WH, induction with NH ÷ G and the 

obvious inclusion G XNH M H = M(H ) + M. If M has only one orbit type, 

let ~ (M) be k. The normal bundle of M(H ) in M is denoted by v M. The 

pull-back construction with Sm M defines a transfer homomorphism 

trf' : whG(~H) ) ÷ whG(SmM ) (see sec. 15). Notice that for any finite 

G-CW-complex X together with a G-map f : X ÷ M(H ) the pull-back f $9 M 

carries a canonical simple structure. Namely, this is true for X = 

G/L x D n as then f~SmM is a G-manifold~ G-diffeomorphic to G ×L SV x D n 
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for an appropriate L-representation V. Composing trf' with the homomor- 

phisms given by restriction with NH ÷ WH,induction with NH ÷ G and 

the inclusion S~ M + M or Sm M ÷ M yields 

4.46. trf : whWH(M H) ~ whG(M) 

trf : Wh WH(M H) + Wh G(M) 

Define ~(M) by the following diagram if i : M--~ M is the inclusion 

Wh WH and j : (~) + Wh so(M) the obvious split injection 

4.47. 

whG(M) 

For the proof of Proposition 4.44. consider the commutative diagram with 

G-push-outs of G-spaces with simple structure as squares 

4.48. Sv M < ) 

DV B '~ '~ B 
1 '  

We get from Theorem 4.33. 

£,T (£: M--~ B) = 

£,i o £, TG(DvM ~ DVB)-+ i, o r,l~G(£ : M --" B)-trf o £-I~WH{£..:M.-~ B H) ~ 
H. n n- 
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-i WH~ -IWH 
k °  £H,~ [£H : MH--~ BH)+i*°  ~(M)(~Gso(B'M'N))-trf°  £H* (£H:MH--~BH) 

= #(M) (~Gso(B,M,N) ) . 

This finishes the proof of Proposition 4.44. m 

If N is a manifoldtlet dim N be max{dim CIC 6 ~o(N)} 

Definition 4.49. A G-manifold M satisfies the weak 9_~ conditions if 

for H,K 6 Iso M, H c K and components C £ ~ (M H) and D 6 n (M K) with DK~ @ 
# o o 

CH#~, D c C the inequality dim G/NK H + dim D + 3 ~ dim C holds, n 

Lemma 4.50. If M satisfies the weak 9_~ conditions then M H ~ ~H is 2- 

connected fo_~r H 6 Iso M, if ~H is U{C6~o(MH) ! CH# @] 

Proof: Numerate { (K) 6 Con G I (H) ~ (K) , K 6 Iso M} : { (K 1) , (K 2) .... (K r)} 

such that (Ki) c (Kj) implies i Z j. It suffices to show for any compact 

non-equivariant manifold N with dim N ~ 2 and non-equivariant map 

f : N ~ M H with f(~N) 6 M H that f is homotopic to g : N ~ M H rela- 

tive ~N satisfying g(N) £ M H. We show inductively for n = 0,1,...,r that 

f is homotopic relative ~N to f : N ~ M H such that fn(N) c MH~ 
n (Ki) n 

( 0 M N MH)) holds. Then g can be choosen as f . The begin n = O 
i=I r 

is trivial, the induction step from n - I to n done as follows. 

By induction hypotheses the intersection of the compact sets fn_1(N) and 

(K i ) 
n M H is empty. We can find a closed subset A c M H satisfying 

n-1 
U M 

i=1 

n-1 
U M 

i=I 

(K i ) 
N M H c int A and A D fn-1 (N) = @. Consider fn-1 as a map 

n (K i ) MH 
N ~ M H~A. NOW M H~A N U M N is contained in M N M H 

i=I (Kn) 

H H MKn. If D is a path Notice that M(K ) is diffeomorphic to G/K ×WK n 
n 

MKn H n WK n (WKn • = + component of we have dim G/K x D) dim G/KHn - dim WK n 

dim D = dim G/NK H + dim D. If C is the component of M H containing Dtwe 

have dim(G/KHn × WKn(WK n " D)) + dim N < dim C. By transversality 
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we can change fn-i : N --~ M H \A relative 8 N into fn : N --~ M H\A satis- 

fying fn(N) n M~Kn) = 0. This finishes the induction step. o 

Theorem 4.51. The Equivariant s-Cobordism Theorem. Let (B,M,N) be an 

h-cobordism such that M satisfies the weak gap conditions 4.49 and 

dim MH/WH a 5 holds for H e Iso M. Then 

a) (B,M,N) is an isovariant h-cobordism. 

: WhOso(M) --~ whG(M) i__ss split injective with image Wh~(M) b) (see 

4.54.). 

c) TG(M --~ B) vanishes if and only i_ff (B,M,N) is G-diffeomorphic t_oo 

(M x I,M x {0} ,SM x IUM x {i}) relative M = Mx {0} . 

d) Any element in whG(M) can be realized as ~G(M --~ B) 
P 

e) Wh~(M) classifies G-diffeomorphism classes relative M of h-cobordisms 

over M. 

Proof: a) We use induction over the orbit type and choose (H) £ Con G, 

~M'''" as above. If we take in the diagram 4.48. the K-fixed point sets 

for K 6 Iso B we get a commutative diagram with push-outs as squares 

4.52. 

Since M ~ B is a G-homotopy equivalencen fo,f 2 and f are homotopy equi- 

valences because of ~B I M(H) = ~M and the covering homotopy theorem (see 

~ M ~ ~ B ~ Bredon [1972] II.7.4.) By Lemma 4.50. i : ~ and j : 

are 2-connected since M ~ M K and BK ~ B are homotopy equivalences. 
K K 

We want to show that fl is a weak homotopy equivalence. Suppose for sim- 

plicity that B K is connected, the general case is done just component- 

wise. Let ~K be the universal covering. Pulling it back to each space 

appearing in 4.52. yields again a diagram with push-outs as squares and 

cofibrations as maPS (Lemma I.~6~ 
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4.53. 

DraM K < ] ffK 

a Mayer-Vietoris argument ~I is a weak homology equivalence since To, By 

~2 and ~ are homotopy equivalences. Since i,j,f I and f are 2-connected 

~K is the universal covering of ~K. By Whiteheads Theorem (see Whitehead 

[1978] IV.7.13. fl and hence flis a weak homotopy equivalence. Since 

~K ~ ~K is a weak homotopy equivalence for K 6 Iso Biwe get from Lemma 

4.39. a) that (B,M,N) is an h-cobordism. By the induction hypotheses 

(B,M,N) is even an isovariant h-cobordism. Because of Lemma 4.39. b) 

also (B,M,N) is an isovariant h-cobordism. 

b) follows from c) 

c) We can only give a sketch of the proof since we need the description 

of whG(x) by algebraic Whitehead groups introduced in section 14. 

There we establish for a G-space X an isomorphism 

whG(x) = (~ (~ Wh(~I(EWH(C) xWH(C ) C) 
(H) C6n o(x H)/wH 

where WH(C) is the isotropy group of C 6 ~o(X H) under the WH-act[on, 

EWH(C) the universal WH (C) -principal bundle and Wh(2Z~ I (EWH(C) XwH(c)C)) 

the algebraic Whitehead group of the integral group ring of 

~I (EWH(C) xWH(c)C) . Under this isomorphism the image ¢ (M) is 
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4.54. whG(M) = ~ ~( Wh (EWH (C) × C C)) 
P (H) C6 n 5~)/WH (~I WH( ) 

chic 

One shows inductively over the orbit types that ~ (M) is injective 

with image Wh~(M). In the induction step we obtain a commutative dia- 

gram using the notation above 

Whis oG (~.) (D whWH(M H) 

whG(~ (~9 
P Wh ~H ( M H ) 

l i, k 

trf] 
id 

i,~j 

WhGso (M) 

J 
Wh G (M) ~ W hG (M) 

P 

¢ (M) 

Here k and t rf are given by the homomorphisms 4.45. and 4.46., j and 

J are the canonical split injections and i, induced by the inclusion 

i : B ~ B. Since i K : ~K ~ B K is 2-connected for K 6 Iso B by Lemma 

4.50., i, ~ k is an isomorphism. This diaqram and the induction hypothe- 

sis applied to # ~(M) show that ~ (M) is injective with image 

Wh G M m 
P 

As an illustration we give the smooth classification of semilinear discs. 

A semi-linear G-disc is a G-manifold M such that (MH,~M H) is homotopy 

equivalent to (Dk,s k-1 ) for appropriate k ~ O if H c G is a (close, subgroup 

of the compact Lie group G. Choose x 6 M G. Then the tanqent space TM x 

at x is a G-representation and there is an equivariant embedding 
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: DTM x ~ M given by an exponential map. Let M be M~int s(DTMx). 

Suppose that M satisfies the weak gap conditions. Then ~K is simply 

connected for K c G. Using Lefschetz-Poincar~-duality, Lemma 4.39. and 

Theorem 4.42. we conclude that (M,~(STMx),~M)) is an isovariant h-co- 

bordism, whose G-diffeomorphism type rela(STM x) is independent of the 

choice of x and e. Here we use that M G is simply connected, Moreover, 

the linear isomorphism class of TM is independent of x, Hence we can 
x 

assign to the semi-linear disc M two algebraic invariants 

([TMx],Pr,TG(a(STM x) ~ ~)) 6 Re~(G) ~ whG(~) where pr, : whG(M) 

whG(*) is induced by the projection pr : M ~ * and is an isomorphism 

since ~K is simply connected for K c G. Moreover, these invariants de- 

pend only on the G-diffeomorphism class. They even classify semi-linear 

discs as shown in Rothenberg [1978]. 

Theorem 4.55. Let M and N be semi-linear discs satisfying the weak gap 

conditions and dim MH/WH ~ 6, dim NH/WH ~ 6 for H £ Iso M, Iso N. Then 

G ~ M)) and M and N are G-diffeomorphic if and only if ([TMx],Pr,T (STM x ......... 

([TNy],pr,TG(STNy ~ ~)) i__nn ~e~R(G)~ whG(*) a~ree. 

We have already mentioned that whG(,) is ~9 Wh(~o(WH)) if Wh(~o(WH)) is 
(H) 

the algebraic Whitehead group of ~o(WH). 

Example 4.56. We show by a counterexample that the weak gap conditions 

4.49 are necessary for the Equivariant s-Cobordism Theorem 4.51. Notice 

that it suffices to construct a G-manifold M such that ~(M) : WhOso(M) 

--~ whG(M) is not injective. Then we can find by the Isovariant s-Co- 

bordism Theorem 4.42. an isovariant non-trivial h-cobordism (B,M,N) with 

~G(M --• B) = 0 °  

Let G be ~/2 and p ~ 5 be a prime number. Denote the 2-dimensional free 

G-representation by V and the m-dimensional trivial G-representation by 

~m for some m a 5. Consider the embedding f : S 1 • • SVx ~m , 

z --~ zP,(z,0,...,0) where we identify SV = S 1 c e and ~m=~ ® ~m-2 

The normal bundle of f is stably trivial and hence trivial for dimension 
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reasons. Moreover G x S 1 ~ SV x ~m , (g,z) --~ g-f(z) is a G-embedding 

since G acts freely on SV. Hence we can find a G-embedding F : G×SI× D TM 

--~ SVx ~m whose restriction to S i = {i}× Six {0} is f. We identify 

SV × ~m with S(V- ~m+i) G. Define a G-manifold M by the G-push out 

Gx slx S m-I ~ S(V ®]R m+l) \F(G xS ~ xintD m) 

G× !2xS m-I ~ ! 

Hence M is the result of equivariant surgery on f : S 1 --~ S(V ®~m+l). 

As S(V ® ~m+l) and S(V® ~m+l)G = s(~m+l) are simply connected and 

f : S 1 --~ S(V ® ~m+l) G ~ S 1 has degree p, we get ~I(M) = ~I(M G) = {i} 

and ~ I(MG) = ~/p. This implies ~I(EG XG.M) = G and ~I(MG/G) = ~I(EGXGM G) 

is an extension of ~/p and G, actually, it is ~/p × G. If H is a finite 

group, the rank of Wh(H) is the difference of ~-conjugacy classes and 

Q-conjugacy classes of elements in G (see Oliver [1988] ). Recall that 

hl,h 2 e H are ~-conjugated if the elements h I and h 2 or the elements h 1 

h~ 1 and are conjugated, and that h I and h 2 are Q-conjugated if and only 

if the cyclic subgroups < hl> and < h2> they generate are conjugated. 

Hence we get Wh(~I(MG)) = Wh(~I(EG x G M)) = {0} and Wh(~I(EGx GMG)) ~ {0}. 

implies by the next result that WhOso(M) ~ {0} and whG(M) = {0} This 
P 

and we get the desired counterexample. 

Let G be a compact Lie group and N be a G-manifold with Iso N = {G,{I}} 

such that N and N G are cOnnected. Let i : EG ×GNG --~ EG×G N be the 

inclusion. We get from 4.40., 4.54., the definition of ¢ and the results 

of section 14 

4.57 whiGso(N) ~(N) ~ whG(N)p 

II 
11 

Wh(~I(NG )) ® Wh(~I(EG×GNG) ) ~ Wh(~I(NG))~ Wh(~i(EGx G N)) 

(id 0 ) 
~trf i, e 
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Finally we mention threetechnical results 

Lemma 4.5 8. Consider the cellular G-push-outs 

r qi 
i~ G/H x sn-] ) A 

r O .  
2 2  G /H  ~ D n l '~ B i 

j = l  

for i = 0,I. Suppose that qo and ql 

Proof: Lemma 4.12. Q 

are G-homotopic. Then Bo/~ B I rel A. 

Pr0~osition 4.5 9.. 

Le__t (X,Z) b~ 9 Pair Q~ G~CW-comDlexes which i_s [~lativ¢ly finite~ ~- 

pose that th___e inclusion is a G-homotoDv ~quiv~lence, Let k be ~ inteqer 

with k ~ dim(X, ~ - I. TheD ~here i~ ~ second pair (Y,Z) satisfying: 

a) (X,Z)/~ (Y,Z) rel Z. 

b) 

c) 

Th__e relative G-CW-complex (Y,Z) has onl V cells i~ dimension k an__.d k+1. 

appropriate numeratio D {e~ i i = I ,2,,.. ,n} an_ d lei" k+1 I i = 1,..m} For an 

of the open k- an___d (k+1)-cell_____s of th___e relative G-CW-complex (Y,Z) w___e 

have n = m. Moreove__.r, for each i there is a Point z i 6 Z and charac- 

teristic maps (Pi,Pi) : G/H i x (Dk,s k-l) ~ Yk an___d (Oi,qi) : 

× ~ x S k-1 G/Hi (Dk+1'sk) Yk+1 such that Pi(eH i ) = {z i} and 

x k Qi(eH i S~) = [zi] where S+ is the upper hemi-sphere. D 

Proof: Illman [1974]. 

Proposition 4.60. Let G be a compact Lie group and MI,M 2 and N b__ee G- 

manifolds with dim M 1 = dim M 2 = 1 + dimN. Consider G-embeddings i : N~aM 1 

and j : N--~ a~ and the G-push out 

i 
N -~ M 1 

M 2 - - - ~  M 
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Equip M with the structure of a G-manifold for which the maps ~ and 

become G-embeddings (straighten the angle). Put on N,MI,M 2 and M the 

simple G-structure constructed i__nn 4.36. Then this G-push out is a G- 

push out of G-spaces with simple G-structures. 

Proof: By induction over the orbit bundle the claim is reduced to the 

case of one orbit type which follows from the non-equivariant case. o 

Comments 4.61. The geometric approach to the non-equivariant Whitehead 

torsion is given in Cohen [1973] and St~cker [1970] and is generalized 

to the equivariant case in Illman [1974]. The notion of a simple G-homo- 

topy equivalence is due to Whitehead [1939], [1941], [1949], [1952] . 

Later we will give an algebraic treatment. 

More information about triangulations of G-manifolds can be found in 

Illman [1978 ] , [1983 ] and Matumoto-Shiota [1987 ] 

The non-equivariant s-Cobordism Theorem is proved in Barden [1963] , 

Kirby-Siebenmann [1977] Essay II, Mazur [1963], Stallings ~968] for 

dim M a 5. For dim M = 4 it fails in the smooth category (Donaldson 

[1987]) but is still true for "good" fundamental groups in the topolo- 

gical category (Freedman [1982 ] , [1983] ). Counterexamples for dimM = 3 

are constructed in Cappe!l-Shaneson [1985]. 

The equivariant s-Cobordism Theorem 4.51. has analogoues in the PL- 

and TOP-category and is an important tool in equivariant surgery and the 

classification of G-manifolds. Let M and N be two G-manifolds, for 

which one wants to show that they are G-diffeomorphic 

The general strategy consists of three steps, firstly one constructs a 

cobordism (B,M,N) and a degree one normal map (B,M,N) --~ (MxI,M× 0,M×I), 

secondly changes it into a simple G-homotopy equivalence and finally 

applies the Equivariant s-Cobordism Theorem to the resulting h-cobordism 

(B',M,N). For more information see Araki [1986] , Araki-Kabakubo [1988 ] , 

Browder-Quinn [1975] , Dovermann-Rothenberg [1988], Hauschild [1978], 

L~ck-Madsen [1988a], [1988b ], Rothenberg [1978], Steinberger [1988], 
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Steinberger-West [1985]. Controlled and bounded versions can be found in 

Anderson-Munkholm [1988], Pedersen [1986], Quinn [ 1979], [ 1982] . 

A different counterexample than 4.56. for the Equivariant s-Cobordism 

Theorem 4.51. without weak gap conditions can be obtaind from the con- 

struction of ~/p-actions on S n with non-trivial knots S n-2 ..... P S n 

as fixed point sets proved by Giffen [1966] and Summers [ 1975 ] (cf. 

Kawakubo [ 1986 ] ). 

Exercises 4. 62. 

I. Suppose X/~ Y. Then there is a finite G-CW-complex Z satisfying 

x?z~y 

c X is a triple and A c y is a pair of finite 2. Suppose that A c X °  o 

Y a cellular simple G-homotopy equi- G-CW-complexes and f : X °  o 

valence with flA = id. Let Y be the G-push-out 

f 

Xo % Yo 

Then F is a simple G-homotopy equivalence and Y/~ X relative A. 

3. Is pr:DV ~ {~} simple for a G-representation V? 

4. Let f : X ~ Y be a G-homotopy equivalence between finite G-CW-com- 

plexes. Then f × id : X x S I ~ Y × S I is a simple G-homotopy equiva- 

lence. 

5. Extend the definition of the Whitehead torsion to G-homotopy equiva- 

lences (F,f) : (X,A) ~ (Y,B) of pairs of G-CW-complexes which are 

relatively finite. HOw much carries over from Theorem 4.8.? If A and 

B are finite, does TG(F) = TG(f) + TG(F,f) hold? 

6. Let G ~ E ~ E/G be a principal G-bundle. Define by dividing out 
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the group action and the pull-back-construction inverse isomorphisms 

Wh G (E) < ~ ~ Wh (E/G) 

7. Prove the topological invariance of the equivariant Whitehead torsion 

for free G-actions. 

8. Suppose we have assigned to any compact Lie group G and any (smooth 

compact) G-manifold M a simple structure ~M such that the following 

holds 

i) f : M ÷ N is a G-diffeomorphism. Then TG(f : (M,~ M) ÷ 

(N,n N) ) = O. 

ii) Let M I and M 2 be compact smooth G-manifolds and i : M °  ÷ ~M I 

and M °  + ~M 2 G-embeddings of G-manifolds of the same dimension. 

The G-push-out M = M 1 U M M 2 carries a canonical G-manifold 
o 

structure. Then we have a G-push-out of G-spaces with simple 

structures 

MoiM MIiMI 
(M2,~M2) C ~ (M,~M) 

iii) If M has only one orbit type~D M and ~M agree, where ~M is defined 

in 4.36. 

iv) The projection pr : DV ~ {*] has torsion zero with respect to 

~DV for any G-representation V. 

Show that ~M agrees with ~M defined in 4.36. 

9. Let G be a finite group. Show that the simple structures on a G-mani- 

fold M defined in 4.34. and 4.36. a~ree. 

10. For which groups G semi-linear discs M satisfying the weak gap-con- 

ditions and dim MH/MH ~ 6 for H 6 Iso M are classified by the dimen- 

sions dim M H, H c G? 
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ii) Let p ~ 5 be a prime number and G 

orthogonal G-representation and E6 

M = S(V • ~6). Show 

be Z/p . Let V be a 2-dimensional free 

be the trivial G-representation. Put 

a) WhOso(M) = {0} 

b) Wh~(M) = whG(M) = Wh(ZG) } {0} 

c) ~ : WhOso(M) --~ whG(M) is not surjective. 
P 

d) Any isovariant h-cobordism over M is trivial. 

12) Let G be a compact Lie group with dim G > 0 . Consider a G-manifold M with 

Iso M = {G,{I}} possibly not satisfying the weak gap conditions 4.49. Suppose 

M G are connected. Show that ~ : WhOso(M) --~ whG(M) is injective that and M 

(cf. Kawakubo [1988]. 

(Hint: If 3+dimM G ~ dimM is not true, the inclusion i : EG ×GMG --~ EG ×GM 

has a section up to homotopy.) 

13) Let G be a finite group and (B,M,N) an h-cobordism such that ~G(M -~ B) va- 

nishes. Show the existence of a G-representation SV such that the h-cobordism 

(B×SV,M×SV,NxSV) is trivial (cf. Araki-Kawakubo [1988]). 
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5. The Euler characteristic 

We introduce the notion of the equivariant Euler characteristic, study 

its main properties and define the Burnside and Euler ring of a compact 

Lie group. 

Let G be a topological group. Given a G-space X let [ (G,X) be the cate- 
o 

gory having as objects G-maps x : G/H ~ X. A morphism ~ from 

x : G/H ~ X to y : G/K ~ X is a G-map ~ : G/H ~ G/K with y O~GX. 

Let Is ~o(G,X) be the set of isomorphism classes x of objects x. 

Definition 5.1. We call ~o(G,X) the component category of X. Let uG(x) 

be the free abelian group ~enerated ~ Is [o(G,X). D 

We often think of an element q in uG(x) as a function n: Is ~ (G,X) ~ 
o 

which takes only for finitely many elements values different from zero. 

By induction uG(x) becomes a covariant functor U G : {G-spaces} 

{abel. gr.}. 

Given a G-space X and x : G/H ~ X, let xH(x) be the path component of 

X H containing x. By 1.30. we obtain a natural isomorphism sending the 

class of x to the one of xH(x) 

5.2. Is % (G,X) ~ li ~o (xH) /WH 
(H) 6 Con G 

In the sequel R is a ring such that the rank rk M of a finitely gene- 

• - + rk M 2 = O for any rated R-module is defined We reauire rk M I rk M O 

• ~M2~O. exact sequence of finitely generated R-modules O ~ M I ~ M °  

Let H~ be a homoloqy theory with values in the category of R-modules 

satisfying the Eilenberg-Steenrod axioms including the dimension axiom 

(see ~itehead [1978], XII.6.). We want to define for a G-pair (X,A) its 

equivariant Euler characteristic xG(x,A) 6 uG(x) provided that A ~Xis a 

C~cofibration ~d A and X are fini~iv dominated. Consider a G-CW pair (X,A). 
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If e~ is an open cell of Xtlet u~ 6 Is n (G,X) be given by 1 o 
n n n 

Qil G/Hi×~ for any characteristic map Qi of e i. Given x, y 6 Is No(G,Y) 

we write x S y if there is a morphism x ~ y. For x: G/H ~ X let 

x(H) (x) c X be the union of the open cells e~ satisfying x S u~. We 
1 1 

have u in ~ Y for any point y:G/Gy ~ X in ~e~.l Hence x(H~x~s a G-CW-sub- 

complex of X (see 1.28). If the homology H (Y,B) is finitely generated, 

the ordinary Euler characteristic x(Y,B) is defined by ~(-I) n rk R Hn(Y,B). 

Let (X,A) be a pair of finitely dominated G-CW-complexes. Let 

xG(x,A) £ uG(x) be the function sending x represented by x:G/H ~ X to 

X((X(H) (x) , x(H) (x)N (X >(H)UA))/G). This definition can be extended to a 

G-NDR-pair (X,A) of finitely dominated G-spaces. Namely, we can 
I ! 

choose a pair of finitely dominated G-CW-complexes (X ,A ) and a G- 
! I 

homotopy equivalence of pairs f: (X ,A ) ~ (X,A) by Proposition 2.12 

and define xG(x,A) := f,×G(x',A'). 

Definition 5.3. We call xG(x,A) £ uG(x) the equivariant Euler cha- 

racteristic. 

We want to show that this is well-defined and the following results 

Theorem 5.4. 

a) Homotopy invariance 

i) f~G g:X ~ Y ~ f~=g~: uG(x) ~ uG(y) 

ii) If f: (X,A) ~ (Y,B) is a G-homotopy equivalence of G-NDR pairs 

of finitely dominated G-spaces then f xG(x,A) = xG(y,B). 

b) Consider the following commutative diagram of finitely dominated 

G-spaces such that the squares are G-push outs and i 1, Jl' io' 11' 12 

and 1 are G-cofibrations 
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i I 

A o 

A I ~  

A 2 

k I 

k 2 

Then: xG(x,A) = k1~ xG(XI,AI ) + k2~ xG(x2,A2 ) -ko~XG(Xo,Ao ) 

c) Let (X,A) be a pair o_~f finitely dominated G-spaces such that 

i : A ~ X is a G-cofibration. Then 

G xG(x G X (X) = ,A) + i X (A) 

[] 

Suppose that (X,A) is a pair of finitely dominated G-CW-complexes 

such that XkA is relatively finite. 

Let 

5.5. ~n(X,A) 6 uG(x) 

send x 6 Is Ho(G,X) to the number of open cells e~ C X\A with x = u~. 

G 
Lemma 5.6. X (X,A) =n{o (-1)n ~n (X'A) [] 

Consider a pair of finitely dominated G-CW-complexes (X,A) such that 

X\A is relatively finite. Then (x(H) (x) , x(H) (x) N (X >(H) (x) U A))/G 

is a relatively finite pair of CW-complexes and only for finitely many 

£ Is Ao(G,X) the ccmplement is not empty. Hence H ((X (H) (x), X (H) (x) N 

(~(H) (x) U A))/G)is zero for all except a finite number of elements 
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x 6 Is Ao(G,X) and always finitely generated, and x((X (H) (x), x(H)(x)A 

(A U x>(H)))/G) is Z (-I) n 8n(X,A)(X) (see Dold [1972] V.5.9.). 

Hence xG(x,A) is defined in this case and Lemma 5.6. is true. If (X,A) 

is any pair of finitely dominated G-CW-complexes it is dominated by a 

pair of finite G-CW- complexes. Now one easily checks that Definition 

5.3. makes sense and Theorem 5.4a is true. It suffices to show b) in 

the case where the G-push outs are cellular G-push outs of finitely do- 

minated G-CW-complexes. For simplicity we assume A = @. Fix 

(S,Xi)I =x} x : G/H ~ Ho(G,X). Let Ji for i = O, I, 2 be {y 6 Is H °  kioY 

and C. be the direct sum of cellular chain complexes 1 
_C. (H) x!H) x>(H) @ ~ ((X i (y), (y) N )/G) We obtain a based exact sequence 

j. 1 " 
i ~ C c ( (X (H) X (H) X > (H) O ~ C O ~ C I @ C 2 (x) , (x) N )/G) ~ O. This implies 

---I, ~ = s = ~I for e °  I 2 

x((X (H) (X), X (H) (X) N X> (H))/G) = 

2 . Z x((xi(H) (Y), > (H) E S i xi(H) (Y) N X i 
i=o Ji 

)/O) 

This shows Theorem 5.4 b and Theorem 5.4 c follows [] 

5.7. Sometimes we want to drop the condition that (X,A) has the G- 

homotopy type of a finitely dominated G-CW-complex. Then one needs the 

assumptions: 

i) G is a Lie group. 

ii) X is proper and completely regular and has finite orbit type. 

iii) The inclusions A >H ~ A H, X >H ~ X H and A H N X >H ~ X H are WH-co- 

fibrations and i : A ~ X is a G-cofibration. 

iv) xH/wH is the topological sum of finitely many path components or 

H is singular homology. 

v) Hn((X H, X >H N AH)/wH) is finitely generated for n ~ O and zero for 
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Then no(~)/WH ~ no(~{/WH)is a bijection for H c G by CorollamyI.40. 

Hence each x : G/H ~ X determines a path component C c X H/WH. 

We have H ~X H, X >H U A H)/WH) = • H ~C, C N (X >HU AH~/wH) if • runs over 

C £ ~(xH/wH) because of iv) (see Whitehead [1978] XII. 6.8.,Schubert 

[1964]. IV. 1.7. Satz 4.). Now define xG(x,A) 6 uG(x) by 

G 
X (X,A) (x) = ×[C, C ~ (X >H U AH~/wH]. Then the analogue of Theorem 5.4 

is true because of the Map Excision Theorem (Whitehead [1978] xII 6.7). 

If X and A are furthermore finitely dominated G-spaces, this definition 

and Definition 5.3. agree. One can also use a cohomology theory H ~ 

satisfying the Eilenberg-Steenrod axioms including the dimension axiom 

(see Whitehead [~978] XII.7) if in iv) the first condition is safisfied 
[] 

Let ~ be a subset of S(G) = {H c GI H a (closed) subgroup} closed under 

conjugation (H 6 ~ , g 6 G ~ g-IHg 6 ~ ) and intersection 

(H,K 6~ ~ H D K 6 ~ ) and containing G. Consider G-spaces X of the 

G-homotopy type of a finite G-CW-complex Y satisfying Iso Y c ~ . Define 

equivalence relations 

5. 8 X ~ Y ~ x(X H) 

5. 9 X ~ Y ~ x(xH/wH) 

= x(Y H) for all H c G 

= x(yH/wH) for all H c G 

n 
where X is the ordinary Euler characteristic x(Z) = E(-1) rk R H (Z). 

Let A(G,~ ) resp. U(G,~ ) be the set of equivalence classes. It becomes 

an associative commutative ring with unit G/G by disjoint union and 

cartesian product with diagonal G-action. Here we use that for a compact 

Lie group G and finite G-CW-complexes X and Y with Iso X and Iso Y c~ 

the G-space X x y is G-homotopy equivalent to a finite G-CW-complex Z 
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with Iso Z c ~ . If X is a finite G-CW-complex with Iso X c ~ t let [X] 

be its class in A(G,~ ) or U(G,~" ). If Y is any finite CW-complex with 

X(Y) = -llthe inverse of [X] under addition is [X x y!. If ~ is S(G) we 

write A(G) resp. U(G). 

Definition 5.10. A(G) is called the Burnside ring and U(G) the Euler 

rin 9 of the compact Lie group G. 

Let * be the point with trivial G-action. Let 

U G 5. 11. <~ : ( * )  --, U(G) 

be the homomorphism sending ~ : Con G ~ Z to 

Define 

E n(H) o [G/HI 
(H) £ Con G 

5.i2. %lj : U(G) ~ uG(,) 

by ~([X]) = pr,(×G(x)) for pr : X ~ , the canonical projection. 

Proposition 5.13 . ¢ and 9 are well-defined inverse isomorphisms. 

Proof: Obviously ~ is well-defined. Surjectivity follows from the next 

formula in U(G) for a finite G-CW-complex X 

5.14. [X] = E x((xH,x>H)/wH) - [G/H] 
(H) 6 Con G 

One proves 5.14. inductively over the number of cells using Theorem 5.4. 

Next we prove injectivity. Let E n(H) • [G/H] be zero in U(G). 
(H) £ Con G 

Assume that there is an (K) 6 Con G with n(K) # O. Choose (K) with 

(K) % 0 such that (K) c (H), (K) ~ (H) implies q (H) = O. Then we get 

z ~(H) • ×((G/H K)/wK) = ~(H) 
(H) £ Con G 

but this sum must be zero, a contradiction. Hence ~ is a well-defined 

isomorphism. One easily checks ¢ o ~ = id. 
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We mention the so called character maps 

5.15. ch : U(G) ~ n ~ [X] 
Con G 

ch : A(G) ~ H ~ [X] 
Con G 

(x(xH/wH)) (H) 

(x(xH)) (H) 

Both arehomomorphisms of abelian groups, but only the second is a ring 

homomorphism in general. 

Comments 5.16 . The equivariant Euler characteristic will appear in the 

various product formulas for the finiteness obstruction and the White- 

head torsion. 

The Burnside ring of a finite group is introduced in Dress [1969] as 

the Grothendieck construction applied to the semi-ring of finite G-sets. 

Its definition for a compact Lie group is given in tom Dieck [1975]. For 

a detailed treatment of the Burnside and Euler ring we refer to tom 

Dieck [1979] and [1987]. 

The Burnside ring A(G) is isomorphic to the stable cohomotopy of spheres 

zero e~ (see Segal [1971], tom 0ieck [1979] 8.5.1.). Let X in dimension 

be a G-homotopy representation (e.g. the unit sphere in a G-representa- 

tion) with dim X G ~ I. If Iso X is closed under intersection and X satis- 

fies the weak gap conditionsl [X,XI G ±s isomorphic to A(G,Iso X) by the 

equivariant Lefschetz index (see L~ck [19864). More information about 

the ~nstable) G-homotopy classes of G-maps between G-homotopy represen- 

tations can be found in tom Dieck [1987] II. 4. and II. 10., Laitinen 

[1986], Rubinsztein [1973], Tornehave [1982]. 

The Burnside ring plays an important role in induction theory (see 

Dress [1973] and [1975], tom Dieck [1979] 6., tom Dieck [1987] 

IV. 8.9.). A lot of modules like stable equivariant homology groups are 

modules over the Burnside ring and it is useful to study their locali- 

zations at the prime ideal of the Burnside ring (see tom Dieck [1987] 



106 

IV. 4 + 10). 

We will characterize the Euler ring by a universal property in the next 

section. Further references for equivariant Euler characteristics are 

Brown [1974], [1975], [1982]. For equivariant Lefschetz indices see 

Laitinen-L~ck [1987]. [] 

Exercises 5.17. 

I. Let SO(3) act on S 2 by evaluation at (O,0,1). Compute uSO(3) (S 2) and 

SO(3) ($2). 
X 

2. Let H be a (closed) subgroup of the compact Lie group G and X be a 

G-space. Let %(X) : uG(x) ÷ uH(res X) send the base element given 

by x : G/K + X to the image of xH(res G/K) under uH(res X) : 

H U H U (res G/K) ÷ (res X). Show that we obtain a well-defined natural 

transformation U G U H o + res. It is uniquely determined by the pro- 

H 
perry that ~(X) (7G(x)~ = X (res X) holds for any finite G-CW-complexX. 

3. Compute the ring A(A5). 

4. Show that we still get U(G) if we use instead of 5.9. the equivalence 

relation X ~ Y ~ x(xH/WHo ) = x(yH/WHo ) for all H c G. Here WH O is the 

component of the unit. 

5. The map U(G) ~ A(G) [X] ~ [X] is a well-defined epimorphism and 

a bijection if G is finite. 

6. {[G/H] i (H) 6 Con G, WH finite] is a ~-base for A(G). 

7. Let G be finite. The character map ch : A(G) ~ H ~,[X] ~ (x(xH) I 
Con G 

(H) 6 Con G) is an injective ring homomorphism, Its cokernel is fi- 

nite of order H IWH[. 
(H) 6 Con G 

8. Let G be finite. Prove the existence of numbers n(H,K) with the fol- 

lowing property. Let m = (m(K) i (K) 6 Con G) be an element in 

H ~. It lies in the image of the character map if and only if 
Con G 
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for any (H) 6 Con G the congruence 

E n(H,K) • re(K) ~ O [WHI 

holds,where the sum runs over (K) 6 Con WH such that H is normal in 

K and K/H cyclic. Moreover, n(H,H) is I. 

9. If X is a finite G-CW-complex/let qG(x) be the element Z(-1) n 

[Hn(X,~)] in the rational representation ring Rep~(~oG)) Show that 

we obtain a well-defined homomorphism 

G 
A(G) ~ RepQ (~o (G)) IX] ~ q (X) 

and that it is an isomorphism if and only if G is the product of a 

torus and a cyclic group. 

10. Prove that we obtain an homomorphism from the additive group of the 

real representation ring into the multiplicative group of units in 

the Burnside ring 

Rep~ (G) ~ A (G) 

by [V] ~ [G/G] - [SV]. 

11. Show that the kernel of U(G) ~ A(G) [X] 

U(G). 

IX] is the nilradical of 
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6. Universal functorial additive invariants 

We characterize the invariants introduced above like finiteness ob- 

struction, Whitehead torsion and Euler characteristic by a universal 

property involvinq only homotopy invariance and additivity. 

We recall the notion of a category with cofibrations and weak equiva- 

lences defined in Waldhausen [1985] 1.2. A category C is pointed if it 

has a distinguished initial object and a distinquished terminal object 

• , i.e. Mor(~,X) and Mor(X,~) consist of precisely one element for any 

object X in C (In Waldhausen [1985 ] furthermore ~ = . is assumed but we 

drop this condition). A category with cofibrations and weak equivalen- 

ces is a small pointed category C together with subcategories co C and 

wC satisfying: 

Cof I: Isomorphisms in C are cofibrations (i.e. belong to co C). 

Col 2: ~ ~ X is a cofibration for all objects X. 

Cof 3: If i : X °  ~ X I is a cofibration and f : X o ~ X 2 any morphism 

then the following push-out exists and j is a cofibration 

f 
X o % x 2 

i g 
X 1 .... ~. X 

Weq I: Isomorphisms are weak equivalences. 

Weq 2: If the following diagram 

i I 

x I < ,2 X °  

L 
Jl 

Y1 " -'~ Yo 

x 2 

Y2 
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commutes, i I and Jl are cofibrations and fo,fl and f2 are weak 

equivalences, then the map f : X ~ Y between the push-outs is 

a weak equivalence. 

Examples are given later in this section. 

The following notion is well-known. An additive invariant (A,a) for a 

category C with cofibrations and weak equivalences is an abelian group 

A together with a function assigning to an object X an element a(X) £ A 

such that the following holds: 

a) Homotopy invariance. 

If f : X ~ Y is a weak equivalence then a(X) = a(Y). 

b) Additivity. 

Let the commutative diagram 

X o ..... ~ X 2 

X 1 ~ X 

b e  a p u s h - o u t  w i t h  i a c o f i b r a t i o n .  T h e n  a ( X )  = a ( X  1) + a ( X  2)  - a ( X ) .  

c )  N o r m a l i z a t i o n .  

a (@) = 0 

We call an additive invariant (U,u) universal if for any additive in- 

variant (A,a) there is a map @: U ~A uniquely determined by the pro- 

perty that @(u(X)) = a(X) holds for any object X. 

This can be generalized by substituting A by a functor. A functorial 

additive invariant (A,a) for C consists of a functor A : C ÷ {abel.gr.} 

and a function associating to an object X an element a(X) E A(X) satis- 

fying. 
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a) Homotopy invariance. 

If f : X ~ Y is a weak equivalence then A(f) (a(X)) = a(Y). 

b) Additivity. 

Let the commutative diagram 

x 0 " 2 

i I kk1~ ~ k2 

x 1 ~ x 

be  a p u s h  o u t  a n d  i be  a c o f i b r a t i o n ,  t h e n :  

a (X)  = A ( k l )  ( a ( X l ) )  + A(k  2) ( a ( X 2 ) )  - A(k  o) ( a ( X o ) )  

c) N o r m a l i z a t i o n .  

a (@) = 0 

We call a functorial additive invariant (U,u) universal if for any func- 

torial additive invariant (A,a) there is exactly one natural transfor- 

mation ¢ : U ÷ A satisfyinq e(X) (u(X)) = a(X) for all objects X. 

Each additive invariant can be regarded as a functorial additive inva- 

riant. We can assign to a functorial additive invariant (A,a) an addi- 

tive invariant (A,a) by ~ := A(~) and ~(X) := A(pr : X ~ ~) (a(X)). 

Theorem 6.1. 

a) There is a universal functorial additive invariant (U,u) unique up 

to natural equivalence. 

b) There is a universal additive invariant unique up t__oo isomorphism. I_~t 

i__ss ~iven by (~,~). 

c) Given an object Y 6 C, let C(Y) be the category with cofibrations 

and weak equivalences h~azing ob~e~cts over Y, i.e. morphisms 

f : X ~ Y with t.arget Y, as objects. Let (U(Y) ,Uy) be the universal 
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additive invariant. Given a morphism f : Y ~ Z there is a homomor- 

phism U(f) : U(Y) ~ U(Z) uniquely determined by U(f) (Uy(g)) = 

Uz(f 0 g) for all objects g i_nnU(Y)because of the universal property. 

Define for an object X i__nn C u(X) 6 U(X) b~ Ux(id : X ~ X). 

Then (U,u) is the universal functorial additive invariant of C. 

Proof: We only explain the construction of the universal functorial addi- 

tive invariant (U,u). Let U(Y) be the quotient of the free abelian group 

generated by all morphismsf : X ~ Y with target Y and the subgroup ge- 

nerated by 

if] - [g] , if there is a weak equivalence h with f o h = g 

[f] - [fl] - If2 ] + [fo ], if there is a commutative diagram with a push- 

out as square and i a cofibration 

Y 

fl 

[~ ~ y] 

Define U(q) : U(Y) ~ U(Z) for a morphism g : Y ~ Z by composition 

and u(Y) = [id : Y ~ Y] 6 U(Y). D 

A functor F : C ~ ~ between categories with cofibrations and weak 

e~uivalences is a functor of pointed categories sending co C to co 

and wC to w~) such that F applied to a push-out with i a cofibration 
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X o 3 X 2 

X 1 ~ X 

is again a push-out. If (A,a) is a (functorial) additive invariant for 

~) we obtain a (functorial) additive invariant F (A,a) for C by A o F and 

X ~ a(F(X)). Let (Uc,~c) be the universal functorial additive inva- 

riant for C. 

The next result follows directly from the universal property and will be 

a useful tool for establishing various formulas. 

Lemma 6.2. There is exactly one natural transformation % : U C + A with 

~(X) (Uc(X)) = a(F(X)) for all objects i__nn C. o 

Let C, dO and ~ be categories with cofibrations and weak equivalences. 

Consider a functor C x~--4 ~ X,Y ~ X × Y such that X x ? : ~ ~ 

and ? x y : C ~ ~ are functors between categories with cofibrations 

and weak equivalences. Let (Uc,U C) and (U~,u~) be the universal functo- 

rial additive invariants for C and ~ and (V,v) an arbitrary functorial 

additive invariant for ~ . By Lemma 6.2. we obtain for any object Y in 

/9 a natural transformation t(Y) : UC(?) ~ V(? × Y) uniquely deter- 

mined by t(Y) (Uc(X)) = v(X x y) for all objects X in C. Let T(Y) be the 

abelian group of natural transformations UC(?) ~ V(? x y). Varying Y 

yields a functor T : 40 ~ {abel. gr.}. Since (T,t) is a functorial 

additive invariant for ~) there is exactly one natural transformation 

: U~ -~ T such that #(Y) (u~ (Y)) = t(Y) is valid for all Y in40 . 

We have shown: 

Lemma 6.3. There is exactly one natural pairing 

P(X,Y) : Uc(X) ® U~3 (Y) ~ V 
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satisfying P(X,Y) (Uc(X) ® u43 (Y)) = v(X xY) for all X i__nn C and Y i_~n~) . 

Corollary 6.4. Assume that C has an internal product such that 

? x y : C ~ C is a functor between categories with cofibrations and 

weak equivalences. Then there is a natural pairing 

P(X,Y) : Uc(X) ® Uc(Y) ~ Uc(X x Y) 

uniquely determined by the property that P(X,Y) (u C 

for all X and Y in C. [] 

(X) ® uc(Y)) = uc(X xy) 

Remark 6.5. Under the conditions of Corollary 6.4. UC(~) becomes an 

associative ring with unit UC(~) and U C a functor C - {Uc(~)-modules }. o 

Now we give some examples of categories with cofibrations and weak eQui- 

valences and cfmpute some of the universal (functorial) additive inva- 

riants in this section or later. Let G be a topological group. 

6.6. C = {G-spaces of the homotopy type of a finite G-CW-complex} 

co C = {G-cofibrations} 

w C = {G-homotopy equivalences} 

This is a category with cofibrations and weak equivalences by Lemma 1.11. 

and Lemma 2.13. 

Theorem 6.7. The universal functorial additive invariant is (uG,xG). 

Proof: (uG,x G) is a functorial additive invariant by Theorem 5.4. It re- 

mains to verify the universal property. Given any functorial additive 
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invariant (B,b) we define a natural transformation F - A ~ B as fol- 

lows. Given a G-space X and N 6 uG(x) represented by a function 

Is Ho(G,X) ~ ~, the homomorphism F(X) : uG(x) ~ B(X) sends ~ to 

E~(x : G/H ~ X) • B(x)(b(G/H)) where the sum runs over Is ~o(G,X). We 

must show that this is ccmpatible with ~. If ~ : G/K ~ G/H is a G-ho- 

mecmorphism and h : G/K × I ~ X a G-homotomv between y : G/K ~ X and 

x o ~ ~ this follows frcm hc~otoPv invariance and the ~3mmutstive dia~ra~ 

i I i o 

G/K ~ % G/K~ I < ~ G/K ~ G/H 

One should notice that for two G-homotopic G-maps f and g,B(f) = B(g) 

must not necessarily be true. 

Since each element in uG(x) is a linear ~-combination of elements 

uG(x : G/H ÷ X) (xG(G/H)), the natural transformation F is the only one 

satisfying F(G/H) (xG(G/H)) = b(G/H) for all G/H. It remains to prove 

F(X) (xG(x)) = b(X) for any finite G-CW-complex. We do this inductively 

over the dimension n of X and subinduction over the number k of cells 

of maximal dimension. The induction begin n = 0 and k = 0,1 is already 

verified. Suppose that the assertion is true for X and Y is obtained 

from X by attaching a cell of dimension n 

G/H x S n-1 ~ X 

G/H x D n o } y 

Apply additivity to this G-push-out, homotopy invariance to 
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G/H × D n and the induction hypotheses to G/H, G/H x S n-1 and Y. o 

C = {G-spaces of the homotopy type of a finitely dominated G-CW- 

complex} 

co C, w C as in 6.6. 

Theorem 6.9. The universal functorial additive invariant is (waG(Du G , 

(wG,xG)). 

Proof: (Wa G (}) U G, (wG,xG)) is a functorial additive invariant by Theorem 

3.2. and Theorem 5.4. Let (B,b) be any functorial additive invariant and 

suppose that F : waG(D U G ~ B is a natural transformation satisfying 

F(Y) (wG(y) ,xG(y)) = b(Y). We show that then F is already determined. 

Namely, let f : X ~ Y represent If} 6 waG(y) and ~ : {G/? ~ Y}/~ be 

an element in uG(y). Consider the computation where the sums run over 

Is Ko(G/Y) resp. Is ~o(G'X) 

F(Y) ([f],~) 

= F(Y) (O,n) - F(Y) (o,uG(f) (×G(x))) + 

F(Y) ([f],uS(f) (xG(x))) 

= ER(y) • F(Y) (o,uG(y) (xG(G/H))) - 

F(Y) (o,uG(f) (ExG(x) (x) • uG(x) (xG(G/H)))) + 

F(Y) o (waG(f) ~ uG(f)) (wG(y) ,xG(y)) 

= /D(y) • B(y) (b(G/H)) - ExG(x) (x)- 

B(f o x)(b(G/H)) + B(f) (b(X)). 

To prove the existence of F, we define F(Y) just by the formula above. 

The verification that this is well-defined is left to the reader. Ob- 

viously F(Y) (wG(y),xG(y)) = b(Y) holds, n 

6.10. C = {G-homotopy equivalences f : X ÷ Y between finite G-CW- 

complexes} 
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Morphisms in C are given by commutative squares with go and gl cellular 

f 
O 

Xo ~Yo 

go I L gl 
fl 

Xl ) Y1 

Such a morphism is a cofibration if go and gl are inclusions of pairs 

of G-CW-complexes and a weak equivalence if go and gl are simple G-ho- 

motopy equivalences. 

Theorem 6.11. The universal functorial additive invariant is 

(Wh G ~9 U G, (T G,X G)). 

More precisely, it is given b~ the functor sending a morphism as above 

t__oo whG(gl) ~) uG(g I) : ~G(Y o) ~9 uG(Yo ) ~ whG(y I) ~ uG(y I) and assign- 

ing t~o a__nn object f : x ~ Y the element (TG(f),xG(y)) 6 whG(y) ~ uG(y). 

Proof: This is a functorial additive invariant by Theorem 4,8. and 

Theorem 5.4. Let (B,b) a functorial additive invariant. Suppose for the 

natural transformation F : whG~ U G ~ B that F(f) (TG(f),xG(y)) = b(f) 

holds for any object f : X ~ Y. Then F is already determined by the 

following calculation for any object f : X ~ Y. Let r : Z ~ Y be 

any strong G-deformation retraction for a pair of finite G-CW-complexes 

representing [Z,Y] 6 whG(y) and ~ be an element in uG(x). Since uG(f) 

U G is bijective, any element in uG(y) can be written as (f) (n). The sums 

below run over Is ~o(G,X). For x : G/H ~ X let ~ be the morphism in C 

from id : G/H ~ G/H to f : X ~ Y given by 

id 
GtH G/H 

x "~ Y 
4: 
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We get 

F(f) ([Z,Y] ,uG(f) (~)) 

: F(f) (o,uG(f) (~)) - F(f) (o,uG(f) (xG(x))) 

+ F(f) (TG(r) ,xG(y)) 

= E(~(x) - xG(x) (x)) • F(f) (o,uG(f o x) (xG(G/H))) 

G + F(f) (TG(r) ,X (Y)) 

= E(~(x) - xG(x) (x)) • B(~) (b(id : G/H ~ G/H)) 

+ b(r) 

Now define F just by this formula, m 

6.12. G = {endomorphisms of G-spaces of the homotopy type of a finite 

G-CW-complex} 

Morphisms are commutative squares 

f 
X ~ X 

g 
Y ~ Y 

co C = {morphisms with h a cofibration} 

w C = {morphisms with h a G-homotopy equivalence} 

The universal additive invariant is computed for G a finite abelian 

group in Okonek [1983 ] using Almkvist [1978 ] m 

6.13. Let R be a ring. Let ~ resp. ~ be the category of finitely ge- 

nerated free resp. projective R-modules. They become categories with 

cofibrations and weak equivalences if split injections are the cofi- 

brations and isomorphisms the weak equivalences. Suppose that there is 

a well defined notion of a rank of a finitely generated projective R- 
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module such that rk R = I and rk P ~ Q = rk P + rk Q holds. 

Then (Z,rk) is the universal additive invariant for ~ . The universal 

additive invariant for ~ is called the projective class group Ko(R). 

Its restriction to ~ is an additive invariant for ~ and (~,rk) is also 

an additive invariant for~ . Hence there are homomorphisms i :~ ~ Ko(R) 

and r : Ko(R) ~ ~ with r o i = id such that i(n) = [R n] and r([P]) = 

rk P. The cokernel of i is called the reduced projective class group 

(R). 
o 

The category CC(~ ) resp. CC(~ ) of finitely dimensional chain complexes 

over ~ resp. ~ is also a category with cofibrations and weak equiva- 

lences. Chain maps i : C ~ D such that each i n is an split injection 

are cofibrations and homotopy equivalences are weak equivalences. Now 

one can also give chain complex versions of the examples above, o 

Comments 6.14. The concept of a universal functorial additive invariant 

is introduced in L~ck [1987~. Its main use is that it characterizes the 

invariants above in a simple manner and leads directly to product and 

restriction formulas in the next section. We will see that it is much 

harder to describe them algebraically. 

Additive invariants are used in tom Dieck [1987] IV. 8. to introduce in- 

duction categories which play a role in the axiomatic induction theory 

for compact Lie groups. Moreover, the Euler ring U(G) of a compact Lie 

group is defined as the universal additive invariant for finite G-CW- 

complexes (see tom Dieck [1979] 5.4.4.). 

A similar characterization of Lefschetz indices is given in Laitinen- 

LUck [1987]. [] 

Exercises 6.15. 

I. Show for a compact Lie group G that the Euler ring U(G) together 

with X ~ [X] is the universal additive invariant for finite G-CW- 
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complexes. 

2. Prove that the universal additive invariant for the category of fi- 

nite-dimensional G-CW-complexes is zero~ 

3. Let C be the category of G-homotopy projections f : X ~ X of finite 

G-CW-complexes for G a compact Lie group. Define ~ equivariant Lef- 

schetz index kG(f) 6 uG(~) by the collection of integers Z(-]) n trace 

Hn((fH,f>H)/wH) : Hn((XH,x>H)/wH) ~ Hn((XH,x>H)/wH for (H) E Con G. 

Show that UG(~) (~) uG(~) with the function sending f : X - X to 

kG(f),kG(idx ) is an additive invariant. Is it universal? 

4. Show that uG(~) together with f ~ kG(f) (defined in exercise 3 above) 

is an additive invariant for the category of endomorphisms of finite 

G-CW-complexes (see 6.]2.). Prove that it is not universal. 

5. Let Gr(R) be the universal additive invariant for the category of 

finitely generated R-modules. Show for a principal domain that 

Gr(R) ~ K (R) ~ Z holds. 
o 

6. Give an example of a ring R with Ko(R) % {O] . 

7. Considering a R-module M as a chain complex concentrated in dimension 

zero defines an homomorphism from Ko(R) into the universal additive 

invariant Ko(CC(~ )) of CC(~ ) (see 6.]3.). Show that this is an iso- 

morphism. 

8. Let C be the category of free Z-chain complexes such that Hi(C) is 

finite for i ~ O and zero for large i. Compute the universal additive 

invariant. 
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7. Product and restriction formulas. 

In this section we state product and restriction formulas. This requires to deal with 

the question whether the restriction of a finite G-CW-complex to a subgroup H c G 

has the H-homotopy type of a finite H-CW-complex and, moreover, whether there is a 

(canonical) simple structure. We relate the finiteness obstruction and the Whitehead 

torsion by a geometric Bass-Heller-Swan-Homomorphism. We use it to define equivariant 

negative K-groups geometrically. We introduce an homomorphism w : A(G)* -~ wHG(*) 

using the diagonal product formula. Let G and H be topological groups. 

Theorem 7.1. Product Formula 

a) There is a natural pairing 

P(X,Y) : (waG(x) ~ uG(x)) ~ (waN(y) ~ uH(y)) --~ waG×N(xxY) ® uGXH(xxY) 

uniquely determined by the property the P(X,Y) sends (wG(x),xG(x)) ® (wH(y),xH(y)) 

t_oo (wGXH(xxY),xG(xxy)) for a finitely dominated G-space X and a finitely dominated 

H-space Y . 

b) There is a natural pairing 

P(X,Y) : (whG(x) • uG(x)) ® (whH(y) ® uH(y)) --~ whGXH(xxY) ® uGXH(x×Y) 

uniquely determined by the property that it maps (~G(f),xG(x)) ® (TH(g),xH(y)) t_~o 

(~GxH(f×g),xG(xxY)) for a G- resp. N-homotopy equivalence 

g : Y' --~ Y between finite G-resp. H-CW-complexes. 

c) Let the pairng 

® : whG(x) ~ uH(y) --~ whGXH(xxy) 

send (u,v) to the component of P(X,Y)((u,xG(x)),(0,v)) 

analogously 

: uG(x) ® whH(y) ~ whGXH(xxY) . 

f : X' -~ X resp. 

in whGXH(x×Y) and define 

Then we have 
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GxH(f×g) = xG(x) ® H(g) + G(f) ® xG(y) . 

Proof. Lemmm 6.3. ~heorem 6.11, Theorem 4.8. d. 

7.2. If X is a finitely dominated G-CW-complex and Y a finite H-CW-complex with 

xH(y)'- = 0 then X×Y is 

f : X' --~ X resp. g : Y' --~ Y 

G- resp. H-CW-complexes and xG(x) 

topy equivalence, o 

GxH-homotopy equivalent to a finite GxH-CW-complex. If 

is a G- resp. H-homotopy equivalence between finite 

and xH(y) vanish I fxg is a simple G×H-homo- 

Next we consider a (closed) subgroup H of G and want to deal with restriction to 

H . Of course we want to proceed as above. Therefore we must deal with the question 

whether the restriction of a finite G-CW-complex to H has a simple structure. 

Assumption 7.3. For any (closed) K c G the restriction res G/K of the homo- 

geneous G-space G/K to H has the H-homotopy type of a finite H-CW-complexo D 

We will get from the construction below or already from 4.31. 

Lemma 7.4. If assumption 7.3. is fulfilled and X a G-space of the G-homotopy 

type of a finite~ finitely dominated~ skeletal finite resp. finite-dimensional G-CW- 

complex then res X i__ssH-h0motopy equivalent to a finite~ finitely dominated ~ ske- 

letal-finite resp. finite-dimensional H-CW-complex. o 

We have introduced the component category No(G,X) 

x : G/K --~ X we want to define an homomorphism 

7.5. ~(x) : Aut(x) --~ whH(res X) 

Let ~(x) send the automorphism o of x given by the G-homeomorphism o:G/K--~ G/K 

to x,~H(res o : (res G/K,~) --~ (res G/K),~)) for any simple H-structure ~ on 

res G/K . This is independent of the choice $ because of Theorem 4.33. 

If m : x --~ y is any isomorphism in ~ (G,X) and c(~) : Aut(x) --~ Aut(y) is 
o 

conjugation with ~ we have 

in Definition 5.1. Given an object 
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7.6. 

Definition 7.7. We call a G-space 

zero for all x ~ Ho(G,X) . 

We discuss this definition later. 

~(y) o c(~) = ¢(x) 

X H-simple if 

O 

~(X) : Aut(x) ~ whH(res X) is 

Consider a fTnite H-simple G-CW-complex X . Make the following choices. 

7.8. For any x ~ Is Ho(G,X) fix a representative x : G/L --~ X , a finite H-CW- 

complex Z(x) and a H-homotopy equivalence z(x) : Z(x) --~ res G/L . o 

7.9.a) Choose for any n-cell a characteristic map. In other words, fix an explicite 

I 
n 

n 

__II G/K i S n-I JJL qi x ~ Xn_ 1 

Ii n 
II G/K. x D n --Qi "~ X 

-- i n 

G-push out diagram where l_j_l runs over 

b) Q~IG/K × * : G/K.I " X for * ~ D n is an object in Ho(G,X) . Let 

n x. : G/L. - - ~  X be t h e  r e p r e s e n t a t i v e  o f  i t s  i s o m o r p h i s m  c l a s s  c h o o s e n  in  a ) .  Let  
1 1 

n 
o i : G/L i --~ G/K i be an isomorphism in ~o(G,X) between these objects, a 

7.10. With these choices we can equip res X inductively over the skeletons with 

a simple structure. Define a simple structure ~ on res G/K i for i ~ I n by 

n n ~ n sn-I o i o z(x i) : Z(x )'--I" res G/K i . We obtain simple structures Yi x on 

res G/K i x S n-I and y~ x D n on res G/K.I x D n . Now suppose we have already a 

simple structure ~n-i on res Xn_ 1 . Then we equip res X n with the simple struct1~e 

Sn for which the G-push out in 7.9. becomes an H-push out of H-spaces with simple 

structure, s 

7.11. If fn-I : Yn-i --" res Xn_ I is an explicite representative of the simple 

H-structure $n-i on res Xn_ 1 we obtain an explicite representative for the one 

1 
of res X n by the following diagram where I_I L runs over In ~ fn 1 is a H-homo- 

topy inverse and h an H-homotopy with cellular h I 
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I; G/K i x D n 4 > II G/K. × S n-I --• res Xn_ I 

I n n I [ n o z(x~)) × id jHL(oioz(xi) ) x id id l_I (o i 

l_Iz(,~) × D", ~ 1! z(,~) . s n-1 --+ res X I 

JLZ(x~)x Dnxl " ~ JL Z(x~) xSn-lxl h• y 

i1 I i I id 

'_JL Z(x~) × D n , ~ '_L Z(x~) × s n-I ~ Yn-i 

Next we examine how this simple structure depends on the choices 7.8. and 7,9. We will 

see that only 7.8. is relevant. Suppose we have made a second choice 7.8'. and 7.9' 

We want to define an homomorphism 

7.12. 0 x : uG(x) • whH(res X) 

Given u E IS no(G,Y) ~ choose an isomorphism o : x --~ x' in 

the representatives x and x' of 7.8. and 7.8'. Define @x(U) 

Ho(G,Y) between 

by the image of the 

Whitehead torsion of the H-homotopy equivalence 

z(x) o (z(x')') -1 
Z(X) • res G/L --• res(G/L') • Z(x')' 

under the homomorphism (x' o z(x')'), : whH(Z(x') ') --• whH(res X) . This is in- 

dependent of the choice of o as X is H-simple. The main technical result is 

Lemma 7.13. Let X be a finite G-CW-complex which is H-simple. Let ~ and ~' 

be the simple structures on res X we get by 7.10. for the choices 7.8~ 7.9~ and 

7.8' 7.9' Then we have in whH(res X) 

TH(id : (res X,~) --~ (res X,$')) = Ox(XG(x)) 

Proof Let Sn and ~' be the simple structures we get on X . Let k(n) :X --~X n n n 
be the inclusion. We show inductively over n ~ -I 

7.14. k(n),TH(id : (res Xn,~ n) --~ (res Xn,$ ~) = 0 X o k(n)e(xG(Xn )) 
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We prove the induction step from (n-l) to n . In the sequel all sums run over I 
n 

and we sometimes drop the index n . In the following process we thicken Xn_ 1 into 

X n . For t ~ [0,i] define Dn(t) = {y ~ Dn)lllyll _-< t}, sn-l(t) = {y~Dnlllyll = t}. 

Let Xn_l(t) be Xn_ 1 U 31_I Qi(G/Ki × (Dn\int Dn(t))). Composing Qi with the map 

G / K .  x D n - - ~  G /K .  × D n a n d  G / K .  × S n - -~-  G / K .  x D n g i v e n  b y  m u l t i p l i c a t i o n  w i t h  
I i I i 

the scalar t defines Qi(t) : G/H.I x D n --~ XnNint Xn_l(t), qi(t) : G/H.~ x S n-I 

--~ 8Xn_l(t)_ _ . Then we have the G-push out 

7,15. It G /K  i S n - 1  !-1 q i ( t )  
_ _  × ~ X n _ l ( t )  

' 1 I l_l_l Qi(t) 

II G/K. × D n .~ X 
1 n 

Notice that 7.15. reduces for t = 1 to the given G-push out 7.9. We can do the same 

for the choices 7.8'. 7.9' obtaining qi(t')', Qi(t')', X .(t')' ... for t' ~ [0,i]. 

l I x We can assume without loss of generality that Qi(G/Ki×{0}) = Qi(G/Ki {0}) for 

the origin O ~ D n . Construct continuous strictly monoton increasing functions 

c : [0,i] --~ [0,i] and 6 : [0,i] --~ [0,i] such that Xn_l(6(t'))' c Xn_l(s(t')) 

c Xn_l(t' )' holds. Define h : Xn_ 1 × [0,I] --~ Xn_ 1 by requiring h °  = id , 

~'" K' s \ ' ' ht,IXn_l(t')' = id, ht, o wing i' ) = Qi(gKi'st'/~(t')) for 0 ~ s ~ 6(t') , 6(t')+0 

f i t  = .  and ht, o Q[(gK],s)~ = Qi(gKi,t ) for 0 < 6(t') £ s < t' Let r(t') : Xn_I(s(t')) 

--~ Xn_l(t')' be ht, IXn_l(s(t')) . Define (V i (t'),vi(t')) : G/K i x (Dn,S n-l) 

--, G/K[ x (Dn,S n-l) by (Q'(t')"qi(t')')1 o (Vi(t'),vi(t')) = ht, o (Qi(s(t')), 

qi(s(t')) for t' ~ [0,i[ . Define f(t') by the G-push out for some t' g ]0,i[ 
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7.16. 

!_1 G/KixSn-i 

I_JL G/K, 1 

l lqi( E(t' )) 
' Xn_] (~ (t')) 

n f(t') ~ - i llq-.(t')' ~"~ 
~ I/ G/KIxsn-i ---i . Xn_l(t,) , 

I_L G/Ki×D ' X n 

' on G/K. and G/K~. Equip We already have defined simple H-structures 7i and ¥i i i 

Xn_l(E(t')) with the simple structure $n_l(e(t')) for which the inclusion 

(Xn_l,gn_ I) --~ (Xn_l(e(t')~,~n_l(g(t'))) is simple. One easily checks that the 

left G-push out in 7,16. is a H-push out of H-spaces with simple structure if we use 

Sn on X n . The analogous is true for the prime-version. Using the homotopy h above 

one shows that f(t') is G-homotopic to the identity. If k : Xn_ 1 --~ X n is the 

inclusion we get from Theorem 4.33. as r(t')IXn_ 1 = id is true. 

7.17. • H(id : (Xn,~ n) --~ (X ,¢')) = n n 

Next choose a homotopy equivalence (Wi,wi) : (Dn,S n-l) --~ (Dn,S n-l) and a G-homo- 

m o r p h i s m  m i : G/K i - - ~  G/K~i s u c h  t h a t  ( V i ( t ' ) , v i ( t ' ) )  i s  G - h o m o t o p i c  t o  

w i × (Wi,w i) . Let ]i ~ Is Ho(G,X n) be given by QilG/KI x {0} . Since W.i and 

w. are simple and x(D n) - x(S n-l) is(-l) n we derive from Theorem 4.33. 
1 

7 . t 8 .  Q~,~H(vi(t')) - k~.qi,, ,TH(vi (t')) = (-l)nui,.~H(m i),, " 

Now ~i is a morphism in Ho(G,X) from Qi[G/Ki x {0} to QI[G/KI x {0}. Hence we 

g e t  f r o m  t h e  d e f i n i t i o n s  i f  k ( n )  : X - - ~  X i s  t h e  i n c l u s i o n  n 
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@X 

Theorem 5.4. and Lemma 5.6. imply 

7.14. follows from 7.20. n 
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7.19. k(n),ui.~H(~ i) = @x(k(n),(]i)) 

We derive from 7.17., 7.18., and 7.19., and the induction hypothesis 

k(n),rH(id : (Xn,~ n) --~ (Xn,<~)) = 

°  k(n-1)*xG(Xn-1 ) + (-l)nZ @X o k(n),(] i ) 

xG(Xn ) = k,×G(Xn_l ) + E(-l)nui . Now the claim 

Consider a G-homotopy equivalence f : X --~ Y between G-CW-complexes which are H- 

simple. Fix choices 7.8. and 7.9. for X and Y . The choice 7.8. for X defines a 

Y just by composition with f : X --~ Y . So we have two different 

Y . We have defined an homomorphism @f : uG(y) --~ whH(res Y) in 

choice 7.8. for 

choices 7.8. fo~ 

7.12. regarding the one coming from X as the first. We define 

7.22. TH(res f) ~ whH(res X) 

by TH(res f:(res X,~ X) - (res Y,~y)) - @f(xG(y)). 

This element ~H(res f) is independent of the choices 7.8. and 7.9. Make different 

' and ' Let @X and @y choices 7.8'. and 7.9', for X and Y . We get gl, gy @f . 

be the homomorphisms of 7.12. according to these different choices. One easily checks 

O~(×G(y)) - Of(×G(y)) = @y(XG(y)) - f,Ox(×G(x)). 

Now we get from Lemma 7.13. 

TH(res f : (res X,~ X) --~ (res Y,~y)) - Of(xG(y)) = 

TH(res f : (res X,~) --~ (res Y,g~))+[f~@x(G(Y)) 

_ Oy(XC(y)) _ @f(×G(y)) 

= ~H(res f : (res X,~) --" (res Y,~½)) - 0~(xG(y~. 

Assumption 7.23. Any finite G-CW-complex X is H-simple. o 

Lemma 7.24. If assumption 7.23. holds, we get a functorial additive invariant on 

the category ~ of 6.10. by whH(res X),~H(res f) . 
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Proof. Theorem 4.33. o 

Theorem 7.25. Restriction formula. 

a) If assumption 7.3. holds there is exactly one natural homomorphism 

Res X : waG(x) * uG(x) ---~ waH(res X) ® uH(res X) 

(wH(res X),xH(res X)) for any finitely dominated G- sending (wG(x),xG(x)) t__qo 

space X . 

b) 

sending (~G(f),xG(x)) 

f : X' ---+X 

Suppose assumptions 7.3. and 7.23. Then there is exactly one natural homomorphism 

Res X : whG(x) ® uG(x) --~ whH(res X) ® uH(res X) 

to (~H(res f),xH(res X)) for any G-homotopy equivalence 

of finite G-CW-complexes. 

Proof. 

a) Let ~ (G) be the category defined in 6.8. Restriction defines a functor 

(G) --, ~ (H) of categories with cofibrations and weak equivalences because of 

Lemmata 1.12., 1.13., and 7.4. Now apply Lemma 6.2. and Theorem 6.g. 

b) Theorem 6.11. and Lema~a 7.24. o 

Combining the product and restriction formula yields a diagonal product formula. Its 

meaning lies in the fact that it is an internal formula. In the sequel H = G cG x G 

is the diagonal subgroup. 

Theorem 7.26. 

a) 

Diagonal Product Formula 

If assumption 7.3. holds for G c G × G there is exactly one natural pairing 

P(X,Y) : (waG(x) ® uG(x)) -(waG(y) ® uG(y)) --" waG(xxY) ® uG(xxY) 

sending (wG(x),xG(x)) ® (wG(y),xG(y)) to wG(xxY),xG(xxY) fo E finitely dominated 

G-space s X and Y . 

b) Suppose assumptions 7.3 and 7.23. hold for 

pairing 

G c GxG . Then there is a natural 
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P(X,Y) : (whG(x) ® uG(y)) ®(whG(y) ® uG(y)) --~ whG(xxY) • uG(x×Y) 

uniquely determined by the property that it sends (TG(f),xG(x)) ® (TG(g),xG(y)) 

t__oo (TG(f×g),xG(xxY)) for G-homotopy equivalences between finite G-CW-complexes 

f : X' ~ X and g : Y' --~ Y . 

c) Suppose assumption 7.3. and 7.23. hold for G c G×G . Let the pairing 

®:whG(x) ® uG(y) --~ whG(XxY) 

®:uG(x) ® whG(y) --~ whG(xxY) . 

G(f×g) = xG(x) ® G(g) + TG(f) ® xG(y) 

Now we come to the promised discussion of our assumptions. 

Lemma 7.27. Let G be a compact Lie group. Then assumptions 7.3. and 7.23. are 

satisfied for any (closed) subgroup H c G . 

Proof: This follows from 4.36. Namelytthe restriction res G/K is a compact smooth 

H-manifold and has therefore a preferred simple structure $ . This shows 7.3. If 

a : G/K---~ G/K is a G-homeemorphism, o must be smooth so that TH(o:(res G/K,$) 

--~ (res G/K,~)) vanishes by 4.36. This verifies 7.23. o 

Remark 7.28. Of course we could have started in the case of a compact Lie group G 

in 7.8. always with the preferred simple H-structures of 4.36. Then res X has also 

a preferred simple H-structure ~X by 7.10. and Lemma 7.13. if X is a finite G-CW- 

complex and TH(res f) is just ~H(res f : (X,~ X) --~ (Y,~y)) . However, the proofs 

would not become really simpler , one has to do the same type of calculations e.g. to 

prove that the choice of characteristic maps do not matter. It is remarkable that 

TH(res f) can be defined independently of the choice of 7.8. This observation will 

become important when we will regard fibrations and their transfer maps. Notice that 

no correction term 0 occurs when xG(x) = xG(y) vanish. In particular res X 

Then we have: 

send (u,v) to the component of P(X,Y)((u,×G(x)) ® (0,v)) i__nn whG(XxY) . Define 

analogously 
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has a preferred simple H-structure if assumptions 7.3. is true, X is H-simple and 

xG(x) vanishes • Then the choice 7.8. does not matter. D 

7.29. Let G be a compact Lie group. By the diagonal product formula waG(*)~UG(*) 

becomes an associative commutative ring with unit u(*) and Wa G ® U G a functor into 

the category of waG(*) • uG(*)-modules. The analogue is true for Wh G • U G 

If X is a finitely dominated G-CW-complex and S I the one-dimensional circle with 

trivial G-action~ X × S 1 is G-homotopy equivalent to a finite G-CW-complexby 

7.2. The geometric proof of Mather [1965] carries over to the equivariant case as 

follows. 

Given a G-self map f : Z ~ Z, its mapping torus T(f) is obtained from the mapping 

Cyl(f) by identifying the top and bottom. In other words, T(f) is the G- cylinder 

push out 

7.30. 
id I_1 id 

z I_L z ~ Z  

Cyl(f) ~ T(f) 

Let f : X --, Y and g : Y --~ Z be G-maps. Then there is a G-homotopy equivalence 

Cyl(gof) --, Cyl(f) Uy Cyl(g) relative X I_JL Z given in 4.17. It induces a G-homo- 

topy equivalence 

7.31.- 

If f and g : X --~ Y 

Cyl(f) --~ Cyl(g) rel X I_JLY 

7.32. 

Consider a G-space X with a finite G-domination 

T(f o g) --~ T(g o f) 

are G-homotopic, Lemma 4.18. gives a G-homotopy equivalence 

and hence a G-homotopy equivalence 

T ( f )  ~ T ( g )  , 

(Z,r,i) . We get from 7.31. and 

7.32. a G-homotopy equivalence unique up to G-homotopy 

7.33. ~ : T(i o r) --~ T(r o i) --~ T(id) ~ XxS I 

Notice that T(i o r) is a finite G-CW-complex. Given a G-space Y , we define an 
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homomorphism 

7.34. ¢(Y) : waG(y) --~ whG(YxS I) 

as follows. Let X be a finitely dominated G-space and f : X --b y be a G-map 

representing If] ~ wG(y) . Let @ : S I --~ S I send z to its complex conjugate 

z and choose ~ : T(i o r) --~ X×S I as constructed in 7.33. If ~-i is any G- 

homotopy inverse, define 

~(y)([f]) := (f x id),~,(TG(~ -I o 0 o ~)) 

We leave it to the reader to carry over the proof in Ferry [1981 a] that ~(Y) is 

well-defined. Moreover, a finitely dominated G-space X is G-homotopy equivalent to 

a finite G-CW-complex if and only if ~(X)(wG(x)) vanishes. This is equivalent to 

the next result 

Lemma 7.35. #(Y) is in~ective, o 

Let o(j) : T n+l --~ T n+l be the permutation of coordinates 

(zl,z 2 ..... Zn,Z) --~ (z I ..... Zj_l,Z,Z j ..... z n) 

for j = i, .... n+l. 

Definition 7.36. The equivariant negative K-groups are defined for n >= 0 

n+l 
~G (y) = N image((id × o(j)), 
-n j=l 

o #(y×Tn)) c whG(YxT n+l) 

by 

D 

Let (kl,k2,...,kn+ I) be the n+l-tuple of positive integers. If P(kl,...,kn+ I) : 

T n+l ~ T n+l is the covering given by the products of the coverings S 1 --~ S I 
k. 
I z --~ z ,we obtain from the pull-back construction an homomorphism 

7.37. p(k l,...,kn+ I) : whG(yxT n+l) --~ whG(y×T n+l) . 

This yields an operation of the monoid IN n+l on whG(y×T n+l) . Later we prove 

Theorem 7.38. We have for n a O  

~G (y) = whG(YxTn+l~ n+l 
-n 
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We can use the diagonal product formula to define for a compact Lie group G an 

homomorphism 

7.39. 

where A(G) 

head group 

are needed. 

: A(G) --~ Wh G 

are the units in the Burnside ring and Wh G is the equivariant White- 

whG(*) of the trivial G-space consisting of one point. Some preparations 

Let X be a G- and Y a H-space. Define the join x * Y as the G×H-push out 

7.40. x × {o} × Y l~X × {i} × Y , Y l_i x 

1 
X×IxY -~X*Y 

Up to G-homeomorphism this can also be defined as the G-push out 

7.41. X × Y ~ X × Cone(Y) 

I I 

Cone(X) × Y + X * Y 

If X and Y are G-CW-complexes equip 

that 7.41. is cellular (see 4.1). If V 

SV * SW are G-homeomorphic. If X and 

Theorem 5.4. and Theorem 7.26. in U(G) 

7.42. ×G(x*Y) = xG(x) + xG(y) - ×G(x) ~ xG(y) . 

The projection p : U(G) --~ A(G) and the character map ch:A(G) -~ 

ring homomorphisms. We get from 7.42. 

7.43. chop(l-xG(sv)).chop(l-xG(sv)) 

= chop(I-xG(sv*sv)) = chop(I-G(s(v®v)) ~ i 

X * Y with the G-CW-complex structure such 

and W are representations I S(V ® W) and 

Y are finite G-CW-complexes,we get from 

II C(G) are 
(H) 

since x(SV • V) H = 0 for all H c G . As ch is injective and the kernel of p 

the nilradical of U(G) (see tom Dieck [1979], Proposition 5.53), I-xG(sv) is a 

is 
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unit in U(G) for any G-representation V . Next consider a G-self equivalence 

f : SV ~ SV of a G-representation. Let ~G(f) denote the image of TG(f) under 

pr, : whG(sv) ~ whG(*) . If g : SV --~ SW is a G-homotopy equivalence t ~G(gofog-l)- 

= ~G(f) by Theorem 4.8. d). This shows in particular that it does not matter which 

simple structure we use on SV . Consider two G-self equivalences f: SV -~ SV 

and g : SW --~ SW . We get from Theorem 4.8., Theorem 7.26. and 7.42. 

7.44. (I_xG(sv,sw))-I. ~G(f,g) = (I_xG(sv))-I~G(f)+(I_xG(sw))-I~G(g) 

Let u ~ A(G)* be given, We can find a G-representation V and a G-self-map 

f : SV --, SV such that ch(u) H = deg fH holds for H c G , WH finite (see tom 

Dieck [1987], II.8). Then we define m(u) ~ Wh G by (I-xG(sv))-I.~G(f)) . This gives 

a well defined homomorphism m : A(G)* --~ Wh G by 7.44. since stable G-homotopy 

classes of G-maps f : SV --, SV are classified by the degrees deg fH for H c G, 

WH finite. 

Finally we examine for a compact Lie group G and a G-manifold M the restriction 

of the G-simple structure to K c G . Let gG(M) resp. sK (res M) be the simple 

structure on M regarded as a G- resp. K-manifold which we have defined in 4.36. 

Using the simple structures sK(res G/H) we get a preferred choice 7.8. for M 

and thus by 7.10. a second K-simple structure on res M from ~G(M) denoted by 

res ~G(M) . 

Lemma 7.4 5. res sG(M) = sK(res M) 

Proof. We use induction over the number r of orbit types. We start with the 

induction step from r-I to r for r ~ 2 . Choose H ~ Iso(M) to be maximal, 

i.e. L ~ Iso(M), H c L implies H = L . In the sequel we use the notation of 

4.36., e.g. v = v(M(H),M),M = M\~ . Consider the G-push outs 

7.46. Sv ~ M Sv ~ M(H ) 

Dv ~ M Sv×I ~ Dv 

These are G-push outs of G-spaces with simple structures with respect to sG(?) 
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by definition. This is also true over K for gK(res ?) by Proposition 4.60. One 

easily checks by inspecting 7.10. that these are K-push outs of K-spaces with simple 

structure with respect to res gG(?) . By induction hypothesis the claim is true 

for S~, SvxI and M . Hence it holds for D~ and M by the K-push outs 7.46. 

It remains to verify the induction begin. In other words, it suffices to prove 

res sG(M) = ~K(resM) under the assumption that M has only one orbit type, say 

G/H . Consider a fibre bundle G/H --~ M --~ N with structure group WH and N 

a manifold. Recall that ~G(M) arises from this situation using a non-equivariant 

triangulation of N . We have to show res ~G(M) = gK(res M) in this situation. We 

use induction over the dimension of N . The begin dimN = 0 is trivial. In the 

induction step we use induction over the number of handle bodies of N . Suppose that 

N is obtained from N by attaching a handle D k x D n-k 

sk-I Dn-k __.~ 

D k × D n-k ~ N 

This push out induces a G-push out 

7.47. 

i 
M ~ M o 

by pulling back the fibre bundle. The claim holds for 

hypothesis and for Mo, as M °  is G-diffeomorphic to 

a K-push out of K-spaces with simple structure with respect to both 

res ~G(?) , the claim for M follows. D 

and ~ by induction 
o 

G/H × D k x D n-k . As 7.47. is 

~K(res ?) and 

Corollary 7.48. Let K c G be compact Lie groups and f : M --~ N be a G-homotopy 

equivalence of G-manifolds. Define G(f) C whG(N) resp TK(res f) C whK(res N) 

with respect to the simple structure ~G(M),$G(N) resp . ~K(res M),~K(res N) of 

4.36. Let Res N : whG(N) --b whK(resN) be induced from the map in Proposition 7.25. 

Then 
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ResN(~G(f)) = ~K(resf) 

Comments 7.49. The non-equivariant sum and product formulas for the finiteness 

obstruction and the Whitehead torsion are established in Cohen [1973], Gersten [1966], 

Kwun-Szczarba [1965], Siebenmann [1965]. The product formula in the equivariant setting 

is treated in Andrzejewski [1986], Illman [1986] and LUck [1983]. A diagonal product 

formula for finite groups is established in tom Dieck [1981] using the language of 

modules over the orbit category. It is used for example in the theory of homotopy 

representations (see tom Dieck-Petrie [1982] § 8) 

Mather's trick [1965] is the main ingredient in Ferry [1981a] to develop a simple 

homotopy approach to the finiteness obstruction. This is extended to the equivariant 

case in Kwasik [1983]. The invariant oG(x) ~ whG(x×s I) defined there is just 

~(X)(wG(x)) in our notion. The statement in Kwasik [1983] 3.4 that ~G(x) vanishes, 

if and only if X is finite, is equivalent to ~(Y) being always injective. 

Negative K-groups are introduced in Bass [1968]. Algebraically equivariant negative 

K-groups are defined and splitted into ordinary ones (compare Theorem 3,11.) in 

Svensson [1985] provided that X is a point. Equivariant negative K-groups appear 

for example as obstruction groups for equivariant transversality in Madsen-Rothenberg 

[1985a]. 

Later we will deal with the various formulas, the geometric Bass-Heller-Swan-homo- 

morphism and the groups ~G algebraically. D 
-n 

Exercises 7.50. 

i. Let G be an abelian Lie group with finite ~ (G) . Do assumptions 7.3. and 7.24. 
o 

hold for H c G ? 

2. Let G be a path-connected topological group. Suppose that G is homotopy equi- 

valent to a finite CW-complex. Show that assumptions 7.3. and 7.24. hold if HcG 

is the trivial subgroup. If G --, E -~ B is a principal G-bundle define a trans- 

map p : whliB)- - --~ WhI(E)- - and p : WaI(B) --~ WaI(E) using the restriction fer 

formula. 
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P 
G be a simply connected Lie group with dim G ~ 1 . Let G -~ E -~ B be a 

is homo- 

is bi- 

8. Show KG(x) = waG(x) . 
o 

9. Let G be a compact Lie group and 

G-manifolds. Define TH(f) for any 

Show 

a) If G(f) is zero, H(f) vanishes for all 

b) The converse of a) is false. 

i0. Show the existence of two sl-manifolds M and 

but are H-diffeomorphic for any finite subgroup 

f : M --~ N be a G-homotopy equivalence of 

H c G using the simple structures of 4.36. 

H c G with H + G . 

which are not sl-diffeomorphic 

H c S 1 . 

3. Let 

principal G-bundle over a finitely dominated CW-complex. Show that E 

topy equivalent to a finite CW-complex. (Hint: p, : WaI(E) -~ WaI(B) 

jective and p E --~ E has a section). 

4. Let SO(3) act diagonally on ~6 = ~3 x ~3 . Compute xS0(3)(S(~6)) ~ U(G) in 

terms of the base elements [SO(3)/H] for H c S0(3) . 

5. Let X be a finite G- and Y a finite H-CW-complex. Show that the two simple 

GxH-structures on X*Y defined by 7,40. and 7,41. agree. 

6. Let V and W be G-representations. We get from Remark 7.28. and 7.40. or 7.41. 

a simple G-structure on SV*SW . Since S(V®W) is a G-manifold there is a simple 

G-structure on S(V®W) by 4.36. Show that the obvious G-homeomorphism S(VsW) 

--~ SV*SW is a simple G-homotopy equivalence. 

7. Let G be the product of a finite 2-group H and a finite group K of odd 

order. Show that m : A(G)* --~ Wh G is trivial (see Doverma~l-RothenberB [1988], p. ~a) 

(Hint: Use that A(K) = {±i} (see tom Dieck [1979] 1.5.) and any element in A(H) 

can be represented by a self-map SV --~ SV induced from an orthogonal map 

V --~ V (see Tornhave [1984]). Show A(G)* = A(K)* ®Z A(H)*) 
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8. Lift-extensions and the (discrete) fundamental category. 

Given an appropriate G-space 

the G-action to a G-action on 

i ~ ~l(X) --~ G --~ G---~ I 

X with universal covering p : X --~ X, we want to lift 

. More precisely, we construct an extension 

and a G-action on X extending the ~l(X)~action and 

covering the G-action . Then we will divide out the action of 

the component Go of the identity and obtain a G/Go-space X/Go " Later we will see 

that all the information we are interested in can be read off from the G/Go-space 

i/G . The advantage in comparision with the G-space X is that i/G is simply 
O O 

connected and ~ (G) = G/G is discrete. 
O O 

If we study a G-space X , we must deal with all WH-spaces X H for H c G . We in- 

troduce the fundamental category and the discrete fundamental category. They are used 

to organize all the data like the component structure and fundamental groups of the 

various fixed point sets. It includes the lifting of the action of a certain subgroup 

WH(C) of WH on a component C of X H to its universal covering C/WH(C) for 
O 

all H c G • 

8 A. Lift-extensions, 

We start with lifting a G-action on X to a G-action on X for any regular covering 

p : X--~ X . In the sequel G is a locally path connected regular topological group 

and any G-space or space is required to be locally path-connected and regular. Recall 

that a topological space is regular if any neighbourhood of a point contains a 

closed neighbourhood. We need this condition to ensure that an open subset is again 

compactly generated (see Whitehead [1978] 1.4.15). This guarantees for example that 

the pull-back (within the category of compactly generated spaces) of a covering is 

again a covering. Consider a regular covering p : X--~ X of the G-space X , i.e. 

a covering such that the group of deck-transformation acts transitively on the fibre 

or, equivalently, p is a A(p)-principal bundle. A covering p is regular if and only 

p, : ~I(X) ~ ~I(X) is normal in ~I(X) . Suppose the existence of if the image of 

an epimorphism G--~ G and a G-action on X such that the following diagram commutes. 

G×X ~X 

t 
G×X . . . . . .  ~X 
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Recall that [ ] denotes (free) homotopy classes of maps. Then G acts on [SI,x] 

and has to respect image p, : [SI,x] --~ [SI,x] . We will see that this is the only 

condition for lifting the G-action. If p : X--, X is the universal coveringlthis 

condition is empty. 

The category ~ (G) has as objects regular, connected, locally path-connected G-spaces 

X together with a regular covering p : X--~ X such that the G-action respects 

image p, : [SI,x] --~ [SI,x] . A morphism (~,f) : p --~ q is a commutative diagram 

1 
X ~ Y 

such that f is G-equivariant. Let G also denote the constant functor G : ~ (G) 

--~ {top.gr.}, whereas A : ~(G) ~ {top.gr.} sends 

deck -transformations A(p) = {(~,id) : p --~ p} . 

A lift-extension (~,p,i,q) consists of: 

a) A functor G : ~ (G) --~ {top.gr.}. 

b) An in p natural group action p(p) : G(p) x X--~ X . 

c) Natural transformations i : A --~ 

satisfying for any object p : 

i) 1 --~ A(p) i(p)~ ~(p) q(p)~ G --~ 1 

Moreover q(p) is a A(p)-principal bundle. 

ii) The following diagram commutes 

and q : G--~ G . 

p to the discrete group of 

is an exact sequence of topological groups. 

G(p) × g P(P) , g 

[ q(p)xid l p 

G ×X ~X 
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Recall Convention i.I. that we work in the category of compactly generated spaces . 

We frequently make use of the adjointness between the functors X x ? and map(X,?) 

without mentioning it (Whitehead [1978], I 4.23). 

Theorem 8.1: Up to natural equivalence there is exactly one lift-extension for the 

locally path-connected regular topolog$,qal group G . 

Proof: We construct for a given regular covering p : X--~ X in ~ (G) the de- 

sired quadruple (G(p),p(p),i(p),q(p)) as follows and leave the verification of 

functionality and uniqueness to the reader. 

Define ~(p) 

8.2. 

by the pull-back 

P(p) 
~(p) -~ map(X,X) 

I I 
q(P)i I P* 

G " P ~ map(X,X) P ~ map(X,X) 

Let A(p) c map(X,X) be the subset of deck-transformations f : X --~ X , i.e. maps 

covering the identity. We obtain i(p) : A(p) --~ ~(p) by 8.2. and the inclusion 

A(p) --~ map(X,X) and the constant map A(p) --~ G with unit e ~ G as value. 

Choose x ~ X and x ~ X with x = px . In the following diagram ev and ev 

are given by evaluation at x and x . 

8.3. ~(p) ev "~" : 

q(P)l ev I p 

G "~ X 

We claim that 8.3, is a pull-back. Choose a pull-back 

8 . 4 .  
*-- ev i 

ev X - - - ~  

e v  
G - - ' ~  X 
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We have to show that the map f : ~(p) --~ ev*~ induced by 8.3. is a homeomorphisms. 
~'~_ ~',-_ 

We construct an inverse h . Notice that ev X --~ G is a covering so that ev X 

is locally path connected as G is. We want to construct in the diagram 

.,. p ×p p 
8 . 5 .  e v " X  × X .~ .~ G × X ~ X 

i x -~ p 

ev X ~ 
ev i 

a lift h' . Choose an arbitrary base point (g,y) ~ ev"X c G × X . The homomorphism 

p.~ : Vl(G,g) × ~l(X,x) --~ Vl(X,gx) assigns ev.~(v) • l ..~(w) to (v,w) . The map 

ig, : ~l(X,x) --~ ~l(X,gx) sends the image of p, : ~l(X,x) --~ ~l(X,x) into the 

image of P, : ~I(X,Y) --~ ~l(X,gx) because 1 ... : [SI,x] --, [SI,x] respect> 
g" 

image [SI,x] --~ [S1,X] (use Whitehead [1978,] III 1.11). Hence the image of 

(p o ~ x p), : vl(eV*X x X,((g,y),x)) --~ Vl(X,gx) is contained in the image of 

p, : ~l(X,y) --~ ~l(X,gx) . By Greenberg [!967] 6.1 such a lift h' exists. 

By construction ~ : ev X -~ G and h' : ev X -~ map(X,X) induce h : ev' k -~G~)usJng 

8.2. The composition foh: ev X -~ ev X is the identity by the pull-back property of 

8.4. and f is injective because of the Unique Lifting Theorem for coverings (Green- 

berg [1967] 5.1), Hence 8.3. is a pull back. 

Composition defines a topological monoid structure on map(X,X). By 8.2. we get the 

structure of a topological group on G(p) . By 8.3. the sequence 1 --, A(p) i(p), 

~ ( p )  q(P) 
- - ~  G - - ~  1 i s  a n  e x a c t  s e q u e n c e  o f  t o p o l o g i c a l  g r o u p s  a n d  a A ( p ) - p r i n c i p a l  

bundle. The operation of G(p) on X is given by p(p) of 8.2. 

Remark 8.6. If G is a Lie group then G becomes a functor G: ~ (G) -~ {Liegroup~. 

Namely, G(p) --~ G is a A(p)-principal bundle for the discrete group A(p) and a 

topological group has at most one Lie group structure (see Br~cker-tom Dieck 1.3.12) 

Let p : X --~ X be the universal covering. Write G = G(p) , A = k(p) , i = i(p) 

and q = q(p) . Consider the following diagram whose exact upper row is part of the 



1 4 0  

N 

long homotopy of A --~ G --~ G and the lower exact row of X -~ EG XGX sequence 

--~ BG . 

~I(G) ~ ~I(G) i. A . i> ~ro(G) - - ~  ~Io(G ) ' i 

~2(EG x G X) ~ ~2(BG) " '  • ~l(X) ~ #I(EG x G X) ~ ~I(BG) ~ 1 

The map 8. is the boundary map in the long homotopy sequence of G --~ EG × X --~ 
i 

EG x~ X if we regard EG as a G-space by G --• G and identify EG ×~ X with 

EG ×G X . Define 6 i similarly for G --~ EG --~ BG . The map m sends [w] ~ ~I(X~) 

to the deck transformation f : X ---~ X such that for any path w from x to fx 

for a fixed x ~ X with px = x we have [p o w] = [w] . 

Lemma 8.7. The diagram above has exact rows and commutes. Moreover~ 

jective and the other vertical maps are bijective. 

Proof: left to the reader. [] 

8 2 is sur- 

Consider a locally path connected regular topological group G and a connnected 

locally path connected regular G-space X possessing a universal covering p : X -~ X. 

Let A = A(p) , i = i(p) , q = q(p) , G = G(p) and ~ = ~(p) be given by the 

lift-extension (Theorem 8.1.). Since G is locally path connected, G is locally 

path-connected. Let G and G be the open closed normal subgroups given by the 
O O 

component of the unit. Notice that G/G is discrete and isomorphic to ~ (G) . We 
O O 

will later see that all the algebraic invariants like finiteness obstruction and White- 

(G)-space X/G . Hence we study the square head torsion can be read off from the T °  o 

8.8. l [o 
I o Pl 

X • XIG 
O 

Lemma 8.9. 

a) Suppose that G is a Lie group and X is proper and completely regular. Then 

is a Lie group and X a proper completely regular G- space and X/Go is a simply 
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connected proper ~o(G)-space, 

b) Suppose that X is a proper G-CW-complex. Then X is a proper G-CW-complex 

and X/Go is a simply connected proper ~o(G)-CW-complex. 

Proof: 

a) One easily checks that 

sider the commutative diagram 

is completely regular as X has this property. Con- 

qxp[ @ [p×p 

G ×X--~X×X 

where 0 sends (g,x) to (x,gx) and @ is defined analogously. Since q × p 

and p × p are normal coverings and O is bijective on each fibre this is a pull- 

back. As X is proper 0 is by definition proper. Then O is proper and hence 

is proper by Lemma 1.16. f. Now X/G is simply connected by Corollary 1.40. o 

b) The n-skeleton and the open cells of the G-CW-complex X are just the pre-images 

of the one of the G-CW-complex X . As in 1.25. one shows that the conditions of a 

(G)-CW-structure on i/G G-CW-complex structure are fulfilled. This induces a T °  o 

by 1.4. Since X is proper and A acts freely on X the G-action on X is proper 

by Theorem 1.23. Because of Corollary 1.40. the orbit space X/G is simply o 

connected. 

One might think that P/ : X/Go --~ X/Go is the universal covering of X/G but this 

is the not true in general. We determine the universal covering of X/G and ~I(X/G) 

now. 

Suppose either that G is a Lie group and X is a connected locally path-connected 

completely regular G-space with a universal covering or that G is a locally path- 

connected regular topological group and X is a proper G-CW-eomplex with universal 

covering. Let (G,p,i,q) be the associated lift-extension. Let K be the subgroup 

of G generated by Go and all isotropy groups G~ for x ~ X . Since G °  is 

~-1~;i normal in G and G~ = holds! K is normal in G . Let L c ~I(X,x) be 
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t h e  subset of homotopy classes of loops of the shape w I * glWl * glw2 * glg2w2 *... 

• ... glg2...grWr * uglg2...grX where w. is any path from x to some point w.(1) i i 

with inverse path w2 and u is a path in G from the unit e to u(1) such 
i o 

that gi ~ Gw.(1) and u(1)glg2...g r ~ Gx holds. One easily checks that L is 
I 

the image of A A K under the standard identification of A with ~l(X,x) and 

hence is a normal subgroup in ~l(X,x) . Let pr : X --~ X/G be the projection. 

Denote by M c ~o(G) the normal subgroup generated by all ~o(Gx) for all x ~ X . 

Define a homomorphism 8 : ~I(X/G,xG) ~ ~ (G)/M by assigning to [w] the element 
o 

represented by any g ~ G such that there exists a lift v of w with v(0) = x 

and v(1) = gx . 

Proposition 8.10. Under the conditions above the universal coverin~ of X/G is 

Po : X/K • X/G 

Moreover~ there is a well-defined exact sequence 

P* 
i ~ L --~ ~l(X,x) --~ ~I(X/G,xG) ~ ~o(G)/M --~ 1 

Proof. By Lemma 8.9. the G-space X is proper. In the case of a Lie group G this 

is equivalent to the statement that for any two points x and y in X there are 

neighbourhoods V-x and V~y such that clos{g ~ GIgV x A Vy + ~} is compact in 

(tom Dieck [1987] I. 3.21.). Now it is easy to check that the G/K-space X/K is 

proper. In the case of a G-CW-complex X this follows from Theorem 1.23. The action 

of G/K on x/K is free and G/K is discrete by construction. Hence Po :~K-~X/G 

is a G/K-principal bundle (tom Dieck [1987] I. 3.24.). 

It remains to show that X/K is simply connected. Consider any loop w in X/K at 

xK for x ~ X . By Corollary 1.40. the loop w lifts to a path w with w(0)=x. 

There is k ~ K with w(1) = kx . We can write k = gogl gr for go ~ Go and 

gi ~ Gx. for i = l,...,r and appropriate xi " Choose a path wi from x to xi 
I 

in X and a path u from 1 to go in Go " Let v be the path 

. . . . . . .  - _ ~ 

Wl * glWl * glW2 * glg2W2 * glg2"''grWr * u'glg2"''grX " 

Then w * v- is a loop in X at x and its projection is homotopic relative end 
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points to w . Since X is simply connected w * v- and hence w are nullhomotopic. 

We have shown that X/K --~ X/G is the universal covering. This implies ~l(X/G) = 

G/K . We have the obvious exact sequence 

We leave it to the reader to identify it with the sequence under consideration 

If one furthermore assumes that any G x is path-connectedlwe obtain an exact 

sequence 

ev,~ h~ 
8.11. ~I(G,I) "b ~l(X,x) ~I(X/G,xG) ~ ~o(G) --~ i 

The next result generalizes the observation above. It says that p : X --~ X/G looks 

like a fibration in a certain range depen~ng on the connectivity of G --~ G/G x for 

x ~ X . For a Lie group G this is the connectivity of G x increased by one. We 

omitt the proof as the result is not needed in this book. 

Proposition 8.12. Let G be a topological group and X 

is n-connected for any n be a non-negative integer such that G---+ G/G x __ 

Denote by ev : G --~ X g --~ gx the evaluation and by p : X --~ X/G 

jection. 

Then there is an exact sequence 

~n(G,l) 

be a G-CW-complex. Le___!t 

x~X. 

the pro- 

ev, p, 8 ev.~ ev, 
~n(X,x) ~ ~n(X/G,xG) --~ ~n_l(G,l) --~ .. --~ ~o(X,x) -~ ~X/G,xG)-~ i. 

8 B. The (discrete) fundamental category and the (discrete) universal covering functor. 

Now we come to the organization of all data like the component structure and funda- 

mental groups of the various fixed point sets. It will be based on the following ca- 

tegories we will introduce now. The following assumptions are necessary and we suppose 

them for the remainder of this section. 

Assumption 8.13. 

i) G is a Lie group. 

ii) If X is a G-space we suppose for any H c G that X H 

ted and each component has a universal covering. Moreover, X 

and a proper G-space. D 

is locally path-connec- 

is completely regular 
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For the reader's convenience we list the various conclusions out of this assumption 

we already have verified and need in the sequel. 

8.14. 

i) WH ° p --~ map(G/H,G/H) G gH --~ E 
g 

Recall that R sends g'H to g'gK . 
g 

is a homeomorphism for H ~ Iso(X) (Lemma 1.31.). 

ii) For K c G and compact H c K the space G/KH/WH is discrete (Theorem 1.33.) 

iii) Let X be a G-CW-complex such that G is compact for any x ~ X . Then 
x 

assumption 8.13. is fulfilled (Theorem 1.23.). There is a canonical WH-CW-structure 

on X H for any H c G . (1.36.). o 

Notice that ii) and iii) can only be guaranteed under assumption 8.13. 

Definition 8.15. The fundamental category ~(G,X) of a G-space X is defined by 

i) An object x : G/H --~ X is a G-map. Sometimes we write x(H) for shortness. 

ii) A morphism (o,[w]) : x(H) --~ y(K) consists of a G-map o : G/H--~ G/K and 

a homotopy class [w] relative G/H × 8I of G-maps w : G/H×I --~ G/K with Wl=X 

and w °  = yo o . We often abbreviate (o,[w]) by (o,w) . 

iii) The composition of the morphisms (o,w) : x(H) ~ y(K) and 

is given by a "semi direct product formula" (~oo,o v * w) with 

(z,v) : y(K) -~ z(L) 

o v * w : G/Hxl ~ X 

( g H , t )  

~ v(o(gH),2t) 0 ~ t ~ 1/2 

w(gH,2t-l) 1/2 ~ t ~ 1 

An object x : G/H --~ X is the same as a point x in X H . A morphism (w,o):x(H) 

--~ y(K) is a homotopy class of paths relative end points from o y(K) to x(H) 

in X H and o y(K) is g.y(K) for any g with o(eH) = g-iK . The composition 

uses the ordinary composition of paths. If G is compact and X a point I H(G,X) 

reduces to: 
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Definition 8.16. The orbit category OrG of a Lie group G 

homogeneous spaces G/H (i.e. H is compact) and as morphisms 

compact topological group define OrG analogously, u 

has as objects proper 

G-maps. If G is a 

Remark 8.17. If G is trivial, H(G,X) is the fundamental groupoid ~(X) of the 

space X . The fundamental category ~(G,X) is the homotopy colimit (see Thomason 

[1982], p. 1624) of the covariant functor 

OrG ° p --'~ {groupoids} 

G/H --'~ ~(X H) = N(map(G/H,X) G) 

It is useful to topologize R(G,X) . Recall that a category ~ is called topological 

if Ob ~ and Mor ~ are equipped with a topology such that all structure maps be- 

longing to a category are continuous. 

First we give the fundamental groupoid H(X) of a space X with a universal covering 

p : X--~ X a topology. If 5 is the discrete group of deck transformations, let 5 

act diagonally on X × X . We require that the following bijections are homeomorphisms 

8.18.  X ~ Ob n(X) 

x X/5 " Mor n(X) 

(x,y)A " [pou] : p(x) --" p(y) 

where u is any path from y to x in X . 

We topologize 

8.19. 

Let M(G/H,G/K) 

Ob(N/G,X)) by the disjoint union 

Ob(N(G,X)) = I~ 
HoG 

map(G/H,X) . 

be the pull-back 

M(G/H,G/K) ~ Mor(H(xH)) 

i i 
[ i t 

P 
map(G/H,g/K) x map(G/K,X) ~ OD(H(xH)) 

where t sends a morphism to its target and p maps (o,y) to o y . Then define 
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the topology on Mor(H(G,X)) by 

8.20. Mor(H(G,X)) = II M(G/H,G/K) 
H,K c G 

Notation 8.21. For an object x : G/H --~ X define 

a) xH(x) or briefly X(x) is the component of X H containing x . 

b) WH(x) is the isotropy group of xH(x) in ~ (X H) under the WH-action. 
o 

c) xH(x) (or briefly X(x)) is the set of all morphisms (o,w) : x --~ y with 

o the identity G/H --~ G/H equipped with the subspace topology of Mor(H(G,X)). 

Let x ~ xH(x) be the identity x --~ x . The map p(x) : xH(x) --~ xH(x) sends 

(o,w) : x --~ y to y . 

d) x>H(x) (or briefly X>(x)) is xH(x) N X >H and x>H(x) (or X>(x)) is 

p(x)-l(x>H(x)) . o 

By construction p(x) : X(x) --~ X(x) 

of X(x) . 

is the standard model of the universal covering 

Definition 8.22. The universal covering functor is the contravariant functor 

X : ~(G,X) --, {top. spaces} 

sending (o,w) : x(H) --~ x(K) to X(o,w) : ~K(y) --~ ~H(x ) 

sition of morphisms, o 

induced by the compo- 

8.23. Let x = x(H) and y = y(K) be objects in H(G,X) and Mor(x,y) be the 

space of morphisms. Let map(G/H,G/K)~,y be the subspace of map(G/H,G/K) G con- 

' ~o(X K) sisting of G-maps c : G/H --~ G/K for which ~o (° ~) : --~ ~o (XH)" sends 

xK(y) to xH(x) . Denote by q(x,y) : Mor(x,y) --~ map(G/H,G/K)~,y the projection 

(o,w) --~ o . Let ~v : Mor(x,y) --~ xH(x) send (o,w) to X(o,w)(y) for y ~K(y) 

xH(x ) * given by idy and ev : map(G/H,G(K) ,Y --~ map o to o y . Similarly to 

the proof of 8.3. one checks that we obtain a pull back 
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rv 
Mor(x,y) "l, xH(x) 

q(x,Y) I IP (x) 
ev 

map(G/H,G/K)G,y --.~ Xl{(x) 

H Then q(x,y) is a ~I(X (x),x)-principal bundle. Especially we obtain for 

8.14. i an exact sequence 

i(x) q(x) 
1 --~ ~I(XH(x),x) ...... • Aut(x) ~ WH(E) ° p --~ I 

x = y using 

where i(x)(w) = (id,w) and q(x)=q(x,x).Since q(x) is a ~l(XH(x),x)-bundle, Aut(x) has 

a unique Lie group structure and the sequence above becomes a sequence of Lie groups 

(see Remark 8.6.). D 

By functoriality we obtain an operation 

p(x) : Aut(x) ° p × X(x) ~ X(x) 

Identify A and ~l(XH(x),x) ° p in the usual way. Then we have 

Lemma 8.24. We obtain a lift extension for the WH(x)-space xH(x) with universal 

covering p(x) : xH(x) --~ xH(x) by Aut(x)° P,p(x),i(x),q(x). 

We have done the first step, going up to the universal coverin B. The second step, di- 

viding out the action of the component of the unit needs some preparations. Let the 

maps in the diagram 

8 . 2 5 .  

fl 
~o(map(G/H,G/K)G) 

EG/H,G/K] G 

~ (G/KH) ~ /  e 
o 

f2  

map(G/H,G/K)G/wH 
o 

~/WH o 

G/KH/wH 
o 

be defined by 
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: map(G/H,G/K)G---• G/K H ~ --~ O(eH) 

fI(~'WH o) = component of 

u I (component of ~) = [~] 

u2(~ • WHo) = [~] 

Vl([# ]) = component of $(~) 

v2([~ ]) = ~(~) • WH o 

Lemma 8.26. A!$ these maps are well defined and bijective and the diagram commutes. 

Proof: The homeomorphism 

is to show that f2 : G/KH/WHo 

is introduced in 1.30. The only remaining difficulty 

--• ~ (G/K H) i s  b i j e c t i v e .  T h i s  f o l l o w s  f rom 8 . 1 4 . 2 ) .  
o 

[]  

Lemma 8.27. If x and y 

and all maps ar9 bijections 

Proof: 

~o(Mor(x,y)) 

are ob.jects in H(G,X), the following diagram commutes 

Mor(x,y)/Aut(x) o 

A u t ( Y ) o \ M o r ( x , y ) / A u t ( x )  ° • V o ( M o r ( x , y ) )  

The only non-trivial part is the verification that Mor(x,y)/Aut(x) °  --• 

is injective. It suffices to show that Mor(x,y)/Aut(x) °  is discrete. 

From 8.23. we get a principal v-bundle for v = ~l(XH(x),x) 

v --~ Mor(x,y) --, map(G/H,g/K) G 
x,y 

This induces a principal bundle 

~/~  ~ Aut(x) °  --• Mor(x,y)/Aut(X)o --~ map(G/H,G/K)~,y/WH(x) °  . 

By Lemma 8.26. map(G/H,G/K)G/WHo is discrete so that the subspace map(G/H,G/K~y/WH(x o) is 
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discrete. Since ~/~ 0 Aut(x) is discrete, the same is true for Mor(x,y)/Aut(x) o. 

If ~ is a topological category~its induced discrete category ~/ has the same 

objects as ~ and Mor~/(x,y) is ~o(Mor(x,y)) for objects x,y . 

Definition 8.28. The discrete fundamental category H/(G,X) is the discrete cate- 

gory induced by ~(G,X) . o 

In the sequel we denote for x,y ~ Ob H(G,X) = ObN/(G,X) the set of morphisms 

MorN(G,x)(X,y) in ~(G,X) by Mor(x,y) and MorN/(G,x)(X,y) in H/(G,X) by 

Mor/(x,y) . We have 

8.29. Mor/(x,y) = Mor(x,y)/Aut(x) °  = Aut(Y)o\Mor(x,y)/Aut(X)o = ~o(Mor(x,y)) 

The universal covering functor 

functor 

N/(G,X) 

X(o,w) : 

: H(G,X) --~ {top. spaces} induces a contravariant 

X/ : H/(G,X) --~ {top. spaces} by X/(x) := X(x)/Aut(x ) . A morphism in 
o 

represented by the morphism (o,w) : x --~ y is sent to the map induced by 

~(y) 

I 
X(Y)/Aut(y) o 

i(o,w) 
* i(x) 

x/(o,w) 
+ X(x)/Aut(x) °  

This is well-defined by Lemma 8.27. 

Definition 8.30. The contravariant functor 

X/ : ~/(G,X) --, {top. spaces} 

is called the discrete universal covering fun ctor. o 

Remark 8.31. The category H/(G,X) together with X/ are the basic objects we 

seek in this section. Of course their definition is complicated. This is not sur- 

prising since they contain such a lot of information about the G-space X . Their 

main advantage will be that in the applications one can forget the involved structure 

and has only to keep in mind that we are given a category F with a contravariant 
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functor F --• {top. spaces} and that any endomorphism in F is an isomorphism 

(use 8.14. i). If G is discrete ~(G,X) and ~/(G,X) coincide, o t 

Notation 8.32. If x : G/H --• X is an object define 

a) o(x) : xH(x) --• xH/(x) 

xH/(x) = xH(x)/WH(x) 
o 

b) o(x) : xH(x) --• xH/(x) 

is xH(x)/Aut(x) 
o 

is the projection under the WH(x) -action writing 
o 

is the projection under the Aut(x) -action where 
o 

xHI(x) 

c) Let p/(x) be the projection such that we obtain a commutative diagram 

8(x) 
iH(x) • iHl(x) 

I L 
P(X) I IP/(x) 

o(x) 
xH(x) • xH/(x) 

d) Write x>H/(x) = o(x)(x>H(x)) and x>H/(x) = o(x)(x>H(x)) . 

e) We sometimes omitt the H in expressions like xH(x),xH(x),.., o 

The main properties of these definitions are 

Proposition 8.33. Let G be a Lie group and X a proper G-CW-complex. 

a) The discrete universal covering functor is a functor X/ : H/(G,X) -• {CW-compl} 

into the category of simply connected CW-complexes with cell preserving maps as mor- 

phisms. 

b) Let x : G/H --• X be an object in 

exact 

N/(G,X) . Then the following sequence is 

i/(x) q/(x) ev,~ 

~l(WH(x),e) "• ~l(XH(x),x) • Aut/(x) 

if ev : WH(x) --• xH(x) sends w to w.x, Aut/(x) 

of x i__nn ~/(G,X) , i/(x) sends [v] t__oo [id,[v]) 

the component of o ~ WH(x) c WH = map(G/H,G/H) . 

• ~o(WH(x)) • 1 

is the group of automorphisms 

and q/(x) maps [o,[v]] to 

c) The sequence in b) is naturally isomorphic to the following part of the long 

exact sequence of the bundle xH(x) --• EWH(x) ×WH(x) xH(x) --• BWH(x) . 
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~2(BWH(x)) --~ ~I(XH(x)) --~ ~I(EWH(x) xwH(x ) xH(x)) ---* ~I(BWH(x)) --~ 1 . 

Proof: Lemma 8.7., Lemma 8.9. and Lemma 8.24. [] 

Remark 8.34. 

Recall that 

We have introduced the component category ~ (G,X) in Definition 5.1. 
o 

Is ~ denotes the set of isomorphism classes of objects for a category 

• Using 5.2. we get bijections 

(XH)/WH [] Is ~o(G,X) = Is N(G,X) = Is N/(G,X) = I_~I 
(H) ~ Con G o 

If f : X --• Y is a G-mapjwe get functors N(G,X) : H(G,X) --~ H(G,Y) and n/(G,f) 

H/(G,f) : ~/(G,X) --• H/(G,Y) by composition. We later need 

Lemma 8.35. Let f : X --~ Y be a G-map between G-spaces such that 

--~ ~o(Y H) and ~l(fH,x) : ~l(XH,x) --~ ~l(YH,fx) for x ~ X H and 

jective. Then N/(G,f) and N(G,f) are equivalences of categories. 

Proof: A functor F : ~ --~ cD is an equivalence of categories if and only if F 

satisfies 

i) F induces a bijection Is ~ --~ Is ~q) 

ii) F induces a bijection Mor~(x,y) --~ Mor~Fx,Fy) f --~ F(f) 

(see MacLane [1971] ). Because of Remark 8.34. both H(G,f) 

satisfy i). One easily checks that it suffices to prove ii) for 

follows from the five lemma and Theorem 8.33. o 

~o(f H) : ~o(X H) 

H c G are bi- 

for any x,y~ . 

and ~/(G,f) 

x = y . Then ii) 

We mention the following variant 

8.36 .  

geneous spaces 

Given a G-space 

The discrete orbit category Or/(G) of a Lie group G has as objects homo- 

G/H with compact H and G-homotopy classes of G-maps as morphisms. 

X define contravariant functors 

X : Or G ~ {top. spac.} G/H --~ X H 

X/ : Or/G • Itop. spac.} G/H • xH/wH 
o 

The verification that they are well-defined is completely analogous to the con- 
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sideration above and is based on Lemma 8.26. The advantage of this situation is that 

the functors X and X/ have always the same source Or G and Or/G o 

The decisive step from geometry and algebra lies in the following notion of the cellu- 

lar chain complex functor. If Z is a CW-complex its cellular chain complex cC(x;R) 

with R coefficients is defined by 

An+ 1 A An-I 
• Hn(Xn,Xn_I~R ) n • Hn_l(Xn_l,Xn_2~R ) • Q • 

where A n is the connecting homomorphism of the triple (Xn,Xn_l,Xn_2) . We obtain 

a functor 

C c : {CW-compl.} • {R-cha~ compl.} 

G be a Lie group and X a proper G-CW-complex. Define its Definition 8.37. Let 

cellular RN/(G,X) chain complex cC(x;~ as the contravariant functor given by the 

composition 

H/(G,X) X/• {CW-compl.} --• {R-chain compl.} 

Define the cellular ROr/G-chain complex analogously, o 

Here we can again see the use of the passage from X to X/ . It brings us back to 

the discrete case. Recall that a G-CW-complex has a canonical CW-complex structure if 

G is discrete but not in general. Hence it makes no sense to compose X with C c . 

Comments 8.38. Lifting a G-action on X to a covering of X is treated also in 

Bredon [1972] 1.9..Proposition 8.1~ generalizes a result of Armstrong [1982] where 

only discrete groups are considered. 

The orbit category Or G is used in Bredon [1967] to define equivariant homology and 

cohomology with local coefficients. The notion of the cellular chain complex over the 

orbit category is developed to define equivariant finiteness obstructions for G-CW- 

complexes with simply connected fixed point sets in tom Dieck [1981]. Further examples 

of categories useful for transformation groups are given in tom Dieck [1987] I. i0. 

We have already mentioned that the cellular R~/(G,X)-chain complex cC(x):E/(G,X) --• 

{R-chain compl.} is an important link between geometry and algebra. Although its pre- 



153 

cise definition is complicate~ its formal properties are very similar to the one of 

the ordinary cellular chain complex of the universal covering of a CW-complex. We re- 

commend to the reader to think of cC(x) in this simple fashion. 

The notion of the cellular RH/(G,X)-d~ccmplex initiates the studyofthealgebraof contra- 

variant functors from a category F into the category of R-modules and R-chain 

complexes we begin in the next section. The only property of E/(G,X) we must keep 

in mind is the EI-property, i.e. endomorphisms are isomorphisms, m 

Exercises 8.40. 

i) Give an explicite example of a G-space X together with a regular covering 

p : X---~ X such that no lift extension exists. 

2) Let Z/2 act on S 1 by the antipodal map resp. complex-conjugation resp, tri- 

vially. Determine for any covering of S I the lift-extension. 

3) Let G be a locally path-connected regular topological group and p : X -P X 

be a regular covering of the locally path-connected regular G-space X . Let x ~ 

and x ~ X be points with p~ = x such that G leaves x stationary. Suppose 

that the G-action on Vl(X,x) respects the image of p, : ~l(X,x) --~ Vl(X,x) • 

Show the unique existence of a G-action on X leaving x stationary and covering 

the given G-action on X . 

4) Let G be a locally path-connected regular topological group acting on the 

non-orientable smooth manifold M . Then there is a unique G-action on the orien" 

tation covering M of M by orientation preserving homeomerphisms covering the 

given G-action. 

5) Let G be a locally path-connected regular topological group and X be a 

connected locally path-connected regular G-space with universal covering X --~ X . 

Let (G,~,i,q) be the associated lift-extension. 

a) If X --~ X/G is a G-principal bundle and X/G is regular~show v (G)=~I(X/G) 
O 

b) Suppose that X has a fixed point x . Then ~o(G) acts on ~l(X,x) and 
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~o(G) is the semi-direct product. 

6) Give 

such that 

an explicite example of a compact Lie group 

X/G --~ X/G is not the universal covering. 
o o 

G and a G-CW-complex X 

7) Let G be a Lie group and X be a connected locally path-connected completely 

regular G-space possessing a universal covering. Suppose that X H is path connected 

for any H c G and there is x ~ X G such that G acts trivially on ~l(X,x) . 

Then p, : ~l(X,x) --~ ~I(X/G,xG) is bijective. 

8) Consider a locally path-connected simply-connected completely regular Z/p n- 

space X . Then X has a fixed point if and only if X/~/p n) is simply-connected. 

9) The Hawaiian earring H is the union of circles U C with 
n 

n=l 

C = {(x,y) ~ 2 2 I (x-i/n)2 + y2 = i/n 2} 
n 

equipped with the subspace topology H c 2 2 . Let Z/2 act on H by reflecting in 

the x-axis. Show that the sequence appearing in Proposition 8.10. is not exact for 

the Z/2-space H . Which condition is not satisfied? 

i0) Try to generalize the exact sequence of Proposition 8.10. to the case where X 

might not be connected. One would expect a sequence for appropriate L and M of the 

shape 

p, 8 ev, p, 
1 --~ L --~ ~l(X,x) ~I(X/G,xG) --~ ~o(G)/M ~ ~ (X) ~ ~ (X/G) --~ i o o 

ii) Let G be a compact Lie group and X a G-space such that X H is 

simply-connected and non-empty for H c G . Show that the obvious projections 

H(G,X) --~ Or G and E/(G,X) --~ Or/(G) are equivalences of categories. Is the 

converse true? 

12) Let G be a compact Lie group and X be a completely regular G-space such 

that X H is connected, locally path-connected and non-empty and has a universal 

covering for any H c G . Then the following assertions are equivalent: 

i) For any object x in E(G,X) we have ~o(Aut(x)) = Aut/(x) = {id} . 

ii) G is a torus and X H is simply connected for any H c G . 
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13) Let Z/2 act on S n by reflecting in the equator S n-I c S n . Write down ex- 

plicitely the fundamental category, the universal covering functor and the cellular 

RN(Z/2,sn)-chain complex for n ~ 0 . 

P 
14) Let G be a locally compact topological group and G --~ X --~ X/G be a 

G-principal bundle in the category of topological spaces. Assume that X/G is para- 

P 
compact and compactly generated. Then G ~ X --~ X/G is a G-principal bundle in 

the category of compactly generated spaces. 

Remark: A CW-eomplex is paracompact (see Michael [1956]) . 

15) A space X is semi-locally simpl~ connected if any point x ~ X possesses 

a neighbourhood U such that any loop in U is nullhomotopic in X . Show for a 

connected locally path-connected and semi-locally path-connected space X that it 

has a universal covering in the category of topological spaces. Prove furthermore 

that this universal covering belongs to the category of compactly generated spaces if 

X is compactly generated and paracompact. 

16) Let exp:2 --~ S I be the universal covering of S 1 c 22 . Define Z c 22 as 

the union of A = {(s,t)Is2+t 2 = i, t ~ 0} , B = {(s,t)l-I ~ s ~ 0 , t = 0} and 

C = {(s,i/2 sin ~/s) I 0 < s ~ i} . Let z ~ Z be (i,0) . Let f : Z --~ S 1 be the 

map which is the identity on A and sends (s,t) ~ B U'C to (s',t') ~ S I 

with s = s' and t' ~ 0 . Show that f does not lift to a (continuous) map (Z,z) 

--~ (2,0) and that Z is not locally path-connected, o 
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Summary 

In section 9 we analyse the notion of a module over a category F , i.e. a contrava- 

riant functor F --~ R-MOD into the category of R-modules for a commutative ring R 

(see 9.4.). This is a generalization of the algebra of modules over a group ring RIG] 

(see Example 9.5.). We keep all notions as close as possible to this special case. We 

define "based free" (Definition 9.17.), "finitely generated"(9.19.) such that a lot 

of well-known statements about R[G]-modules still make sense if one substitutes RG- 

module by RF-module. For example, the cellular ZH/(G,X)-chain complex is free with 

a bases whose elements are in bijective correspondence with the equivariant cells 

(Example 9.18,). The category of Rr-modules MOD-RF inherits the structure of an 

abelian category from R-MOD so that notions like "direct sum", "exact sequence", 

"projective", "chain complex ~', "homology", "projective resolution" are defined. In 

geometric applications F is the discrete fundamental category H/(G,X) (see Defi- 

nition 8.28.). For the algebra we can forget its complicated structure, but consider 

any EI-category F (i.e. a small category such that all endomorphisms are isomor- 

phisms.)The orbit category Or G of a finite group G has as objects homogeneous 

G-spaces G/H and as morphisms G-maps and is also an EI-category. 

The general strategy is to extend notions well-known for R[G]-modules and RIG]- 

chain complexes to RF-modules and RF-chain complexes such that all of the familiar 

formal properties survive. This enables us to carry over definitions and constructions 

for spaces without group actions and their universal coverings to G-spaces and their 

discrete universal covering functor X/ : H/(G,X) --~ {top.spac.} (see DefinitionS.30.). 

Then we compute or approximate these notions and constructions for RF-modulesin teums 

of R[x]-modules for x ~ Ob F , where R[x] is the group ring R[Aut(x)]. 

The following functors relate RF-modules and R[x]-modules 

9.26 splitting functor S : MOD-RF --~ MOD-R[x] 
x 

9.27 restriction functor Res : MOD-RF --~ MOD-R[x] 
x 
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9.28 extension functor E 
x 

9.29 inclusion functor I 
x 

: MOD-R[x] --~ MOD-RF 

: MOD-R[x] --• MOD-RF 

Given a RF-module M , let ResxM be M(x) . Let M(x) s be the R[x]-submodule ge- 

nerated by all images M(f) : M(y) --~ M(x) if f : x --~ y runs over all non-iso- 

morphisms f with x as source. Then SxM is M(x)/M(x) s . If R Hom(?,x) is the 

free R-module generated by the set of morphisms ? --~ x , let E send the R[x]- 
x 

module N to N ®R[x] R Hom(?,x) . Define IxN to be the RF-module sending y to 

N ®R[x] R Hom(y,x) if x and y are isomorphic and to {0} otherwise. Then 

(Ex,Res x) and (Sx,I x) are pairs of adjoint functors. Given x COb F , let x be 

its isomorphism class. We write x ~ y , if Hom(x,y) + ~ , and x < y , if x ~ y 

and x + y • Denote by Is F the set of isomorphism classes of objects. We call a 

RF-module M of type T for T c IsF if Iso M = {~ ~ Is FISxM ~ {0}} is contained 

in T . The main result of section 9 is 

Theorem 9.39. The Cofiltration Theorem for projective RF-modules. Let F be a El- 

category. Let ~ = T o c T 1 c ... c T£ = T be a filtration of T such that x 8 T i, 

E Tj , x < y implies i > j . Consider a projective RF-module P of type T . 

Then there is a natural cofiltration 

PR o PR 1 PR 2 PR~_ 1 
P = Po • P1 • P2 • ... - - •  P£ = {0} 

satisfying 

a) P. is projective of type T\T i . If P is finitely generated, then P. is 
1 -- 1 -- 

finitely generated. 

__ o o . . Then S PR I : S P -• S P. b) Let pRi : P--• Pi be PRi_ 1 PRi_ 2 "" °  PRo x x x i 

is an isomorphism for x 6 T\T i __and SxP.I = {0} for x ~ T\T i . 

c) There is a natural exact sequence which splits (not naturally) 

PRi- 1 
0 --• ~ E o S P--• P i-i - - •  P" --• 0 o 

xe Ti\Ti_ I x x 

This implies 

Corollary 9.40. Let P be a RF-module with finite Iso P . Then the following 

statements are equivalent: 



i) P is projective. 

ii) SxP is projective for all x £ ObF 

P ~ ~ E o SP . 
x E Iso P x x 
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and there is a (not natural) isomorphism 

ana 

S 
Wh(RF) P' ~ Wh(R[x]) 

' ~ C Is r E 

S 
Kn(RF) ~ ~ Kn(R[x ] ) 

• ~ e Is r 
E 

inverse isomorphisms 

In section II we define and study the finiteness obstruction o(C) of a finitely domi- 

nated RF-chain complex C . If P is a finite projective RT-chain complex RF-chain 

homotopy equivalent to C , we put o(C) = Z(-l)m[Pn ] ~ Ko(RF) (Definition ii.I.). 

We give various tools for computations, additivity (Theorem 11.2.), homolozical com- 

putation (Proposition 11.9.), instant formula (Proposition 11.12.), computation b~ 

highly connected approximations (Proposition 11.13.) and product formulas (11.18. 

and Theorem 11.24.). We examine its behaviour under the splitting of Theorem 10.34 

and deal with the finiteness obstruction of a chain homotopy projection. 

The subject of section 12. are torsion ~nvariants of RF-chain complexes. Let 

f : C --~ D be a RF-chain homotopy equivalence of finite projective RF-chain com- 

--~ C • be a stable isomorphism. Let c be the plenes and ~ : Codd ~ Dev ev Dodd 

differential and 7 be any chain contraction of Cone(f) . If ~ denotes the ob- 

vious permutation map, we obtain a stable automorphism of a finitely generated pro- 

jective RF-module 

(c+x) ~ ~ 

Cone(f)od d --~ Cone(f)ev --~ Cod d ~ Dev --~ Cev ~ Dod d --~ Cone(f)od d . 

Its class in KI(RF) is the torsion t(f,~) (Definition 12.4.). In particular this 

Theorem 10.34. Splitting Theorem for algebraic K-theory of RF-modules. Let F 

be a EI-categ0ry. Then the splitting and extension functors induce a pair of natural 

In section 10. we introduce the K-theory K (RF) (Def. 10.7.) and the Whitehead group 
n 

Wh(RF) (Def. 10.8). We derive from the Cofiltration Theorem using Waldhausen's Additivity lem~na 
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applies to the case where RF stands just for a group ring RIG]. Then the various 

notions of torsion like Whitehead torsion (see e.g. Cohen [1973]). Milnor's extension 

of Reidemeister torsion (see Milnor [1966]), self-torsion (see Gersten [1967]) and 

variations for additive categories (see Ranicki [1985a], [1987]) are special cases. 

Another advantage in comparison with other definitions will be crucial for our 

applications. We do not need bases, and can also deal with finite projective not 

necessarily free chain complexes and our invariants lie in unreduced Kl-groups. 

Hence we can also deal with the @G-chain complex given by the rational homology of 

a connected G-space X using the trivial differential. Notice that Ho(X) = ~ is 

never free over ~G unless G is trivial. 

In section 13 we introduce the singular and cellular RH/(G,X)-chain complex cS(x) 

and cC(x) by composing the discrete universal covering functor with the functors 

"singular and cellular chain complex" (Definition 13.1.). They are based free 

(Lemma 13.2.) and are chain homotopy equivalent (Proposition 13.10.). We prove an 

Equivariant Hurewicz Theorem 13.15. We show the Equivariant Realization Theorem 13.19. 

whose non-equivariant version is due to Wall [1966]. It claims roughly the following. 

c 
Let h : Z --~ Y be a G-map of G-CW-complexes and f : C, --~ C,(Y) a chain equi- 

valence such that Z is 2-dimensional, h H is 2-connected for all H c G and the 

restrictions to dimension ~ 2 of C, and f are C~(Z) and C~(h) . Then there is 

an extension g : X--~ Y of h : Z --~ Y with X 2 = Z such that g is a G-homo- 

c c topy equivalence and C,(X) = C, and C,(g) = f . This result allows us to switch 

between algebra and geometry. 

In section 14 we apply the algebra of RF-modules to proper G-spaces for G a Lie 

group. We define invariants like finiteness obstruction oG(x) ~ K~(X) ,reduced fi- 

niteness obstruction oG(x) ~ K~(X) , and Euler characteristic xG(x) uG(x) of a 

finitely dominated G-space (Definition 14.4.) and Whitehead torsion G(f) ~ whG(y) 

of finite G-CW-complexes (Definition 14.i3.). We ~how in an algebraic =ettlng 

that the reduced finiteness obstruction is the obstruction for X to be G-homotopy 

equivalent to a finite G-CW-complex and that the Whitehead torsion is the obstruction 

for f to be simple and state fundamental properties like homotopy invariance, 

additivity and the logarithmic property (Theorem 14.6. and 14.14.). We establish 
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product formula s 14.19, restriction formulas 14.20. and 14.37. and diagonal product 

formulas 14.21 and 14.42. We identify the geometric approach of Chapter I and the al- 

gebraic approach of Chapter II. 

Theorem 14.12. There are natural isomorphisms 

and 

~(y) : waG(y) • uG(y) --~ KG(y) 
o 

~(y) : waG(y) ~ ~G(y) 
O 

such that ~(Y)((wG(y),xG(y))) = oG(y) and ~(y)(wG(y)) = ~G(y) 

dominated G-space y . n 

holds for any finitely 

Theorem 14.16. There is a natural isomorphism 

¢(Y) : Wh G (y) --, whG(y) 
geo 

such that ~(Y)(~eo(f)) = TG(f) holds for any G-homotopy equivalence of finite G-CW- 

complexes f : X --, Y . 

We also introduce negative algebraic K-groups and identify them with the geometric 

counterparts (Proposition 14.44.). 

Although the geometric approach and the algebraic one turn out to be equivalent, they 

are interesting in their own right. The geometric view point is appealing because of 

its simplicity, whereas the algebraic treatment is important for calculations. 

Theorem 14.46. W ehave natural isomorphisms 

KG(x) = 
n (H) C ~ %(xH)/wH 

Kn(Z[~I(EWH(C) xWH(C ) C)]) 

whG(x) = ~ ~ Wh(Z[~ 1 

(H) C 6 ~o(XH)/wH 
(E~(C> ×WH(C) C)]) 

where WH(c) is th e isotropy group of C E ~o(X H) under the WH-action. 

The computation for the Whitehead group and lower K-groups can also be obtained by 

different methods (see e.g. Araki [1986], Dovermann-Rothenberg [1986], lllman [1985], 
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Hauschild [1977], Svenson [1985]). Our methods seem to be adequate for the treatment 

of higher K-groups, restriction formulas and diagonal formulas for compact Lie groups 

which seem not to be in the literature. We use the algebraic description in Theorem 

14.49 to extend the Burnside ring congruences of a torus T n for the Euler charac- 

teristics, i.e. x(X H) = x(X) for H c T n , to the finiteness obstruction. Namely, 

we get i,o(X H) = o(X) 6 Ko(Z~I(X)) for i : xH --~ X the inclusion and H c G 

provided that X H is connected and non-empty for each H c G and X is a finitely 

dominated Tn-space. We will fully exploite the algebra of RF-modules in Chapter III. 
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9. Modules over a category and a splitting of projectives. 

In this section we develop the elementary algebra of modules over a category F . We 

explain basic notions like submodule, quotient module, exact sequence, kernel, co- 

kernel, finitely generated module, projective module, free module with a base, direct 

sum, product, tensor product, induction, restriction, ... We show how one can split 

a projective module over a El-category F into a direct sum of projective modules 

living over the various group rings RAut(x) for x ~ Ob F . This is the main 

ingredient in the splitting of the algebraic K-theory of F into the algebraic K- 

theories associated with all group rings RAut(x) for x ~ Ob F . 

9.A. Elementary facts about RF-moduleso 

Assumption 9.1. Let R- be an associative commutative ring with unit. Suppose 

that we have specified the notion of a rank rk M for a finitely generated R-mo- 

dule such that rk(M ® N) = rk M + rk N and rk R = 1 is valid, o 

Definition 9.2. A__n_n EI-category F is a small category F (i.e. Ob F 

such that any endomorphism f : x --, x in F is an isomorphism, o 

is a set) 

Example 9.3. If G is a Lie group and H a compact subgroup then any G-map 

G/H --• G/H is a G-diffeomorphism (Lemma 1.31). Hence the orbit category Or G 

(Definition 8.16.) and the discrete orbit category Or/(G) (see 8.36.) are EI-cate- 

gories. Let X be a G-space satisfying Assumption 8.13. Then the fundamental cate- 

gory ~(G,X) (Definition 8.15.) and the discrete fundamental category H/(G,X) 

(Definition 8.28.) are EI-categories. o 

9.4. A RF-comodule resp. RF-contramodule is a covariant resp. contravariant 

functor 

M : F • R-MOD 

from F into the category R-MOD of R-modules. An homomorphism between RF-modules 

is a natural transformation. The functor category of covariant resp. contravariant 

functors F --• R-MOD is called the category of RF-comodules resp. RF-contramodules 

and denoted by 

RF-MOD resp. MOD-RF o 
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Since we are more interested in RF-contramoduleslwe mean with RF-modules always a 

RF-contramodule. Similarly a module over a ring is understood to be a right module. 

The notion of a RF-module generalizes the notion of a module over a group ring. 

Example 9.5. Let G be a (discrete) group. The group ring EG is additively the 

free R-module generated by G . Multiplication is given by 

g ~ G h ~ G g ~ G h ~ G 

Let G be the groupoid with one object, namely G , and left translations i : G-• G 
g 

h --• gh as morphisms. A left RG-module M is the same as a R-module together with 

a group homomorphism ~ : G --• AutR(M) sending g to ] : M --• M m --• gm . 
g 

Similarly a right RG-module can be interpreted as a R-module together with a group 

homomorphism ¢ : G --• AutR(M) ° p mapping g to r : M --• M m--• mg . Hence 
g 

^ ^ 

a left resp. right RG-module M determines uniquely a RG-comodule resp. RG-contra- 

module M and vice versa, We obtain identifications 

RG-MOD = RG-MOD 

MOD-RG = MOD-RG [] 

Example 9.6. Let G = Z/p be the cyclic group of prime order p . A ROrG-module 

M consists o f  a E G - m o d u l e  M(G) =: M ° a n d  a R - m o d u l e  M(G/G) =:  M 1 t o g e t h e r  w i t h  

a R-map M(pr) : M I --• M G into the G-fixed point set of M . An homomorphism 
O O 

f : M - - •  N b e t w e e n  R O r G - m o d u l e s  i s  g i v e n  by  a RG-map f : M - - •  N a n d  a 
O O O 

R-map fl : M1 --• N1 such that the following diagram commutes 

f 
O 

M • N lo o 
M ( p r )  t N ( p r )  

f l  
M 1 ~- N 1 

Example 9.7. Let I be the El-category having two objects 0 and 1 and three 

morphisms id : 0 --• 0 and id : i --• i and u : 0 --• i . The category of El- 

modules has as objects homomorphisms f : Mo --• M 1 of R-modules. Morphisms from 
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f : M °  --~ M 1 to g : No --~ N1 

M 
o 

N 
o 

Example 9.8. If M is a settlet 

M . We obtain a RF-contramodule 

are commutative squares of R-modules 

f 

M 1 

g 

N I 

RM or R(M) be the free R-module generated by 

RF(?,x) : F ~ R-MOD y '~ R Hom(y,x) 

for any x ~ Ob F . D 

Example 9.9. Let G be a Lie group and X a proper G-CW-complex. Then the n-th 

chain module cC(x) of the cellular RH/(G,X)-chain complex cC(x) (Definition 8.37) 
n 

is a RH/(G,X)-module. 

Using 8.36 we obtain also a ROr/G-module cC(x) . In particular we get for a finite 

group G and a finite G-set S a ROrG-module 

cC(s) : Or G b R-MOD 

G/H ~ RS H = Rmap(G/H,S) G a 

Example 9.10. Consider a covariant resp. contravariant functor 

F : {comp. Lie gr.} ~ R-MOD 

Assume that F applied to any inner automorphism c(k) : G --~ G g --~ kgk -I is 

the identity. Then we can define for any compact Lie group G a ROrG-co resp. ROrG- 

contramodule F G resp. F G as follows. It assigns to G/H the R-module F(H). Given 

a G-map o : G/H--~ G/K I choose g ~ G with o(eH) = gk . Then c(g) : H--~ K 

h --~ g-lhg is a well-defined group homomorphism. Let FG(O) resp. FG(o) be F(c(g)). 

This is independent of the choice of g because c(gk) is c(g) o c(k) and 

F(c(k)) = id for k ~ K holds. Examples for such functors are "real or complex re- 

presentation ring", "Burnside ring" or the functor G--~ K ~n (G)), where functori- 
n o 
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ality is given either by induction or by restriction. 

The category of R-modules is an abelian category. Roughly speaking a category 

abelian (compare Schubert [1970 a], p. 103) if the following holds: 

i) ~ possesses a zero object 0 . 

ii) There are finite products and coproducts. 

iii) Each morphism has a kernel and a cokernel. 

iv) Each monomorphism is a kernel and each epimorphism is a cokernel. 

is 

If is any category and ~ an abelian category then the functor category of co- 

variant resp. contravariant functors ~ --~,~ has the structure of an abelian cate- 

gory which is more or less objectwise induced from the abelian category structure on 

(see Schubert [1970 a]p. I04). Hence the category of R[-modules is an abelian 

category. For example, if f : M --~ N is an homomorphism of RF-modules, define the 

kernel of f by 

ker f : F --~ R-MOD x --~ ker(f(x) : M(x) --~ N(x)). 

A sequence 0 --~ M °  ~ M 1 --~ M 2 --~ 0 of RF-modules is exact if its evaluation 

at any object x in F is an exact sequence in R-MOD. Notions like injective and 

projective are defined as usual. Namely, P is projective if the following lifting 

problem has a solution. 

P 

i,,/4"I 
M .......... ,N " 0 

The definition of RF-chain complex, RF-chain map, RF-chain homotopy, homology of a 

RF-chain complex are obvious. One should notice that infinite products and coproducts 

exist in MOD-RF as they exist in R-MOD. There are some further notions of interest 

for us. 

9.11. HomRF(M,N) . 

If M and N are RF-modules~ let HOmRF(M,N) be the R-module of RF-homomorphisms 
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9.12. Tensorproduct ®RF " 

Let M be a RF-contramodule and N a RF-comodule. The R-module M ®RF N is the 

quotient P/Q of the R-module P = ~ M(x) ~R N(x) and the R-submodule Q ge- 
x ~ F 

nerated by {mf®n - m~fn I m ~ M(y),n ~ M(x), f ~ MorF(x,y), x,y ~ F} . Here 

we write mf = M(f)(m) and fn = N(f)(n) to make the definition more transparant . 

This is an explicit model for the tensorproduct of a contravariant and a covariant 

functor (see Schubert [1970 b], p. 45). o 

9.13. Tensorproduct ®R over R . 

If M is a RFl-module and N a RF2-modulejlet the 

composition 

9.14. RFi-RF2-bimodule. 

A RFi-RF2-bimodule 

An example is 

9.15. 

FIXF 2 

RFl×F2-module M ®R N be the 

M×N ®R 
• R-MOD x R-MOD ~ R-MOD o 

M is a covariant functor 

M : F 1 × F~ p ~ R-MOD 

RF(??,?) given for F 1 = F 2 by 

F 1 × F~ p • R-MOD (Xl,X 2) • 

Induction and restriction. 

RHom(x2,x I) 

ind F : MOD-RF 1 --~ MOD-RF 2 M --~ M ~RFIRF2(??,F(?)) 

res F : MOD-RF 2 --~ MOD-RF 1 M --~ M ®RF2RF2(F(?),??) 

is just composition with F . It can also be described as Of course res F 

Let F : F 1 ~ F 2 be a covariant functor. Let RF2(??,F(?)) be the RFi-RF2-bimo- 

dule (Xl,X 2) --~ R Ho~x2,F(Xl)) and define the RF2-RFl-bimodule RF~F(?),??) ana- 

logously. Define the covariant functors induction and restriction with F by 
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M--~ HomRF2(R(??,F(?)),M) o 

9.16. Free RF-module with base 

Let I be any index set. An 1-set B is a collection {B i I i ~ I} of sets in- 

dexed by I . A map f : B--~ C is a collection {fi : Bi --~ Ci I i ~ I} of 

set maps. If we think of I as the category having I as set of objects and only 

the identities as morphisms then we can interprete an l-set as a functor I-~ {sets} 

and a map between 1-sets as a natural transformation. Ocasionally we also think of 

an 1-set B as a set B together with a map ~ : B --~ I and of a map f : B-~ C 

between l-sets as a set map f making the following diagram commute 

f 
B - - - ~  C 

I 

Given 8 : B --~ I , we obtain mql-set B by {$ -l(i)J - I i ~ I} . Givenan 1-set B~ 

consider -~ B. with the obvious map into I . In the sequel I will often be 
i ~ I l 

the set Ob F of objects in an El-category F . 

Obviously any RF-module M has an underlying 0b r-set, also denoted by M . 

Definition 9.17. A RF-module M is free with Ob F-set B c M as base if for any 

RF-module N and any map f : B --~ N of Ob F-sets there is exactly on___ee RF-homo- 

morphism F : M--~ N extending f . o 

The RF-module RF(?,x) of Example 9.8. is free with the Ob F-set B defined by 

B(x) = {id : x --~ x} c RHom(x,x) and B(y) = ~ for y ~ x as base. This follows 

from the Yoneda-Lemma (see Schubert [1970 a], p. 23). Namely, if N is a RF-module 

and n ~ N(x)~ the desired homomorphism F : 

N(¢)(n) . Let B be any Ob F-set, given by 

free RF-module with base B is 

RHom(?,x) --~ N(?) sends ~ to 

: B --~ Ob F . Then a model for the 

RF(B) = ~ RF(?,~(b)) 
b~B 
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Example 9.18. Let G be a Lie group and X be a proper G-CW-complex. Let I 
n 

t h e  s e t  o f  n - d i m e n s i o n a l  c e l l s  o f  X and cC(x)  t h e  n - t h  c h a i n  module o f  t h e  n 

c e l l u l a r  Z ~ / ( G , X ) - c h a i n  complex of  X ( s e e  D e f i n i t i o n  8 . 3 7 . ) .  For  each  i ~ I n 

choose a characteristic map 

be 

(Qi,qi) : G/H.I × (Dn'Sn-l) ~ (Xn'Xn-i) 

Let x i : G/H.~ --~ X be the restriction of Qi to 

in D n . Choose a lift (Qi,qi) of the restriction of 

~H i 
X n (x i) 

~ _ 

H, 

(Dn,S n-l) .~ Xn1(Xi) 

(Qi,qi) 

G/H. × {*} for a base point * 
1 

(Qi,qi) to eHi×(Dn,sn-l) 

-H i 
Xn_l(X i) 

P(X i) 

H. i 
Xn_l(X i) 

H. H. 
Consider the composition (Q.l,q.l) : (Dn,S n-l) --~ (X ~l(x.),Xn~l(x.)) of (Q.,q.) 

H. H. I i H H n I - I I ~- 

and 8(xi ) : (~nl(xi),~n_11(xi)) , ~ i ~ i (X n /(xi),Xn_i/(xi)) . Fix a generator 

~n ~ Hn(Dn'Sn-l) = Z and define <i> ~ CnC(X)(xi ) by its image under 

H. H. 

(Qi/,gil), : Hn(Dn,S n-l) --, Hn(XnZ/(xi),Xn_~i/(xi)) 

Let <In > be the Ob X-set {<i> I i ~ I n }_ with y : <In > --~ Ob F sending <i> 

to x. . We will later prove that <I > is a base for cC(x) . Of course <I > de- 
1 n n n 

pends on the various choices above, in particular the choice of the characteristic 

maps. We discuss this later, o 

9.19. Finitely generated RF-modules. 

If M is a RF-module and S c M a X-subset, let 

module of M containing S . 

span S be the smallest RF-sub- 

span S = n {NIN RF-submodule of M, S c N} 

Notice that span S is the image of the unique RF-homomorphism 

tending id : S --~ S . We call a Ob F-set (B,~ : B --~ Ob F) 

finite as a set. We say that the RF-module 

RF(S) --~ M ex- 

finite if B is 

is generated by the Ob F-set S if 
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M = span S holds and call it finitely generated if S is finite, o 

We state some elementary properties of these notions and leave their verification to 

the reader. 

9.20. The following statements for a RF-module P are equivalent: 

i) P is projective. 

ii) Each exact sequence 0 --, M --, N --~ P --~ 0 splits. 

iii) HomRF(P,?) is an exact function i.e. it preserves exact sequences. 

iv) P is a direct summand in a free RF-module. 

9.21. The tensorproduct and the Hom- funetor are adjoint. More precisely, we have 

for any RFi-RF2-bimodule B , a RFl-mOdule M and a RF2-module N a natural iso- 

morphism of R-modules 

HOmRr2 (M ®RFIB,N)--~HomRFI(M,H° mRF2(B, N)) 

-- (B,N) assigning It sends ~ : M ®RFIB ~ N to the RFl-homomorphism M --~ HomRF 2 

to m ~ M(x I) the RF2-homomorphism 

B(Xl,??) ~ N(??) b ~ ~(m ® b) [] 

9.22. Given a covariant functor F : F 1 -- F 2 , ind F and res F are adjoint. 

Namely, there is a natural R-isomorphism for a RFl-mOdule M and a RF2-module N 

AD(M,N) : HomRF2(indFM,N) --~ HOmRFI(M,resFN) 

This follows from 9.21. and the definition of ind F and res F given in 9.15. (see 

also Schubert [1970 b], § 17) o 

9.23. The functor ? ®RF N is right exact and the functor HomRF(?,N) is left 

exact, o 

9.24. The induction functor respects "direct sum", "finitely generated", "free", 

and "projective" but is not exact in general. The restriction functor is exact but 

does not respect "finitely generated", "free" and "projective" in general, o 
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9.B. The structure of projectiye RF-modules 

Now we show how one can builn up a projective RF-module out of projective R[Aut(x)]- 

modules over the group rings R[Aut(x)] for x ~ Ob F provided that F is an EI- 

category. 

Notation 9.25. 

a) R[x] := R[Aut(x)] for x ~ 0b F 

b) Define a partial ordering ~ on the set 

objects x in F by 

x_-< y 

Is F of isomorphism classes x of 

The EI-property ensures x ~ y ~ x 

the sequel. We introduce the following covariant functors for 

<=> Hom(x,y) + ¢ m 

=> x = y . The partial ordering is crucial for 

x ~ Ob F . 

9.26. Splitting functor S : MOD-RF --~ MOD-R[x] 
X 

If M is a RF-modulerlet the singular R[x] -module at x be the R-submodule M(x) 
S 

of M(x) generated by all images of R-homomorphisms M(f) : M(y) --~ M(x) induced 

by all non isomorphisms f : x --~ y with x as source. A priori M(x) is only a 
S 

R-submodule of M(x) but it is even a R[x]-module, since for f ~ Aut(x) the compo- 

sition g o f is an isomorphism if and only if g is. Define 

S : MOD-RF --~ MOD-R[x] M ~ M(x)/M(x) o 
x $ 

9.27. Restriction functor RES : MOD-RF --~ MOD-R[x] 
X 

It sends M to M(x) 

9.28. Extension functor E : MOD-R[x] --~ MOD-RF 
X 

It sends M to M ®R[x] R Hom(?,x) . 

9.29. Inclusion functor I : MOD-R[x] --~ MOD-RF o 
X 

It assigns to the R[x]-module M the RF-module I M defined by 
X 

IxM(Y) = ~M(x) ®R[x] R Hom(y,x) if y = x 

L {0} if y + x 
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This is well-defined because of the EI-property. m 

A 
9.30. Let Aut(x) be the groupoid defined by the group 

(see 9.5.). We have an obvious functor 

A 
i : Aut(x) --~ F . 

Aut(x) for x ~ Ob F 

The restriction functor 
x 

E is the induction with i (see 9.15.). Let 
x 

the covariant functor 

F 1 --~ MOD-R[x] Y--~ 

L 

RES is the restriction with i and the extension functor 

B be the RF-R[x]- bimodule given by 

R Hom(x,y) if x = y 

{0} if x ~ y 

Then the splitting functor S x is.just M --~ M ~RFIB . Let 

bimodule defined by the covariant functor 

C be the R[x]- RF I- 

~R Hom(y,x) if x = y 

F 1 --~ R[x]-MOD Y --~ {0} if x + x 

The inclusion functor I sends x 

assigning to M the RFl-module 

M to M ®R[x] C . It can also be described by 

HomR[x](B,M) • [] 

Lemma 9.31. 

a) The functors E and RES and the functors S and I ar__ee adjoint, i.e. 
- -  - -  x x x x 

there are natural isomorphisms of R-modules. 

and 

HomRF(ExM,N) 

HomR[x](SxM,N) 

HomR[x](M,RESxN) 

........ ~ HomRF(M,IxN) 

b) Sx(RF(?,y)) is R[x]-isomorphic t__oo R[x] for x = y and zero otherwise. More- 

over, Ex(R[x ]) is RF(?,x) • 

c) S and E respect "direct sum", "finitely generated", "free" and "Drojective". 
x x 

d) S o E : MOD-R[x] --~ MOD-R[x] 
x x 

The composition S o E is zero for 
y x 

is natural equivalent t~ the identity functor. 

x~y. 
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Proof: left to the reader. 

The role of the splitting and restriction functor for applications in geometry is 

explained by the next statement 

Lemma 9.32. Let G be a Lie group and X be a proper G-CW-complex. Consider its 

cellular RH/(G,X)-chain complex cC(x) and an object x in H/(G,X) . Then 

a) SxCC(x) is naturally R[x]-isomorphic to the cellular R[x]-chain complex 

C ~ ~> c (xl(x),x l(x)). 

b) RESxCC(x) is cC(~/(x)). D 

A direct consequence of Lemma 9.31. is that any free RF-module F can be built up 

by free R[x]-modules. More precisely, if we choose for any x ~ Is F a repre- 

sentative x ~ X ~ there is an isomorphism 

9.33. F ~- ~ E oS F 
x ~ Is F x x 

We want to extend this to projective modules. This cannot be done directly as the 

isomorphism 9.33. is not natural. For arbitrary modules over an EI-category such a 

splitting is not true. Here is a counterexample. 

Example 9~34. Let G = Z/p be the cyclic group of prime order p . Let F be 

Or G . Consider the ROrG-modules M = IG/G R , N = IGR and P = EG/GR . Then there 

is an obvious exact sequence which does not split 

0 ) N  ) P )M ) 0 . 

Obviously we have 

M i P = E G o SGM 

Hence 9.33. is not true for M. Applying S G 

EG/G o SG/G M 

to the exact sequence above yields 

0 ) R  ) 0  ) 0  ..... ) 0 .  
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Hence S G is not an exact functor. The R-module R is of course free but M= IG/GR 

is not projective otherwise the exact sequence above would split. Hence IG/G does 

not respect "free" and "projective". The Rr-module P = RHom(?,G/G) is free. How- 

ever, the R[G]-module RESG(P) = R is not projective in general. Take for example 

R = Z • Hence Res G does not respect "free" and "projective". o 

We introduce some notation. If B = {B x I x ~ Ob r} is a Ob r-set , let the set of 

isomorphism classes of isotropy objects Iso B c Is F be {x~ Is r I there is a 

representative x ~ X with B x ~ @} . The set of isomorphism classes of isotropy 

objects Iso M c Is r of a Rr-module is defined by {~ ~ Is r I SxM + {0}}. If B 

is a Ob r-set and RF(B) the free RF-module with base B then Iso RF(B) = Iso B . 

This is motivated by the following observation, Namely, let X be a proper G-CW- 

complex then 

9.35. o iso c~(x) = {i ~ is n/(c,x) I x(x)\x>(x) + ~} 
n~o 

This is a consequence of Lemma 9.32. 

Given a subset T c Is r , call a Rr-module of ~ T if there is an epimorphism 

RF(B) --~ M for a free RF-module RF(B) with Iso B c T , or equivalently, if 

there is a Ob F-subset S of M with Iso S c T generating M . A quotient of a 

Rr-module of type T is again of type T . This is not true for a submodule in 

general. If M is of type T for a finite Ob F-set T r we call M of finite type. 

If X is a proper G-CW-complex of finite orbit type such that ~o(X H) is finite 

for H ~ Iso X then each cC(x) is a ZH/(G,X)-module of finite type. 
n 

Let T be a subset of Is r and M be a Rr-module. Choose for any x ~ T a 
o o 

and RES are adjoint (Lemma 9.31.). The representative x ~ X . Recall that E x x 

following in M natural RF-homomorphism 

9.36. J M : E o RES M --~ M 
x x x 

is the adjoint of the identity of RESxM : 
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JxM : M(x) ®R[x] R Hom(?,x) --~ M(?) m ® ¢ --~ M(#)(m) 

The direct sum of these maps J M running over x ~ T yields 
X o 

9.37. JT M : _ ~ E o RES M --~ M 
o x ~ T x x 

O 

Define COK T M as the cokernel of JT M . Let PR T M: M --~ COK T M 
O O O O 

projection. Then we have the in M natural exact sequence 

be the canonical 

JT M PR T M 

9.38. _ ~ E o RES M o > M o ~ COK T M 
x~T x x 0 

0 

Since E x and RES x are compatible with direct sumslthe same is true for COK T 
O 

If M is of type T for T c Is F then COK T M is of type T \ (T N T o ) . Namely, 
o 

let B be a Ob F-set with Iso B c T and ¢ : RF(B) --~ M be an epimorphism. 

Write B as the disjoint union B = B' ~ B" of Ob F-sets with Iso B' c T\(TNT O ) 

and Iso B" c T N T O . The homomorphism COK T (~): COK T (RF(B)) --~ COK T M is sum- 
o O o 

jective and 

COK T (RF(B)) = COK T (RF(B')) ® COK T (RF(B")) 
O O o 

One checks directly that CON T (Rr(?,x))=0 for x ~ T o and hence COK T (RF(B")) 
O O 

vanish. Hence we have an epimorphism 

RF(B') --* COK T (RF(B')) = COK T (RF(B)) --* COK T M 
O O O 

so that COK T M is of type T \ (T N To). 
O 

The main result of this section is 

Theorem 9.39. Cofiltration Theorem for projective RF-modules. Let F be a El- 

_ = c T 1 c T 2 c T £ = T be a filtration of T c Is r such that category. Let ~ T o 

x 6 T i , ~ 6 Tj , x < y implies i > j . If P is a projective RF-module of 

type T , then there is a natural cofiltration 

PR o PR 1 

P = Po ~ P1 ~ P2 ~ "'" --~ P£ = {0} 



175 

satisfying 

a) Pi . - -- = Pi-i .Pi-i = COKT Pi i and PR i --~ COK T is the projection. 
i 1 

b) Pi is projective of type T\T i . If P is finitely generated, Pi is finitely 

generated. 

c) Le---!t pRi : P--~ Pi be PRi_ 1 o PRi_ 2 .... o PR 1 . Then SxPRi: SxP--~ SxP i 

is an isomorphism for x E T\T i and SxP i = 0 for x ~ T\T i . 

d) We obtain from 9.38. a natural exact sequence which splits (not naturally) 

PRi_ 1 

0 --~ ~ E o S P--~ P i-i --~ P' , 0 
~ Ti\Ti-i x x 1 

e) If 0 --~ N ~ P --~ Q --~ 0 is an exact sequence of projective RF-modules 

of type T , then the induced sequence 0 ~ N i --, Pi --" Qi --~ 0 is exact. 

Proof. We use induction over i = 0,I,...,£ . The begin i = O is trivial. Con- 

sider x 8 Ti\Ti_ 1 and z ~ IsF with x < z . Then RHom(z,y) = {0} holds for 

any ~ ~ T\Ti_ 1 as x < y , ~ 6 Tj implies i > j by assumption. As Pi-i is of 

type T\Ti_ 1 by induction hypothesis, Pi_l(Z) = {0} for x < z and hence 

SxPi_ 1 = ResxPi_ 1 . We get from 9.38 the exact sequence 

Ji-i PRi-I 
_ ~ E o ~ - - ~  P. --~ 0 
x 6 Ti\Ti_ 1 x SxPi-i Pi-i ! 

We want to show that Ji-I is split injective. It is compatible with direct sums. As 

any projective RF-module P of type T is a direct summand in a free module of 

type T which is a direct sum of RF-modules R Hom(?,y) for ~ ~ T , we may 

suppose P = R Hom(?,y) for ~ ~ T . One easily checks that 

E o SxPi_ 1 
~ Ti\Ti_ 1 x 

is zero for ~ ~ Ti\Ti_ 1 and Ji-i is an isomorphism for y ~ Ti\Ti_ I 

Lemma 9.31. Hence we get d) if we compose Ji-i with the homomophism 

using 

_ ~ E oS PR i-I : ~ E o S P ~ _ ~ E Q 

x ~ Ti\Ti_l x x ~ ~ Ti\Ti_l x x x 6 Ti\Ti_ 1 x SxPi-I 

which is an isomorphism by induction hypothesis. The other claims follow from d), 

Lemma 9.31. and the remarks above. 
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Now we can extend 9.33. to projective modules. 

Corollary 9.40. Let P be a projective RF-module of finite type. Then there is an 

(not natural) isomorphism- 

P ~ ~ E oSP 
xE IsF x x 

Proof. Use induction over Iso P and Theorem 9.~9 [] 

Example 9.41. Let G be the cyclic group Z/p of prime order p . We claim: 

A ROrG-module M is free resp. projective if and only if SGM is a free resp. pro- 

jective RG-module, SG/GM is a free resp. projective R-module and M(pr):M(G/G) -~ M(G) 

for the projection pr : G --• G/G is injective. 

The only if statement follows from Lemma 9.31. and Corollary 9.40. For the verifi- 

cation of the if-statemant consider the sequence 9.38 

JG/G M PRG/GM 
EG/G o SG/GM • M - - ~  COKG/G M --~ 0 

Since M(pr) : M(G/G) --• M(G) is injective JG/G M 

is just E G o SGM and hen@e projective. We obtain 

M = EG/G o SG/GM 

If SG/GM and SGM are free resp. projective, M 

is injective. Moreover, C%/GM 

E G o SGM 

must be free resp. projective. °  

The following example shows that the EI-property is necessary for Theorem 9.39. 

and Corollary 9.40. 

Example 9.42. Let 

morphisms 

F be the category having two objects and the following set of 

Moreover we demand 

Aut(x) = {id} ~ Hom(x,x) and Aut(y) = {id} + Hom(y,y) 

Hom(x,y) = {u} , Hom(y,x) = {v} , 

Hom(x,x) = {id,vu} , Hom(y,y) = {id,uv} 

vuv = v and uvu = u . Notice that F is no EI-category since 

holds. 

Everything of this section until to the definition of S and E does not require 
X X 

the EI-property. Also Lemma 9.31 b),c) and d) remains true so that we still have 

for a free RF-module F 
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F ~- ~ E o SF 
x ~IsF x x 

The analogous statement for a projective RF-module is false for the category 

have defined above. 

Let M be the Rr-submodule of R Hom(?,y) given by M(x) = {0} , M(y) = 

{r'(idy-UV) [ r ~ R} c R Hom(y,y) . Define r : R Hom(?,x) ~ M by r(idy) = 

id - uv . Then riM is the identity, l~ence M is projective and of finite type and 
Y 

S M = 0 and S M = M(y) ~ R . But M and E o S M ® E o S M ~ R Hom(?,y) 
x y x x y y 

are not isomorphic, m 

F we 

Comment 9.43. Rothenberg [1978] gives a definition of the Whitehead group whG(*) 

using the following category ~ for a finite group G . A G-based R-module M is 

given by the free R-module R(S) generated by a finite G-set S . Let M H be the 

R-submodule R(S H) . Notice that M H is not the H-fixed point set of M under the 

G-action. A morphism f : M --~ N between G-based modules is a R-homomorphism such 

that f(M H) c N H for all H c G holds. Let C be the category of G-based R-modules. 

Define ~ as the full subcategory of MOD-ROrG consisting of all finitely generated 

free ROrG-modules. Any G-based R-module R(S) defines a finitely generated free 

ROrG-module by cC(s) (see Example 9.9). A map f : R(S) --, R(T) between G-based 

R-modules induces an homomorphism cC(s) --, cC(T) between ROrG-modules, since 

cC(s)(G/H) is R(S H) by definition. We obtain a functor F : ~ --~ . One easily 

constructs an inverse functor F -I :~--~ ~ such that both compositions are natur- 

ally equivalent to the identity. Hence ~ and ~ are equivalent categories. 

The main advantage of ~ in comparision with ~ is that there is an obvious em- 

bedding of ~ into the abelian cateory of RF- modules. Since we have in MOD-RF 

the notion of exact sequences, projectives, and so onait will be fairly easy to 

introduce algebraic K-groups in the next section. Moreover, the notions about MOD-RF 

are very close to the analogous cnes for modules over group rings (see Example 9.5.). 

We recommend to the reader to have this analogy always in mind. This is not such 

obvious if one works with 
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Modules over a category appear in obstruction theory, a local coefficient system 

for a space X is a RH(X)-module over the fundamental category (see Whitehead 

[1978]). Modules over the orbit category are used for equivariant obstruction theory 

in Bredon [1967]. Further references for modules over EI-categories are tom Dieck 

[1981], tom Dieck [1987] I, ii, L~ck [1988], Mitche~ [1972], Triantafillou [1982]. 

Modules over EI-categories appear also in Anderson-Munkholm [1988], Jackowski-McClure 

[1987], Ranicki-Weiss [1987], Weiss-Williams [1987]. 

Exercises 9.44. 

I) Show that all the notions we have defined for RF-modules like finitely gene- 

rated, free, projective, base .... agree with the usual definitions for modules 

over a group ring under the identification 

MOD-RG of Example 9.5. 

2) let I be the El-category having two objects 

3) 

RG-MOD = RG-MOD and MOD-RG = 

O and 1 and three morphisms 
^ 

id : O--~ 0 , id : 1 --~ 1 and u : 0 --~ 1 . Prove that a RI-module M is 

projective if and only if M(u) : M(1) --~ M(0) is injective and both M(1) 

and cokernel M(u) are projective R-modules. 

Show that a RF-module M has a projective resolution, i.e. there is an exact 

sequence possibly infinite to the left 

4) 

5) 

--~ Pn ~ Pn-i --" "'" --~ P1 ~ Po --~ M ~ 0 

such that P is projective for n ~ 0 . 
n 

Let F be an EI-eategory such that Ob F 

merits are equivalent: 

i) A RF-module M is finitely generated if and only if 

generated R-module for any x ~ Ob F . 

ii) Hom(x,y) is finite for any x,y ~ Ob F . 

is finite. Then the following state- 

Let F be an EI-category with the property that a RF-module 

projective if and only if S M is 
x 

Show that then F is a groupoid. 

M(x) is a finitely 

M is free resp. 

free resp°  projective for any x ~ Ob F. 
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7) 

8) 

9) 
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Give an example of an EI-category F and a QF-module M with a @F-submodule 

N c M such that M is finitely generated but N is not finitely generated. 

Show for an EI-category F such that Ob F and Hom(x,y) for any x,y ~ Ob F 

are finite and a noetherian ring R that any submodule of a finitely generated 

RF-medule is again finitely generated. 

Let G be a finite group and M be a ZOrG-module such that M(G/H) is finitely 

generated over Z for any H c G . Then M has a finitely generated projective 

resolution, i.e. there is an exact sequence 

-- ~M ~ 0 "'" • P2 - - •  P1 • Po 

such that P is finitely generated and projective for n > 0 . 
n 

Show that the extension functor is not exact in general. However, if 

and Ob F and Aut(x) for any x ~ Ob F 

E is exact for any x ~ Ob F . 
x 

Let G he the cyclic group Z/p n 

is free resp. projective if and only if 

any H c G and M(pr) : M(G/H) --• M(G) 

injective for any H c G , 

R is @ 

is finite then the extension functor 

of prime power order. Then a ROrG-module M 

SG/H M is free resp. projective for 

for the projection pr : G --~ G/H is 

i0) Let G be Z/pq for p and q prime numbers with p + q . Give for any R 

an example of a ROrG-module M such that SG/~I is projective and 

M(pr) : M(G/H) --~ M(G) is injective for any H c G but M is not projective. 

ii) Show that the functor {Oh F-sets} --~ MOD-RF sending a Ob F-set B to the 

free RF-module RF(B) with base B and the forgetful functor MOD-RF--~{~o~sets} 

are adjoint. 

12) Give an example of a EI-category F and RF-modules M c N such that N has 

finite type but M does not have finite type. 

13) Given a functor F : F 1 --~ F 2 , define the coinduction F#M of a RFl-mOdule M 

by HOmRFI(RF(F(?),??),M). Show that F and F# are adjoint. 
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i0. Algebraic K-theory of modules over a category and its splitting. 

We introduce the algebraic K-groups of an EI-category F with R-coefficients. The 

category of finitely generated projective RF-modules is an exact category in the 

sense of Quillen [1973], § 2 or a category with cofibrations and weak equivalences 

in the sense of Waldhausen [1985], 1.2. so that we can define Kn(RF) by the homo- 

topy groups of the spaces associated with such categories. We study the functorial 

properties under induction, restriction and tensor product. This global approach is 

useful for theoretic questions. Finally we split the algebraic K-groups Kn(RF) 

into ordinary K-groups Kn(R[x]) of the group rings R[x] := R[Aut(x)] for ~ ~Is F. 

This is the main tool for explicit computations. 

10.A. The algebraic K-theory of RF-modules. 

We start with introducing "lower" and "middle" K-groups Kn(~) , n & I of an addi- 

tive category. Given a ring R , a small category ~ is called R-additive if it 

satisfies (compare Bass [1968], § 1.3 , Schubert [1970a] 1.5.) 

i) Finite coproducts exists. 

ii) For all objects x,y ~ ~ the set Mor(x,y) 

iii) Composition of morphisms is a R-bilinear map 

iv) Coproduct of morphisms is a R-bilinear map. 

v) ~ has a zero-object 0 , i.e. Mor(0,x) and 

ment for any x ~ Ob ~ . 

has the structure of an R-module. 

Mor(x,O) have exactly one ele- 

If R is Z , we call ~ just additive . 

Example i0.i. Any abelian category and any exact category is an additive category. 

The homotopy category of R-chain complexes is an additive category but fails to be 

abelian. D 

Consider an additive category ~ . We call a sequence in 

0 --• A °  i A P • A I --• 0 . 

exact if it is split exact, i.e. there is a morphism s : A 1 --~ A with pos = id 

such that i Ii s : A °  j~ A 1 --• A is an isomorphism. Equivalently, there is 
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r : A ~ Ao with r o i such that Jo o r + Jl °  p : A --~ Ao iI AI is an iso- 

morphism where Ji : Ai ---~ Ao liAl is the canonical inclusion. In other words, 

the sequence is isomorphic to the obvious sequence 

0 --• A °  --• A °  Ii A 1 ~ A 1 ~ 0. 

llefinition 10.2. 

a) The Grothendieck gr0up Ko~) is defined as the quotient of the free abelian 

group generated by the is0morphism classes of objects in ~ and the subgroup ge- 

nerated by all elements [Ao] - [A] + [AI] for which there is an exact sequence 

0 --~ A °  --' A • A 1 --• 0 

b) Let KI(~) be the quotient of the free abelian group generated by the auto- 

morphism f : A --~ A of objects A in ~ and the subgroup generated b_x elements 

[fog] - [f] - [g] for automorphism f and g of the same object and elements 

[fo ] - [f] + [fl] for which there is a commutative diagram with exact rows 

0 --~ A °  _j_i A P • A I --~ 0 

0 ~ Ao --!-~ A P ' A I ~ 0 

Now we are going to define negative K-groups. For this purpose we introduce the 

category Gn(~) of zn-graded objects in ~ with bounded morphisms, An object A 

is a collection A = {A(i) I i ~ Z n} of objects A(i) of ~ . A morphism 

f : A---~ B is a collection {f(i,j) : A(i) --• B(j) I i,j ~ Z n} of morphisms 

in ~ such that there is an integer ~ = ~(f) with the property that f(i,j) 

vanishes whenever li(m) - j(m) I > ~ holds for some m ~ {1,2 ..... n} . The compo- 

sition h = gof of f : A --~ B and g : B --, C is defined by 

h(i,k) = )_ g(j,k) o f(i,j) 

j ~ Z n 

structure of an additive category carries over from ~ to G (~), The 
n 
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Definition 10.3. Define for n ~-I 

K_n(~) := KI(Gn+I(~)) 

Obviously the Definition 10.2. of KI(~) and the Definition 10.3. of KI(~) agree 

since Go(d~) is just d~ . In general KI(GI(~)) is not Ko~) but Ko(~) if 

denotes the idempotent completion of ~ (see Pedersen-Weibel [1985]). Objects in 

are projection p : A --~ A in ~ , i.e. pop = p . A morphism f from p:A--~A 

to q : B --~ B in ~ is a morphism f : A --~ B satisfying pofoq = f . Since 

for all categories ~ we will consider Ithe obvious inclusion ~ --~ is an equi- 

valence of categories~we can regard the Definitions 10.2. and 10.3. for n = 0,i 

as equivalent. 

Let ~, be an exact category. In Quillen [1973] § 2 a new category Q~ is defined. 

If IQ~I is the classifying space associated with Q~,the K-groups of E are de- 

fined by 

10.4. K.(~)I = ~i+l (IQ~I) = ~i (~IQ~I)' for i > 0 . 

Similarly Waldhausen [1985] 1.3. assigns to a category 

weak equivalences a space lwS.~l. We can also define 

with cofibrations and 

10.5. Ki(~) = ~i+l(lWS.~l) = ~i(~lwS.~l) 

Any exact category ~ determines a category ~(~) with cofibrations and weak equi- 

valences such that IQ~I and lwS.~(E) i are naturally homotopy equivalent so that 

10.4. and 10.5. agree (see Waldhausen [1985] 1.9.) . 

If ~ is an exact category the Definition 10.4 and the Definition 10.3. of K (E) o 

agree (see Quillen [1973], § 2 Theorem i). There is a natural map from KI(E) of 

Definition 10.2. to KI(~) defined in 10.4. but it is neither surjective nor 

injective in general (Quillen [1973] Remarks on p. 104). However, if ~ is the 

exact category FPMOD-A of finitely generated projective modules over a ring A 

then they agree. Moreover K.(FPMOD-A) is isomorphic to ~.(BGL(A) +) for i ~ i 
i i 

(see Gersten [1973]). We will use Definition 10.2. for K.(E) but it follows from 
i 
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the splitting theorem below that in all cases we consider in this book the Definition 

10.2. and 10.4. agree for KI(~) , 

We have now defined functors for n ~ Z 

Proposition 10.6. 

i) If 0 --~ F I ~ F °  

exact categories then 

ii) If Fo,F I : 6 

iii) Le__~t 

K : {exact cat.} ~ {abel. gr.} 
n 

F 2 --~ 0 i__{s a__nn exact sequence of functors between 

Kn(F I) - Kn(F o) + Kn(F2) = 0 

! 

6 ar___~enaturally equivalent, then Kn(F o) = Kn(FI). 

i : I --~ {exact cat.} be a functor from a filtering category (see 

Schubert [1970 a] 9.2.4.). Then the natural map 

colim(K n o i) ~ K(colim i) 

is an isomorphism. 

Proof: For n ~ 1 this follows directly from the definitions. The proof for n g 0 

is given in Quillen [1973] p. 103-106. See also the Additivity Lemma in Waldhausen 

[1985] 1.3.2.). o 

Let F be an EI-category. The category FFMOD-RF resp. FPMOD-RF of finitely gene- 

rated free resp. projective RF-modules is an exact category in the sense of Quillen 

[1973] § 2. It can also be viewed as a category with cofibrations given by split in- 

jections and weak equivalences given by isomorphisms and is in particular an addi- 

tive category. 

Definition 10.7. We define for n ~ Z 

and 

Kn(RF) = Kn(FPMOD-RF ) 
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Kf(RF) := K (FFMOD-RF) [] 
n n 

We also need the following variant of KI(RF) . A trivial unit in 

morphism of the free RF-module RF(?,x) := R Hom(7,x) of the shape 

uf, : R Hom(?,x) -~ R Hom(?,x) 

for any x ~ Ob F , f ~ Aut(x) and u ~ {il} . 

g--~ uf o g 

RF is an auto- 

Definition 10.8. Let the Whitehead group of RF 

Wh(RF) := KI(RF) / <trivial units> 

be the quotient of KI(RF) and the subgroup generated by all trivial units o 

Finally we introduce 

Definition 10.9. Let U(F) be the free abelian group generated by the set Is P 

of isomorphism classes of objects 

u(r) := ~ Z o 
Is F 

We often write an element q ~ U(F) as a function q : Is F --~ Z 

value different from zero only for finitely many elements in Is F . 

10.B. Natural properties of the algebraic K-theory of Rr-modules. 

Now we have introduced all algebraic K-groups we are interested in except the re- 

K-groups Kn(RF) whose definition needs some preparation. Next we study the duced 

funetorial properties under induction and restriction and the pairings induced by 

the tensor product ®R " 

Given a covariant functor 

between exact categories 

which takes a 

F : F 1 --~ F 2 the induction functor induces a functor 

and 

ind F : FPMOD-RF 1 --~ FPMOD-RF 2 

ind F : FFMOD-RF 1 --~ FFMOD-RF 2 
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u F(f), of RF 2 . 

i 0 . i 0 .  
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it sends a trivial unit uf, of 

Hence we obtain homomorphisms 

F, : Kn(RF I) --~ Kn(RF 2) 

F, : K~(RF I) --~ K~(RF 2) 

F, : Wh(RF I) --~ Wh(RF 2) 

Define anhomomorphism 

i0.ii. 

by 

for q ~ U(FI). 

Let 

tors 

F, : U(F I) --~ U(F 2) 

F,(n) : Is F 2 --~ Z y 

RF 1 to the trivial unit 

I n(x) 

x ~ Is r 1 

Fx = y 

EI-CAT be the Category of EI-categories. Then we have defined covariant func- 

One easily checks 

Lemma 10.12. 

is zero for 

Kn,K~,Wh,U : El-CAT --~ {abel. gr.} 

The functor 

S o ind F o E : MOD-R[x] ~ MOD-R[y] 
y x 

y ~ Fx . It is natural equivalent to the induction with the Kroup 

homomorphism Aut(x) ~ Aut(Fx) f ~ F(f) for y = Fx . m 

Remark 10.13. If G is a (discrete) group we have denoted by 

groupoid with one object (see Example 9.5.). Composing the functors K n, 

Wh with the functor {groups} ~ EI-CAT G ~ G defines functors 

the corresponding 

K f and 
n 

{groups} --~ {abel.~r,} , 

They coincide with the classical definitions of Kn(RG), K~(RG) 

MOD-RG = MOD-RG holds (see Example 9.5.). o 

and Wh(RG) since 
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Now we want to define contravariant functors Kn' Kfn ' Wh and U using restriction 

with a functor. Here already problems arise in the case of a group homomorphism 

: G --~ H . Namely, it is not true in general that the restriction of a finitely 

generated free resp. projective RH-module to RG by ~ is again finitely gene- 

rated free resp. projective. This is obviously necessary to define by restriction 

with 4~ anhomomorphism Kn(RH) --~ Kn(RG) . A necessary and sufficient condition 

is that # is injective and H/image # is finite. 

Definition 10.14. We call a (covariant) functor F : F I ~ F 2 between El-cate- 

gories admissible if RES F : MOD-RF 2 --~ MOD-RF 1 sends finitely generated free resp. 

projective RF2-modules to finitely generated free resp. projective RFl-modules for 

any commutative ring R with unit. o 

Namely S 
x 

x ~ Ob F 1 

module 

Since RES F is compatible with direct sums and a finitely generated projective RF 2- 

module is a direct summand in a finitely generated free RF2-module, F is admissible 

if and only if RESF(R Hom(?,y)) = E Hom(F(?),y) is a finitely generated free RF l- 

module for all y ~ Ob F 2 . 

Therefore we get a neccessary condition for F being admissible from Lemma 9.31. 

o RES F o Ey(R[y]) must be a finitely generated free E[x]-module for any 

and y ~ Ob F 2 . We compute S x o RES F o Ey o If B is the RFI-R[x]- 

B(?) = 
E Hom(x,?) x = ? 

{0} x + ? 

the functor S x o RES F o Ey 

the R[y]-R[x]-bimodule 

is given by taking the tensorproduct over R[y] with 

(see 9.30.) 

R Hom(??,y) ®RF 2 R Hom(F(?),??) -RF 1 B 

We call a morphism f : F(x) ~ y in F 2 for x ~ Ob F 1 and y ~ Ob F 2 

irreducible if for any factorization 
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F(g) 
F(x) • F(x') 

Y 

the morphism g : x --~ x' in r I is an isomorphism. Let Irr(x,y)cMorF~Fx,y) be 

the subset of irreducible morphisms. This is a Aut(y)-Aut(x)-set by composition so 

that R Irr(x,y) is a R[y]-R[x]-bimodule. 

We define inverse isomorphisms of R[y]-R[x]-bimodules 

R Hom(??,y) ®RF 2 R Hom(F(?),??) ® B , ~ Irr(x,y) 
RF i R 

r ® g ® h ~ ~fogoF(h), if fo goF(h) is irreducible 
f 

L 0 , otherwise 

R Irr(x,y) ~ R Hom(??,y) ~RF 2 R Hom(F(?),??) ®RF 1B 

g ~ id ® g ® id 
y x 

Notice that S R Hom(F(?),y) is by definition R Irr(x,y) . We get 
x 

Lemma 10.15. The functor 

S x o RES F o Ey : MOD-R[y] ~ MOD-R[x] 

i snaturally equivalent t_2o 

M ~ M ®R[y] R Irr(x,y) m 

Proposition 10.16. A functor F : F 1 --~ F 2 between El-categories is admissible 

if and only if the following conditions hold for each y ~ F 2 . 

i) Irr(x,y) is non-empty only fo_~r finitely many ~ ~ Is F I and is a free 

Aut(x)-set with finitely many orbits for each x ~ Ob F 1 . 

ii) Let h : F(z) --~ y be a morphism in F 2 and z ~ Ob F 1 . There exist 

morphisms g : z --~ x in F 1 and f ~ Irr(x,y) with f o F(g) = h . If 

g' : z --~ x' and f' ~ Irr(x',y) also satisfy f' o F(g') = h then there is 
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an isomorphism k : x --~ x' in F 1 such that k o g = g' and f = f' o F(k) 

hold. 

Proof. Consider the homomorphism of RF1-modules 

T : _ ~ R Irr(x,y) ~R[x] R Hom(?,x) ~ R Hom(F(?),y) 
x ~ Is F 1 

f ® g --+ f o F(g) 

One easily checks that T is bijective if and only if condition ii) is true. The 

source is finitely generated free if and only if R Irr(x,y) is a finitely gene- 

rated free R[x]-module for any x ~ Ob F I and zero for almost all x ~ Is r I or, 

equivalently, condition i) is satisfied (see Lemma 9.31.). Hence i) and ii) imply 

that RES F is admissible. 

Conversely, suppose that F is admissible. Then R Hom(F(?),y) is a finitely ge- 

nerated free RFl-mOdule. Applying S to T yields just the isomorphism of Lemma 
x 

10.15. By Lemma 9.31. the R[x]-module R Irr(x,y) is finitely generated free for 

any x and different from zero only for finitely many x ~ Ob F I . This implies i). 

The source of T is a finitely generated free RFl-mOdule. Then condition ii) must 

be true as T is bijective by the Lemma below. D 

Lemma 10.17. 

finite type. 

Let F : P --, Q be ~homomorphism of projective RF-modules of 

Then F i.~s bijective if and only if SxF i_~s bijective for any x ~ Ob F . 

Proof. Use induction over the type, the five lemma and Theorem 9.39. o 

We will later use Proposition 10.16. to show for a Lie-group G , a G-space 

satisfying Assumption 8.13. and a subgroup H c G with finite G/H that 

restriction induces an admissible functor n/(H,res X) --, ~/(G,X) sending 

x : H/L --~ res X to its adjoint ind H/L = G/L --~ X . 

X 

If F : F 1 q~ F 2 is admissible, it induces by definition functors between exact 

categories RESF: FFMOD-RF 2 --~ FFMOD-RF 1 and RES F : FPMOD-RF 2 --~ FPMOD-RF 1 . 
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Hence we obtain homomorphisms 

10.18. F 

"k 
F 

: Kn(RF 2) --~ Kn(RF I) 

: K (RF 2) --. K (RFI). 

Next we examine what F : KI(RF 2) ~ KI(RF I) does with trivial units. Let 

u f, : R Hom(?,y) ---~ R Hom(?,y) g --~ u • f~g be the trivial unit in F 2 given 

by y ~ Ob F 2 , f ~ Aut(y) and u ~ {±i} . For x ~ Ob F 1 let 

v : R Irr(x,y) ---~ R Irr(x,y) send g to u • fog . If T is the natural iso- 
x 

morphism appearing in the proof of Proposition 10.16. we have the commutative dia- 

gram of RFl-modules 

x ~ Is F I 

x ~ Is F 1 

x ~ Is F 1 

E (R Irr(x,y)) 
x 

Ex(Vx) ] 

Ex(R Irr(x,y)) 

' RESF(RF2(?,y)) 

I u f,) RESF( 

RESF(RF2(?,y)) 

Hence we get in KI(RF I) 

10.19. F (uf,) = - I [Ex(Vx)] 
x ~ Is F I 

By Proposition 10.16. the Aut(x)-set Irr(x,y) is a finite disjoint union of free 

Aut(x)-orbits 

r 
Irr(x,y) = J~ gi 

i = l  
. Aut(x) 

There is a unique permutation o ~ Er such that f °  gi = go(i) °  f'1 for 

a p p r o p r i a t e  f .  ~ A u t ( x )  h o l d s  f o r  i = 1 , 2 , . . . , r  . C o n s i d e r  t h e  A u t ( x ) - i s o -  
1 

morphisms 

r 
: ~R[x] ~ R Irr(x.y) 

i=l 

sending id ~ R[x] 
x 

of the i-th summand to gi " Let 

r r 
o. : ~ R[x] ~ ~ R[x] 

i=l i=l 
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be given by permuting the coordinates according to o . Then the following diagram 

commutes 

r o, r 
R[x] ~ 

i=l i=l 

R Irr(x,y) 

r 
uf. 1 

i=l R[X] 

v x 

r 
R[x] 

i=l 
I 

R Irr(x,y) 

We get in KI(R[x ]) since Eo,] is [(sign o)'id : R[x] --~ R[x]) 

r 

[Vx] =I [ ufi] + [sign o -idR[x] ] 

i=l 

Hence [Vx] lies in the subgroup of KI(R[x]) generated by the trivial units so 

that F : KI(RF 2) --~ KI(RF I) maps the subgroup generated by the trivial units in 

KI(RF 2) to the one in KI(RF I) by i0.19~ By definition we obtain an induced homo- 

morphism 

10.20. F : Wh(RF 2) ~ Wh(RF I) . 

Definesn homomorphism 

10.21. F : U(F 2) ~ U(F I) 

by the Is F I x Is F 2 matrix (d(x,y)) with 

d(x,y) = card Irr(x,y)/Aut(x) o 

This is well-defined by Proposition 10.16. 

Let EI-CAT A be the category of EI-categories with admissible functors as morphisms. 

All in all we have defined contravariant functors 

10.22. Kn,K~,Wh,U : EI-CAT A --~ {abel. gr.} 

where functionality is given by restriction. Obviously (FOG) = G oF holds for 

Kn" Kfn and  Wh b u t  i s  n o t  c l e a r  f o r  U . Bu t  t h i s  w i l l  f o l l o w  f r o m  a r e s u l t  we 

prove later where U and K f are identified. Of course one can verify this for U 
o 
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also directly. 

Now we come to products. The tensorproduct ®R over R 

®R : MOD-RF1 x MOD-RF 2 ~ MOD-RF 1 

is a functor 

x F 2 

EI-CAT A 

by th___~e pairings ®R above 

and of contravariant functors 

10.24. o R : K~(RF I) ® Wh(RF 2) --~ Wh(RFI× F 2) • 

The obvious identification 

10.25. 

Is F I x Is F 2 = Is F 1 × F 2 yields an isomorphism 

®R : U(rt) ® u(r2) .............. > U(Cl × r2)" 

We obtain natural transformations of eovariant functors Lemma 10.26. 

• Kn(RF I x F2) 

b K~(RF I × F2) . 

El-CAT x El-CAT * {abel. gr.} 

x EI-CAT A --~ {abel. gr.} 

K ®K --~ K o n n 
K f ® K f - - p .  K f 

o n n 

K f ® Wh --~ Wh 
O 

U®U --~U 

10.23. ®R : Ko(RFI) ® Kn(RF2) 

and 

"E : K~(RFI) ® K~(RF2) 

One easily checks that this induces 

(see 9.13.). Obviously RFl(?,x) ® Rr2(??,x 2) is RrlX ~((?,??),(Xl,X2)) and 

M ®R ? respects direct sums . If P is a finitely generated projective RFl-mOdule ~ 

P ®R ? induces a functor of exact categories FPMOD-RF 2 --, FPMOD-R~×F 2 and hence 

an homomorphism Kn(RF 2) -, Kn(RVlXF2) for n ~ Z . We obtain pairings by Propo- 

sition 10.6. 
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Proof. For the first three pairings the desired compatibilities hold already bet- 

ween the functors between exact categories inducing the various maps on the K-groups. 

The statement for the last paring can be verified directly or be viewed as a con- 

sequence of the identification K f = U we give later. D 
o 

If ~ : R ~ S is an homomorphism of commutative associative rings with unit l 

composition with the induction functor R-MOD ~ S-MOD yields change of coeffi- 

cients homomorphisms 

10.27. #, : Kn(RF) --~ Kn(SF) 

¢, : K~(RC) ~ Kf(sF) 
n 

~, : Wh(RF) ~ Wh(Sr) . 

Roughly speaking, they are compatible with everything we have and will define, 

Definition 10.28. 

homomorphism 

Define the reduced K-groups K (RF) as the cokernel of the 
n 

id ~ ~, ~R 
K~(RF) ® Kn(Z) ' Kf(RF)o ~ Kn(R) ~ Kn(Rr) 

where ~ : Z ~ R is the canonical ring homomorphism o 

Kn is also a covariant functor EI-CAT --~ {abel. gr.} by induction and a contra- 

variant functor from EI-CAT A --~ {abel.gr.} by restriction. We get a natural pairing 

10.29. ~R : K~(RF1) ~ Kn(RF2 ) --" Kn(Rrl × re) 

10.C. The splitting of the algebraic K-theory of RF-modules. 

Now we have introduced all the algebraic K-groups Kn(RF), K~(RF) , Kn(RF), Wh(RF) 

and U(F) we are interested in, including their behaviour under induction, restric- 

tion and tensor product ®R " This global approach is adequate for theoretic 

questions. Now we will introduce a splitted version whose ingredients are K-groups 

of group rings and is useful for computations. Finally we identify them. 

In the sequel let K be any of the functors K n , K~ , Kn ' Wh , El-CAT 

{abel. gr.} defined above. If F is an EI-category and u ~ Is F , let r(u) be 

the full subcategory of F having all x ~ Ob F with x ~ u as objects. Notice 
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is a groupoid and Is F(u) has exactly one object. Define 

Split K(RF) := ~ K(RF(u)) 
u ~ Is F 

F 2 be a functor. If F : Is F 1 --• Is F 2 is the induced map,we 

a functor F I ( U ) ' ~ F 2 ( v )  

that F(u) 

10.30. 

Let F : F 1 

obtain for any u ~ Is F I and v ~ Is F 2 with v = F(u) 

by restriction to Fl(U) and hence anhomomorphism 

F(u,v), : K(RF(u)) ~ K(RF(v)) 

If v t F(u) , define F(u,v), : K(RF(u)) --• K(RF(v)) by the zero map. Let the 

homomorphism 

10.31. F, : Split K(RF I) --• Split K(RF 2) 

be given by (F(u'v)*)u ~ Is Fl,V ~ Is F 2 

Thus we obtain a covariant functor 

Split K : EI-CAT > {abel. gr.}. 

Consider an admissible functor F : F I --• F 2 . Let R Irr(u,v) be the RFI(u)-RF2(v)- 

bimodule for u ~ Is F 1 , v ~ Is F 2 

F2(v) × FI(u)° P ~ R-MOD (x,y) ~ R Irr(x,y). 

We obtain an exact functor 

since R Irr(x,y) 

FPMOD-RF2(v ) • FPMOD-RFI(U) 

M ~ M ,RF2(v) R Irr(u,v) 

is a finitely generated free R[x]-module by Proposition 10.16. 

It induces an homomorphism 

F(v,u) : K(RF2(v)) ~ K(Rrl(U)) . 

By P r o p o s i t i o n  10.16. we ge t  a w e l l - d e f i n e d  homomorphism 

10.32. F : Split K(RF 2) • Split K(RF I) 
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( F ( v ' u ) * ) v  I s  by 
r 2, u ~ Is r ! 

We have introduced a contravariant functor 

One can verify (FOG) 

ing relation for K 

Let the pairings 

10.33. ®R 

®R 

®R 

®R 

Split K : El-CAT A ~ {abel. gr.} . 

= G o F directly but it easily follows from the correspond- 

itself and the identification K = Split K we establish soon. 

be induced by the various pairings we get between rl(U) and r2(v) 

u ~ Is F 1 and v ~ r2(v) , e. g. all pairings 

Ko(Rrl(U) ) ® Kn(RF2(v)) --~ Kn(RFI(U ) x F2(v)). 

Notice that Fl(U) × F2(v) is just F 1 × F2(u,v) . 

Now we want to compare K and 

functor 

E : MOD-RF(u) ' "~ MOD-RF u 

M 

SplitK . For u ~ Ob F 

Analogously define the splitting functor 

S : MOD-RF u 

by assigning to an RF-module the RF(u)-module 

F(u) ~ R-MOD x --~ S M x 

where SxM is the splitting functor of 9.26. We can Su also define by M --~M®RF B 

for all 

define the extension 

M ®RF(u) R Hom(?,??) 

MOD-RF(u) 

: Split Ko(RFI) ® Split Kn(RF 2) --~ Split Kn(RFI x F 2) 

: Split K~(RFI) ® Split K~(RF 2) --~ Split K~(RFIX r2) 

: Split K~(RFI) ® Split Wh(RF 2) --~ Split Wh(RFIX F 2) 

Split K~(RFI) ® Split Kn(RF2) --~ Split Kn(RFI x F 2) 



for the RF-RF(u)-bimodule B 

B(x,y) = {0} for y ~u, where 

(compare 9.30.). 

given by 

Define the homomorphism 

by 

x runs over 

E(RF) : S p l i t  K(RF) 
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B(x,y) = R Hom(x,y) 

Ob F(u) and 

" ~  K(Rr)  

K(E u) : ~ K(RF(u)) ~ K(RF) 
u ~ I s  F u ~ I s  F 

for y ~ u and 

y over Ob F 

finite typelwe have 

FPMOD-RF = colim M(T) . 

Proposition 10.6. implies 

K(RF) := K(FPMOD-RF) = colim K(M(T)). 

Moreover we have 

Split K(RF) := 
u ~ Is F 

Hence we can define an homomorphism 

K(RF(u)) = colim ~ K(RF(u)) . 

u~T 

Let M(T) be the full subcategory of FPMOD-RF consisting of finitely generated 

projective RF-modules of type T . Since each finitely generated RF-module is of 

Let I be the filtering category of finite subsets of Is F with inclusions as 

morphisms. In the sequel all colimits are taken over I . 

we get for any finite subset T c Is F an homomorphism 

S ( R r )  T : K ( R r )  ~ ~ K ( R r ( u ) )  
u G T 

Each S induces an homomorphism u 

K(S u)  : K(RF) ~ K(RF(u) )  

S ince  f i n i t e  c o p r o d u c t s  and f i n i t e  p r o d u c t s  a g r e e  in  t h e  c a t e g o r y  o f  a b e l i a n  g r o u p s  
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S(RF) : K(RF) ~ Split K(RF) 

by taking the colimit over all S T : K(M(T)) --~ 
u ~ T 

of this section is 

K(RF(u)) . The main result 

Theorem 10.34. Splitting Theorem for algebraic K-theory of RF-modules. 

We have inverse pairs of natural equivalences E and S between the covariant 

functors 

K and Split K : El-CAT • {abel. gr.} 

and the contravariant functors 

K and Split K : EI-CAT A * {abel. gr.} 

where K stands for Kn' Kf Kn or 

th____eevariou______~s pairings ®R " 

Wh . Moreover S and E are compatible with 

Proof. We consider only the .case K = K , the others follow easily. We start with 
n 

proving for a fixed EI-category I' that E(RF) and S(RF) are inverse iso- 

morphisms . 

For finite T c Is F let 

E T : ~ K(RF(u)) • K(M(T)) 
u~T 

be ~ K(E u) so that E(RF) is colim E T . Hence it suffices to show for any 
u ~ T 

finite T c Is F that E T o S T = id and S T o E T = id hold. We get S T o E T = id 

directly from Lemma 9.31. We prove ETOST=id inductively over the cardinality of T. 

The begin T = ~ is trivial. 

In the induction step choose u ~ T maximal in T under 5 and write T'=T\{u}. 

We obtain from Theorem 9.39. a functor between exact categories 

COK : M(T) • M(T') 
U 
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Let F : M(T') 

sequence 

M(T) be the inclusion. Theorem 9.39. yields an exact 

0 ~ E o S --~ ID ~ F o COK --~ 0 
U u u 

By Proposition 10.6. we have 

K(Eu) o E(Su) + K(F) o K(COK u) = id 

The following diagram commutes because of this equation I Theorem 9.39. and the in- 

duction hypothesis ET, o S T , = id . 

K(M(T')) ® K(RF(u)) 

K(COKu)@K(S u) 

id 
, K(M(T')) ® K(RF(u)) 

E T , ® ~  

( ~ K(RP(v)))® K(RF(u)) 

K(M(T)) ~ K(M(T)) 
id 

K(F)+K(E u) 

Hence E T o S T is the identity. Therefore E(RF) and S(RF) are inverse iso- 

morphisms. 

It remains to show naturality. Given a covariant functor F : F 1 

show that the following diagram commutes 

F ~¢ 

K(RFI) ~ K(RF 2) 

E(RF1) t I S(Rr2) 
Split K(RF I) ., Split K(RF 2) 

F "X 

--, F 2 ,we must 

This follows from Lemma 10.12. In the contravariant case use Lemma 10.]5. The easy 

verification that S and E are compatible with the various pairings ®R is left 

to the reader, o 
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Remark 10.35. We emphasize that all the constructions about Split K do not in- 

volve choices of representatives x ~ u for the various u ~ Is F . For this 

reason we have always used the groupoid F(u) and not the group Aut(x) for some 

representative x in u . They are related by the inclusion functor i(x) : Aut(x) ̂ 

--~ F(u) and the identification of Remark 10.13. which gives an homomorphism 

i(x), : K(R[x]) • K(RF(u)) . 

This map i(x), is an isomorphism by Proposition 10.6. because 

valence of categories. Hence we have, indeed, expressed K(RF) 

groups of group rings. Namely, if we choose a representative x 

we have 

i(x) is an equi- 

by algebraic K- 

for any x ~ Is F 

K(RF) ~ ~ K(R[x]) 
x ~ Is F 

Also the natural homomorphism above like F, and F can be expressed in terms of 

group rings . For example, let F : F 1 --• F 2 be a functor and x ~ Ob F 1 and 

y = F(x) ~ Ob F 2 . Let ~ : Aut(x) --• Aut(y) be the group homomorphism sending 

f to F(f) . The definition of F, is based on the various homomorphisms F(x,y),. 

If ~, is the ordinary change of ring homomorphism we obtain a commutative diagram 

F(x,y), 
K(RF(7)) • K(RF(~)) 

i(x), i(y), 

K(R[x]) " K(R[y]) 

Analogous statements are true for F '®R' S(RF) and E(RF) . 

Theorem 10.36. Let G be a compact __Lie group. Let K __be Kn' Kfn' Kn __° r Wh. 

Then 

K(ROr/(G)) = ~ K(R[~o(WH)] ) 
(H) ~ Con G 

Corollary 10.37. Let T k be the k-dimensional torus. Then 
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and 

(ZOr/(Tk)) = 0 
n 

Wh(ZOr/(Tk)) = 0 

Proof. For any H c T k we have ~ (WH) = {*}. By definition K (Z) = 0 
O n 

Wh(1) is zero by Cohen [1973] ii.i. Now apply Theorem 10.36. 

and 

Recall assumption 9.1. that we have the notion of a rank rkRM of a finitely ge- 

nerated R-module M . 

Definition 10.38. The rank of a flnitely generated RF-module M rkRFM ~ U(F) 

is given by rkRFM : Is F ~ Z sending x ~ Is F to rkR(SxM®R[x] R) " o 

Remark 10.39. We have M ~ N => rkRFM = rkRFN and rkRF(MeN) =rkRFM+rkRFN 

since the splitting functor S is compatible with • . However, it is not true in 
x 

-- --~ M 2 ~ 0 that rkRFM I - rkRFM + general for an exact sequence 0 --~ M 1 ~ M °  

rkRFM 2 = 0 holds as S x fails to be an exact functor. Counterexamples are easily 

derived from Example 9.34. o 

Lemma 10.40. Two finitely generated free RF-modules M and N are isomorphic if 

and only if they have the same rank. 

Proof. We get for a finitely generated free RF-module M from Lemma 9.31. and 

9.33. 

where n.N means 

M 

n 

i=l 

(rkRF(M)(x))- R Hom(?,x) 
~ Is r 

Now we obtain homomorphisms 
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10.41. rkRF : Ko(RF) ~ U(F) 

rkRF : K~(RF) , U(F) 

JRF : U(F) ' Kf(RF)o 

iRF : K~(RF) • Kn(RF) 

PRF : Kn(RF) ~ Kn (RF) 

[P] ~ rkRFP 

[F] ~ rkRFF 

, y ~(x)'[R Hom(?,x)] 
A-, 

x ~ Is F 

where iRF is induced by the inclusion functor FFMOD-RF --~ FPMOD-RF and PRF 

is the canonical projection. 

Proposition 10.42. 

a) We have inverse isomorphisms 

K~(RP) " rkRF 
JRF 

~. u(r) 

b) We get a split exact sequence 

JRF o rkNF F 
0 • K-(RF) q Ko(RF) ~ K (RF) --~ 0 o- - PRF o 

IRF 

c) For n ~ i the map 

iRF : K~(RF) ................ ~ Kn(RF) 

is an isomorphism. 

Proof. 

a) By Theorem 10.34. we have an isomorphism 

S : Kf(RF)o --• Split K~(RF) = x ~ Is F~ K[(R[x]) 

We obtain for any x ~ Ob F 

Their direct sum over Is F 

composition with S is just 

an isomorphism K~(R[x]) --~ Z [F] ~ rkR(F®R[x]R). 

yields an isomorphism Split K~(RF) --~ U(F) whose 

rkRF : K~(RF) --• U(F) . Obviously rkRF °  JRF = id 

holds because of Lemma 9.31. 



201 

b) Because of a) the map JRF o rkRF is a retraction of iRF . Since Z is a 

principle domain, Ko(Z) is the infinite cyclic subgroup generated by [Z] . Hence 

iRF can be identified with the map appearing in the Definition 10.28. of Ko(RF) 

so that the sequence under consideration is exact. 

e) This follows from the fact that each finitely generated projective RF-module 

is a direct summand in a finitely generated free one. o 

Let kRF : K~(RF) ® Kn(Z) ~ Kn(RF) be the map appearing in the Definition 10.28. 

of Kn(RF) := cok kRF . Define the homomorphism 

10.43. qRF : Kn(RF) --~ U(F) ® Kn(R) = _ ~ K (R) 
x ~ Is F n 

by the composition 

S 
Kn(RF) ~ Split Kn(RF) = ~ Kn(R[x]) ~ _ ~ K (R) 

~ Is F x ~ Is r n 

If ~ : Z ~ R is the canonical ring homomorphism the composition qRF °  kRF 

agrees with rkRF ® ~, : K~(RF) • Kn(Z) --~ U(F) ® Kn(R) . Expecially for R = Z 

we get 

Proposition 10.43. There is a split exact sequence 

(JRF ® id)° qRF 
o - - ,  K~(Zr) - Kn(Z) , , K ( Z F )  ~ mn(Zr) - - ,  0 

kRF 

Now we examine the functorial properties of these homomorphisms. 

Proposition 10.44. 

a) We have natural transformations of covariant functors 

and of contravariant functors EI-CAT A --~ {abel.gr.} 

rk : K f ...... ~ U 
o 

j : U b K f 
o 

i : K f ~K 
n n 

p : K ~K n n 

El-CAT -~ {abel.gr.} 
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k : K f ® K (Z) --~ 
o n n 

b) W_~e get a natural transformation of covariant functors El-CAT --~ {abel.gr.} 

rk : K ., U 
o 

c) Suppose that R is a Dedekind domain with ch R = 0 and quotient field F . 

Let rkRM be defined by rk F F ®R M . Suppose for any y ~ ObF that Aut(y) 

is finite and no prime number p dividing IAut(y)I is a unit in R. Then we 

obtain a natural transformation of contravariant functors EI-CAT A --~ {abel.gr.} 

rk : K ~U. 
o 

Proof. 

a) is left to the reader. 

b+c) Let r : Split Ko(RF) --~ U(F) be the direct sum over 

phisms Ko(R[x]) --~ Z [P] ~ rkRP ®R[x]R . Then rkRF 

composition of r with S : K (RF) --~ Split(RF) . We have already seen that 
o 

natural so that it suffices to show that r is natural. 

Is F of the homomor- 

: Ko(RF) -~ U is the 

S is 

Consider a functor F : F 1 --~ F 2 . It induces an homomorphism @ : Aut(x) -~ Aut(Fx) 

f --~ F(f) . Then the claim follows in the covariant case b) from P ®R[x] R 

ind~P ®R[Fx] R . In the contravariant case c) we have to check for a finitely gene- 

rated projective R[y]-module P and x ~ Ob F 1 , y ~ Ob F 2 

rkF(P®R[y]R Irr(x,y) ®R[x] R ®R F) = rkF(P®R[x]R ®R F)'{Irr(x'y)/Aut(x)I 

The assumptions in c) guarantee that P ®R F is a finitely generated free F[y]- 

module by Swan [1960a], Theorem 8.1. We get 

rkF((P ®R F) ®F(y) F(Irr(x,y)/Aut(x)))= rkF((P ®RF)®F(y)lg.IIrr(x,y)/Aut(x) I 

We have 

(P ®R F) ®F[y] F(irr(x,y)/Aut(x)) ~F P ®R[y]R Irr(x,y) ®R[x] R®RF • 
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Now the claim follows, D 

The following example shows that rk : K 
o 

in general. 

--• U is not compatible with restriction 

Example 10.45. 

a finite group 

(Example 9.5.) . The relation 

to the commutativity of the diagram 

F o rkQGA = rk@{l}A o 

Let F : {i} • G be the inclusion of the trivial group into 

G . This can be interpreted as an admissible functor F: {i} A---+ G A 

F is equivalent 

rk~ 
Ko(~G) ® Q G - - - - - ~ •  Ko(Q) • Z 

Ko(Q) • Z 
rkQ 

Inspecting it for [Q] ~ Ko(@G) one recognizes that it commutes if and only if G 

is trivial. Notice that for non-trivial G the group order IGI + 1 is a unit in 

Q so that the conditions in Proposition 10.44. c) are not satisfied. 
D 

Finally we show that rkRF is compatible with ~R " Namely, one easily verifies 

Proposition 10.46. The following diagram commutes 

rkRFl 

Example 10.47. 

Ko(RFI) ® Ko(RF2) • Ko(RF 1 x F2) 

I l 
® rkRF2[ IrkRFlX F 2 

u ( r  1) ® u ( r  2) , u ( r  1 × r 2) 

and ~G : ~o(G ) 
O 

group extensively. We want to work out the meaning of ~R and restriction. 

The main observation is that the diagonal functor A : Or G --• Or G x Or G 

is admissible. We prove this later in a more general context using Proposition ~.16. 

Moreover Irr(G/H,G/KxG/L) is given by the set Mono(G/H,G/KxG/L) G of injective 

G-maps G/H---~ G/K x G/L . 

D 

As an illustration we consider briefly K G := K (ZOrG),UG=U(ZOrG), 
O o 

f o r  a f i n i t e  g r o u p  G . We l a t e r  t r e a t  t h e  c a s e  o f  a c o m p a c t  L i e  
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Hence we get the structure of a commutative associative ring with unit on U G by 

~Z A 
U(ZOrG) ~ U(ZOrG) ~ U(ZOrG × Or G) • U(ZOrG) 

and analogously on K G , The map U(G) ~ Kf(ZOrG) --~ Ko(ZOrG) = K G is a ring 
o o o 

homomorphism. Since Z is a Dedekind domain with Z = {±i} ~ we get from Proposition 

10.44. and Proposition 10.46. a ring homomorphism 

rk : K G • U G 
o 

By Proposition 10.42. we have an isomorphism of abelian groups 

rk * p K G • U G ® ~G 
o o 

We have a uG-module structure on ~G 
o 

~R * ~G uG ® ~ G  K (ZOrG) ~ K (ZOrG) ..... ~ Ko(ZOrG × OrG) A • Ko(ZOrG) = 
o o o 

We will later show using some algebra that U G * - K G carries the structure of a 
o 

commutative associative r ing with uni t  given by ( u , v ) . ( u ' , v ' ) = ( u u ' , u v ' + u ' v )  and 

that rk ® p : K G ~ U G • ~G is a ring isomorphism. 
o o 

Additively U G is the free abelian group generated by Con G . We obtain an iso- 

morphism between abelian group from U G to the Euler ring U(G) by (H) ~ G/H . 

This is even a ring isomorphism by Theorem 10.34. since IMONO(G/H,G/KxG/L)G/Aut(G/H)I 

is just the number of orbits of type G/H in G/K x G/L equipped with the diagonal 

G-action. In other words U(G) = A(G) is isomorphic to the Grothendieck ring 

K~(ZOrG) of the exact category of finitely generated free ZOrG-modules. [] 

10.D. The Bass-Heller-Swan decomposition, 

Given an additive category ~ , define Nil(~ as the quotient of the free abelian 

group generated by all nilpotent endomorphism f : A --~ A in ~ (i.e. fn = 0 for 

appropriate n) and the subgroup generated by all elements [fl]-[fo]+[f2] for 

which there is a commutative diagram with exact rows 
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0 ~ AI i • Ao P • A 2 ~ 0 

0 > A I ~ A °  ~ A 2 ~ 0 
i p 

Notice that conjugated nilpotent endomorphism define the same element in Nil(~), 

There is an inclusion i : K (~) ~ Nil(.~) [A] • [0:A-• A] and a retraction 
O 

r : Nil(~) ~ Ko(~8,) [f : A -~ A] ~ [A] . Define Nil(~) as the cokernel of i 

so that we obtain a splitting Nil(~@,) = Nil(~) ® K (~) . 
o 

We define 

10.48. 

One easily checks that 

NiI(RF) = NiI(FPMOD-RF) 

NiI(RF) = NiI(FPMOD-RF) 

NiI(RF) is NiI(FFMOD-RF) . Recall that is the groupoid 

having only one object, namely 

phisms. Let £(I), : R Hom(?,Z) --~ R Hom(?,Z) 

Define injective homomorphisms 

10.49. 

by sending 

These maps 

[ 1964] , 

Z , and left translations £(n) : Z--~ Z as mor- 

be given by composition with ~(I) . 

B : Ko(RF) • KI(RF x Z) 

: ~ (Rr) , WN(Rr × ~) 
o 

[P] to the class of id ®R (-~(i),) : P ®R R Hom(?,Z) -~ P ®RR Hom(?,Z). 

B and B do not agree with the one defined in Bass, Heller, aad Swan 

Bass [1968], XII where ~(i), instead of -£(I), is taken. The de- 

finition 10.49. has the advantage that it corresponds to the geometrically defined 

map ¢ : waG(y) --~ whG(YxS I) of 7.34. and that its image can be characterized as 

follows 

For k ~ 2 let p(k) : Z --• Z be the functor sending E(n) to ~(kn) . Then 

id x p(k) : F x Z ~ F x Z is admissible and we obtain by restriction 

(id p(k))* x : Wh(RF x Z) --• Wh(RF x Z) . Since P(kl) o P(k2) = P(kl.k 2) holds 

we get an operation of the multiplicative monoid ~ of positive integers on 
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Wh(RF × Z) and analogously on KI(ZF × Z ) 

Proposition 10.50. 

image B = KI(RF x Z~ 

image B = KI(RF × Z ) ~  o 

This is proved in Ranicki [1987a] Proposition 7.5. even for additive categories. In 

Ranicki [1987a], Proposition 7.4 there is defined a geometrically significant splitting 

(see also Svensson [1985]) 

Proposition 10.51. 

and 

KI(RF x Z)  = KI(RF ) ® Ko(RF ) ® N i l ( R F )  ® N i l ( R F )  

Wh(Rr × Z)  = Wh(Rr) • K (Rr )  ® N i l ( R F )  • N i l ( R F )  
O 

generalizing the results for modules over a ring in Bass, Heller, and Swan [1964] 

and Bass [1968], XII to additive categories. For a discussion of the geometrically 

and algebraically significant splittings we refer to Ranicki [1985]. We mention two 

further results which can be derived from Ranicki [1987] § 8. 

There are also injective Bass-Heller-Swan-homomorphisms B : K_i(RF) -~ K i+I(RFxZ) 

for i ~ 0 such that image B is K i+I(RFxZ~. The compositions of these maps 

define an embedding K i(RF) c KI(RF x zi+l) . Let o(j) : ~i+l_~ ~i+l be the per- 

mutation functor (Zl,Z 2 .... zi+ I) --, (Zl,...,Zj_l,Zi+l,Zj,..,z i) for j =I,...i+i. 

The various maps (id x P(kl) × ... × P(ki+l) ) define an operation of the monoid 

~i+l on KI(R F × ~i+l) 

Proposition i0.52. 
i+l 

a) K .(RF) = f] image((id x o(j)), 
-i j = l  

if B : Ko(Rr × ~i) --, K1(0~r x ~i) × ~) 

o B : Ko(RF × ~i) __~ KI(R r × ~i+l)) 

is the homomorphism 10.49. 

b) K_i(RF ) = KI(RF x {i+l? i+l o 
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Define reduced negative K-groups by 

i+l 
10.53. K i(RF) = n image((idxo(j)), 

j=l 

Proposition 10.54. 

a) K_i(RF) = Wh(RF × zi+l~ i+l 

b) K i(RF) = K_i(RF) for i ~ I 

Remark 10.55. The Propositions I0.50., i0.51., 10.52. and 10.54. can also be proved 

by reducing them to the case of group rings by Theorem 10.34. D 

Comments 10.56. Negative K-groups for a ring are introduced in Bass [1968]. We use 

the definition for additive categories due to Pedersen [1984]. Algebraic definitions 

of K_n = K_n(ZOrG) and Wh G = Wh(ZOrG) using different methods and a splitting can 

be found in Svensson [1985] and Eothenberg [1978] for finite groups G . The alge- 

braic K-groups Ko(RF) , KI(RF) and Wh(RF) are treated in tom Dieck [1987, I.ll.] 

and LUck [1983]. The details of Example 10.47. are carried out in tom Dieck [1981]. 

The main result of this section is the Splitting Theorem 10.34. We emphasize that 

it includes all the natural properties. It is very useful to have both the elegant 

but abstract global version and the concrete but very complicated splitted version. 

Especially we are interested in restriction where the formulas for Split K invol- 

ving all these bimodules R Irr(x,y) are massy. 

We need the restriction to get a ring structure on K G and U G = U(G) which is a 
o 

very important part of the structure. For example, the Euler ring U(G) is easy as 

an abelian group but becomes interesting and difficult if one examines the ring 

structure. Several product formulas stated later depend on this ring structure and 

have important applications to geometry. 

Text books on algebraic K-theory are Bass [1968], Curtis-Reiner [1981], [1987], 

Milnor [1971], Oliver [1988], Swan [1968], Silvester [1981] 
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The following remark may illuminate the Splitting Theorem 10.34. and the EI-property. 

Assume that F is an EI-category with finite Is F. We ca~ numerate IsF={Xl,X2,..,Xn} 

such that x i S xj implies i ~ j . Then the set valued matrix (Hom(xi,xj))i, j is 

triangular as Hom(xi,x j) = ~ for i < j . But it is a general phenomenon in al- 

gebraic K-theory that in a triangular matrix only the entries on the diagonal matter. 

These are the groups Aut(x) for x ~ Is F . 

Exercises 10.57. 

i) Consider pairs (P,Q) of finitely generated RF-modules. Call (P,Q) and 

(P',Q') equivalent if there is a finitely generated free RF-module F with 

P • Q' ® F ~ P' ® Q s F . Show that this is an equivalence relation and denote by 

A the set of equivalence classes. Prove that we get a well-defined structure of an 

abelian group on A by (P,Q) + (P',Q~) = (P~P',QsQ') and that (P,Q) -~ [P]- [Q] 

defines an isomorphism A --~ K (RF) . 
O 

2) Show that P --~ [P] ~ Ko(RF) is the universal additive invariant for the 

category FPMOD-RF of finitely generated projective RF-modules with split injections 

as cofibrations and isomorphisms as weak equivalences. 

3) Let F be an EI-category such that Is F and Hom(x,y) for x,y ~ Ob F 

is finite. Consider 

ch : U(F) = ~ Z ~ II Z 
v ~ Is F u ~ Is F 

sending q : Is F --~ Z to the Is F-tuple 

( ~ IHom(x,y) l • n(y)I7 ~ Is r) 4 

~ Is F 

a) For any finitely generated free RF-module F we have: 

ch(rkRFF) = (rkRF(x)Ix ~ Is F) 

b) The map ch is injective and has a finite cokernel of order 

4) Let F be a EI-category such that Is F and Hom(x,y) for 

are finite. Define an homomorphism 

n I Aut (x) I 
x ~ Is F 

x,y ~ Ob r 
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p : Ko(ZF) 

by [P] --• (rkz(P(x))[x ~ Is F) . 

Show that p factorizes in 

II Z 

Is F 

K (ZF) 

u(r) • n z 
ch Is r 

Prove by given a counterexample that this is not true if one considers @F 

of ZF . 

Hint: Use Swan's result that for a finitely generated projective ZG-module 

QG-module M ®Z @ is @G-free provided that G is a finite group. 

5) 

6) 

unit on 

instead 

M the 

Consider the cyclic gT~ap Z/m of order m . Compute Kn(~OrZ/m) for n=O,l . 

Show that we can define the structure of a commutative associative ring with 

Z • Z ® Ko(Z[Z/p]) by 

(u,v,w) • (u',v',w') := 

and that it is isomorphic to the ring 

7) Show for a finite group G that 

generated projective ZOrG-modules P and Q such that 

holds for any H c G . Prove the existence of an integer 

free ZOrG-module F satisfying 

(~P) ® F ~ (.~Q) • F 
n n 

Hint: Use the result due to Swan that K (ZG) is finite for a finite group G . 
o 

8) Prove for a finite group G that the diagonal functor A : OrG --• OrG × OrG 

is admissible and Irr(G/H,G/K × G/L) is the set Mono(G/H,G/K×G/L) G of injective 

G-maps G/H --• G/K × G/L . 

(uU',uv' + u'v + pvv',uw'+u'w) 

Ko(ZOrZ/p) . 

Ko(ZOrG) is finite. Consider two finitely 

rk z P(G/H) = rkzQ(G/H) 

n and a finitely generated 
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9) Let H be a (closed) subgroup of the compact Lie group G . Let i: Or/H -~Or/G 

be the functor induced by the induction. Namely, the class of f : H/K --, H/L is 

sent to the class of G x Hf : G/K --~ G/L . Show that i is admissible if H and 

G have the same dimension. Verify that i for H = Z/m c S 1 is not admissible. 

lo) 

I s  F 

Let F be a small category which is not necessarily an El-category. Assume that 

is finite. Show that we obtain well-defined homomorphisms 

£1s r Kn(Ex) 
E : _ ~ Kn(R[x]) '~ Kn(RP) 

x ~ Is F 

II Kn(Sx) 
x ~ Is F 

S : Kn(RF) ~ _ ~ Kn(R[x ]) 
x ~ Is F 

such that S °  E = ID . Is for the category of Example 9.42. E o S = ID true? 

ii) Show for a field F that 

holds. 

KI(FVZ])_ ~ . -  ~ Z • F 

12) Show K (ZOr/G) = {0} for G a compact Lie group and n ~ -2 . 
n 

Hint: Use the result of Carter [1980] that Kn(ZF) = {0} for F a finite group 

and n ~ -2 . 

13) Show that the definitions 10.28. and 10.53. give the same groups K~RF~ for 

n__> 1 
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ii. The al~ebraic finiteness obstruction 

We assign to a finitely dominated RF-chain complex C its algebraic finiteness ob- 

struction o(C) ~ Ko(RF) . It vanishes if and only if C is RF-homotopy equivalent 

to a finite free RF-chain complex. We collect its main properties like homotopy in- 

varianc~ and additivity. Moreover, we extend its definition to arbitrary RF-chain 

complexes having a finite resolution. We examine the behaviour of the finiteness ob- 

struction under induction, restriction and the tensor product and under the splitting 

of the algebraic K-theory of RF . 

A RF-chain complex C = (C,,c,) consists of RF-modules C n and RF-maps Cn:Cn-~Cn_l 

= for n ~ Z satisfying Cn_ 1 °  c n 0 for n ~ Z . Equivalently, this is a covariant 

functor F --~ {R-chain compl.} . Extend the notions of a chain map, chain homotopy, 

homology ... for R-chain complexes to RF-chain complexes in the obvious way . 

A RF-chain complex C is always assumed to be positive i.e. C n = 0 for n < 0 . 

We call C free, pro~ective finitely Kenerated resp. of type T for T c Is F if 

each C has this property. A RF-chain complex C is of finite type if there is 
n 

a finite T c Is F such that C is of type T . Notice that this implies that each 

C is of finite type but the converse is false in general. In the literature the 
n 

notion of finite type sometimes means what we have called finitely generated. We will 

always use the notion introduced above. We say that C is d-dimensional if C n = 0 

for n > d holds. A RF-chain complex C is finite-dimensional if C is d-dimen- 

sional for some d . A RF-chain complex C is finite if it is finitely generated and 

finite-dimensional, i.e. C is finitely generated for n ~ 0 and zero for large n. 
n 

An approximation (P,f) of a RF-chain complex C is a projective RF-chain complex P 

together with a weak homology equivalence f : P -~ C (i.e. Hn(f) is b~ective for any n ~ 0). 

We ca~ (P,f) finitely senerated, finite-dimensional, finite .... if P has this property. 

Definition II.i. If C is a RF-chain complex possessing a finite approximation 

define its finiteness obstruction 

o(C) ~ Ko(RP) 
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by o(C) = I (-1)n[Pn] 

n=o 
be i t s  r e d u c t i o n  u n d e r  

for any finite approximation 

K (RF) --, Ko(RF) o 

(P,f) . Let $(c) ~ ~ (Rr) 
o 

We want to show that o(C) is well-defined and the following result. 

Theorem 11.2. 

a) Obstruction property. 

Let C be a RF-chain complex possessing a finite approximation. Then o(C) in 

Ko(RF) vanishes if and only if C has a finite free approximation. Provided that 

C is projective this is equivalent to C being homotopy equivalent to a finite free 

RF-chain complex. 

b) Weak homology invariance. 

Let f : C --, D be a weak homology equivalence between RF-chain complexes possessing 

a finite appproximation. Then: o(C) = o(D) . 

c) Additivity. 

Consider the exact sequence of RF-chain complexes 

0 • C 1 i • C °  P • C 2 • 0 

If two of them have a finite approximation then so the third and we have 

o(C I) - o(C ° ) + o(C 2) = 0 o 

We need for its proof and later applications some preparations. A chain map f : C-~D 

is n-connected if Hi(f) is bijective for i < n and surjective for i = n . It is 

a weak homology equivalence or briefly homology equivalence if Hi(f) is bijective 

for all i . One easily checks for a chain map f : C --• D between (not neccessarily 

projective, but positive) RF-chain complexes (compare Proposition 2.3.). 

Len~na 11.3. 

a) f is n-connected if and only if f... : [P,C] --• [P,D] between the sets of 

homotopy classes of chain maps is bijective for any (n-l)-dimensional projective RF- 

chain complex P and is surjective for an I n-dimensional projective RF-chain comp- 
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lex P . 

b) f is a weak homoloKy equivalence if and only if f, : [P,C] --m [P,D] is bi- 

jective for an__ny_ projective RF-chain complex P . 

c) A weak homology equivalence f : P --~ Q between projective RF-chain complexes 

is a homotopy equivalence, o 

11.4. We set some sign-conventions. 

Consider a chain map f : C --~ D . Define its mappinE cylinder Cyl(f) by 

CyI(f) n Cyl(f)n_ I 

II II 

Cn_ I m C n m D n Cn_ 2 
~-Cn_ 1 0 0 

-id Cn 0 

fn-I 0 d n 

® Cn_ I ~ Dn_ I 

The obvious inclusions yields chain maps 

i : C , Cyl(f) 

j : D ~ Cyl(f) 

Define the projection 

p : Cyl(f) ~ D 

by (O,fn,id) : Cn_ I ® C n 

the mapping cone Cone(f) 

® D --" D . One has p o i = f 
n n 

as the cokernel of i . 

and p o j = id. Define 

Cone( f )n Cone( f )n- I 

II II 

Cn-I ® Dn ~ Cn-2 ~ Dn-i 

I -Cn_ O] 

fn-i dnj 

The suspension EC of C is the mapping cone of C --~ 0 
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-Cn_ I 
(EC) n = Cn+ I "• (gC)n_ I = Cn_ 2 

If f : M --• N is a RF-map and n $ 0 t let n(M) be the RF-chain complex concen- 

trated in dimension n given by n(M) i = {0} for i + n and n(M) n = M and 

n(f) : n(M) --•-n(N) the obvious chain map. We have zno(f) = n(f) . Let e£n(f) 

be the mapping cone of (n-l)(f) 

e£n( f)n+l e£n ( f )n e£n ( f)n- i e£n( f )n-2 

II tl f it II 
0 ' M ~ N ~ O 

We write e£n(M) = e£n(id : M --• M) . We call e£n(f) or e£n(M) the n-dimensional 

elementary chain complex of f or M . 

Frequently we make use of the exact sequences of RF-chain complexes 

0 • C i • Cyl(f) ............ • Cone(f) • 0 

0 • D J > Cyl(f) ......... • Cone(C) • 0 

0 ~ D • Cone(f) • EC --• 0 

0 • ~-l)6M)--~e£ (M} • n(M) • 0 
n 

We get long exact homology sequences. Cone(C) := Cone(id C) is contractible, i.e. 

chain homotopy equivalent to the zero-chain complex, and j : D --• Cyl(f) and 

p : Cyl(f) ~ D are chain homotopy equivalences, o 

If C is a RF-chain complex we write 

Lemma 11.5. 

a) The chain map 

is contractible. 

Cod d = C 1 ~ C 3 ® C 5 ® ... 

Cev = C o ® C 2 • C 4 • ... 

f : C --• D is a homotopy equivalence if and only if Cone(f) 

b) Le___~t C be a contractible RF-chain comple x . Le___~t c be its differential and 
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and ~ two chain contractions, i.e. chain homotopies between id and O . Then: 

i) The following maps are isomorphisms 

(c+y) : Cod d ~ Cev 

(c+~) : Cev ~ Cod d 

ii) If C is finite and projective th__~e composition (c+~) o (c+¥) Cod d -~ Cod d 

is an automorphism of a finitely generated projective RF-module. Its class in KI(RF) 

is zero. 

a) Let y : Cone(f) --~ Cone(f) be the chain contraction 

i hn-I ] 
gn : Cn_ 1 • D n ~ Cn#ZS Dn, I 

Zn_ 1 k n 

Then g : D ~ C is a chain map and h : id - gf and k : id - fg are chain ho- 

motopies. Conversely, given g,h,k define y as above with £=o. Then 7 is a 

chain homotopy between a chain isomorphism F : Cone(f) --~ Cone(f) of the shape 

b) Let 

morphism 

and the zero-map . We obtain a chain contraction by F -I o y. 

A : C --~ C be the map of degree two given by (F-Y) o 7 . Let the iso- 

f : C --~ C be determined by the triangular matrix ev ev 

id 0 0 

A id 0 

0 Aid 

: : : 

~ • • 
: C O ® C 2 • C 4 ® ... ~ Co s C 2 ® C 4 ® 

The composition 

(c+y) f (c+~) 
g : Cod d ~ Cev ~ Cev Cod d 

is given by the triangular matrix 
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~c + cAc + c~ 0 0 . . .  

* ~c + cAc + c~ 0 ... 

* * ~c + cAc + c~ ... 

L 

Now A is a homotopy of homotopies. Namely: 

cA - Ac = y - ~ • 

Hence ~c + cAc + c~ is the identity, so that g is an isomorphism. 

Obviously f and g represent zero in KI(RF) o 

Lemma 11.6. Consider the following commutative diagram o_~f (positive but not 

necessarily projective) chain complexes with exact rows 

0 --~ C I "i C °  ~ C 2 ~ 0 

0 --~ C I "i C °  ~ C 2 ~ 0 

Assume that two of the chain complexes satisfy th__~eassumption that there is a posi- 

pi ci tive chain complex ~i and a weak homology equivalence k i : --~ with one 

of the properties 

a) ~i is projective. 

b) >i i sprojective and finite-dimensional. 

c) ~i is projective and finitely generated. 

d) ~i is pro.iective and finite . 

Then there is a commutative diagram with exact rows of chain complexes with the 

property a) resp. b) resp. c) resp. d). 



and weak homology equivalences 

is homotopic to k i o fi for 

holds. 
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pl j ~ pO q ~ p2 ~ 0 

1 : ~. pO 2 ~ 0 
2/ q 

k i : pi ~ C i for i = 0,1,2 

i = 0,1,2 and i o k I = k °  o j 

Proof: The proof is divided into two steps. 

Step i. Construct everything except the 

fi : pi --~ pi . 

We start with the case, where we have weak homology equivalences 

. °  

such that glok I 

and pok ° =k 2 o q 

i = 0,i . By Lemma 11.3. there is a chain map j' : ~i __~ ~o with k °  oj' ~ i o k I. 

Let j : ~i --~ Cyl(j') be the inclusion and pr : Cyl(j') --~ ~o be the projection. 

Since j is a cofibration, that is, all Jn are split injective, we can change 

k °  o pr homotopically into x : Cyl(j') ~ C °  satisfying x o j = i o k I . If 

y : Cone(j') ~ C 2 is the induced map we have the commutative diagram with exact 

rows 

0 ~ ~i --~ Cyl(j') --~ Cone(j l) ~ 0 

k° [. Ix [ y 

0 ~ C i ~ C °  ~ C A ~ 0 

Obviously Cyl(j') and Cone(j') have the property a) resp. b) resp. c) resp. d) 

as ~i and ~o have. By construction k °  and x are weak homology equivalences. 

The same holds for y by the long homology sequence and the five lemma. 

Now we deal with the case where C °  and C 2 fulfill the assumption. We have the 

exact sequence 

0 ~ C °  --~ Cone(i) --~ Z C 1 --~ 0 

and a weak homology equivalence Cone(i) --~ C 2 . By the first case we also get a 

k i: ~i --~ C i for 
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weak homology equivalence with the desired property for C 1 . A further application 

of the first case finishes the proof of the second case. 

The last case where C I and C 2 satisfy the assumption is reduced to second case 

by the sequence above. 

Step 2. Constructing the fi : pi --~ pi 

We have already constructed 0 --~ pl _.i~ pO _g~ p2 --~ 0 

valences k i pi C i k I k o : --~ satisfying i o = o j and 

one easily checks that a chain map 

: pi --~ C i between gi o k i 

of chain complexes 

and weak homology equi- 

p k I = k 2 o o q . Now 

fi : pi __~ pi together with a chain homotopy 

and k i o fi is the same as a commutative diagram 

Cone(P i) ~ Cone(k i) 

pi ~ C i 
ioki g 

where the vertical arrows are the canonical inclusions. Since they are cofibrations 

and Cone(k i) acyclic we get the existence of fl and #I : gl o k I = k I o fl 

In the following cormnutative diagram we want to construct the dotted arrow such that 

it remains commutative 

Cone ( P1 ) 

Cone(k I ) 

p1 

C 1 ............ 

Cone(P° ) 

~, pO 

Cone(k ° ) 

) C °  
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This can be done as Cone(k ° ) is acyclic , and the inclusion of the image of 

Cone(pl) • pO __~ Cone(pO) into Cone(P ° ) is a cofibration. 

Hence we have constructed a chain map fo pO .pO : --~ and a chain homotopy ~o pO_~ 

C °  between gO o k O and k O o f such that i o fl = fo o j and i o @i=#o o j 

holds. Let f2 : p2 __~ p2 and ~2 : p2 __~ C 2 be the induced map and chain homo- 

topy . This finishes the proof of Step 2 and Lemma 11.6. [] 

Proof of Theorem 11.2. 

b) We show homotopy invariance and that Definition Ii.i. makes sense simultaneous- 

ly. Namely, by Len~na 11.3. it suffices to show for a homotopy equivalence f : P -~ Q 

between finite projective RF-ehain complexes that o(P) = o(Q) is true. This follows 

® and s are isomorphic. from Lemma 11.5. telling us that Pev Qodd Podd Qev 

c) If 0 --~ pl __~ pO --~ p2 --~ 0 is an exact sequence of finite projective 

RF-chain complexes we obviously have o(P I) o(P ° ) + o(P 2) = 0 . Now apply Lenm,a 

11.6. 

a) Recall the split exact sequence of Proposition 10.42. 

0 --~ Kf(RF)o --~ Ko(RF) --~ Ko (RF) --~ 0 

If C has a finite free approximation (F,f) , then o(C) = o(F) holds and o(F) 

lies in Kf(RF) so that ~(C) is zero. Conversely, consider the finite projective 
o 

RF-chain complex P with ~(P) = 0 . Choose d so big such that P is d-di- 

mensional. Any finitely generated projective RF-module is a direct summand in a fi- 

nitely generated free RF-module. For any finitely generated projective RF-module Q 

and n ~ 0 eZn~) is contractible. By adding appropiate RF-chain complexes e£n(Q) 

we can change P up to homotopy such that P is finitely generated free for n < d. 
n 

Then o(P) = [Pd] is zero in Ko(RF) so that there is a finitely generated free 

RF-module F such that Pd " F is finitely generated free. Adding e£d(F) yields 

a finite free RF-chain complex homotopy equivalent to P . [] 

Sometimes the finiteness obstruction can be read off from homology. 
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Let M be a RF-module. A resolution (P,f) of M is a projective RF-chain complex 

P together with an isomorphism f : H (P) --~ M such that H.(P) = 0 for i > 0 . 
O i 

A resolution is finitely Kenerated, finite, ... if P is. We can interprete a re- 

solution (P,f) of M as an approximation of the RF-chain complex 0(M) . In the 

sequel we identify Ho(P) and M . We give now a version of the fundamental Lemma 

of homological algebra~ Its proof is omitted. 

Lemma 11.7• Let n be an integer and C be a RF-chain complex with ~.(O) =0 for 
. . . . . . . . . . . . . . . . . .  i 

i > n. If P is a projective RF-chain complex with Pi=0 fo___rr i < n, we get a bijection 

[P,C] ~ HOmRF(Hn(P),Hn(C)) If] --~ Hn(f) 

If M is a RF-module possessing a finite resolution define 

11.8. [M] ~ Ko(Rr) 

by E(-l)n[Pn] for any finite resolution. This is the finiteness obstruction of 

O(M) and hence well-defined. 

Proposition ii.9. Let C be a RF-chain complex such that H.(C) 
- -  i 

solution for i ~ 0 and is zero for large i . 

Then C has ~ finite approximation and 

o(C) = >" ( 
i =o  

-i) i [Hi(e)] 

has a finite re- 

Proof. We use induction over an integer n with the property Hi(C) = 0 for 

i > n • The begin n = -i is trivial. In the induction step from n-i to n 

choose a finite resolution P of H (C) • By Lemma 11.7. there is a RF-chain map 

f : E n P  - - ~  C w i t h  H ( f )  = i d  . C o n s i d e r  t h e  e x a c t  s e q u e n c e  
n 

0 --~ C ~ Cone(f) --~ En+Ip --~ 0 . 

By Theorem 11.2. Cone(f) has a finite approximation and 

o(C) = o(Cone(f)) - o(En+Ip) . 
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Using the exact sequence 

0 --, ziP ~ Cone(ZiP) ~ zi+ip 

one shows -o(En+ip) = (-l)n[Hn(C)] . 

By the long homology sequence we get 

for 

• 0 

Hi(C) = Hi(Cone f) for i < n 

i ~ n . Now apply the induction hypothesis to Cone(f) . [] 

and Hi(Cone(f))= 0 

A domination (D,r,i,h) for a chain complex C consists of a RF-chain complex D 

together with chain maps r : D --• C , i : C --, D and a chain homotopy h: roi=id. 

We call C finitely dominated if there is a domination (D,r,i,h) by a finite pro- 

jective RF-chain complex D . 

Now we give some criterions when a projective RF-chain complex is homotopy equivalent 

to a finite resp. finite-dimensional one. 

Proposition Ii.i0. The following statements for a projective RF-chain complex C 

are equivalent. 

i) Let Bn(C) be the image of Cn+ 1 : Cn+ 1 --, C n and j : Bn(C) --• C n be the 

inclusion. There is C' c C such that for the inclusion i : C' --, C the 
n n n n 

i • j : C' • B (C) --, C is an isomorphism. Moreover, the f@l!0wing chain map from 
n n n ...... 

n-dimensional pro.~ective RF-chain complex into C is a chain equivalence 

c oi Cn_l Cn_ 2 
0 • 0 , C' n , n Cn-i Cn-2 

n • --, C ---D--n, • • 
Cn+2 Cn+l n Cn- 1 Cn- 2 ' " " 

ii) C i shomotopy equivalent to a n-dimensional pro~ective RF-chain complex 

iii) C is dominated by a n-dimensional RF-chain complex. 

iv) Bn(C ) c C n is a direct summand and Hi(C) = 0 fo___Kr i > n . 

v) Hn+I(c;M) := Hn+I(HomRF(C,M)) = 0 for an I RF-module M and H.(C)I for i > n 

vanishes. 
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Proof. i) => ii) and ii) => iii) are obvious. 

iii) => iv). Let (D,r,i,h) be a domination of C by a n-dimensional RF-chain 

complex  D . Then H,(C)I i s  a d i r e c t  summand in  H.(D)I and o b v i o u s l y  Hi(D) = 0 

for i > n . A retraction of Bn(C ) c Cn is given by Cn+ I o h n : Cn --~ Bn(C). 

Namely 

Cn+lOhnOCn+l = Cn+iOhnOCn+l+Cn+lOCn+2Ohn+l=Cn+lOid-Cn+lOrn+1Oin+1 = Cn+ 1 

iv => i). Obviously the chain map in i) is a weak homology equivalence and hence 

a homotopy equivalence by Lemma 11.3. 

ii) => v) is obvious . 

v) => iv). Let M be Bn(C) . Then the following sequence is exact 

c R c ~ 
HomRF(Cn,Bn(C) ) n+l~ HOmRF(Cn+I,Bn(C) ) n+2 HomRF(Cn+2,Bn(C) 

Consider Cn+ 1 ~ HomRF(Cn+I,Bn(C)) . Since 

is r : C n * Bn(C) with r o Cn+ I = Cn+ I 

c~+2~Cn+ I) = Cn+ 1 o Cn+ 2 is, zero 

so that r is a retraction . 

Proposition Ii.ii. Consider a RF-chain complex C 

there 

C i_~s homotopy equivalent to a projective resp. finitely generated projectiv e 

resp. n-dimensional projective resp. n-dimensional finitely generated projective RF- 

chain complex if and on!y if it is dominated by such a RF-chain complex. 

Proof. Let (D,r,i,h) be a domination of C . Define a RF-chain complex 

by 
n d' n-i 

D' = ~ D. n ~ D' = ~ D. 
n j=o J n- 1 j =o J 

(D' ,d ' ) 

with d'(Jn ,k) : D.j --~ D k given by 



d~(j,k) = " 

Written as a matrix we get for d ~ 
n 

223 

0 

( -1)n+kd 

i d - i r  

i r  

( _ l ) n + k + I i h k - J r  

j > k+2 

j = k+l 

j = k, j = n (2) 

j = k, j -n+l (2) 

j <k-i 

ir 0 

-ihr id-ir d 

-ih2r ihr ir . . °  

n ~ 0 (2) 

id-ir d 0 

ihr ir -d 

ih2r -ihr id-ir 
n -- i (2) 

Define chain maps 

and 

r : C ~ D' by (O,O,...,r) tr 

: D' ~ C by i- n = --(hni,hn-li,...,hi,i) 

Then r o i is the identity and a chain homotopy k : D' --~ D' 

and the identity is given by the obvious inclusions 

n n+l 

j=o ~ j=o J 

between i o r 
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Hence D' and C are homotopy equivalent. Now the claim follows using Propo- 

sition ii.i0, o 

The explicite construction in the proof of Proposition ii.ii, leads to the following 

explicite formula. 

Proposition ii.12. Let (D,r,i,h) be a domination of the RF-chain complex C 

such that D is finite projective. 

Then the map 

p : ~ D .  ~D. 
.= J =03 lJ ° J 

ior -d 0 0 ... 

-ihr id-ir d 0 ... 

-ih2r ihr ir -d .... 

- i h 3 r  i h 2 r  i h r  i d - r  . . .  

L 

is a projection (i.e. p2= p) 

we have in Ko(RF) 

Proof: 

(D',d') 

of a finitely generated projective RF-module and 

o(C) = [image p] - [Dodd] 

dimensional projective RF-chain complex D" with 

In the proof of Proposition ii. II. we have constructed a RF-chain complex 

with D' ~ C . By Proposition ii.i0, we obtain a finitely generated n- 

D" = D t for an even integer 

n >= dim D . Namely, D" looks like 

0 ~ image d' --~ D' 
n+l n-I 

Hence we get 

n-2 "'" 

n-i 

o(C) = [image d~+l] + I (- l) i [D~] 
i=o 
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i 

But d'n+l is just p and [D~] = I [Dj] . o 

j=o 

Proposition 11.13. Le___tt (D,r,i) be a domination of C by ! finitely generated 

n-dimensional projective RF-chain complex D . Assume that r is n-connected. 

__ (RF) Then Hn+l(r) is finitely generated projective and we have in K °  

o(C) = o(D) + (-l)n[Hn+l(r)] . 

Proof. Consider the exact sequence 

0 ~ D ~ Cone(r) ~ ZC ~ 0 

By Proposition ii.ii. D and C are homotopy equivalent to finitely generated 

projective n-dimensional RF-chain complexes. Hence Cone(r) is homotopy equivalent 

to a finitely generated projective RF-chain complex P of dimension n+l . Since 

Hi(r) = Hi(P) is zero for i ~ n . Hn+l(r) = Hn+I(P) is finitely generated pro- 

jective. Theorem 11.2. and Proposition 11.9. imply 

o(C)=-o(ZC)=o(D)-o(Cone(r~ =o(D)-(-l)n+l[Hn+l(r)] = o(D)+(-l)n[Hn+l(r)] o 

There is also a splitted version of the finiteness obstruction. Let C be a RF- 

chain complex of the homotopy type of a finite projective RF-chain complex. Then 

S C is of the homotopy type of a finite projective R[x]-chain complex for all 
x 

x ~ Is F . Hence we can define 

by (° (SxC) ~ Ko(R[x]) I 7 ~ Is F) and 

Recall the isomorphism of Theorem 10.34. 

11.14. Split o(C) ~ Split Ko(RF) 

Split o(C) ~ Split K (RF) o 

(O(SxC) ~ Ko(R[x] ) I 7 ~ Is F). 

S : Ko(RF) --~ Split Ko(RF) . 

Proposition 11.15. Let C be a RF-chain complex of the homotopy type of a finite 

projective RF-chain cqmplex . Then 

S(o(C)) = Split o(C) . 
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Proof. Without loss of generality we can assume that C itself is a finite pro- 

jective RF-chain complex. Then there is a finite subset T c Is F such that C 

is of type T . We use induction over the cardinality of T . In the induction step 

choose x ~ T maximal in T under ~ . From Theorem 9.39. we obtain an exact se- 

quence of finite projective RF-chain complexes 

0 --~ E o S C --~ C ~ COK C --~ 0 
x x x 

such that 
x y x 

from Theorem 11.2. in K (RF) 
o 

o(C) = o(COKxC)+ o(E X o SxC) 

and in Split Ko(RF) by Lemma 9.31. 

Split o(C) = Split o(COKxC) + Split o(E X o SxC) 

Moreover S(o(E x o SxC)) = Split o(E x o SxC) follows from Lemma 9.31. and 

S(o(COKxC)) = Split o(COKxC) from the induction hypothesis. This implies 

Split o(C) D 

COK C is of type T' = T \ {~} and S COK C = S C for ~ ~ T'. We get 
Y 

S(o(C))= 

Proposition 11.15. is not true if C is only a RF-chain complex possessing a finite 

approximation. 

If F : F 1 --~ F 2 is a functor and C a RFl-chain complex of the homotopy tpye of 

a finite projective RFl-chain complex then F,C := indFC is a RF2-chain complex of 

the homotopy type of a finite projective RF2-chain complex. Let F, : Ko(RF I) 

Ko(RF 2) be induced by induction (i0.i0.). Then we have 

11.16. F,(o(C)) = o(F,C) 

Consider an admissible functor F : F 1 ~ F 2 and a RF2-chain complex C of the 

homotopy type of a finite projective RF2-chain complex. Then F C := resFC is a 

RFl-chain complex of the homotopy type of a finite projective RFl-chain complex. 

Let F : Ko(RF2)--~ Ko(RF I) be induced by the restriction (10.18.). We get 
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11.17. F (o(C)) = o(F*C) . 

Let C be a RF I- and D be a RF2-chain complex. Let their tensor product over R 

C ®R D be defined by 

8n I C i ® Dj = c.i ® id + (-l)iid ® d.j , 

where c, d and 8 are the differentials of C, D and C ®R D . If C and D 

have the homotopy type of a finite projective chain complex, then also C ~R D . Re- 

call the pairing ~R : Ko(RFI) ~ Ko(RF2) --~ Ko(RFI x r2) (10.23.). We claim 

11.18. o(C) ®R o(D) = o(C ®R D) . 

In the proof of 11.18. we can assume that 

one computes 

C and 

o(C ®R D) (-l)n[(c ®R D)n] 

n=o 

(~i) n 

n = o  

l[Ci ®R Dj] 
i+j=n 

= I (-l)i[ci] ®R (-I)J[Dj ] 

n=o i+j=n 

= ( (-l)i[ci]) eR (I (-I)J[DJ ]) 

i=o j =o 

D are finite projective. Then 

= o(C) "R o(D) 

Related to the finiteness obstruction is the Euler characteristic. 

Definition 11.19. Let C be a RF-chain complex possessing a finite approximation. 

Define its Euler characteristic 

x(C) ~ u ( r )  

by the image of it__~s finiteness obstruction o(C) under the homomorphism 

rkRr : Ko(RF) --~ U(F) (10.41.) . D 
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If (P,f) is a finite approximation of C then 

n 
1 1 . 2 0 .  x (C)  = E ( - 1 )  r k R r ( P )  

I f  C p o s s e s s e s  e v e n  a f i n i t e  f r e e  a p p r o x i m a t i o n  ( F , f )  

is the isomorphism of Proposition 10.42. we get 

and rkRF : K~(RF) -~ U(F) 

11.21. rkRF(E(-l)n[Fn]) = x(C) 

Let F : F 1 --~ F 2 be a functor and C a RFl-chain complex of the homotopy type 

of a finite projective RFl-chain complex. Then Proposition 10.44. and 11.16. imply 

for the homomorphism F, : U(F I) --~ U(F 2) (I0.ii.) 

11.22. F,(x(C)) = ×(F,C) 

Let F : F 1 --~ F 2 be an admissible functor and C a RF2-chain complex. Suppose 

either that C has the homotopy type of a finite projective RF2-chain complex and 

the conditions of Proposition 10.44. c) are satisfied for RF I and RF 2 ~or that 

has the homotopy type of a finite free RF2-chain complex. Then we get from Propo- 

sition 10.44. and 11.17. for the homomorphism F : U(F 2) --~ U(F I) (10.21.) 

11.23. F (x(C)) = X(F*C) 

We can improve the product formula 11.18. under certain condition for 

which are for example satisfied for the discrete orbit category Or/G 

Lie group. Recall the pairings 

F I and F 2 

of a compact 

the isomorphism 

~R : U(rl) ~ u(r2) --~ u(rl × r2) 

®R : U(FI) ~ Ko(RF2) --~ Ko(RFI × r2) 

"R : Ko(RFI) ® U(F2) --~ Ko(RFI × r2) 

u(r) ~ Kf(Rr) 
O 

and the split injection 



229 

Kf(RF) --~ K (RF) 
o o 

(see 10.23., 10.25., Proposition i0.42.). 

Theorem 11.24. Let R be a Dedekind domain with ch R = 0 an___dd quotient field 

Le___tt F 1 and F 2 be El-categories. Suppose for i = 1,2 and x ~ Ob F i that 

Aut(x) is finite and no prime p dividing IAut(x)l is a unit in R . Consider 

RFl-ehain complex C and a RF2-chain complex D such that both have the homo- 

t0Py tpye of a finite projective chain complex . Define r~M by rkF(M ®R F) . 

Then we have in Ko(RF) 

o(C ~R D) = x(C) ~R o(D) + o(C) ~R x(D) - x(C) ~R ×(D) 

Proof. We get from 11.18. 

o(C) ~R o(D) = o(C ®R D) 

Hence it suffices to prove for a finitely generated projective RFl-mOdule 

finitely generated RF2-module Q that in Ko(RF 1 × F 2) the relation 

P and a 

F . 

[P] ~R [Q] (P) *R Q + P ~R - (P) *R (Q) = rkRF I rkRF2 Q rkRF1 rkRF2 

holds. By Theorem 10.34. this reduces to the case of group rings, i.e. F 1 is a 

finite group G and £ 2 a finite group H and P and Q are RG- and RH-modules. 

By assumption no prime p dividing IGI or IHi is a unit in R . 

By Swan [1960 a] Theorem 8.1. F ®R P is a finitely generated free F[G]-module 

and F ®R Q a finitely generated free F[H]-module if F is the quotient field of 

R . Now we can apply Swan [1960 a] Theorem 7.1. saying that for any non-zero ideal 

I in R we can find a finitely generated free RG- resp. RH-submodule M c p resp. 

N c Q such that AnnR(P/M) = {r ~ Rlrx = 0 for x ~ P/M} resp. AnnR(Q/M) is prime 

to I . Hence we can assume that AnnR(P/M) + {0} and AnnR(Q/M) ~ {0} are prime. 

This implies that P/M ®R Q/N = 0 and TorR(P/M),Q/N) = 0 holds so that 

P/M ®R N ~ P/M ~R Q is an isomorphism. We have the exact sequences 
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and 

0 --~ M ®R Q --~ P OR Q --~ P/M ~R Q --~ 0 

0 --~ M ®R N --~ P o R N --~ P/M ~R N --~ 0 

so that P/M o R Q and P/M ®R N have finite resolutions. This implies 

[P o R Q] - [M ®R Q] = [P/M ®R Q] = [P/M ~R N] = [P ®R N] - [M ®R N] 

Since AnnR(P/M) and AnnR(Q/M) are non-zero we get M ®R F ~FG P OR F and 

N ®R F ~FH Q eR F . This implies r(P) := rkF((M o R F) OFG F) = rkF((P o RF) ®FG 

and r(Q) := rkF((N o R F) ®FH F) = rkF((Q ~FH F). We have shown in Ko(RG × H) 

F) 

[P] ®R [Q] = r(P) - [RG] ®R Q + p o r(Q) - [RH] - r(P) . r(Q) • [RG] o R [RH]- 

This finishes the proof. D 

Notice that the assumption of Theorem 11.24. are satisfied if 

x ~ Ob F, and i = 1,2 and R is Z . i 

Aut(x) is finite for 

Given a projection p : P --~ P of a finitely generated projective RF-module I 

image p is again a finitely generated projective RF-module and we can assign to 

p an element [p] ~ Ko(RF) by [image p] . We want to generalize this to homotopy 

projections p : C --~ C (i,e. p o p = p) of finitely dominated RF-chain comp- 

lexes. 

A splitting (D,r,i) for a homotopy projection 

RF-chain complex D and chain maps r : C --~ D 

following diagram commutes up to homotopy 

p : C --~ C consists of a projective 

and i : D --~ C such that the 

P P 
C ~C ~C 

D -P- D 

Lemma 11.25. Any homotopy projection 

lex C has a splitting (D,r,i) . If 

p : C --~ C of a projective RF-chain c£mp- 

(D',r',i') is another splitting r' o i:D-~ D' 
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and r o i' : D'--~ D are inVerse homotopy equivalences 

Proof. The existence is proved by a kind of Eilenberg-swindle. By Proposition ~.~. 

we can assume that C is projective. Let E 1 and E °  be copies of ~ C and 
n=o 

q : E 1 --~ E °  be the chain map 

( id-p 0 0 0 

p id-p 0 0 

0 p id-p 0 

0 0 p id-p 

: : : ": 

The chain map s : E °  --~ E 1 is given by the transposed matrix. Define u : E °  -* C 

by (p,O,0,0 .... ) and v : C --~ E °  by (id,0,O,...,0) tr . Choose a homotopy 

h : p o p = p and define chain homotopies ¢o : E o __~ E 1 , ¢i : E 1 __~ E 1 and 

: E 1 ~ C I by 

¢o 

i -h 0 0 
- 2h -h 0 

-h 2h -h 

0 0 -h 2h 

• B t 

¢1 

2 h  - h  0 0 

- h  2 h  - h  0 

O. - h  2 h  - h  

0 0 - h  2 h  

- : : : 

: ( - h , O , O  . . . .  ) 
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One easily checks ~o : id ~ v o u + q o s and ~i : s ~ q ~ id and ~: u °  q= 0. 

We obtain chain maps 

and 

r : C ( O ~ v ) t r  ~ C o n e ( q )  

i : C (~u) ~ C 

Let D : Cone(a) ---# Cone(q) be the chain homotopy 

(id 0] (¢1 s~ j . i  
Is id [0 ¢o J 

for e = -v o ~ - q o #I _ ~o o q . Then 

and we have i o r = p . Hence (Cone(~,r,i) 

Bec,ause of Lemma 11.25. we can define 

is an homotopy between id and r o i 

is a splitting for p : C --~ C . m 

by the finiteness obstruction 

Theorem ii,27. 

a) Homology invariance 

o(p) ~ K (RP) 
o 

o ( D )  . o 

Let p : C --~ C and q : D --~ D be homotopy projections of RF-chain complexes 

having a finite approximation. Suppose the existence of a weak homology equivalence 

f : C --~ D satisfying q o f ~ f o p . 

Then 

b) Additivity 

Consider the commutative diagram of RF-chain complexes possessing a finite approxi- 

o ( p )  = o ( q )  . 

Definition 11.26. Let p : C ~ C be a homotopy projection of a RF-chain complex 

C possessing a finite approximation. Choose a finite approximation h : P ~ C 

and a homotopy projection q : P ---+ P satisfying h o q = p o h . Let (D,r,i) 

be any splitting of q . Define 
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mation such that the rows are exact and the vertical arrows homotopy projections 

0 • C 1 J • C °  q • C 2 • 0 

P P P 

0 • C I J • C °  q • C 2 ....... • 0 

Then: 

o(p I) - o(p ° ) + o(p 2) = 0 . 

Proof: 

b) use Lemma 11.6., the explicite construction of a splitting in Lemma 11.25. 

and Theorem 11.2. o 

Remark 11.28. If p : C --~ C is a homotopy projection of a finite projective 

RF-chain complex, we have constructed an explicite splitting (D,r,i) in Lemma 

11.25. Since (C,r,i) is a domination of D and o(p) = o(D), we obtain an ex- 

plicite formula for o(p) by Proposition 11.12. involving only C , p and an 

homotopy h : p o p ~ p . m 

Lemma Ii.29. Let p : C --• C be a homotopy prpjection of a RF-chain complex 

such that H (C) has a finite resolution for n ~ 0 and is zero for large n . 
n 

Then C has a finite approximation and o(p) ~ Ko(RF) is defined. Moreover ,, image 

Hn(p) : Hn(C) --• Hn(C) has a finite resolution for n ~ 0 and is zero for large 

n and we get i_~n Ko(RF) 

o(p) = ~(-i) n [image Hn(P)] 

Proof. Since image Hn(p) is a direct summand in Hn(C) and isomorphic to Hn(D) 

for any splitting (D,r,i) of C the result follows from Proposition 11.9. 

Comanents 11.30. The finiteness obstruction is introduced in Wall [1965] in a 

form close to Proposition 11.13. Wall's paper seems to be inspired by Swan [1960 hi. 

Our approach is similar to Wall [1966] where also Proposition ii.i0, is proved. 

Most of the material of this section except the homological computations can be 
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generalized to additive categories. This is done in Ranicki [1985] where the formulas 

appearing in Proposition ii.ii, and Proposition 11.12. are taken from. The finiteness 

obstruction and its splitting for chain complexes over the orbit category Or G of 

a finite group is treated in tom Dieck [1981] including a product formula like 

Theorem 11.24. The finiteness obstruction of a homotopy projection and the unique 

existence of splittings can be found in L~ck [1986 ]. See also Lfick-Ranicki [1986] 

where among other things the second part of Remark 11.28. is worked out. For a 

splitting of idempotents see Freyd [1966], Hastings-Heller [1981], [1982]. 

Exercfses 11.31. 

i. Let G be a Lie group and X be a proper G-CW-complex. Show that X is finite 

resp. skeletal finite resp. n-dimensional resp. of finite orbit type if and only 

if its cellular Z~/(G,X)-chain complex cC(x) is, 

2. Let G be a finite group and C be a projective ZOrG-chain complex. Suppose 

the existence of a number n such that H.(C) is finitely generated for i ~0, 
I 

H,(C) is zero for i ~ n and Hn+I(c.M) = 0 for any XOrG-module M . Prove 
i 

that C is homotopy equivalent to a n-dimensional finite projective ZOrG-chain 

complex. 

3. Let C be a finitely dominated ZOr/Tn-chain complex for T n the n-dimensional 

torus. Show that C is homotopy equivalent to a finite free ZOr/Tn-chain complex. 

4. Let G be a finite group and C be a ZOrG-chain complex possessing a finite 

approximation. Show that xzC(G/H) ~ Z is defined for any H ¢ G and that 

(XzC(G/H) I (H) ~ Con G) lies in the image of the character map 

ch : A(G) ~ II Z 
(H) ~ Con G 

5. Let G + {I} be finite. Give an example of a finite ZOrG-chain complex possessing 

no finite approximation 

6. Let G be Z/p . Consider the QOrG-module M = IG/G(~) . Show that M has a fi- 

nite @OrG-approximation. Obviously Split o(M) ~ Split Ko(~OrG) given by 

{SG/HM ~ Ko(~WH) I (H) ~ Con(G)} is defined since SG/HM is a finitely ge- 
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7. 

8. 

9. 

nerated projective @WH-module. Show that S : Ko(@OrG) --~ Split Ko(@OrG) does 

not send o(M) to Split o(M) . 

Let C i be a finitely dominated ZF.-chainl complex with ~ZF.(C i) = 0 for i=1,2. 
i 

A s s u m e  f o r  i = 1 , 2  t h a t  A u t ( x )  i s  f i n i t e  f o r  a n y  x ~ Ob F , S h o w  t h a t  t h e  

ZF 1 x F2-chain complex 

chain complex F with 

Let G be Z/p . Then 

chain complexes C and D . Regard C ®Z D 

with OrG --~ OrG × OrG . Show that C ~zD 

ordinary Euler-characteristics Xz(C(G/G)) 

that one has in K (ZOrG) = K (ZG) 
o o 

C I ® C 2 is homotopy equivalent to a finite free ZFIXF 2- 

Xzr1×r2(F) = 0 . 

(ZOrG) ~ K (ZG) . Consider finitely dominated ZOrG- 
o o 

as a ZOrG-chain complex by restriction 

is again finitely dominated, the 

and Xz(D(G/G)) ~ Z are defined and 

o(C ®Z D) = Xz(C(G/G)) • 8(D) + Xz(D(G/G)) • 8(C) 

Let p : C --~ C be a homotopy projection of a projective RF-chain complex and 

(D,r,i) a splitting. Show the existence of a RF-chain complex D' and an homo- 

topy equivalence f : D ® D' --~ C such that the following diagram commutes up 

to homotopy 

C '~" C 

D * D t "~" D • D '  

i0. Let ~ be the category having as objects homotopy projections p : C --~ C of 

finitely dominated RF-chain complexes and as morphisms from p : C --~ C to 

q : D --~ D chain maps f : C --~ C satisfying q o f = f o p . Weak cofi - 

brations are given by morphism such that each f is a split injection and weak 
n 

equivalences are morphisms with f an homotopy equivalence. Show that 

Ko(ROrG) • Ko(ROrG) together with function sending an object p : C --~ C to 

(o(C),o(p)) is the universal additive invariant. 
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12. The algebraic torsion 

In this section we want to define the algebraic torsion of a homotopy equivalence 

between appropriate RF-chain complexes. We want to treat various kinds of torsion 

like Whitehead-torsion, Reidemeister torsion, self-torsion, round torsion, ... si- 

multaineously unifying the various approaches. The main difference in our treatment 

compared with the usual ones is that we substitute the notion of a base for a RF- 

chain complex C by a stable isomorphism Cod d --, Cev . The main advantage will 

be that then one can treat also the case where C is projective but not necessarily 

free . This will enable us in particular to define equivariant Reidemeister torsion 

in a transparent way. 

To motivate our approach we recall briefly the definition of the Whitehead torsion 

of a homotopy equivalence f : C --~ D between finite based free R-chain complexes. 

By Lemma 11.5. we obtain an isomorphism 

(c+~) : Cone(f)od d ~ Cone(f)ev 

if c is the differential and ~ a chain contraction of Cone(f). The basis de- 

termine an isomorphism 

: Cone(f)ev ~ Cone(f)od d 

Then the Whitehead torsion is defined as the element ~(f) in KI(R) = 

KI(R) / {±I} represented by the automorphism ~o(c+~) of the finitely generated 

free R-module Cone(f)od d. The Whitehead torsion could also be defined as an element 

in KI(R) . However, in KI(R) the important formulas t(f ® g) = t(f) +t(g) and 

t(f o g) = t(f) + t(g) are true but not in KI(R) . Here is a counterexample. 

Example 12ol. Let u I : F 1 --~ F I and u 2 : F 2 --~ F 2 be automorphisms of the 

based free R-module of rank 1 . Consider the i-dimensional elementary RF-chain 

complexes e~i(u i) ( see 11.4. ) and the homotopy equivalences 

fi : 0 ~ e~i(u i) for i = 1,2 . One easily checks that T(f I) is [Ul] ~ KI(R) 

and ~(f2 ) is -[u2] ~ KI(R) . The mapping cone of f2 ~ ~ together with a chain 

contradiction looks like 
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0 ~ F 2 ~ ~ F 2 ® F 1 ~ ~ F I ....... ~ 0 

Then t(f 2 o fl) is given by 

u; 

Hence t ( f  2) + t ( f  1) and t ( f  2 ® f l )  a re  not  the  same e lement  in KI(R) , t hey  

d i f f e r  by 

Ii i1 ~' R * R  Q 

Now we develop a theory of torsion not using bases but a stable map ~ : Cone(f) 

--~ Cone(f)od d . This is precisely what the bases give in the usual treatment. 

Fix a subgroup U c KI(RF ) . It will play the role of the trivial units. Given a 

not necessarily commutative square of isomorphisms of finitely generated projective 

RF-modules 

u 1 
X I ~ X 2 

lu4 u3 [ u 2  
X 4 4 X 3 

define its torsion t(S) ~ KI(R) by [u 4 o u 3 o u 2 o Ul]. We get the same if we 

start at any corner and run around in the clockwise direction. If S is commutative 

t(S) vanishes. Define the sum S 1 • S 2 of two such squares in the obvious way. 

Then t(S I • $2) = t(Sl) + t(S2) holds. If S 1 and S 2 are squares with a common 

edge we can built a composed square S 2 o S 1 . Namely, the outer square in 
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u 1 
X 1 * X 2 

u41 S 1 lu2 

u 3 
X 4 ~ X 3 

u71 S 2 lu5 

u 6 
X 6 ~ X 5 

We get t(S 2 o SI) = t(Sl) + t(S2) . Isomorphic squares have the same torsion. 

Given two finitely generated projective RF-modules M and N , a stable map from 

M --~ N is a RF-homomorphism f : M ® X --~ N ® X for some finitely generated pro- 

jective RF-module X . In the sequel v always denotes the permutation map which is 

clear from the context by specifying the source and the target. If g : M®Y -~ N ® Y 

is another stable map from M to N ~ we call f and g U-stably equivalent if there 

is a finitely generated projective RF-module P such that the torsion of the following 

square lies in U c KI(RF ) 

12.2. 
f ® id 

MeX®Y®P ~N®X~YeP 

I i g ® i d  
M®Y®X®P "N®Y®X®P 

This relation is clearly symmetric and reflexive. We next prove transitivity. If g 

is U-stably equivalent to h : M ® Z --~ N ® Z by a diagram of the shape 12.2. with 

Q instead of P then f is U-stably equivalent to h by 

f®id 
M ®Xe Z ®Y ® P ® Q - - ~ N  eX ® Z ~y • p • Q 

~ f ® id ~ 
M®X®Y®P®Z®Q ~ N®X®Y®P®Z®Q 

~ g~ id ~ 
M ®Y ®X ® P • Z ® Q - - ~  N ®Y ®X Q P ® Z eQ 

I n geid ~ 
M ® Y ® Z ® Q ® x ® P - - ,  N ® Y ® Z ® Q ®x • P 

~ he id ~ 
M ® Z o Y e Q ® X ® P - - ~ N ® Z ® Y ~ Q ~ X ~ P  

MeZ®X®yep®Q ~ N®Z®X®Y®P®Q 
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We denote by {f} : M --~ N 

f : M ® X--~ N ® Y . Given two stable maps f : M ® X--~ N ® X 

N' ® X' let f ® f' be the stable map from M ® M' --~ N ® N' 
7 s 

diagram commute 

the U-stable equivalence class of a stable map 

and f':M'eX' -~ 

making the following 

f • f' 
M ® M' ® X • X' s ~ N ® N' ® X ® X' 

M • X ® M' ® X' ~ N • X • N' • X' 
f ® f' 

It is left to the reader to show that (f es f') ®s f'' ~U f ° s (f' ®s f") holds and 

f --U g and f' g' implies f • f' -- g' -- --U s U g ®s where U means U-stably 

equivalent. Hence we get a well-defined notion of a direct sum {f} e {g} := {f • s g} 

of U-stable equivalence classes of maps . 

If f : L ® X --~ M ® X and 

the stable map from L to N 

L ® X e y  

feid 

M®X®Y 

g : M ® Y --~ N • y are stable maps let 

making the following diagram commute 

g° s f 

~ M e Y ® X - -  

N ® X ® Y  

geid 
.~NeYeX 

g °  s 
f be 

Let f be U-stably equivalent to f' . We leave it to the reader to verify that then 

o o O s f .  g s f and g s f' are U-stably equivalent. Analogously g --U g'~> g ° s f -- g' 

Hence we can define the composition {g} o {f} of U-stably equivalence classes of 

stable maps {f} : L ~ M and {g} : M --~ N by {g ° s f} " One easily checks 

associativity and that {f} o {f-l} = {id} and {f} o {id} ={id} o {f}={f} holds. 

An U-stable equivalence class of automorphisms {f} : M--~ M determines an element 

t({f}) ~ KI(RF)/U . We have t({f} o {g}) = t({f}) + t({g}) and t({f} ® {g}) = 

t({f}) ® t({g}) . Hence we can also assign to a square of U-stable equivalence 

classes of isomorphisms 
{u I } 

(u4} S {u2} 
{u 3 } 

X 4 " X 3 
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and element 

12.3. t(S) ~ KI(RF)/U 

by t({u4} o {u3} o {u2} o {Ul} ) . We still have t(S I,$2) = t(Sl) • t(S2) and 

t(S 2 o SI) = t(Sl) + t(S2) 

Now we can define the torsion we seek. Let (f,{#}) : C --~ D be a homotopy equiva- 

lence between finite projective RF-chain complexes together with a U-stable equiva- 

lence class of isomorphisms {~} : Cod d ® Dev --~ Dod d s Cev . If c is the diffe- 

rential and y any chain contraction of Cone(f), we get by Lemma 11.5. an isomor- 

phism (c+y) : Cone(f)od d ~ Cone(f)ev 

Definition 12.4. Define the torsion 

t(f,{¢}) ~ KI(RF)/U 

by the torsion of the square 

{c+x} 
Cone(f)od d ~ Cone(f)ev 

{~}I I{~} 
Dod d ® Cev 4 Cod d • D {~} ev 

This is independent of the choice of ~ by Lemma 11.5. 

Example 12.5. Let F be trivial and U = {±I} c KI(R ) . Consider an homotopy equi- 

valence f : C --~ D of finite based free R-chain complexes. Let ~ : Cod d ® Dev 

--~ Dod d • Cev be a base preserving isomorphism. Then the Whitehead torsion of f 
~ 

in KI~R~ defined in Cohen [1973] coincides with t(f,{¢}). 

Let f : C --~ D and f' : C' ~ D' be chain equivalences of finite projective 

--~ ® C and {~'} : C' ® D' --~ RF-chain complexes and {~} : Codd ® Dev Dodd ev odd ev 

D' ® C' be U-stable equivalence classes of isomorphisms. Define odd ev 

{¢} ® {¢'~ : (C • C')odd e (D • D'ev) , (D • D')odd • (C e, C')ev 

as the U-stable equivalence class of stable isomorphisms for which the following 
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(C~C') ~ ~ (D ® D') 
o(~ ev 

(Cod d • Dev) • (C',~ * D' ) oa~ ev 
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(D ® D')od d ® (C ® C')ev 

{~ a s ~'} 

"" (Dod d ® Cev) ® (D'~.oaa " Cev)' 

Then we have: 

12.6. t(f ® f',{~} • {#'}) = t(f,{%}) + t(f',{~'}) 

Remark 12.7. The reader should check this in the case described in Example 12.1. 

In the notion used there let {~i} : e£i(Ui)od d --~ e~i(Ui)ev be {id} for i =1,2. 

Then {~2} • {(>i} is also given by the identity and one easily verifies 12.6. The 

difference between our approach and the one in Example 12.2. using bases is that 

: F 2 ~ F I --~ F I ~ F 2 

must be composed in our approach by the flip, in the approach using bases by the 

identity. 

We want to extend 12.6. to exact sequences. 

i p 
Lenmla 12.8. Let 0 --~ C • D ~ E ......... ~ 0 be an exact sequence of RF-chain 

complexes. If E is projective and acyclic then there is a RF-chain ~ s : E -~ D 

satisfying p o s = id. 

= Proof. Choose for any n ~ 0 a map o : E --~ D with Pn °  On id . If 
n n n 

is a chain contraction of E define Sn : En --~ Dn by dn+ 1 o 7n o o n + OnOTn_l o e n 

if d and e are the differentials of D and E . o 

Now suppose that we are given a commutative diagram of finite projective RF-chain 

comp~xes~ith exact rows and homotopy equivalences as vertical arrows 
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12.9. 0 ~ C 1 i C °  p C 2 • ~ 0 

0 .... ~ D 1 • D °  • D z • 0 

J q 

and U-stable equivalence classes of isomorphisms {$i } : C i D i 
odd • ev 

i = 0,1,2 . Choose sections s and t for the exact sequences 

DI~® C 1 
O~ ev 

0 ~ C 1 D 1 1° dd ® Jev 
o d d  ® "• Co * DO P o d d  ® q e v  ~ C e v  ev odd ev 4 dd e D2 

s 

0 

and 

Jodd • iev qodd e qev 
0 • D 1 C 1 n ® C ° D 2 C 2 

odd ev odd ev 4 odd ev 
t 

Define 

D 1 
odd 

t({$i},{$° },{$2}) ~ KI(RF)/U by the torsion of the square 

D °  C °  {¢o } C o D °  
odd ~ 4 ® ev odd ev 

l(Jodd ® t ~ ® ® s iev) (iod d Jev ) 
| 

® C I ® D 2 C 2 4 .... C I D 1 ® C 2 D 2 
ev odd ® ev odd ® ev odd ® ev {¢i} • {¢2) 

• 0 

for 

One easily checks that this is independent of the choice of s and t . Requiring 

t({¢l}, {¢o}, {$2}) to be zero corresponds to demanding that the rows in 12.9. 

are based exact if the chain complexes were based. 

Proposition 12.10. Additivity 

We have in KI(RF)/U 

t(fl,{¢l}) - t(f° ,{¢° }) + t(f2,{$2}) = t({¢i},{¢° },{¢2}) . 

Proof. We get from 12.9, and Lemma 12.8. a split exact sequence of finite pro- 

jective RF-chain complexes 

i ® j p • q 
0 • Cone(f I) • Cone(f° ) L • Cone (f2) 

s 

> 0 

yielding an isomorphism 
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(i ® j) • s : Cone(f I) ® Cone(f 2) --~ Cone(f O) 

Let yl and y2 be chain contractions of Cone(f I) and 

them with the isomorphism above yields a chain contraction 

have the commutative diagram 

Cone(fl)odd ® Cone(f2)od d 

(Cone(f1) ® Cone(f2))od d 

i ((i®j) -S)od d 

Cone(f° )od d 

(cl+y I) ® (c2+¥ 2) 

(c°+x °) 

Cone(f 2) . Conjugating 

o 7 of Cone(f ° ) . We 

Cone(fl)ev ® Cone(f2)ev 

(Cone(f I) ® Cone(f2))ev 

i ((isj) • S)ev 
Cone(f° )ev 

The torsion of the following square is 

{cl+~ I} • {c2+7 2} 
Cone(fl)odd ® Cone(f2)ev 

{ i} ® {¢2} 
(Dldd ® Cev)l • (D2odd® C2ev) f 

t(fl,{~l}) + t(f2,{~2}) 

+ Cone(fl)ev ® Cone(f2)ev 

-- (Clodd • Dlev ) " (C2odd ® D2ev ) 

By definition t(f° ,{~° }) is the torsion of 

{c° +~ °  } 
Cone(f° )odd ~ Cone(f° )ev 

{~}I I {~} 
D °  C °  C °  D °  odd ® 4 ev {~o} odd " ev 

Because of the last three squares t(fl,{~l}) - t(f° ,{~° }) + t(fl,{#l}) 

torsion of the square {¢o} 
D °  • C °  4 C °  ® D °  odd odd ev ev 

TJodd®ieve(~° s° ~) lioddeJev e(~° s° ~) 

c ° ~o~ • ~v~'C° ~a- ~ ~, ~,. ~,~ '~o~a • °~'~ "'~d~" °~v~ 

is the 

But this is by definition t({#l},{#° },{~2}) . o 
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In particular Proposition 12.10. implies 

12.II. t(f,{¢}) - t(f,{~}) = t({~) o {t-l}) 

Proposition 12.12. Homotopy invariance 

Consider two homotopic chain equivalences 

jective RF-chain complexes and a U-stable class of stable isomorphisms 

--~ • C . Then Codd ® Dev Dodd ev 

t(f,{¢}) = t(g,{¢}) . 

is an homotopy~we have an isomorphism Proof: If h : f ~ g 

given by 

f an__~d g : C ---~ D between finite pro- 

{~} : 

[id  
h i : C,_I ~ D,--~ C,_I ® D, 

I : Cone(f) -~ Cone(g) 

Cone(f)od d ~ Cone(f)ev 

i Iodd [lev 

Cone(g)od d ~ Cone(g)ev 
(c+6) 

The next result is a consequence of additivity and homotopy invariance. Consider 

homotopy equivalences f : C --~ D and g : D ~ E between finite projective RF- 

chain complexes and U-stable equivalence classes of stable isomorphisms {~} : 

• E and {4} : Dod d ~ E --~ ® D Codd ® Dev Dodd ev ev Eodd ev 

Define a U-stable equivalence class of stable isomorphisms {~}#{¢} : Cod d • Eev -~ 

Eod d ® Cev by requiring that for the following square S t(S) = 0 in KI(RF)/U 

holds 

If y is a chain contraction for Cone(f) 6 = I o y o I -I is one for Cone(g). 

The following diagram commutes and Iod d and Iev represent zero in KI(RF) 

(c+x) 
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(Cod d ® Dev ) ® (Dod d • Eev ) ~ (Dod d ® Cev ) • (Eod d • Dev ) 
[ 

{~} ~ i {~} 
• ~* ® D ] , ( E o d  d ® Cev ] * (Dod d ® D e v )  (Codd Eev {Dodd ev ({~}#{¢})o{id} 

Proposition 12.13. Logarithmic property. 

We have 

t(g o f,(~}#{¢}) = t(f,{#}) + t(g,{~}) . 

Proof: Let {7} : Cone(f)ev --~ Cone(f)od d be the U-stable class of stable iso- 

morphisms for which the torsion of the following square vanishes in KI(RF)/U 

{$} 
Cone(f)ev + C° ne(f)odd 

Cod d ® Dev ~ Dod d • Cev 

Define {~} : Cone(g)ev 

analogously. Then 

, Cone(f)od d and {~}#{#} : Cone(gOf)ev --~ Cone(f)od d 

12.14. t(f,{¢}) = t(Cone(f),{7}) := t(0 --~ Cone(f),{7}) 

t(g,{~}) = t(Cone(g),{7}) 

t(gof,{~}#{#}) = t(Cone(gof),{~}#{¢}) 

Let h : Z-iCone(g) --~ Cone(f) be the chain map given by 

I 0 01 D • --~ ® D 
~i oJ : n En+l Cn-i n 

Let {p} : Cone(h)ev---~ Cone(h)od d be determined by requirlng 

KI(RF)/U for the diagram S 

Cone(h)e v {P} ~ Cone(h)od d 

{0} I {7} ® {7} 
Cone(f)e v ® Cone(g)e v -, Cone(f)odd • Cone(g)odd 

t(S) = O in 
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Consider the commutative diagram with the exact sequence of 

0 ' Cone(f) ~ Cone(h) ~ Cone(g) 

t l l 
0 ~ 0 ~ 0 ~ 0 

Proposition 12.10. implies 

12.15. t(Cone(h),{p}) = t(Cone(f),{$}) + t(Cone(g),{~}) 

We have also the exact sequence 

0 ~ Cone(gof) 

0 

with i given by 

(f 
L0 

Let {id} : Cone(D)ev 

0,  )tr 
1 0 : C*-I ® D, --~ D,_ 1 • E, ® C,_ I • D, 

--~ Cone(D)od d be the class of the identity. One verifies 

directly that t({@}#{~},{p},{id}) vanishes. Proposition 12.10. implies 

12.16. t(Cone(h),{p}) = t(Cone(gof),{~}#{~}) + t(Cone(D),{id}) 

Now the claim follows from 12.14., 12.15. and 12.16. since t(Cone(D),{id}) 

vanishes, o 

Example 12.17. Let P be a finite projective RF-chain complex and f : P --~ P 

self-equivalence. There is a canonlcal{l}-stable class of stable isomorphisms 

Podd ~ Pev --~ Podd ~ Pev ' namely {id} . Define the self-torsion of f 

t(f) ~c KI(RF) 

by t(f,{id}) . We get from Proposition 12.10., 12.12. and 12.13. 

a) Additivity 

Consider the commutative diagram with exact rows and self-equivalences as vertical 

arrows 

h as upper row 

~0 

i 
Cone(h) ~ Cone(D) ~ 0 
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0 ~ C I i C °  P ~ C 2 ~ 0 

0 ~ C I i ~ C o P , C 2 b 0 

Then t(f I) - t(f ° ) + t(f 2) = 0 . 

b) Homotopy and ConjuBation invariance 

i) f --~-- f' ~-> t(f) = t(f') 

ii) If f : C --~ C , g : D ~ D and 

and 

h : C--~D 

h o f -- g o h , then t(f) = t(g) . 

C) Logarithmic property 

are homotopy equivalences 

t(f o g) = t(f) + t(g) 

12.18. Let f : C --~ C be a weak homology equivalence of a RF-chain complex 

possessing a finite approximation. Define 

12.19~ t(f) ~ KI(RF) 

by t(g) for any self-equivalence g : P --, P of a finite approximation (P,h) 

of C satisfying h o g = f o h . Because of Lemma 11.3. and Lemma 11.6. this is 

well defined and still a), b) and c) holds. Analogously to Lemma 11.7. one proves: 

Let f : C --, C be a weak homology equivalence of a RF-chain complex such that 

Hn(C) has a finite resolution for n ~ 0 and is zero for large n . Then C has 

a finite approximation and we have in KI(RF) 

t(f) = Z(-l)n[Hn(f)] . 

If g : M --~ M is an automorphism of a RF-module possessing a finite resolution 

let [g] be the torsion of 0(g) : 0(M) --~ 0(M) . 

Example 12.20. Let C be a finite projective RF-chain complex. A U-round structure 

{~} on C is a U-stably equivalence class of stable isomorphisms {~} : Codd-~Cev. 
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We call (C,{~}) a round RF-chain complex. Consider a RF-homotopy equivalence 

f : (C,{~}) ~ (D,{8}) between round RF-chain complexes. Let {#} : Cod d • Dev --~ 

Dod d • Cev be the U-stable equivalence class of stable isomorphisms for which the 

following square has torsion zero 

{~} 
Cod d ® Dev Dod d 

Cod d .... ~ C ® Dev ev 

{~} ® {S -l} 

® C 
ev 

{~} 

® Dod d 

Define the round torsion 

t(f : (C,{~}) --~ (D,{8})) ~ KI(RF)/U 

by t(f,{#}). Propositions 12.10., 12.12. and 12.13. imply 

a) Additivity 

Consider the exact sequence of U-round RF-chain complexes 

i p 
0 ~ C I,{ i} ~ co,{ o} .... ~ C2,{ 2} 0 . 

Choose splittings Sod d and Sev of 

0 --~ C 1 lodd~ C °  Podd ~ C 2 
odd odd • v. odd 

Sodd 

0 

and 

0 --~ C 1 iev ~ C °  Per • C 2 
ev ev • .... ev 

S 
ev 

Define t({~l},{~° },{~2}) as the torsion of 

C °  ~ {o} C °  
ev odd 

i 
ev Sev ! ( i} ® { 2} ! iodd ® Sodd 

C I C 2 # C I C 2 
ev ev odd odd 

Now consider the commutative diagram with exact sequences of round RF-chain complexes 

as rows and homotopy equivalences as vertical arrows 
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0 • (cl,{~l}) ~ (c° {s° }) ~ (c2,{~2}) • 0 

i~ I 2 2 0 ~ (D ,{6 } ~ (D° ,{~° }) ~ (D ,{$ }) ~ 0 

Then we have in KI(RF)/U 

t(f I) - t(f ° ) +-t(f29 = t({~l},{~° },{~2}) - t({~i},{$° },{~2}) . 

b) HomQtopy invariance 

c) Logarithmic property 

f = g.=> t(f) = t(g) 

t(fog) = t(f) + t(g) 

Notice that a round structure on a finite projective RF-chain complex C exists if 

and only if o(C) ~ Ko(RF) vanishes. 

Example 12.21. Let (C,{~}) be a round RF-chain complex. Denote by ~(C) the 

trivial RF-chain complex given by the homology of C 

o o o o 
... ~ Hn+2(C) ~ Hn+I(C) ~ Hn(C) --~ Hn_I(C) --~ ... 

Suppose that each Hn(C) is finitely generated projective. Notice that o(~(C~=o(C) 

holds by Proposition 11.9. so that ~(C) has some round structure. Choose a round 

{6} : ~(C)od d ---~ ~(C)ev • Now there is up to homotopy exactly one structure 

chain map 

such that H (h) 
n 

by the round torsion of 

h(C) : ~(c) ~ C 

is the identity for n g 0 . Define the absolute torsion 

t(C,{~},{~}) ~ KI(RF)/U 

h(C) : (~(C),{~}) --~ (C,{~}) 
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a) Additivity 

i p 
Let 0 --~ (CI,{~I}) --~ (C° ,{~° }) ~ (C2,{~2}) ~ 0 be an exact sequence of round 

RF-chain complexes. Suppose we are given round structures {$i} on ~(C i) for 

i = 0,1,2. We have defined t({~l},{~° },{~2}) in Example 12.20. The long homology 

sequence 

Hn+l(C2) 8 i Pn Hn(C2 ) , Hn(CI ) n ~ Hn(C o) b ° .. 

can be viewed as an acyclic finite projective chain complex 

round structure {6} 

D . Equip D 

such that the following square has torsion zero in 

{6} 
Dod d ' Dev 

~(Cl)od d ¢ ~(C2)od d " ~(C° )ev , ~(Cl)ev Q ~[(C2)ev {~I}®{$2}~{~o}-i 

with the 

KI(RF)/U 

®~f(C° )od d 

Then we have in KI(RF)/U if t(D,{6}) is t(O -~ D,{6}). 

t(cl,{~l},{~l}) - t(C° ,{~° },{$° }) + t(C2,{~2},{$2})=t({~l},{~° },{=2})-t(D,{6}) 

We give the proof only under the assumption that the boundary 8 in the long homo- 

logy sequence is zero. Then we have the diagram with exact sequences of round chain 

complexes as rows 

0 ~ C1 i C °  p C2 P ~0 

[h(C 1 ) lh(C°) th(C1) 
~(i) ~(p) 

o - - ~ C ( c  t) ~ ( c  °) ~ ( c  2) , 0 

We can choose h(cl),h(C ° ) and h(C I) such that the diagram commutes since ~(i) 

is a cofibration. Now apply the additivity of the round torsion using that 

t(~i,$° ,$ 2) = t(D,{6}) holds. 

b) Transformation under hgmotopy equivalences 

Let f : (C,{~}) ~ (C',{~'}) be a homotopy equivalence of round chain complexes. 
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Suppose that we are given round structures {6} on ~(C) and {~'} on ~(C') 

so that ~ (f) : (~(C),{~}) --~ (~(C'),{~'}) is a homotopy equivalence between 

round chain complexes. The logarithmic property of the round torsion implies 

t(f) - t(~(f)) = t(C',{~'},{8'}) - t(C,{~},{$}) 

If in particular C and C' are acyclic we can compute t(f) by the absolute in- 

variants t(C',{~'}) and t(C,{~}) . 

Example 12.22. Suppose that F is trivial. Consider a finite based free R-chain 

complex C . Suppose that H (C) is stably free and has a stable base for each 
n 

n ~ 0 , i.e. we have choosen a base for H (C) ® R k for some k . Consider 
n 

h(C) : ~(C) --~ C . The bases determine a U-stable equivalence class of stable iso- 

morphisms {~} : ~(C)od d ® Cev--~ Cod d ®~(C)ev for U = {±i}. Then we obtain by 

Definition 12.4. an element t(h(C) : ~(C) ~ C,{~}) ~ KI(R) • We leave it to 

the reader to verify that this agrees with the torsion defined in Milnor [1966], 

p. 365. For a complete proof of the additivity of the absolute torsion in this special 

case see Milnor [1966], p. 367-+ 368. o 

Now we introduce the Whitehead torsion of a homotopy equivalence between finite 

based free RF-chain complexes. Some remarks about bases are needed. 

Let F be a free RF-module and (B,~ : B --~ Ob F) and (B',~' : B' ~ Ob F) he 

two bases (see 9.16.). We call them equivalent if there is a bijection of sets 

: B --~ B' such that for any b ~ B there is an isomorphism f : ~(b)-~8'(~(b)) 

in F and a sign u ~ {±i} with the property that F(f) : F(~(b)) -~ F(~'(~(b))) 

sends b to u • ~(b) . This defines an equivalence relation on the set of bases for 

F . If we have choosen such an equivalence class [B] , we call F a free RF-module 

with preferred equivalence class of bases. A free RF-chain complex C has a pre- 

ferred equivalence class of bases if each C for n ~ 0 has. 
n 

Let (F,[B]) and (F',[B']) be finitely generated free RF-modules with equivalence 

classes of bases such that rkRFF = rkRFF' holds. Hence we can choose representatives 

B and B' such that there is an isomorphism ~ : B --~ B' of Ob F-sets. Let 
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: F --• F' be the isomorphism determined by @ . Let U c KI(RF ) be the subgroup 

generated by all trivial units (see section i0.). 

One easily checks 

Lemma 12.23. The U-stable equiyalence classes of stable isomorphism 

{~} : F • F' 

depends only on the equivalence classes [B] and [B'] . D 

Definition 12.24. Let f : C --• D be a homotopy equivalence between finite free 

RF-chain complexes with preferred equivalence classes of bases. By Lemma 12.23. we 

obtain a U- stable equivalence class of stable isomorphisms {~} : Codd • Dev Dodd a Cev 

Define the Whitehead torsion 

• (f) ~ Wh(Rr) = KI(~r)/U 

by the torsion t(f,{~}) (se__~e Definition 12.4.) o 

Consider the exact sequence of finite free RF-chain complexes with preferred equi- 

valence classes of bases [B I] [B ° ] and [B 2] 0 -+ C 1 i C °  p C2 , --• ~ --• 0 . We 

call it based exact if there are representatives BI,B °  and B 2 with i(B I) c B °  

B 2 and p(B ° ) = B 2 such that plB °  \ i(B I) : B °  \ i(B I) --~ is a bijection of Ob F- 

sets. We get from Proposition 12.10., 12.12. and 12.13. the following Theorem. All 

chain complexes appearing in it are finite free and have a preferred equivalence 

class of bases. 

Theorem 12.25. 

a) Homotopy invariance 

Let f and g : C --• D be homotopy equivalences . Then f = g => ~(f) = ~(g). 

b) Additivity 

Consider the diagram with based exact rows and homotopy equivalences as vertical 

arrows 
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0 ~ C1 i C °  p C2 ~ ~ 0 

0 ~ D 1 J D ° ,!, ~ D 2 

T(fl) - T(fO) + ~(f2) = 0 • 

c) LogarSthmic property 

~(fog) = ~(f) + ~(g) 

Let C be a finite free RF-chain complex with a preferred equivalence class of bases 

[B]. Given x ~ Ob F t choose a representative B such that for b ~ B $(b) = x 

in Is F already implies B(b) = x in Ob F . Let B c S M be 
X X 

{bM(x) s ~ SxM = M(x)/M(x) s [ b ~ B ,$(b) = x} . 

Then Sx[B ] := [Bx] is a well-defined equivalence class of bases for the finite 

free R[x]-chain complex S C depending only on [B]. If f : C --~ D is a homotopy 
X 

equivalence between finite free RF-chain complexes with preferred equivalence class 

of bases then S f : S C --~ S D is a homotopy equivalence between finite free 
x X X 

R[x]-chain complexes with preferred equivalence class of bases. Hence we can define 

12.26. Split ~(f) ~ Sp~it Wh(RF) 

by {~(Sxf) ~ Wh(R[x]) [ x ~ Is F } . Recall the isomorphism S :Wh(RF) --~ Split Wh(RF) 

(Theorem 10.34.). We get from Theorem 9.39. and Theorem 12.25. (analogously to Pro- 

position 11.15.) 

Proposition 12.27. Let f : C --~ D be a hom0topy equivalence between finite free 

RF-chain complexes with preferred equivalence class of bases . Then 

S(T(f)) = Split ~(f) [] 

Consider a functor F : F 1 --~ F 2 and a finitely generated free RFl-mOdule M with 

a preferred equivalence class of bases [B]. Then F,M = indFM is a finitely ge- 

nerated free RF2-module with a preferred equivalence class of bases F,[B] defined 
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as follows. Recall that F,M is a quotient of ~ M(x) o R R Hom(?,Fx) . If 
x ~ Ob F 1 

B = (B,B : B ~ Ob F I) is a representative for [B] I a 

representative for F,B is given by {b o R idF(B(b) ) ~ F,M(F(B(b)))}and the obvious 

map y : b o R idF($(b) ) e--~ F($(b)) ~ Ob F 2 . Hence F,f : F,C --, F,D is a homo- 

topy equivalence between finite free chain complexes with preferred equivalence 

classes of bases if f is. We have defined F, : Wh(RF I) --~ Wh(RF 2) in i0.I0. We 

get from the definitions 

12.28. F,(~(f)) = ~(F,f) 

Consider an admissible functor F : F I --~ F 2 . Given a finitely generated free RF 2- 

module M, its restriction F M is finitely generated free by definition of "ad- 

missible". If [B] is a preferred equivalence class of bases for M i we want to 

define a preferred equivalence class of bases FEB] for F M . It suffices to 

treat the special case M = R Hom(?,y) with the Ob F2-base B= {idy~RHom(y,y)} . 

Since F is admissible Irr(x,y) is a free Aut(x)-set with finitely many orbits 

for x ~ Ob F 1 by Proposition 10.16. Choose 

Cx = {fx,i I i=1,2 ..... card Irr(x,y)/Aut(x)} c Irr(x,y) 

such that each Aut(x)-orbit contains exactly one f . . If we fix for any x~Is F 
X,l 

a representative x I consider the Ob Fl-set C = _ II C . It is a base for 
x ~ Is F x 

F Hom(?,y) . Define F[B] to be EC]. The verification that there is a well-de- 

fined homomorphism F : Wh(RF 2) --, Wh(RF I) (see 10.20.) also shows that F[B] is 

well-defined. We get for a homotopy equivalence f : C --~ D of finite free RF 2- 

chain complexes with preferred equivalence classes of bases that F f : F C --~ F D 

is a homotopy equivalence of finite free RFl-chain complexes with preferred equiva- 

lence classes of bases and 

12.29. F*(~(f)) = ~(F*f) 

If fi : Ci --~ Di is a homotopy equivalence of finite free RF.-chain complexes 
1 

with preferred equivalence classes of bases for i = 1,2 then fl ° R f2:CI®RC2 -~ 

D 1 o R D 2 is a RF i-homotopy equivalence of finite free RF 1 x F2-chain complexes with 
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preferred equivalence classes of bases. We get from i0.23, and Proposition 10.42. 

pairings U(FI) x Wh(RF2) ~ Wh(RF 1 x F2) and Wh(RF I) x U(F2) -~ Wh(RF 1 x F2) 

®R f2 ) = (DI) ® (fl) ® (D2) " 12.30. ~RFlXF2(f I XRFI TRF2(f2) + ~RF 1 XRF2 

The proof of 12.30. is reduced by Theorem 12.25. c using ~(fl ®R f2 )= ~(id ® f2 ) + 

~(fl ® id) to the case where fl = id holds. Because of Theorem 12.25. b it 

suffices to treat fl = id : R Hom(?,x) --~ R Hom(?,x) for x ~ Ob F 1 . Now the 

claim 12.30. follows from the definitions. 

We call a RF-chain map i : C --, D of finite free RF-chain complexes with preferred 

equivalence class of bases an elementary expansion if there is a finitely generated 

free RF-module F with preferred equivalence class of bases and a based exact 

i 
sequence 0 ---+ C .... ~ D , e£n(F) ~ 0 . Any homotopy inverse r : D --~ C of i 

is an elementary collapse. A composition of elementary expansions and collapses is 

a formal deformation. An RF-chain map homotopic to a formal deformation is called a 

simple homotopy equivalence. 

If f : C ~ D is a simple homotopy equivalence T(f) vanishes by Theorem 12.25. 

The proof of the converse is left as an exercise to the reader. 

Com~nents 12.31. For finite based free R-chain complexes the Whitehead torsion is 

treated in Milnor [1966] and Cohen [1973] and the self-torsion in Gersten [1967]. 

One can easily extend our notion of torsion except the homological computations to 

additive categories. Notice that the notion of a stable map makes sense in any addi- 

tive category whereas the notion of a base does not carry over directly. Torsion 

for additive categories is dealt with in Ranicki [1985 a], [1987] but using a sub- 

stitute for the notion of a bases suc/~d~at problems explained as in Example 12.1. 

occur . We have already mentioned that the approach using stable maps has the ad- 

vantage that one can also work with finite projective R-chain complexes (see Example 

12.21.). This will be crucial for defining Reidemeister torsion in section 18. 

Let ~ be the category of finite projective RF-chain complexes with cofibrations and 

weak equivalences. The inclusion FPMOD-RF ~ ~ induces isomorphisms 
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Kn(RF) --~ Kn(~ ) for n ~ 0 . The finiteness obstruction and the self-torsion define 

explicite inverse maps for n = 0 and 1 . o 

Exercises 12.32. 

i) Let f : R ~ S be a ring homomorphism such that the R-module f S 

resolution. Show that we get a well-defined transfer homomo~ for 

has a finite 

n = 0,i 

f : Kn(S) ~ Kn(R) 

by sending N ~ Ko(S) represented by the image of the projection p : S n -~ S n 

to o(f*p : f*S n --~ f*S n) resp. q e= KI(S) represented by the automorphism 

g : S n --~ S n to t(f*g : f*S n --~ f*S n) . 

2) Let C be a finite free Z-chain complex. Choose a Z-base for C and for 

~(C)/Tors~(C) . This induces @-bases for C ®Z @ and~f (C ®Z Q) = ~f_(C) ®Z Q= 

~(C)/Tors ~(C) ~Z Q " Show that 

m×'(C) ~ K I ( ~ )  = ~)*/Z ~ 

given by t(h(C ®ZQ) : ~[(C ®Z Q) ~ C ®Z @) is independent of the choices 

of the Z-bases. Define the multiplicative Euler characteristic 

m x ( C )  ~ ~ /Z ~ {r ~ @Ir > 0} 

by mx(C) = II ITors Hn(C)I (-l)n Prove mx'(c) = mx(C) 
n=o 

3) Let f : C --~ D be a chain map between Z-chain complexes such that H (C) resp. 
n 

Hn(D) i s  f i n i t e l y  g e n e r a t e d  f o r  n ~ 0 a n d  z e r o  f o r  l a r g e  n . P r o v i d e d  t h a t  

H (f) is finite for n ~ 0 define n 

co 
m×(f) : II IHn(f)i (-l)n ~ Q*IZ '~ 

n=o 

Prove. 

i) f = g => mx(f) = mx(g) 

ii) Consider the commutative diagram with exact rows 
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0 ~ C I ~ C °  

0 ~ D I • D °  

Then m×(f I) • mx(f° ) -I - mx(f 2) = 1 . 

iii) mx(f o g) = mx(f) . mx(g) 

~C 2 ~0 

~ I) 2 ~-0 

4) Let f : C ---+ D be a homotopy equivalence between finite free RF-chain complemes 

with preferred equivalence classes of bases. Prove that f is simple if and only 

if ~(f) vanishes. 

5) Let fl : C1 --~ D1 and f2 : C2 ~ D2 be homotopy equivalences between finite 

free RF I- and RF2-chain complexes with preferred equivalence classes of bases. 

Show that the RF 1 × F2-homotopy equivalence fl ®R f2 is simple if XRFI(CI) 

and ×RF2(C 2) vanish, 

6) Let f : C ~ D be a ZOr/Tn-homotopy equivalence between finite free ZOr/T n- 

chain complexes with preferred equivalence classes of bases. Show ~(f) = 0 . 

7) 

8) 

Let f : C --, D be an isomorphism of finite free RF-chain complexes with pre- 

ferred equivalence classes of bases. Show 

I (-l)n T(fn : Cn --" Dn) T(f) 

n=o 

Show that the function assigning to a homotopy equivalence f : C --~ D betwee~ 

finite free RF-chain complexes with preferred equivalence classes of bases 

(x(D);~(f)) ~ U(F) • Wh(RF) is universal for all functions f ~ a(f) ~ A 

into some abelian group A satisfying 

i) f = g => a(f) = a(g) . 

ii) The following diagram commutes and has based exact sequences rows 
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0 ~ C 1 ~ C °  b C 2 ~ 0 

i.o i.. 
0 ~ D I ~ D °  ~ D 2 ~ 0 

a(f I) - a(f ° ) + a(f 2) = 0 . 

iii) If F is a finitely generated free RF-module with preferred equivalence 

classes of bases then a(0 --~ e~n(F)) = a(e~n(F) --~ 0) is zero. o 
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13. The cellular chain complex 

In this section we treat the cellular RH/(G,X)-chain complex cC(x) of a G-CW- 

complex. We equip cC(x) with a cellular equivalence class of bases. We introduce 

singular and cellular RH(G,X)-homology and compare them. We define a ZH/(G,X)-Hure- 

wicz map and prove an Equivariant Hurewicz Theorem. It is used for the verification 

of the Realization Theorem of a ZH/(G,X)-chain complex as a cellular ZN/(G,X)-chain 

complex. Finally we study the behaviour of the cellular RH(G,X)-chain complex under 

restriction and tensor product. In this section G is always a Lie group and all G- 

spaces are supposed to satisfy assumption 8.13. 

We have defined the discrete fundamental category H/(G,X) and the discrete universal 

covering functor X/:H/(G,X) --• {top.sp.} in Definition 8.28. and 8.30. Let 

C s : {top.sp.} --• {R-ch.compl.} be the functor singular chain complex. 

Definition 13.1. The singular RH/(G,X)-chain complex cS(x) is the composition 

x/ c s 
C s : ~/{G,X) • {top.sp.} ~ {R- ch.compl.} o 

If X is a G-CW-complex we obtain by Theorem 8.33. a functor X/ : H/(G,X) 

{CW-compl.} . In Definition 8.37. we have introduced the cellular RH/(G,X)-chain 

complex cC(x) by the composition 

C c 
cC(x) : H/(G,X) X/• {CW-compl.} • {R-ch.compl.} 

where C c is the functor "cellular chain complex with R-coefficients". 

There is of course a relative version of cS(x,A) and cC(x,A). If (X,A) is a 

pair of G-spaces resp. a relative G-CW-complex we obtain a functor 

(X,A)/ : E/(G,X) --• {pairs of sp.} resp. {rel. CW-compl.} 

by sending x : G/H --• X to the pair (X(x),p(x)-l(x(x) n A))/Aut(x) °  using no - 

tation 8.32. Recall that X(x) is the component of X H containing x with univer- 

sal covering p(x) : X(x) ---~ X(x) and Aut(x) is the automorphism group of x in 

H(G,X) operating on X(x) . Now define cS(x,A) and cC(x,A) by the composition 

C s C c of (X,A)/ with and 
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Sometimes it suffices to consider everything over the discrete orbit category Or/(G). 

Then the singular ROr/(G)-chain complex cS(x) is the composition of C s with 

X/ : Or/G --~ {top.sp.} G/H ~ xH/wH 
o 

and cC(x) is defined analogously (see Definition 8.37.). 

Next we deal with the cellular base of cC(x,A) for a relative proper G-CW-complex 

n . 
(X,A). If {ei{1E In} is the set of n-cells,we have defined in Example 9.18 a 

ObH/(G,X) subset <In> c C~(X,A) . This subset depends on various choices like the 

one of a characteristic map. However, we have 

Lemma 13.2. 

a) We obtain by <In> a__nn equivalence class of bases (see section 12) fo_~r C~(X,A) 

depending only on the G-CW-complex structure. 

b) The singular RH/(G,X)-chain complex cS(x,A) is free. 

Proof. Suppose that X is the G-push out 
n 

Let Yi : G/Hi --~ Xn- I 

x : G/H--~ X 

II qi i~l 
n II G/H. x S n-I _ _  

1 i ~ I 
n 

i ~ I Qi 
J_[ G/H. x D n n -~ X 

1 n i ~ I  n 

+ Xn- 1 

be QiIG/Hi x {*}. By 8.23. we obtain a push out for 

~L M o r ( x , x i )  x s n - 1  --+ X ( X ) n _ l  
i ~ I n 

I t 
I L 

Mor(x,xi) x D n ~ X(x) 
i~I n 

n 
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Dividing out the Aut(x) action yields a push-out 
o 

il M° r/(x,x i) × Sn-I --* X/(X)n_ 1 
I n 

t I 

Ii M° r/(x,x i) × Dn - - ~  X/(x) n 
i ~ I n 

Since Mor/(x,x i) is discrete we obtain C~(X)(x):Hn(X/(X)n~(X)n_ I) = ~ R Hom(x,x i) 
i~I n 

that cC(x) = ~ R Hom(?,x i)_ is free. so 
n 

In section 12 we have assigned to <In> an equivalence class of R[x]-bases <In> x 

for SxC~(X,A) . Hence we obtain an equivalence class of K[x]-bases for 

C~((X(x),X>(x) U p(x)-l(x(x) ~ A)~Aut(X)o) under the natural isomorphism of 1 emma 9.32. 

This is precisely the one constructed in Cohen [1973] 19.1 where it is shown that it 

depends only on the relative Aut/(x)-structure on (i(x),X>(x) U p(x)-l~(x) ~A))/Aut6w)~. 

Since <In> x dependsonlyonthe~fl4-complex structure of (X,A) the same is true for 

<I >. m n 

b) For simplicity we show b) only for the singular ROt/G-chain complex C~(X). 

Consider H c G and a singular simplex s : A --~ xH/wH in cS(x)(G/H) . Let 
n o n 

K = K(s,H) be n {Gyly ~ X H , y-WH O ~ image s} .We have H c K and the pro- 

jection o = o(s,H) : G/H --~ G/K . Since WH • K • WH -I = K ~ t~ue there is for 
o o 

any T ~ WH given by T : G/H --~ G/H an element T' ~ WK given by ~' :G/K-+G/~ 
o o 

such that o o ~ = ~' o o holds. Hence o* : xK/wK --~ xH/wH is injective. As 
o o 

image s c image o* holds by construction! there is a singular simplex s : s(H,s) : A n 

--~ xK/wK O satisfying o* o s = s . Now define C~(X)(G/H) r as the free R-submodule 

of cS(x)(G/H) generated by all those singular n-simplices s with K(s,H) = H. 
n 

Recall that C~(X)(G/H) s is the R-submodule generated by all images C~(X)(f) where 

f runs over all non-isomorphisms in Or/G with G/H as source. Then we have a de- 

composition of R~o(WH)-modules cS(x)(G/H)n = C~(X)(G/H)r s C~(X)(G/H)s" 

Now one easily checks that the natural map ~ EG/HC~(X)(G/H) r --~ ca(x) is an 
(H) 

isomorphism, m 
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Definition 13.3. We call the equivalence class of bases given by 

cellular equivalence class of bases for cC(x,A) . o 

<I >for ha0 the n -- 

Let f : (X,A) --~ (Y,B) be a cellular G-map. It induces a functor 

H/(G,f) : H/(G,X) ~ R/(G,Y) 

by composition. Moreover, we obtain a natural transformation f/ : X/ --~ y/ o N/(G,f). 

If f, and f denote induction and restriction with n/(G,f) I we obtain chain 

maps (use 9.22.) 

13.4. cC(f) : cC(x,A) ~ f*cC(y,B) 

cC(f) : f,cC(x,A) --~ cC(y,B) 

Let h : (X,A) × I --~ (Y,B) be a cellular G-homotopy between f and g . It in- 

duces a natural equivalence [I/(G,h) : II/(G,f) ~ H/(G,g). By composition we get 

a natural equivalence h/ : Y/ o H/(G,f) --~ Y/ o H/(G,g) and thus a RH/(G,X)- 

* c isomorphism cc(h/) : f*cC(y,B) --~ g C (Y,B) . Moreover, we obtain a natural trans- 

formation h/ : i/ × I --~ Y/ o N/(G,g) with h = h/ o f/ and hl = g/ " This in- 
o 

duces a ZH/(G,X)-chain homotopy 

13.5. cc(h) : cc(h/) o cC(f) ~ CC(g) 

c Analogously we obtain a base preserving RH/(G,X)-isomorphism cc(h/) : f,C (X,A) 

--~ g,cC(x,A) and a RH/(G,Y)-chain homotopy 

13.6. cc(h) : CC(g) o cc(h/) ~ cC(f) 

Consider the cellular G-push out with i 2 a G-cofibration (see 4.1.) 

i 1 
X °  - - ~  X I 

X 2 ~ X 

Lemma 13.7. There is a based exact sequence of RN/(G,X)-chain compl@xes 
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0 --~ Jo,CC(Xo ) 
Jl*CC(il ) ® J2*cC(i2) c cC(jl)-CC(j2) 

JI,CC(xI)®J2,C (X 2) ~ cC(x) ~ 0 

D 

Lemma 13.8. Let i : A ---* X be the inclusion of a pair of G-CW-comp!exes Then 

we have the based exact sequence of ZH/(G,X)-chain complexes 

cC(i) 
c 0 --~ i,C (A) ~ cC(x) > cC(x,A) ~ 0 

The proof of Lemmata 13.7. and 13.8. is easily reduced to the well known non-equi- 

variant case by evaluating at any x : G/H ~ X ~ Ob ~/(G,X) . 

Definition 13.9. Let the singular re s p. cellular RH/(G,X)-homology Hs(X) 

HC(x) be the homology of the singular resp. cellular RH/(G,X)-chain complex 

re sp. cC(x) . Q 

resp. 

cS(x) 

Consider the functors singular and cellular chain complex C s and cC: {CW-compl.} 

b { R - c h . c o m p l . }  . In  o r d e r  t o  compare them in  a n a t u r a l  way we i n t r o d u c e  an i n -  

t e r m e d i a t e  functor C in : {CW-compl.} --~ {R-ch.compl.} . It assigns to a CW-complex 

t h e  R-subcomplex  c i n ( x )  c c S ( x )  w i t h  c i n ( x )  t h e  k e r n e l  o f  n 
s c 

C~(Xn) n C~_l(Xn) - - ~  C~_l(Xn,Xn.1  ) := C ~ . l ( X n ) / C ~ _ l ( X n _ l ) .  

Let i(X) : cin(x) --~ cS(x) be the inclusion. We show that i(X) is a weak homo- 

logy equivalence by verifying that cS(x)/cin(x) is acyclic. 

An n-cycle u in cS(x)/cin(x) is given by u ~ cS(X)n satisfying c~(u) ~C~__I(X). 

The class of u in C~(X,X n) is a cycle and hence a boundary as H~(X,X n) vanishes. 

Therefore we can find v ~ C~+I(X) and u' ~ C~(X n) with C~+l(V) = u-u' . Since 

c~(u') = c~(u) lies in c~nI(X )_ c C n_l(Xn_l ) we have u' ~ cin(X)n " Hence the cycle 

u in C~(X)/C~n(x) is a boundary. 

The canonical map CnS(Xn ) --~ cS(Xn,Xn_l) induces an epimorphism of R-chain complexes 

p(X~ : cin(x) --~ cC(x) . We show that ker p(X) is acyclic so that p(X) is a 

weak homology equivalence. A cycle u ~ ker p(X) can be written as u = u I + u 2 

for u I ~ ker cS :n cS(Xn-i ) --~ Cs-l(Xn-I ) and u 2 ~ image cs+l:C~l(%)-~cS(x). 
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Since Hn(X n i) vanishesf u I is contained in the image of c s " C~+ (X ) --~ 
- n+l" 1 n-i 

s Cn+l(Xn)--~ Cn(X n) and is a C (Xn_ I) . Therefore u lies in the image of On+ 1 : 

boundary in ker p(X) . 

i p 
Now we have natural weak homology equivalences C s -+- C in -- C c between functors 

{CW-compl.} --~ {R-ch.compl.} . Composing with the discrete universal covering 

functor yields 

Proposition 13.10. Le___%t X be a G-CW-complex. 

a) There are in X natural weak RN/(G,X)-homology equivalence 

i p 
cS(x) 4 cin(x) ~ cO(x) 

b) There ar___eeh0motopy inverse and up t__oohomotopy natural RH/(G,X)-homotopy equi- 

valences 

cS(x) • ~ cO(x) 

c) The singular and cellular homology RN/(G,X)-modules HS(x) and HC(x) are 

naturally isomorphic, o 

Because of Proposition 13.10. we often write H(X) instead of HS(x) or HC(x) . 

Given a G-pair (X,A) , define a contravariant functor for n ~ 2 

13.11. ~n(X,A) : H/(G,A) --~ {groups} 

as follows. It sends x : G/H--~ A to ~n(XH,x H N A,x)=~n(XH(x),xH(x)NA,x). Let 

(c,w) : x(H} --~ y(K) be a morphism in the fundamental category ~(G,A) representing 

a morphism [o,w] : x(H) ~ y(K) in the discrete fundamental category H/(G,A). 

Then o : G/H --~ G/K induces a map o* : (xK,x K N A,y) -~ (xH,x H N A,o*y) and a 

homomorphism ~n(O*) : ~n(XK,x K N A,y) ~ ~n(XH,x H n A,oe,y) . Recall that w is 

a homotopy class of paths from a*y to x in A H . Let 

t w : ~n(XH,x H N A,o*y) --~ ~n(XH,x H N A,x) 

be the homomorphism defined by homotopies along w (see Whitehead [1978], p. 257). 

Define ~n(X,A)([o,w]) by the composition t w o ~n(o*) : ~n(XK,X K N A,y) 
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~xH,~ "- A A,x) . We leave it to the reader to check that the choice of (o,w) ~ [o,w] 

does not matter. Analogously we get for n ~ 1 

13.12. ~n(X) : H/(G,X) ~ {groups} . 

n ~ 3 in 13.11. we obtain a ZH/(G,A)-module since ~n(XH,x~NU A,x) If is abelian 

for n ~ 3 . Similarly we have a Z~/(G,X)-module in 13.12. for n ~ 2 . 

Consider the inclusion i : A --~ X of G-spaces. For each x : G/H -~ A ~ Ob~/(G,A) 

we obtain an homomorphism for n g 2 

~n(XH,x H * h(X,A)(x) : N A,x) --~ i Hn(X,A)(x) 

by the composition 

o(x). 

h 

p(x), 
~n(X(x),X(x) N A,x) 4 .... ~n(~(x),p(x)-l(x(x) N A),x) 

Hn((X(x),p(x)-l(x(x) ,x/) N A))/Aut(x) °  

- - ~  H~((~(x),p(x)-l(x(x) N A))/Aut(x) o) , 

where h is the ordinary Hurewiez map (see Whitehead [1978] IV 4.1.). If ~n(X,A) 

is a ZH(G,A)-modulelthis induces a ZH/(G,A)-Hurewicz-homomorphism 

13.13. h(X,A) : ~n(X,A) ~ i Hn(X,A) 

Analogously we get a ZH/(G,X)-Hurewicz-homomorphism 

13.14. h(X) : v (X) ....... ~ H (X) 
n n 

call a map f : X --~ Y a H-isomorphism if ~o(fH):~o(X H) -~ ~o(Y H) We and 

~il(fH,x) : ~II(XH,x) --~ ~I(YH,fHx) are bijections for all H c G and x ~ X H . 

Recall that f is (G,n)-connected if fH is n-connected for H c G . A pair (X,A) 

is H-isomorphic resp. (G,n)-connected if the inclusion i : A --~ X is, Notice that 

H/(G,i) : n/(G,A) ~ H/(G,X) is an equivalence of categories (Lemma 8.35.) and in 

particular admissible if (X,A) is N-isomorphic. 
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Theorem 13.15. The Equivari@nt Hurewicz Theorem . 

Let (X,A) b__£ea proper relative G-CW-complex. Suppose that (X,A) i__{s H-isomorphic 

and (G,n-l)-connected fo__~r n ~ 2 . Then the ZH/(G,A) Hurewicz-homomorphism 

h(X,A) : ~n(X,A) --• Hn(X,A) 

is an isomorphism. 

Proof. As (X,A) is (G,n-l)-connectedlwe can assume that X is obtained from A 

by attaching cells of dimension ~ n (Proposition 2.3.). Consider x : G/H -~ A . 

We abbreviate Y = X(x) , B = p(x)-l(x(x) N A), K = Aut(x) and surpress base points 

in the sequel. If p denotes the projection and h the non-equivariant Hurewicz- 

map the following diagram commutes 

Hn(Y,B) 

P, 

~n(Y/Ko,B/K o) 

h 
, H(Y,B) 

h 
............ • Hn(Y/Ko,B/K o) 

It suffices to show that all maps above are bijections. We have Yn-i = Y-I = B for 

the relative K-CW-complex (Y,B) . Hence (Y,B) and (Y/Ko,B/K o) are (n-l)-connected. 

By Proposition 8.33. Y,B , Y/K and B/K are simply connected so that both o o 

Hurewicz-maps h are bijective by the ordinary Hurewicz-theorem (see Whitehead 

[1978], IV, 7.9,). It remains to show that p, : Hn(Y,B) ~ Hn(Y/Ko,B/K o) is an 

isomorphism. 

Let K °  be the component of the identity of K . Consider (Y,B) as a relative K o- 

CW -complex. We have Hk(Ym,Ym_l) ~ ~ Hk(Ko/L i x (Dm,Sm-l))= ~ Hk_m(Ko/Li) 
i~l i~l m m 

Since K01/L. is path connected, the projection p, : Hk(Y,Y m_l ) ~ Hk(Ym/Ko,Y m_I/KJ 

is bijective for k ~ m and Hk(Ym,Ym_ I) = Hk(Ym/Ko,Ym/K o) = 0 for k < m . We 

show inductively for m = n , n+l, n+2 .... that p,: Hn(Ym,Yn_I) -~%%/%,Yn_i/Ko) 

is bijective. The induction step follows from the five-lemma (Dold [1980], 1.2.9.) 

and the commutative diagram whose rows are exact sequence of triples 
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Hn+l(Ym+l,Ym) P Hn(Ym,Yn_l) • Hn(Ym+l,Yn_l) ~ 0 

1 p, P, P, 

Hn+I(Ym+I/Ko,Ym/Ko) ~ Hn(Y m /Ko,Yn_i/Ko) • Hn(Ym+i/Ko,Yn_i/K o) • 0 ..... 

Now p, : Hn(Y,B) --• Hn(Y/Ko,B/K o) is an isomorphism since H,(Y,B) is lim 

H,(Ym,Yn_ I) and analogously for (Y/Ko,B/K o) by Milnor [1962] or Whitehead [1978], 

XIII.I.I. o 

Let f : X --• Y be a G-map between G-spaces. Define the contravariant functor for 

n~2 

13.16. ~ (f) : H/(G,X) --• {groups} 
n 

by ~n (Cyl(f),X) and the Z~/(G,X)-module Hn(f) by i H(Cyl(f),X) for the in- 

clusion i : X --• Cyl(f) . 

Corollary 13.17. Let f : X --~ Y be a H-isomorphism between G-CW-complexes . 

a) f is (G,n)-connected for n ~ 2 if and only if Hm(f) vanishes for m £ n . 

b) f is a G-homotopy equivalence if and only if Hm(f) vanishes for m $ 0 . 

Proof. a) follows from Theorem 13.15. and implies b) using Theorem 2.4. Notice that 

for a H-isomorphism ~ (f) is a ZH/(G,X)-module also for n = 2 as it is a quotient 
n 

of ~n(X) . o 

13.18. Let (X,A) be a relative G-CW-complex with X 2 = A . Consider the ZH/(G,A) 

chain complex CH(X) 

, A , An_i• 
__• ... in~n(Xn,Xn_l ) n • ~rl~n~%_l~n_Z) ... 

where i : A ~ X is the inclusion and g is the boundary of the triple 
n n n 

(Xn ,Xn_ l ,Xn_2)  . The Hurewicz -maps  d e f i n e  a c h a i n  map Cg(X) ~ i * c C ( x )  f o r  t h e  i n -  

c l u s i o n  i : A --• X since i*cC(x) is given by 

, & 

.... > inHn(Xn,Xn_l ) n • * • .. in_iHn_l(Xn_l,Xn_ 2) --~ ... 
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By Theorem 13.15. we obtain an isomorphism of ZH/(G,A)-chain complexes 

cn(x) ~ cC(x) 

Now we can p r o v e  t h e  main r e s u l t  of  t h i s  s e c t i o n ,  t h e  e q u i v a r i a n t  v e r s i o n  of  t h e  

r e a l i z a t i o n  t heo rem of  c h a i n  complexes  as  c e l l u l a r  c h a i n  complexes .  I t  i s  t h e  dec i s ive  

l i n k  be tween  geome t ry  and a l g e b r a ,  o r  more p r e c i s e l y ,  be tween  G-CW-complexes and 

chain complexes over a category. 

Theorem 13.19. Th___ee Equivariant Realization Theorem. 

Let h : (Z,A) --~ (Y,B) be a G-map between proper relative G-CW-complexes such 

that hIA : A --~ B is a G-homotopy equivalence and h : Z --~ Y ! H-isomorphSsm. 

Consider an integer r ~ 2 such that r ~ dim(Z,A) holds for the relative dimension 

of (Z,A). Assume the existence of a free ZH/(G,A)-chain complex C with preferred 

equivalence class of bases and a homotopy equivalence 

i : A --~ Z the inclusion such that the restriction 

is i*cC(z,A) and flr is i*cc(h) . 

Then we can construct a pair of proper G-CW-c9mplexes 

as r-skeleton and a cellular G-homotopy equivalence 

i) g extends h . 

ii) C = j*cC(x,A) for the inclusion 

of bases). 

j*cc(g) = f . 

j : A--~X 

iii) 

Proof. We construct inductively for n = r,r+l,... 

X n = (Xn,A) , a cellular G-map gn : Xn --~ Yn+l for 

a) 

b) 

c) 

d) 

f : C --~ i*h*cC(y,B) for 

X r = (Z,A) and gr = h 

The (n-l)-skeleton of (Xn,A) is 

CIn = i~cC(Xn ) for the inclusion 

i~CC(gn) = fln • 

Clr of C to dimension r 

(X,A) containing (Z,A) 

g : (X,A) -~ (Y,B) satisfying 

(.including th___~eequivalence class 

a pair of G-CW-complexes 

Yn+l = (Y'A)n+I satisfying 

Xn_ 1 and gnlXn_ 1 

i : A--~ X 
n n 

= gn-i " 
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The induction begin n = r is given by a). In the induction step from n to n+l 

we show firstly 

is (G,n)-connected 13.20. gn : Xn Yn+l 

Since f is a chain homotopy equivalence, the chain map i~CC(gn): inCnC(X,A) 

ingnC (Yn+I,B) is n-connected. By Proposition 13.10. we get Hm(g n) = 0 for m-<-n . 

Since r -_> 2 and gr = h jthe map gn is a N-isomorphism. Now 13.20. follows from 

Corollary 13.17. Recall that ll/(G,i n) : H/(G,A) --~ II/(G,X n) is an equivalence of 

Y in general. categories. Notice that 13.20. is not true for gn : Xn n 

If Bn+ 1 is a base for Cn+ 1 we construct Xn+ 1 out of X n by attaching one cell 

G/H b × D n+l for each b ~ Bn+ 1 . Since we also want to extend gn to gn+l over 

the celltwe must specify for each b ~ Bn+ I a G-diagram 

G/Hb S n qb × ~ X n 

I i gn 

G/Hb Dn+t Qb x ~ Yn+l 

Let x b : G/H b --~ A be the object of N/(G,A) belonging to b ~ Bn+ 1 . Then a G- 

diagram above is the same as a non-equivariant diagram 

S n . 

Dn+l 

qb 

QD 

"~ Xn(X b) 

IgnlXn(Xb 

b Yn+l(gn o Xb) 

But such a diagram represents an element ~ ~ ~n+l(gnIXn(Xb)) . Since 

connected by 13.20. we have by Theorem 13.15. the ZH/(G,A)-isomorphism 

inHn+l(g n 

gn is (G,n)- 

in~n+l(g n) -~ 

These conslderations show 

13.21. Each choice of elements 

G-extension 

c 
mb~inHn+1(gn)(X b) for b ~ Bn+ 1 determines a 
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gn 
X ...... by 
n n 

Xn+l ~ Yn+l 

.~ c 
such that in+iC (Xn+l)n+ 1 = Cn+ 1 . 

The following diagram commutes fn+l 
.... ,~'~ f~ C 

Cn+ 1 ~ IngnCn+l(Yn+ I ,B) 

I I 
i i,,cc(g ) I 
*c nn n .* * c 

C n = inCn(Xn,A) '~ ingnCn(Yn+ I,B) 

Let (Ub,V b) E Cone(inC (gn) : inCn(Xn,A) ~ ingnCn+l(Yn+l,B))n+l be the image of 

* C . *  :~ C 
b E Bn+ 1 c Cn+ 1 under Cn+l " fn+l : Cn+l ~ inCn(Xn 'A) " IngnCn+l(Yn+l'B) " Be- 

cause of the diagram above i (ub'vb) is a cycle It determines an element 

~b ~ Hn+l(gn)(Xb) under the identification of Proposition 13.10. It is straight 

forward to check that under these choices ~b we obtain by 13.21 an extension 

gn+l : Xn+l --~ Yn+l satsisfying a), b), c) and d). This finishes the induction 

step. 

Let g : X --~ Y be the limit of the maps gn : Xn --~ Y " It is a G-homotopy equi- 

valence by Corollary 13.17. and fulfills i), ii), and iii) by construction, o 

Next we deal with the natural properties of the cellular RH/(G,X)-chain complex. We 

start with restriction for an inclusion i : H ---~ G of Lie groups, Given a G-space 

X , the adjunction between induction and restriction defines a homeomorphism 

ad : map(G/K,X) G ~ map(H/K,res X) H for K c H . Consider objects x : H/K -~ res X 

and y : H/L --~ res X and a morphism (o,w) : x ~ y in N(H,res X) . Then we 

obtain a morphism (ind(o),ad-l(w)) : ad-l(x) ~ ad-l(y) in H(G,X). One easily 

verifies that we obtain a functor between topological categories 

13.22. H(i,X) : H(H,res X) ~ H(G,X) . 

It induces a functor 
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13.23. n/(i,X) : H/(H,res X) ~ H/(G,X) . 

Lemma 13.24. Let i : H---~ G be an inclusion of Lie groups such that 

finite. Let X be a proper G-CW-complex. Then 

a) N/(i,X) : H/(H,res X) ~ H/(G,X) is admissible. 

b) 

G/H is 

Proof. The proof is based on Proposition 10.16. Consider objects x : H/K -~ res X 

in H/(H, res X) and y : G/L ~ X in H/(G,X) . We want to compute Irr(x,y). 

Regard any morphism [o,w] : E/(i,X)(x) ~ y in H/(G,Y) represented by a morphism 

(a ,w) : H(i,X)(x) ~ y in N(G,X) . Let i : im(ad o) --~ res G/L be the inclusion 

of the image of the adjoint ad a : H/K ~ res G/L of o : G/K = ind H/K---~ G/L . 

Write x : im(ad o) --, res X for res y o i . Notice that im(ad o) is a homo- 
O 

geneous H-space again. We denote by ado also the obvious epimorphism H/K-~ im(ad o). 

Let c(x o) be the constant path at x °  . We have the factorization in H/(G,X) 

[a,w] 
13.25. H/(i,X)(x) ~ y 

H/(i,X)([ad o,ad w ] ) ~  / a d  i,C(Xo)] 

n/(i,X)(x ) 
o 

Now consider an object z : H/M ---~ res X and a morphism [~,v] : x ~ z 

H/(H,res X) such that we have in H/(G,X) the factorization 

c) There is a canonical H-CW-complex structure on res X . We have a based iso- 

C * c 
morphism of RH/(H,res X)-chain COmplexes C (res X) ~ ll/(i,X) C (X) . 

in 

Let x : H/K---~ res X be an object in H/(H,res X) and y : G/L ~ X an 

object in ~/(G,X) . Let d(x,y) be the cardinality of Irr(x,y)/Aut(x) . Then 

d(x,y) is the number of orbits 0 cres G/L of type H/K such that the H- 

orbit y(O) meets xK(x) . 
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[O~W] 
n / ( i , X ) ( x )  '~ y 

n/(i,x)([~,v])~ /E~,u] 
n/(i,x)(z) 

Since ~ o ind % and o are G-homotopic fad ~ o T and ado are H-homotopic. As 

G/H is finite w res G/L is a finite disjoint union of homogeneous H-spaces. Hence 

the homogeneous H-spaces im ad w and im ado agree. Denote the epimorphism 

H/M --~ im(ad o) induced by ad ~ : H/M --m res G/L also by ad ~ . Hence we obtain 

a morphism [ad w,ad u] : z --~ x in N/(H,res X) . We leave it to the reader to 
o 

show 

13.27. 

13.28. 

Now we can show 

13.29. 

lad m,ad u] o [T,v] = lad o,ad w] in ff/(H,res X) 

[~,u] = lad i,C(Xo) ] o ff/(i,X)[ad ~,ad u] in N/(G,X) 

Irr(x,y) consists of all the morphisms [o,w] : H/(i,X)(x) --~ y for which 

ado : H/K --~ res G/L is injective. 

Notice that res G/L is a finite union of H-orbits so that ado is injective for 

one representative (o,w) of [o,w] if and only if it is for all. If ado is not 

injective [o,w] is not irreducible because in the factorization 13.25. [ado, adw] 

is no isomorphism. Suppose that ado is injective. Then image ado = image ad ~ = 

image(ad ~ o ~) implies that T and hence [~,v] are isomorphisms in 13.26. 

Next we prove 

13.30. Irr(x,y) is a free Aut/(x)-set. 

Let [o,w] : ff/(i,X)(x) --~ y be irreducible. Consider an automorphism [T,v] of 

x in H/(H,res X) such that [o,w] o ff/(i,X)([¢,v]) = [o,w] holds. We must show 

that IT,v] is the identity under the hypothesis that ado is injective. By de- 

finition there is a path (~t,ut) in Mor(ff(i,X)(x),y) from 
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(ooind T,(ind ~) w * ad v) to (o,w) . We have image(ad ~t ) = image(ad o) for all 

t ~ [0,i] so that we can define an automorphism of H/K by ado -I o ad ~t " We 

get a path from (T,v) to (id,c(x)) in Mor(x,x) by (ado-load~t,(ado-load~t~w-*ut). 

Hence [T,v] : x --~ x in N/(H,res X) is the identity. This shows 13.30. 

Let M be the set of orbits 

y(0) meets xK(x) . Then 

0 in res G/L of type H/K such that the H-orbit 

13.31. We have a bijection Irr(x,y)/Aut(x) --~ M sending [o,w] to image ado . 

We leave it to the reader to check that 13.30. and 13.31. imply condition i) and 

13.27. and 13.28. condition ii) in Proposition 10.16. so that a) holds. We get b) 

from 13.31. whereas c) follows from 1.35. and the definitions, o 

Next we treat products. Consider a proper G-CW-complex X and a proper H-CW-complex 

Y . The cartesian product defines a functor 

13.32. I : HI(G,X) x H/(H,Y) • HI(G×H,XxY). 

Using the KOnneth formula we obtain a natural equivalence (see Whitehead [1978] II. 

2.22.) of RH/(G,X) × H/(H,Y)-chain complexes 

13.33. V : cC(x) ®R cC(y) --~ I*cC(xxY) 

The adjoint is denoted in the same way. 

Lemma 13.34. We have a base preserving isomorphism of RH/(GxH,XxY)-chain complexes 

with preferred equivalence class of bases 

c V : l,C (X) ~R cC(y) ~ cC(xxY) 

Remark 13.35. The statements above have analogues for the cellular ROr/G-chain 

complex cC(x) of a proper G-CW-complex X . Let F : H/(G,X) --~ Or/G be the ob- 

vious forgetful functor. Then induction with F applied to the cellular RH/(G,X)- 

chain complex gives just the cellular ROr/G-chain complex. Hence we have also a 

cellular equivalence class of bases for the cellular ROr/G-chain complex. Given a 

pair of proper G-CW-complexes (X,A) there is an exact sequence of ROr/G-chain 
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complexes 0 ~ cc(A) ~ cC(x) ---+ cC(x,A) and analogously for G-push outs. More- 

over, we have by induction an admissible functor Or/i : Or/H ~ Or/G if i:H-~G 

is an inclusion of Lie groups with finite G/H . The advantage of the cellular ROr/G- 

chain complex cC(x) is that it lives over a category independent of X . If X is 

a proper G-CW-complex with simply connected fixed point sets X H for H c G then 

F : H/(G,X) --~ Or/G is an equivalence of categories and it does not matter whether 

we work over ~/(G,X) or Or/G . o 

Comments 13.36. The cellular chain complex translates geometric information, given 

by a G-CW-complex structure, into algebraic information, given by a ~/(G,X)-chain 

complex. A lot of geometric statements about G-CW-complexes have algebraic analogous 

for chain complexes. The way back from algebra to geometry is given by the Equi- 

variant Realization Theorem. It is originally proved in Wall [1966] for G = i . 

Other versions can be found in Smith [1986], [1987]. 

We emphasize again the strong analogy between our notions and results over ZH/(G,XI) 

and their non-equivariant analogues over Z~I(X) . Therefore we denote the ZH/(G,X)- 

chain complexes cC(x) and cS(x) , their homology HC(x) and HS(x) , the Hure- 

wicz map h(X) : ~n(X) --~ HS(x) as in the non-equivariant situation. It is some- 

times useful to forget their complicated structure but think of them as if one has 

no group action. 

Because of this analogy there are no big conceptual difficulties to extend the 

ordinary obstruction theory as developed in Whitehead [1978] V.5 to the equivariant 

case (see Bredon [1967]). We indicate in the exercises how to deal with equivariant 

homology and cohomology theories (see also tom Dieck [1987], 11.6, lllman [1975], 

Willson [1975]. 

Exercises 13.37. 

i~ Let 0(2) act on ~2 in the obvious way. Let the 0(2)-space S 2 be the one- 

point compactification of ~2 . Compute the cellular ZH/(O(2);S2)-chain complex 

cC(s 2) . 

2) Compute the cellular ZOrZ/2-chaiN t0mplex of SV for any real Z/2-representation 

V . 
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Is Or/i : Or/T n-I ~ Or/T n for the inclusion i : T n-I ---~ T n of tori ad- 

missible? 

Let G be a Lie group and X a proper G-CW-complex. Then X is G-homotopy 

equivalent to a n-dimensional G-CW-complex for n ~ 3 if and only if the cellular 

Z~/(G,X)-chain complex cC(x) is Z~/(G,X)-homotopy equivalent to an n-dimensional 

one, 

Let G be a compact Lie group and X be a G-CW-complex. Suppose that the forget- 

ful functor F : H/(G,X) ~ Or/G is an equivalence of categories and for the 

singular ZOr/G-homology H~(X) = 0 for 0 <m~d and Hs(X)o ~ H~(G/G) holds. 

Prove that then X is G-homotopy equivalent to a G-CW-complex Y with a single 

G-fixed point as d-skeleton. 

A G-homology theory H, for a topological group G with values in the abelian 

category ~ is a collection of functors H : {pairs of G-spaces} --,~ satis- 
n 

fying 

i) Homotopy invariance. 

f,g : (X,A) --~ (Y,B) 

ii) Exactness. 

For any G-NDR-pair (X,A) 

and j are the inclusions 

H +I(X A) .° . v 
n 

iii) Excision 

G-homotopic => Hn(f) = Hn(g) 

there is a natural long exact sequence where i 

Hn(i) Hn(J) 
, H (A) , H (X) , H (X,A) , ... 

n n n 

Let X be the union A U B of two closed G-spaces such that (A,A N B) is 

a G-NDR-pair. Then the inclusion i induces an isomorphism 

Hn(A,A O B )  --" Hn(X,B) . 

iv) Dimension axiom. 

H (G/H) = 0 for n > 0 . 
n 

Let G be a compact Lie group. Show that the singular ROr/G-homology H s defines 

a G-homology theory {pairs of G-spaces} --~ MOD-ROr/G . Prove that the same is 

true for the cellular homology H c : {pairs of G-CW-complexes} --~ MOD-ROr/G. 
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7) 

8) 

Let H~ be any non-equivariant homology theory with values in R-MOD. Let G be 

a compact Lie group. Show that the composition of H~ with X/ : Or/G -~ {top.sp.} 

map(G/H,x)G/WHo = xH/wH °  yields a G-homology theory {pairs of G-spaces} G/H 

--~ MOD-ROr/G . Treat also the case of a cohomology theory. 

Let G be a compact Lie group. Consider a pair of G-spaces (X,A) and a ROr/G- 

comodule M , i.e. a covariant functor Or/G --* {R-MOD} . Let Hn(X;M) be 

Hn(CS(x) ®ROr/G M) . Show that we obtain a G-homology resp. G-cohomology theory 

with values in R-MOD . 

9) Let H, be a G-homology theory for the topological group G with values in the 

abelian category ~ . Given a G-CW-complex, define a chain complex C(X) in~ 

& A 

Hn(Xn,Xn_ I) --* Hn_l(Xn_l,Xn_ 2) ~ ... 

by 

where A is Hn(Xn,Xn_l) _~8 Hn_l(Xn_l) _i t Hn_l(Xn_l,Xn_2). 

a) Show that there is a natural isomorphism H,(X) ~ H,(C(X)) 

b) Prove that C(X) depends only on the G-CW-complex structure and the functor 

H °  : Or/G --~ J~ G/H --* Ho(G/H ) . Here Or/G has as objects all homo- 

geneous spaces and G-homotopy classes of G-maps G/H --* G/K as morphisms. 

c) Let K, be a second G-homology theory. If there is a natural equivalence 

between H °  and K : Or/G --* ~ then H and K : (pairs ofG-CW-ccmpl.} 
o n n 

~ are natural equivalent, o 
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14. Comparison of geometry and algebra. 

In this section we introduce the algebraic counterparts of the geometrically defined 

groups waG(x) , whG(x) , KGn(X)_ and uG(x) and invariants wG(x) , ~G(x) and 

xG(X) of chapterI. Wealsoestablishalgebraic ~_rsicnsof the variousproduct and restriction 

formulas. We show that the algebraic and geometric approach agree. In the sequel G 

is a Lie group and any G-space X is required to satisfy assumption 8.13. Recall that 

this means for a G-CW~complex X that all isotropy groups G are compact. 
x 

We start with introducing algebraic K-groups of a G-space X . Recall that we have 

assigned to X an EI-category, the discrete fundamental category H/(G,X) in De- 

finition 8.28. In section i0 we have defined for an EI-category F algebraic K- 

groups Kn(RF) (Definition 10.7), Wh(RF) (Definition 10.8 ), U(F) (Definition 10.9 ) 

and K (RF) (Definition 10.28 ). In this context recall assumption 9.1. about the n 

ring R that the notion of the rank of a finitely generated R-module is specified. 

Definition 14.1. Let X be a G-space. Define 

K~(X;R) := Kn(R~/(G,X)) n ~ Z 

whG(x;R) := Wh(Rn/(G,X)) 

uG(x) := U(N/(G,X)) 

K~(X;R) := Kn(RN/(G,X)) n ~ Z 

If R is Z we write briefly K~(X),whG(x) and KG(x) . 
. . . . . . .  n 

14.2. Let f : X --~ Y be a G-map. We obtain by induction with H/(G,f). homo- 

morphisms f, : K~(X) --~ K~(Y) , f, : whG(x) --~ whG(y) , f, : uG(x) --~ uG(y) , 

and f~'~ : KG(X)n ~ K~(Y) " Let h : X×I --~ Y be a G-homotopy between f and 

g : X --~ Y . It induces a natural equivalence between H/(G,f) and N/(G,g) so 

that f, = g, holds by Proposition 10.6. We obtain covariant functors {G-spaces} 

--~ {abel.gr.} by K~, Wh G, U G and ~Gn satisfying f =G g ~> f''' = g* " G 

14.3. The Definitions 5,1 and 14.1 of uG(x) coincide by Remark 8.34. u 
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14.A. The finiteness obstruction 

Now we introduce the algebraic invariants we are interested in. Consider a finitely 

dominated G-CW-complex Y . Let (X,r,i,h) be a finite domination. Then we obtain 

by 13.4 and 13.6 Z~/(G,X)-chain maps CC(r) : r,CC(x) ---+ cC(y) and r,CC(i) : 

r,i,cC(y) --~ r,cC(x) , a Z~/(G,X)-chain isomorphism cc(h) : cC(y) --~ r,i,cC(y) 

and a ZH/(G,X)-chain homotopy between cC(r) o r,CC(i) o cc(h) and the identity. 

Hence cC(y) is a finitely dominated RH/(G,X)-chain complex. We have defined its 

finiteness obstruction o(CC(y)) ~ K (ZH/(G,Y)) and its Euler characteristic 
O 

x(cC(y)) ~ U(ZH(G,Y)) in Definition 11.1 and 11.19. 

Definition 14.4. Let X be a finitely dominated G-CW-oomplex. Define its algebraic 

finiteness p bstruction resp. reduced finiteness obstruction 

oG(x) ~ K~(X) , oG(x) ~ K~(X) 

and its Eulercharacteristic 

xG(x) ~ uG(x) 

by o(cC(x)),o(CC(x)) and X(ce(x)) for the cellular ZN/(G,X)-chain complex cC(x) . 
D 

Remark 14.5. 

By Proposition 2.12 there is a finitely dominated G-CW-complex 

topy equivalence f : X --~ Y . Now define oG(y) by f,oG(x) . 

Theorem 14.6. 

a) Obstruction property 

Let G be a compact Lie group and X be a finitely dominated G-space. Then 

G-homot0py equivalent to a finite G-CW-eomplex if and only if oG(x) ~ K~(X) 

This can easily be extended to a finitely dominated G-space Y . 

X a n d  a G - h o m o -  

X is 

vanishes. 

b) Homotopy invariance. 

Let f : X --~ Y be a G-homotopy equivalence between finitely dominated G-spaces. 

Then we have f,oG(x) = oG(y) and f,xG(x) = xG(y) . 
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C) Additivity 

Consider the G-p.ush out of finitely dominated G-spaces with i a G-cofibration 

Then we have 

and 

X o ~ X I 

X2 J2 ~ X 

oG(X) = jI#G(xI ) + J2,oG(X2 ) - Jo,oG(Xo ) 

xG(x) = JI,xG(xI ) + Jz~XG(x2 ) - Jo xG(Xo ) 

Proof. Let (Y,r,i) be a finite domination of the G-CW-complex X . By the Lemma 

14.7 below we can attach finitely many cells to Y to extend r to a (G,2)-con- 

nected map r : Y--~ X . Byrestriction to the 2-skeleton we obtain a 2-dimensional 

finite G-CW-complex Z and a (G,2)-connected map f : Z --~ X . By Lemma 8.35 

H/(G,f) : ~/(G,Z) --~ ~/(G,X) is an equivalence of categories. Consider the Z~/(G,Z)- 

* c Hk(Conee(f ) chain map cC(f) : cC(z) ---+ f C (X) • We have ) = 0 for k ~ 2 . Hence 

Cone(CC(f)) is ZH/(G,Z)-homotopy equivalent to E3F for an appropriate projective 

ZH/(G,Z)-chain complex F . We get from Theorem 11.2. that o(F) = -o(Cone(cC~)) = 

-g(cC(z)) + g(f*cC(x)) = g(f*cC(x)) = f*(g(cC(x)) = 0 so that F can be choosen 

as a finite free Z~/(G,Z)-chain complex. If g : E3F ~ Cone(CC(f)) is a ZH/(G,Z)- 

homotopy equivalence, define the following commutative diagram with exact rows by 

requiring that the right square is a pull-back 

0 ~ cC(z) '~ Cyl(CC(f)) ~ Cone(CC(f)) 

0 ~ cC(z) ~ D --~ E3F 

Then D is a finite free ZII/(G,Z)-chain complex with DI2 

0 

~0 

= cC(z)~21 and the 
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~t 
composition h : D > Cyl(CC(f)) -P~ f*cC(y) is a ZH/(G,Z)-homotopy equi- 

valence with h o i = cC(f) . By Theorem 13.19. we can extend f : Z --~ X to a 

G-homotopy equivalence F : Y--~ X with a finite G-CW-complex Y as source. 

b) follows from 13.4 , 13.6 and Theorem 11.2. 

c) Use Lemma 2.13 to substitute the G-push out of finitely dominated G-spaces by 

a G-push out of finitely dominated G-CW-complexes. Then apply Theorem 11.2 and 

Lemma 13.7. m 

Now we verify the promised lemma. Notice that only here the compactness of G is 

needed in the proof of Theorem 14.6. 

Lemma 14.7. Let G be a compact Lie group. 

a) If X is a finitely dominated G-space then ~o(X H) 

is finitely presented for any x ~ X H and H c G . 

is finite and ~I(XH,x) 

b) Let f : X --~ Y be a G-map between G-CW-complexes of finite orbit type. 

Suppose that ~o(X H) and ~o(Y H) are finite, ~I(XH,x) is finitely generated for 

x ~ X H and ~I(YH,y) is finitel Y ~resented for y ~ yH where H runs over 

Iso X U Iso Y . 

Then we can extend f to a G-map g : Z --~ Y such that g is a n-isomorphism and 

(Z,X) is a relatively finite pair of G-CW-complexes ,. 

Given 3 ~ c Con G , we call a G-map f : X --~ Y a ~-N-isomorphism if for any 

(H) ~ T the maps ~o(f H) : ~o(X H) --~ ~o(Y H) and ~l(fH,x) : ~l(XH,x) --~ ~I(YH~x) 

for any x ~ X H are bijective. If 3 ~ is Con G we omitt ~ . For the proof of 

Lemma 14.7. we need 

Lemma 14.8. Let A be a finitely generated group and B a finitely presented 

group. Then the kernel of an epimorphism f : A --~ B is finitely generated as 

normal subgroup. 

Proof. Let IX : R] be a finite presentation of B and Y a finite set of ge- 

nerators for A . Let F(X lilY) resp. F(X) be the free group generated by the dis- 



281 

joint union X I~ Y resp. X. Denote by q : F(X) --• B the epimorphism induced by 

[X : R] . Let p : F(X[!Y)--• A be defined by py = y for y ~ Y and px = z 

for x ~ X where z is any element in A with fz = qx. If j : F(X) -~ F(X+Y) 

is the inclusion there is a retraction r : F(X~I_Y) ~ F(X) of j making the 

following diagram commute 

r 

F(X~Y) • F(X) 

I- [q 
f 

A "• B 

By Crowell-Fox [1963], p. 43+44, the finite set M=j(R) U{y-(jor(y))-iIy ~ Y} 

generates kernel q or = kernel f o p as a normal subgroup. Hence kernel f is 

generated as a normal subgroup by the finite set N = {p(m) Im ~ M} • [] 

Proof of Lemma 14.7 

a) A retract of a finitely presented group is again finitely presented (see Wall 

[1965], Lemma 3.1). Hence it suffices to treat the case of a finite G-CW-complex X. 

Since G/K H is a finite disjoint union of WH-orbits (see Theorem 1.33 ) X H is a 

finite WH-CW-complex. By Lemma 7.4 X H is homotopy equivalent to a finite CW- 

complex A . Obviously ~o(A) is finite. The fundamental group ~l(A,a) has a 

finite presentation by Schubert [1964], III 5.7. for any a ~ A . 
i 

b) Since ~o(Y H) is finite for (H) ~ ~ = {(K) I K ~ Iso X U Iso Y} and 

~I(YH,y) is finitely generated for Y ~ yH and (H) ~ ~ , we can make f: X-~Y 

X H -1-connected. Now consider (H) ~ ~j x ~ , y = fx ~ yH and the group homo- 

morphism ~l(fH,x) : ~I(XH,x) --• Vl(YH,y) . Its kernel is finitely generated as 

normal subgroup because of Lemma 14.8. Hence we can achieve by attaching finitely 

many cells G/H × D 2 that ~l(fH,x) is an isomorphism. As X and Y have finite 

orbit type we can assume without loss of generality that f is a ~ -H-isomorphism. 

It remains to show that f is even a H-isomorphism. 

By attaching cells G/H × D 2 for (H) ~ ~ by trivial maps G/H S1 pr × - - •  

G/H --• X we obtain a (~,2)-connected extension f : X --• Y. By Proposition 2.14 
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is even (G,2)-connected. Up to homotopy ~K comes from X K by attaching 

trivially two-cells D 2 and cells D r of dimension r a 3 so that the inclusion 

X ~ X is a q-isomorphism. Therefore f is a n-isomorphism. [] 

Proposition 14.9. Let G be a compact Lie group and X a G-CW-complex of finite 

orbit type. 

a) The following statements are equivalent. 

i) X is finitely dominated. 

ii) X is G-homotopy equivalent to a skeletal finite G-CW-complex and G-homo- 

topy equivalent to a finite-dimensional G-CW-complex. 

o (XH) is finite for H ~ Iso X and ~I(XH,x) is finitely presented iii) 

fo___Kr x ~ X H and H c Iso X and the cellular ZH/(G,X)-chain complex 

cC(x) is finitely dominated. 

b) X is G-homotopy equivalent to a skeletal finite G-CW-complex if and only if 

o (XH) is finite and Zl(XH,x) is finitely presented and cC(x) __is ZH/(G,X)- 

homotopy equivalent to a finitely generated free ZH/(G,X)-chain complex. 

c) X is G-hemotopy equivalent to a n-dimensional G-CW-complex for n ~ 3 if and 

only if cC(x) i_~s ZN/(G,X)-homotopy equivalent to a n-dimensional ZH/(G,X)- 

chain complex. 

Proof. 

b) The "if" statement is the non-trivial part. By Lemma 14.7 there is a finite 

G-CW-complex Z and a H-isomorphism f : Z --~ X. Since cC(x) is up to homotopy 

finitely generated free I Cone(cC(f) : cC(z) ~ f*cC(x)) is homotopy equivalent to 

a finitely generated free ZE/(G,X)-chain complex D by Lemma 11.6. Since 

H n (Cone(CC(f))) is zero for n = 0,I we have the exact sequence 

0 --~ kernel(d 2 : D 2 ~ DI) ~ D 2 ~ D 1 --~ D O ~ 0 

Therefore kernel d 2 and H2(D) = H2(Cone cC(f)) are finitely generated. Because 

of Proposition 13.10 and Theorem 13.15 n2(f) is a finitely generated ZH/(G,X)- 

module. Hence we can attach finitely many cells to Z to mske f (G,2)-connected. 
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We can assume without loss of generality that f : Z --~ X is (G,2)-connected and 

Z a finite two-dimensional G-CW-complex. 

As in the proof of Theorem 14.6 we construct a finitely generated free ZH/(G,Z)- 

chain complex C with C12 = cC(z) and a homotopy equivalence g : C --~ f*cC(x) 

extending cC(f) : cC(z) --~ f*cC(x) . By Theorem 13.19 we can extend f : Z -~ X 

to a G-homotopy equivalence f : Z --~ X such that Z is skeletal finite. 

c) follows from Theorem 13.19. 

a) i) => iii) is obvious. The implication iii) => ii) follows from b) and c) and 

Proposition ii.ii. Next we prove ii) => i). Without loss of generality we can assume 

that X is n-dimensional and that there is a skeletal finite G-CW-complex Y to- 

gether with a G-homotopy equivalence f : Y -~ X . Let r : Y ~ X he its n 

restriction to the n-skeleton. Since r is (G,n)-connected r, : [X,Yn] -~ [X,X] 

is surjective by Proposition 2.3. Hence there is i : X --~ Yn with roi =G id so 

Y dominates X . D 
n 

Criterions for RF-chain comp]exes to be finitely dominated, finitely generated or n- 

dimensional can be found in section ii. See also Wall [1966] for the case G= {i}. 

By Theorem 14.2 we obtain by oG(x) ~ K~(X) a functorial additive invariant for 

the category with cofibrations and weak equivalences having finitely dominated G- 

spaces as objects. Because of Theorem 6.9 there is a natural transformation 

14.10. ~ : Wa G ® U G ~ K G 
o 

uniquely determined by the property that #(X)(wG(x),xG(x)) = oG(x) for any finitely 

dominated G-space. It induces a natural transformation 

14.11. ~ : Wa G . . . . .  ~ ~G 
o 

Theorem 14.12. Both ~ and ~ are natural equivalences. 

Proof. We must show for any finitely dominated G-CW-complex Y that 

: waG(y) • uG(y) ---+ K~(Y) is bijective. We start with surjectivity. ~(Y) 
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Let the finitely generated projective Z~/(G,Y)-module P represent [P] ~ K~(Y). 

By the Eilenberg swindle we can find a based free ZE/(G,Y)-chain complex F con- 

centrated in dimension four and five such that F is chain homotopy equivalent to 

4(P). Consider the projection pr : cC(y) • F --~ cC(y) . Allthough this is not a 

chain homotopy equivalence, the construction in Theorem 13.19. yields an extension 

c r : X --~ Y of id : Y ~ Y with r,C (X) = cC(y) • F since F is concentrated 

in two consecutive dimensions. By Proposition 14.9. X is finitely dominated and 

r,oG(x) is oG(y) + [P]. Hence ~(Y) is surjective. 

Let q ~ waG(y) • uG(y) be an element in the kernel of ~(Y) . Without loss of 

generality we can assume the existence of a finitely dominated G-CW-complex X 

and a G-map f : X --~ Y such that ~ is ([f],f,xG(x)) . By Lemma 14.7. we can 

achieve that f is a H-isomorphism so that H/(G,f) is an equivalence of categories 

by Lemma 8.35. Then f, : K~(X) --~ K~(Y) is a bijection and oG(x) vanishes. By 

Theorem 14.6. X is G-homotopy equivalent to a finite G-CW-complex so that 

[f] ~ waG(y) is zero. The homomorphism rk : K G (X) -~ uG(x) sends oG(x) to 
O 

xG(x) by definition. This implies xG(x) = 0 . Hence q is zero. D 

14.B. The Whitehead torsion. 

Now we come to the Whitehead torsion. Consider a G-homotopy equivalence f : X -~ Y 

between finite G-CW-complexos. Then we have a ZH/(G,Y)-chain homotopy equivalence 

cC(f) : c f,C (X) --~ cC(y) between finite free ZH/(G,Y)-chain complexes with pre- 

ferred equivalence class of bases (see Lemma 13.2 , 13.4 and 13.6 ) . 

Definition 14.13. Define the algebraic Whitehead torsion 

by the Whiteheadtorsion 

Theorem 14.14. 

G(f) ~ whG(y) 

T(cC(f)) of cC(f) : f,cC(x) ~ cC(y) (see 12.24.) 

a) Obstruction propert i. 

G-homotopy equivalence between finite G-CW-complexes is simple if and only if its 

algebraic Whitehead torsion TG(f) ~ whG(x) vanishes. 
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b) Homotopy invariance. 

Le__~t f and g : X --~ Y be G-homotopy equivalences between finite G-CW-c0mplexes. 

Then f =G g ~-> G(f) = G(g) . 

c) Additivity 

Consider the following commutative diagram of finite G-CW-complexes such that i 1 

and k I are inclusions of G-CW-complexes, the squares cellular G-push outs and 

fo,fl,f2~_ f ar___ee G-homotopy equivalences. 

X o ~  ~ X 2 ~  

o 
Jo 

Y2 

J2 

~ y  

Then: jl, G(fl) + j2,TG(f2) _ jo,TG(fo) = G(f). 

d) Logarithmic property°  

Let f : X --~ Y and g : Y --~ Z be G-homot0py equivalenqes between fin Ste G- 

complexes. Then G(gof) = G(g) + g, G(f). 

Proof. 

b) follows from 13.4. , 13.6 and Theorem 12.25. 

c) is a consequence of Lemma 13.7 and Theorem 12.25. 

d) follows from Theorem 12.25. 

a) Because of b), c) and d) (whG,~ G) is a functorial additive invariant for the 

category ~ with cofibrations and weak equivalences specified in 6.10. Let Wh G geo 

be the geometric Whitehead group and T G the geometric Whitehead torsion of 
geo 

section four. By Theorem 6.11. there is a natural transformation ~: uG~wh G -~ Wh G geo 
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uniquely determined by the property that it sends (xG(y),~eo(f)) ~ to 

a G-homotopy equivalence f : X --~ Y of finite G-CW-complexes. Since 

is zero~ ~ induces a natural transformation 

14.15. ~ : Wh~eo(Y) ~ whG(y) 

sending ~eo(f) to G(f) . 

Because of Theorem 4.8. we have to show T G (f) = 0 provided that 
geo 

This follows from the next Theorem. o 

Theorem 14.16. The natural transformation $ : Wh G --~ Wh G 
geo 

valence. 

Proof. 

an homomorphism 

We start with introducing a geometric splitting of 

G(f) for 

~G(id:X-~X) 

G(f) vanishes. 

is a natural equi- 

whG(y) . Namely define 

: ~ Wh~eo(EW H yH) --~ Wh~ 
(H) ×WH eo (y) 

by the composition of the following maps. 

~I(H) : ~ Wh I (EWH yH) --~ ~ Wh WH (EWH × yH) 
(H) (H) geo ×WH (H) geo 

where ~I(H) is the isomorphism given by the pull back construction. Its inverse is 

induced by dividing out the WH-action. 

pr, : ~ whWH(EwH x yH) --~ ~ whWH(yH) 
(H) (H) (H) 

if pr : EWH x yH --~ yH is the projection. 

~2(H ) : ~ whWH(yH) --~ ~ whG(G XNH yH) 
(H) (H) (H) 

I ~3 (H) : ~ whG(G ×NH yH) __~ whG(y) 

(H) (H) 

if ~3(H) is induced by G XNH yH --~ y (g,y) --~ g'Y . 

where ~2(H) is given by restriction with NH --~ WH and induction with NH c G , 
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We get from Proposition 8.33. an identification 

WhI(EwH xWH yH) = Split whG(y) 
(H) 

Consider the isomorphism of Theorem 10.34. 

E : Split whG(y) ~ whG(y) 

We obtain a commutative diagram 

WhGeo(Y) 

T 

Wh~eo(EW H xWH yH) 
(H) 

sG 

(M) 

, whG(y) 

II~I E 
Split whG(y) 

(~) WhI(EwH ×WH yH) 

The non-equivariant transformations $I are isomorphisms by StScker [1970] or Cohen 

[1973] § 21. Hence it suffices to show that ~ is surjective since then ~ and sG 

must be isomorphisms. 

Consider [X,Y] ~ whG(y). Choose a numeration {(HI),(H 2) ..... (Hr)} of 

{(H) ~ Con G I H ~ Iso X} such that (Hi) < (Hj) implies i ->_ j . Let X(k) be 
k (Hi) 

the G-CW-subcomplex U X c X and define Y(k) c y analogously. As the G-homo- 
i=l 

topy equivalence Y ~ X induces a G-homotopy equivalence Y(k) --~ X(k) , the 

inclusion Y ---~ X(k) Uy(k) Y is a G-homotopy equivalence by Lemma 2.13. Because of 

Lemma 4.3 there is a G-deformation retraction r(k) : X(k) Uy(k) Y ~ Y . Consider 

the pair (Z(k),Y) with Z(k) = (X(k) Uy(k) Y) Ur(k_l) Y . It defines [Z(k),Y] 

whG(y) . We obtain from Lemma 4.14. in Wh G (Y) geo 

r 

[X,Y] = I [Z(k),Y] 
k=l 

Notice that Z(k) is obtained by attaching cells of type G/HktO Y. For H=H k the 

composition ~3(H) o ~2(H) : whWH(y H) ~ whG(y) sends [Z(k)H,Y H] to [Z(k),Y] . 

Since (Z(k)H,Y H) is relatively WH-free and ~I(H): Whlgeo(E~HXwHYH) -~ Wh~so(E~qxY H) 
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is bijective,it remains to show the following: 

Assume for IX,Y] ~ whG(y) that (X,Y) is relatively G-free. Then IX,Y] lies 

in the image of pr, : whG(EG x y) --• whG(y) . 

Now we construct inductively for n = -1,0,1,2,... a pair of G-CW-complexes (A(n),BGxy) 

such that (A(n) Upr Y,Y) ~ (X n U Y,Y) rel Y holds. The begin n = -i is 

A(-I) = EG × Y , the induction step from (n-l) to n done as follows. Fix a 

simple G-homotopy equivalence f : A(n-1) Upr Y --~ Xn_ 1U Y relative Y and write 

X U Y as the G-push out 
n 

I[ q(i) 
i ~ I 

II G S n-I × Xn_ I U Y 
i ~ I 

1 
1 II Q(i) i 

i ~ I 
II G×Dn ~ X UY 

N 
i ~ I 

We have the push out 

EG × Y pr • y 

pr 
A(n-l) ~ A(n-l) U Y 

pr 

Since pr is a weak homotopy equivalence~the same is true for pr and hence for 

f o pr : A(n-l) --~ X U Y . Therefore we can find G-maps q(i) : GxS n-I --• A(n-l) 
n 

such that f o pro q(i) =G q(i) holds. Let A(n) 

]I G × S n-I i ~ I ~ A(n-l) 

I I 

II G × D n ~ A ( n )  

be the G-push out 

Then (A(n) Upr Y,Y) ~ (Xn,Y) rel Y follows from Lemma 4.12. For 

we end up with (A,EG × Y) such that (A U Y,Y) ~ (X,Y) rel Y 
pr 

n = dimX 

holds. 
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In particular 

applied to 

~AU 
pr 

Y is a weak homotopy equivalence. Because of Lemma 2.13 

EGxY ~ Y 

A ' ~AU Y 
pr 

EG × Y --~ A is a weak homotopy equivalence and by Theorem 2.4 

valence. Hence (A,EG x y) defines an element in whG(EG x y) 

under pr, . This finishes the proof of Theorem 14.16. D 

a G-homotopy equi- 

mapped to IX,Y] 

Remark 14.17. In the present proof of Theorem 14.16. we reduced the claim just to 

the non-equivariant case. We could also give a "global" proof using the Realization 

Theorem 13.19 as we did for the finiteness obstruction , m 

Remark 14.18. If we want to drop the condition that G is compact in Theorem 4.6.a), 

one has to assume that there is a finite G-CW-complex Z and a (G,2)-connected G-map 

Z ~ X . Similar considerations apply to Proposition 14.9. The problem is Lemma 14.7. 

which is only true for compact G. o 

14.C. Product and restriction formulas 

Now we come to the algebraic versions of the product formulas of section seven. 

Let G and H be compact Lie groups. Let ® : uG(x) ® uH(y) --~ uGXH(xxy) and 

® : K~(X) ® K~(Y) --~ KGXH(xxY)o be the composition of ® defined in 10.23 and I..... 

induced by I defined in 13.32. Let ® : uG(x) ® whH(y) ~ whGXH(xxY) and 

® : uH(y) ~ whG(x) --~ Wh GxH be given by 10.24 and 13.32. Then we obtain from 

Proposition 10.46 , 11.18 , 12.30 and Lemma 13.34. 

Theorem 14.19. Product formula. 

a) Let X be a finitely dominated G-CW-complex and 

complex. Then: 

Y be a finitely dominated H-CW- 
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and 

oGXH(xxY) = oG(x)® oH(y) 

xGXH(xxy) = xG(x) ® xH(y) 

b) Let f : X' ~ X be a G-homotopy equivalence between finite G-CW-complexes and 

g : Y --~ Y' analogously over H . Then 

GxH(fxg ) = xG(x) ® H(g) + xH(y) ® G(f) D 

Let i : H ~ G be an inclusion of compact Lie groups of the same dimension. Since 

the functor H/(i,X) : H/(H,res X) --~ N/(G,X) is admissible by Lemma 13.24, it 

induces by restriction i : uG(x) --~ uH(res X) i : KG(x) --~ K (res X) and 
o 

i : whG(x) ~ whH(res X) . (see 10.18 and 10.20 ). We get from Lemma 13.24. 

Theorem 14.20. Restriction formula for codimension zero. 

Le__~t i : H --~ G be an inclusion of compact Lie groups of the same dimension. 

a) If X is a finite G-CW-complex, then i~xG(x) = xH(res X) holds. 

b) If X is a finitely dominated G-space, then we have: i~oG(x) = oH(res X) . 

c) If f : X' --~ X is G-homotopy equivalenc@ between finite G-CW-complexes then 

i~G(f) = ~H(res f) is valid. 

Let G be a finite group and i : G --~ GxG the diagonal map. Let A : H(G,XxY) 

--~ H(G,X) × H(G,Y) be H(G,pr X) × H(G,pry) if X x y carries the diagonal action. 

One easily checks that the functors RESA and RESH(i,XxY) o IND I : MOD-ZH(G,X) x 

H(G,Y) ---+ MOD-ZH(G,Xxy) agree because of res(G/KlXG/K2)H = G/K~ x G/K~ . Since 

H(i,X×Y) is admissible, ~ is admissible. Let the pairings 

® : uG(x) ® uG(y) ~ uG(x×y) 

® : K~(K) ® K~(Y) ~ K~(XxY) 
and 

® : uG(x) ® whG(y) --~ whG(x×y) 

be the compositions of the pairing of 10.23 and 10.24 with 

Theorems 14.19 and 14.20 imply 

A of 10.18. The 
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Theorem 14.21. Diagonal product formula for finite 

a) If X and Y are finite G-CW-complexes we have 

G . 

xG(x×y) = xG(x) ® xG(y) 

b) If X and Y are finitely dominated G-spaces then oG(x×Y) = oG(x) ~ oG(y) • 

c) If f : X' --~ X and g : Y' --~ Y are G-homoto~y equivalences of finite 

complexes then: G(f×g) = xG(x) ® G(g) + xG(y) ~ TG(f) . D 

G- 

Now we want to establish algebraic restriction formulas of diagonal product formulas 

for arbitrary inclusions of compact Lie groups i : H --~ G . This requires some more 

algebra . 

Let F 1 and F 2 be EI-categories. Let hoFACC-RF 2 be the homotopy category of 

RF2-chain complexes possessing a finite approximation. Homotopy category means that 

we take homotopy classes of chain maps as morphism. Given a covariant functor 

F : F 1 --~ ho FACC-RF21we will define for n = 0,I the transfer homomorphism of F 

14.22. trf F : Kn(RFI) --~ Kn(RF2) 

Obviously FBMOD-RF 1 := {fin.gen. based free RFl-mOd. } and ho FACC-RF2areR-additive 

categories (see section i0). Now F extends in a unique way to a functor of R- 

additive categories also denoted by F 

14.23. 

Any morphism f : x --~ y in F 1 

composition. Each RFl-homomorphism 

as 

F : FBMOD-EF 1 --~ ho FACC-RF 2. 

induces f, : R Hom(?,x) --~ R Hom(?,y) by 

R Hom(?,x) --~ R Hom(?,y) can be uniquely written 

An arbitrary morphism in FBMOD-RF 1 

( I rf 
f ~ Hom(xi,x j )  

It is sent by F to 

I rf • f, . 

f ~ Hom(x,y) 

looks like 

r 
• f")i j ~ R Hom(?,x i) --~ 

,, , i=l 

s 

R Hom(?,yj) 
j=l 



292 

I r s 
• • • : ~ F ( x . )  --~ ( rf F(f))1, j i=l i j=l F(yj) 

f ~ Hom(xi,x j) 

We next define trf F for n = 1 . Let the automorphism f : M ~ M in FBMOD-RF 1 

represent [f] ~: KI(RF I) . We have assigned to the self-equivalence F(f) of the 

RF2-chain complex F(M) having a finite approximation its self-torsion t(F(f)) 

KI(RF 2) in 12.18. We define 

14.24. trfF([f ]) = t(F(f)) 

This makes sense because of the properties of the self-torslon listed in Example 12.17. 

Now we consider n = 0 . Let the finitely generated projective RFl-mOdule P re- 

present [P] ~ Ko(RF I) . Choose p : M -~ M with pop=p and image p = P in 

FBMOD-RF I. We have assigned to the homotopy projection F(p) : F(M) --~ F(M) its 

finiteness obstruction o(F(p)) ~ Ko(RF 2) in Definition 11.26. Because of Theorem 

11.27. we can define 

14.25. trfF([P ]) = o(F(f)) . 

Proposition 14.26. Let F and E' : F 1 -~ ho-FACC-RF 2 be given. Suppose the 

existence of a natural transformation ~ : F --~ F' such that ~(x) : F(x) --~ F'(x) 

is a weak homology equivalence for any object x in F 1 . Then 

trf F = trfF, 

Proof: Theorem 11.27. and Example 12.17. o 

Let ho FDCC-RF 2 be the homotopy category of finitely dominated RF2-chain 

complexes or, equivalently of RF2-chain complexes of the homotopy type of a finite 

projective RF2-chain complex. Suppose now that F is a functor F I -~ ho FDCC-RF 2. 

Given x ~ Ob F 1 and y ~ Ob F 2 , let F(x,y) be the functor where i is the 

obvious inclusion of the groupoid Aut(x) A associated with Aut(x) 

Sy 
F(x,y) : Aut(x) A i F1 F > ho FDCC-RF 2 ~ ho FDCC-R[y] 

It induces trfF(x,y ) : Kn(R[x]) --~ Kn(R[y ]) . Let 
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Split trf F : Split Kn(RF I) ~ Split Kn(RF 2) 

be given by (trfF(x,y) IX ~ Is F 1 , y ~ Is F 2) . 

Proposition 14.27. If E and S are the inverse isomorphisms of Theorem 10.34. 

we have the commutative diagram for n = 0,i 

trf F 
Kn(RF I) , Kn(RF 2) 

I E t S 
Spl i t  t r f  F 

Spl i t  Kn(RF 1) ~ Spl i t  Kn(RF 2) 

The functor F(x,y) : Aut(x) A -~ ho FDCC-R[y] is the same as a chain homotopy repre- 

sentation (C,U) , i.e. a finitely dominated R[y]-chain complex C together with 

a homomorphism of moniods U : Aut(x) --~ [C,C]R[y ] . Namely, let C be F(x,y)(R[x]) 

and U send f ~ Aut(x) to F(x,y) applied to the R[x]-map of right R[x]-modules 

R[x] --~ R[x] g --~ f o g . The homomorphism trfF(x,y ) is studied in L~ck [1986], 

[ 1987 ]  . 

Example 14.28. 

F! : F 1 --, hoFDCC-RF2bY sending 

O(Hom(?,Fy)) . Recall that 0( ) 

ted in dimension zero. Then F, 

map Kn(RF I) --~ Kn(RF 2) . 

Suppose that F is admissible. Then F 

by s~nding y to 0(F*RHom(?,y)).Tnen trfF! 

Consider a covariant functor F : F 1 --~ F 2 . It induces a functor 

f : x ~ y to [0(F(f),)] :0(RMom(?,Fx))---~ 

denotes the corresponding chain complex concentra- 

defined by induction and trf F yield the same 

! 

defines a functor F" : F 2 -~ hoFDCC-RF 1 

and F : Kn(RF2) --~ Kn(RF I) agree. 

14.29. When does F : F 1 -~ ho FDCC-RF 2 induces also a homomorphism trf F : Wh(RF 1 

--, Wh(RF 2) ? Consider for x ~ Ob F 1 the homomorphism ~(x) : Aut(x) -~ Wh(RF 2) 

sending f ~ Aut(x) to t(F(f)) considered as an element in Wh(RF 2) . If each 

homomorphism ~(x) vanishes r trf F : KI(RFI) --~ KI(RF 2) induces trfp : Wh(RF I) 

--~ Wh(RF 2) . We have to check for a trivial unit u-~ : E Hom(?,x) -+ E Hom(?,x) 

that the projection of its image under trf F into Wh(RF 2) vanishes. Since u.f, 

is (u.id) o f, we may assume f-=id . But F(u'id) is u'id : F(x) -" F(x) and hence 
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t(F(lu-id)) is zero in Wh(RF 2) u 

Let i : H --~ G be an inclusion of compact Lie groups and 

to define a functor 

X a G-space. We want 

14.30. F : [[/(G,X) --~ ho FDCC-RH/(H,res X) 

into the homotopy category of finitely dominated RH/(H,res X)-chain complexes. 

Given an object x : G/K ~ X , define F(y) by (res s - -  x),C (res G/K) . Consider a 

morphism [o,w] : x --~ y in H/(G,X) from x : G/K --~ X to y : G/L --~ X . 

Choose a morphism (o,w) : x --~ y in N(G,X) representing [o,w] . We get from 

res w a natural equivalence ~w between the induction functors (res x), and 

(res y ores o), . Let F([o,w]) : F(x) -~ F(y) be the homotopy class of the compo- 

sition~ if we write G/K instead of res G/K . 

~w ( c s (~/K) ) (~ y),(cS(~ o9 
14.31. (res x),cs(G/K) ~ (res y),('res o),cs(G/K> -~ (resy),CS(G/K) . 

We leave it to the reader to check that F([o,w]) is independent of the choice 

(o,~) ~ [o,w] . 

Example 14.32. Let X be a point. Then 14.30. reduces to a functor 

F : Or/G ~ FDCC-ROr/H 

sending [o] : G/K--~ G/L to [cS(res o)] : CS(res G/K) ~ cS(res G/L) 

We get from 14.22. and 14.30. an homomorphism 

14.33. trf F : K~(X) ~ KH(reSn X) 

for n = 0';I . Next we show that trf F induces a map 

14.34. trf F : whG(x) --~ whH(res X) 

Because of 14.29. we must show that the homomorphisms ¢(x) : Aut(x) --~ Wh(RF 2) 

vanish. One easily checks that ¢(x) of 14.29. factorizes over the geometrically 

defined map Cgeo(X) of 7.5. 
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~(x) 
AutH/(G,x)(X) ~ whH(res X) 

IP r ~' I SH(res X) 

Wh H (res X) Autn (G'x)(X) (x) geo 
o ~geo 

where pr is the epimorphism induced by the cannonical projection H/(G,X) -~o(G,X) 

Hence all the maps #(x) vanish if all the homomorphisms ~geo(X) vanish, i.e. 

X is simple with respect to H c G (Definition 7.7 ). But this is true by Lemma 

7.27. 

One easily verifies that we also get a map 

14.35. trf F : uG(x) ..... • uH(res X) 

since uG(x) = K~(ZH/(G,X)) and UH(res X) = K~(ZH/(H,res X) by Proposition 10.42. 

Definition 14.36. 

the homomorphisms 

Let i : H ~ G be an inclusion of compact Lie ~roups. Define 

i : uG(x) ~ uH(res X) 

i : KG(x) ~ KH(res  X) 
n n 

i : whG(x) ~ whH(res  X) 

n = 0,i 

by the transfer homomorphisms trf F associated with the functor 

F : N/(G,X) --~ ho FDCC-ZH~(H,res X) [] 

One easily verifies that i is a natural transformation between the covariant 

functors U G and U H o r e s ,  r e s p .  K G and K H o r e s  r e s p .  Wh G and Wh H o r e s  
n n 

from {G-spaces} to {abel. gr.} . If H and G have the same dimension i of 

Definition 14.36. agrees with i defined by restriction because of Example 14.28. 

Theorem 14.37. Restriction formula 

Le___!t i : H '" ~ G be an inclusion of compact Lie groups. 

a) If X is a finite G-CW-complex then i*xG(x) = xH(res X) . 
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b) If X is a finitely dominated G-space then i oG(x) = oH(res X) . 

c) Let f : X ~ Y be a G-homotopy equivalence between finite G-CW-complexes. 

We have defined H (res f) ~ Wh H (res X) in 7.22. Then its image under 
geo geo -- 

~H(res X) : Wh H (res X) --~ whH(res X) is i*(~G(f)) . 
geo 

The Theorem 14.37. is equivalent to the next result. Let Res be the natural trans- 

formation of Theorem 7,25. and Res the induced one. Consider the diagrams 

14.38. 
Res X 

uG(x) ® waG(x) -~ uH(res X) • waH(res X) 

[ ~GX , i ~H(res X) 

i 
KG(x) ~ KH(res X) 
o o 

14.39. 
Res X 

Wh G (X) ~ Wh~eo(res X) geo 

] ~GX , 1 ~H(res X) 

i 
whG(x) • whH(res X) 

Proposition 14.40. The diagrams 14.38. and 14.39. are commutative. 

Proof. We give the proof only for 14.39. the other case is similar. The general 

strategy is based on the observation that one can realize any element in Wh G (X) geo 

by a pair of finite G-CW-complexes (Y,X) such that Y is obtained from X by 

attaching cells of dimension n and n+] only (Proposition 4.57.). The construction 

7.10. yields a pair of finite H-CW-complexes (Y',X') together with a H-homotopy 

equivalence f : X' --~ X satisfying TH(res(Y,X)) = f,[Y',X']. Then one computes 

cT that the cellular ZH/(H,res X)-chain complex f,C (Y ,X') is based isomorphic to 

the mapping cone of some representative of F(c) if F is the functor 14.30. and 

c : C~+I(Y,X) --~ C~(Y,X) is the differential. This implies by definition of the 

transfer that trf F °  ~G(x)([Y,X]) = ~H(resX)(res(Y,X)) holds what is to be proved. 

The main step is the computation of f,cC(y',x ') . For simplicity we assume that X H 

is non-empty and simply connected for H c G . The general case is notationally, 

but not conceptually , more complicated. We leave it to the reader to derive the ge- 
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neral proof from the one we give now. Also the proof in LUck [ 1986 ] , section 7, 

may serve as a pattern. 

If X H is non-empty and simply connected for all H c G t the projection pr : X-~ {*} 

induces an equivalence of categories H/(G,pr) : N/(G,X) --> N/(G,*) because of 

Lemma 8.35. so that pr, : whG(x) --~ whG(*) and pr, : whH(res X) -~ whH(*) are 

isomorphisms. By naturality it suffices to consider X = * . This has the advantage 

that now everything takes place over the orbit category Or/G = H/(G,*) . The proof 

is based on the following commutative diagram we explain now. 

14.41. whG(~) 

Aut(® CoC(G/K)) ~ Aut(VG/K+AS n) 

c o I 
Aut(~ cS(re G/K)) o Aut(~ cc(z)) ~ Aut(VZ+~S n) 

Wh H ( * ) 

We fix K ¢ G , an integer n ~ 2 and a finite index set I . All sums • and 

wedges V run over I . We choose a finite H-CW-eomplex Z and a H-homotopy equi- 

valence z : Z --~ res G/K . Let Z+ resp. G/K+ be the pointed space Z_~_* resp. 

G/K_~ * with * as base point. Consider 8 n as a pointed space. Let Aut(VG/K~S n) 

resp. Aut(VZ+AS n) be the group of pointed G- resp. H-homotopy classes of pointed 

G- resp. H-self equivalences. Restriction to H and conjugation with the H-homotopy 

equivalence Vz+.A id : M'Z+Aid --~ Vres G/K+~S n defines c I . The homomorphisms 

G H and ~ are given by the equivariant Whitehead torsion mapped into 

whH(*) by the homomorphism induced by the projection onto * . Let Aut(~cS(resG/K~ 

and Aut(~ cC(z)) he the ~roup of homotopy classes of self-chain equiva~nces. Notice 

that cC(G/K) is concentrated in dimension zero and cO(G/K) = Z Ilom(?,G/K) = 
o 

= Z[?,G/K] G is based free. Let Aut(~ C~(G/K)) be the group of automorphisms of the 

finitely generated based free ZOr/G-module • C~(G/K) and ~ be given by the functor 
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of Example 14.32. The map o I is given by applying C c , conjugation with the 

suspension isomorphism ZnCC(z) ~ cC(vz+2~S n) and applying Z -n . Define o °  

analogously. If ~ : ® cC(z) ~ ® cS(z) is the homotopy equivalence of Propo- 

sition 13.10. c sends the class of ~ : ® cS(res G/K) --~ ® CS(res G/K) to the 
o 

class of #' : ® cC(z) --~® cC(z) if ~o ®CS(z) o ~ ®cS(z) ~ ~ o ~' holds. The 

homomorphisms t are given by the absolute torsion. It follows from the definitions 

that the diagram 14.44 commutes. 

By Proposition 4.157 and Theorem 10.34 any element in whG(*) can be written as a 

sum of elements of the shape TG(f) for some K , I and [f] ~ Aut(VG/K+AS n) • 

Hence it suffices to prove Res(*)(TG(f)) = i*(~G(f)) . We get from the definitions 

that Res(,)(G(f)) = H o cl(f ) for [f] ~ Aut(VG/H)+f~S n) and i o t(g) = t oF(g) 

for g ~ Aut(® C~(G/K)) holds. Now the claim follows from 14.41 [] 

Let G be a compact Lie group. Define pairings 

® : K~(X) ® K~(Y) ~ KG(xxY)o 

® : uG(x)® uG(y) ~ uG(x×y) 

® : uG(x) ® whG(y) ~ whG(XxY) 

as the composition of the pairings appearing in Theorem 14.19. for H = G 

® : K~(X) ® K~(Y) --~ KGXG(xxY)o 

- : uG(x) ® uG(y) --~ uGXG(x×y) 

® : uG(x) ® whG(y) --~ whGXG(xxy) 

with i : KGXG(xxY) --, K (XxY) i : uG×G(xxY) --, uG(xxY) and i : whGXG(xxy) 
O ~ 

whG(xxY) . We get from Theorem 14.19. and Theorem 14.37. the following generali- 

zation of Theorem 14.21. 

Theorem 14.42. Diagonal product formula 

Let G be a compact Lie group. 

a) If X and Y are finite G-CW-complexes, we have xG(xxy) = xG(x) ® xG(y). 
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b) If X and Y are finitely dominated G-spaces then oG(xxY) = oG(x)~ oG(y) . 

c) If f : X' --, X and g : Y' --~ Y ar_~e G-homotopy equivalences of finite G-CW- 

complexes then G(f×g) = xG(x) ® G(g) + xG(y) ® G(g) . o 

Remark 14.43. Similarly to Proposition 14.40. also the product and diagonal product 

formulas defined geometrically in section seven and algebraically in this section 

agree under the natural equivalences ~ and $ . 

~(X) : waG(x) --~ Wh G (XxSI). Since 
geo 

H/(G,X) x Z --~ [I/(G,XxSI), we obtain 

an algebraic homomorphism B(X) : K~(X) ~ whG(XxS I) • We have defined 

such that the following holds (compare Ranicki [1986], Proposition 3.11 

We have defined in 7.34 geometrically a map 

there is an obvious equivalence of categories 

from 10.49 

in 10.49 

Proposition 14.44. The following diagram commutes 

waG(x) ~(X) ~ Wh G (XxS I) 
geo 

I SG(x) [ SG(x×sI) 

~G(x ) B(X) -~. wTnG(xxS I ) 
o 

We get from the Definitions 7° 36 and 10.53. 

Theorem 14.45. The natural equivalence 

induces a natural equivalence 

SG(xxTn+I) : Wh G (XxT n+l) --~ whG(XxT n+l) 
geo 

SG(x ) : ~Gn(X)geo_ --~ ~G_n(X) ;= K_n(ZH/(G,X)) 

Now Proposition 10.54 gives the promised proof of Theorem 7.38. 

14.D. Some conclusions 

We mention some easy consequences of the results of this section and the Splitting 

Theorem 10.34. for algebraic K-theory of RF-modules, Proposition 8.33. and Remark 

8.34. Denote for C 6 v (X H) its isotropy group under the WH-action by WH(C) . Then 
o 

WH(C) acts on C . Recall that EWH(C) --~ B~(C) is the universal principal WH(C)- 

bundle. 
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Theorem 14.46. We have for n C Z 

KG(x) 
n 

(H) C ~  (xH)/wH 
o 

Kn(Z[~I(EWH(C) xWH(C ) C)]) 

Similar sP!ittings hold for K~(X) and whG(x) . D 

Corollary 14.47. Le___~t G be a compact Lie group and 

o (XH) and ~I(XH,x) are finite for all H a G and 

a) If G is finite, K~(X) is finite. 

b) K~(X) is zero for n ~ -2 . 

X be a G-space such that 

x ~ X H . 

Proof. If F is a finite group, then K (ZF) is finite by Swan [1960a] and 
o 

K (ZF) is {0} for n 5 -2 by Carter [1980] . o n 

Corollary 14.48. Let G and H be compact Lie groups. Le_~t X be a finitely do- 

minated G-CW-complex and Y be a f i n i t e l y  domina ted  H-CW-complex. Suppose t h a t  

o (XK) __and ~l(XK,x) are finite for all K c G and x ~ X K and similar for Y. 

Then 

oG×H(xxY) = xG(x) * oH(y) + oG(x) ® xH(y) - xG(x) * xH(y) . 

Proof. Theorem 11.24., Theorem 14.19. D 

Theorem 14.49. Let G be a torus and Y ! G-space such that yH is connected 

and non-empty for H c G . Let i : yG --~ y be the inclusion and res denote re- 

striction to the trivial group. 

a) If Y is finitely dominated as a G-space, we get 

o(res Y) = i,o(Y G) . 

b) If X and 

valence, we have 

Y are finite G-CW-qom~lexes and f : X--~Y is a G-homotopy equi ~ 

• (res f) = i¢~(f G) . 

Proof. We only prove a) because b) is done similarly. We get from Theorem 14.46. 

KG(Y)o = ~ Ko(Z~I(EG/H ×G/H yH)) 
HoG 



301 

yH As yHi is connected and has a fixed point, yH __~ EG/H ×G/H induces an iso- 

morphism on the fundamental groups and hence an isomorphism JH : Ko(Z~I(i~)) --~ 

Ko(Z~I(EG/H ×G/H yH)) . Let resH : Ko(Z~I(EG/H ×G/H yH)) --~ Ko(Z~l(y)) be the 

restriction of res:KG(Y)o --m Ko(res Y) (Definition 14.36.) to the summand of H c G . 

By Proposition 14.27. and the assumptions about yH the composition resH °  JH 

is given by the chain homotopy representation 

~i (XH) --~ [Z~I(X) ~Z cS(G/H)'Z~I(X) ~Z cS(G/H)]z~I(X) 

sending u @ ~I(X H) to the Z~(X)-self chain map w ® c --~ iH,u'w ® c if 

iH : yH --~ y is the inclusion and cS(G/H) the singular chain complex. Hence 

res H o i H is x(G/H).iH, : Ko(Z~I(XH)) --~ Ko(Z~I(X)) . As x(G/H) is zero for 

H + G , we get res H = 0 for H ~ G and resG °  JG = iG, " Now the claim follows 

from Theorem 14.37. m 

Theorem 14.50. Let G be a compact Lie group whose component of the identity is 

not a product of some copies of S 1 and SO(3) . (In particular, G is not finite). 

Let X be a free finitely dominated G-space resp. f : X --~ Y be a G-homotopy 

equivalence of finite free G-CW-complexes. Let res denote restriction to the 

trivial group. Then resX i s homotopy equivalent to a finite CW-complex res p. 

res f is simple. 

Proof. Under the conditions above res KG(x) --~ Ko(res X) o 

are zero by L~ek [1987]. Now apply Theorem 14.37. m 

and whG(y) --~ Wh(resY) 

Comments 14.51. With this section we have achieved one of the main goals summarized 

as follows. We have introduced geometrically defined groups waG(x) , Wh~eo (X) , 

K~(X)geo and uG(x) and identified them with algebraic objects K~(X) , whG(x) , 

KG(x) . These algebraic objects are determined by algebraic K-groups of certain group 
n 

rings. Moreover, we have defined geometrically and algebraically invariants like fi- 

niteness obstruction and Whitehead torsion which correspond under these identifi- 

cations. They decide questions like whether a finitely dominated G-CW-complex is G- 
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homotopy equivalent to a finite one or whether a G-homotopy equivalence between 

finite G-CW-complexes is simple. Finally we have stated various formulas in the geo- 

tric and algebraic setting and proved that they coincide. 

Some of the notions and results of this section exist already in the literature and 

are established by more or less ad hoc methods requiring less machinery. For example, 

one can define the splitted version of the obstruction groups and obstructions directly 

without mentioning the notion of a module over a category. Nevertheless it turns out 

that it is useful to do some efforts to develop these notions. At least our approach 

unifies the different treatments of these invariants one can find in the literature 

and applies to compact Lie groups and requires no assumptions about the connectivity 

of the fixed point sets. To establish the restriction and (diagonal) product formulas, 

however, it seems to be necessary to develop some machinery. Doing this at once on 

the splitted level is just tOo complicated whereas the language of modules over a 

category gives the right concept. This will be also the case in the following sections. 

Here is a list of references containing material related to this section: 

Andrzejewski [1986], Baglivo [1978], tom Dieck [1981], Dovermann-Rothenberg [1986], 

Hauschild [1978], Iizuka [1984], lllman [1974], [1985], [1986], Kwasik [1983], LUck 

[1983], [1987], Rothenberg [1978] . 

Exercises 14.52. 

I. Let X be a finitely dominated G-space. Show that the Definition 5.3 and De- 

finition 14.4 of the equivariant Euler characteristic xG(x) ~ uG(x) agree. 

2. Let X be a G-CW-complex of finite orbit type such that X H is simply connected 

for H ~ Iso X . Prove that the following statements are equivalent: 

i) X is G-homotopy equivalent to a skeletal-finite G-CW-complex. 

ii) Hi(xH) is finitely generated for H ~ Iso X and i ~ 0 . 

iii) Hi(xH/wH o) is finitely generated for H ~ Iso X and i ~ 0 . 

3) Let X be a G-CW-complex of finite orbit type. Then H.(X H) is finitely ge- l 

nerated for all H c G and i ~ 0 if and only if Hi(xH/wH O) is finitely ge- 
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4. 

5. 

6. 

7. 

8. 

nerated for all H c G and i ~ 0 . 

Let X be a G- manifold such that ~o(XH) ~ ~o(X H) and ~I(XH,~---~ 

~I(XH,x) are bijective for H c G and x ~ X H where X H is xH\x >H . Show 

that the forgetful map # : Whys (X) ~ Wh~eo(X) is a bijection (see 

4.43.) 

Let X be a finitely dominated G-space such that ~l(~',x) is finite for H C G 

and x ~'X H and xG(x) vanishes. Let X' be a G'-space with the same proper- 

i 
ties. Show that XxX' is GxG-homotopy equivalent to a finite GxG'-CW-complex. 

Let X be a finitely dominated G-CW-complex such that ~I(XH,x) is finite for 

H ~ Iso X and x ~ X H . Prove that i : uG(x) --~ uK(res X) sends xG(x) to 

xK(res X) for K c G . (Hint: Ko(ZA) --~ Ko(@A) is trivial for finite 4) . 

Let H c G be a subgroup. Induction ind~ induces a functor ind : H/(H,X) --~ 

H/(G,G×HX) and hence ind, : K~(X) ~ K~(GXHX) and ind, : whH(x) -~ Wh~G×HX) 

for a H-space X . Show ind,(oH(x)) = oG(GxHX) for a finitely dominated H- 

space X and ind,(~H(f)) = ~G(GxHf) for a H-homotopy equivalence between finite 

H-CW-complexes f : X' ~ X . 

• K{l}(res X) -~ K~(X) be in- Let X be a free connected G-CW-eomplex. Let i, : o 

duction composed with the map induced from G x res X ~ X 

g,x ~ gx Suppose that G is not finite. Show that i ~ i, : 

K{l}(res X) ~ K{l}(res X) is zero. Prove the analogous result for Wh. 
O O 

9. Let X be a free connected G-CW-complex such that ~I(G,I) --~ ~l(X,x) given by 

evaluation is trivial. Show that i : K (X) ~ K (res X) and i : whG(x) 

whl(res X) are zero if G is connected and non-trivial. 

i0. EKtend the definition of trf F : Kn(RF I) --~ Kn(RF 2) for n = 0,i to all in- 

tegers n ~ -i , (see 14.22.). 

ii. Let G be a compact Lie group. Consider the G-push out with i 2 a G-cofibration 
i I 

X o ~ X 1 

X2 J2 ~ X 
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a) If X0,XI, and X 2 are finitely dominated, then X is finitely dominated 

b) If three of the G-spaces Xo, XI, X 2 and X are finitely dominated and 

i k is a N-isomorphism for k = 1,2, i.e. Zo(i~) and ~l(i~,x) are bi- 

jective for all H c G , x e X H , then all four spaces are finitely domi- 
o 

nated. 

c) Statement b) becomes false if one drops the condition that i k is a 9- 

isomorphism for k = 1,2. 

Let G be a finite group acting topologically on the standard disk such that 

the equivariant finiteness obstruction is not zero. (existence of such an action 

is proved in Quinn [1982]). Show that the G-action cannot be smooth. 

Extend Theorem 14.49. to o(resX) = i,o(res X H) for i : X H --, X the inclusion 

and H c G arbitrary. 



C H A P T E R  III 

RF --MODULES AND G E O M E T R Y  

Summary 

In the first two chapters the algebraic notions were all motivated byalready~ing 

geometric models. In Chapter III the algebra of RF-modules is extended further and 

applied to geometry. 

Let G be a compact Lie group. Suppose that p : E --~ B is a G-fibration such that 

p-l(b) is a finitely dominated Gb-CW-complex for b 6 B . We define geometric trans- 

fer maps p" : K (B) ~ K (E) and : whG(B) --~ whG(E) , provided that p is 

simple (see 15.21. and 15.22.). If p is a G-vector bundle over a G-manifold B 

and f : B --~ B a G-homotopy equivalence of G-manifolds, then p is simple and 
o 

p!(G(f)) = TG(~) holds where ~ : p*E ~ E is given by the pull back construction 

and G(f) and G(~) are defined with respect to the simple structure 4.36. We 

also define algebraic transfer ..... maps p* : K~(B) --~ KG'E)n for n = 0,i (see 15.11.) 

! . 
and show in Theorem 15.25. that p and p agree . We derive from the algebraic 

description. 

Theorem 15.28. Let G be a finite group of odd order. Consider a d-dimensional G- 

vector bundle $ + B with vanishing Wl(g) 6 HI(B;Z/2) . Let p : S~ --~ B be the 

associated G-sphere bundle. Suppose the existence of a G-representation V such that 

res SV and Sg b ar___~e Gb-homotopy equivalent for b ~ B . Then 

p, o p = (i - " " "~-I) d) • id 

In section 16. we give a second splitting of algebraic K-theory which is based on 

the restriction functor Res MOD-RF ~ MOD-R[x] and inclusion functor 
x 

I : MOD-R[x] --~ MOD-RF . It is dual to the splitting of section I0. coming from 
x 

the splitting functor S and the extension functor E . In geometry (Res,I) corres- 
x x 

ponds to the stratification of a G-space X given by { XH I H c G} , whereas (S,E) 

corresponds to {X H I H c G} . These two splittings are related by a kind of K-theo- 

retic Moebius inversion, i.e. a pair of inverse isomorphisms w and p defined in 
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16.22. and 16.26. An EI-eategory F is finite, if the set of isomorphism classes 

of objects Is F and Hom(x,~ for all x,y ~ Ob F are finite . If F is finite, 

let m(F) be the smallest common multiple of all numbers IAut(x)l for x £ Ob F. 

Theorem 16.29. The K-theoretic Moebius inversion Theorem. Let F be a finite EI- 

category and R be noetherian with m(F) ~ R* . Then (E,S), (Res,I) and (~,~) 

are pairs of two another inverse isomorphisms and the fol.lowing diagram commutes 

O3 P ~ 

_ ~ Kn(R Ix ] ) _ Kn(R[y ] ) u 
x ~ Is F ~ y 6 Is F 

Its proof is based on the Filtration Theorem 16.8. for RF-modules which is the dual 

of the Cofiltration Theorem 9.39. for projective RF-modules. 

Theorem 16.29. enables us to detect the isomorphism class of a finitely generated pro- 

jective RF-module from the isomorphism classes of R[x]-modules given by P(x) for 

x ~ Ob F . In particular the isomorphism type of a finitely generated free RF-module 

F is determined by {rkR(F(x)) I x e Is F} (see Theorem 16.36.)°  

Section 17. is devoted to the homological algebra of RF-modules. A RF-module M has 

- < ~ <..< x of elements in IsF with M(Xo)+{0} length £ , if for any chain x °  1 " r 

we have r ~ £ . Recall that x < y means that Hom(x,y) ~ ~ and x ~ y is valid. 

We call F free if Aut(y) acts freely on Hom(x,y) for all x,y 60b F . 

Theorem 17.18. and 17.28. Suppose either that F is free or that F is finite 

with m(F) 6 R* . Let M and N be RF-modules such that M has finite length 

Then there is a spectral sequence (Er,d r) , r = 1,2 .... satisfyin~ 

a) (Er,d r) converges to Ext~F(M,N) . 

b) The El-term and the first differential can be computed in terms of certain 

Ext-groups over R[x] for x ~ Ob F . 

E p'q + {0} =~ 0 ~ p ~ £ and 0 ~ r u r c) 

£ . 
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We derive from this spectral sequence some bounds for the homological dimension of a 

RF-module. If F is finite and R a field with m(F) ~ R* , then any RF-module M 

has a homological dimension less or equal to its length (Proposition 17.31.). Let F 

be finite and free and m(F) ~ R* . Then M has a homological dimension ~ p only if 

certain inequalities for the numbers rkR(M(x)), x 8 Is F are valid (Proposition lT.34.). 

In section 18 we introduce equivariant Reidemeister torsion for a wide class of G- 

spaces for a finite group G . A round sturcture {#} for a G-space X is a collec- 

equivalence classes of) RWH-isomorphisms ~(H) : H(xH:~)odd-~H(xH;@)ev tion of (stable 

for each H c G (Definition 18.7.). If X is a finite G-CW-complex with round struc- 

ture {~} , we define its equivariant Reidemeister torsion 

18.10. £G(x,{~}) = ~G(x) e Wh(QOrG) = ~ Wh(@WH) . 
(H) 

If X is a finitely dominated G-space (not necessarily G-homotopy equivalent to a 

finite G-CW-complex) with round structure {#} , we still can define its reduced equi- 

variant Reidemeister torsion 

18.12. p-G(x,{~}) = p-G(x) ~ KI(@OrG)/KI(Z(IGI)OrG ) = (~)KI(~WH)/KI(Z(IGI)WH) . 

A finitely dominated G-space X admits a round structure if and only if x(X H) E Z 

is zero for all H c G (Lemma 18.8). Notice that this class of G-spaces is closed 

under G-push outs and products. We do not make any assumptions about the WH-action on 

H(xH;@) for H c G and never divide out norm ideals as it is done in the classical 

case (cf. Rothenberg [1978]) . 

We prove sum, diagonal product and join formulas and relate these invariants to White- 

head torsion and the finiteness obstruction. Roughly speaking, the rationalized White- 

head torsion is the difference of the Reidemeister torsion (see 18.18.) and the re- 

duced equivariant Reisemeister torsion is a refinement of the finiteness obstruction. 

Namely, we construct a certain boundary homomorphism ~ : KI(@OrG)/KI(Z([GI)OrG) --~ 

--~ Ko(ZOrG) and prove 

Proposition 18.30. Le___!t X be a finitely dominated G-CW-complex such that x(X H) = 0, 

WH acts trivially on H,(xH;@) and H,(X ~) contains no p-torsion for any prime 
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number p with (p,IGl) = i for each H c G . For any H c G fix a Z-isomorphism 

(H(xH)/Tors H(xH))odd --~ (H(xH)/Tors H(xH))ev . Then p-G(x) is defined and satisfies 

~(p-G(x)) = -oG(x) . 

We construct a map O~ : Rep~(G) --, Wh(QOrG), IV] --~ pG(s(v ®~ C)) and show 

G 
Theorem 18.38. The map pl R is an injective homomorphism 

Thus we reprove de Rham's result 

Corollary 18.42. Two real G-representations V and W are linearly isomorphic if 

and only if their unit spheres are G-diffeomorphic. D 

We also introduce Reidemeister torsion for G-manifolds with invariant Riemannian metric 

(see 18.51., 18.52.) which are related to analytic torsion. Poincare-Reidemeister tor- 

sion, introduced in 18.53., measures the failure of equivariant simple Poincar~duality. 

In section 19. we consider the Swan homomorphism sw : Z/IG[* --~ K (ZG) sending r 
o 

to [M] if M is any finite abelian group of order r with trivial G-action. Let 
, r 

sw : E/IG I --~ KI(QG)/KI(Z(IG[)G) send r to the class of Q --~ ~ or, equivalent- 

r-i Z g E @G* . Let 8 : KI(~OrG)/KI(Z([GI)G) --~ Ko(ZG) ly, of the unit 1 + ~ • g ~ G 

be induced from the boundary map of the localization square. The following theorem 

was conjectured in Rothenberg [1978a] and Wall [1979] . 

Theorem 19.4. The map sw is injective and a lift of sw , i.e. 8 o sw = -sw . D 

Let C(G) be II Z and C(G) = C(G)/[G I. C(G) . The Burnside ring A(G) is a subring 
(H) 

of C(G) and contains [GI'C(G) . Put A(G) = A(G)/[G[-C(G) and Inv(G) = ~(G)*/A(G)*. 

We define generalized Swan homomorphisms and boundary maps 

19.12. SW : ~(G)* --~ KI(@OrG)/KI(Z(IGI)OrG) 

SW : ~(G)* --~ m (ZOrG) 
o 

18.28. 8 : KI(QOrG)/KI(Z(IG[)OrG) --~ Ko(ZOrG) 

and extend Theorem 19.4. to modules over Or G . 



Theorem 19.13. and 19.19. 

a) 8 o SW = -SW 

b) SW induces an injection SW 
o 

~(G)* 

Inv(G) 
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"~ KI(QOrG)/KI(Z(IGI)OrG) 

satisfies the unstable conditions if 

20,8. i) d(H) = d(K) 

ii) d(H) = d(K) 

iii) d(H) e {±I} if 

iv) d(H) = 1 if 

Notice that {deg fH I H c G} 

of integers prime to 

if (H) = (K9 

if n(H) = n(K) 

n(H) = 0 

n(H) = -i 

satisfies 20.8. We call a collection {d(H) 6 ZIHcG} 

IGI a weight function if and only if the following holds: 

Hence we have to determine the image of DEG in order to control [X,Y] G . In other 

words, given a collection {d(H) 6 Z I H c G} , we must decide whether there is a 

G-map f : X --~ Y with deg fH = d(H) for H c G . We say that {d(H) ~ Z I H c G} 

In section 20. we apply Reidemeister torsion and the generalized Swan homomorphisms 

to G-homotopy representations of finite groups G . A G-homotopy representation is a 

finite-dimensional G-CW-complex X such that X H is homotopy equivalent to S n(H) 

for n(H) = dim(X H) and H c G . The dimension function of X is Dim(X) = 

= (n(H)+I)(H) ~ C(G) . Let X and Y be two G-homotopy representations with the 

same dimension function. Let IX,Y] G be the set of G-homotopy classes of G-maps. 

After we have choosen a coherent orientation, we obtain a map DEG : [X,Y] G --~ C(G), 

If] ~ (deg fS)(s ) . 

Proposition 20.12. b. Suppose n(L) ~ n(K)+2 for K,L @ IsoX , L c K , L ~ K 

or suppose G to be nilpotent. Then DEG : IX,Y] G --~ C(G) is injective with finite 

cokernel. 
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given {e(H) 6 Z I H c G} , there is a G-map f : X --) Y with deg(f H) = e(H) for 

H c G if and only if {e(H) ~ Z I H c G} satisfies the unstable conditions 20.8. 

and (d(H) " e(H))(H ) 6 C(G) lies in the Burnside ring A(G) (Definition 20.35). Notice 

that A(G) c C(G) can be described by explicit congruences. Hence [X,Y] G is deter- 

mined by specifying a weight function. 

Theorem 20.38. Let {d(H) I H c G} be a collection of integers prime to ISl. It 

is a weight function of and only if it satisfies the unstable conditions 20.8. and 

S-W sends (d(H)E Z/IGI*)(H ) ~ ~(G)* to p-G(y) _ p-G(X ) 6 KI(@OrG)/KI(Z(IGI)OrG) D 

We get as an immediate consequence the classification of G-homotopy representations 

by the reduced equivariant Reidemeister torsion. 

Corollary 20.39. The following statements are equivalent for G-homotopy representations 

X and Y with Dim(X) = Dim(Y) and a coherent orientation ~(X,Y) . 

a) X and Y are oriented G-homotopy equivalent~ 

b) X and Y are stably oriented G-homotopy equ!v@lent. 

c) p-G(x ) . p-G(y) = 0 o 

We also analyse the various homotopy representation groups and examine the case of 

an abelian group G more closely. 
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15. The transfer associated with a G-fibration 

We introduce the notion of a G-fibration p : E --~ B . Under certain assumptions 

F b = p-l(b) for b ~ B , we define both algebraically and geo- about the fibres 

metrically transfer maps p : K (B) ~ K (E) and whG(B) ~ whG(E) and show that 

they agree. The algebraic description is used to state some vanishing results. 

Let G be a topological group and p : E --~ B be a G-map. We say that p has the 

G-HLP (G-homotopy lifting property) for a G-space X if for any G-maps h : X×I -~B 

and f : X ~ E satisfying p o f = h o i °  for i °  : X --, XxI x ~ (x,o) 

there is a G-map h : XxI ~ E such that h o i = f and p o h = h holds. 
o 

f 
15.1. X -~ E 

i°  i ~ I p 

X×I ~ B 

Definition 15.2. We call p : E --~ B a G-fibration if p has the G-HLP for all 

G-CW-complexes X . D 

15.3. A G-map p : E --~ B is a G-fibration if ~nd only if 

the (non-equivariant) HLP for D n, n a 0 . 

H : E H ~ B H has P 

15.4. Let p : E --, B be a numerable locally trivial (G,~,F)-bundle in the sense 

of tom Dieck [1969] or Lashof-Rothenberg [1978] where G is a compact Lie group, F 

a topological group and ~ : G ~ Aut(F) an homomorphism. Let F be a space with 

left G- and left F-action such that g(yf) = a(g)(y)gf holds for g ~ G , ~ ~ F, 

f ~ F . Then we have the associated G-bundle E x F F --~ B with fibre F . It is 

a G-fibration by bold [1963] and 15.3. 

Let G be a compact Lie group and M be a smooth G-manifold. Then M(H ) c M is a 

G-submanifold with a normal G-vector bundle v . The associated G-sphere and G-disc 

bundles S~ and Dv over M(H ) are G-fibrations. o 

15.5. Let (X,A) be a pair of G-CW-complexes and p : E --, B be a G-fibration°  

Then we can solve the relative G-homotopy lifting problem 
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f 
Axl U X ~ E 

Xxl ~ B 

15.16. The pull back of a G-fibration is again one. D 

A G-fibre map (f,f) : p --~ p' of G-fibrations is a pair of G-maps 

and f : B --~ B' satisfying p' o ~ = f o p . We call (~o,fo) and 

G-fibre homotopic if there is a G-fibre homotopy (h,h) : pxI --~ p' 

= (~i,fi) for i = 0~i. We call (h,h) a strong G-fibre homotopy if 

nary i.e. h(b,t) = h(b,0) for b ~ B . Notice that this implies f 
o 

p : E --~ B and p' : E' --~ B be G-fibrations over the same space 

G-fibre map (f~id) : p --~ p' 

map (g, id) : p' --~ p 

ty. m 

f: E--~E' 

(~l,fl) : p--~p' 

with (hi,hi) = 

h is statio- 

= fl " Let 

B . We call a 

a G-fibre homotopy equivalence if there is a G-fibre 

with both composites strongly G-fibre homotopie to the identi- 

15.7. 

ween 

Let p : E ---+ B be a G-fibration. Let h : X×l --~ B 

fo and fl : X --~ B . Choose a solution h of 

f 
, o 

f E ~ E 

f Exl ~ B 
o 

h o (PoXid) 

be a G-homotopy bet- 

Denote by gh : fo E --~ fi E the G-fibre map given by hl' Po := fo p 

back property of fi E . 

an4 the pull 

Next consider a second G-homotopy k : Xxl --~ B between fo and fl and define 

and gk as above. Let M : XxIxI --~ B be a G-homotopy relative X×SI between 

h and k . Choose a solution M of 
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h U k U(foOpr) 
f ExIx3I U f E x {0} × I ~ E 

o o 1 1 /  
f E×Ixl "~ B 

o 

M o (PoXid×id) 

Let gM : fo E x I --~ fl E be given by M(-,I,-) and Pox id . One easily checks 

(see Switzer [1975], p. 342) 

Lem~na 15.8. 

a) gh : f~E --~ f~E is a G-fibre h~motopy equivalence and h : foE×I --~ E 

h : Xxl ~ B define a G-fibre homotopy between f l  o gh and L 

and 

b) gM : fo E×I --~ fl E is a strong G-fibre homotopy between gh and gk " We obtain 

G-fibre homotopy of G-fibre homotopies between (~i °  gM )* ~ and h b_~ M , i.e. 

we have M(x,t,0) = h(x,t), M(x,l,t)=k(x,t),M(x,0,t)=L(x) and M(x,l,t)=flo gM(x,t) 

for x ~ X , t ~ I . 

Given a G-space Z , define a category C + Z as follows. An object x is a G-space 

X together with a G-map x : X--~ Z . Given two objects x : X ~ Z and y :Y-~Z, 

we consider pairs (f,h) consisting of a G-map f : X---~ Y and a G-homotopy 

h : XxI ~ Z between x and y o f . We call two such pairs (fo,ho) and (fl,hl) 

equivalent if there are G-maps T : XxI ~ Y and h : XxI×I ~ Z satisfying 

T(u,i) = fi(u), h(u,t,i) = hi(u,t),h(u,0,t) = ~and h(u,l,t) = y o f(u,t) for 

u ~ X , t ~ I , i ~{0,i} . An equivalence class [f,h] of such pairs is a mor- 

phism x --~ y . Composition is defined on representatives by [g,k] o [f,h] 

[g o f, h * (k o f×id)] where * denotes the obvious composition of G-homotopies. 

From now on we suppose that assumption 8.13. is satisfied. 

~ 

We get from Lemmna 15.8. a covariant functor tpp : H/(G,B) --, C + E . It sends an 

object x : G/H ---~ B to x : x E --~ B given by the pull-back. Let [o,w] :x-~ y 

be a morphism in H/(G,B) represented by a G-map o : G/H --, G/K and a G-homotopy 

w : G/H x I ---~ B between x and y o o . By Lemma 15.8 . a) we get a strong G- 



314 

fibre homotopy w : x E × I ~ E . Define the image of [o,w] : x --~ y under tpp 

-- -- ~ ~ 

by the class of --(c o gw,W) : x --~ y in ~ + E where a : o y E ~ y E is given 

by t h e  p u l l  back  c o n s t r u c t i o n .  T h i s  i s  w e l l  d e f i n e d  by Lemma 1 5 . 8 .  b ) .  C o m p o s i t i o n  

w i t h  p d e f i n e s  a f u n c t o r  ~ + p : ~ + E - - *  ~ +  B . Le t  t p p  be  ( ~  + p)  o t p p .  

Definition 15.9. We call the covariant functor 

~ 

tpp : H/(G,B) --~ ~ + E resp. tpp : H/(G,B) ~ ~ + B 

the total fibre transport resp. the fibre transport of p . a 

Given a G-space Z , let ho CC-RH/(G,Z) 

RH/(G,Z)-chain complexes. The functor 

1 5 . 1 0 .  

be the homotopy category of projective 

C s + Z : ~ + Z --~ hoCC-RH/(G,Z) 

s sends x : X ~ Z to x,C (X) if cS(x) is the singular RH/(G,Z)-chain complex 

of X (see Definition 13. I.) . Let [f,h] : x ~ y be a morphism and (f,h) ~ If,hi 

a representative. We get a ZH/(G,Y)-chain map CS(f) : f,cS(x) ~ cS(y) and a 

s X s ZH/(G,Y)-chain isomorphism cs(h/) : x,C ( ) --~ y,f,C (X) (see 13.4. and 13.6.). 

s s s Let C s + Z([f,h]) be represented by y,C (f) o cs(h/): x,C (X) --~ y~.~C (Y) .Notice 

that it is essential for the construction of C s + Z that the homotopy h is part 

of the structure of a morphism (f,h) . It is not sufficient to define a morphism 

x -~ y as a G-homotopy class If] of G-maps f :X -~ Y satisfying y o f =G x . 

Suppose that for any b ~ B the Gb-space F b = p-l(b) is finitely dominated. Then 

the composition C s + E o tpp is a covariant functor H/(G,B) ~ hoFDCC-ZH/(G,E) 

into the homotopy category of finitely dominated projective ZN/(G,E)-chain complexes 

by Proposition 13. i0 and 13.2 . Hence we obtain from 14.22. a transfer homomorphism 

associated with p 

1 5 . 1 1 .  

for n = 0,I . We call 

whG(E) . 

p :*trf : KG(B) --~ KG(E) 
C s + E o tpp 

p simple if p : K (B) --~ K (F) induces p : whG(B)-- 
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Next we want to interpret p geometrically. Notice in the sequel the analogy with 

section seven. We need the following hypothesis (compare Assumption 7.3.). 

Assumption 15.12. The Gb-space F b = p-l(b) is Gb-homotopy equivalent to a finite 

in H/(G,B) , define an homomorphism 

~(b) : Aut(b) --~ whG(E) 

on b E (see section 4). Then ~(b) 

g(~pp( * * [o,w] ~ Aut(b) to b~ [o,w]) : (b E,~) ~ (b E,$)) .This is independent of 

the choice of $ . Now one easily verifies that ~(b)([o,w]) is just the image of 

[o,w] under K~(B) P~ K?(E)± , whG(E) . This implies 

Gb-CW-complex for any b ~ B . o 

Given b : G/H--~ B 

15.13. 

as follows. Choose a simple structure 

Lemma 15.14. 

Suppose that 

sends 

p is simple if and only if ~(b) is trivial for all b ~ ObH/(G,B). 

B is a finite G-CW-complex. Let I be the set of n-cells. In the 
n 

n . Make the following sequel all sums run over I and we sometimes omitt the index 
n 

fix a representative b : G/K --~ B and a simple 

choices (compare 7.8. and 7.9.) 

15.15. For any b ~ Is II/(G,B) 

structure y(b) on b E . o 

15.16. 

i) Fix for n >= 0 a G-push out 

Ii G/H i sn-i II qn 
x "~ Bn- I 

I lIQ n 
11G/H' x D n i "~ B 

1 n 

ZIG/Hi : G/K. --~ B be ii) Q x * : G/H i ~ B is an object in H/(G,B) . Let b~ i 1 

the representative of its isomorphism class specified in 15.15. Choose an isomorphism 

n n 
[Oi,wi] : O G/H i x * --~ b?l in H/(G,B) . 

nn nn n 
iii) Fix a representative (oi,w i) for [oi,wi] , that is a G-map o i : G/H i ~ ~K i 

and a G-homotopy w~1 : G/H.I x I --, B with w~(gHi,x,0) = Q~(gHi,*) and 
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n b~ n n n* E n* n* o o.b. E × D n be a strong G-fibre wi(gHi'x'l) = i oi(gH i) . Let gi : Qi --~ i i 

homotopy equivalence constructed in 15.7. o 

15.17. With these choices we get a unique simple structure $ on E . Suppose 

$n-1 on En_ I = p-l(B n_l ) is already defined. We get simple structures on b~*ExS n-ll 

" n* n* 
and b~':ExDnl from y(bq) . Now equip Qi E and qi E with the simple structures 

. . . .  -n n n* bn*E×Sn-i "'E --~ b~E x D n and (oixid) o giI: qi E--~ such that (o~ × id) o g~ : Q i 1 

have vanishing Whitehead torsion. We get from 15.16. i) a G-push out with i a G- 

cofibration (compare Lemma 1.26.) 

n* 
II qi E ~ En_ 1 

jn- i 

~'E E 1_[ , n 

Now equip E with the simple structure such that this is a G-push out of G-spaces 
n 

with simple structure. D 

We make the following assumption (compare Assumption 7.23.) 

Assumption 15.18. p is simple, o 

Now suppose that we have made also second choices 15.15'. and 15.16'. Define an 

homomorphism depending only on 15.15. and 15.15'. 

15.19. @ : uG(B) --~ whG(E) 
P 

as follows. Given u ~ uG(B) , choose an isomorphism [o,w] : b ~ b' between 

the representatives b,b' ~ u of 15.15. and 15.15'. Applying tpp gives a G-homo- 

topy equivalence b E --~ b' E . Using the simple structures 7(b) and ¥(b') it 

defines an element in whG(b'*E) . Let its image under b~J~ : whG(b'*E) --~ whG(E) be 

@ (u) . This is independent of the choice of [o,w] by Lemma 15.14. as p is simple. 
P 

Lemma 15.20. Let ~ and $' be the simple structures we get from 15.17. according 

to the choices 15.15., 15.16., and 15.15' , 15.16'. Then 

• G(id : (E,$) --* (E,$')) = @p(XG(B)). 
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n ~ n ~ - " " qi --~ b. ExD n Proof: Lemma 15.8. guarantees that the G-homotopy class of (G~×Id)og~. E 
1 

does not depend on the choice 15.16. iii) so that ~ is independent of the choice 

15.16.iii). Now one can proceed as in the proof of Lemma 7.13. o 

Let p : E ~ B be a G-fibration satisfying Assumptions 15.12. and 15.18. Let B be 

a finite G-CW-complex. Because of Lemma 15.20. the following definition of a map 

! 
15.21. p" : whG(B) ~ whG(E) 

makes sense. Given q ~ whG(B) choose a G-fibre homotopy equivalence (f,f):po-~ p 

such that Po : Eo --~ Bo is a G-fibration over a finite G-CW-complex Bo and 

TG(f) = q holds. Fix choices 15.15. and 15.16. for both Po and p . Let G °  and 

be the simple structures on E and E defined in 15.17. By composition with ~ we 
o 

obtain from the choice 15.15. for Po a choice 15.15. for p . Regarding this as 

the first and the given choice 15.15. for p as the second#let @~ : uG(B) --~ whG(E) 

be the map defined in 15.19. Then we put 

p!(q) = ~G(T : (Eo,~ o) ~ (E,$)) - @T(xG(B)) 

Under assumption 15.12. the total space E is G-homotopy equivalent to a finite G-CW- 

complex if B is. Hence we get an homomorphism 

! 
15.22. p" : waG(B) --~ waG(E) 

sending If : X --~ B] to [f : f*E --~ E] . Define 

! 
15.23. p" : uG(B) ~ uG(E) 

-- G * 
by p!(u) = b,x (b E) if b : G/H --~ B is a representative of 

The direct sum of 15.22. and 15.23. and the natural isomorphism 

and uG(E) • waG(E) --~ KG(E) of 14.10. yield 

u G Is H/(G,B). 

uG(B) ,waG(B) -~ K~(B) 

°  15.24. p" : K (B) --* KG(E) 
o 

Theorem 15.25. 

and 15.18. Then 

Let p : E ~ B be a G-fibration satisfying assumptions 15.12. 

p, °  °  p and : K (B) --~ K (E) and whG(B) ~ whG(E) are defined 

and agree. 
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Proof. We give only the sketch of a proof for Wh G, K G is done similarly. In the 
o 

proof of Theorem 14.16. we have introduced a geometric splitting 

Wh{I}(EWH xWH B H) ~ whG(B) . 
(H) 

It corresponds under the natural isomorphisms relating geometric and algebraic White- 

head groups (Theorem 14.16.) to the algebraic splitting of Theorem 10.34. Now one 

easily reduces the claim to a G-fibration p : E ~ B with the property that B is 

a connected finite CW-complex with trivial G-action and the assertion that the compo- 
* ! 

sitions Wh{I}(B) ~ w~G(B) -P--~ whG(E) and Wh{I}(B) ~ whG(B) ~ whG(E) agree 

if r is restriction with G --~ {I}. 

We leave it to the reader to carry over the proof in the case G = {i} in LNck [~86] 

to this situation. Compare also Theorem 14.40. and its proof. [] 

Let p : E --~ B be a G-fibration such that the Gb-space F b is finitely dominated 

for b ~ B . Composing the fibre transport tpp : N/(G,B) ---+ ~ + B of Definition 

15.9. with C s + 5 : ~ + B --~ ho CC-ZH/(G,B) of 15.10. defines a functor 

E/(G,B) --~ ho FDCC-RH/(G,B) . Let trf be the transfer associated with 
C s + B o tpp 

it in 14.22. and p, : whG(E) --~ whG(B) be the homomorphism induced by p . We get 

from the definitions 

Proposition 15.26. p, o p = trf 
C s ~ B o tpp 

Corollary 15.27. Let Po : Ei --~ B for i = 0,i be a G-fibration over B such 

that pil(h) is a finitely dominated Gb-space for b ~ B . 

a) Suppose the existence of a functor ~ : H/(G,E o) ~ H/(G,E I) such that the 

composition of the functor ho FDCC(ZH/(G,Eo)) --~ ho FDCC(ZH/(G,EI)) induced by 

induction with @ --and tpp °  : R/(G,B) --~ ho PDCC(ZH/(G,Eo )) is naturally equi- 

valent to tpp I . Then we have 

~* °  Po = Pl 

b) If tpp O and tpp I : ~I/(G,B) --~ ~ + B are naturally equivalent then 

Po* °  Po = PI* °  Pl [] 
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Now we want to analyse the situation which is relevant for geometry. Namely, let 

+ B be a G-vector bundle and p : S$ ~ B the associated G-sphere bundle. Recall 

from 15.4. p is a G-fibration. Consider an automorphism [o,w] of b : G/H --~ B in 

N/(G,B) . Then tpp([O,w]) is given by induction 

morphism SE b ---~S~ b . Hence 

have algebraic transfer maps 

ind~b applied to a Gb-diffeo- 

p satisfies assumptions 15.12. and 15.18. by 4.36. We 

"~ KG(B) KG(s~) p : 

p : whG(B) ~ whG(s~) 

which agree with the geometric transfer homomorphisms p by Theorem 15.25. 

Theorem 15.28. Le___~t G be a fin it@ ' group of odd order. Consider a d-dimensional G- 

vector bundle $ + B with vanishing ' Wl($) 6 HI(B;Z/2 ) . Le____tt p : S~ ~ B be the 

associated G-sphere bundle. Suppose the existence of a G-representation V such that 

res SV and S$ b ar___ee Gb-homotopy equivalent for b 6 B . Then 

p,o p = (i - (-l)d)id . 

Proof. The quotient V/V G is of complex type (see Serre [1977], 13.9 b). Hence 

dim SV = dim SV H mod 2 holds for H c G so that xG(sv) ~ A(G) ~ uG(*) is 

(1 - (-I)d)[G/G] . Let q be the trivial G-vector bundle q : BxV --, B . Then 

q, o q is given by xG(sv) ~ A(G) and the uG(*)-module structure on KG(B) and 
o 

whG(B) by Theorem 14.21. so that q, o q = (I + (-i) d) " id is true. Because of 

Corollary 15.27. b it suffices to construct a natural equivalence # : tpq tpp 

of functors H/(G,B) --~ ~ + B since then p, o p = q, o q holds. 

We can suppose without loss of generality that B is connected. Fix an object 

y : G---~ B and a non-equivariant homotopy equivalence ~o : SV ~ S~y . Consider 

an arbitrary object b : G/H ---+ B . Choose a path w from b to y in B . Let 

gw : Sty ---+ S~ b be the (non-equivariant) fibre homotopy equivalence defined in 15.% 

for the fibration St ~ B . By assumption there is an H-homotopy equivalence 

SV ---~Sgb . Since H has odd order A(H)* = {±I} holds. (tom Dieck [1979], p. 8). 

Therefore twoH-hcmotopyequival~qces SV--~S~ b are H-homotopic ~andonly ~ they areh~otopicasnon- 

equivariantnmps (see tmmDieck [1987] ~.4,1-f_.8). Hence there is an H-homotopyequi~enoe 
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~(b) : SV --~S$ b uniquely determined up to H-homotopy by the property that gw °  ~o 

and ~(b) are homotopic. Since wl(S $) vanishes, the homotopy class of gw does not 

depend on w . Notice for the projection o : G --~ G/H that the G-map yS$ ~ o ~8$ 

* w 
induced from gw together with the G-homotopy ySgxl --~ Gxl B represents the 

morphism tpp((O,w)) : tpp(y) ~ tpp(b) in ~ + B . Define a morphism 

~(b) : tpq(b) --~ tpp(b) in e + B by G x H ~(b) :BSq=G/H×SV=G×HSV -~G~Hgb=~ 

and the stationary G-homotopy b~¢SQ x I --~ G/H x I pr G/H ~ B . This defines the 

- - ! ~  . D natural equivalence ~ : tpq tpp 

Corollary 15.29. Under the conditions of Theorem 15.28. the transfer p vanishes 

H p r o v i d e d  t h a t  dim ~ i s  even  and dim ~b ~ {1,2} f o r  H c G b , b ~ B h o l d s .  

Proof. For any H c G we get a spherical fibration pH : s$H___+ B H . For b ~ B H 

we have dim S~ ~ {0,1} so that pHIc : (pH)-l(c) --~ C is 2-connected or (#)-I(c) 

is empty f o r  any component  C ~ ~ (B H) . We g e t  f rom P r o p o s i t i o n  8 .33 .  t h a t  
O 

p, : whG(s~) ~ whG(B) is injective. Since p, o p is zero by Theorem 15.28. 

the claim p = 0 follows. [] 

Example 15.30. Let G be a compact Lie group and M be a G-manifold with 

Iso(M) = {G,{I}} . Suppose that M G and M are connected. We have introduced an 

homomorphism 

¢ : WhOso(M) ~ Wh~(M) 

in 4.43. we want to analyse further. Recall the splitting WhOso(M) =Wh(TI(MG)) ® 

Wh(TI(MG/G)) and whG(M) = Wh(TI(MG)) ® Wh(TI(EG ×G M)) . Let k be the composition 
P 

~I(MG/G) ~ ~i (EG XG MG) ~ ~I (EG ×G MG) " Consider the sphere bundle Sv + M G 

associated with the normal G-vector bundle v of M G in M . Dividing out the G- 

action defines a non-equivariant fibration p : Sv/G --~ M G with typical fibre SV/G 

* Wh(TI(MG)) if V is the normal slice G-representation. Let p : ~ Wh(~I(SV/G)) be 

the associated transfer. Denote by 8 o : TI(SV/G) --~ ~o(G) the boundary map in the 

long homotopy sequence of G ~ Sv --~ Sv/G . Let 8 : ~I(SV/G) -~, To(G) x ~I(M G) 

be 80 x p, and j be the composition To(G ) x ~I(M G) = TI(EG ×G MG) -~ TI(EGXGM)" 

Then ~ is given in terms of the splitting by the matrix (see the proof of Theor~n4.51) 
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id 0 1 
j, o ~, o p k. 

Firstly, we consider the case where G is not {i} or Z/2 . If SV ---~ SV is a 

G-map j deg f ~ i modlG I for finite G and deg f = i for infinite G holds. Hence 

any G-homotopy equivalence SV --~ SV is G-homotopic to the identity so that 

p : S~ ~ B is untwisted in the sense of L~ck [1987], 4.4. Therefore 8, o p is 

given by o(SV/G) = x(SV/G) • [Z~o(G) ] ~ Ko(Z~o(G)) and ®Z :Ko(Z~o(G))®~(ZVl (MG)) 

KI(Z~o(G ) x ~I(MG)) (see LHck [1987]) . If G is finite I x(SV/G) is zero 

so that 8, o p and in particular j, o 8, o p are trivial. If G is infinite 

x(SV/G) is not necessarily zero and j, o 8, o p can be non-trivial. 

Secondly, let G be Z/2 . Let w : ~I(M G) --~ {_+I} be the first Stiefel Whitney 

class of Sv . Denote by Sw (~I(MG)) the Grothendieck group of ZG-modules which are 

finitely generated and free over Z . It operates on Wh(~I(MG)) by ®Z and the 

diagonal action. Let Z resp. Z w be the abelian group Z with the trivial G- 

* WN(~I(MG)) WN(~I(MG)) action resp. G-action determined by w . Then p, o p : -~ 

is multiplication with [Z] - (-i) dim V[zw] . If dim V is odd and w trivial/ 

* * Wh(~I(MG)) Wh(~I(MG) ~o(G)) p, o p is 2 id and 8, o p : --~ x is just the 

map induced from the inclusion ~I(M G) --~ ~I(M G) x no(G ) . If dim V is even and 

* ~l(M G w is trivial r 8. °  p is zero. However, for appropriate ) and w it can 

happen that dim V is even and p, o p is not zero. This shows that j, o 8,, o p 

does not only depend on the normal slice G-representation V . The results above 

follow from L~ck [1986], [1987] . o 

Com~nents 15.31. These transfer maps play an important role in the study of G - 

manifolds. Each NH-normal bundle v(MH,M) of M H in M determines such a transfer 

by its sphere bundle. We have already discussed their appearence in the equivariant 

s- cobordism theorem when we have related isovariant and equivariant Whitehead 

by an homomorphism ~ : WhOso(M)± --, whG(M) . torsion 

Using the equivariant s-cobordism theorem and the map • abovetone can define an 

involution * : whG(M) --, whG(M) by reversing equivariant h-cobordisms provided 
P 
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that the weak gap conditions 4.49. are satisfied. In Connolly-LUck [1988] the invo- 

lution * is computed in the terms of the splitting of Wh~(M) . In general this 

is not the direct sum of algebraic involutions on the summands, certain correction 

terms involving transfer maps come in. However, this is the case if G is finite of 

odd order and TM is the restriction to G of a NH(x)- representation for all 
x x 

x ~ M since then the correction terms vanish because of Corollary 15.29. 

Let (f,Sf) : (M,~M) --~ (N,~N) be a G-homotopy equivalence of G-manifolds. For a 

certain homomorphism ~f : uG(N) ~ whG(N) the formula 

Tg(f) = -*~G(f,Sf) - , o ~f(xG(N,SN)) 

is proved in Connolly-LUck [1988] (see also Dovermann-Rothenberg [1988]). Under mild 

restrictions ~f is zero. Then G(f) , TG(f,Sf) and ~G(sf) all vanish if G(f) 

or TG(f,Sf) is zero. This is an important result for the proof of the equivariant 

v-n-theorem in the simple category (see Dovermann-Rothenberg [1988], LUck-Madsen 

[1988 a]) . In this context we mention that there are also L-theoretic versions of 

such transfer maps (see Browder-Quinn [1975] , LUck-Madsen [1988 hi, LHck-Ranicki 

[ 1 9 8 8 3 )  . 

The main use of the algebraic description is the conclusion that the geometric trans- 

fer depends only on the (total) fibre transport (Corollary 15.27.). We used this 

fact to state a vanishing result for p in Theorem 15.28. Moreover, by Proposition 

14.27. it reduces the computation of the geometric transfer to the study of the al- 

gebraic transfers K (R) ~ K (S) for n = 0,i given by a so called chain homo- n n 

topy representation (C,U) of R in S in LUck [1986] . In LUck [1986] und 

[1987] some vanishing results and more information and references can be found. Un- 

fortunately, it turns out that these transfer maps are very hard to compute. This 

can already be seen in the case of a non-equivariant fibration S 1 -~ E P~ B with 

connected E and B and finite fundamental groups ~I(E) and ~I(B) which is 

extensively studied in Oliver [1985] . 

In LUck [1986 a] the notion of an equivariant first Stiefel-Whitney class w$ of 

a G-vector bundle $ is defined . If w$ and w for two G-vector bundles $ and 
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D over the same G-space agree then tPs ~ and tPs N coincide so that 

p(S$), o p(S$)* = p(SN), o p(SD)* holds. Finally we mention Dovermann-Rothenberg 

~988 ~ where the geometric transfer of a G-fibration is analyzed, too. 

Exercises 15.32. 

I) Let B be a G-space with a simple stru'cture $ and a G-vector bundle v + B. 

Make ~choices 15.15. and 15.16. using in 15.15. the preferred simple structure 

of 4.36. for $9 b as a Gb-manifold for b ~ B . Show that the simple structure 

on Sv of 15.17. is unique. Now suppose that B is a (compact) G-manifold 

and ~ is the preferred simple structure of 4.36. Then $ agrees with the 

simple structure on the G-manifold S~ of 4.36. 

2) Let p : E --~ B be a G-fibration over a G-space B with simple structure ~ . 

Suppose that p satisfies assumptions 15.12. and 15.18. and that xG(B) is 

zero. Then we get from 15.17. a preferred simple structure $ . How does $ de- 

pend on 8 ? 

3) Let ~ + B be a G-vector bundle. Suppose that B H is non-empty and connected 

and Wl(SvH ) ~ HI(BH;Z/2) vanishes for all H c G . Let V be the G-represent- 

ation ~ for some x ~ B G .Show for p : S~ --~ B that p, o p is given 

by xG(sv) ~ uG(*) and the uG(*)-module structure on KG(B) • n 

4) Let G be a finite group and $ + B a complex 

the complex G-representation V that V and ~b 

Gb-representations for all b ~ B . Prove p, o p 

Let v + B be a G-vector bundle and p : Dv ~ B 

Show p, o p = id . 

5) 

G-vector bundle. Suppose for 

are isomorphic as complex 

= 0 for p : S~ --~ B . 

be the associated disc bundle. 

6) Let M be a G-manifold satisfying the weak gap conditions 4.49. Show that the 

following definition of an involution * : whG(M) ~ whG(M) makes sense. For 
P P 

n ~ Wh~(M) choose an equivariant h-cobordism (W;M,N) with i,l~G(i) = N for 

i : M --, W the inclusion. Let *(N) be i~ITG(j) for j : N --, W the in- 

clusion. Compute * in terms of the splitting Wh~(M) = Wh(~I(MG)) • Wh(~I(EGxGM~ 
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if Iso M = {G,{I}} and M G and M are connected. 

7) Give an example of a pair of G-homotopy equivalences (f,Sf):(M, SM) -~ (M,SN) 

of (compact) G-manifolds such that TG(f) is zero and ~G(f,Sf) is not zero. 

Prove that for trivial G such an example does not exist. 

8) Let $i + Mi be G-vector bundles over (compact) G-manifolds M.I for i = 0,i 

and (~,f) : t °  ---~ E 1 be a G-vector bundle map. Let Sf : S$ °  ~ S~ 1 be the 

induced G-homotopy equivalence between G-manifolds. Show G(S~) = p~(G(f)) for 

Pl : S$I --~ M1 ' if G is taken with respect to the simple structures 4.36. 

9) Let Pl : E2 --~ E1 and Po : E1 --~ Eo be G-fibrations satisfying assumptions 
! 

15.12. and 15.18. so that the geometric transfer maps Pi are defined. Show that 

Po °  Pl : E2 --~ E1 is a G-fibration satisfying assumptions 15.12. and 15.18. 
! ! ! 

and that (Po °  Pl )" = Po °  Pl is true. 

I0) Give an example of a finite group G , and a (compact) G-manifold M of precisely 

two orbit types (H) and ({i}) such that M H and M are simply connected, 

xH(sv) ~ A(H) is zero for the H-normal slice and 

~: WhGso(M) = Wh(~I(MH/WH)) ® Wh(~l (MG/G)) -~whG(M)= Wh(~I(EWH ×WH MH)) ~ Wh(~I(EG ×~)) 

is not given by a diagonal matrix. 

ii) Let p : E --~ B be a G-fibration over a finite G-CW-complex B . Let F be a 

finitely dominated G-CW-complex such that F b and F are Gb-homotopy equivalent 

for all b ~ B . Prove in U(G) that xG(E) = xG(B) • xG(F) is true. 

12) Give an example of G-vector bundles ~ and 

G-action and a G-fibre homotopy equivalence 

such that TG(f) is not zero. 

q over the space ~p2 with trivial 

f : S$ --~ S~ covering the identity 

13) Show for a G-map f : X ---~ Y the existence of a G-fibration f : X --~ Y to- 

gether with a G-homotopy equivalence h : X --~ X satisfying f o h ~G f " 
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16. A second splitting 

In section 9 and i0 we have analyzed the structure of projective Rr-modules and of 

Kn(RF) using a splitting theorem based on the splitting functor Sx and the extension 

functor E . New we introduce a second splitting induced from the restriction functor 
x 

Res and the inclusion functor I . We relate these in a certain sense dual splittings 
x x 

by a kind of Moebius inversion. This enables us in appropriate situations to recognize 

a RF-module M from all its values M(x) , x ~ Ob F . 

Definition 16.1. W e call a category F finite if Is F and Hom(x,y) for all 

x,y ~ Ob F are finite. Let Ixl b__ee IAut(x) I for x ~ Ob F . Denote by m(F) 

the smallest co~on multiple of all numbers Ixl , x ~ Is F . If Aut(y) operates 

freely on Hom(x,y) for x,y ~ ObF, we call F free. Q 

Example 16.2. Let G be a compact Lie group and ~ c Con G a finite set. Let 

Or/G~ be the full subcategory of the discrete orbit category Or/G (see 8.36.) 

consisting of all objects GIH with (H) ~ ~ . Then Or/G is finite. If WH is 

finite for all (H) ~ , then Or/G is free by Lemma 8.26. The orbit category 

Or G of a finite group is finite and free and m(Or G) is the group order IGI. o 

16.3. Recall the partial ordering ~ on the set Is F of isomorphism classes x 

of objects x ~ Ob F defined by x ~ ~ <=> Hon(x,y)+~ . We write x < y if x~y 

and x + y holds. For a non-negative integer £ we define a £-chain c from 

- ~ = < 7 < < 7 = ~ • Let x ~ Is F to ~ Is F to be a sequence c : x x °  i "'" 

ch£(x,y) be the set of £-chains from 7 to y . Define the length £(~) of 

~ Is r by max{£ ~ Z I there is 7 ~'Is F with chz(x,y) + ~} . The length 

£(F) of F is max{£(x) I 7 ~ Is F} . Given a RF-module M , let its support 

sUpp M be {x ~ Is F I M(x) + {0}} . Define its length £(M) by max{£(x) Ix~suppM} 

if M + {0} and £({0}) = -i . If Is F is not finite it may happen that £(7) , 

£(F) or £(M) are ~ m 

We have defined the splitting functor S : MOD-RF --~ MOD-R[x] in 9.26., the ex- 
x 

tension f u n c t o r  E : MOD-R[x]  - - ~  MOD-RF i n  9 . 2 8 . ,  t h e  r e s t r i c t i o n  f u n c t o r  
x 

Res : MOD-RF --~ MOD-R[x] in 9.27. and the inclusion functor I : MOD-R[x]-~MOD-RF 
x x 
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in 9.29. Recall from Lemma 9.31. that (Ex,Res x) and (Sx,I x) are pairs of adjoint 

functors. Given a RF-module,let the RF-homomorphism 

16.4. K M : M --• I o S M 
x x x 

be the adjoint of id : S M --~ S M . Hence K M evaluated at x is the projection 
x x x 

M(x)  - - •  S M . F o r  a n  i n t e g e r  £ we d e f i n e  a R F - h o m o m o r p h i s m  w h e r e  I s ( £ )  i s  
x 

{7 ~ Is F I £(i) = £} . 

16.5. KzM = _ II ~x M : M --• _ II I o S M 
x ~ Is(£ x ~ Is(Z) x x 

and a RF-module 

16.6. KER£M = kernel(KzM) 

If L£M : KER£M --• M is the inclusion we obtain a natural exact sequence 

L£M K£M 
16.7. 0 --• KER~M • M • _ II I o S M--~ 0 

x ~ Is(~) x x 

Theorem 16.8. Filtration theorem for RF-modules. 

Let F 

integer 

be a EI-category and M be a RF-module of length Z(M) ~ £ 

. Then there is a filtration 

L L 1 L 2 
M M °  ~ o ~ M1 r ~ M2 r ~ rLz-I = ...- ~Mz=M 

for some fixed 

satisfying 

a) 

b) 

= KER.M. and L. is the inclusion. M~I i i x 

M. has length Z(M i) ~ i . If F is finite and 
i 

is finitely generated. 

c) Let L i : M i --~ M be L£_ 1 o LZ_ 2 

is an isomorphism for 

M finitely generated, M i 

~ ( x )  ~ i 

.... L i . Then Resx(L i) = ResxM i --~ ResxM 

and Res M. = {0} fo__~r £(x) > i . 
-- x i 

d) We obtain from 16.7. a natural short exact sequence 

0 --• Mi_ 1 --~ M i --• _ I[ I o Res M --• 0 
x ~ Is(i) x x 

e) If 0 --~ M --~ N--~ P --~ 0 is an exact sequence of RF-modules of length 

< Z , then the induced sequence 0 --• M. --• N. --~ P --~ 0 is exact. 
= 1 i i 
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SxM = ResxM holds if £(M) ~ £(x) Proof. Induction over i . Notice that 

We get a) from Lemma 16.10. below. 

16.9. The Filtration Theorem does not give a splitting of Kn(RF) in general as 

Res and I do not respect "projective" whereas E and S do. On the other x x x x 

hand Res and I are exact what is not true for S (see Example 9.34.). If x x x 

is free, E is exact. The Filtration Theorem gives a splitting if one considers 
x 

finitely generated RF-modules instead of finitely generated projective ones. 

is true. 

We call R noetherian if any submodule of a finitely generated R-module is finitely 

generated. 

Lemma 16.10. Le___!t F be a finite EI-category. 

a) A RF-module M is finitely ~enerated if and only if 

rated over R for all x ~ Ob F . 

ResxM is finitely ~ene- 

b) l_~f R i snoetheria% any submodule of a finitely generated RF-module is finitely 

generated. 

Proof: 

a) We use induction over £ = £(M) . The begin £(M) = -i is trivial, the induction 

step done as follows. Suppose that M(x) is finitely generated over R for all 

x ~ ObF . For x ~ Is(£) choose a finitely generated free R[x]-module F and an 

epimorphism p : F --~ ResxM . Then ExF is a finitely generated free RF-module and 

ExP : ExF --~ E x o ResxM is surjective. The adjoint of id:ResxM --~ ResxOIxoResxM 

is an epimorphism E o Res M---~ I o Res M so that I o Res M and hence 
x x x x x x 

1-[ I o Res M is finitely generated. By Theorem 16.8 c) and the induction 
x ~ Is(L) x x 

hypothesis KER£M is finitely generated. By Theorem 16.8. d) the RF-module M is 

finitely generated. The other implication is obvious. 

Definition 16.11. If FMOD-RF is the exact category of finitely generated R[- 

modules, define for n ~ 0 (see 10.4.): 
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Grn(RF) = Kn(FMOD-RF ) 

Split Grn(RF) = _ ~ Grn(R[x]) 
x ~ Isr 

Let F be a finite El-category. Then Res x , I x and KER£ 

nerated" by Lemma 16.10. and are exact. Define homomorphisms 

respect "finitely ge- 

16.12.  Res : Grn(RF) ~ Split Grn(RF) 

I : Split Grn(RF) ~ Grn(RF) 

by the sum of maps Gr(RF) ---+ Gr(R[x]) induced from Res 
x 

induced from I . Analogously to Theorem 10.34. one proves 
x 

and Gr (R[x ] )  ---* Gr(RF) 

Theorem 16.13. Res and I are isomorphisms, inverse to one another m 

We briefly discuss the natural properties. If F : F 1 --~ F 2 is a functor of finite 

E I - c a t e g o r i e s ~ r e s t r i c t i o n  d e f i n e s  an homomorphism F : Gr(RF 2) - - ~  Gr(RF 1) , Le t  
! 

F~,~  : Gr (R[y ] )  - - ~  Gr (R[x ] )  be z e r o ,  i f  y ~ Fx h o l d s  and be induced  by r e s t r i c t i o n  
! 

with Aut(x) --~ Aut(y) f ~ F(f) for y = Fx . The collection of the F ~ - y,x 

defines 

16.14. F" : Split Grn(RF 2) --~ Split Grn(RFI) 

! * 
Notice that F °  is quite different from F defined in 10.32. Now Gr and 

n 

Split Gr n become contravariant functors on the category F-El-CAT 

categories with values in abelian groups. One easily checks: 

of finite El- 

Lemma 16.15. Res : Gr --~ Split Gr and I : Split Gr --~ Gr are natural 
n n -- n n 

equivalences. 

Let GrP(RF) be the Grothendieck group of finitely generated RF-modules M for o 

which M(x) is projective over R for all x ~ 0b F . Let F, : GrPo(RF) --~ Gro(RF) 

be induced from the forgetful functor F . If any submodule of a projective R-module 

is again projective, R is called hereditary. 

Lemma 16.16. If F is finite and R is hereditary and noetherian,F,: GrPo{RF)-+ Gro(RF) 
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is bijective. 

Proof. We define a map G : Gro(RF) --• GrP(RF)o as follows. If M is a finitely 

generated RF-module~choose a finite not necessarily projective resolution (Qf)of M such 

that C (x) is projective over R for all x ~ Ob F and n ~ 0 . Define G([M]) 
n 

by E(-l)n[Cn ] . As R is hereditary and noetherian (C,f) exists Namely o 

choose a finitely generated free RF-module C together with an epimorphism p : C -~M. 
o O 

Let C 1 be the kernel of p , c I : C 1 --~ C o the inclusion and C i be zero for 

i > 1 . We leave it to the reader to verify that G is well-defined and inverse to 

F~ • D 

Let F 1 and F 2 be finite El-categories. If M is a finitely generated RFl-mOdule 

such that M(x) is projective over R for x ~ 0b F then we get an exact functor 

FMOD-RF 2 --~ FMOD-RFIXF 2 N ~ M ®R N (see 9.13.) inducing Grn(RF 2) -• Grn(RqxF 2) 

We obtain a pairing 

® 

16.17. Gr~(RFI) ® Grn(RF2) R • Grn(RF I x F2) 

Using F, : Gr~(RF I) ~ Gro(RF I) we get a pairing 

®R 16.18. Gro(Rr 1) ® Grn(Rr 2) • Grn(Rr I × r 2) 

Define 

16.19. Split Gr~(RFI) ® Split Grn(RF 2) 

Split Gr~(RFI) ® Split Grn(RF 2) 

®R 
• Split Grn(RF I x F2) 

®R 
P Split Grn(RF 1 x F2) 

by the various pairings GrPo(R[x ]) ® Grn(R[y ]) --~ Grn(R[(x,y) ]) and Split F, : 

Split GrPo(RFI) --~ Split Gro(RFI) . Notice that one can define 16.18. not directly 

using ®R as M ®R ? is not necessarily exact for an arbitrary finitely generated 

RFl-mOdule M . 

Lemma 16.20. Let F be finite and R be hereditary and noetherian. 

a) Res and I are compatible with these parings ®R 

! 

b) ®R : Gro(RFI) ® Grn(RF2) ~ Grn(RFI x F2) is natural with respect to F'. 
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Suppose either that F is finite and free or that F is finite and m(F) (see 

Definition 16.1.) is a unit in R . Then R Hom(y,x) is a finitely generated pro- 

jective R[x]-module for x,y E Ob F . Hence E : FMOD-R[x] --~ FMOD-RF is exact 
x 

and induces Grn(R[x ]) ~ Grn(RF) . The sum of these maps define 

16.21. E : Split Grn(RF) ---+ Grn(RF) 

We want to compare E with Res and I . Let ~x,y : Grn(R[x]) --~ Grn(R[Y]) 

induced from the exact functor FMOD-R[x] --~ FMOD-R[y] sending M to 

M "R[x] R Hom(y,x) for x,y ~ 0b F . We get 

be 

16.22. m : Split Grn(RF) ---~ Split Grn(RF) 

By definition Res o E is m . Next we construct an inverse U of m . 

Let c E ch£(y,x) 

Aut(x)-Aut(y)-set 

be the £-chain y = x °  < ~i < "'" < ~£ = x . Denote by S(c) the 

(i.e. a set with left Aut(x)- and right Aut(y)-action commuting 

with one another) 

16.23. 

By the assumptions about 

obtain an exact functor 

16.24. 

S(c) =Hom(x£_l,X£)×Aut(x£_l)HOm(x£_2,X£_l)XAut(x£_2)... XAut(xl ) Hom(Xo,Xl). 

F and R the R[x]-module RS(c) is projective. Hence we 

FMOD-R[x] --~ FMOD-R[y] M ~ M ~R[x] RS(c) inducing 

~x,y(c) : Grn(R[x]) ~ Grn(R[y ]) 

Define ~x,y : Grn(R[x]) ~ Grn(R[Y]) by 

16.25. ~x,y = I (-I)£ 

~ o c E~h~(y,7) 

We obtain the Moebius inversion 

~x,y (c) 

16.26. u : Split Grn(RF) --~ Split Grn(RF) . 

Theorem 16.27. Suppose either that F is finite and free or that F is finite and 

m(F) is a unit in R . Then (m,~) and (Res,l) are pairs of isomorphisms, inverse 

to another, E is an isomorphism and the following diagram commutes 
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Grn(RF ) 

E /  ~ R e s  

w 

Split Grn(RF) ~ Split Grn(RF) 
4 

Proof: Since Reso E= ~ obv%ously is true and Res o I = I o Res = id holds by 

Theorem 16.13.~it only remains to prove w o ~ = u o w = id . Given x,y ~ Is F 

with x < y , let Cl(X,y) be the unique 1-chain from x to y . If c is the ~- 

chain X=Xo<Xl<..<x~=y from x to y and d the m-chain y=yo<Y1<..<ym-Z from y to z 

let c*d be the (£+m)-chain X=Xo<Xl<-.<x£<Yl<..<ym-Z from x to z. We have the following 

relations 
= = i) mx,y Ux,y 0 , if y ,< x is not true. 

ii) ° ° x,x = ~x,x = id 

= ~x,y(Cl(Y,X)) iii) mx,y , if y < x holds 

iv) ~y,z(C) o ~x,y(d) = ~x,z(C * d) 

v) The map II chz(x,z) --~ ch£+l(x,y) sending c ~ ch£(x,7) to 
z ~ Is F 

x <_- z < y 

c * Cl(Z,y) is bijective. Analogously one gets a bijection 

II eh~(7,y) --~ ch~+l(X, ~) by c ~ ch£(z,y) b--~ Cl(X,Z ) , c . 
z ~ Is F 

x < z -<_ y 

Because of i) and ii) it suffice to show (w o ~)~,~= (~ o w)~,~ = 0 provided that 

y < x is true. We verify only second equality, the first one is done similarly 

(U °  ~)~,Y = I Uz,y °  ~x,z = 
z ~ Is F 

y~z~x 

I I (-I)£ I - -- ~z,Y (c) °  ~x'z(cl(~'~)) 
z ~ Is F £ >= o c ~ ch£(y,z) 

y~z<x 

I (-l)e I ~_x,_Y (c) = 
£ >_- o c ~ chz(y,x) 
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I (-1)t I "x,Y (c * Cl(7'~)) + 
£ ~ o z ~ Is F c ~ ch£(y,z) 

y-<-z<x 

I (-I)~ I "x,Y (c) = 
$ 1 c ~ chz(y,x) 

I (-1)9" I __ Px,Y (c) + I (-i)~ I Px,Y (c) = 0 
>= o c ~ ch£+l(Y,X) £ >= 1 c ~ chz(x,y) 

In favourite situations Res and I induce also a splitting for K-theory. 

Proposition 16.28. Let F be a finite EI-category. Suppose that m(F) (see De- 

finition 16.1.) is a unit in R and R is noetherian and hereditary. Then the for- 

getful functor F : FPMOD-RF-FMOD4RF induces an isomorphism 

F,~ : Kn(RF) --, Grn(RF). 

Proof. We will show in the next section that under the assumptions above any finitely 

generated RF-module has a finite projective resolution. Now apply Quillen [1973], 

corollary 1 in § 4. o 

We derive from Theorem 10.34, Theorem 16.27. and Proposition 16.28. the main result 

of this section. 

Theorem 16.29. The K-theoretic Moebius Inversion Theorem. Let F be a finite EI-cate- 

gory and R noetherian and hereditary with m(F)CR*. Then (E,S), (~,p) and (Res,l) ar___~e 

pairs of two another inverse isomorphisms and the followinK diagram commutes 

Kn(RF) 

S p l i t  Kn(RF) ~ ~, S p l i t  Kn(RF) 
P 

From now on we s u p p o s e  t h a t  we h a v e  s p e c i f i e d  t h e  n o t i o n  o f  a r a n k  rkRM o f  a f i n i t e l y  

g e n e r a t e d  R-modu le  s u c h  t h a t  rkRMl-rkRM° + rkR N2 = 0 h o l d s  f o r  any  e x a c t  s e q u e n c e  

0 - - ,  M 1 - - ,  M ° --~- M 2 - - ~  0 o f  f i n i t e l y  g e n e r a t e d  R - m o d u l e s  and  rkRR = 1 i s  t r u e .  
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Write C(F) = 

in some cases 

II Z . Of course this is the same as U(F) as abelian group 
E IS r 

U(F) and C(F) will carry different ring structures. Define for a 

finitely generated RF-module M over a finite El-category 

but 

16.30. rkRF M E C(F) 

by (rkRM(X))x E Is F " Recall from Definition 10.38. the notion of 

rkRrM E U(F) 

If 0 --~ M I --+ M °  --~ M 2 --~ 0 is an exact given by (rkR(SxM ®R[x]R))x E Is F " 

sequence of finitely generated RF-modules)we have rkRFMI-rkRFM° +rkRFM 2 = 0 but this 

is not true for rkRF in general (Remark 10,39.). We get induced homomorphisms 

16.31. rkRr : Ko(RF) ---+ U(F) 

rkRF : Gro(Rr) ~ C(F) 

We want to relate rkRF and rkRF . Let a~,~ be the integer {Hom(y,x) I . Define 

16.32. m : U(F) ~ C(F) 

by (n(X)~x E Is F 
I __ ( ~,~j~. n(x))~ ~ Is r 

x E Is F 

Lemma 16.33. Let F be a finite El-category. The map ~ is injective. Its co- 

kernel is finite of order _ II ix[ . If M 
x E Is F 

module ~(rkRFM)=rkRFM holds. 

is a finitely generated free RF- 

Proof. ~ is given by a triangular matrix. The entry on the diagonal for x E IS F 

is Ixl := IAut(x) i . The formula ~(rkRFM) = rkRFM is obviously true for M=RHom(?~ 

Any finitely generated free RF-module is a finite direct sum of such modules RHombi). 
D 

Given x,y E Is F with y ~ x and c E ch£(y,x), we have defined a Aut(x)-Aut(y)- 

set S(c) in 16.23. Let p~,~(c) be the integer {Aut(x)\S(c) I and put 

16.3A. = ~7,~ I (-i)~ __ ~,~(c) 
~ o c E ch£(y,x) 

We define 
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(n(x))7 ~ Is F by 

Let i : U(F) --~ C(F) 

i is injective. 

334 

: c ( r )  --, c ( r )  

' (-- I ~--~,y " n (X) )y  ~ I s  F " 
x~Isr 

send (n(X))x E Is F to ({xl'n(X))x ~ Is F " Notice that 

Theorem 16.36. 

a) 

b) 

e) 

Let F be a finite free El-category. Then the following is true 

~ o m=i 

image ~ = {N E C(F) I ~(q) ~ image i} 

We have for a finitely generated free RF-module M 

i(rkRFM) = 7(rkRFM) 

rkRFM = ~(rkRF M) 

Proof. Let j : U(F) ~ Ko(RF) send the base element corresponding to 

[R Hom(?,x)] . Consider the diagram 

x to 

u(r) 

K (RF) 
o 

S p l i t  Gr (RF) 1 

1 ° ~ rk R 

c(r) 

Res 

Split Gro(RF) 
l 
[~ rkR 

c ( r )  4 

t0 

We get U o Res = S from Theorem 16.27. For x,y ~ Ob F with y ~ x and 

c ~ ch£(y,x) we have rkR(P ®R[x]R[S(c)]) = rkRP • rkRR(Aut(x)\S(c)) for a finitely 

generated R[x]-module P, as Aut(x) operates freely on S(c) . Hence the square 

commutes. One easily checks that the whole diagram commutes. This proves a). Since 

is injective b) follows from a). Lemma 16.33. proves c) Q 
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Remark 16.37. Theorem 16.36. gives us the possibility to determine a finitely gene- 

rated free RF-module F by all its values F(x) as i is injective and rkRFF 

determines F up to isomorphism by Lemma 10.40. Notice that image ~ c C(F) 

is described by a system of congruence. Namely, Theorem 16.36. says that 

n = (n(~))~ ~ Is F ~ C(F) lies in the image of ~ if and only if for each y ~ Is F 

the congruence 

holds, o 

n(y) -= - I ~-~,~ • n(x) mod I Yl 

x ~ Is F 

y<x 

Example 16.38. Let G be a finite group and F be Or G . We have identified 

U(ZOr G) with the Burnside ring A(G) in Example l~47. Then ~: A(G) -~ II Z is 
(H) 

just the character map ch ~ 5.5. Hence we get from Remark 16.37. a set of congruences 

describing the image of A(G) in II Z under ch (compare tom Dieck [1987], IV.5.10 
(H) 

Kratzer-Th~venaz [1984]). o 

Comments 16.39. The splitting given by (Res,l) and (E,S) are dual to one another. 

This may be illuminated by the following list of notions and properties. The left side 

belongs to (Res,l) , the right side to (E,S) . 

1) supp M = 

{~ ~ Is rlResM + {o}} 
Iso M = 

{7 ~ Is FISxM + {0}} 

2) length £(M) cardinality of Iso M 

3) S x and I x are adjoint E x and R x are adjoint 

4) Res and I are exact but E and S are not exact, but 
X X X X 

do not respect " p r o j e c t i v e "  r e s p e c t  " p r o j e c t i v e "  

5) Res and I respect "finitely E and S respect "finitely 
X X X X 

generated" for finite F generated" 

o o -- 6) Resy I x = 0 for x ~ y and Sy E x 0 for x ~ y and 

Res o I = id S o E = id 
X X X X 



7) 

8) 

9) 

io) 
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K M : M---~ I o S M 
x X X 

KERxM = ker(KxM) 

Under certain conditions we have 

the exact sequence 

0 -~ KER M -~ M -+ I oRes M --~ 0 
X X x 

(Res,I) define inverse isomorphisms 

Grn{RF) --~ Split Grn(Rr) 

J M : E o S M --* M 
x x X 

COKxM = cok(JxM ) 

Under certain conditions we 

have the exact sequence 

0-~E oS M-~M-~ COK M-~ 0 
X X X 

(E,S) define inverse iso- 

morphisms Kn(RF) -~ Spl i t  Kn(RI') 

In geometry (Res,l) resp. (E,S) corresponds to the stratification of a G-space X 

by {xHIH c G} resp. {XHIH c G} . The Moebius inversion is related to the problem 

how X H can be built from the various X H and vice versa. 

Let (I,~) be a partially ordered set. Consider I as an El-category F(1) having 

as objects the elements of I and Hom(x,y) consists of precisely one element if 

x & y holds and is empty otherwise. Notice that r(1) is a so called A-category, 

that is a category where IHom(x,y) I ~ I holds for all objects. Any El-category r 

determines a partially ordered set (Is F,~). We get a bijective correspondence bet- 

ween A-categories and partially ordered sets. If F is a A-category and R is a 

principal integral domain H rk R induces an isomorphism Grn(Rr) -~ U(F) so that 

= ~ and u = ~ holds. Then ~ is the usual Moebius inversion of combinatoric 

(see Aigner [1979], IV.2). 

For computations concerning Gr(RG) for finite G we refer f.e. to Curtis-Reiner 

[1981], Hambleton-Taylor-Williams [1988], Webb [1987] 

Exercises 16.40. 

i) An El-category F is a groupoid if and only if L(F) is zero. 

2) 

3) 

Consider a finite group. Let n(G) be Z logp(IG I ) where Z runs over all 

prime numbers. Show L(Or G) 5 n(G) . Find sufficient conditions on G for 

L(Or G) = n(G) . 

Show the equivalence of the following assertions about an El-category 

bounded length L(F) : 

r of 



i) F is finite 

ii) An RF-module M 

generated over 
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is finitely generated if and only if M(x) is finitely 

R for all x ~ Ob F . 

4) An El-category F is free if and only if E : MOD-Z[x] --~ MOD-ZF is an exact 
x 

functor for all x ~ Ob F . 

5) Give an example of a commutative associative ring 

K (R) --, Gr (R) is no isomorphism. 
O O 

Let F be the El-category having two objects x and y 

and Aut(x) consists of precisely one element, Hom(y,x) 

is a non-trivial finite group. Show that there is no map 

satisfying ~ o ~ = i (see Theorem 16.36). 

R with unit such that 

6) Let F be a finite El-category and R a Dedekind domain. Show that F, : Ko(RF) 

Gr (Rr) is an isomorphism if and only if m(r) is a unit in R . 
O 

7) Let F be a finite El-category. Show that two finitely generated projective @F- 

modules P and Q are isomorphic if and only if P(x) and Q(x) are Q[x]- 

isomorphic for x ~ Ob F , 

8) Let C be a finite free RF-chain complex over the finite free El-category F . 

Prove i(XRF(C)) =y(-l)n~(r~FHn(C)) . Show that this also holds for a finitely 

n>o 
dominated ZF-chain complex but is in general false for a finitely dominated @P 

chain complex. 

9. such that Hom(x,y) 

is empty and Aut(y) 

: c(r)--~ c(r) 

i0) Suppose that the diagonal functor A : F --, rxF is admissible for the finite 

®R 
EI-category F . Equip U(F) with the ring structure U(F) ~ U(F) ~ U(F×F) 

A_~ U(F) and C(F) = II Z with the product ring structure. Show that 
Is F 

: U(F) --~ C(F) is a ring homomorphism. 

ii) Compute ~ and m for F = Or A 5 if A 5 is the alternating group. 

12) Let G be a finite abelian group and F be Or G. Show that 
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V-G/K,G/H = I (-I)~Ich~(G/H'G/K)I and ~G/~G/~I~HI ~l~f~ Hc K and that 

~o 

~G/K,G/H and ~G/K,G/H vanish otherwise. Prove that UG/K,G/H resp. ~G/K,G/H: 

Grn(R[G/K]) --, Grn(R[G/H]) is UG/K,G/H- res(p) resp. res(p) for p the pro- 

jection G/H ~ G/K if H c K is true and is zero otherwise. Compute for 

G = Z/p n that ~G/K,G/H = 1 , if H = K , PG/K,G/H = -i , if H c K and IK/HI 

is a prime number, and VG/K,G/H = 0 otherwise. 



17. Homological algebra. 

Since the category MOD-RF 
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of RF-modules is abelian~we can do homological algebra 

favourable cases . 

F is finite and R 

a spectral sequence. 

over it. We examine the homological dimension of a RF-module and give upper bounds in 

This is used to define generalized Swanhc~hism in section 19. if 

is Z. We develop tools for computing Ext and Tor groups, f.e. 

Recall from section II that a resolution (P,f) of a RF-module is a projective RF- 

chain complex P with H.(P) = 0 for i > 0 together with an isomorphism f : H (P) 
i o 

--~ M . We often omitt f . If P is finitely generated resp. free for all n ~ 0 
n 

we call P finitely generated resp. free• We say, P is finite if P is finitely 

generated and finite-dimensional. Recall that a commutative associative ring R with 

unit is noetherian resp. hereditary if any submodule of a finitely generated resp. 

projective R-module is also finitely generated resp. projective. We have defined the 

notion length in 16.3. and finite resp. free EI-category in Definition 16.1. 

Lemma 17.1. 

a) Any RF-module M has a free resolution P with £(P ) ~ £(M) for n ~ ~ • 
n .......... 

b) Let F be finite and R noetherian. Then any finitely generated RF-module M 

has a finitely generated resolution P with £(Pn ) ~ £(M) fo__~r n ~ ~ . 

Proof: Let M be a RF-module and the Ob F-subset (S,o) c M be a Ob F-set of ge- 

nerators. Then the free Rr-module F 

and there is an epimorphism F --* M 

16.10. a 

with (S,o) as base has length £(Y) & £(M) 

• Now a) follows directly and b) using Lemma 

max{hdim MIM a RF-module} = 

Given a RF-module Let C be a RF-chain complex with differential c r : C r Cr_ 1 . 

N , let HOmRF(C,N) be the RF-coehain complex with HomRF(C,N) n = HOmRF(Cn,N) and 

Definition 17.2. The homological dimension hdim M of a RF-module M + {0} is the 

integer d , if M has a d-dimensional but no (d-l)-dimensional resolution~ and is 

if M has no finite dimensional resolution. Put hdim{0} = -I . Let HDIM(RF) be 
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codifferential 

HomRr(en,N) --~ HomRF(Cn+I,N) • 

Definition i7.3. Let M be a RF-(contra-)module and 

RF-comodule. If P is any resolution of M, define for 

Ext~F(M,N) = Hn(HomRF(P,N)) 

T° r~ r(M'N) = Hn(P ®RF N) 

This is independent of the choice of 

ties 

c n : HomRF(C,N)n --~ HomRF(C,N)n+ I given by (-i) n " HOmRF(Cn+l,N) : 

N be a RF-(contra-) resp. 

n ~ 0 the R-module 

P by Lemma 11.7. We collect some basic proper- 

17.4. As HomRF(-,N) is left exact and ®RF N is right exactlwe have natural 

isomorphisms Ext° (M,N) = HomRF(M,N) and Toro(M,N) = M ®RF N . A map f : M °  --~ M 1 

* Torn(M1,N ) induces f : Extn(Mi,N) --~ Extn(M° ,N) and f, : Torn(M° ,N) --~ whereas 

g : N °  --~ N 1 induces g, : Extn(M,N ° ) --~ Extn(M,N I) and g, : Torn(M,N° ) -~ Torn(M,~). 

17.5 Let 0 --, M 1 i~ M o j~ M 2 --~ 0 

of Len~na 11.6. there is an exact sequence 

jective RF-chain complexes such that pn 

be an exact sequence of RF-modules. Because 

0 --~ pl k ~ pO £ pl __~ 0 of pro- 

is a resolution of M n for n = 1,0,2 and 

Ho(k) = i and Ho(Z) = j holds. Given a RF-module N , also 0 ~ HOmRF(P2,N) --~ 

HOmRF(P° ,N) --~ HOmRF(PI,N) --~ 0 and 0 --~ pl ®RF N --~ pO ®RF N --~ pl ®RF N -~ 0 

are exact. The long homology sequences give long exact sequences 

0 --~ HomRF(M2,N) --~ HOmRF(M° ,N ) --, HomRF(MI,N) --~ ExtI(M2,N) --~ Extl(M° ,N) 

--~ E x t l ( M 1 , N )  - - ~  E x t 2 ( M 2 , N )  - - ~  . . .  

and  

"-~T° r2(M2'N) --" T° rI(MI'N) --" T° rl(M° 'N) --~ T° rI(M2'N) --* MI ®Rr N --~ M °  ®RF N 

M 2 
-- ®RF N --~ 0 m 

17.6. Let M be a RF-module and n an integer. Then we have hdimRFM ~ n if and 

only if Extn+l(M,N) vanishes for all RF-modules N . This follows from Proposition 

I i . i 0 .  o 
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17.7. Let 0 --~ M 1 --~ M °  --~ M 2 --~ 0 be an exact sequence of RF-modules. Suppose 

that two of them possess finite-dimensional resolutions. We conclude from 17.5. and 

17.6. that then all three have finite homological dimension and we have 

hdim M 1 ~ max(hdim M° ,-i + hdim M 2) 

hdim M °  & max(hdim M I, hdim M 2) 

hdim M 2 ~ max(hdim M ° , 1 + hdim M I) [] 

17.8. Let 0 --~ M --~ Pn-i --~ Pn-2 --~ "'' --~ Po --~ N --~ 0 be an exact se- 

quence of RF-modules. Suppose that P, is projective for i = O,l...n-i . Then M 
i 

is projective if and only if hdim N ~ n is true. If hdim M > 0 or hdim N ~ n 

then hdim N = n + hdim M . This follows inductively over n from 17.7. o 

Next we establish a spectral sequence converging to Ext~F(M,N) whose El-term is 

given by certain Ext-groups ~[y](M(x)~R[x~(C),N(y)) over the group rings R[y]. 

Some preparations are needed. Let M be a RF-module. Define a RF-module 

17.9. EM = ~ E o Res M 
x~ IsF x x 

The direct sum over the adjoints of 

Lemma 9.31.) defines an epimorphism 

id : Res M --~ Res M for each x ~ Is F (see 
X x 

q : EM --~ M . Denote 

17.10. KM = kernel(q) 

We obtain an exact sequence 

i q 
17.11. 0 --~ KM ~ EM --~ M ~ 0 

Define inductively for p ~ 0 

17.12. K° M = M , KPM = KKP-IM 

Iterating 17.11. yields a long exact sequence 

17.13 . . . .  --~ EKPM --~ EKP-IM --~ .0. EKM --~ EM --~ M --~ 0 

Let M be a RF-module of finite length £ = £(M) and N be a RF-module. We define 

a finite filtration of R-cochain complexes 
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17.14. {0} c F~Q c F&-IQ c ... c FIQ c F° Q = Q 

satisfying 

17.15. There are resolutions P(p) of KP(M) and P(p-l) of EKP-IM such that 

FPQ is ZPHomRF(P(p),N) and FPQ/FP+IQ is ZPHon~F(P(p),N) . 

Suppose we have already constructed {0} c F~Q c ... c FPQ . We get from 17.11. an 

exact sequence 

17.16. 0 --b KPM --~ EKP-IM --~ KP-IM --~ 0 

Let P(p) be the resolution of KPM for which FPQ is ZPHomRF(P(p),N) . Because 
i 

of Lemma 11.6. we can find an exact sequence of RF-chain complexes 0 --~ P(p) 

P(p-l) ~ P' --~ 0 such that H applied to it gives 17.16. and P(p-l) and P' 
o 

are resolutions of EKP-IM and KP-IM . If we write P(p-l) = Cone(i) then P(p-l) 

is a resolution of KP-IM and we have an exact sequence 0 ~ P(p-l) --~ P(p-l) --~ 

ZP(p) --~ 0 . It induces an exact sequence 

17.17. 0 --~ Hon~F(ZP(p),N) --~ HomRF(P(p-I),N) --~ HomRF(P(p-I),N) --~ 0 

Put FP-IQ = zP'IHomRF(P(p-I),N) . This finishes the construction of 17.14. and 17.15. 

follows from 17.17. 

To such a filtration there is assigned a spectral (cohomology) sequence (Er,d r) , 

r = 1,2,... (see Cartan-Eilenberg [1956] XV, MacLane [1963] XI). Notice that 

£(KM) < £(M) is true. 

Theorem 17.18. Let M and N be RF-modules. Suppose that M has finite length 

£ . Then there is a spectral sequence (Er,d r) , r = 1,2,... satisfying: 

n 
a) (Er,d r) conver esKe ~ ExtRF(M,N ) . 

b) The El-term is given for p,q ~ 0 by 

EP,q = Ext~F(EKPM,N) 1 

If j is the compositio n EKP+IM --, KP+IM --, EKPM, the firs t differential 

dp,q ~p,q -p+l,q * ~F(EKPM,N) ~F(EKP+IM,N) i : -i --~ E 1 __is j : Ext --~ Ext . 
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c) We have for all r g i 

E p'q + {0} => 0 < p < ~ and 0 < q 
r 

d) If r > max(p,~-p) holdspwe get 

E pjq = E p'q o 
r 

We recall that a spectral sequence (Er,d r) is a collection of bigraded modules E p'qr 

with differentials d r : E p'q --~ E p+r'q-r+l such that d o d is zero and Er+ I = 
r r r r 

H(Er,d r) . The statement a) in Theorem 17.18. means the following: There is a fil- 

tration 0 c F~Ext~F(M,N) c F~-IExt~F(M,N) c ... FIExt~F(M,N) c F° Ext~F(M,N)=~(M,~ 

such that 

FPExt~r(M,N)/FP+IExt~F(M,N ) = EP,n-P 

Notice that E is determined by Theorem 17.18. d). We get from Theorem 17.18. c) 

that the El-term has the following shape for ~ = 3 

q 

G 

• - - ~  • --J* • - - ~  0 

--~ • --~ • --' • ~ 0 

-~ 9-+ ~-+ t -+ 0 , p 

G 

Example 17.20. Suppose that F is a El-category having two objects 

x < y . Then we obtain from Theorem 17.18. a) the exact sequence 

As E 2 = H(EI,dl) 

the exact sequence 

and 

x and y with 

0 --~ E l'n-l~ --~ Ext~F(M,N) --~ E 0'n~ --~ 0 

E = E 2 by Theorem 17.18.c) we get from Theorem 17.18. d) 

J n n El,n 0 --~ E ° 'n --~ ExtRF(EM,N) --, --~ ExtRF(EKM,N) = ..... ~ 0 

Hence we obtain a long exact sequence 
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--• EXt~F(M,N) --• Ext~F(EM,N) 
J n 

• EXtRF(EKM,N) • EXtRFI(M,N) --• 

Notice that EKM = KM holds as £(KM) ~ 0 is true. Now one easily identifies this 
J 

long exact sequence with the one defined in 17.5. for 0 --~ KM --~ EM --~ M ~ 0 

Now we want to analyze the El-term further. 

Lemma 17.21. Suppose either that F is free or that F is finite with m(F) ~ R . 

Then the adjunction between E x and Res x (see Lemma 9.31.) defines for a R[x]- 

module I, and a RF-module N an isomorphism 

n 
EXtRF(ExL,N) = EXtR[x] (L,N(x)) 

Proof: If P is a resolution of L , we get by E P a resolution of E L under the 
X x 

conditions above. We have HomRF(ExP,N ) = HOmR[x](P,ResxN ) . o 

q 
Next consider the exact sequence 0 --~ KM(y) --• EM(y) --• M(y) --• 0 of R[y]- mo- 

dules obtained by evaluating 17.11. at y ~ Ob F . Let qx,y: M(x) ®R[x]R Hom(x,y) --• 

M(y) send m ® ~ to M(~)(m) . 

Define ix, z : M(x) ®R[x]R Hom(y,x) --• M(z) eR[z] R Hom(y,z) by id , if x = z 

holds, by -q , if y = z holds, and by zero otherwise. Recall that EM(y) is 
x,y 

M(z) ®R[z] R Hom(y,z) if ~ runs over z E Is F . The collection ix, z gives 

17.22. i : 
x E Is F 

y < X 

M(x) "R[x] R Hom(y,x) --• EM(y) 

Len~ma 17.23. The R[y]-map i induces a natural isomorphism of R[y]-modules 

i : - ~ M(x) ®R[x]R Hom(y,x) --• KM(y) • 
x ~ Is r 

y< x 

We have defined the notion of a p-chain c from ~ to x in 16.3. and assigned 

to c a Aut(x)- Aut(y)-set S(x) in 16.23. Let Chp(F) be the set of triples 

(y,c,x) with ~,~ ~ Is F , c ~ Chp(y,x). One derives inductively over p from 

Lemma 17.23. (use statement v)) in the proof of Theorem 16.27.) 
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Lem~a 17.24. We obtain for z ~Ob r a natural R[y]-isomorphism 

KPM(z) = * M(x) ®R[x] RS(c) 
c ~ ch(r) 

Z = y 

Since HOmRr( ~ Li,N ) = II HomRF(Li,N) 
i ~ I i ~ I 

Lemma 17.24. isomorphisms provided that either 

in(r) ~ R 

holds/we obtain from Lemma 17.21. and 

F is free or that F is finite with 

17.25. Ext~F(EKPM'N)=II Ext~[x](M(x) ®R[x] RS(c),N(y)) 
Chp(r) 

Chp < ~ < ... < v = u for p ~ 1 . For Fix q = (v,d,u) ~ (r) with d : v = v °  i p 

any $ = (y,c,x) ~ Chp_l(F) we want to define a map 

17.26. d$, n : ExtR[y](M(x) ®R[x]RS(c),N(y)) --~ EXtR[v](M(u) ®R[u]RS(d),N(v)) • 

Suppose y = Vl,X = u and c : v I < v 2 < ... < Vp . Let 

~i : Ext~[y](M(x) ®R[x]RS(c),N(y)) --~ Ext~[v](M(u) ®R[u]RS(d),N(Y)®R[y]RHom(v,y)) 

be given by -®R[y]R Hom(v,y) and the obvious identification 

RS(c) ®R[y]R Hom(v,y) = RS(d) . 

More precisely, let 

Q a (projective) R[v]-resolution of M(x) ®R[x]RS(d) . Then P ®R[y]R Hom(v,y) 

(not necessarily projective) resolution of M(x) ®R[x]RS(d) . Let f : Q --~ 

P ®R[y]R Hom(v,y) be a R[v]-chain map inducing the identity on homology, Then 

is induced from the chain map 

P be a (projective) R[y]-resolution of M(x) ®R[x]RS(c) and 

is a 

HomR[y](P,N(y)) --~ HOmR[v](P ®R[y]R Hom(v,y),N(y) ®R[y]R Hom(v,y)) 

f 
--~ HomR[v] (Q,N(y) ®R[y]R Hom(v,y)) . 

The map q : N(y) ®R[y]R Hom(v,y) --~ N(v) sending n ® f to N(f)(n) induces 

~2 : Extq[u](M(u) ®R[u] RS(d)'N(y) ®R[y] R Hom(v,y)) -)Extq[u](M(U)®R[u]RS(d),N(v)) • 



346 

Let dg,q be ~2 o ~i " 

Suppose y = v , x = u 

There is an obvious map 

and c : v 
o < v I < ... < v__.i i < v_+.i i < "'" < v P 

for 0<i<p. 

: RS(d) ~ RS(c) 

coming from Hom(vi+l,V i) XAut(v.)Hom(vi,vi_ 1) --~ Hom(vi+l,Vi_ I) 
i 

to g o f . I t  i n d u c e s  

mapping (f,g) 

(id ® ~) : EXtR[x] (M(x)®R[x]RS(c),N(y)) --~ EXtR[u](M(u)®R[u]RS(d),N(v)) • 

Let d$,q be (-l)i(id ® ~)* 

Suppose y = v , x = Vp_ I and c : v® < ~1 < "'" < Vp-i " Let q:M(u)®R[u]RHom(x,u) 

--~ M(x) send m ® f to M(f)(m) . Since RS(d) is R Hom(x,u) ®R[x]RS(e) we get 

by q ®R[x]RS(c) a map 

Let d~,~ 

: M(u) ®R[u]RS(d) --~ M(x) ®R[x]RS(c) 

p* 
be (-i) ~. 

For all other ~ let d~,q be zero. For fixed q there are only finitely many 

with d~,q + 0 . Hence the collection (d~,q)$, n defines an homomorphism 

17.27. d : 1-[ Ext~[x](M(x) ®R[x]RS(c),N(x)) 
(y,c,x) ~ Chp_l(r) 

~ *  II Ext~[u](M(u) ®R[u]RS(d),N(v)) 
(v,d,u) E Chp(F) 

Theorem 17.28. Suppose either that F is free or that F is finite with m~F) E R . 

Let M and N be RF-modules such that M has finite length £ = £(M) . Le__~t (Er,%), 

r > 1 be the spectral sequence of Theorem 17.18. 

Then we obtain from 17.25. an isomorphism 

E~ 'q = II Ext~[y](M(x) ®R[x]RS(c),N(y)) 
ch (F) 

P 

Under this identification the first differential ~P'q : ~p,q __~ -p+l,q -i -i E1 a~rees 
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with the map d of 17.27. o 

Next we can define the cohomology of a category F 

N . Let Z be the constant ZF-module with value 

f : x --~ y . 

Definition 17.29. If 

with coefficients in a ZF-module 

id : Z --~ Z on any morphism 

M is a RF-comodule, define 

Hn(F,M) = Tor~F(Z,M)= Tor~F(R,M) 

If M is a RF-contramodule, define 

Hn(r,M) = Ex~F(Z,M)= Ext~F(R,M) 

Example 17.30. Let F be a free El-category having two objects x 

< ~ . Suppose that Aut(x) acts transitively on Hom(x,y) . Fix 

H c Aut(x) be the isotropy group of the class given by f in Hom(x,y)/Aut(y) 

that Hom(x,y)/Aut(y) is Aut(x)/H . We get for M = Z from Theorem 17.28. 

E~ 'q = Hq(Aut(x),N(x)) ® Hq(Aut(y) ,N(y)) 

E~ 'q = Hq(H,N(x)) . 

Let res : Hq(Aut(x),N(x)) --, Hq(H,N(x)) be restriction from Aut(x) to H . De- 

fine s : Hq(Aut(y),N(y)) --, Hq(H,N(x)) by 

Hq(Aut(y) ,N(y)) = Ext,[y] (R,N(y)) --~ Ext,[x] (R ®R[y]R Hom(x,y) ,N(y) ~R[y]R Hoax,y)) 

and y with 

f : x --~ y • Let 

SO 

--~ Extq[x ] (R Horn(x, y)/Aut(y) ,N(x)) = Hq(H,N(x)) • 

Then we obtain a long exact sequence 

... --~ Hn(F,N) --~ Hn(Aut(x),N(x)) ® Hn(Aut(y),N(y)) 

--~ Hn+I(F,N) ~ .... m 

Next we want to give some bounds for the homological dimension. 

Proposition 17.31. Let M be@ RF-module over the finite EI-category 

either that m(F) is a unit in R or that M 

-res+s 
Hn(H,N(x)) 

r . Suppose 

has a finite resolution, If M(x) 
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is projective over R for all x ~ Ob r we have 

hdim M ~ £(M) . 

Proof. Let m(F) be a unit in R . Then for any x ~ Ob F a R[x]-module M which 

is projective over R is projective over R[x] . Then 17.13. defines a £(M)~dmensional 

resolution of M 

0 --~ EK£(M)M --~ EKE(M)-IM --~ ... --~ EKM --~ EM --~ M --~ 0 

-- --~ Pn-i --~ " ' "  N e x t  we t r e a t  t h e  c a s e  w h e r e  M h a s  a f i n i t e  r e s o l u t i o n  0 * Pn 

- - *  P - - *  M - - *  0 . We u s e  i n d u c t i o n  o v e r  £(M) . I n  t h e  i n d u c t i o n  b e g i n  £(M) = 0 o 

we may  s u p p o s e  t h a t  M i s  a R G - m o d u l e  f o r  a f i n i t e  g r o u p  G , t h a t  m e a n s  F = 

(see Example 9.5.). If N is a RG-module, let N be the RG-module HomR(N,R) with 

the G-structure given by (fg)(n) = f(ng -I) for f ~ HomR(N,R), n ~N, g ~ G . 

There is a natural i s o m o r p h i s m  (N I • N 2 )  = N 1 ® N 2 . I f  t h e  R G - m o d u l e  N i s  f i n i t e l y  

g e n e r a t e d  a n d  p r o j e c t i v e  o v e r  R ~ t h e  c a n o n i c a l  map N - - ~  N i s  a R G - i s o m o r p h i s m .  

O b v i o u s l y  RG i s  R G - i s o m o r p h i c  t o  RG . H e n c e  N i s  a f i n i t e l y  g e n e r a t e d  p r o j e c t i v e  

RG-module if N is. Therefore we obtain an exact sequence 0 --~ M --~ Po --~ P1 -~ 

... --~ P --~ 0 such that Po is finitely generated and projective over RG . Then 
n i 

M and hence M is a f i n i t e l y  g e n e r a t e d  p r o j e c t i v e  R G - m o d u l e .  T h i s  i m p l i e s  

hdimRGM = 0 . 

We come to the induction step from £ ~i to £ = £(M) . For x ~ Ob F with £(x)=£ 

= Pn we have ResxP n SxP n if £( ) ~ £ holds. Hence ResxM has a finite resolution 

and is a projective R[x]-module by the induction begin by Lem~aa 17.1. and 17.8. Let 

q : ~ E °  Res M --~ M 
x ~ Is F x x 

£(x) = 

be the direct sum of the adjoints of id : Res M --~ Res M. As £(cok q) < £ holds 
x x 

there is a finitely generated projective RF-module P with £(P) < £ and a map 

: p --b M such that q ® ~ is surjective. If K is the kernel of q • ~ , we get 

an exact sequence of RF-modules such that the middle entry is finitely generated pro- 

jective 



349 

0 --~ K --~ P ~ ~ E ° Res M --~ M --~ 0 
x ~ Is F x x 

Because of Lemma 11.6. there is a finite resolution for K . Since 

duction hypothesis and 17.8. show hdim M ~ £ n 

Z(K) < £ the in- 

Corollary 17.32. Le__/t F be finite and R be a field such that m(r) and ch(R) 

are prime. Then we have 

HDIM(RF) & £(F)  

Remark 17.33. If pl,...,pr are distinct primes with product 

HDIM(QOrZ/m) = £(OrZ/m) = r 

m , we have 

On the other hand HDIM(QOrZ/p n) = i and Z(OrZ/p n) = n for p a prime number, n 

Proposition 17.34. Let F be finite with m(r) ~ R . Let M he a Rr-module such 

that M(x) is finitely generated projective over R for each x ~ Ob r . 

a) We have hdimRrM & p for some integer p if and only if KPM is a projective 

Rr-module. 

b) Suppose that hdimRrM & p holds. Then there is for each x ~ Is r a finitely 

generated projective R[x]-module P such that 
....... x 

U o (m-id) p o Res([M]) = ([Px])7 ~ Is r 

holds if ~,w and Res are the isomorphisms appearing in Theorem 16.27__u 

c) Suppose that F is also free. Let ~ : C(F) --~ C(F) be the homomorphism of 

16.35. Let ~ : c(r) --~ c(r) send (n(~))~ ~ Is F to 

(_ I n(7) • IHom(y,x)/Aut(x)l) ~ ~ Is r 

x ~ Is r 

If hdimRrM ~ p holds we have 

o (g-id)P(rk~rM) ~ 0 for x ~ Is r 
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A 
if rkRFM is (rkRM(x))~ ~ Is F " The maps ~ and ~ are inverse to one another. 

Proof. We get from 17.13. the exact sequence 

0 --~ KPM --~ EKP-IM --~ EKP-2M --~ ... --~ EM --~ M --~ 0 

As EKJM is a finitely generated projective RF-module a) follows from 17.8. We 

get in K (RF) 
o 

[KM] = [EM] - [M] = (E o Res-id)[M] 

This implies inductively over p 

S[K pM] = U °  Res[KPM] = P o Res o (E o Res-id)P[M] = U o (Res o E-id) p o Res[M] 

= p o (~-id) p o Res[M] 

Now b) follows from a) by taking P = S KPM . We obtain c) from b) using the easily 
x x 

verified relations rkSF °  ~ = ~ o rk~F and rk~F o ~ = ~ o rk~F (see proof of 

Theorem 16.36.) m 

Example 17.35. Especially the criterion in Proposition 17.34 c) is useful. If Pl 

and P2 are distinct prime numbersjlet G be Z/plP2 and H i the subgroup Z/pi. 

Then hdim~orGM £ 1 implies for a finitely generated @OrG-modu!e M 

rk@M(G/G) ~ rk@M(G/HI) + rkQM(G/H2) 

In particular hdim IG/GQ must be 2 . D 

The following criterion is sometimes useful. Given a functor i : F 1 --~ F 2 and a 

RFl-mOdule N , let the coinduction i#N be the RF2-module HOmRF I(R HomF2(i(?),??),N(?)). 

Proposition 17.36. Suppose that i : F 1 --~ F 2 is admissible. Assume the existence 

of an ob.iect y i l!n F 1 such that Aut(y) is finite, [Aut(y) I a unit in R and 

Aut(y) acts transitively, on the non-empty set Hom(x,y) for all x ~ Ob F . Let 

M be a RF2-module such that M is a direct summand in i.i~ M . Then 

Hn(F,M) = 0 for n ~ i 



Proof. It suffices to show 

i R is R and i and i# 

Ext~FI(R,i M) . But R = EyR 

We need for later purposes. 
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n e 
EXtRF2(R,i#i M) = 0 . As i respects "projective", 

are adjoint (see 9.21.) we have Ext~F2(R,i#i*M) = 

is projective under the conditions above, o 

L~a 17.37. Let F be a finite El-category and R be noetherian. Suppose either 

that F is free or that m(r) is a unit in R . Let M be a RF-module such that the 

R[y]-module M(x) ®R[x]RS(c) has a finite resolution for all x,y ~ Ob r , p ~ 0 , 

c ~ Chp(y,x) . Then we have 

a) M has a finite resolution, 

b) Let [M] ~ Ko(RF) be the element given by M --and S : Ko(RF) --~ Split Ko(RF) 

be the isomorphism of Theorem 10.34. For y ~ Is F we get 

S([M])~ = I (-I)P " _ I [M(x) ®R[x]RS(c)] 

p => 0 x ~ Ob F 

c ~ ch (y,x) 
P 

c) An analogous statement holds for If] ~ KI(RF) given by an automorphism 

f : M--,M. 

Proof. 

a) Consider any RF-module N and the spectral sequence (Er,d r) of Theorem 17.18. 

converging to Ext~F(M,N) . Let d be an integer with hdimR[y](M(x ) ®R[x]RS(c)) ~ d 

Then E~ 'q is zero by Theorem 17.28. for q > d . Hence Ext~F(M,N) is zero for 

n > d + £(F) so that M has a finite resolution by Lemma 16.10., Lemma 17.1. and 

17.8. 

b) If M 

from 17.13. 

satisfies the hypothesis for a) then also 

[M] = ~ (-I)£[EK£M] 
£~0 

KM by Lemma 17.23. We obtain 

Now apply Le~na 17.24. o 
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Comments 17.38. Homological algebra over a category is an important tool for homo- 

topy approximations for classifying spaces BG of a compact Lie group by the homo- 

topy push out of a system {BHIH ~ } for an appropriate set ]" of subgroups H 

of G . The problem whether such a system approximates BG can be reduced to the 

question whether Hn(F;M) vanishes for appropriate subcategories F c Or/G and Z/pF- 

modules M , often given by M(G/H) = H~(EG x G G/H,Z/p) (see Mislin [1987], Jackowski 

McClure [1987]). In this centextProposition 17.36. is needed. Mackey-structures are 

used to construct split epimorphisms i#i*M --~ M . More information and results can 

be found in Jackowski-McClure-Oliver [1989]. A spectral sequence converging to 

Ext~F(M,N) is established by Jackowski (private communication) and Slominska [1980] 

for F the orbit category. Corollary 17.32. is proven in Rothenberg-Triantafillou 

[1984]. 

Exercises 17.39. 

I) Let 0 --~ N I --~ N °  --+ N 2 --~ 0 be an exact sequence of RF-modules and M 

be a RF-module. Establish a long exact sequence 

0 --~ HOmRF(M,NI) --~ HomRr(M,N°  ) __~ HOmRF(M,N2 ) __~ Ext~F(M,NI ) --~ EXtRF(M, N I  o) 

--~ Ext~F(M,N2 ) --~ Ext~F(M,NI)--~ .... 

and similar for Tor and ®RF " 

2) Let F : F --~ R-MOD be a RF-module. Identify lim F = F ®RF ~ and inv lim F = 

HomRF(R,F) if lim and inv lim are taken over the diagram of R-modules F(x) in- 

dexed by F ° p . Show that Hi(F,-) and Hi(F, - ) are the i-th derivate functors of 

lim and inv lim in the sense of homological algebra. 

3) Let M be a RF-module with finite supp M = {x ~ Is riM(x) + {0}}. Show 

hdim M g max{hdim I x o ResxM I x ~ supp M} 

4) Let F 1 and F 2 be El-categories. Consider for i = 1,2 a RF.-module M. 
i i 

such that M.(x) is projective over R for all x ~ Ob F . Prove 
l 
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hdimRFlXF2(Ml ®RM2 ) = hdimRFiM 1 + hdimRF2M 2 • 

5) a) Verify for two finite EI-categories F 1 and F 2 

HDIM(~F 1 × r 2) = HDIM(Crl) + HDIM(~F 2) 

b) Show for a cyclic group 
n I n r 

G of order Pl "'''" Pr for prime numbers pl...pr : 

HDIM(¢ Or G) = r 

7) Let F be a finite free EI-category and M a ZF-module possessing a finite 

resolution. Show 

hdimzFM & Z(F) + 1 

for a prime number p . Show for a ~ Or G-module 8) Let G be Z/p × Z/p 

with hdim M & 1 : 

p. rkQM(G/G) < I rk(~M(G/H) 

I+H~G 

9) The following assertions are equivalent for a El-category 

i) Hn(F,M) = 0 for any R-module M and n ~ 1 . 

ii) The constant module R is projective. 

iii) There is an object 

F . 

y in F such that Aut(y) is finite, [Aut(y)[ is a 

Aut(y) acts transitively on the non-empty set Hom(x,y) for unit in R and 

all x ~ Ob F . 

i0) Let F be a Mackey-functor for the finite group G with values in the category 

of Z/p-modules. Let Or G be the full subcategory of Or G consisting of objects 
P 

G/H with H a p-group. Let M be the Z/p Or G-module given by F . Show for n ~ 1 
P 

Hn(OrpG,M) = 0 

(Hint: Apply Proposition 17.36. to i : Or G --~ Or G . 
P P 

ii) Let F be a finite El-category and R a field such that m(F) and ch R are 

prime. Then Ext~F(M,N)~ is the n-th cohomology group of the R-cochain complex 
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0~o _i,0 _2,0 ~ _3~0 
0 --~ E 1 --~ E 1 --~ E 1 E 1 ---~ ... 

Compute this R-eochain complex for F = OrZ/pq . 

12) Establish a spectral sequence similar to the one of Theorem 17.18. and Theorem 

17.28. converging to TorRF(M,N) . 
n 

13) Compute the El-term of the spectral sequence of Theorem 17.18. for 

F = Or Z/p n p a prime number 
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18. Reidemeister tQrsion. 

We want to assign to an appropriate G-CW-complex X its equivariant Reidemeister 

torsion pG(x) e Wh(@OrG) and its reduced equivariant Reidemeister torsion p-G(x) 

KI(QOrG)/KI(Z(IGI ) G) . We prove sum, product and join formulas and state some cal- 

culations. We relate it to other invariants we have defined above. Roughly speaking, 

the rationalized Whitehead torsion is the difference of the Reidemeister torsion and 

the reduced Reidemeister torsion is a refinement of the finiteness obstruction. We 

discuss various situations where Reidemeister torsion is defined and contains useful 

information. For example, we construct an injective homomorphism p~ : Rep~(G) 

Wh(QOr G) , thus reproving de Eham's theorem. Throughout the remainder of the book G 

is a finite group. 

18.A. Review of modules over the orbit category Or G . 

We briefly recall the algebra of RF-modules as far as needed for the re- 

mainder of the book . Since we restrict ourselves to finite groups and ignore 

fundamental groups, the notation simplifies drastically and a lot of technical diffi- 

culties, which only occur for infinite compact Lie groups, do not arise. Hence it 

suffices for understanding the next three sections to read the following comparatively 

short survey of the necessary input of the preceeding sections instead of reading them- 

selves. Hopefully we keep the next three sections fairly self-contained in this way. 

Of course a reader who is somewhat familiar with the material of sections 9., I0., 14., 

and 16. may skip 18.A., B.,and C. keeping just in mind that all our invariants, we 

will consider in the next sections, live over the orbit category OrG . 

The orbit category or G has as objects homogeneous spaces G/H and as morphisms 

G-maps. Let R be a commutative associative ring with unit. A ROrG-module M is 

a contravariant functor OrG --~ R-MOD into the category of R-modules. A morphism 

f : M --~ N is a natural transformation. The category MOD-ROrG of ROr G-modules 

inherits from R-MOD the structure of an abelian category. Hence notions like "direct 

sum", "exact sequence", "projective", "chain complex" and "homology" are defined. We 

often abbreviate M(G/H) by M(H) for a R Or G-module M . 

There is a forgetful functor F : MOD-ROrG --~ Ob(OrG)-SET into the category of 
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sets over Ob(OrG) sending M to ( JL M(G/H),~) where 8(M(G/H)) is G/H . 
HoG 

We call a ROrG-module M together with an Ob(OrG)-set B c F(M) free with base B 

if for any ROrG-module N and map of Ob(OrG)-sets f : B--~ F(N) there is exactly 

one homomorphism of RF-modules ~ : M --~ N extending f . For K c G let 

RHom(?,G/K) be the ROrG-module sending G/H to the free R-module generated by 

Hom(G/H,G/K) . Given an Ob(OrG)-set (B,$) , let ROrG(B) be the ROrG-module 

RHom(?,~(b)) . If we identify b C B with id : B(b) --~ ~(b) ~ RHom(~(b),$(b)), 
be~ 
we derive from the Yoneda-Lemma that ROrG(B) is free with base B . One easily 

verifies that B --~ ROrG(B) is the left adjoint of the forgetful functor F 

(cf. 9.16.)o 

Two bases ( B , ~ )  and (C,7) of the free ROrG-module M are called equivalent if 

there is a bijection of sets (not necessarily of sets over Ob(OrG)) ~ : B-~C such 

that for any b G B there is an isomorphism f : ~(b) --~ 7 o ~(b) in OrG and a 

sign e ~ {±i} satisfying M(f)(~(b)) = g'b . If we have fixed such an equivalence 

class [(B,$)] of bases (B,~) , we call M free with a preferred equivalence class 

of bases (cf. Example 12.22.). 

Let X be a G-CW-complex. Its cellular ROrO-chain complex cC(x) : OrG -~ {R-chain compL} 

sends G/H to the cellular chain complex cC(x H) of X H = map(G/H,X) G . It enherits 

from the G-CW-structure a preferred equivalence class of bases, called cellular equi- 

valence class of bases, as follows. Fix n ->- 0 . For any n-dimensional cell 

n n - n n) × 
e i 6 {e i I i 6 In} choose a characteristic map (Qi,qi :G/H i (Dn,S n-l) -~ (Xn,Xn_l). 

Let bni 6 cC(xH,XnH_I ) = cC(x)(H) be the image of the generator in Hn(Dn,S n-l) 

- n n) i x . under the map induced by (Qi,qi restricted to ell. (Dn,S n-l) Then ({b n I i6I#,$) 

with ~(b n) = G/H i represents the cellular equivalence class of bases. Notice that 

only the equivalence class is independent of the choice of the characteristic map and 

is an invariant of the G-CW-complex structure (cf. Definition 13.3., Example 9.18.). 

A ROrG-module M is finitely generated if it is a quotient of a free ROrG-module 

with base (B,$) such that B is finite. Consider the subcategory {finitely generated 

projective ROrG-modules} of the abelian category MOD-ROrG . The standard con- 

structions applied to it define its K-theory, denoted by Kn(ROrG) for n ~ Z . 
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A trivial unit in KI(ROrG) 

RHom(?,G/H) ~ RHom(?,G/H), 

~ {±I} . If U c KI(ROrG) 

= KI(ROrG)/U . Let Kf(ROrG) 
o 

is an element represented by an automorphism 

g ~ ~.fog for some H c G , f ~ Aut(G/H) , 

is the subgroup of trivial units, put Wh(ROr G) = 

be K of {finitely generated free ROr G-modules} . 
o 

Define K (ROr G) to be the cokernel of the forgetful homomorphism Kf(ROr G) --• 
o o 

--~ Ko(ROrG) . If M and N are ROrG-modules, let M ®R N be the ROrG-module 

G/H--~ M(G/H) o R N(G/H) . We get parings ®R : Ko(ROrG) ® Kn(ROrG) --~ Kn(ROrG) 

and ®R : K~(ROrG) ® Ko<ROrG)--, Ko(ROrG) and ®R : K~(ROrG) ® Wh(ROrG) 

--• Wh(ROr G) . In particular Kf(ROr G) and K (NOr G) become commutative associative 
o o 

rings with unit . If i : H --~ G is the inclusion of a subgroup, we obtain a functor 

i, : Or H --~ Or G , H/K --• ind(H/K) = G/K . Composition with i, defines a re- 

* (ROr G) --~ K (ROr H) and similar for K f K and striction homomorphism i : Kn n o ' o ' 

Wh (cf. section i0.). 

These K-groups can be computed by K-groups of group rings. Define for H c G functors 

S H : MOD-ROrG ~ MOD-RWH 

E H : MOD-RWH • MOD-ROrG 

as follows. Given a ROr G-module M , let M(H) c M(H) be the RWH-submodule gene- 
s 

rated by all images M(f) : M(G/K) --~ M(G/H) where f : G/H--~ G/K runs through 

all non-isomorphisms in Or G with source G/H and arbitrary target. Define SHM = 

M(H)/M(H) s , and EHN = N ®RWH RHom(?,G/H) for a RWH-module N . These functors 

induce a pair of inverse isomorphisms 

S : K (ROrG) ~ ~ K (RWH) 
n ( H )  n 

E : ~ K (RWH) --~ K (ROrG) 
(H) n n 

and analogously for K f , K and Wh (cf. Theorem 10.34.). Let U(G) = A(G) be 
o o 

Burnside ring. Then U(G) ~ Kfo(ROrG) , [G/H] --• [RHom(?,G/H)] is a ring the iso- 

morphism. Define an homomorphism rkRorG : Ko(ROrG) --• U(G) by [P] • 

--~ rkRwH(SHP)" [G/H] . We get a ring isomorphism 

(H) 

* F : Ko(ROrG) • U(G) * Ko(ROrG) rkRor O 



358 

with respect to the ring structure on the target given by (~,v) • (u',v ~) = 

(u-u',u-v' + u'.v) (cf. proof of Theorem Ii.24.). 

There is another splitting, provided R is Q , or any field of characteristic 

prime to [G I . The functors 

RES H : MOD-QOrG ............ ~ MOD-QWH 

IH : MOD-QWH ~ MOD-QOr G 

are given by ReSH(M) = M(H) and IH(N)(K) = N ~RWH RHom(G/K,G/H) if (H) = (K) 

and IH(N)(K) = {0} , if (H) # (K) . They induce a pair of inverse isomorphisms 

RES : Kn(@OrG) ~ ~ Kn(@WH) 
(H) 

I : ~ K (@WH) --~ Kn(QOrG) ( n )  n 

Tensoring with RHom(G/K,G/H) induces an homomorphism ~H,K : Kn(@WH) --~ Kn(@WK) " 

Their direct sum defines an isomorphism 

w : ~ Kn(~WH) ~ ~ K (@WE) , 
(H) (K) n 

An explicit inverse ~ of ~ is given in section 16. by the K-theoretic Moebius 

inversion. We get a commutative diagram of pairs of inverse isomorphisms (cf. Theorem 

16.29.) 

Kn(~ Or G) 

(H) ~ (K) n 

18.B. Review of invariants for ROrG-chain complexes, 

Next we recall the basic invariants for ROr G-chain complexes. A ROr G-chain complex 

C is finite if C is finitely generated for n ~ 0 and zero for n<0 and large ~. 
n 

We call C finitely dominated if there is a finite free ROr G-chain complex D and 

R OrG-chain maps r : D --~ C and i : C --~ D satisfying r o i = id . This is 

equivalent to the existence of a finite projective ROr G-chain complex P with 
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P = C . Given a finitely dominated ROr G-chain complex C , define its finiteness 

obstruction o(C) 6 Ko(ROrG) by E(-l)n[Pn ] for any finite projective ROrG-chain 

P chain homotopy equivalent to C . Its image under Ko(ROr G) --~ Ko(R Or G) complex 

is the reduced finiteness obstruction o(C) . Let the Euler characteristic x(C)~U(G) 

be rkRor G (o(C)) . A finitely dominated ROr G~chain complex C is ROt G-chain equi- 

valent ,to a finite free one if and only if o(C) vanishes. 

Let U c KI(ROrG ) be a subgroup and M and N be finitely generated projective 

ROr G-modules. A U-stable equivalence class of stable isomorphisms {¢} : M --~ N 

is represented by an isomorphism ~ : M • X --~ N • X for some finitely generated 

projective ROrG-module X . In the sequel ~ denotes permutation maps. The isomor- 

phism ~ : M ® Y --~ N ® Y represents the same U-stable equivalence class as ¢ 

if the torsion t(S) 6 KI(ROrG) of the following square S lies in U where t(S) 

is defined by running around in the clockwise direction. 

Ceid 
M ® X ® Y ~ N ® X ® Y 

o id 
M ® Y ® Y ~ M ® X ® Y 

Consider a ROr G-chain equivalence of finite projective R Or G-chain complexes 

f : C --~ D together with a U-stable equlvaleflce-class of stable isomorphisms 

Dod d ® C . If c is the differential and 7 a chain con- {#} : Codd ® Dev ev 

traction of the mapping cone Cone(f) of f , define the torsion t(f,{¢}) 6KI(ROrG)/U 

by the torsion t(S) of the square 

Cone(f)odd .......... {(c+y)} > Cone(f)e v 

Dod d • Cev Cod d • Dev 

(cf. Definition 12.4.) 

We will use this definition in two special cases. Let f : C --~ D be a ROt G-chain 

equivalence between finite free ROrG-chain complexes with preferred equivalence 

classes of bases. These bases give a U-stable equivalence class of stable isomorphisms 



{~} : Cod d ® Dev Dodd 

fine the Whitehead torsion 

Fix H c G . Consider a finite QWH-chain complex C . Regard 

chain complex by the trivial differential, A round structure 
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® C if U denotes the subgroup of trivial units. De- 
~V 

¢(f) ~ Wh(ROrG) by t(f,{~}) . (cf. Example 12.22.). 

H(C) as a finite QWH- 

C is a {l}-stable equi- 

valence classes of stable isomorphisms {#} : Cod d --~ Cev . Let f : (C,{~}) 

--~ (D,{$}) be a @WH-chain equivalence of finite @WH-chain complexes with round 

structure . Let the {l}-stable equivalence class of stable isomorphisms {#} : 

--~ ® C be induced by {~} and {~} . Define the round torsion Codd ~ Dev Dodd ev 

t(f) e KI(@WH) by t(f,{~}) (cf. Example 12.20.) 

Let C be a finite @WH-chain complex with round structure {~} . Equip H(C) with 

the trivial differential. Suppose we are given a round structure {~} on H(C) . Up 

to chain homotopy there is exactly one ~WH-chain map i : H(C) --~ C satisfying 

H(i) = id . Define the absolute torsion t(C,{~},{$}) 6 KI(QWH) by the round torsion 

t(i) (cf. Example 12.21.) 

18.C. Review of invariants of G-spaces. 

We recall invariants we have already defined and are related to Reide- 

meister torsion. Consider a pair of finitely dominated G-CW-complexes. Let 

cC(x,A;R) be the cellular ROr G-chain complex. It is obtained from the cellular 

RH/(G,X)-chain complex by induction with the projection pr : X --~ {point} (cf. 

Definition 8.37.). It has a preferred equivalence class of bases (see Definition 13.3.) 

The finiteness obstruction, the reduced finiteness obstruction and the Euler charac- 

teristic of (X,A) over ROrG 

18.1. oG(x,A;R) ~ Ko(ROrG) 

18.2. 8G(x,A;R) e Ko(ROrG) 

18.3. x(X,A;R) e U(G) 

are defined by o(cC(x,A;R)) , o(cC(x,A;R)) and ×(cC(x,A;R)) (cf. Definition ii.i. 

and Definition 11.19.). Let (f,g) : (X,A) --~ (Y,B) be a G-homotopy equivalence of 

pairs of finite G-CW-complexes. Its (equivariant) Whitehead torsion over ROrG 

18.4. TG(f,g;R) G Wh(ROrG) 
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is defined by ~(cC(f,g)) (see Definition 12.24.). If R is Z , we often omitt 

R . For R = Z these invariants above are the image of the corresponding invariants of 

of section 14. under the homomorphisms induced by pr : X --, {point} . 

18.5. We recalltheohstructicnpr~ies of these invariants. Let X be a finitely domi- 

nated G-CW-complex such that X H is simply connected or empty for H c G . Then X 

is G-homotopy equivalent to a finite G-CW-complex if and only if oG(x) ~ K (ZOr G) 
o 

vanishes (see Theorem 14.6.). Consider a G-homotopy equivalence f : X --~ Y between 

finite G-CW-complexes such that yH is simply connected or empty for H c G . Then 

f is simple (see Definition 4.4.) if and only if G(f) ~ Wh(ZOrG) is zero (see 

Theorem 14.4.) D 

18.D. Construction of equivariant Reidemeister torsion. 

We need the following lemma which is proven for group rings in Swan [1960] and hence 

follows from Theorem 10.34. 

Lemma 18.6. Let F be an El-category and m C Z , m ~ i . If Aut(x) is finite 

for all x e ObF , then the change of rin~ map Ko(ZF) --, Ko(Z(m)F) is zero D 

Suppose that G is finite and R a field of characteristic zero. In order to de- 

fine equivariantReidemeister torsion, we need the following extra structure on a 

finitely dominated pair (X,A) . 

Definition 18.7. A round structure {#} o_nn (X,A) is a collection of stable iso- 

morphism classes of RWH-isomorphSsms (see section 12) 

{~(H)} : H(xH,AH;R)odd --~ H(xH,AH;R)ev 

indexed by {HIH c G} . We require {c(g)} o {~(H)} = {¢(g-iHg)} o {c(g)} fo__[r H c G, 

g ~ G and c(g) given by conjugation. D 

We recall that H(xH,AH;R)od d ~s ~ H(xH,A;R)2n+I and similar for ev. 
n~o 

Lemma 18.8. The following statements are equivalent for a pair (X,A) of finitely 

dominated G-CW-complexes 

i) (X,A) has a round structure. 

ii) oG(x,A;R) ~ Ko(ROr/G) is zero 
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iii) xG(x,A) ~ U(G) is zero. 

iv) X(~,A H) ~Z ~ zero for H c G . 

Proof. The existence of a round structure is equivalent to E(-I)n[Hn(X,A;R) ] = 0 

in K (RWH) for all H c G . Now i) <=> ii) follows from Proposition 11.9. and Theorem o 

16.29. We derive ii) <=> iii) from Lemma 18.6. and iii) <=> iv) from Theorem 16.36. 

Let (X,A) be a pair of finite G-CW- complexes with a round structure {¢} . We 

abbreviate C = cC(x,A) and write C(H) for C(G/H) = cc(xH,AH) . Let U c KI(ROrG ) 

be the subgroup of trivial units so that Wh(ROrG) = Ki(ROrG)/U (see Definition 10.8.) 

As xG(x,A) is zero by Lemma 18.8.,the cellular bases defines a U-round structure 

{~} : Cod d --~ Cev on the ZOrG-chain complex C . (see Example 12.20. and Lerama 12.23). 

Choose a {l}-round structure {B} : Cod d --~ Cev representing {~} . Then 

{8(H) "zR} : C(H) ®ZRodd - -*  C(H) ®zRev 

is a {l}-round structure on the RWH-chain complex C(H) ®Z Rodd " We have defined 

the absolute torsion 

18.9. t(C(H) "Z R,{8(H) ®Z R},{¢(H)}) ~ KI(RWH) 

in Example 12.21 if we put F = WH A there. Their collection defines an element in 

Split KI(ROrG) whose image under the composition of the projection pr : KI(ROrG) 

--, Wh(ROrG) and the isomorphism I : Split KI(ROrG) --, KI(ROrG) of Theorem 16.29. 

is denoted by pG(x,A,{¢}) or briefly pG(x,A) . Because of Theorem 16.29. and 

Example 12.21. pG(x,A,{¢}) depends only on the G-CW-complex structure on (X,A) 

and {¢} but not on the choice of {8} within {~} . 

Definition 18.10. We call 

pG(x,A) ~ Wh(ROrG) 

the equivariant Reidemeister torsion. 

We can still define a reduced version if (X,A) is a pair of (not necessarily finite) 
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finitely dominated G-CW-complexes with a round structure {~} . Let m 

be a multiple of IGI . There is a canonical ring homomorphism Z(m ) --~ E . 

Let KI(ROrG)/KI(Z(m)OrG) be the cokernel of the change of rings map Ki(Z(m)OrG) 

--~ KI(ROrG) . Because of Lemma 18.6. there is a finite free Z(m)OrG-chain complex 

F together with a chain homotopy equivalence f : ce(X,A;Z(m )) --~ F . For H c G 

let {~(H)} : H(F ®Z(m) R)odd --~ H(F ®Z(m) R)ev be the round structure induced from 

~(H) by conjugation with H(f ®Z(m) R) . Because of Lemma 18.8. we can choose a 

round structure {~} on F . We have the absolute torsion 

18.11. t(F(H) eZ(m)R,{~ ®Z(m)R}, {@}) ~ KI(RWH ) 

The collection of these elements defines an element in Split KI(ROrG) whose image 
pro I 

under Split KI(ROrG) ~ KI(ROrG)/KI(Z(m)OrG) is denoted by p-G(x,A,{#}) or 

briefly p-G(x,A) . It depends only on (X,A) and {~} by Theorem 16.29. and Example 

12.21. 

Definition 18.12. We call 

O-G(X,A) ~ KI(ROrG)/KI(Z(m)OrG) 

the reduced equivariant Reidemeister torsion. D 

18.E. Basic properties of these invariants, 

We collect the basic properties of the invariants defined above. 

18.13. Sum formula 

Consider the G-push out of finitely dominated G-CW-complexes with i a G-cofibration 

18.14. Xo - - ~  X2 

X 1 - - ~  X 

Then we have in Ko(ROrG) , Ko(ROr G) resp. U(G) (see Theorem 14.6.) 
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oG(x) - oG(xl ) - oG(x2 ) + oG(Xo ) = 0 

~G(x) - 6G(xI ) - oG(x2 ) + sG(Xo ) = 0 

xG(x) - xG(Xl ) - ×G(X 2) + ×G(X o) = 0 

Suppose that X °  , X 1 and X 2 carry round structures {#o} , {#i} and {#2} . 

Then we call 18.14. a G-push out of G-CW-complexes with round structure if X is 

equipped with round strucure {#} uniquely determined by the following property for 

H c G : Consider the Mayer-Vietoris sequence of the WH-push out obtained from 18.14. 

by taking the H-fixed point set as an acyclic finitely generated (projectiv~ RWH- 

chain complex D(H) . It enherits a round structure {~(H)} from {#o} , {#i} , 

{#2} and {#} . We require that the round torsion t(D(H),{6(H)}) ~ KI(RWH) vanishes 

If 18.14. is a G~push out of finitely dominated G-CW-complexes with round structure 

we derive from Example 12.21. in KI(ROrG)/KI(Z(m)OrG) 

~<x) ~<Xl) ~<x 2) + ~<x o) = 0 

Suppose that 18.14. is a cellular G-push out (see 4.1.) of finite G-CW-complexes with 

ronnd structure. Then we have in Wh(ROrG) 

pG(x) - pS(x I) - 0G(x2 ) + pG(x o) = 0 

Similarly we get for G-homotopy equivalences fo' fl' f2 and f between two 

cellular G-push outs of finite G-CW-complexes in Wh(ROrG-) (see Theorem 14.14.) 

G(f) _ G(fl) _ G(f2) + g(fo) = 0 D 

18.15. Relative formula 

If (X,A) is a pair of finitely dominated G-CW-complexes we have 

oG(x) = oG(A) + oG(x,A) 

8G(x) = 8G(A) + 6G(x,A) 

xG(x) = xG(A) + ×G(x,A) 

If A and X carry round structures , (X,A) inherits a round structure by a con- 

struction similar to 18.13. using the long homology sequences of the pairs (xH,AH). 
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p-G(X ) = p-G(A ) + p-G(X,A) 

pG(x) = pG(A) + pG(x,A) 

(f,g) : (X,A) ---• (Y,B) of G-homotopy equivalences between finite 

If Y also carries a round structure {~} one easily checks {$ x id} = {id x ~} . 

Hence X x y has a canonical round structure~if xG(x) = xG(y) = 0 holds~by Lemma 

18.8. One easily checks using 18.13. 

pG(x x y,{$} x id) = pG(x,{$})® R x~Y) 

p-G(x x y, {$} x id) = p-G(x,{$})® R xG(y) 

We derive from Theorem 14.42. and Corollary 14.48. for f : X' --• X and g : Y' --• Y 

oG(xxY) = xG(x) ® oG(y) + oG(x) ® ×G(y) _ xG(x) ® xG(y) 

%G(xxY ) = xG(x) ® %G(y) + %G(x ) ® xG(y) 

xG(x×y) = xG(x) ® xG(y) 

G(f.xg) = xG(x) ® G(g ) + TG(f) ® xG(y) s 

18.16. Diagonal product formula 

Let X and Y be finitely dominated G-CW-complexes. A round structure {$} on X 

i n d u c e s  a r o u n d  s t r u c t u r e  {¢ x i d }  o n  t h e  G - s p a c e  X × Y b y  

x 

{($ id)(H)} : H(X H × yH;R)od d ~ (H(XH;R) ®R H(YH;R))odd {~} X - - - •  

(H(xHIR)odd ®R H(yH;R)ev ) ® (H(xH3R)ev ®R H(yHyR)odd ) 

{$(H)®Rid}.{¢(H) ®Rid}'l (H(xH;R)ev®RH(yH;R)ev) ® (H(xH;R)cdd®RH(yH;R)odd) 

x 

{~} (H(xH;R) ®R H(yH;R))ev H(xH yH;R)ev --'~ • x 

G(f) = G(g) + G(f,g) 
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18.17. Join formula 

If X and Y carry round structures {#} and {~} we get from 18.13. and 18.16. 

a unique round structure {~*~} on the join X * Y defined in 7.41. We conclude 

from 18.13. and 18.16. 

oG(x*Y) = (I-xG(x)) ® oG(y) + oG(x) ® (i - xG(y)) + xG(x) ® xG(y) 

6G(x*Y) = (i - xG(x)) ® 8g(y) + ~G(x ) ® (i - xG(y)) 

xG(x*y) = ×G(x) + xG(y) - xG(x) ® xG(y) 

TG(f*g) = (i - xG(x)) ® G(g ) + G(f) ® (I - xG(y)) 

pG(x,y ) = pC(x ) + pG(y) 

~-G(x*Y) = ~-G<x) + 2<Y) 

18,18. Transformation under G-h0motopy equiyalence, 

Let (f,g) : (X,A) --~ (Y,B) be a G-homotopy equivalence of pairs of finitely domi- 

nated G-CW-complexes. Then 

oG(x,A) = oG(y,B) 

8G(x,A) = 8G(y,B) 

xG(x,A) = xG(y,B) 

Suppose that (X,A) and (Y,B) carry round structures {#} and {~} . Let tG(H(f,g)) 

be the image of the element given by the round torsion t(H(fH,gH;R),{~(H)},{~(H)}) 

KI(RWH) for H c G under I : Split K](ROrG) --~ KI(ROrG) . We conclude from 

Example 12.21. in KI(ROrG)/KI(Z(m)0rG) using Lemma 18.6. 

tG(H(f,g)) = p-G(x,A ) - p-G(y,B ) 

are pairs of finite G-CW-complexes with round structure we If (X,A) and (Y,B) 

get in Wh(ROrG) 

In this context the following result for 

G(f) _ tG(H(f,g)) = pG(y,B ) _ pG(x,A ) D 

SKI(ZOrG) = kernel (KI(ZOrG) --~K~@OrG)) 
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is interesting. 

Theorem 18.19~. Le___~t G be a finite group. 

a) Let G be abelian. Suppose either that for all prime numbers p dividing IGI 

we have G ~ Z/p n or G ~ Z/p x Z/p n for some n or that G is (Z/2) k for 
P P -- __ 

some k . Then SKI(ZOrG) is zero. 

b) If Gp is cyclic for the prime p then SKl(ZOrG)(p ) is zero. 

c) SKI(ZOrG) = Tors Wh(ZOrG) . 

Proof. Because of Theorem 10.34. it suffices to prove the analogous statements for 

integral group rings. This is done in Oliver [1988] . D 

18.20. Let (X,A) be a pair of finite G-CW-complexes with two round structures 

{~} and {~} . Let [{~} o {~I] ~ Wh(ROrG) be the image of the element given by 

the collection {~(H)} o {~(H) -I} under Split KI(ROrG) _~I KI(ROrG) -~ Wh(ROrG). 

We derive from Example 12.21. in Wh(ROrG) 

pG(x,A,{~} ) _ pG(x,A,{$} ) = [{~} o {$}-i] 

-G 
A similar formula holds for p D 

18.F. Special G-CW-complexes, 

Now we consider situations where such round structures are naturally given and which 

are important for applications. If A is an abelian group, let Af be A~/Tors A . 

Definition 18.21. We call a pair of finitely dominated G-CW-complexes (X,A) 

special if WH acts trivially on Hn(XH,AH;Q) and' x(xH,A H) Z vanishes for 

H c G . An orientation of X is a collection of [l}-round structures 

{$(H)} : (H(xH,AH)f)odd --, (H(xH,AH)f)ev 

H c G such that {c(g)} o {~(H)} = {$(g-IHg)} o {c(g)} holds 

for given by conjugation. D 

of Z-modules for 

H c G , g ~ G an__dd c(g) 

Any special pair (X,A) 

holdstan orientation on 

can be given an orientation. As H(xH,AH;Q) =H(XH,AH)f ®Z @ 

(X,A) induces a round structure in the sense of Definition 
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18.7. Hence for an oriented special pair of finite rasp. finitely dominated G-CW- 

complexes (X,A) its equivariant Reidemeister torsion 

18.22. pG(x,A) ~ Wh(QOrS) 

rasp. reduced equivariant Reidemeister torsion 

18.23. p-G(x.A) ~ KI(@OrG)/KI(Z(m)OrG) 

is defined. Related to these invariants are the following ones. For any pair (X,A) 

of finitely dominated G-CW-complexes let 

18.24. hx(X,A) ~ II Q*/Z* 
(H) 

given by hx(X,A)(H) = 1-i [T° rsH(~'AH)[(-I)n'u Suppose that (X,A) is special. be 
n >_- o 

trivially on Hn(XH,AH;@) n Hn(XH,AH;@) --~ Hn ((XH,AH)/WH;@) is an Since WH acts 

isomorphism (see Bredon [1972], III.2.4.) and hence Hn((XH,A H) --~ (xH,AH)/wH) is 

finite. Let mx(X,A)(H ) be 1-I IHn((XH,A H) --~ (xH,AH)/wH)I (-l)n 
n >=o 

Definition 18.25. We call the element 

mx(X,A) = (mx(X,A)(H))(H) ~ II @*/Z* 
(H) 

the multiplicative Euler characteristic of (X,A) . s 

Next we explain how these invariants are linked. Consider the following localization 

m a multiple of IGI . square for 

18.26. ZWH .... ~ ZI/mWH 

Z (m)~-I ~ Q~I 

The boundary homomorphism of the exact Milnor sequence associated with 18.26. (see 

Milnor [1971, p. 28]) induces 

18.27. ~H : KI(~WH)/KI(Z(m) WH) --~ Ko(ZWH) 
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Let Split 8 : Split Kl(@OrG)/Split KI(Z(m)OrG) --~ Split Ko(ZOrG) be the direct 

sum ~ 8 H . If S and E are the isomorphisms of Theorem 10.34. define 
(H) 

18.28. 8 : KI(~OrG)/KI(Z(m)OrG) --~ Ko(ZOrG) 

by E o Split 8 o S . Using Lemma 18.6. we obtain an exact sequence 

18.29. 0 --* KI(Z1/mOrG)/KI(ZOrG) --* KI(@OrG)/KI(Z(m)OrG) --* Ko(ZOrG) -*Ko(~/mO~;) 

Proposition 18.30. Let (X,A) be an oriented special pair of finitely dominate ~ 

G-CW-complexe s. Suppose that Hn(XH,AH) contains no p-torsion for anyprime number 

p with (p,[G I) = 1 and n ~ 0 . Then we have 

oG(x,A) = -8(p-G(X,A)) 

Proof~ We can assume without loss of generality for the ZOrG-chain complex 

C = cC(x,A) that C. is finitely generated projective for odd i and finitely 
i 

generated free for even i and zero for large i~ as cC(X,A) is at least homotopy 

equivalent to such a ZOrG-chain complex. Notice tha~ Hi(xH;zI/m) = Hi(X H) ®Z Zl/m = 

Hi(xH)I/m is a finitely generated projective Zl/mWH-module. Going through the de- 

finition of p-G(X~A) one easily checks the following: There are finitely generated 

projective Zl/mWH-modules M(H) for H c G , a finitely generated free ZOrG-module 

F and a finitely generated projective ZOrG-module P together with Zl/WH-auto- 

morphisms 

~(H) : M(H) ® F(H)I/m ~ M(N) ® P(H)i/m 

and a Z(m)OrG-isomorphism 

: P(m)"' ~ F(m) 

such that oG(x,A) = [F] - [P] holds and the map 

I pr 
Split KI(~OrG) --~ KI(~OrG) --~ KI(@OrG)/KI(Z(m)OrG) 

sends the element in Split KI(QOrG) given by the collection of elements 

[(id ® ~(~)(o)) o g(H)(o) ) : M(H)(o) ® F(H)(o) --~ M(H)(o) ® F(H)(o) ] ~ KI(QWH) 
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to ~G(x) . Namely take M(H)=(H(C(H))I/m)od d , F = Cev and P = Cod d . Since we 

may add a finitely generated free ZOrG-module to F and P we can suppose M(H) = {0} 

for H c G . Moreover, we can assume by Theorem 16.29. the existence of a Z!/mOrG- 

isomorphism ~ :Fl/m -~ Pl~nSuch that ~(H) is ReSG/H~ = ~(H) . Consider the following 

commutative diagram 

SG/H(~ -I ) oil/ m 

18.31. SG/HP -~ SG/HFI/m 

SGIHF(m ) ~ SG/HF(o ) 
J(m) 

°  a(o) ) °  Jl/m 

if i(m) : SGIHP --~ SGIHP(m)' il/~SG/HP --~ SGIHPI/m ' Jl/m : SG/HFI/m -~ SG/HF(o) 

and J(m) : SG/HF(m) --~ SG/HF(o) are the obvious inclusions. Since it is isomorphic 

to the obvious diagram 

SG/H P ~ SG/HPI/m 

SG/HP(m ) - - ' ~  SG/HP(o) 

18.31. is a pull-back of abelian groups. We get from the definition of the boundary 

map ~H : KI(@OrG)/KI(Z(m)OrG) ~ Ko(ZOrG) 

~H([SG/H(~(o ) o ~(o))]) = [SG/HP] - [SG/HF ] 

Now the claim follows. 

If ~ denotes the augmentation map we get an homomorphism 

Res ~ e, 
KI(@OrG) ~ Split KI(QOrG) (H) ~ ~ KI(@) = II @* 

( ) (H) 

Because of Theorem 16.29. it induces an homomorphism 

18.32 .  : KI(@OrG)IKI(~m)OrG)--~ n @ IZ(m ) 
(H) 

Proposition 18.33. Let (X,A) be a special pair of finitely dominated G-CW- 
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complexes. Then we have in (1~) Q*/Z~m ) if m is a multiple of 

mxG(X,A) = a(p-G(x,A)) • hxG(X,A) -I 

IGI 

Proof. Choose a Z(m)OrG-homotopy equivalence f : cC(x,A)(m) ~ P for a round 

Z(m)OrG-chain complex P . Fix H c G . Equip the QWH-chain complex H(P(H)(o )) 

with the round structure induced by H(f(H))(o ) and the given round structure on 

H(xH,AH;Q) . The projection P : H(P(H)(o)) ~ H(P(H)(o)) ®@WH @ is an isomorphism 

as WH acts trivially on H(xH,AH;Q) i and we get an induced round structure on the 

Q-chain complex H(P(H)(o)) ®QWH Q " Consider the up to homotopy commutative diagram 

of round @-chain complexes where q is the projection and i up to homotopy de- 

termined by H(i) = id 

H(P(H)(o)) "* H(P(H)(o)) ~QWH @ 

i I I i ®QWH @ 
q 

P(H)(o) "** P(H)(o) ®@WH @ 

We get from Example 12.20. for the round torsion l~. @*/Z~m ) 

t(i ®QWH @) " t(p) = t(q) • t(i) 

We have by definition t(i ®QWH @) = ~H (p-G(X'A)) and t(p) = 0 and derive from the 

next lemma t(i) = hxG(X,A)H and t(q) = mxG(X,A)H . Now the claim follows. D 

Lemma 18.34. Let C be a finite free Z-chain complex. Suppose that C and H(C)f 

have round structures {a} and {6} • Then we have in Q /Z for the absolute torsion 

of Example 12.21. 

t(C(o),{a(o)},{~(o)}) = IX ITors Hn(C) I (-l)n 
n ~ o 

Proof. We use induction over a number n such that Tors H.(C) = 0 for i > n . i 

If n = -i we have t(C,{a},{~}) ~ Z and the claim follows. In the induction 

step choose a round finitely generated Z-chain complex D concentrated in dimension 

n and n+l such that Hi(D) = 0 for i + n and Hn(D) = Tors Hn(C) . Let 

f : D --~ C be a chain map such that Hn(f) is an isomorphism onto Tors Hn(C) . 



Equip Cone(f) and H(f)f 

holds. One easily checks 

thesis to Cone(f) . D 
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with round structures such that 

t(C) = t(D) - t(Cone(f)) 

t(D) = ITors Hn(C)I (-l)n . Now apply the induction hypo- 

Let X and Y be special oriented G-CW-complexes. We obtain a natural isomorphism 

from the K~nneth formula 

x 

H(xH)f ®Z H(yH)f ~-- (H(xH) ®Z H(yH))f ) H(XH x yH)f 

Hence X x y is again special and enherits an orientation. The long Mayer-Vietoris 

sequences M(H) of (X H * yH;xH x Cone yH, Cone(X H) × yH) reduces to short split 

exact sequences 

0 ~ Hi+I(XH * yH) __) Hi(xH x yH) ___+ Hi(xH ) ® Hi(YH ) __~ 0 

for i > 0 and into an exact sequence of free Z-modules 

0 ---+ HI(XH * yH) --) Ho(XH × yH) __) Ho (XH) ® Ho (YH) 

--) H (X H * yH) --)) 0 
O 

Thus we obtain an acyclic finite free Z-chain complex M(H)f = M(H)/Tors M(H) . 

Hence X * Y is again special. Equip X * Y with the orientation for which the 

round torsion of M(H)f vanishes in KI(Z) for H c G if M(H) gets the obvious 

round structure induced from the ones of X H = X H x Cone(Y H) , yH = Cone(X H) x yH • 

X H × yH and X H . yH . 

Theorem 18.35. Join formula 

Let X and Y be special oriented G-CW-complexes. Then we have 

a) pG(x * Y) = pG(x) + pG(y) , if X an__~d Y are finite. 

b) p-G(x , y) = p-G(x ) + p-G(y) 

c) oG(x * Y) = oG(x) + oG(y) 

d) mxG(x * Y) = mxG(x) • mxG(y) 
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e)  hxG(x * Y) = hxG(x) - hxG(y) . 

P roof .  a ) ,  b) and c)  f o l l o w  from 18.17.  

d) Using Lemma 18 ,3 4 . ,  Example 12.20.  and Example 12.21,  one p roves  m×G(x × Y) = 1 

and then derives mxG(x * Y) = mxG(x) • mxG(y) using the exact sequence 

o -~ cC(xxY) -~ cC(x×Cone(Y)) ® cC(cone(X)xy) -~ cC(x*Y) -~ 0 

e) Take G = {i}, m any prime number and use a) and Proposition 18.33. An alter- 

native proof is based on the KHnneth formula and the decomposition of the Mayer 

Vietoris sequence M(H) defined above. D 

Now we apply this to representations. Let V be a complex G-representation. Then 

SV is a finite special G-CW-complex (see Example 1.8. or 4.36.) and enherits an 

orientation from the complex structure. Since 

G-PL-homeomorphic,we obtain an homomorphism 

G 
18.36. pc : RepG(G) --~ Wh(~OrG) 

because of Theorem 18.35. Composing it with 

[V ®~ C] defines 

18.37. 

S(V ® W) and SV * SW are oriented 

IV] - - ~  oG(sv) 

RePlR(G) -~  Rep¢(G) sending [V] to 

G pG(s(v ®~ p~ : ReP]R(G) --~ Wh(QOrG) [V] --~ ~)) 

G . 
Theorem 18.38. The map PI~ is injective for any finite ~roup G . 

Proof. One easily checks using Lemma 16.15. that p~ is natural with respect to 

restriction to subgroups. The map ~ res~ : Rep~(G) --~ ~ Rep~(C) is injective if 

runs over the cyclic subgroups C of G . Hence we can assume without loss of generality 

that G itself is cyclic. 

Let Rep~(G) be the subgroup of Rep~(G) generated by all free G-representations. 

Given a subgroup H c G restriction with the projection pr : G --~ G/H defines 

Rep~(G/H) --~ Rep~(G) . We obtain an isomorphism 

f 
18.39. ~ RePl R (G/H) --~ RePl R (G) 

HoG 
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We have also the splitting of Theorem 10.34. 

18.40. ~ ~(@G/H) ~ ~(@OrG) 
HoG 

Choose a numeration HI,H2,...,Hk of the subgroups of G such that H i c Hj => i~j 

G holds. Then P~ looks in terms of the splittings 18.39. and 18.40. like an upper 

G triangular matrix. Hence p~ is injective if each entry on the diagonal is. Therefore 

it suffices to prove the injectivity of 

G 

18.41. Rep$ (G) --~ Rep~ (G) PlR Wh(@OrG) !~ Wh(@G) 

It sends the free G-representation V to pG(sv ®~ C) now taken just over the group 

ring ~G . Let U c ~ be the subgroup generated by {±exp(2~in/{GI)In=l,2 ..... IGI}S~ngthe 

generator of G to exp(2~i/IGI) defines an homomorphism Wh(CG) --~ C~/U . The compo- 

sition of 18.41. with this map is injective by the classification of Lens spaces 

(see Cohen [1973] ~ Milnor [1966]) based on Franz' Lemma (see Franz [1935]) . o 

As a corollary we get de Rham's t~eorem (see de Rham [1964]). 

Corollary 18.42. Two real G-representations 

and only if SV and SW ar___eeG-diffeomorphic. 

V and W are linearly isomorphic if 

Proof. Let f : SV --~ SW be a G-diffeomorphism. Then f is a simple G-homotopy 

equivalence by 4.36. and G(f,f) ~ Wh(ZOrG) vanishes by 18.17. We get p~(SV) = 

p~(SW) by 18.18. Now apply Theorem 18.38. o 

Ig.G. R eidemeister torsion for Riemannian G-manifolds. 

and M 

M H for 

Then C 

suppose 

Next we define Reidemeister torsion in a different context. Let G be a finite group 

be a (smooth, compact) G-manifold without boundary. If C is a component of 

H c G , let WH(C) be its isotropy group under the WH-action on ~o(M H) • 

is a WH(C)-manifold without boundary. Denote its dimension by n(C) . We 

Assumption 18.43. We assume for H c G and C ~ ~o(M H) 

i) C is orientable, i.e. Wl(C) ~ HI(c;z/2) is zero. 

ii) n(C) is odd. 
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iii) WH(C) acts trivially on Hn(c)(C ) . D 

We call M equivariantly oriented if we have choosen for any C ~ ~o(M H) , H c G 

a fundamental class [C] ~ Hn(c)(C) such that for H c G , C ~ ~o(M H) and g ~ G 

H(n(g-icg))(g-iCg) the map c(g), : Hn(c)(C) --~ induced by conjugation sends [C] 

to [g-iCg] . Suppose that M is equivariantly oriented and has an invariant Rie- 

mannian metric (see Bredon [1972] VI.2.). Then we can define 

18.44. pG(M) ~ Wh(ROrG) 

as follows. Fix H c G and C ~ ~ (M H) . The invariant Riemannian metric on M 
o 

induces an invariant Riemannian metric on the WH(C)-manifold C by restriction. It 

induces an inner global product on the R-vector space ePc of p-forms on C . If 

A p : ~Pc --~ sPc is the Laplace operator, the subspace ker(A p) c ~Pc is called the 

space of harmonic forms. It is a N-vector space and inherits an inner product from 

~Pc . If H~R(C) denotes the de Rham eohomology, there is a natural identification 

18.45. H~R(C) = ker(A p) 

We obtain from de Rham's theorem a natural isomorphism 

18.46. HP(c;]~ = H~R(C) 

Hence HP(C;~) enherits from ker A p an inner product. The necessary differential 

geometry for the construction above can be found in Gallot-Hulin-Lafontaine [1987] 

p. 164-167. 

The Hodge-star operator induces a ~WH(C)-isomorphism * : ker(A n(C)-p) --~ ker(& p) • 

Hence we get from 18.45. and 18.46. an ~G-isomorphism (see Gilkey [1984], Lemma 1.5~3.) 

18.47. v : HeV(c;B) ~ H° dd(c;~) . 

We obtain from the universal coefficient formula an isomorphism 

18.48. Up : H~(C,~) ~ Hom~(HP(c);~) . 

For each C we get a ~WH(C)-isomorphism 
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18.49. ¢(C) : Hodd(C;E) --, Hev(C;E) 

by Uev-i o HomE(v, id ) o Uod d . Since Hp(MH;E) is  '~'C ~WH ×NWH(C) Hp(C;E)~ where C 

runs over ~ (MH)/wH , we obtain an EWH-isomorphism 
o 

18.50. ~(H) : Hodd(MH;E) --, Hev(MH;E) 

The upshot is that a closed G-manifold M with invariant Riemannian metric satisfying 

Assumption 18.43. has a preferred round structure and determines 

18.51. pG(M) ~ Wh(E0rG) . 

Next we define a variation of this construction where we can drop Assumption 18.43. 

Notice that we now switch from E0rG to EG-modules. Let M be a (compact, smooth) 

connected G-manifold with invariant Riemannian metric and possibly non-empty boundary. 

We obtain from 18.45., 18.46. and 18.48. applied to C = M an inner product on 

Hp(M,E) for any p . Equip th~ cellular E-chain complex C,(M) with an inner product 

for which the cellular E-bases is orthonormal. This inner product is compatible with 

c 
the EG-st~ucture on C,(M) . Let * : KI(EG) --~ KI(EG) be the involution [f] 

--~ EHomE(f,id) ] for f : P --~ P an automorphism of a finitely generated projective 

EG-module~ Choose any isometric EG-isomorphism ~ : H(M)od d*C(M)ev -~ cc(M)odd*H(M)ev. 

Up to EG-chain homotopy there is exactly one EG-chain map i : H(M) --" cC(M) satis- 

fying H(i) = id . Let t(i,{~}) C Ki(EG) be the torsion introduced in Definition 

12.4. We define 

G 
18.52. pph(M) e KI(EG)Z/2 

by t(i,{¢}) + *t(i,{~}) . This is independent of the choice of ¢ as for any iso- 

metric ~G-automorphism @ : P --~ P of a finitely generated projective EG-module P 

with inner product compatible with the EG-structure ** = ,-i and hence [~]+*[*]=0 

holds. 

Another variation measures the failure of equivariant simple Poincare duality. Let 

M be a G-manifold with invariant Riemannian metric. For simplicity we assume that 

M is orientable and connected and G acts orientation preserving. We have the 
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Poincare RG-chain equivalence N[M] : cm-*(M,SM;~) --~ C,(M;~) . Let 

: C m-° dd (M,SM;~) ~ Cev(M;~) ~ Codd(M;~ ) • cm-ev(M,SM;~) 

be any ~G-isomorphism which is isometric with respect to the inner products coming 

from cellular bases. Define the Poincar4 torsion 

18.53. p~D(M;~) e KI(~G)Z/2 

by t(N[M],{~}) + *t(n[M],{~}) . 

G 
If G acts freely , 0pD(M;~) is zero. If the action is not free, ~ D(M;N) can 

be non zero. The geometric explanation for this phenomenon is that the dual cell de- 

composition is not compactible with the G-action. 

Comments 18.54. 

Reidemeister torsion is the main tool in the classification of Lens spaces (see 

Cohen [1973], Milnor [1966], Reidemeister [1938]) . This generalizes to de Rham's 

theorem that two real G-representations are linearly G-isomorphic if and only if their 

unit spheres are G-diffeomorphic or G-PL-homeomorphic (de Rahm [1964]). We have briefly 

discussed this question in the topological category already in Example 4.25.). The use 

of torsion invariants for transformation groups is worked out in Rothenberg [1978] 

where a proof of de Rham's theorem similar to the one in this section is given (see 

also Illman [1985]). Reidemeister torsion also plays a role in equivariant surgery 

theory (see e.g. Madsen [1983]). Its connection to knot theory is snmmarized in 

Turaev [1986]. We will show in section 20. that G-homotopy representations are 

classified up to oriented G-homotopy equivalence by the reduced equivariant Reide- 

meiSter torsion. 

In Ray and Singer [1971] [he analytic torsion @an(M) of a Riemannian manifold was 

defined using the spectrum of the Laplace operator and Zeta-functions. Some evidence 

is given that for a closed orientable manifold ~an(M) and ppL(M) (see 18.52.) 

agree. This was independently proven by Cheeger [1979] and MUller [1978]. The analytic 

torsion plays a role in different contexts (see e.g. Fried [1986], Fried [1988], 

Quillen [1986], Schwarz [1978], Witten [1988]). In Lott-Rothenberg [1989] an equiva- 
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riant version for analytic torsion and its relation to PL-torsion is established for 

closed orientable G-manifolds (see also Maumary [1987]). In the case, where M has 

a boundary, the conjecture of Ray-Singer fails. The general relationship between 

analytic and PL-torsion for arbitrary (compact) G-manifolds with boundary is worked 

out in Lfick [1989] . 

In comparison with other definitions our invariant is defined for a wide class of 

spaces X , we only need xG(x) = 0 in A(G) . This gives some useful flexibility f.e. 

if one takes out tubular neighbourhoods (compare 4.36.). We make no further 

assumptions about the homology and never kill the homology f. e. by dividing out norm 

ideals. This is important for several reasons. Since we keep the information about 

the homology, we will be able to relate the reduced Reidemeister torsion and degrees 

of maps between G-homotopy representations by generalized Swan homomorphisms and 

classify G-homotopy representations by the reduced Reidemeister torsion. Moreover, we 

can switch between the two splittings (S,E) and (Res~I) and obtain invariants in 

Wh(~OrG) which can explicitely be computed by ~ Wh(~WH) . For example in Rothenberg 
(H) 

[1978] the groupsrwhere the Reidemeister torsion lives injare only known for abelian 

G . We also get good properties under restriction to subgroups avoiding some technical 

difficulties which already occur in the free case when dividing out norm ideals (see 

Connolly-Geist [1982]). Further references are Ewing-LSffler-Pedersen [1985a], [1985b], 

Lfick [1988] D 

Exercises 18.55. 

i) Let G be a finite group with cyclic 2-Sylow subgroup. Let V be a real G- 

representation and f : SV --~ SV be a G-homotopy equivalence. Prove G(f) = 0 . 

2) Compute p~ : Rep~(G) --~ Wh(@OrG) for G = $3~ the symmetric group of order 6. 

3) Let p be a prime number and G a cyclic group of order pn . Denote by G(m) 

the subgroup of order pm for 0 ~ m 5 n . Prove for a complex G-representation V 

II p (n-£)(dim~VG(Z)-dim~VG(Z+l)) 
(SV)G() = mx m m 5 £ ~ n 
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4) Let (X,A) be a pair of finitely dominated G-CW-complexes and R a field. 

Show xG(x,A) = xG(x,A;R). 

5) Let G be a finite abelian group and X be a finite special G-CW-complex. 

Show that cc(xH'x>H;@) ®@WH @WH/(N) is an acyclic finitely generated free ~WH/(N)- 

chain complex with a preferred equivalence class of bases, if (N) is the norm ideal. 

Let t(xH,x >H) be its torsion in KI(QWH/(N))/V if V is the image of the trivial 

units U under the canonical projection pr : KI(~WH) --~ KI(@WH/(N)) . Show that 

for any choice of orientation of X and H c G the map 

Wh(@0rG) SG/H~ Wh(@WH) --~ KI(@WH/(N))/V 

sends pG(x) of 18.22. to t(xH,x >H) . 

6) Let i : H --~ G be an inclusion of finite groups. Consider an oriented special 

pair (X,A) of finite G-CW-eomplexes. Let i : KI(@OrG) --~ KI(~OrH) be given by 

restriction. Prove that res~(X,A) is also an oriented special pair of finite H-CW- 

complexes and i p (X,A) = pH(res (X,A)) . Is the analogous statement true for o-G(x,A~$ 

7) Let (X,A) be an oriented special (non-equivariant) pair of finitely dominated 

CW-complexes. Show for pI(x,A) ~ Qx/Z* defined in 18.23. and hx(X,A) ~ Q~/E* 

defined in 18.24. 

pI(x,A) = hx(X,A) 

8) Let M be a connected oriented free closed G-manifold of odd dimension with 

an invariant Riemannian metric. Let pG(M) ~ Wh(~G) be the element given by 18.51. 

If * : Wh(~G) ~ Wh(~G) is the involution induced from the involution on ~G 

-i sending E%g • g to Z%g - g prove 

* pG(M) = oG(M) 

9) Let M be an orientable connected closed manifold of odd dimension. Let the 

finite group G of odd order act smoothly on M . Prove that assumption 18.43. is 
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satisfied. 

i0) Let M be a connected oriented closed (non-equivariant) Riemannian manifold. 

Suppose H,(M,Q) ~- H,(sn,Q) for some odd n . Let V(M) ~ 1~* be its volume, 

p(M) ~ ]R*/Z* be the invariant of 18.51. and hx(M) ~ Q*/Z* the element defined 

in 18.24. Show in IR /Z 

p(M) = V(M) -2. hx(M) -1 

ii) Let M be a connected (non-equivariant) manifold with disjoint submanifolds 

X and Y . Suppose that M, X resp. Y is a homology m-resp, k- resp. £-sphere for 

m = k+£+l . Then the linking number Ik(X,Y) ~ Z/{±I} is defined. Show hx(M\X\Y) 

= 1 if ik(X,Y) = 0 an~ hx(M\X\Y) = Ik(X,Y) in Q /Z otherwise. 

12) let M be a closed G-manifoldwith invariant Riemannian metric satisfying 18.43. Define 

h : Wh(~OrG) --~ KI(~G)Z/2 by [f] --~ [f(G/l)] + *[f(G/l)] for an automorphism 

G 
f : P --~ P of a finitely generated projective ~OrG-module. Show h(pG(M)) = ppL(M). 

Z/2,~l~ 
13) Let Z/2 act on S 1 by complex conjugation. Prove PPD ~ ) + 0 . 

14. Let M be a closed connected orientable G-manifold such that G acts orien- 

tation preserving. Show 

a) If dim M is odd, then pt(M) = 0 
flJ 

G M i G b) If dim M is even, then ppL ( ) = - ~ppD(M) . 

15. Let G be a compact Lie group and V and W orthogonal G-representations. 

Suppose the existence of a simple G-hom0topy equivalence f : SV --* SW . Show that 

V and W are isomorphic as G-representations. 
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19. Generalized Swan homomorphisms 

Let sw : Z/IG I ~ K (ZG) be the Swan homomorphism associated with the finite 
o 

group G and 8 : KI(QG)/KI(Z(IG[)G) --~ Ko(ZG) be induced from the boundary map 

of the localization square. We will define an injective lift sw : Z/{G[* 

KI(QG)/KI(Z(IGIG) of sw . We extend these notions to the orbit category and obtain 

an injection SW : Inv(G) --~ KI(QOrG)/KI(Z(IGI)OrG) . In this section G denotes a 

finite group. 

Let m be a multiple of the order of the finite group G . The Swan homomorphism 

19.i. sw = sw(G,m): Z/m ~= --~ K (ZG) 
o 

r ~ Z/m sends to the class [M] ~ Ko(ZG) 

trivial G-action and order IMI = r . Recall that 

any finite resolution P of M . We have defined 

Ko(ZG) by the map in the localization square for 

to define an injective lift of sw over 8 

of any finite abelian group M with 

[M] is defined by Z(-l)n[Pn] for 

= 3(G,m) : KI(QG)/KI(Z(m)G) --~ 

ZG and m in 18.27. Next we want 

19.2. 

- m ~ It sends r ~ Z/ 

with QG/(N) for N 

KI(QG) 

19.3. 

sw = sw(G,m) : Z/m --~ KI(@G)/KI(Z(m)G) 

r 
to the element represented by [@ --~ Q] ~ KI(@G) . By stabilizing 

r-i * 
the norm element~ one checks for the unit 1 + ~ N  ~ QG in 

r 
r-i 

[Q ----" Q] = [ l  + ~ N] 

Let r be I + am for some a ~ Z . Then we ~et in Z(m)G 

[_~ am (~_ am (am) 2 
(i + • N)'(I - iGl.(l+am)) = 1 + iGl.(l+am)- IGl,(l+am)) 

Hence sw 

am( 1 +am ) - am - ( am ) 2 
= i+ Ig l"  (l+am) 

is a well-defined homomorphism. 

= 1 

Theorem 19.4. 

a) -8 o sw = sw 

b) If m is IGI, then sw is injective. 
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Proof: 

a) Consider the map between squares which both are pull-backs of abelian groups 

ZG 

J 

p .......... A Zl/m G 

Z(m)G ~ /  ~ •G ~ id 

) ~ . . . /  zl/mG 

As 0 ---+ Zl/m 

modules 

r Zl/m --~ Z/r --~ 0 

r-i l- + " ~ -  
0 ~ Zl/mG 

is exact, there are exact sequences of ZG- 

N 
Zl.m G/ --~ Z/r --~ 0 

and 

0 --~ P --, ZG --~ Z/r --~ 0 

We get from the definitions 

8 o sw(r) = 8([1 + ~ N]) = [P] - [ZG] = -sw(7) 

b) We start with the case where G is abelian. Then the determinant induces an 

@G*/Z(m)G* ~ * isomorphism KI(~G)/KI(Z(m)G) --~ . The unit i + N ~ QG belongs 

to Z(m)G if and only if IGI divides r-i . Hence s--w is injective for abelian G. 

Let i : H --~ G 

an homomorphism i* 

KI(@H)/KI(Z(HI) H) 

19.5. 

be the inclusion of a subgroup. The canonical projection defines 

: Z/IGI* --~ Z/[HI* . Let i* : KI(@G)/KI(Z(IGI)G) 

be induced from restriction. Then the following diagram commutes 

, [Z/IGI* sw(G, IGl)~ KI(@Gi/KI(Z(IGI)G), 

i i 

Z/IHj* sw(H, IHl )~ KI(QH)/KI(Z( iHl )H) 
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If Gp is the p-Sylow subgroup of G, we obtain an isomorphism Z/IGI*" " -~II Z/IGpl*. 

P 
Because of 19.5. it suffices to prove injectivity of sw(G) only for p-groups. More- 

over, we can assume that G is not cyclic. 

Let p be an odd prime. Choose a subgroup H c G of order p . The image of 

sw : Z/IGI* --'+ K o(ZG) has order [GI/p by Taylor [1978]. Hence i : Z/IG I 

Z/IH I is injective on ker(sw) . Since ker(s-~) c ker(sw) holds and s--w(H) is 

injective by the argument above~ sw(G) must be injective. 

Let p be 2 . If G is the dihedral group D(2 n) , the semi-dihedral group SD(2 m) 

or the generalized quaternion group Q(2n)~ we can apply Rothenberg [1978a], Theorem 

1.6., Proposition 3.1. In all other cases the image of sw has order IG[/4 and 

G contains an abelian subgroup H of order 4 . Because of {il} = ker(sw) the 

claim follows from an argument as above. [] 

19.6. Robert Oliver has pointed out to the author that he also has a proof of 

Theorem 19.4. We give his argument for the case that G is a non-exceptional p-group 

r-I as it does not use the result of Taylor [1978]. Consider r ~ Z and i+ N 
m 

KI(()pG) such  t h a t  t h e r e  i s  u ~ KI(ZpG) mapped to  1 + r-__._~lm N under  t h e  change  

of ring map . Then log(u) (defined in Oliver [1980], p. 200) is aN for some 

a ~ ~p_ . We must show a ~ Zp in order to verify r = i in Z/IGI* . Now p2 

divides card{g e~ G I gP = i} for a non-exceptional p-group. Let @ and F be the 

maps introduced in Oliver [1980], p. 208. By inspecting the coefficient of 1 one 

recognizes that p does not divide N - i/p@(N) . We have F(u) = a(N-i/p @(N)) by 

definition. Since F(u) is integral valued by Oliver [1980], p. 208,the claim 

follows, m 

Next we define the splitted version of generalized Swan homomorphisms for a finite 

free EI-category F . Let c ~ chz(y,x) be a £-chain from y to x (see 16.3.). 

We have assigned to c a Aut(x)-Aut(y)-set S(c) in 16.23. Let S(i") be the 

Aut(y)-set Aut(x)\S(c) representing an element in the Burnside ring of Aut(y) 

1 9 . 7 .  IS(c)] ~ A(Aut(y)) . 

Define 
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19.8. 

by 

We have the pairing 

with the diagonal 

homomorphisms if 

]-FL(x,y) ~ A(Aut(y)) 

-rr~(x,y) : y (-i) ~ [s(c)] 
£ ~ o c ~ ch£(y,x) 

®R : Kn(R[Y]) ~ A(Aut(y)) --~ Kn(R[y]) induced by ? ®R 

Aut(y)-action for S a finite Aut(y)-set. Hence Tr~(x,y) 

m is m(F) (see Definition 16.1.): 

R(S) 

defines 

19.9 .  ~ _  _ : KI(Q[y])/KI(Z(m)[y]) --~ Kl(@[y])/Kl(Z(m)[y ]) 
x,y 

II~._ _ : Ko(Z[y]) --~ Ko(Z[y]) • 
x,y 

Let (Split S-W)_ _ : Z/m* --~ Kl(@[y])/Kl(Z(m)[y ]) be Tfl_ -- o s--w(Aut(y),m) and 
:x~$ x,y 

(Split SW)_ _ m* --~ Ko(Z[y ]) be ~__ o sw(Aut(y),m) . Their collection defines 
x,y 

for ~(F) *x~y II Z/m* : 
Is F 

19.10.  Split SW : C(F) --~ Split KI(~F)/Split(KI(Z(m))) 

Split SW : ~(F)* --~ Split Ko(ZF) 

These maps also have global descriptions. Their definition needs some preparation. 

Fix y ~ Ob F and an integer r prime to m = m(F) . Equip Z/r and @ with the 

trivial Aut(x)-action resp. Aut(y)-action. For any £-chain c from y to x we 

have identifications of Aut(y)-modules 

19.11. Z/r ®Z[x] Z(S(c)) = Z/r ®Z Z(S(c)) 

"Q[x] ~(S(c)) = ~ ,~ Q(S(c)) 

As Z/r equipped with the trivial Aut(y)-action has a finite resolution over Z[y], 

the same is true for the Z[y]-module Z/r ~Z[X] Z(S(c)) by 19.11. Let I x be the 

inclusion functor of 9.29. By Lemma 17.37. the ZOrG-module IxZ/r has a finite reso- 

lution and [IxZ/r ] = Split SW({r(~) I ~ ~ Is F}) holds if r(z) E 1 for z + 

and r(x) ~ 7 sod m . Analogously ix(~ r @) = Split ~({r(7) I 7 ~ Is F}) is 

true in KI(@F)/KI(Z(m)F) . We can define generalized Swan homomorphisms 
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19.12, SW : C(F) --) KI(@OrG)/KI(Z(m)OrG) 

SW : C(r)* - - )  K (ZOrG) 
0 

by 

and 

SW({r(x)[x ~ Is r}) = I [ix(@ r(x) ) @)] 

x ~ Is r 

SW({r(x)[x ~ Is F}) = _ I [Ix(Z/r(x))] " 

x ~ IsF 

We get using Theorem 19.4. if 8 is the map of 18.28. 

Theorem 19.13. 

a) S o SW = Split SW 

b) S o SW = Split SW 

c) - 8  o SW : SW 

We define commutative associative rings with unit 

19.14. C(G) = n Z 
(H) 

19.15. C(G) : C(G)/[G I • C(G) = II Z/[G[ 
(H) 

The character map ch : A(G) --) C(G) sending [X] to (card xH)(H) is an injective 

ring homomorphism (see 5.15.). We use it to consider A(G) c C(G) as a subring. By 

Example 16.38. we have [G[ - C(G) c A(G) c C(G) . Define 

1 9 . 1 6 .  A(G) : A(G)/IG I - C(G) c C(G) 

( 1 9 . 1 7 . )  Inv(G) = ~(G)*/A(G)* 

There is an obvious embedding C(G) = II Z into ~(G)* 
(H) 

(19.18.) Pic(G) = ~(G)*/A(G)* • C(G)* 

• Hence we can define 

Theorem 19.19. Let G be a finite group @f order m . Then 

the canonical projection pr into an injective map SW 
o 

SW factorizes over 
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m 

SW 
~(G)* + KI(@OrG)/KI(Z(m)OrG) 

Inv(G) 

As a detailed proof of Theorem 19.19. will be developed in section 20.pwe only give 

- * {deg(fH) a sketch here. Any element in A(G) can be realized by d = JH c G} for 

a G-map f : SV --~ SV and a complex G-representation V . As S--W(d) = p-G(sv) - 

p-G(sv) = 0 holds , A(G)* lies in the kernel of SW and the factorization follows. 

-- ~(G) ~ Given x ~ Inv(G) with SWo(X) = 0 , choose d = {d(H)[H c G} ~ with 

pr(d) = x . We prove inductively over the orbit types that we can choose d(H) m I . 

In the induction step we must show that d(H) can be choosen to be i provided that 

d(K) is i for K ~ H , K + H . As SW(d) = 0 holds the map sw(WH, IWHJ) : Z/jkclJ* 

--~ KI(QWH)/KI(Z(IWHj)WH) sends H(H) to zero. By Theorem 19.4. we get d(H)~ imodIWH j, 

Then there is a unit u ~ A(G) with u(K) = 1 for K m H , K + H and u(H) 

d(H) modJGJ . Now u "I. d has the required properties. 

We consider the case of a finite abelian group G more closely. For H,K c G define 

integers 

19.20. ~(K,H) = I (-1)Z'JchE(G/H'G/K)J 
£>o 

Define a map 

19.21. ~ : C(G) = IF[ Zlm --~ II Z/JG/HJ 
(K) (H) 

by 

{n(K) IK c G} --~ {>r- n-~(K'H) J H -  c G} 

(K) 

Theorem 19.21. 

a) The map ~ factorizes over pr into an isomorphism 

b) If S 

p--r : Inv(G) ~ II Z/[G/H)* 
(H) 

is the isomorphism of Theorem 10.34. and q the obvious pro iectionjthe 
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following diagram commutes 

SW 
C(G)* 

n Z / I G / ~ I  ~ > 
(u) 

sw(G/H, IG/H l ) 
(~) 

I n v ( G ~  

KI (@OrG)/KI (Z(m)OrG) 

l qoS 
~ KI(@G/H)/KI(Z ([G/HI) G/H) 
(H) 

Proof: Commutatively follows from Theorem 19.13. and the identification [S(e)] = 

[{*}] for any £-chain c from G/,H to G/K (see 19.7.). Since sw(G/H,[G/H I) is 

injective by Theorem 19.4. q o S o SW and hence pr is injective, Now the 
o 

claim follows, n 

19.22. Let X and Y be finitely dominated G-CW-complexes such that WH acts tri- 

vially on H,(xH)I/m for all H c G and m = IGI and x(X H) C Z is zero for all 

H 6 Iso(X) with WH + {i} and analogously for Y . Similarly as in Lemma 18.8. one 

proves that X and Y are special in the sense of Definition 18.21. Fix orientations 

{@X } and {~y} , i.e. collection of {l}-stable equivalence classes of Z-isomorphisms 

{~x(H)} : (H(xH)f)od d --" (H(Xll)f)ev if Af denotes A/Tors A for a Z-module A . 

Consider a G-map f : X --, Y such that fH X H yH is a : --~ Z(m)-homology equivalence 

for all H c G . Define 

19.23, 

by 

and 

hx(X)I/m ~ ~(G)* = II Z/m* 
(H) 

hx(f)I/m 6 C(G)* 

hx(X)i/m = n ITors(Hn(X))i/m l(-l)n 
n~o 

hx(f)i/m = hx(Cone(f))i/m . 

° (f)(H) "" Let 6 Z~m ) be the determinant of the {l}-stable isomorphism class of 

automorphisms 
Z ( m  ) - 
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(H(fH) (m))odd {Oy(H) (m) } 
(H(xH) (m))odd "~ (H(yH) (m))odd 

(H(fH)(m))elv {%x(H)[Im)} 
(H(yH)(m))ev p, (H(xH)(m))ev (H(xH)(m))odd • 

Let o(f)(H ) E Z/m* be the reduction of $(f)(H) " Their collection defines 

19.24. g(f) C ~(G)*. 

We have introduced the equivariant reduced Reidemeister torsi~ip-G(x)E KI(@OrG)/(KI(Z(m)OrG) 

in 18.22., the finiteness obstruction oG(x) 6 Ko(ZOrG) in 18.3. and the boundary 

map 8 : KI(@OrG)/KI(Z(m)OrG) --~ Ko(ZOrG) in 18.28. 

Theorem 19.25. We get under the conditions above 

a) oG(x) = -8(p-g(X)) + SW(hx(X)I/m) 

b) ~(Y) - ~(x) = ~(o(f)) 

c) oG(y) - oG(x) = SW(hx(f)i/m) 

d) h×(f)i/m + o(f) = hx(Y)I/m - hx(X)I/m 

Proof 

a) is left to the reader. It is an extension of Proposition 18.30. 

b) The following diagram of round @WH-chain complexes commutes up to homotopy if 

H(iE(H)) = H(iy(H)) = id holds 

cc(xH;~) 

ix(H) ] 

H(X~;Q) 

cc(fH,@) 

n(fH,Q) 

-~ cc(yH;Q) 

iy(H) 

H(yH;Q) 

We derive from Example 12.21. for the round torsion in KI(~WH) 

t(cc(fH;@)) - t(H(fH;@))=t(~(H)) - t(ix(H)) - 

By definition we have ° (f)(H) = t(H(fH;@)) in Q* for all H c G if we consider 
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H(fH;@) as a @-chain equivalence. As WH acts trivially on H(xH;Q) and H(yH;@), 

S--W(o(f)) = pro I((t(f~;Q))(H)) where I : ~ KI(@WH) --~ Kl(@OrG) is the we get 
(H) 

isomorphism of Theorem 16.29. and pr the projection. We also obtain p-G(X) = 

= pro I((t(iy(H))(H )) and O-G(Y) = pro I((t(ix(H))(H )) from the definitions. 

Because I o Res = id by Theorem 16.29., we have I(~t(cc(fH;~))(H)) = ~(cC(f;~)) 

in KI(QOrG) . As cC(f) is a Z(m)OrG-chain equivalence , ~(cC(f;~)) vanishes in 

KI(@OrG)/KI(Z(m)OrG) . Now the claim follows. 

d) follows from the exact sequence of ZOrG-chain complexes 0 --~ EcC(x) --~ Cone(f) 

--~ cC(y) --~ 0 ~ Lemma 18.34. and additivity for absolute torsion (see Example 12.21). 

c) The sum formula implies o(Cone(CC(f)) = oG(y) - oG(x) . Because of the ass~nption 

H(Cone(ce(f))(G/H) is finite of order prime to m = (G) and WH acts trivially, 

we get from Lemma 17.37. that IG/H applied to it has a finite resolution. We get 

from Proposition 11.19., Theorem 16.8. and Theorem 16.29. 

o(Cone(CC(f)) = Z(-l)n.[Hn(Cone(CC(f))] = SW(hx(f)i/m) 

Notice that c) also follows directly from a), b), and d). Q 

Comments 19.26~ The Swan homomorphism sw : Z/IG I * --~ Ko(ZG) was introduced in 

Swan [1960b]. Let X and Y be finitely dominated free G-CW-complexes such that X 

and Y are (non-equivariant) homotopy equivalent to S n for some n . Swan showed 

for any G-maps f : X--~ Y that its degree deg f is prime to IGI and 

sw(deg f) = oG(y) - oG(x) holds. Notice that Theorem 19.25.c) is a generalization 

of this result to non-free special G-CW-complexes. Theorem 19.4.b) is equivalent 

to conjectures in Rothenberg [1978a], 1.4' Conjecture, and Wall [1979] , p. 522. 

The generalized Swan homomorphisms SW and SW are important tools for the analyses 

of G-homotopy representations as we will carry out in the next section. The main 

issue is that they relate homological information, which is usually easy to handle, 

with invariants in algebraic K-groups (see Theorem 19.25.). The existence of the 

injection SW °  : Inv(G) --~ KI(@OrG)/KI(Z(m)OrG) fits into our general pattern to 

translate geometric information into data with values in algebraic K-groups. 
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The homomorphism Inv(G) --~ K (ZOrG) induced from SW : ~(G)* --~ K (ZOrG) is 
o o 

examined in tom Dieck [1985] where it is expressed by ordinary Swan homomorphisms 

(cf. Theorem 19.13.). Among other things multiplicative congruences for Inv(G) are 

derived from the splitting of the inclusion of the image of sw : Z/IGI* --~ Ko(ZG) 

in ° D(ZG) . One should try to do the same for s--w : Z/IG[* -~ KI(@G)/KI(Z(IGI)G) . 

If s-~ is split injective, one would get a new proof of the result Inv(G) = II Z/IWHI* 
(H) 

in tom Dieck [1985] . 

The Swan homomorphism detects the finiteness obstruction also in homology propagation 

of group actions (see Cappell-Weinberger [1987]) D 

Exercises 19.27. 

I) Show for a finite cyclic group G that SW : ~(G)* --~ Ko(ZOrG) is trivial. 

2) Let p and q be prime numbers with plq-i . Let G be the non-abelian group 

of order pq . Show that SG/1 o SW : C(G) --~ KI(@G)/KI(Z(pq)G) sends (n(G/H~H) 

to the sum of s~w(n(G).n(G/Gq) -I) and s~(n(G/G).n(G/Gp) -I) ®Q QG/Gp . Prove 

I n v ( G )  = Z / p q  ~ × Z / p  × × Z / q  ~ 

2 3 
3) Consider the p-group G = <A,B[A p = 1 = B p, BAB-IA -I = AP> of order p 

that the image of S o SW : C(G) --~ ~ KI(~WH)/KI(Z(p)WH) and the image of 
(H) 

s--$(WH, iWH[) : II Z/ .... * (Z(p)WH) tWH[ --~ ~ KI(~WH)/K I do not agree (compare 
(H) (H) (H) 

Theorem 19.21.). 

• Show 

4) Let V and W be complex G-representations and f : SV --~ SW be a G-map• 

Show S--W({deg fH I H c G}) = p-G(sv) - 0-G(sw) . 

5) Let G=D(2n) be the dihedral group of order 2n Given k ~ (Z/2n)* • , construct 

real G-representations V and W and a G-map f : SV --~ SW such that deg fH 

1 mod 2n for H c G with H + {i} and deg f ~ k mod 2n holds• Conclude that 

sw(D(2n)) : (Z/2n)* ~ K (ZD(2n)) is trivial• 
o 

6) Consider the finite free EI-category F having three objects x,y °  and Yl 

such that Hom(X,Yo) , Hom(x,Yl) , Aut(Yo), Aut(y I) consist of one element and 
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Hom(Yo,y I) is empty. Let G b~ Aut(x) and m be IGI. Show that Sy i o SW : C(F) 

--~ Kl(Q[yi])/Kl(Z(m)[Yi]) is trivial for i = 0,1 and S xo SW : ~(F)* --~ Kl(QG)/Kl(Z(m)G) 

sends (n(x),n(Yo),n(Yl)) to s-ww(G,m)(n(x).n(Yo)-l.n(Yl )'I) . Prove that (l+A(r)) n 

~(F)* is not contained in the kernel of S-W (compare Theorem 19.19.). 

r 

7) Write-rrk(x,y) ~ A(Aut(x)) , defined in 19.8., as [Aut(y)/Hj] . Let 

, j=l 
Aut(y) be the inclusion and prj : Z/m ~ ~ Z/IHjI* be the pro- i(j) : H.--~ 

3 

jection. Show 

and 

r 

(Split S-W)_ _ = l i(j), o S-ww(Hj,m) 
x,y j=l 

r 

(Split SW)__ = l i(j), o sw(Hj,IBjl) o prj 
x,y j=l 

8) Let F be a finite free EI-category and M a ZFmodule such that Aut(x) acts 

trivially on M(x) and M(x) is finite with (card M(x),m(F)) = 1 for x ~ Ob F . 

Then hdimzF M is finite and SW sends {card M(x) I x ~ Is F} to [M] . 
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20. Homotopy representations 

We apply invariants like finiteness obstruction and Reidemeister torsion to G-homo- 

topy representations. We introduce Grothendieck groups of G-homotopy representations 

with certain properties. We show that G-homotopy representations are classified by 

their reduced Reidemeister torsion up to stable orientation preserving G-homotopy 

equivalence. Let G be a finite group in this section. 

20.A. Review of basic facts about G-homotopy representations. 

We briefly recall definitions and results about G-homotopy representations following 

tom Dieck [1987] as far as needed. Let S -I be @ and dim @ = -i . 

Definition 20.1. A G-homotopy representation X is a finite-dimensional G-CW-complex 

such that X H i s h0motopy equivalent to S n(H) with n(H) = dim(X H) for H c G . s 

Lermma 20.2. A G~homotopy representation X is finitely dominated. 

Proof. Because of Proposition 14.9. it suffices to show that the cellular ZN(G,X)- 

chain complex cC(x) is ~N(G,X)-homotopy equivalent to a finitely generated free one. 

By Proposition 8.33. Aut(x) is an extension of a finite group and {I} or Z for x ~ Ob F 

so that Z[x] is noetherian (see Atiyah-Mac Donald [1969]~ch. 7). As Is E(G,X) is 

finite, a Z~(G,X)-module M is finitely generated if and only if M(x) is a finitely 

generated Z[x]-module for all x ~ Ob F (compare 16.8. and 16.10.). Hence any submodule 

of a finitely generated Z~(G,X)-module is again finitely generated. Therefore cC(x) 

is ZN(G,X)-homotopy equivalent to a finitely generated free ZH(G,X)-chain complex if 

and only if H(XH(x)) is finitely generated over Z[x] for all x ~ Ob F . This is 

true because xH(x) = S n for some n 2-1 holds, o 

The dimension function of a G-homotopy representation X 

20.3. Dim(X) ~ C(G) = II Z 
(H) 

is given by the collection (n(H)+I)(H) where (H) 

of subgroups of G . We call X even if n(H)+l is even for all 

tation behaviour of X at H c G is the homomorphism 

runs over the conjugacy classes 

H c G . The orien- 
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20.4. e(X,H) : WH ~ {±I} 

sending g ~ WH to the degree of the automorphism of Hn(H)(xH) ~ Z induced from 

the left multiplication with g . We have defined xG(x) ~ A(G) in 18.3. As 

x(X H) = i + (-i) n(H) holdslone proves as in Lemma 18.8. 

Lemma 20.5. 

X and Y 

a) xG(x) = xG(y) 

b) x(X H) = x(Y H) for all 

c) dim X H ~ dim yH mod 2 

d) e(X,H) = e(Y,H) 

e) e(X,H) = e(Y,H) 

The following statements are equivalent for G-homotopy representations 

HoG 

for all H c G 

for all H c G and x(X H) = x(Y H) for all 

for all H c G and dim X H == dim yH mod 2 

H c G with IWHI =I. 

for all H c G 

with IWHI = i. 

a) The inclusion 

n(H) = n(K) . 

b) The set I(H) = {K m H I n(H) = n(K)} contains a unique maximal element H . D 

Regard two G-homotopy representations X and 

Dim(X) = Dim(Y) = n+l . A coherent orientation 

isomorphisms 

20.7. 

for H c G satisfying 

a) If H c K c G and 

are the inclusions, we have 

b) Let £(g);XH---~ X gHg-I 

~(H) : Hn(H)(xH) --) ~n(H)(yH) 

n(H) = n(K) holds and i : X K --~ X H and j : yK __~ yH 

j* o #(H) = ~(K) o i* . 

g ~ G . Then 

Y with the same dimension function 

= ~(X,Y) for them is a choice of 

and £(g) : yH __~ yg-IHg be left multiplication with 

¢(H) o £(g)* = £(g)* o ¢(gHg -I) is valid. 

Next we follow Laitinen [1986] sec. 2 to get a well-defined notion of an orientation. 

Lem~a 20.6. Let X be a G-homotopy representation. 

i : X K ---~ X H is an homotopy equivalence for H c K c G with 
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Because of Lemma 20.5. and Lemma 20.6. such a coherent orientation exists. Let 

(d(H) I H c G} be a collection of integers. They satisfy the unstable conditions 

20.8. 

20.8. 

if the following holds: 

i) d(H) = d(K) if (H) = (K) 

ii) d(H) = d(K) if n(H) = n(K) 

iii) d(H) = ±I if n(H) = 0 

iv) d(H) = 1 if n(H) = -I 

Consider a G-map f : X --~ Y . Define the ~e~ree deg(f H) ~ Z with respect to ¢ 

for n(H) = -i by I and for n(H) ~ 0 by the degree of the automorphism 

¢(H) o (fH)* : ~n(H)(yH) --~ ~n(H)(yH) of ~n(H)(yH) ~ Z . Notice that {deg(~)IHcG} 

satisfies the unstable conditions 20.8. Notice that 20.8. ii) implies 20.8. i). 

Such a coherent orientation ¢(X,Y) is a priori not given by "absolute" choices of 

orientations for X and Y . In general the non-triviality of the orientation be- 

haviour causes problems. The favourite case is the one of an even G-homotopy repre- 

sentation X . A (coherent) orientation for an even G-homotopy representation X is 

a choice of generators 

20.9. [X H] ~ Hn(H)(xH) 

for H c G satisfying 

~(g)~[xgHg -I [X H] a) ] = for H c G , g ~ G 

b) i*[X HI = [X K] for H c K c G with n(H) = n(K) . 

The existence of such an orientation follows from Lemma 20.5. and Lena 20.6. as the 

orientation behaviour e(X,H) is trivial for H c G . 

If X and Y are even 

orientations for X 

by 

G-homotopy representations with Dim(X) = Dim(Y) , a choice of 

and Y determines uniquely a coherent orientation ¢ = ¢(X,Y) 

20.10. ¢(H)([~]) = [yH] for H c G . 

The join X * Y of two G-homotopy represen£ations X and Y is again one and 
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Dim(X,Y) = Dim(X) + Dim(Y) . Suppose that X and Y are even and oriented. Then 

X * Y is also an even G-homotopy representation and enherits an orientation from the 

isomorphism 

20.11. fik(xH ) ® ~£(yH) U , ~k+£(xH×yH ) __5 • ~k+£+l(x H * yH) 

for H c G , k = dim X H , £ = dim(Y H) and 6 the boundary of 

Mayer-Vietoris sequence of (X H , yH , X H x Cone(yH), Cone(X H) × yH) . 

that (X * y)H = X H , yH holds. If 

for X and Y and ~(X',Y') for X' 

coherent orientation ~(X * X',Y * Y') for 

the 

Notice 

@(X,Y) is a coherent orientation 

and Y' , then we get an induced 

X * Y by 20.11. In particular ~(X,Y) 

induces $(X*Z,Y*Z) for any G-homotopy representation Z . If X and Y are not ne- 

cessarily even G-homotopy representationslthere seems to be no notion of an "absolute" 

orientation of X and Y such that, firstly, orientations on X and Y induce a 

coherent orientation $(X,Y) and~secondly, X * Y enherits an "absolute" orientation 

in a canonical way. 

Let X and Y be two G-homotopy representations with the same dimension functions 

and a coherent orientation ~(X,Y) . Let m be a multiple of IGI. A map f : X -• Y 

has invertible degrees if deg(f H) and m are prime for all H c G . We will fre- 

quently use the following facts proved in tom Dieck [1987], II.4 + i0 and Imitin~[1986]. 

Proposition 20.12. Fix H c G . 

a) If f : X --~ Y is a G-map, H = H and n(H) ~ I, then for any integer k there 

is a G-map g : X--~ Y such that deg(g H) = deg(f H) + k'IWH I and glX >H = fiX >H 

holds; (H was defined in Lemma 20.6.). 

b) Suppose that G isnilpotent or that n(L)~n(K}+2holds for allK,L61so(X), LcK, L#K.T~en_G-maps 

f and g : X --~ Y ar___ee G-homotopic if and only if deg(f K) = deg(g K) holds for all 

KeG . 

c) Let f : X --~ Y 

Then there is a G-map 

be a G-map with (deg(fK),m) = 1 for all K m H , K + H . 

g : X --• Y with invertible degrees and fl X>H = glX >H • 

d) Le___!t f : X--, Y be a G-map with invertible degrees and g : Y--• X be a G-map 

with deg(f K) • deg(g K) ~ 1 mod m for K D H , K + H . Then there is a G-map 

h : Y --, X with deg(f K) • deg(h K) ~ 1 mod m for all K c G and glX >H = hlX >H- 
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20.B. Homotopy representation groups, 

Next we define homotopy representation groups of the finite group G in analogy to 

the representation ring. Let c be a subcategory of the category of G-homotopy re- 

presentations resp. of oriented even G-homotopy representations and e an equivalence 

relation on the objects on c . Suppose that c is closed under the join * and 

that X * Z and Y * Z are equivalent under e if X and Y are. We call X and 

Y ~ c stably equivalent under e if for some Z ~ c X * Z and Y * Z are equi- 

valent under e . Let vC(G) + be the set of stable equivalence classes of objects 
e 

in c under e . It enherits the structure of a commutative semi-group from the join 

operation * . 

Definition 20.13. The homotopy representation group 

c and e is the Grothendieck group associated with 

V~(G) of G with respect to 

vC(G) + D 
e 

We collect the basic examples. We write G-hr for G-homotopy representation and G-he 

for G-homotopy equivalence . A G-map f : X --~ Y between G-homotopy representations 

is a G-homotopy equivalence if and only if deg(f H) ~ {± i} for H c G holds (see 

Theorem 2.4.) If deg(f H) = 1 is true for all H c G , we call f an oriented G- 

G-he, 

G-he. 

simple G-he. 

homotopy equivalence. 

all G-hr. 

finite G-hr. 

finite G-hr. 

V~(G) 

V(G) 

Vf(G) 

Vf(G) 
s 

even G-hr. G-he. VeV(G) 

oriented even G-hr. oriented G-he. veV(G) or 

finite even G-hr. G-he. vf'ev(G) 

finite even G-hr. simple G-he. vf'ev(G) 
s 

oriented finite even G-hr. oriented G-he. vf'ev(G) 
or 

oriented finite even G-hr. oriented simple G-he. vf'ev(G) or~s 

like f : veV(G) --~ V(G). In the sequel f denotes all the 'forgetful' homomorphisms 

The dimension function Dim satisfies Dim(X * Y) = Dim(X) + Dim(Y) , Hence we get 
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homomorphisms 

20.14. Dim : vC(G) ~ C(G) = n Z 
e (H) 

Let V~(G,Dim) be its kernel so that we have the exact sequence 

Dim 
20.15. 0 ~ gc(G,Dim) ~ V~(G) --~ C(G) 

e 

The image of Dim is studied in Bauer [1988], tom Dieck-Petrie [1982] , tom Dieck 

[1986], tom Dieck [1987], III.5. 

Next we relate the various homotopy representation groups. Notice that 

is a unit for any G-homotopy representation X . Let sG(x) ~ K (ZOrG) 

(I-xG(x)) -I - ~G(x) if ~G(x) 

have oG(x * Y) = SG(x) + oG(y) 

tom Dieck [1985], see. 3) 

20.16. 

I-xG(x) ~ A(G) 

be 
o 

is the reduced finiteness obstruction of 18.2. We 

by 18.17. We obtain an exact sequence (see also 

f ^G 
0 --~ Vf(G) --~ V(G) o__q_~ ~ (ZOrG) 

o 

f ~G 
0 ---+ Vf(G,Dim) ~ V(G,Dim) ~ Ko(ZOrG) 

Let [X]-[Y] be in the kernel of 8 G . Then [X]-[Y] = [X * E3X] - [Y * E3Y] and 

SG(x , E3X) = sG(y , E3X) = 0 . As X * E3X has simply connected fixed point sets 

and oG(x * Z3X) vanishes, X * E3X is up to G-homotopy equivalence finite (see 18.5.). 

The same argument applies to Y * Z3Y .Hence [X]-[Y] ~ image f . This shows exact- 

ness at V(G) . Now suppose that [X]-[Y] ~ Vf(G) lies in the kernel of f . 

Then X * Z and Y * Z are G-homotopy equivalent for some G-homotopy representation 

Z . Since we can choose Z to be finite by the next lemma, we get [X]-[Y] = o . 

Lemma 20.17. 

representation Y and a complex G-representatlon V such that X * Y 

G-homotopy equiv@.lent. 

Proof. Since Ko(Z~H) is finite by Swan [1960a] ~ the group Ko(ZOrG) 

Theorem 10.34. Hence sG~, X) = noG(x) n 

assume without loss of generality 

Let X be a G-homotopy representation. Then there is a G-homotopy 

and SV are 

is finite by 

is zero for appropriate n so that we can 

by 18.5. that X is finite. Choose an embedding 
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of X in SV for some complex G-representation V . If U is an open equivariant 

regular neighborhood of X i let Y be the compact G-manifold SV\U . It is a G-homotopy 

L~L=sentation and X * Y is G-homotopy equivalent to SV by equivariant Spanier- 

Whitehead duality (see Lewis-May-Steinberger [1986] , Wirthm~iler [1974] . D 

Since I-xG(x) is a unit in A(G)* , l-oG(x) is a unit in K (ZOrG) under the 
o 

multiplication given by ®Z by Theorem 11.24. We get exact sequences from 18.17. 

(see also tom Dieck [1985], sec. 3) 

I-X G 
20.18. 0 ~ VeV(S) ~ V(G) ~ A(G)* 

i-o G 
0 --~ Vev'f(G) • V(G) ~ K (ZOrG)* 

o 

Next we establish exact sequences 

i f 
20.19. A(G)* ~ Wh(ZOrG) ~ Vf(G) ~ Vf(G) ~ 0 

s 
i f 

A(G)* ~ Wh(ZOrG) ~ vf'ev(G) ---+ vf'ev(G) ~ 0 
s~or or 

The map ~ was defined in 7.39. The map i sends ~ ~ Wh(Z0rG) to any element 

f,ev- - 
IX] - [Y] ~ V (G) resp. Vs,or[G) such that there is an (oriented) G-homotopy equi- 

valence f : X---~ Y with ~G(f) := (I_xG(y))-I . TG(f) = ~ . If IX'] - [Y'] is 

another element with ~G(f,) = q for some (oriented) G-homotopy equivalence 

f' : X' ~ Y' we have ~G(f, , f-i) = 0 and hence [X * Y'] = [Y * X'] what implies 

[X] - [Y] = [X'] - [Y'] . Obviously i(q-~) = i(q) - i(~) so that i is a well de- 

fined homomorphism. One easily checks that 20.19. is exact. 

If V is a real G-representation I SV has a simple structure by 4.36. Hence we get 

an homomorphism 

S : Rep~(G) --~ Vf(G) IV] ~---~ [SV] 
s 

Theorem 20.20. The map S is injective 

j : Vs(G)f ~ vf'ev(G)- - send IX] to IX * X] and pG V~,~_(G ) ~  =~T s or Proof: Let 
s,or 

Wh(QOrG) send [X] to pG(x) . Notice that X * X has a canonical orientation. 

G 
Then the composition p o j o S is RePlR(G) --~ Wh(~OrG) IV] --~ [SV ~IR ~] and 

hence in]ective by Theorem 18.38. 
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20.21. 
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{i} ---+ A(G)* Gh> C(G)* -J--~ VeV(G) ~ Vev(G) --• {0} 
or 

{i} ~ A(G)* ch ~ C(G)* J-~ VeV(G~Dim) -~f VeV(G,Dim) --~ {0} 
or 

The map j sends n ~ C(G) to any element [X] - [Y] 

motopy equivalence f : X ~ Y with deg fH = n(H) for 

such that there is a G-ho- 

H c G . This is well-defined 

and gives exact sequences because of the following two results. 

Lemma 20.22. There is a real G-representation V with Iso(SV) = {H I H c G} 

Proof: Bredon [1972] p. 24. o 

Lex~a 20.23. Let X be a G-homotopy representation with dim X G ~ 1 . Suppose either 

that G is nilpotentlor H,K ~ Iso(X) , H c K , H + K => dim(X H) ~ 2+dim(X K) 

holds. If f : X---~ X i~ a G-self-map, let Deg(F) ~ C(G) be Eiven by 

{deg fH I H c G} taken with respect to the coherent orientation #(X,X) given by 

the identity. We get a map 

Equip [X,X] G 

plication. 

and C(G) 

Deg : IX,X] G • C(G) 

with the monoid structure induced by composition resp. multi- 

Then Deg is an in2ectio n of commutative monoids . It has the same image as 

ch : A(G,Iso(X)) ---+ C(G) (see section 5) 

Proof: follows from tom Dieck [1987], 11.4, 11.8. See also Laitinen [1986] and 

LUck [1986a]. o 

We have defined ~(g) = C(G)/IGI.C(G) , A(G) = A(G)/IGI'C(G), Inv(G) = ~(G)*/A(G)* 

and Pic(G) ~(G)*/ A(G)*C(G)* = in section 19. Next we introduce isomorphisms 

20.24. D : V~(G,Dim) --, Inv(G) 

: V(G,Dim) --• Pic(G) 

Consider [X] - [Y] in VeV(G,Dim) resp. V(G,Dim) . Choose a coherent orientation 
u[ 
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~(X,Y) compatible with the given orientations on X and Y resp. choose any co- 

herent orientation ~(X,Y) . Define D([X]-[Y]) by the element determined by 

{deg fH I H c G} for any G-map f : X --~ Y with invertible degrees. The proof that 

D and D are well-defined isomorphisms can be found in tom Dieck-Petrie [1982], 6.5. 

Theorem 20.25. The following diagram commutes and has exact rows. The maps 

are isomorphisms 

D and 

{i} ~ A(G)* ~ C(G)* --~ voeV(G,Dim) --~ V(G,Dim) --~ 0 

{I} ~ A(G)* ~ C(G)* ~ Inv(G) ~ Pie(G) --~ 0 

Next we compute these homotopy representation groups at least rationally. Let 

20,26. r(G),q(G),c(G) ~ ~* 

be the number of irreducible real resp. rational resp. complex G-representations. Then 

r(G) is the number of equivalence classes of elements g ~ G under the equivalence 

relation gl - g2 <=> gl and g2 or gl and g~l are conjugated, whereas q(G) 

is the number of eonjugacy classes of cyclic subgroups and c(g) the number of con- 

jugacy classes of elements in G (see Serre [1977], p. 19, p. 96, p. 103 and p. 106). 

Theorem 20.27. 

a) V~(G,Dim) i_~s Tors(V~(G)) and in particular finite,if e+s and e+(s,or). 

b) The rank of the abelian groups vC(G) and V c (G) is cardinality of 
or 

B = {(H) I H/[H,H] is cyclic} . If G is nilpotent card B = q(G) holds. 

c) The abelian groups V~(G) and V~,or(G ) have rank card B + y r(WH)-q(WH) m 

(H) 
d) The rank of Wh(%OrG) i_~s y r(WH)-q(WH) i 

(H) 
Proof. 

d) By Theorem 10.34. it suffices to show 

Bass [1964]. 

a) 

rk Wh(ZG) = r(G) - q(G) . This is done in 

follows from 20.15., 20.16., 20.18., 20.2L, and Theorem 20.25. 
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b) The groups vC(G) and V c (G) have all the same rank becauseof20.Nand 20.1g and 
or 

20.21. Now the claim follows from tom Dieck [1987], 111.5.2. 

c) follows from a), d) and 20.19. 

We mention the following result of tom Dieck []985] 

Theorem 20.28. Inv(S) = II Z/IWHI* o" 
(H) 

20.C. Classification of G-homotopy representations by reduced Reidemeister torsion 

Next we want to apply the Reidemeister torsion invariants of section 18. to the 

classification of G-homotopy representations. 

Let X and Y be two not-necessarily even G-homotopy representations with Dim(X) = 

Dim(Y) and a coherent orientation ~(X,Y) . Since we do not require them to be even 

do not define elements in V~;(G,Dim) . However, we can define a relative element they 

v(X,Y,~) ~ V;~(G,Dim) as follows. Let e be any G-homotopy representation with 

xG(x) = xG(y) = xG(z) . Then X * Z and Y * Z are even. Choose orientations on 

X * Z and Y * Z such that the induced coherent orientation is just ~(X*Z,Y*Z). 

Define v(X,Y,~(X,Y)) by [X*Z]-[Y*Z] . This is independent of the choice of Z 

and the orientations on X * Z and Y * Z . Now suppose that X and Y are even 

that [X]-[Y] ~ V~;(G,Dim) is defined. If ~(X,Y) is the induced co- oriented~ so 

herent orientation we have [X]-[Y] = v(X,Y,~(X,Y)) . Hence we will often write for 

Dim(X) = Dim(Y) and a coherent two G-homotopy representations X and Y with 

orientation ~(X,Y) 

20.29. v(X,Y,#(X,Y)) = [X]-[Y] 

If X and Y are moreover finite.we get 

V ~ ; ( G , D i m )  . 

20.30. [X]-[Y] e~ vf'ev(G,Dim)-- . 
s,or 

In the sequel let 

ev( 2 0 . 3 1 .  p : V G) 

m be the order of the finite group G . Let the homomorphisms 

-~ KI(@OrG)/KI(Z(m)OrG) 

0 -G : V~;(G,Dim) ~ KI(@OrG)/KI(Z(m)OrG) 
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G 
P 

G p : vf'ev(G) ~ Wh(QOrG) 
or,s 

: vf'ev(G,Dim) --~ Wh(~OrG) 
or,s 

send the class [X] to p-G(x) resp. pG(x) . We will write using 20.30. 

20.32. p-~(X) - p-G(y) := p-G([x]_[y] ) e KI(@OrG)/KI(Z(m)OrG) 

pG(x ) _ pG(y) := pG([x]_[y] ) e Wh(~OrG) , if X and Y are finite. 

Proposition 20.33. 

homomorphism of 19.12. 

The following diagram commutes if SW is the generalized Swan 

~(G) "~ 

Inv(G) 

SW 

-i 
D 

KI(QOrG)/KI(Z(m)OrG) 

-G 
P 

VeV(G,Dim) 
or 

Proof. Theorem 19.25. D 

Consider a collection {d(H) I H c G} of integers with (d(H),m) = 1 for H c G. 

Proposition 20.34. There is a G-map f : X --~ Y with deg(f H) = d(H) fo___~r H c G 

if and only if {d(H) ! H c G} satisfies the unstable conditions 20.8. and S-~ sends 

{d(H) I H c G} ~ C(G)* t_oo p-G(x) - ~(Y) . 

Proof. The "only if"-statement is a consequence of Proposition 20.33. In the proof 

of the "if"-statement we construct inductively over the orbit types the desired G-map 

f : X ~ Y . In the induction step we are given a G-map f : X --, Y with invertible 

degrees and H c G such that deg(f K) = d(K) for K D H , K + H holds. We must 

change f relative X >H such that deg(f H) is d(H) . If H = H is valid there is 

a K D H , K + H with dim(X H) = dim(X K) . Then we are done as deg(f H) = deg(f K) = 

d(K) = d(H) holds by the unstable conditions 20.8. and the induction hypothesis. 

Hence we can assume H + H . Because of Proposition 20.12. it suffices to prove 

deg(f H) ~ d(H) mod IWHI . We get from the induction hypothesis and Theorem 19.13. 

that sw : Z/IWHI* 
- -  --" KI(~WH)(KI(Z(IWHI)WH) sends the classes of deg(f H) and 

d(H) to the same element. Now apply Theorem 19.4. o 
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Definition 20.35. We call a collection {d(H) I H c G} of integers with (d(H)~m)= 1 

for vach H c G a weight function for X and Y , if the following holds. 

Le___~t {e(H) I H c G} be a collection of integers. There is a G-map f : X ---~ Y with 

deg(f H) = e(H) fo__/_r H c G if and only if {e(H) I H c G} satisfies the unstable con- 

ditions 20.8. and {e(H).d(H)[HcG} lies in the image of ch : A(G) --~ C(G) o 

20.36. Any collection of integers {d(H)IH c G} satisfying 20.8.i) determines an 

element in C(G) , denoted in the same way. Recall that {d(H) IH c G} £ C(G) lies 

in the image of the character map ch : A(G) ~ C(G) if and only if certain con- 

gruences are satisfied (see Example 16.38.) [] 

We get from Proposition 20.12 that a weight function determines [X,Y] G (cf. Lemma 

20.23.)$ 

Theorem 20.37. 

mension function 

a) 

b) 

Let X and Y be G-homotopy representations with the same di- 

n = Dim(X) = Dim(Y) and a coherent orientation. Consider the map 

Deg : [X,Y] G-, C(G) , If] ....... ~ {deg(fH)[H c G} . 

If G is nilpotent or if n(L) ~ n(K)+2 holds for all K~L E Iso(X), L c K, 

L + K , then DEG is injective. 

Let {d(H) IH c G} be a weight function. Then image(DEG) c C(G) is the subset 

of elements {e(H)IH c G} for which {e(H) " d(H) IH c G} lies in the image of 

ch : A(G) ~ C(G) and the unstable conditions 20.8. hold. u 

Theorem 20.38. Le___!t {d(H) [ H c G} b0 a collection of inte~rs ~noIGl It is a~ight 

function if and only if it satisfies the unstable conditions 20.8. and SW sends 

{d(H) I H c G} ~ ~ ( G ) *  t_£o p-G(y) _ p-G(x ) . 

Proof. Because of Proposition 20.12. and Lemma 20.23. the collection {d(H) IH c G} 

is a weight function if and only if there is a G-map g : Y --~ X with deg(g H) =d(H), 

Now apply Proposition 20.36. o 

A weight function exists by Proposition 20.33. (cf. Laitinen [1986]). 
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Corollary 20.39. 

tions X and Y 

The followin~ statements are eqqivalent for G-homotopy representa- 

with Dim(X) = Dim(Y) and a coherent orientation @(X,Y) . 

a) X and Y are oriented G-homotopy equivalent. 

b) X and Y are stably ori@nted G-homotopy e~uivalent. 

c) p-G(x ) _ p-G(y) = 0 . 

-G ~ KI(@OrG)/KI(Z(m)OrG) Corollary .20.40. The map ~ : V (G,Dim) --~ is injective. 

Notice that Proposition 20° 33. together with Corollary 20.40. give the complete proof 

of Theorem 19.19. Corollary 20.39. is shown for X = SV and akelian G in Roth~ [1978]. 

~. SW 
Let m(G) be the cokernel of the composition C(G) ~ --~ C(G) --~ KI(QOrG)/KI(Z(m)OrG). 

Because of 20.21. the homomorphisms of 20.31. ~nduce 

-G 20.41. PK : VeV(G) ~ <(G) 

-G p< : VeV(G,Dim) --* <(G) 

Theorem 20.42. Let X and Y be G-homotopy representations with Dim(X) = Dim(Y). 

Then X and Y are stably G-homotopy equivalent if and only if p-~(X) - p-~<(Y) := 

-G( 
PK [X]-[Y]) vanishes. The map ~ : VeV(G,Dim) --~ K(G) is injective. 

Proof. Because of Lemma 20.22. we can assume Iso(X) = {H I H c G} so that H = 

holds for any H c G . Choose {d(H) I H c G} ~ C(G)* such that SW({d(H) JHcG}) = 

p-G(x ) _ p-G(y) holds. Then there is a G-map f : X --~ Y with deg(f H) = d(H) 

for H c G by Proposition 20.36. o 

In general "stably G-homotopy equivalent" does not imply "G-homotopy equivalent" for 

G-homotopy representations. A counter example is given in Laitinen [1986] where also 

the next result is proved. 

Proposition 20.43. Let G be nilpotent and the 2-Sylow subgroup G 2 be abelian. 

Then stably G-homotopy equivalent G-homotopy representations are G-homotopy equiva- 

lent. m 
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Recall that we have assumed Dim(X) = Dim(Y) until now. We drop this condition and 

only require xG(x) = xG(y) . Then p~(X) - o~(Y) can still be defined by 

G( P~ [X]-[Y]) defining [X]-[Y] similarlyto 20,29. One checks directly that the compo- 

sition of SW : C(G) ~ KI(~OrG)/KI(Z(m)OrG) (see 19.12.) and 
.,. .,o 

(Z(m)OrG) ~/Z i of 18.32. is zero. Hence ~ induces : KI(~OrG)/K 1 --, 1-[ @ m) 
(H) 

20.44. c~ : <(G) --~ II ~ /Z(m ) 
(H) 

We have defined mx(X) in Definition 18.25. 

Proposition 20.45. Le___!t X and Y be G-homotopy representations with xG(x) = xG(y). 

a) ~ (P-~<(X)-P-~K(Y)) = mx(X) • mx(Y) -I 

b) Dim(X) = Dim(Y) => mx(X) = mx(Y) • 

C) Suppose that G is nilpotent and dim(X G) = dim(Y G) . Then we have Dim(X) = 

Dim(Y) <=> mxG(x) = mxG(y) . 

Proof. a) follows from Proposition 18.33. and b) from Proposition 20.33. In the proof 

of c) one has to show in the induction step for H c G , H + G that dim(X H) = dim(Y H) 

is valid if dim(X K) = dim(Y K) for K c G with H c K , H + K and mx(X) H = mx(Y) H 

holds. As G is nilpotent i WH is not trivial for H + G (see Huppert [1967], p. 260). 

Hence we can assume H = {i} and G + {i}. Suppose that n = dim(Y) - dim(X) is po- 

sitive. Then there is a G-map f : X --~ Y such that (deg(fH),m) = 1 for H c G , 

H + {i} holds (compare Proposition 20.12.). Hence Cone(cC(f))(m) --~ Cone(CC(f,f>l))(m ) 

is a l(m)G-ehain homotopy equivalence. Since cC(x,x >I) and cC(y,Y >I) are finitely 

dominated and free ZG-chain complexes~the same is true for Cone(cC(f,f>l))(m ) • 

Hence there is a n-dimensional periodic (projective) Z(m)G-resolution P of the 

trivial Z(m)G-module Z(m ) 

{0} --~ Z(m ) --~ Pn --~ "'" --~ Po --~ Z(m) --~ {0} 

Let mx(P) be 91H (P--" P @){ (-l)n * * n~ o n ®~G ~ ~ /Z(m) " We get from the long homology 

sequences of cC(f)(o ) and cC(f ®ZG Z)(o) that mx(P) = mx(X)I'(mx(Y)I )-I = 1 

holds. This contradicts the next lemma. [] 
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Lemma 20.46. 

solution of 

Let G + {i} be nilpotent and P be a periodic pro~ective Z(m)G-re- 

Z(m ) . If n is the dimension of P then n is odd and we have 

my(P) = !G[ -(n+l)/2 

Proof. 
P 

must be cyclic or generalized quaternionic (see Wall [1979]). The projection 
G 

* *~ / ~, ( ~ mx P(res G @ /gCm ) --~ @*_Z ~ sends mxG.p, to P) . Hence we can assume that 
P 

is a p-group, cyclic or generalized quaternienic. One easily checks 

JGI-I n-i = , , II [Hk(g;z)[ (-l)k rex(P) 
k=l 

The nilpotent group G is the product of its p-Sylow subgroups G which 

G 

and the claim follows. 

Corollary 20.47. Le___!t X and Y be G-homotopy representations with xG(x) = xG(y) 

and dim(X G) = dim(Y G) . Assume that G is nilpotent and G 2 is abelian. Then X 

and Y ar___~e G-homotopy equivalent if and only if p-~(X) - p-~(Y) = 0 holds. 

Proof. Theorem 20.42., Proposition 20.43, and Proposition 20.45. a 

Now we deal with the classification up to simple G-homotopy equivalence and the equi- 

variant Reidemeister torsion. We have defined SKI(ZOrG) as the kernel of KI(ZOrG) 

--, KI(@OrG) in section 18. 

Theorem 20.47. 

a) There is an exact sequence 

G i p 
A(G)* ~ SKI(ZOrG) --, vf'ev(G,Dim) ~ Wh(~OrG) 

s,or 

b) Let G be cyclic. Consider oriented even finite G-homotopy representations X 

and Y such that dim(X G) =dim(Y G) is valid. Then X and Y are oriented simple G-homo- 

topy equivalent if and only if pG(x ) = pG(y) holds. 

Proof. 

a) This follows from 18.18., Theorem 18.19., 20.19., and Corollary 20.39. 

b) If pG(x) = oG(y) holds there is an oriented G-homotopy equivalence f : X--~ Y 

by 20.39. and20.47. Its Whitehead torsion TG(f) must be zero by 18.18. and Theorem 18.19. 
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20.D. The special case of a finite abelian ~roup. 

As an illustration we examine a special case more closely. Namely, let G be a finite 

abelian group of order m for the remainder of the section. We have defined integers 

~(K,H) = I (-11£ I ch£(G/H,G/KI{ 

£>o 

in 19.20. for K,H c G . Put ~(H,K) = i for H = K c G and ~(H,K) = 0 for 

H,K c G , H ~ K . 

Define maps 

20.48. : C(G) = II Z • C(G) = n Z 
(K) (H) 

g : C(G) = IX Z • C(G) = II Z 
(H) (K) 

U : C(G) = II Z/m • II Z/IG/HI* 
(K) (H) 

by requiring that the component of ~ resp. ~ for K and H resp. H and K is 

given by multiplication with ~(K,H) resp. m(H,K) if all groups are written addi- 

tively. Notice that this agrees with 16.34. and 17.34.c. We get from Theorem 19.21. 

a commutative diagram, where p-~ and D are isomorphisms and ~ s~w(G/H),p -G and 

-G 
q o S o 0 injections 

20.49. 

~(G)* 
SW 

B 

pr n ZlIGIHI* sw(GIH' IGIHi) > + 

y ~ D- 1 

' KI(@OrG)/KI (Z(m)OrG) 

Inv(G) 

qos  I 
(~,)KI(@G/H)/KI(Z ( IG/H I )G/H) 

.• VeV(G, Dim) 
o r  

Next we want to measure the difference between G-homotopy representations and unit 

spheres of G-representations. Let C be {H c G I G/H is cyclic} and D = 

{H c G I G/H is not cyclic} . Consider a G-representation V over F = I~, ¢ . We can 

write V as a direct sum ~ V(H) where V(H) is a free G/H-representation 
H~C 
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regarded as G-representation by restriction with G --~ G/H . Put 

for H ~ C and n(H) = 0 for H ~ D and let n ~ C(G) be 

17.34. ~ and ~ are inverse isomorphisms. One easily checks 

20.50. ~(Dim(SV)) = n and ~(n) = Dim(SV) 

n(H) = dim E (V(H)) 

(n(H))(H). By Theorem 

Consider n ~ C(G) . We call n even if n(H) is even for H c G . If there are 

real resp. complex G-representations V and W with n = Dim(SV) - Dim(SW)t we call 

n stably E-resp. C-linear. We say that n is unstably ~- resp. C-linear if n is 

Dim(SV) . 

Theorem 20,51. Let G be finite abelian. 

a) The followin~ statements are equivalent 

i) n %s stably E-linear, 

ii) n lies in the image of Dim : V(G) --~ C(G). 

iii) ~(n) H = 0 fo___[r H ~ D and ~(n) H is even for H ~ C , IG/HI > 2 

b) n is stably C-linear if and only if n is even and ~(n) H = 0 

e) n is unstably E-linear if and only if ~(n) H = 0 for H ~ D , 

for H ~ C and u(n) H ~ 0 mod 2 fo___Kr H ~ C with IG/HJ > 2 holds. 

for H ~ D . 

~(n) H ~ 0 

d) n is unstably ~-linear if and only if n is even and ~(n) H = 0 for H ~ D 

and ~(n) H ~ 0 for H ~ C holds. 

e) Let X be an even G-homotopy representation. Then Dim X is stably C-linear. 

Moreover Dim(X) is unstably C-linear if and only if ~(Dim(X)) H ~ 0 for H ~ C 

holds. 

Proof. In a) the implication ii) => i is verified in tom Dieck-Petrie [1978]. 

Now the rest follows from 20.50. D 

Let X be an oriented even G-homotopy representation. By Theorem 20.51.e there are 

complex G-representations V and W with Dim(X*SV) = Dim(SW) . For H c G let 

~G(x) H be the image of p-G(x) under the map KI(~OrG)/KI(Z(m)OrG) 

KI(@G/H)/KI(Z(IG/Hf)G/H)I[ induced by SG/H . One easily checks as in 20.50. that 
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p-G(SV)H = p-G(SW)H = 0 holds for H ~ D . By 20.49. there is for 

element ~G(x) H ~ Z/IG/HI* such that sw(G/H) sends %G(x) H 

pG(x*sv) H - pG(sw) H . Define 

H ~ D a unique 

to pG(x) H = 

20.52. ~G(x) ~ n Z/IG/HI* 
H~D 

by {IG(x) H I H ~ D} . Then %G(x) depends only on the oriented G-homotopy type and 

satisfies xG(x,y) = ~G(x ) + kG(y) by Theorem 18.35. We get from Corollary 20.39. 

and Theorem 20.51. 

Theorem 20.53. Let G be a finite abelian group and X an even oriented G-homo- 

topy representation. 

a) There are complex G-representations V and W 

oriented G-homotopy equivalent if and only if IG(x) 

such that 

vanishes. 

X * SV and SW are 

b) There is a complex G-representation V such that X and 

homotopy equivalent if and only if ~(Dim X) H ~ 0 for H ~ C 

SV are oriented G- 

holds and kG(x) 

vanishes, m 

Let X be a G-homotopy representation. Choose a real G-representation V 

X * SV is even. Choose any orientation on X * SV and define 

m.54. IG(x) ~ n zlIG/HI~I{±I} 
K 

H~D 

by the reduction of IG(x*sv) . This does not depend on the choice of SV 

orientation on X * SV . 

such that 

and the 

Theorem 20.54. Let G be finite abelian. 

a) There are real G-representations V and W such that X * SV and SW are G- 

homotopy equivalent if and only if ~(X) vanishes. 

b) There is a real G-representation V such that X and SV ar___~e G-homoto ~ui- 

valent if and only if ~(X) vanishes, ~(Dim(X)) H ~ 0 for H ~ C and ~(Dim(X)) H 

is even for H ~ C with IG/HI > 2 . 

c) The reduced finiteness obstruction 

composition 

oG(x) is the image of IG(x) under the 
K 
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sw(G/H) ~ EG'HI 
, H E D H E D 

II Z/{G/H I /{±I} ~ ~ Ko(ZG/H) "~ Ko(ZOrG) 
H ~ D H E D 

Comments 20.55. 

The theory of homotopy representations was founded in tom Dieck-Petrie [1982]. The 

problem which dimension functions can occur as dimension functions of homotopy re- 

presentations~ smooth homotopy representations or unit spheres of linear represen- 

tations is treated in Bauer [1988], tom Dieck [1982], tom Dieck-Petrie [1982], tom 

Dieck [1986], tom Dieck [1987] 111.5, Madmen-ReuBen [1985] . The relations between 

homotopy representations and the Picard group of the Burnside ring are examined in 

tom Dieck-Petrie [1978], tom Dieck [1984], tom Dieck [1985], tom Dieck [1986a]. The 

degrees of maps between G-homotopy representations are studied in tom Dieck [1986b], 

tom Dieck [1987], 11.4 and 5, Laitinen [1986], L~ck [1986a],Tornehave [1982]. Further 

references in the context of homotopy representations are tom Dieck-L~ffler [1985], 

L~ck [1988], Rothenberg. [1978a]. 

Exercises 20.56. 

I) Let X and Y be G-homotopy representations with dim(X H) = dim(Y H) for 

H c G , H + 1 . Consider a G-map f : X --~ Y such that H,(fH,Z(IGI)) is an iso- 

morphism for H + 1 . Prove 

a) If dim(X) = dim(Y) holds and d is Ideg( f )I then the trivial ZG-module 

Z/d has a finite resolution. Conclude that deg( f ) is prime to IG{. 

b) If n = dim(X) - dim(Y) is positive and IGI > 2 , then n is even and G has 

periodic cohomology. 

2) Show using Exercise 1 for the dimension function n of a G-homotopy repre- 

sentation. 

i) If H ~ K c G , K/H ~ Z/p and p is odd, then n(H) - n(K) is even. 

ii) If H ~ K c G , K/H ~ Z/p x Z/p , H./H for i = 0,i, .... p 
1 

P 
of order p in K/H , then n(H) - n(K) = X (n(H i) - n(K)) . 

i=o 

iii) Given H ~ L ~ K c G with L/H ~ Z/2, n(H)-n(L) is even if 

divisible by 4 if K/H is a generalized quaternion group of order 2 k 

are the subgroups 

K/H ~ Z/4 and is 

for k > 3. 
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3) Let X and Y be G-homotopy representations with the same dimension function. 

Show using only Proposition 20.12.a) and Exercise I that there is a G-map f : X -~ Y 

with invertible degrees. 

4) Prove that S : Rep~(G) --~ V~(G) sending [V] to [SV] has a finite co- 

kernel if and only if G is Z/p for a prime number p . 

5) Let f : X --~ X be a G-self map of a G-homotopy representation. Let 

c H >H x(fH,f >H) ~ Z be the Lefschetz number Z(-I) n tracez(Cn(f ,f )) . Show that it is 

divisible by IWHI . Then one can define 

Prove that 

%G(f) = ~ ~ %(fH f>H) . [G/H] ~ A(G) 

(H) 
: A(G) --* C(G) maps (I-xG(x))(%G(f)-I) to (deg(fH)(H) . ch 

6) Let G be a solvable group and X and Y be oriented even G-homotopy re- 

presentations. Show that X and Y are oriented G-homotopy equivalent if and only if 

p-G(x ) = p-G(y) and dim(X G) = dim(Y G) holds . 

7) Let G be the non-abelian group of order pq for odd prime numbers p and 

q with plq-I . Let f : X --* Y be a G-map between freeevencLJentedG-homotopy repre- 

sentations with dim(X) = dim(Y) such that deg f ~ -I mod p and deg f ~ 1 mod q 

holds (The existence of f follows from Swan [1960b]). Show that X and Y are not 

G-homotopy equivalent but are stably G-homotopy equivalent. (see Laitinen [1986],4.11.) 

8) Let G be H×K for H = K = Z/p for p an odd prime. Let X be an even 

oriented G-homotopy representation with Iso X = {I,H,K} . Then dim(X) = dim(X H) + 

dim(Y H) + I holds so that the linking number ~ of X H and X K in X is defined. 

Show for xG(x) ~ Z/p 2. defined in 20.52. %G(x) ~ Z mod p2 

9) Let G be Z/m and al,a2,...,ar and b I, .... b r be integers prime to m . 

Let V be the G-representation G×tr --~ cr sending t n , ( z j l j = l , . . . , r )  to 

(exp(2~iajn/m)'zjlj=l ..... r) • Define W using the b~-sj analogously. Prove 
r r 

a) SV and SW are oriented G-homotopy equivalent if and only if II b i ~ llaimodm 
i=l i=l 

holds. 
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SV and SW are G-diffeomorphic if and only if 

permutation o ~ S 
r 

b i ~ iao(i)mod m for some 

i0) Let G be nilpotent and X and Y be oriented even G-homotopy representatkns. 

Suppose for any prime p that the restrictions of X and Y to the p-Sylow subgroup 

G are oriented G -homotopy equivalent. Are X and Y oriented G-homotopy equivalent? 
P P 

ii) Are two oriented even G-homotopy representations oriented G-homotopy equivalent 

if their restrictions to any cyclic subgroup C are oriented C-homotopy equivalent? 

12) Show that G is isomorphic to Z/p n for some prime number p if and only if 

any G-homotopy representation is G-homotopy equivalent to SV for some real G-re- 

presentation V . 

13) For which groups G are there for each G-homotopy representation X real 

G-representations V and W such that X * SV and SW are G-homotopy equivalent? 

14) Let G be abelian of order m . Define 

by 

7: nQ --, n Q (K) /Z(m) (H) /Z(m) 

(r(K))(K) ~ (II r(K)~(K'H))(H ) 
(K) 

for 7(K,H) defined in 19.20. Show for an even G-homotopy representation X that 

Dim(X) is unstably C-linear if and only if ~(mx(X)) H = IG/HI-n(H) with n(H) ~ Z , 

n(H) ~ 0 holds for all H c G with cyclic G/H . 
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182 

182 

182 

118 

118 

183 

130 

130 

277 

277 

325 

325 

325 

162 

149 
368 
ii 

205 

205 

205 

216 

214 



NiI(RF) = NiI(FPMOD-RF) 

o(C) 

8(c) 

oG(x) 

8G(x) 

o(p) 

OrG 

Or/G 

P 

P 

Pie(G) = ~(G)*/A(G)*'C(G)* 

Rep~(G) 

Rep~(G) 

Res 
x 

R 

RG 

R[x] = R Aut(x) 

RS 

RF(?,x) = RHom(?,x) 

R-MOD 

RF-MOD 

rkRF(M) 

rk~r(M) 

Split Grn(RF) 
Split Kn(RF) 

Split o(C) 

Split Grn(RF) 
Split Wh(Rr) 

Split ~(f) 

S 
x 

supp(M) 

SV 

440 

finiteness obstruction 

reduced finiteness obstruction 

finiteness obstruction 

reduced finiteness obstruction 

orbit category 

discrete orbit category 

algebraic transfer of a G-fibration 

geometric transfer of a G-fibration 

Picard group 

real representation ring of G 

complex representation ring of G 

restriction functor 

units in the ring R 

group ring of G with R-coefficients 

free R-module generated by the set S 

category of R-modules 

category of RF-comodules 

rank of a RF-module 

splitting functor 

support of a RF-module 

unit sphere of a representation V 

Swan homomorphism 

211 

212 

278,360 

278,360 

232 

145 

151 

314 

317 

385 

170 

163 

170 

164 
164 

162 

162 

199 

333 

193 

226 

328 

193 

253 

170 

325 

sw 381 
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SW 

SW 

SW 

TorRF(M,N) 
n 

tpp 

tpp 

trf F 

t(S) 

t(f,{%}) 

t(f) 

t(f) 

t(C,{~},{~}) 

U(G) 

U(G;~) 

uG(x) = U(H/(G,X)) 

u(r) = ~ z 
Is F 

vC(G) 
e 

vC(G) + 
e 

wG(x) 

waG(x) 

WH = NH/H 

WH(x) 

lifted Swan homomorphism 

generalized Swan homomorphism 

lifted generalized Swan homomorphism 

fibre transport 

total fibre transport 

transfer assiciated with F 

torsion of a square 

torsion 

Self-torsion 

round torsion 

absolute torsion 

Euler ring 

homotopy representation group 

geometric finiteness obstruction 

Weyl group 

Wh(RF) = Kl(RF)/<trivial units> 

whG(x) Whitehead group 

WhOso(X), Wh~(X) isovariant Whitehead group 

X H {x ~ x I G x = = H} 

x >H = {x ~ x I G x = H, G x +H} 

X H = {G x = H} 

X (H) = {x ~ X I (G x) ~ (H)} 

381 

384 

384 

340 

314 

314 

32 

240 

240 

246 

248 

247 

104 

103 

99,277 

184 

396 

396 

52 

52 

ii 

146 

184 

68,277 

84,91 

i0 

I0 

ii 

ii 
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X >(H) = {x ~ X I (G X) m (H), (G x) + (H)} 

X(H ) = {x ~ X I (G x) = (H)} 

XH(x) 

x>H(x) 

~H(x) 

i>H(x) 

xH/(x) = xH(x)/WH(x) 
o 

X>H/(x) 
xH/(x) = xH(x)/Aut(x) 

o 

X>HI(x) 
X:~(G,X)-~ {top. sp.} 

X/ : n/(G,X) -~ {top. sp.} 

XIG 

X~Y 

X~Y 

X~" Y 

Ix[ : IAut(x)l 

x 

x = y <=> Hom(x,y) + 0 

universal covering functor 

discrete universal covering functor 

orbit space 

elementary expansion 

elementary collaps 

formal deformation 

isomorphism class of objects represented 
by x 

Greek letters 

A 

xG(x,A) 

×(c) 

{~} # {¢} 

(x) 
O 

~l(X,x) 

~n(X,x) 

boundary homomorphism of a localization 
square 

Laplace operator 

Euler characteristic 

Euler characteristic 

Moebius inversion 

set of components 

fundamental group 

n-th homotopy group 

ii 

i! 

146 

146 

146 

146 

150 

150 

150 

150 

146 

149 

62 

63 

63 

325 

170 

170 

368,369 

375 

100,278,360 

227 

244 

330 



~(x) 

~o(G,×) 

H(G,X) 

~/(G,X) 

pG(x,A),pG(M) 

o-G(x,A) 

E 

G(f) 

~(f) 

G f) 
~Iso ( 

Other symbols 

°  R 

®RF 

I I  

~G 

lim 

inv lim 

[ , ]G 

~q 

Z 

P 

Z(m) 

Z 1 
m 

443 

fundamental groupoid 

component category 

fundamental category 

discrete fundamental category 

Reidemeister torsion 

reduced Reidemeister torsion 

suspension 

Whitehead torsion 

Whitehead torsion 

isovariant Whitehead torsion 

discrete sum 

tensor product over R 

tensor product over RF 

disjoint union 

direct product 

join 

G-homotopic 

isomorphic 

cofibration 

limit 

inverse limit 

G-homotopy classes of G-maps 

complex numbers 

natural numbers 

rational numbers 

p-adic rational numbers 

real numbers 

integers 

p-adic integers 

Z with all primes p with 

Z with all primes p with 

145 

99 

144 

149 

362,375 

363 

213 

68,284,360 

252 

85 

166 

166 

131 

p X m inverted 

ptm inver t ed  


