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0. Introduction.

The main goal of algebraic topology is the translation of problems and phenomena from
geometry to algebra. In favourable cases we obtain a computable algebraic invariant
which decides a given geometric question. A classical example is the classification of

compact connected closed orientable surfaces by the genus.

This book is devoted to the connection between transformation groups and algebraic K-
theory. We shall construct invariants such as the equivariant finiteness obstruction,
Whitehead torsion, and Reidemeister torsion taking values in algebraic K-groups. We de-
fine injections or isomorphisms to the algebraic K-groups from groups such as finite-
ness obstruction groups, Whitehead groups, representation rings, homotopy representa-
tion groups or units of the Burnside ring. These are used to answer questions of the

following type:

When is a finitely dominated G-CW-complex G-homotopy equivalent to a finite G-CW-
complex? Under which conditions is a G-homotopy equivalence between finite G-CW-com-
plexes simple? Is a given equivariant h-cobordism trivial? When are two semilinear G-
discs G-diffeomorphic? Under which conditions are the unit spheres of two orthogonal
G-representations G-diffeomorphic? When are two oriented G-homotopy representations
oriented G-homotopy equivalent? Is a given oriented G-homotopy representation oriented

G-homotopy equivalent to the unit sphere of a complex G-representation?

These questions will be treated in detail. They are related to the general problem of
classifying group actions on manifolds. This problem and in particular its connections
to algebraic K-theory are the basic motiviation for this book. We concentrate on deve-
loping the algebra. The algebraic tools and techniques presented here have applications
to G-manifolds besides the one to the questions above . They will not be worked out, as

this would exceed the scope of this book, but are discussed in the comments.

Roughly speaking, most of the material of chapter I can be found in the literature
whereas chapters Il and IIT mainly contain unpublished work. The study of modules over
a category was initiated by Bredon [1967], where an equivariant obstruction theory
for extending G-maps was established, and by tom Dieck [1981], where the equivariant

finiteness obstruction and the diagonal product formula were studied for finite groups
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and simply connected fixed point sets. The author wants to express his deep gratitude

to Prof. Tammo tom Dieck for his encouragement and generous help.

The book is based on a course given by the author in the winter term 1986/87 and on

the author's Habilitationsschrift, Géttingen 1989.

The author thanks Christiane Gieseking and Margret Rose Schneider for typing the manus-

cript.

We briefly summarize the main results and constructions.

0.1. Modules over a category.

Let I be a EI-category, i.e., T is a small category whose endomorphisms are iso-
morphisms. A Rl-module M is a contravariant functor [ —» R-MOD into the category
of modules over the commutative ring R . The functor category MOD-RI of RI-modules
is abelian. We veduce the study of RI-modules, their K-theory and homological algebra
to the study of R[x]-modules for x € ObI and R{x] the group ring R[Aut(x)] by the

Cofiltration Theorem 9.39. and Filtration Theorem 16.8. The Cofiltration resp. Fil-

tration Theorem assigns to a projective Rl-module P of finite tpye resp. RI-module

M of finite length a natural cofiltration

P=P —r P — ... — P = {0}
resp. natural filtration

{0} = M0 - M1 o SRR Mn =M

such that the kernel of Pi — Pi-l resp. cokernel of Mi —> M can be expressed

i+l
in terms of R(x]-modules SxP resp. Rest which themselves are naturally constructed-

from P resp. M . The Cofiltration Theorem implies the Splitting Theorem 10.34.

for algebraic K-theory of RI-modules

K (Rr) = _ & K (R(x])
n xeIsr ¢

where X runs over the set IsT of isomorphism classes of objects and n € Z .
As a special case we obtain the well-known splitting of the equivariant Whitehead

group of a G-space. For finite I and R a field of characteristic 0 the Filtra-



tration Theorem gives a second Splitting Theorem 16.29. for algebraic K-theory of

RIr-modules. These two Splitting Theorems are related by a K-theoretic Moebius inversion

16.29. In geometry this corresponds to switching between the isovariant and equivariant
setting, or between the two stratifications {X, | Hc G} and {XH | Ec G} of aG-
space X . Besides the K-theoretic application we also obtain a computation of Ext-
groups EXTEF(M,N) by a spectral sequence whose Ez-term is given by Ext-groups over
the various group rings R[x] (see 17.18. and 17.28.). We introduce and study gene-

ralized Swan homomorphisms in section 19.

The algebra of RT-modules for I the discrete fundamental category 1/(G,X) (see 8.15.)

of a G-space X 1is the main ingredient for constructing and computing certain alge-

braic invariants of G-spaces and the K-groups in which they take values.

0.2, Invariants for G-spaces.

Here is a list of the most important invariants we will construct for G-spaces and

G-maps.
name symbol value group defined for page
Euler characteristic xG(X) UG(X) finitely dominated 100, 278,
resp. G-space X 360
i€e)]
multiplicative Buler hy(X) o ot/z* finitely dominated 368
characteristic (H) G-space X
mx (X) m Q*/z* special G-space X 368
(1)
XXy c(G)* finitely dominated G- 387
= IL Z/|G|* space X
(H)
hx(f)u c(e)* G-map between finitely 387
" dominated G-spaces
finiteness ob- oG(X) K (Zn/(G,X)) finitely dominated G- 278, 360
struction ° space X
resp.
KO(ZOrG)
reduced finite- SG(X) ﬁOCZH/«LX» finitely dominated 278, 360
ness obstruction G-space X
resp.
KO(ZOrG)

W0 Wal(X) 52



vi

name symbol value group defined for page
(equivariant) TG(f) Wh(ZI/(G,Y)) G-homotopy equivalence 284, 360
Whitehead torsion resp. of finite G-CW-complexes
Wh(ZOr G) resp. G-manifolds
f:X—ry
G G
rgeo(f) Whgeo(Y) 68
isovariant Whitehead 10 (B,M,N) whl () Isovariant h-cobordism 85
. Iso Iso
torsion (B,M,N)
Reidemeister pG(X) Wh(Q0r G) Finite G-CW-complex 362
torsion with round structure X
pG(M) Wh(ROr G) M a closed Riemannian G- 375
manifold satisfying 18.43.
G Z/2 ) . .
pPL(M) Kl(RG) M a Riemannian G-manifold 376
- Kl(QOrG)
reduced Reidemeister p (X) X (Z, —0rG) Finitely dominated G- 363
torsion 1 2(|ch r space X with round
structure
. . . G Z/2 . . .
Poincaré torsion pPD(H) KI(BG) Riemannian G-manifold M 377

We compute the value groups in terms of algebraic K-groups of certain group rings

and state sum, product, diagonal product, join and restriction formulas. The reduced

finiteness obstruction is the obstruction for a finitely dominated G-space X to be
G-homotopy equivalent to a finite G-CW-complex. The Whitehead torsion is the obstruc-
tion of a G-homotopy equivalence of finite G-CW-complexes to be simple. Both inva-
riants are defined geometrically and algebraically and these two approaches are identi-
fied by isomorphisms WaG(X) — KO(ZH/(G,X)) and theo(x) —» Wh(Zn/(G,X)) . Cer-
tain relations between these invariants are established. Roughly speaking, Whitehead
torsion is the difference of Reidemeister torsion, the reduced Reidemeister torsion

is a refinement of the finiteness obstruction.

0.3. Maps between geometric groups and K-groups.

We give a list of maps relating geometrically defined groups to algebraic K-groups.
They connnect geometry with algebraic K-theory. We denote injections by >k and

isomorphisms by S
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o ¢ Wal(x) o US(X) > K_(Z11/(6,X)) 283
§ ¢ WaS(x) = R _(20/(6,%)) 283
~ G =

3 Whgeo(x) -~ Wh(Z1/(G,X)) 286

G = G
® : Whl (X) —> Wh () 86
1t

5 . Gy N _ G =G

& Wh(YxT ) = K“n(Y)geo » K (Z1/(6,X)) 299
w 3 A(G)* —» Wh(ZOrG) 131
SW 1 C(G)Y — KI(QOrG)/Kl(z({GUOrG) 385
§Wo : Inv(G) >—> K, (Q0r6)/K,( Z(‘GI)OrG) 386
SW 1 C(G)¥* ——> K (Z0r ) 385
p(; : Repp(6) >—> Wh(QUr G) 373
2%+ vEV(G,Dim) >—» K, (Q0r 6)/K, (Z (107 6) - 401
P veY(6,Dim) >—  «(G) 404

0.4, Applications to geometry

We restate the Isovarjant s-Cobordism Theorem 4.42. saying that isovariant h-cobordisms

are classified by their isovariant Whitehead torsion. We relate the isovariant and
equivariant setting by an homomorphism ¢ : Wh%SO(M) —> WhG(M) . Provided that the
weak gap conditions 4.49. are satisfied, we show that ¢ is injective and determine

its image and thus get the Equivariant s-Cobordism Theorem 4.51. We give counter-

examples to the Equivariant s-Cobordism Theorem 4.51. without the weak gap hypothesis

in Example 4.56.

We prove for a finite group G of odd order that the transfer on Ko and Wh induced
by the sphere bundle of a G-vector bundle vanishes under mild conditions (see 15.29.).
These transfer maps appear e.g. in the comparison of isovariant and equivariant White-

head groups and in the involution defined on them by reversing h-cobordisms.

We construct an homomorphism p%»: RepR(G) —» Wh(QOrgG), [V] —» pG(S(V e V)) and
prove injectivity in 18.38. Hence spheres of real G-representations are classified up

to G-diffeomorphism by Reidemeister torsion. This reproves de Rham's theorem that two
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G-representations are RG-isomorphic if and only if their spheres are G-diffeomeorphic.

A G-homotopy representation X is a finite-dimensional G-CW-complex such that
XH = Sn(H) helds for H < G . Given two G-homotopy representations X and Y
with din\XH = diHlYH for all H < G, we want to determine the set {X,Y]G of G-
homotopy classes of G-maps between them. If we have choosen a ccherent orientation,
then
G H
DEG : [X,Y]' — I Z, [f] — (degf )
(H)
(")

is an injection. We give in Theorem 20.38. a set of congruences describing the image
of DEG and hence [X,Y]G which can be computed from the difference of the reduced
Reidemeister torsion EG(Y) - BG(X) by generalized Swan homomorphisms. In particular

we get that G-homotopy representations are classified up to oriented G-homotopy equi-

valence by an absolute invariant, the reduced Reidemeister torsion.

0.5. On the concept of the book.

We have tried to keep the book fairly self-contained. We give the definitions, results
and proofs in full generality and illustrate them by examples. At the end of each
section there is a comment where the material of the section is put into context with
the work of other mathematicians, further applications are discussed and additional
references are given. More information and results are contained in the exercises.

We advise the reader to at least read through them.

This expansive way of writing means that the sections contain much more material and
results in much larger generality than needed for the following sections of specific
applications. Therefore we have tried to give the reader, who is only interested in

a specific question, the possibility to pick out a single section and read it without

knowing the others. Here is some advice for such a reader.
The chapters II and III are independent of chapter I. If one is interested in the
algebra only, one may skip chapter I completely.

In chapter I one may begin with one of the sections 3, 4, or 5 directly as they are

independent of one another and sections 1 and 2 are quite elementary.



IX

Nearly all notions and results are stated for Lie groups G and proper G-actions
without any assumptions about the connectivity of the fixed point sets. The notational
and technical difficulties decrease considerably if G is a finite group and the
fixed point sets are empty or simply connected. In this case a summary of the in-
variants defined for G-spaces in chapter II is given in section 18 including their
basic properties. Moreover, section 8 is in this case of no importance, as everything
takes place over the orbit category. In particular this restriction does no harm if

one studies G-homotopy representations.

If one is interested in the finiteness obstruction and torsion only over the group
ring resp. for the universal covering of a G-space without group action, one may
directly begin with section 11 and 12 thinking of Rl as RG, and similarly for the ma-

terial about the Swan homomorphism for group rings and its lifting in section 19.

An experienced reader can start with section 18 without having looked at the pre-

vious sections since the necessary input from them is reviewed in the beginning of
section 18. Although section 20. makes use of section 18 and 19, section 20 can be
read without knowing section 18 and 19 because only the formal properties of Reide-

meister torsion and Swan homomorphism but not their explicit constructions are needed.
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CHAPTER I

GEOMETRICALLY DEFINED INVARIANTS
Summary

In the first section we collect elementary facts about G-CW-complexes for G a to-

pological group. We prove the Slice Theorem 1.37.and 1.38.and deal in Corollary 1.40
with path 1lifting along the projection p : X —» X/G . In Theorem 1.23. we show for
a G-CW-complex X that ¥ 1is proper if and only if the isotropy group GX is com-

pact for all x € X .

We prove the Equivariant Cellular Approximation Theorem 2.1. and the Equivariant

Whitehead Theorem 2.4. in section 2. We give criterions for a G-space to have the G-

homotopy type of a G-CW-complex in Corollary 2.8., Corollary 2.11. and Proposition

2.12. and examine G-push outs of G-maps and their connectivity in Lemma Z.13.

In section 3 we introduce the finiteness obstruction wG(Y) € WaG(Y) of a finitely

dominated G-space geometrically. We call Y finitely dominated if there is a finite

G-CW-complex X and G-maps r : X —» Y and i : Y —» X satisfying r o i *c id.
Elements 1n the abelian group WaG(Y) are represented by G-maps f : X — Y with a
finitely dominated G-space as source and Y as target. Addition is given on re-
presentatives by the disjoint union. The zero element is represented by # — Y and

wG(Y) by id : Y — Y .

Theorem 3.2.

a) Let X be a finitely dominated G-space, Then X is G-homotopy equivalent to

a finite G-CW-complex if and only if wG(X) vanishes.

b) The finiteness obstruction is a G-homotopy invariant.

c) The finiteness obstruction is additive on G-push outs. =]

A typical situation, where the finiteness obstruction comes in, is the following.
Suppose X is a finitely dominated G-space for which we want to construct a {compact

smooth) G-manifold M with M =_ X . As any such M is a finite G-CW-complex, the

G

s G : ces . ;
vanishing of w (Y) is a necessary condition. Often constructions of G-spaces give



finitely dominated G-spaces but not necessarily finite G-CW-complexes.

In section 4 we extend the geometric construction of Whitehead group and Whitehead
torsion due to Cohen [1973] and Stécker [1970] to the equivariant setting following
Illman [1974]. A G-homotopy equivalence f : X —» Y between finite G-CW-complexes
is called gimple if it is G-homotopic to a composition of so called elementary ex-
pansions and collapses. It determines an element TG(f) , its (equivariant) Whitehead
torsion, in the Whitehead group WhG(Y) by its mapping cylinder. Elements in WhG(Y}
are represented by pairs of finite G-CW-complexes (X,Y) such that the inclusion

Y —» X is a G-homotopy equivalence. Addition is given by the G-push out along Y

and the zero element by (Y,Y) .

Theorem 4.8.

a) A G-homotopy equivalence f : X —» Y between finite G-CW-complexes is simple

if and only if TG(f) vanishes.

B) £ = = ) = g)

G 8

c) TG is additive on G-push outs.

O Clger) = %(g) + gurt(£) o

Let f : X —» Y be a G-homeomorphism of finite G-CW-complexes. If G 1is trivial,
f is simple by Chapman [1973]. This is not true for non-trivial G in general (see

Example 4.25. and 4.26.).

If G is a compact Lie group and M a (compact, smooth) G-manifold, we define
a preferred simple structure on M (cf. Illman [1978], [1983], Matsumoto-Shiota
[1987]). Hence for any G-homotopy equivalence f : M —» N between G-manifolds its

Whitehead torsion is defined. It vanishes if f is a G-diffeomorphism.

A cobordism (B,M,N) of G-manifolds is an isovariant h-cobordism resp. (equivariant)

h-cobordism if the inclusions M —» B and N —> B are isovariant G-homotopy equi-

valences resp. G-homotopy equivalences.

We introduce the isovariant Whitehead group WthO(M) and the isovariant Whitehead

torsion T?SO(B,M,N) of an isovariant h-cobordism. We restate the Isovariant s-Co-



bordism Theorem 4.42. saying that T?SO(B,M,N) € Whgso(B,M,N) classifies isovariant
h-cobordisms over M up to G-diffeomorphism relative M , if dim MH/WH 25 (i.e.
the dimension of any component of MH/WH is not smaller than 5) for all H € Iso M
holds (see Browder-Quinn [1973]. Hauschild [1978], Rothenberg [1978]). We construct

an homomorphism
G G
4,43, e(M) : Why (M) ——> Wh’(M)

satisfying ¢(M)(T?SO(B,M,N)) = 1G(M —» B) (see Proposition 4.44.). This leads to

(cf. Araki-Kawakubo [1988])

Theorem 4.51. The Equivariant s-Cobordism Theorem. Let M be a G-manifold satis-

fying the weak gap condition 4.49. such that dim MH/WH 25 holds for HE Iso M .
Then

a) Any h-cobordism over M is an isovariant h-cobordism.

N s » . G
b) $(M) is split injective with a certain direct summand Whg(M) < Wh (M) as

image.

c) WhE(M) classifies h~cobordisms over M up to G-diffeomorphism relative M .

Because of this result equivariant Whitehead torsion is important for the classifi-
cation of G-manifolds. It is in general much easier to handle with the equivariant
Whitehead torsion than with the isovariant one. If one wants to show that two G-mani-
folds M and N are G-diffeomorphic, the general strategy is to construct an h-co-
bordism (B,M,N) by equivariant surgery and then apply Theorem 4.51. As an illustra-

tion we mention the classification of semilinear discs M (i.e. G-manifolds M such

k Sk-l

that for H © G the pair (MH,BMH) is homotopy equivalent to (D ) for
appropriate k 2 0) due to Rothenberg [1978] in Theorem 4.55. Such M is classified
by the RG-isomorphism type of TMX for x € MG and the Whitehead torsion of

STMX —» M \ int DTMX up to G-diffeomorphism, provided that M satisfies the weak
gap conditions 4.49. and dim MH/WH 2 6 for H € Iso M . The assumption 4.49. in

Theorem 4.51. is necessary {(see Example 4.56.).

In section 5 we introduce the (equivariant) Euler characteristic XG(X) € UG(X) and

show that it is a G-homotopy invariant and additive under G-push out in Theorem 5.4.



We define Euler ring U(G) = I ({point}) and Burnside ring A(G) for G a compact

Lie group.

All the invariants above satisfy sum formulas for G-push outs and are G-homotopy
invariant. It turns out that they can be characterized just by these two formal

properties as universal functorial additive invariants {see Theorem 6.7., 6.9., and

6.11.).

In section 7 we derive from this characterization a product formula 7.1., a restric-

tion formula 7.25. and a diagonal product formula 7.26. for the finiteness obstruc-

tion, Whitehead torsion and Euler characteristic in a simple geometric manner. This
requires a careful analysis for the problem how to assign to the restriction res X
of a finite G-CW-complex X to a subgroup H of the compact Lie group G a H-
simple structure (see 7.10.). This is a non-trivial question if G/H is not finite,
see e.g. the case where X is a homogeneous G-space G/K . It is remarkable that
the geometric description of the restriction formula for infinite G/H and of the dia-
gonal product formula for infinite G are much easier than the algebraic one, we

will develop in section 14.

The diagonal product formula is the main ingredient in constructing an homomorphism
x G N

7.39, w : A(G)" — Wh’'({point}) .

A unit in the Burnside ring represented by a G-self equivalence f : SV —» SV of
the unit sphere of an orthogonal G-representation is sent by w to (l*xG(SV»fltG(f) .
Noe G is known where w is non-trivial. This map appears in the study of G-homo-
topy representations in section 20 and in equivariant surgery (see Dovermann-Rothen-

berg [1988]).

I¥f X is a finitely dominated G-space, X x S1 is G-homotopy equivalent to a finite
G-CW-complex by the product formula. This can directly be seen from Mather's trick

which is used to define a geometric Bass-Heller-Swan injection

7.34. ® : WaG(Y) — WhG(Y x sl) .

It relates finiteness obstruction and Whitehead torsion (cf. Ferry [1981a],



Kwasik [1983])and leads to a geometric definition of equivariant negative K-groups

(Definition 7.36., Theorem 7.38.). These appear for example as obstruction groups

for equivariant transversality in Madsen-Rothenberg [1985a].

In section 8 we deal with lifting a G-action to a G-action on the universal covering

L d -
X  which extends the nl(X)~action and covers the G-action, where G 1is an extension
of nl(X) and G (Theorem 8.1.). If G, and éo denote the components of the

identity, we study the square

8.8.

In particular the space i/éo is important as it is simply connected and carries
the action of the discrete group ﬂo(é) = éiéo (Lemma 8.9.). We will read off a
lot of algebraic information from the no(a)—space i/éo . We derive from 8.8. an
explicit description of the kernel and cokernel of Wl(X) — ﬂl(X/G) in Propo-

sition 8.10. (cf. Armstrong [19831).

We organize the book-keeping of the components of the various fixed point sets in-
cluding their fundamental groups, universal coverings, WH-actions and diagrams

corresponding to 8.8. All these data are codified in the discrete fundamental cate-

gory T/(G,X) {Definition 8.28.). The notion of the cellular ZI/(G,X)-chain complex
(Definition 8.37.) is the main link between geometry and algebra. It is the compo-
y

sition of the discrete universal covering functor i/ : I/(G,X) ~—» {CW-complexes}

(Definition 8.30.) and the functor "cellular chain complex". The algebra of modules

over a category is modelled upon it.



1. G-CW-complexes

We introduce the equivariant version of a CW-complex and collect its
main properties. We will deal also with the case where G is not compact

and treat proper actions. The Slice Theorem will be proved.

Convention 1.1. We always work in the category of compactly generated

spaces (see Steenrod [1967] or Whitehead [1978], p. 17 - 21). We recall
that a compactly generated space X is a Hausdorff space such that a sub-
set A < X is closed 1f and only if its intersection with any compact

subset is closed. o

In this section G is a topological group (which is assumed to be com=-
pactly generated by convention 1.1). A topological group which is a

Hausdorff space and locally compact is compactly generated. Examples
are Lie groups (see Bredon [1972] 1.1 for the definition). We always

assume that a subgroup H « G is closed.

Definition 1.2. Let (X,A) be a pair of G-spaces such that A/G is a Haus~

dorff space. A relative G-CW-complex structure on (X,A) consists of

a) a filtration A = X_, < Xy = X

1

[ X2 < ... of X = EJ xn

n=-1
and

b) a collection {e?{ ie In} of G-subspaces e? c X for each n 2 0

with the properties:

i) X has the weak topology with respect to the filtration {Xn[n > -1},

i.e., Bc X is closed if and only if B N Xn < Xn is closed for any

nz-1,

ii) For each n 2 O there is a G-push-out



| n
il qi
iel
oe/m, xs™ Py ox
i€l 1 n-
n
1 Q"
: A
n ie€ In
14 G/H, x D —_——— ) X
. 1 n
i€ In

n_ .n . n
gsuch that ey = Qi(G/Hi x int D).
If A is empty we call X a G-CW-complex. o

The G-subspace X, is the n-skeleton of (X,A). The G-subspaces e? are

called the open cells. The number n is its dimension and the conjugacy
. n . .

class of subgroups (Hi) its type. The map g; is an attaching map and

the pair (Q?,qg) : G/Hi X(Dn,sn—1) - (Xn'xn“1) a characteristic map

n n-1

for e?. We call Ei:= Q?(G/Hi an) a closed cell and 8e?==q?(G/Hi x 8 )
its boundary. We emphasize that the filtration and the open cells are
part of the structure of a relative G-CW-complex but not the attaching
or characteristic maps. An isomorphism £ : (X,A) - (¥,B) of relative
G-CW-complexes is a G-homeomorphism of pairs respecting the skeletal

filtration and mapping open cells bijectively to open cells.

Here is a list of basic facts proved later.

1.3. The open and closed cells are already determined by the skeletal
filtration. Namely, the open cells e? are the G-components of
xn\\xn_1, i.e. the lifts of the components of (Xn\\xn_1}/G. The

closed cell 52 is the closure of eg in X and aeg = 52‘\e2‘ In par-

ticular e? is open in Xn and 52 is closed in X. A subset C < X is

closed if and only if C N A in A and € é? in 52 is closed. o

1.4. Let HE G be normal and (X,A) a relative G-CW-complex such that A/H

is a Hausdorff space. Then (X/H,A/H) has a canonical G/H-CW-struc-



ture if one of the following conditions holds;:

a) H is compact.

b) Gx is compact for each x € X\ A,

¢) G/H is discrete.

Namely, the n-skeleton is Xn/H and the open n-cells are

{e?/Hl i€r1x},if X, is the n-skeleton and {eg! i € 1.} the open

n~cells of X. o

1.5. If (X,A) is a relative G-CW-complex,the inclusion A - X is a G-co~

fibration. o

A G-space X is obtained from the G-space A by attaching n-dimensional

cells if there is a G-push-out

n-1
1l G/m xSy oA
iel
11 G/H, x D" X
jer L ;

1.6. Let A be a (compactly generated) G-space such that A/G is a Haus-
dorff space. Then A/G is also compactly generated (Steenrod [1967] 2.6).
Let (X,A) be a G-~pair with a G~filtration {xni n2-1,X_, =3, X-= Ux,
such that X has the weak topology with respect to this filtration and
Xn is obtained from R S by attaching n-dimensional cells. Then X is

compactly generated and (X,A) a relative G-CW-complex. o

Example 1.7. Let G be a finite group and X be a CW-complex. Suppose that
G acts cell preserving on X, i.e. if e is an open cell of X,then ge is
again an open cell and ge = e implies, that lq : e - e xX - gx is the
identity, for all g € G. Then X is a G-CW-complex (compare Bredon [1972]

III.1). o



Example 1.8. Let G be a finite group and V be an orthogonal G-represen-
tation. The unit sphere 5V has the following G~CW-complex structure.
Choose a base {e1,...,em}. Let X be the convex hull of

{tgeil g €G, 1< 1i<m}l. Its boundary 3X is G~homeomorphic to SV by
radial projection so that it suffices to define a G~CW-complex struc-
ture on 3X. Now there is a simplicial complex structure on 3X such that
G acts simplicially. Consider its first barycentric subdivision. Then
for any simplex ¢ with go = ¢ multiplication with g induces the identity

on it (Bredon [1972] IIT 1.1). Now apply 1.7. o

1.9. Let G be a compact Lie group and M a G-manifold, i.e. M is a com-
pact CT-manifold and G acts by a CC~map GxM - M. Then M has the struc-
ture of a G-CW-complex., Moreover, a G-triangulation can be constructed

(see Illman [1983] p. 500). o

To prove the statements 1.3 to 1.6 we need some material about G-cofib-

rations and G-push~outs.

AGmap i : A - X is called a G~cofibration if i(A) is closed in X and
for any G-space Y, G-maps f : X » Y and h : AxI - Y with foi = hO

there is a G-map h : XxI - Y satisfying ho(i x id)= h and Eo = f

que;__» X x0O

Let (X,A) be a G-pair. It is called a G-NDR (G-neighbourhood deformation

Yetract) if there are G-maps u : X - I and h : XxI = X satisfying:



i) a=u 0.

ii) ho = id.
iii) htIA = ldA for t € I.

iv) h1(x) € A for u(x) < 1.

Lemma 1,10.

a) If i : A - X is a G-cofibration then i is a closed embedding, i.e.

i(a) is closed in X and i :+ A - 1i(A} a G-homeomorphism.
b) Let (X,A) be a G-pair. Then i : A - X is a G-cofibration if and

only if (X,A) is a G-NDR.

Proof: analogous to the non-equivariant case (Strgm [1966]1, Steenrod

{19671, 7.1.) o
A square

A — Y

X —7Z

of G-spaces is a G-push-out if for each pair of G-maps £f' : Y - U
and j' : X = U with £'f = j'j there is a G-map u : 2 - U uniquely

determined by uJ = £f' and uF = j'.

Lemma 1.11. Let j :+ A -» X be a G-cofibration. Then a G-push-out 2 is

given by the adjunction space Vv Uf X which is compactly generated. J is

a G-cofibration.
Proof: For G = 1 see Steenrod [1967) 8.5. o

Let X be a G-space and H € G a (closed) subgroup. For x € X let its iso-
tropy group GX be {g € Gl gx = x}. It is closed in G. Let the H-fixed

N H
point set X be {x € X !Gx > H}, XY pe (x € x | G, = H, G, # H} and
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, H > H
X, be {x € X|G_=H}. Then " and x"" are closed in X and X\X " = x,.
If H and K are subgroups we call H subconjugated to K if qu"1 < K holds

for suitable g and write (H) < (K). Define X(H}

%> (H)

= {x € x| (G) = (W1,

= {x € X| (G,) = (H), (Gx) # (H)} and X
(H), > (H)

= {x € X [(GX) = (H)}.
> {H)

(H)

Then X X mdxm)am(}mmwmwsamiﬁHKx = X

(H)*

For H « G let NH be its normalizer {g € G ! qia” | = H) and WH = NH/H its

: . : H >H
Weyl group. The G-action on X induces WH-actions on X , X and XH'

Lemma 1.12. Let i : A - X be a G-cofibration.

a) Its restriction to H c G is a H-cofibration.

b) For H « G the map i : A" = X' is a WH-cofibration,

¢) The map i/H : A/H = X/H is a G/H-cofibration if A/H and X/H are

Hausdorff spaces and H ¢ G normal.

Proof: Use Lemma 1.10. For G-NDR-s the statements are obvious., The as-
sumption about A/H and X/H in c¢) guarantees that they are compactly ge-

nerated (Steenrod [1967] 2.6). o

Lemma 1.13., Consider the G-push-out

£
—_y Y

a Y
. ,
¥ o 7

Assume that j is a G-cofibration.
a) The restriction to K < G is a K-push-out.
b) Taking the H~fixed point set yields a WH~-push-out.

¢) Let H © G be normal and A/H, X/H and Y/H be Hausdorff spaces. Then

we get a G/H-push-out by dividing out the H-action.

Proof. We only verify c¢). We must show that F/H + J/H : X/H + ¥Y/H - Z/H

is an identification. This follows from the fact that for a H-map



12

u: A - B,which is an identification,also u/H : A/H - B/H is an

identification.

u

A — 8B
pry, pry

A/H ——> B/H
u/H

Namely, pr, and u/H o pr, = prpou are identifications. The map Jj/H is a

G/H~cofibration by Lemma 1.12. ¢). o

Now we come to the proof of 1.3. to 1.6. Recall that X, is the G-push-
out

n-1
1L G/H; xS —_— X

lLQi

n
. — ey
.LLG/HlXD Xn

and j is a G-cofibration. Hence X - Xn is a G-cofibration. Now 1.5

n-1
follows from the equivariant version of Whitehead [19781 I. 6.3. In 1.6.
the only problem is to show that X is compactly generated. One shows in-

ductively using Lemma 1.11. that each Xn is compactly generated and ap-

plies Whitehead [1978] I. 6.3.

By Lemma 1.12. and 1.13. we have the G/H-push-out with j/H a cofibration
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] LLqi/H
n«
AL (G/Hi)/H x S S xnﬂ/H
i/H
.LLQi/H
n
AL (G/Hi)/H x D e Xn/H

The conditions appearing in 1.4. guarantee that HHi is closed in G {(tom
Dieck [1987], I.3.1.). Since H is normal,HHi is a closed subgroup in G
so that (G!Hi}/H is G/H-homeomorphic to the compactly generated G/H-
space (G/H)/(HHi/H). Now 1.4. follows using Whitehead [1978] I.6.4. to

verify that X/H has the weak topolngy with respect to {Xn/H I'm 2 -1}.

For 1.3. consider the push-out above for H = G

u_qi/G
48t ——— X /G

.LLQi/G
U D - Xn/G

As above one shows that Xn/G is a Hausdorff space so that Qi/G(Dn)czxn/G
is compact and in particular closed. Then E? = Qi(G/Hi an) < Xn is

closed in X,. Now it is easy to prove 1.3.

Example 1.74. Let G be the multiplicative group of positive real num-

bers. Define an action
p :GxR > R (g,r) = gr

Then R/G is not a Hausdorff space. Let q : G xs® -5 R be the G-map in-

duced from the inclusion SO < R. Consider the G-push-out



Then Q(G xD1) < X is open but not closed in X since image g is open but

not closed (compare 1.3.). o

Remark 1.15. In the definition of a G-CW-complex given f.e, in Illman
[1974] 1.2, it is part of the definition of a G-CW-complex that é? is
closed in X. Hence our definition requires less. But we have proven by
1.3. that both definitions agree. However, we have gained that in 1.6.
we can attach arbitrarily cells and have not to care whether Q(G/Hian)
is always closed. This is very pleasant when we want to make a G-map

highly connected by attaching cells., o
Now we need some basic facts about proper maps and proper actions.

Amap £ : X = Y is proper if f is closed and f*1(y) is compact for any
Yy € Y. A general reference for proper maps is Bourbaki [1961] I.10..A
map £ : X - Y between compactly generated spaces is proper if and on-
ly if £7(C) is compact for any compact C © Y (use Bourbaki [1961]

I.10.2. proposition 6).

Lemma 1.16.
a) Consider maps £ : X - Yandg : ¥ - 2,
i) 1f £ and g are proper, then gf is proper.
ii) If gf is proper, f is proper.
1ii) If gf is proper and f surjective,then g is proper.

'® - B

b) If £ : X - Y is proper and B ¢ Y then the induced map f
is proper. If f is proper and A < X is closed f/A : A - Y is pro-

per.
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c) If £ : X - Y and f' : X' - Y' are proper then £xf' { XxX' =
YxY' is proper. If f : X » Y and g : X - Z are proper, then
fxg: X - YxZ is proper.

d)} A projection pr : XxY - Y is proper if and only if X is compact.

e) Consider a push-out

b

-
< E—
N ———y X
[

f j is a closed embedding and f is proper then F is proper.

f) Consider a pull-back

F
—_
P
£
_

X
E
A

o

If f is proper, then F is proper.
g) Let {Xn In 2 -1} resp. {Yn In 2 -1} be a closed filtration for X

resp. Y such that X resp. Y has the weak topology. Let f : X -~ ¥

be a map such that f(Xn\Xn_1) = Yn\Yn—1 holds for n 2 -1. Assume that
each map £ : X, =~ Y, is proper. Then f is proper.

Proof: The verification of a), b), ¢) and d) given in Bourbaki [1961]

I.10 is easily carried over to compactly generated spaces.

e) Given C < Y the subset F(C) c Z is closed if and only if
cu f—1f(C N A) € Y is closed and f(C N A) « X is closed.

f) Consider the commutative diagram
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idx £
Xx¥ e 5N XxA

FxP idxp

F
Z —_— X
The map id x £ is proper by assumption and c). From the explicit con-
struction of a model for Z as the preimage of the diagonal under
fxp : XxY - AxA we derive that F xP is a closed embedding and
hence proper. Now apply a}.

g) is left to the reader. o

Definition 1.17. A G-space X is proper if the map

ex:cxx - XxX A{g,x) = (x,9%)

is proper. o
Lemma 1.18. If G is compact, any G-space is proper.

Proof: The projection pr : GxX -+ X is proper {(Lemma 1.16 d). Com-
posing it with the G-homeomorphism GxX = GxX (g,x) = (g,9x),de-
fines a proper map p : GxX -+ X by Lemma 1.16 a. Then ex = pr xp is

proper by Lemma 1.16 ¢, n

Lemma 1.19. Let X be a proper G-space. Then X/G belongs also to the

category of compactly generated spaces. We have for x € X:

i) 6 » X g - gx is proper.
ii) G, is compact.
iii) The map G/G, -+ Gx 9G, ~ 9x is a G-homeomorphism.

iv) The orbit Gx is closed in X.
Proof: Bourbaki [1961] III. 4.2. proposition 3 + 4. o

Lemma 1.19 shows that the G-space R of Example 1.14 is not proper.
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Lemma 1.20. Let X be a proper G-space and C a compact space with trivial

G-action. Then any G-map G/HxC - X is proper. In particular its image
is closed in X.

Proof: The subgroup H is compact by Lemma 1,19, so that G - G/H is

proper (Bourbaki [1961] III.4.1. cor. 2). Hence we can assume H = 1 by

Lemma 1.16. a and c.

Let D © X be the compact subset f({e} xC) and ¥ : C =+ D be the induced
map. By Lemma 1.16. the maps id xf : GxC = GxD, v : GxD - DxX
(g,x) » (x,9x) and pr : DxX - X and hence their composition f are

proper. o

Lemma 1.21. Consider the G~push-out such that Y and Xi are proper G-
spaces, fi is proper and j1 a G-eofibration,

11 £,
ier *
1L Ay y Y
iegl
ii 3. J
1ex "1
11ox, y 2
i€l F

Then Z is a proper G-space.

Proof: If C ¢ 2 is compact C N F(Xi\~Ai) +# ¢ holds only for finitely
many 1 € I as (Xi,Ai) is a G~NDR-pair. Hence we can assume that I is

finite. Write X = 11 xi. Consider the diagram
i€1
8Z
Gx 2 S Zx 32
id x (FAL J) FxFILJIxJ
exiLSY

Gx (XILY) = GxXUGxY ———3 XxXU¥xY

By Lemma 1.11. J is a G-cofibration and hence a closed embedding by

Lemma 1.10, Then J xJ is proper (Lemma 1.16. c¢). The map F x F is proper
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by Lemma 1.16. ¢ and e. Since X and Y are proper G-spaces by assumption
ezo 1dx (PLLT) = (FxF L1 IxJ)o (Bxiiey) is proper (Lemma 1.16. a).

Then ez is proper (Lemma 1.16. a). o

Lemma 1.22. Let {an n 2 -1} be a closed filtration of X such that X

has the weak topology. If each X, is proper, then X is proper.

Proof: Use Lemma 1.16. g and Steenrod [19671 10.3., o

Theorem 1.23. Let (X,A) be a relative G-CW-complex. Then X is a proper
G-space if and only if A is proper and G, compact for all x € X~A. In
particular a G-CW-complex X is proper if and only if G, is compact for

each x € X.

Proof: One shows inductively that any Xn is proper. If H is compact,G/H
is a proper G-space. By Lemma 1.16. the G-space G/H x D" is proper. Now
the induction step follows from Lemma 1.20. and 1.21. Finally apply

Lemma 1.22. to show that X is proper. o

1.24. Let X be a free G-CW~complex. Then X is proper by Theorem 1.23.
Since X is free,this is equivalent to image(ex)c X x X being closed and
the map image(@x) -+ G ({(x,9x) -+ g being continuous (tom Dieck [1987]
1.3.20). We will show in Theorem 1.37. that X is locally trivial so that
X = X/G is a principal G-bundle (see Husemoller [1966], 4.2.2). By

1.4. X/G is a CW-complex. o

1.25. This process can be reserved. Let p : E - B be a principal G-
bundle and A =« B a subspace. Then a relative CW-complex structure on
(B,A) lifts to a G-CW-complex structure on (E,p-1(A». Namely, let En be
p_1(Bn). If {e? i € I} are the open n-cells of (B,A), let {9-1(92)1
i€ I3 be the open n-cells of (E,p—1(A)). Since B has the weak topolo-
gy with respect to {Bn In 2 -1} the same is true for E and {Enl n z -1}

{see Whitehead [1978], XIII.4.1).

Now Bn is the G-push-out
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- q
4L " 1-——-—-‘5 Bn—1
i€l
j J
n Q
..LLD ___..,_58n
i€ In

By the Lemma 1.26. below we obtain a G-push-out by the pull-back con-

struction applied to P, ¢ En - Bn

i
=1

QE

=

n

Since D" is contractible, there is a G-homeomorphism of G-pairs

* * n n-1 .
(Q E /g En) - i+ Gx{(p,s ) (Husemoller [1966], 5.10.3.). o
i€1
n

Lemma 1.26. Consider the push-out with j a cofibration

e
X
N
q

£
—
—_—
F

Let p: E - 2 be a fibration. Then the pull-back construction yields

H

a push-out with J a cofibration.



* *
E

*
J J
*

E E

Proof: The map 5 is a cofibration by Whitehead [1978] I.7.14. It remains

£

(W]
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£
E —y
F oy
F

- - * *
to show that J Uf F : JE Uf*J*E FE = E is an identification. By

assumption J Uf F: YU X -+ 2 is an identification. By Steenrod

[1967]) 4.4. id x (J Uf ¥) and hence

(id x f) 1 Uid «f EXBy = ExB is an identifi-

cation. Restricting it to {(e,p(e))| e € E} ¢ ExB yields just J Ug F. o

(idxJ) U (idxF) : ExB

1.27. If (X,A) is a relative G~CW-complex and (Y,B) a relative G'-CW-
complex then (X,A) x (Y,B) has a relative G x G'~CW-complex structure.

The k-skeleton (X xY)y is U X xY . Then {{XxY¥), Ik 2 -1} is a
n+m=k

closed filtration of X x Y such that X x ¥ has theweak topology (Steenrod

[19671 10.3.).

If {e? l1ie€ In} are the open n-cells of X and {f? 13 € Jm}the open m-cells
of Y then {e? xf? 1i€ In,j €Jm, n+m=%k} are the open k-cells of XxY,
The characteristic map for e? Xf? is the product of the ones for e?
and f‘;‘,if we identify (G/H; x D") x (G*/H) x D™ and (G x G')/(Hy xHJ) x

n+
p" M g

1.28. Let (X,A) be a relative G-CW-complex. A relative G-CW-subcomplex
(Y,B) is a pair satisfying
i) Y is a G-subspace of X.
ii) B is a closed subspace of A.
iii) Y is the union of A and a collection of open cells whose boundaries

also belong to Y.

Then (Y,B) itself is a relative G-CW-complex with Y, = Xn N Y and Y is
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closed in X. If A and B are empty, {X,Y) is called a pair of G-CW- com~—

plexes. o

1.29. Consider the G-push-out
£
ey, Y
.
e B4

Let (X,RA) be a relative G~CW-complex. Then there is a relative G~-CW-

Ee 2 ol =

complex structure on (Z,Y) such that the relative homeomorphism (F,f)

maps X_ to Zn and open cells bijectively to open cells.

Assume that (X,A) is a pair of G~CW~complexes and f is cellular i.e.
f(A)) = ¥ for all n 2 O. Then we get the structure of a pair of G-CW-

complexes on (Z,Y).

In particular X/A is a GrCW-complex if (X,A) is a pair of G-CW-complexes.
Given a cellular G-map f : X = Y between G-CW-complexes its mapping
cylinder and mapping cone get G-CW-structures by 1.27. and the construc-

tion above. o

1.30. Consider the space map{X,Y) of maps X - Y topologized as in
Steenrod [1967] §5 . If X and Y are G-spaces,G acts on map (X,Y) by
£f - lgo fo lg_1 where lg is multiplication with G. The G-fixed point
set map(X,¥)® ¢ map(X,¥) consists of all G-maps £ : X - Y. Consider

the maps

8 : map(G/H,0¢ L ¢ o o o(em

and

vo: X' s map(e/H,x)°  x o (W(x) : gH - gx)

Use Steenrod [1967] 5.2. and 5.8. to show that they are continuous. Hence

® and ¢ are inverse homeomorphisms. o
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We need some facts about homogenous spaces.

Lemma 1.31. Let H and K be subgroups of G.
a) There is an equivariant map G/H - G/R if and only 1if (H) « (K}
holds.

b) If g € G and g*1Hg c K, then we get a well defined Gwmap

Rg:G/H -+ G/K g'H - g'gK

¢} Every G-map G/H -+ G/K is of the form Rg. We have Rg = Rg' if and

only if g~1g' € K holds.

d) Assume that G is compact or that G is a Lie group and H « G compact.

Then we have g—1Hg c H = g—1Hg = H for any g € G and obtain a homeo-

morphism of topological groups

WH - map(G/H,G/H)G gi -» R _,
g

Proof: a), b) and c¢) are verified in tom Dieck [1987] I.1.14. The proof
of d) for compact G can be found in Bredon [1972] 0.1.9. Let G be a Lie
group and H compact. Suppose q-1Hg < H for g € G. Then g—1Hg is a sub-
manifold of H. This implies g—1Hg = H because for a connected submani-
fold M of a connected manifold N with dim M = dim M already M = N holds

and H has finitely many components. Finally apply 1.30. o

Example 1.32. We want to illustrate by this example that the conditions

in Lemma 1.31. d) are necessary.

Let G € GL(2, R) be the Lie group of matrices over R of the shape

Denocte by H © G the subgroup of all matrices A with a =1 and b € Z.

One easily checks
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Hence AHA_1 < H is equivalent to a2 € Z whereas AHA-1 = H is equivalent

to a = £1. This gives a counterexample with G a Lie group.

If we substitute R by the p-adic rationals Qp and Z by the p-adic num-

bers Zp we obtain a counterexample where H is compact. O
The next result is one of the main properties of Lie groups.

Theorem 1.33. Let G be a Lie group and H and K be subgroups. Suppose

that H is compact.

Then G/KH is the disjoint union of its WH-orbits or, equivalently,

(G/KH)/WH is discrete. If G is comEact,G/KH is the disjoint union of

finitely many WH-orbits.

Proof: If G is compact this is shown in Bredon [1972] II.5.7. By in-
specting the proof we see that it works also for G a Lie group and com-
pact H if the result in Bredon [1972) II.5.6. is still true. But this
is verified for G a Lie group and H compact in Montgomery-Zippin [1955],

p. 216. b

1.34. Let H be a subgroup of G. If (X,A) is a relative H-CW-complex,then

{ind X, ind A) = G x_, (X,A) has a canonical relative G-CW-complex struc-—

H

ture. This follows from the identity G x, H/K = G/K. o

H

1.35. Let G be a Lie group and H a subgroup with dim H = dim G. Consider
the restriction res G/K of the homogenous G-space G/K. Since G/H is dis-
crete {(res G/XK}/H is discrete. Hence res G/K is a disjoint union of ho-
mogenous H-spaces and has therefore a canonical H-CW-structure. This
carries over to G-CW-complexes. If (X,A) is a relative G-CW-complex

then res (X,A) has a canonical relative H-CW-structure.
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The assumption dim H = dim G is essential. For example, a homogenous G~
space G/K has exactly one G-CW-structure. If dim G = 1 it is not obvious
that G/K just as a space has a CW-complex structure and that there is
even a canonical one. We will have to deal at several places with the
problem that the restriction of a G-CW-complex to a subgroup H with

dim H < dim G has no obvious H-CW-structure. o

1.36. Let G be a Lie group and H ¢ G compact. For each XK © G we have a
canonical WH-CW-structure on G/KH by Theorem 1.33. Hence for any relative
G-CW-complex (X,A) there is a canonical relative WH-CW-structure on

(XH,AH). =]

We make some remarks about slices. Let G be a topological group and X a
G-space. A slice S at x € X is a Gx~subspace S c© X such that GS is an
open neighbourhood for x and ¢ : Gx(ES -+ GS a G-homeomorphism. Then

X
GS is called a tube around the orbit Gx.

Theorem 1.37. Slice Theorem for G~-CW-complexes.

Let G be a topological group and (X,A) a relative G-CW-complex. Assume

that A is proper, there is a slice a € S c A in A for any a € A and G

X

is compact for each x € X~A. Then there is a slice S at x in X for each

x € X.

Proof: Let x € X be given. Choose n 2 -1 such that x lies in X but not

in X

n-1+ We construct inductively for m = n, n+1,... Gx—subsets S, <X

such that Sm+1 n Xm = Sm' GSm is open in Xm and @ :GxGXSm - GSm,

g,¥ = gy is a G-~homeomorphism. Notice for the sequel that X is a proper

G-space by Theorem 1.23.

The induction begin m = n follows for n = -1 from the assumption about
A. If n > 0 holds there is an open cell e containing x. Since e is
open in Xn and G-homeomorphic to G/Gx x int D it suffices to find a slice

around any point (ng,y) € G/Gx x int D. But for any open neighbourhood
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U of y in int D the Gx-set ng xU is a slice,

We come to the induction step fromm - 1 tom for m - 1 2 n, Consider

the G-push-out

ier 't
u G/HixSm1—_.) X 4
iel m
11 Q.
n ier *
1L G/Hj_x 0 . ¥ Xm
ier
Let U, < G/H, x 81 pe q_1(S ). Define V, < G/H, x D" as
i i i Spaq?e i i

{(gHi,tu) l(g%ju) €U,y 1/2 < t <€ 1}, Notice that uy and Vi are Gx-sub—

sets and vy is Gx—homeomorphic to Ui x ]1/2,11. Define Sm as the union

.

Sp-1 VU U Qi(Vi). We have by construction 8 0N X _, =S

1€71 m=1

By assumption Qg ¢ G *a Sm_1 -+ Gsm__1 is a G-homeomorphism. The fol-

lowing diagram commutes

U,

i
G XG Ui > GUi

X .
id *a quUi quGUi
X
Y

G xGx q; (U)) ? g (GUy)

on-116 g q, (Uy)

The map @y is bijective and continuous, @

i m—1'G xGX qi(Ui) a G-homeomor-

phism and the vertical maps are proper by Lemmata 1.16. and 1.20. since
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Gx is compact and therefore Y - Y/GX is proper for any Gx~space Y

(see tom Dieck [1987] I.3.6.). Then 0y is proper by Lemma 1.16., a) and
i
hence a G-homeomorphism. Since vy is G-homeomorphic to Uy x11/2,1] also

. m-1
@y is a G-homeomorphism. Because Gsm_ c X is open, GUic:G/Hi x S ’

\ 1 m-1
3

GV, < G/Hi x D™ and GSm < Xm are open and we have a G-push-out

L 6, —— GS__,
ierx

U GV, ———3 GS
ier 1 m

Now the inverse maps of -1 in, wvi induce a G-map GSm - G xGx Sm

: G

such that both compositions with LN G x Gsm -» GS
X

mn are the identi-

ty. Hence L is a G-~homeomorphism onto the open subset GSm (= Xm' This

finishes the induction step.

Now we give the final limit argument. Of course we define our slice

S8 ©X as the G,-subspace U S Let ¢ : G x; § - Gs be the obvious
m=>n X

G-map. Since GS n Xm is GSm, Gsm [ Xm is open and X has the weak topo-
logy with respect to {Xm Im > n}, GS is open in X and GS has the weak

topology with respect to {GSm Jm 2 n}. Hence the collection of G-maps
®ﬁ1
GSm - G xGx Sm - G xGx S induce an inverse GS3 - G xGX S of 3&.

Hence ¢ is the desired G-homeomorphism. b
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A Hausdorff space X is completely regular if for any x € X and neigh-

borhood U there is a continuous function f : X - [0,1] with £(x) =0
and £(X~U) = 1. A Hausdorff space X is completely regular if and only
if it is homeomorphic to a subspace of a compact space (Tychonoff, see

Schubert [1964] T1.9.2., Satz 1).

Theorem 1.38. Slice Theorem.

Let G be a Lie group and X a completely reqular proper G-gpace. Then

Proof: Palais [1961]. The definition of a proper G-space given there

and the one we use agree by tom Dieck [1987], I.3.21. Also the defini-
tion of a slice in Palais [1961] and our are equivalent by Palais [1961],
p. 306. A proof for compact G can also be found in Bredon [1972],

II.5.4., Montgomery~Yang [1957], Mostow [19857]. o

The slice theorem has fundamental meaning for the theory of transfor-
mation groups (see for example tom Dieck [1987] I.5.). We are especial=-

ly interested in path lifting.

ol
o)
=3

Proposition 1.39. X be a proper completely regular G-space and G be

o

a Lie group. Then path u : I - X/G can be lifted to a path v : I ~ X,
i. e. po° v =u for the projection p : X - X/G

Proof: For compact G this is proved in Montgomery=-Yang [1957] or Bredon
[1972] I1.6.2. We show how we can reduce the problem to compact G. Be-
cause X is proper X/G is again compactly generated and especially a
Hausdorff space (Lemma 1.1%). Since image u is compact we can assume

without loss of generality that image u lies in GS for a slice S. Then
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GS/G is homeomorphic to S/Gx so that it suffices to 1ift the path along

S - S/Gx' But Gx is compact. ©

Coroliary 1.40. Let G be a topological group and X a proper G-space such

that G/Gx is path connected for some x € X. Assume either that X is a

G-CwW-complex or that G is a Lie group and X completely regular. Then:

a) p, n1(X,x) - w1(X/G,xG) is surjective.

b) If X is simply connected then also X/G. o

Corollary 1.40. is sharpened in Proposition 8.10 and 8.12.

Proposition 1.41. Let G be a topological group and (X,A) a relative G-

CW-complex. Let B « A be a G-gubspace and U an open G-neighbourhood of

B in A such that i + B =~ U is a strong G-deformation retraction (i.e.

there is a G-map r : U -+ B with roi = id and ior = id rel. B).

Consider an open G-neighbourhood V of B in X with B € clos U c V,

Then there is an open neighbourhood W of B in X with B ¢ U cW < clos

W ©V such that B + W is a strong G-deformation retraction.

Proof: We leave the proof to the reader as the technique is the same as
in the proof of Theorem 1.37. There we have described how to thicken a
G-subset Sp-1 < Xp-1 o a G-subset Sm < *n such that Sp—1 * Sy is a
strong G-deformation retraction. See also Lundell-Weingram [1969] II.

6.1. in the non-equivariant case. o

We close this section with some terminology. A relative G-CW-complex

{X,A) is n-dimensional if X = Xn holds and finite-dimensional if it is

n-dimensional for some n. It is finite if there are only finitely many

open cells. We call it skeletal-finite if each X, is finite. In the
literature this is often named of finite type but we prefer skeletal-
finite to avoid confusion with the notion’of finite orbit type”intro—
duced later. If G and A are compact, then (¥X,A) is finite,if and only if

X is compact. One should notice that G is a zero-dimensional finite G-
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CW-complex but just as a space G is not a zero-dimensional or finite

CW-complex in general.

Comments 1.42. The notion of a CW-complex is due to J. H. C. Whitehead

[1943] and can be found in nearly any text book on algebraic topology.
Its extension to the equivariant case is carried out in tom Dieck [1987]
IT.1. + 2., Illman [1974] and Matumoto [1971]. We have compared their

definitions with our in Remark 1.15.

Of course the main interesting case is the one of a compact Lie group
where a lot of the proofs above are much simpler. For example, the set
Q?(G/H xDM) is compact and hence closed {(compare 1.3.). Therefore the
reader might wonder why we also include the more general case. One rea-

son isg the following. Consider a G-CW-complex X with fundamental group

n n1x. Then there is an extension of Lie groups 1 = n - G +G-1 and

a G-CW-structure on ¥ such that the G-action on X extends the n-action
on X and covers the G-action. If n happens to be infinite G is not com-
pact. However, if G acts properly on X, then G acts properly on X. There-
fore we are forced not only to study actions of compact Lie groups,but
proper actions of Lie groups,since the passage to the universal cover-
ing is very important. We will see that most of the important proper-
ties of G-CW~complexes for compact Lie groups carry over to proper G-

CW-complexes for Lie groups. Proper actions of non-campact groups are inter-

esting for their own right and appear in the literature (see for example

Bourbaki [1961] III.4., Connolly-Kozniewski [ 1986], [ 1988],

Connolly-Prassidis [ 1987 ] .
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Exercises 1.43.

1.

2.

10.

A G-CW-complex X is finite if and only if X/G is compact.

Let X be a G-CW-complex and Y a H~CW~complex. Define their join X*Y
by CXxY UX XY XxCY if CX is the cone over X. Show that there is a

canonical G x H-CW-complex structure on it.

Equip 50(3)/S0(2) with at least two different WSO{2)-~CW-complex-

structures.

Let G be a finite p-group and X a finite G-CW-complex. Show for the
Euler-characteristic y

G
¥{X) = x{X7) mod p

If G is a torus prove Y (X) = x(XG).

Let G be a n-dimensional compact Lie group. If X is G-CW-complex of
dimension m, then the singular homology groups Hi(X) vanish for

i > n+m. Is the converse true?

Let G be a compact Lie group acting on the (compactly generated)
space X. Then:

a) X/G is compactly generated.

b) p: X » X/G is proper.

c) GxX - X (g,x) = g-x is proper.

If H is a (closed) subgroup of G and X a proper G-space then X is a

proper H-space.

Let £ : X - Y be a surjective proper G-map. If X is a proper G-

space then also Y.

Let H be a subgroup of G. Then G acts properly on G/H if and only if

H is compact.

The action of SL(2,C) on the Riemann sphere s?=¢u {e}
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12,

13.

14.

{a b 2 az +b
\e a4/ cz+4d

is not proper.

Let G be a Lie group and X a proper completely regular G-space.
Assume that all orbits have type G/H. Then the orbit map X - X/G
is the projection of a fibre bundle with fibre G/H and structure

group WH.

Let G be a Lie group and f : X - Y a bijective map between com-
pletely regular proper G-spaces. If £/G : X/G - Y/G is a homeo-

morphism then £ is a G-homeomorphisn.

Let G be a Lie group and X a completely regular G-space. If X is
(H)

proper, X is closed in X for all H < G.

Prove Corollary 1.40. in the case of a G-CW-complex. Hint:
X1/G - X/Gis 1-connected.
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2. Maps between G-CW-complexes.

We consider G-maps between G-CW~complexes. We state an equivariant Cel-
lular Approximation Theorem and Whitehead Theorem and give criterions
for a G-map tc be a G-homotopy equivalence. We deal with G-CW-approxi-
mations and G-spaces of the G-homotopy type of a G-CW-complex like G-

ENR-s,

A G-map £ : (X,A) - (Y,B) between relative G~CW-complexes is called

cellular if f(Xn) < Yn holds. Let G be a topological group.

Theorem 2.1. (Cellular Approximation Theorem)

a) Let (X,A) and (Y,B) be relative G~-CW-complexes and £ : (X,a) -~ (Y,B)

be a G-map. Suppose that f restricted to the relative G-CW-subcom-

plex (X',A') is cellular.

Then f is G-homotopic relative X' t

a cellular G-map.

b) Let f and g : (X,A) - (Y,B) be cellular G-maps which are G-homo-

topic. Then there is a cellular G-homotopy between them.

Proof: See Whitehead [1978] I1I.4.6. for the non-equivariant case. A proof

for G-CW-complexes is given in tom Dieck [1987), IT.2. o

The set of isotropy groups of a G-space X is Iso X = {Gx I x € X}. It is
1

closed under conjugation because ng = ngg- . Let Con G be the set

{(H) | H « G} of conjugacy classes of subgroups of G. Given ¥ < Con G

we call X of orbit type F oisf {{(H) | H € Iso X} < ¥ holds. we say X has

finite orbit type if it is of orbit type ¥ for finite 3.

Recall that amap £ : X - Y is n-connected if () s Xx)
ni(Y,fx) is bijective for i < n and surjective for i = n for all x € X.
It is a weak homotopy equivalence if ni(f) is bijective for all i>20 and

x € X.
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In the following let H, be an additive generalized homology theory satis-
fying the Eilenberg-Steenrod axioms except the dimension axiom and ful-
fills additionally the additivity axiom (H*(,;J_Xi) = G? H*(Xi) for ar-
bitrary I) (see Whitehead [1978] X1I1.6.). It is obvious what homologi-

cal n-connected and weak homology equivalence means.

Consider 3 < Con G and a function v : ¥ > Z. We call a G=-map

f: X - Y (homological) (¥ ,v )-connected if el g (homological)

v {H)-connected for each (H) € ¥ . If¥ = Con G and v the constant
function with value n, we say, that f is (G,n)-connected. If fH is a
weak homology resp. homotopy equivalence for each (H) € F we call £ a

weak I -G-homology resp. -homotopy equivalence. In the case F = con G

we omitt ¥

The definition of a G-CW-complex is settled in such a way that the fol-

lowing technique can be carried out (see 1.6.).

2.2. Consider a G-map £ : A - Y, a subset ¥ < Con G and a function
vi: F o 1\!0. Assume that A/G is a Hausdorff space. Suppose that we
are given for each (H) € ¥ a set S(H) = {u(i,H) | i € I(H)} such that

u(i,H) € (fH,x) for some x € XH holds. Represent each u(i,H) by

v (H)
a diagram

CAI(i,H)
S\» (H)y -1 AH
£H
é(i,H)
D\)(H) 5 ¢l

This is the same as a diagram of G-spaces
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q(i,H)
gaxs’®-T T oA

G/HxD" Y

Let F : X - Y be given by the G-push-out where 1L runs over

{i1i€ I(H),H) €T }.

ue/HExg? @Y

L1G/H xD\)(H)
/ x‘\\'
\3 Y

Then (X,A) is a relative G-CW-complex (1.6.). We say that F is obtained

from £ by attaching cells according to F,v,{s(H) | (H) € Con G}. If

A is already a G-CW-complex we can assume by the Cellular Approximation

Theorem 2.1. that image g(i,H) lies in A . Then (X,A) is even a

v(H) -1
pair of G-CW-complexes.

Let V. : F o Z be the function v (H) = v (H)-1. Suppose that f is

(¥, v )-connected. Moreover assume for any (H) € ¥ and x € AH that a

set of generators of T )(fH,x) is contained in S(H). Then F : X = Y

v(H
is (F , v )-connected (compare Whitehead [1978], p. 211 = 216).

If we do such a process or even an iteration of it,we say that we make

f highly connected by attaching cells. o

If £f:Y - Z is a G-map we denote by [f] its G-homotopy class. Let

[X,Y]G be the set of G-homotopy classes of G-maps X - Y. If (X,A) is
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a relative G-CW-complex,let dim XH be the integer n,if XH = Xi but

Xﬁ + X§_1 holds. If no such n exists we write dim X = o,

Proposition 2.3. Let F < con G and a function v : F -z be given.

Then the following statements for a G-map f : Y - Z are equivalent

provided that Y/G is a Hausdorff space.

i) £ is (F, v )-connected.
s G
ii) Let X be a G-CwW-complex of orbit type ¥ and f, : [X.Y]G - [X,2]
be the induced map. Then £, is bijective if dim x? < v (H) for all

(H) € ¥ holds and surjective if dim X' < v (H) for all (H) € T
is wvalid.
iii) There is a relative G-CW-complex (¥,Y) and an extension £:¥ - 2

of f such that each cell G/H x D" satisfies (H) € F and n > v (H)

and f is a weak ¥ -G-homotopy equivalence.

Proof: i) = iii). Make f Highly connected by attaching cells.

iii) = i). It suffices to check that (XH,XE) is n-connected for a G-CW-

complex X. This is easily reduced to the case X = X Then XH is given

n+1°

as a push-out

o

w €D
ey v

o

—_— %
n+1

such that A is a strong deformation retraction of a neighbourhood in B
and (B,A) is n-connected. Now the result follows from Blakers-~Massey

excision theorem (see tom Dieck-Kamps-Puppe [19701, p. 211.)
ii) = i). Use the identification [G/H xSn,X]G = [Sn,XH].

i) =» ii) see tom Dieck [1987], II.2.6. O

In particular any G-space Y has a G-CW-approximation (X,f) i.e. a G-CW-
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complex X together with a weak G-homotopy equivalence f. Namely, apply
Proposition 2.3. to F = con G, v = -1 and § - Y. A space X has a
natural CW-approximation by the geometric realization of the associated
semi-simplicial complex (see Lamotke [1968] p. 218, May [1967] 16.6.,
Milnor [1957]. This is carried over to the equivariant case in Matumoto

[1984].

Theorem 2.4. The Equivariant Whitehead Theorem.

Let £ : X -+ Y be a G-map between G-CW-complexes such that £ is a weak

homotopy equivalence for all H € Iso X U Iso Y. Then f is a G-homotopy

equivalence.

Proof: The map £, : [¥,x]% =+ [v,v1% is bijective by Proposition 2.3.

Hence there is g: Y -» X with fog = id Since also

v
gy ¢ x,v1¢ - (x,x1¢ is bijective there is h :+ X = Y with

geh e :de. Hence g o f uGgofogoh szgah =a 1dx so that f has the
G-homotopy inverse g. o

Assumption 2.5. Assume for the G-space X:

i) X has finite orbit type.

ii) X>(H) - X(H) is a G-cofibration for H € Iso X.

iii) Xy = XH/WH is a numerable principal WH-bundle in the sense of

Dold [1963], i.e. locally trivial over an open covern which has a
subordinate locally finite partition of unity, and XH is a proper

WH-~space.
There is the following variant of Theorem 2.4.

Theorem 2.6. Let G be a compact Lie group. Let f : X - Y be a G-map

between G-spaces satisfying 2.5. Then f is a G-homotopy equivalence if

and only if fH : XH -» YH is a homotopy equivalence for any

H € Iso X U Iso Y.
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Proof: See tom Dieck [1979] 8,2.4, In the proof assumption 2.5. ii) is
demanded for any H < G and fH is supposed to be a homotopy equi-
valence for all H < G. By inspecting the arguments one recognizes that

our assumptions are sufficient. o

Remark 2.7. Theorem 2.6. seems also to be true for G an arbitrary Lie
group if X and Y are proper completely regular G-spaces since the exis-

tence of slices is still true (Theorem 1.38.). o

Corollary 2.8. Let G be a compact Lie group and Y be a G-space satis-

fying assumption 2.5. Then Y has the G-homotopy type of a G-CW-complex

X with Iso X = Iso Y if and only if YH has the homotopy type of a Cw-

complex for any H € Iso Y.

Proof: By Proposition 2.3. there is a G-~CW-complex X of orbit type

F = {(H) |H € Iso ¥} and a weak F -G-homotopy equivalence f:X - Y.
Since XH and YH are homotopic to CW-complexes for H € Iso Y the map fH

is a homotopy equivalence for any H € Iso Y. Then f is a G-homotopy equi-

valence by Theorem 2,6. o

Remark 2.9. Let G be a compact Lie group. A G=ENR (Euclidean Neighbour=~
hood Retract) is a G-space which is G-homeomorphic to a G-retract of some
open G-subset in a G-representation. A G-ENR satisfies assumption 2.5.
(see tom Dieck [1979] 8.2.5.). A finite G-CW-complex and a compact smooth
G-manifold are compact G-ENR-s. All these statements can be derived from

the next result. o

Proposition 2.10. Let G be a compact Lie group. Let X be a G-space which

ls separable metric and finite-dimensional. Then X is a G-ENR if and on-

ly if X is a locally compact G-space of finite orbit type and xH is a

{non-equivariant) ENR for any H € Isoc X.

Proof: Jaworowski [1976]. o
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Corollary 2.11. Let G be a compact Lie group. Then a G-ENR has the G-

homotopy type of a G-CW-complex of finite orbit type.

Proof: Each ENR has the homotopy type of a CW-complex (Milnor [19591).

Now apply Corollary 2.8. o

Proposition 2.12. Let G be a topological group and Y a G-space. Consider

a subset F ccon G. Then Y has the G-homotopy type of a G-CW-complex
X of orbit type F if and only if Y is dominated by a G-CW-complex X of
orbit type F (i.e., there are G=maps r + X » Y and i : Y - X with

Toi =, J_dY)

Proof: Choose such domination (¥X,r,i) of Y. By attaching cells G/H x Dn

with (H) € ¥ we get an extension r : ¥ - Y of r : X - ¥ such that

¥ is a weak F ~G-homotopy eguivalence and ()?,X) a pair of G-CW-complexes,
Let 1 : Y - X be the composition of i with the inclusion. Then

roil ~5 idy. The G-map ior : X » X is a weak F ~-G-homotopy equiva-
lence and X a G-CW-complex of orbit type F . Then for and hence r is a

G-homotopy equivalence by the Equivariant Whitehead Theorem 2.4. D

Lemma 2.13. Let G be a topological group. Consider the commutative dia-

gram of G-spaces with G-cofibrations i and j.

i
<
Xy < X %y
£, £ J/f1
3
Y, & ¥ > v,

Let £ : X = Y be the G-map induced on the G-push-outs of the rows.

Assume for fo’f1 and f2 one of the following properties

a) £, is (¥, v~connected.
b} fi is homological (?{V)-connected.

c) fi is a weak :f'——G—homotopy equivalence.
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d) £; is a weak F-G-homology-equivalence.

homotopy eguivalence for any H «G with (H) € F

I

e) £ is

f) fi is

G-homotopy equivalence.

10}

Then f has the same property.

Proof:
a) We reduce a) to c¢). Suppose a) holds for each fi‘ Then one can con-

struct using Proposition 2.3. a new diagram with i1 a G-cofibration

i

= - -
X2 N Xo ? X1
f2 l fo f1
3
ya 5
¥y & Yo ’ Y1

such that Ei is a weak ¥ -G-homotopy equivalence extending fi and
(ii,xi) is a relative G-CW-complex with cells G/H x D satisfying
(H) €F and n> y(H) for i = 0,1,2, Then the same is true for the
G-push-out £ : ¥ - X and £ : Y - X by c). Hence f is (F,v)-
connected by Proposition 2.3.

b) This follows from Lemma 1.12. and 1.13., the Map Excision Theorem for
a homology theory (Whitehead [1978] XTII.6.7.) and the long homology
sequence of pairs.

¢) Because of Lemma 1.12. + 1.13. we can assume G = {1}. Now apply
Bousfield-Kan [1972] XIT 3.1. and XII 4.2.

4} follows from b).

e) Brown [1968] p. 249 or tom Dieck [1971] Lemma 1.

f) The non-equivariant proof in e) carries over directly. o

Proposition 2.14. Let G be a compact Lie group and £ : X - Y be a G-

map between G-spaces satisfying assumption 2.5. Assume for any

H € Iso X U Iso Y that one of the following statements holds
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a) £~ is n~connected.

b) £H is homological n-connected.

c) fH is a weak homotopy equivalence.
d) fH is a weak homology equivalence.
e) fH is a homotopy equivalence.

Then this holds for any H ¢ G. In the case e) we know already from

Theorem 2.6, that f is a G-homotopy equivalence.

Proof: The proof is done using an important technique, induction over

the orbit bundles. Choose a numeration {(H1),(H2),...,(Hr)} of
{(H) I'H € Iso X U Iso Y} such that (H;) < (Hj) = i > j holds. The in-
duction runs over r. The begin r = 0 is trivial, the step from r - 1 to
r is done as follows. Write H = H .

_ r-1 (Hi) - r-1 (Hi) i )
Let X be 181 X and Y be ;31 Y . For any H © G the H-fixed point

set XH is N x9 where x9 is the preimage of the diagonal under
gEH

X =» XxX x - (x,9x). Hence XH is closed. Since G is compact

X(H) = G -xH is closed because GxX = X is a closed map (Bredon [1972]
I.1.2.). Therefore x'® x> M) 13 % are closed G-subspaces of X. More-
over, X = X U X(H) and X>(H) =X n X(H) so that we have the G-push-out
2.15. x> (1)

|

(1)

R X

X

1) and f(H) be the G-maps induced by f so that £ is their G~

> (H) and X have at least one orbit type less

>(H))K

Let £, £
push-out. The G-spaces X
than X. By induction hypothesis ?K and (f have property a), b),

¢), resp. d) for any K © G. Because of Lemma 2.13. it suffices to prove
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for any K ¢« G that (f(H))K has property a), b), c) resp. 4) for each

K < G.

Consider the square

2.16. a/uk o CH (x> (K

H

G/HK X N (X(H) K

)

X>(H) K

Y7 and (X(H))K

where the horizontal maps send (gH,x) to gx. Since (

are closed in X and GxX > X (g,x) - gx is closed (Bredon [1972]

>(H))K R (X(H))K

I.1.2.}) the map G/HK x XH11 (X is closed and espe-

WH
cially an identification. Now it is easy to check that 2.16. is a push-
(H) K . : , H | >H (7). K
)7 is the push-out of id X o £, id X WH £ ami(f> )
)Kius property &), b), c¢) resp. d) by induction hypothesis
>(H))H is X>H. If we can show that then

out so that (f
The map (7 )
and also fH and £7H since (X
1d xym £ and id X WH £ 1 satisfy a), b), ¢) resp. d) then an application
of Lemma 2.13. finishes the proof of Proposition 2.14. But this claim

follows from the lemma below applied to X = G/HK since G/HK is a compact

free smooth WH-manifold and hence a free WH-CW-complex by 1.9. o

Lemma 2.17. Let G be a topological group and X a G-CW-complex of orbit

type ¥ ccon G. Let G operate on X from the right. Consider a G-map

f: Y - Z between proper G-spaces satisfying one of the following

statements for all(H)€ &
a) £/H : Y/H - Z/H is n-connected.

b) f/H homological n-connected.

I

weak homotopy equivalence.

is
c) f£/H is
d) f£/H is a weak homology egquivalence.

Then id *a f: X *a Y -+ X e Z has the same property.
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Proof: We show inductively over n that Lemma 2.17. holds if X = Xn. We
leave it to the reader to carry out the final limit argument using
Milnor [1962] or whitehead [1978] XIIT 1.3. Notice that Y and %2 are

proper so that Y/H and Z/H are again compactly generated by Lemma 1.19.

We have the G-push-out

LLG/H, x st X 1
I

with j a G-cofibration. Crossing it with Y yields again a G-push-out

with j x id a G-cofibration (Steenrod [1967] 4.4. and 7.3.). Since

(G/8, xSn_1) xg Y is homeomorphic to Y/H, xSn-1,the spaces
(G/Hi xSn~1) x5 Y and (G/Hi an) ye Y are compactly generated by Lemma
1.19. We can assume that Xoeqg %g ¥ is compactly generated by induction

hypothesis. Hence we get by Lemma 1.12. and 1,13. a push-out with
Jj e id a cofibration

(LLG/H, x g1

I

(LLG/H, xD™) x., Y ——3 X_ x. ¥
T i G G

Because of Lemma 2.13. and the induction hypothesis it suffices to show
that

s . n n
id X £ (-liLG/HixD } xg ¥ '———>(JELG,/HixD ) xg %
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satisfies a), b}, ¢) resp. d). But this follows from the assumption

about f/Hi since (G/Hi an) x Y is naturally homotopy equivalent to

G

Y/Hi. o

Corollary 2.18. Let G be a compact Lie group and Y be a G-space satis-

fying assumption 2.5. Then there is a G-CW-approximation (X,f) by a G-

CW-complex of finite orbit type satisfying Iso X = Iso Y.

Proof: Because of Proposition 2.3. there is a G-CW-complex X of orbit
type F = {(H) | H € Iso ¥} and a weak & -G-homotopy equivalence
f : X - Y. Then f is a weak G-homotopy equivalence by Proposition

2.14, o

Comments 2.19. A variant of Theorem 2.6. is shown for G-ANR-s in James-

Segal [1978]. Corollary 2.11. is proved for G-ANR-s in Murayama [1983]
13.3. More information about G-spaces of the homotopy type of a G~CW-

complex can be found in Waner [1980al.

A lot of results of this section are of the type that a G-map f is a
(weak) G-homotopy equivalence if ijs a (weak) homotopy equivalence for
any H © G occuring as isotropy group. In fact, some work is done to en-
sure that it suffices to look at isotropy groups only. One reason is to
obtain Corollary 2.18. as we need finite orbit type to apply the impor-
tant technigue of induction over the orbit bundle. Another application

is equivariant surgery. Congider a G-map £ : M - N between G-manifolds
such that for simplicity MH and NH are connected for each H < G. By equi-
variant surgery we can achieve at best that fH is a weak homotopy equi-
valence for each H € Iso M = Iso N. Hence we need an extra result tell-

ing us that £ is a G-homotopy equivalence.

In the case of a finite group G there is for any K « G an H € Iso M =
Iso N with MK = MH and NK = NH so that obviously fK is a weak homotopy
equivalence for all K < G. However, if G is a compact Lie group, one

cannot argue in this fashion. A counter-example is G = S0(3) and M the



44

sphere in IR3 @ R3 where G acts on each ]R3 in the obvious way, Then there

is

no H € Iso M with M = MH. o

Exercises 2.20.

1.

Is

Let X be the subspace cfiRZ given by the union of {(x, sin §§)'

x € [0,11}u{0} x[-2,17 U [0,1] x{=2} U {1} x [-2,1]. Show using Cech
cohomology that the projection onto a point p : X = {x} is a weak
homotopy equivalence but not a homotopy equivalence. Does X have the

homotopy type of a CW-complex? (see Wallace [1970] p. 232).
Consider the G-push-out with j a G-cofibration:

il
A——m>Y

AN

X —r7z

Assume that A,X,Y have the G-homotopy type of a G-CW-complex resp.
finite G-CW-complex resp. finite dimensional G-CW-complex resp. ske-

letal-finite G-CW-complex. Then the same is true for Z.
the analogous statement for weak G-homotopy type true?

Let ¥ < Con G be given. Consider a G-CW-complex Y of orbit type F

such that Y' is contractible for all (H) €F .

a) If X is any G-CW-complex of orbit type ¥ then there is precisely
one G-~homotopy class of G-maps X = VY.

b) If ¥' has the same properties as Y then Y and V' are G-homotony-
eguivalent,

¢) Assume for any H,K < G that (H),(K) € F implies (HNK) € F . Let

A be 11 G/H and Y the countable infinite join * A. Then Y is
(H) €F

a G-CW-complex of orbit type‘}: such that YH is contractible for
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() € ¥,
(compare tom Dieck [1974), tom Dieck [1987] I,6., Elmendorf [1983])

4. Let G be a compact Lie group and M a compact smooth G-manifold, Show
that M has the G-homotopy type of a finite G-CW-complex using the

following hints (see alsoc 1.9.).

Use induction over the orbit bundle. Let H be minimal in the usual or-

G

dering of the orbit types. Then M is a closed G-submanifold

(H)

in M. Use the smooth G/H-bundle G/H -» M - M{H>/G {see Bredon

{H)
[1972] vI. 2.5.) and the fact that the (non-equivariant) smooth compact
manifold M(H)/G has the homotopy type of a finite CW-complex to show

that M(H) is G~homotopic to a finite G-CW-complex. Let v be the normal

bundle of M in M. By induction hypothesis the sphere bundle Sv and

(H)
hence the disc bundle Dy have the G-homotopy type of a finite G-CW-
complex. Identify Dv with a tubular neighbourhood of M(H) in M (Bredon
{1972] vI. 2.2.). If M' is M~int Dv , we can view M as the G-push-out
of Dv - Sv -+ M'., Now apply the induction hypothesis to M' and

exercise 2 above.

5. The product of a G-cofibration with a H-cofibration is a G x H-co-
fibration. The product of a G-push out with j a G-cofibration and a

H~space is a G x H-push-out with j x id a G xH-cofibration.

6. Disprove or prove for amap £ : ¥ - 2.
a) If £, : [X,Y] - [X,2Z] is bijective for any finite-dimensional
CW-complex X then f is a weak homotopy equivalence.

b) as in a) but only for finite X.

2

+
7. Let X < R" be the cone of {(%,O) ln=1,2,3,...1 U {(0,0)} over

(0,1) and X~ = {(a,b) € B> | (-a,-b) € X}. Show
a) The inclusion j : (0,0) = Xx¥is no cofibration.

b) The projections p* s X o {(0,0)} are homotopy equivalences.
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The map p' vp : XTvX™ = {(0,0)} induced between the push-outs of
j j id id
{(0,0)} —={(0,0)} is not a

+ 3 i
X" ¢— {(0,00} —> X~ and {(0,0)}¢

homotopy equivalence (compare Lemma 2.13.).
Give an example of a Z/2~-space which does not satisfy assumption 2.5.

We say that two G-spaces X and Y have the same weak G-homotopy type
if there is a G-CW-complex Z together with weak G-homotopy equiva-
lences 2 -+ X and 2 - Y. Show that this defines an equivalence
relation. Is the following relation ~ an equivalence relation @

X~Y & there is a weak G-homotopy equivalence X - Y,

Let G be a compact Lie group and X be a G-space satisfying assumption
2.5. Suppose for H € Iso X that XH is simply connected and the singu-
lar homology groups Hi(XH} are finitely generated for i 2 O. Then X

has a skeletal~finite CW-approximation (Y,f) with Iso X

#

Iso Y. o
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3. The geometric finiteness obstruction

We recall that a G-CW-complex is finite if it has only finitely many

open cells e?, n=0, 1ic¢€ In. A finite domination (X,r,i) of a G~space

Y consists of a finite G-CW-complex X and G-maps r : X = Y and
i: Y -» X satisfying roi ~a id. If Y has such a finite domination Y

is finitely dominated. In this section we deal with the following ques-

tion.

Problem 3.1. When is a finitely dominated G-space G-homotopy equivalent

to a finite G~CW-complex? o

We have already shown in Proposition 2.12, that a finitely dominated G-

space has the G-homotopy type of a G-CW-complex of finite orbit type.

The approach to problem 3.1.,we describe in this section,is geometric.
It is motivated by the geometric treatment of the equivariant Whitehead
torsion we explain in section four. Later we also give algebraic ap-
proaches and show that both agree. The advantage of the geometric treat-
ment is that it is completely elementary and all the formal properties

of the equivariant finiteness obstruction can be derived quickly.

The goal of this section is to construct a functor from the category of

G-spaces into the category of abelian groups
G
Wa~ : {G-spaces} - {abel. gr.}

and a function wGassigning an element wG(x) € WaG(X) to any finitely

dominated G~space such that the following holds:

Theorem 3.2,

a) Obstruction property.

Let X be a finitely dominated G-space. Then X is G-homotopy equiva-

lent to a finite G-CW-complex if and only if wG(X) vanishes.



b) Homotopy invariance.

i) If £ : X - Y is a G-homotopy equivalence between finitely do-

minated G-spaces, then f, : WaG(X) - WaG(Y) sends wG(X) to

wG(Y) .

i1) £ e £' w £, = £).

c) Additivity.
If the following diagram is a G-push-out of finitely dominated G-

spaces and k a G-cofibration

k
—
Xo X2
jO .
32
X, ————
1 jT
then:
G . . .
wo(X) = 31*WG(X1) + j2*WG(X2) - ]O*WG(XO)- o

Given a G-space Y, consider the set of all G-maps f : X = Y with a
finitely dominated G-space X as source. We define an equivalence relaticn
~ « Namely, fO H Xo - ¥ and f4 H X4 -» Y are equivalent if there is

a commutative diagram
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such that jo and j1 are G-~homotopy equivalences, io and i1 are inclu-
sions and (X1,XO) and (X3,X4) are finite relative G~CW~complexes. In
other words, X1 and X3 is obtained from Xo and X, by attaching finitely
many cells. Obviously ~ is symmetric and reflexive. The main difficulty

in the proof of Theorem 3.2 is the verification of transitivity.

We introduce some notation, We symbolize a diagram

by « resp. - if k is an inclusion and (Xn+1’xn) a finite relative G~CW-
complex resp. k is a G-homotopy equivalence. If k points in the other
direction we write of course > resp. ~ . The diagram defining ~ corres-
ponds to the chain € » = », Hence we have to show that € - <+ 2 < = « D
can be reduced to © - < » without changing the ends. This can be done
by a sequence of operations which again do not alter the maps at the

ends:

1Y ce=c o>

Use the G-push-out to substitute

by
xlc !‘ Xll! E : X"



50

2) s = >
- o om o o.

As in 1)

3) + > o o -

Glue the mapping cylinders together

4) ¢ « =

- - o -
obvious

5) + & = - C 5 «

-+ « stands for

1 N
X e

Let k be a G-homotopy inverse of j. Since i is a G-cofibration by 1.5.

there is a G-homotopy h : X" xI - Y with hol X = £f'ok and h1 = f£",

Now consider

These operations make sense because of the following conclusions of 1.5,



1.29 and Lemma 2.13.

3.3. Consider the G-push-out with j the inclusion of a relative G-CW=-

Y
E
Z

If £ is a G-homotopy equivalence then F is a G-homotopy equivalence, If
(X,A) is finite, finite-dimensional, resp. skeletal finite relative G-
CW-complex then also (Z,Y).

complex

£
—_
—y

s
B Gy

F

The following calculation finishes the proof that ~ is an equivalence
relation

C e C 2+ e w3 - D 5D

Now we define WaG(Y) as the set of equivalence classes of such maps in-
to Y. Disjoint union defines the structure of an abelian semi-group on
it with zero element represented by 8 - Y. Given [f] € WaG(Y) repre-
sented by £ : X -+ Y we have to construct an inverse. Choose a domina-
tion (Z,r,i) of X. Let C; and Cr be the mapping cylinders. There is a
a G-map F : Ci > X with FlX = idx and F ! Z = r. Then an inverse of

[£] is given by the class of the composition

F UX F £

@]
o
@]
&
=
W
B
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Namely, one easily constructs a commutative diagram (use Lemmata 4.11.,

4.17., 4.18.)

o

XAL Cy Uy Ci €U, C é— 2 &0

N

Amap g : Y = Z induces an abelian group homomorphism
L WaG(Y) - WaG(Z) by composition. Hence we have defined a co-

variant functor
G
3.4. Wa  : {G-spaces} - {abel. gr.}

Define the geometric finitenegs obstruction of a finitely dominated G-

space
3.5, wo(x) € wal(x)
by the class of id : X - X.

Proof of theorem 3.2.

a) The if-statement is the non-trivial part. Suppose wG(X) = 0 for the

finitely dominated G~space X. Then there is a commutative diagram

i

X ey Y

id r

>

such that (Y,X) is a finite relative G-CW-complex and Y is G-homotopy

equivalent to a finite G-CW-complex 2. The mapping cylinder Ci is a G~
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ezist for all integers k = 0, 41,42, -, and can be calculated using the following recursive formu-

lae:
= — {n(—a — B)ar - ﬂknck_l}, k=1,2,3,--, (2.25)

1+kn

and

Cok—1 = ﬂlm{—n(—a ~B)*ar +(1- kn)c_k}, k=1,23,---, (2.2¢)
where

o = na~, (2.2d)

2(-g)% EQ,- sin(%j)w}](ﬁ’%,
if nis eve{n:;1

o o . (2.2¢)
{-Br1m-2)+2(-p)3 1 YR, °°S(2]n+ e
2(-p)x-1 isjsin(zj: l)n}]if—’)*,
if nis odd].=0

1 2;
P = El'n(:v:2 -2z cos(—J)1r +1),
n

Q; =t _l(z—cos(%;i)W)
; = tan R —
? sin( )
n
1 27+1
R = Eln(zz + 2z cos( ]: yr -+ 1),

and ]
z + cos(2t)x )
sin( "l’"il- )

Proof: As in the preceding proof, ¢y follows directly from (2.2a). Using (2.2a) and the
substitution t = B(z™ — 1) yields

(=% 4
1 =B T
¢ =n(—ﬂ);—l/

0

1—zn’

By considering the partial fraction decomposition of ﬁ;, the above integral can be evaluated

and then (2.2d) is obtained. The recurrence formula follows using integration by parts with

u=tk k#0, and v = —n(-B — t)=.

Remark. The recurrence formula (2.2b) is used to compute c; for positive k > 1; (2.2¢) is

used to compute c; for negative k < —2.
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This finishes the proof of “heorem 3,2. o

The construction above, at least as an abelian semi-group, makes also

sense in other situations. Namely, let DG be the functor

3.6. ,DG : {G-spaces} -~ {abel. semi-gr.}

we get by a construction analogous to the one for WaG if we consider
G-maps £ : X - Y for X a G-space of the G-homotopy type of a G-CW-

complex and change the equivalence relation by

X «X @ (X1'Xo) is a relative G-CW-complex which is finite-dimen~-

sinal resp. skeletal-finite

X1 - X2 « f is a G-homotopy equivalence

Moreover, we define for a G-space X of the G-homotopy type of a G-CW-

complex
3.7. & e ¢

by the class of id : ¥ = ¥X. The verification that DG(X) is a well~de-~

fined abelian semi-group is the same as for WaG(X).

Proposition 3.8. A G-CW-complex X is G-homotopy egquiwvalent to a finite-

h

dimensional resp. skeletal finite G-CW-complex if and only if

dG(x) € DG(X) vanishes. o

We will later show that a G-CW-complex of finite orbit type is finitely
dominated if and only if it is finite-dimensional and skeletal finite.
Hence we obtain in principal also an invariant to decide whether a G-

space is finitely dominated. We will deal with this problem later.

The main difficulty, however,is that we cannot prove the existence of
inverse elements in DG(X). In particular the proof for additivity also
breaks down. The following example shows that we get a contradiction if

G
D7 (X) were an abelian group and fulfilled additivity.
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Example 3.9. Let X be a finitely dominated G~CW-complex, Consider the

two G-push-outs

Xx9IS—— XxT P &3 XxO

XxT —) xxsg' Xx1 —y Xx3I

We get from additivity and homotopy invariance that wG(X><S1) vanishes
in WaG(X XS1). Hence X><S1 is G-homotopy equivalent to a finite G-CW-

complex. We will deal with this phenomenon more extensively later.

If DG(X) were an abelian group and additivity were true,the same argu-
ment would prove for any G-CW-complex X that dG(Xx S1) vanishes. Hence
X x S‘I would be up to hanotopy finite-dimensional. Since X xR - X x S1 is a
covering and R contractible,X itself would be G-homotopy equivalent to

a finite-dimensional G-CW-complex, a contradiction. o

If we restrict ourselves to G~CW~complexes X which are dominated by a
finite-dimensional resp. skeletal-finite G-CW-complex we would get an
abelian group and additivity as for WaG. However, we would obtain the
zero-functor since we later prove that such X has already the G-homoto-

py type of a finite-dimensional resp. skeletal-finite G-CW-complex.

Now we indicate how the computation of WaG(Y) is reduced to the case

G = 1. We define an homomorphism

H

3.10. ©(H) : Wa' (EWH x.. Y1) o waC(y)

WH

as the composition

(1 (2) (3) (4)
YH) - WaWH(EWHxYH) - WaWH(YH) — WaNH(YH) -

(5)
a ¥ —— wab(y)

Wa1(EWH *WH

WaG(G x
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Here and elsewhere EG is the c¢lassifying space and G -» EG - BG the

universal principal G-bundle of a topological group G (see Husemdller

[1966], 5.10.5). It is determined by the property that EG is contrac-

tible. The map (1) is given by the pull-back construction applied to

the WH-principal bundle WH - EWH xYH »  EWH x. v {see 1.25.). It

is an isomorphism, an inverse is given by dividing out the group action
(1.24.). The homomorphism {(2) and (5) are induced by the ca-

nonical maps EWH xYH - ¥ and G *MH oo Y. Restriction with

NH - WH and induction with NH - G defines (3) and (4). We later

prove

Theorem 3,11.

a) There is a natural isomorphism

@ ©(H) - @ Wa1(EWH . YH) - WaG(Y)
{(H) €Con & {H) € Con G

b) Let Z be a space such that n1(Z,z) is finitely presented for all

z € Z. Then there exists a natural isomorphism

® R @ () - wa(z) a
Cen (2)
o
Hence the computation of WaG(Y) is reduced to the computation of re-

duced projective class groups of integral group rings.

Remark 3.12, We have already mentioned that a compact G-CW-complex X is
finite. However a compact finitely dominated G-space X is not-necessari-
1y G-homotopy eguivalent to a finite G-CW-complex although it is G-homo-

topy equivalent to a finitely dominated G~CW-complex. Namely, any
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finitely dominated CW-complex is homotopy equivalent to a compact space
(see Ferry [1981 b] ). Moreover there are compact locally smooth topo-
logical G-manifclds with non-vanishing finiteness obstruction (see

Dovermann—-Rothenberg [19881, Quinn [19821). ©

Comments 3.13. The geometric approach to the finiteness cbstruction can

be found in Liick [1987 bl. We will later give an algebraic treatment and
show that they agree. Other references for an algebraic approach to the
equivariant finiteness obstruction are Andrzejewskil [1986]1, Baglivo
[1978], tom Dieck [1981], Tizuka [1984]1, Xwasik [1983] and Liick [1983].
They are based on Wall [1965] and Wall [1966] where the non-eguivariant
finiteness obstruction is introduced. Wall's articles seem to be moti-

vated by Swan [1960 bl.

In Swan [1960 b] the finiteness obstruction plays a role in the construc-
tion of a finite free G-CW-complex X for a finite group G such that X is
homotopic to s™. By homological algebra finitely dominated free G-CW-
complexes X with X =~ Sn are established and the finiteness obstruction
comes in to decide whether X can be choosen to be finite. This is essen-
tial if one wants to substitute X by a G-manifold and finally by the
standard sphere with a free G-action. This leads to the space form prob-

lem (see for example Madsen-Thomas-Wall [1976]).

Further examples where finiteness obstructions naturally appear are the
theory of ends of manifolds (Quinn [19791, [19821, Siebenmann [19651),
actions on discs (0Oliver [1975], [19761, {19771, [1978]), equivariant
surgery (Oliver-Petrie [1982]), the theory of homotopy representations

(tom Dieck-Petrie [1982]), existence of equivariant handle decompositions
for topological G-manifolds (Steinberger~West [1985])

The construction of the finiteness obstruction makes also sense in the
controlled setting using the ideas in Chapman [1983], section 3. This
is related to the construction in Chapman ([1983], section 1 by a con-
trolled Bass-Heller-Swan homomorphism (cf. section 7).
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Exercises 3.14.

L

4

5.

Consider the G-push-out with j a G~cofibration

L s T 4

X X L

If A,X and Y are finitely dominated then Z is finitely dominated.

Let G be a compact Lie group and X a G-space satisfying assumption
2.5. Suppose for any H € Iso ¥ that there is a WH-homotopy equiva-
lence of pairs (XH,X>H) -+ (Z,Y) into a finite relative WH-CW-com-

plex. Show that X is a G-homotopy eguivalent to a finite G-CW-complex.

Let G be a path-connected topological group and X a G-CW-complex such
that X, consists of a single G-fixed point x. Consider the Z-chain
complex C whose differentials are boundary operators in exact sequen-

ces of triples

-

Tnet EpaqXpeX) = T XX g0x)

Show that H, (C) is the singular homology of X/G.

. Let X be a finite dimensional TP-CW-complex of finite orbit type such
that XH is simply connected and H*(XH;E) finitely generated for H < G.

Show that X is Tn—homotopy equivalent to a finite Tnacwﬁcomplex.

Hint: KO(Z) = {0}

Let G » E - ERE/G be a princinal G-~bundle. Define inverse isomor-

phisms



0

10.

§9

wa® (B)¢— wa' (£/G)
s
by dividing out the group action and the pull back construction.

Let G be a path-connected topological group and X be a free simply
connected finitely dominated G-space. Suppose that Hi(X/G) is finite-
ly generated for i 2 0O and zero for large i. Then X is G-homotopy

efiuivalent to a finite G-CW-complex.

Let X be a finitely dominated CW~complex which is not homotopy equi-
valent to a finite CW-complex. Let G be a compact Lie group with

dim G 2 1.

Show that G x X is a finitely dominated G-CW-complex but not G-homo-
topy equivalent to a finite G-(W-complex,whereas its restriction to
any finite subgroup H is H-homotopy equivalent to a finite H-CW~-com-

plex.

. Let H be a (closed) subgroup of the compact Lie group G. Let X be a

G~CW-complex and res X its restriction to H. If X is finite, skeletal
finite, finite~dimensional resn. finitelyv dominated then res X has

the H-homotopy type of a H-CW-complex with the same property.

Let X be a simply connected finitely dominated G-CY-complex and Y a
finite free G-~CW-complex. Then X x ¥ with the diagonal G-action is G-

homotopy equivalent to a finite G-CW-complex.

Let X be a finitely dominated G-CW-complex. Show that X 1is G-

homotopy equivalent to a finite-dimensional G-CW-complex (Hint:

Consider X x Sl)
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4. The geometric Whitehead torsion

We introduce the equivariant version of a simple homotopy ecuivalence
and define geometrically the equivariant Whitehead group and the ob-
struction for a G-homotopy equivalence to be simple, its equivariant
Whitehead torsion. The main properties like homotopy invariance and
additivity are verified. We also deal with simple structures ( resp.
simple G-homotopy type), especially on G-manifolds. We state the equi-
variant s-cobordism theorem and relate isovariant Whitehead torsion to
equivariant Whitehead torsion. Let G be a topological group.

4.A. Geometric construction of Whitehead group and Whitehead torsion.

4.1. Consider the G-push out

q
A — 3 X

Q
————ey

Suppose that (B,A) is a pair of G-CW-complexes, j is the inclusion and
q is cellular. If Y is equipped with a G~CW-~complex structure isomorphic

to the one defined in 1.29 we call this G=-push out a cellular G-push-

out. n

Example 4.2. Let £ : X - Y be a G-~map. Its mapping cylinder Cyl(f) is

defined as the G-push out

£
XK — 3 ¥

iO 3
£
Xx I ——) Cyl(f)
Let i : X = Cyl(f) be the canonical inclusion fo ige The mapping cone of f

is the G-push-out
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X  —y i}

Cyl(f) ————> Cone(f)

The canonical inclusions i : X -+ Cyl(f), 3 : Y -» Cyl(f) and
# - Cone(f) are G-cofibrations by Lemma 1.11 and j is a G-homotopy
equivalence by Lemma 2.13. The canonical retraction r : Cyl(f) -+ Y of

j is given by

fopr

If X and Y are G-CW-complexes and f is cellular,equip Cyl(f) and Cone(f)
with the G-CW-complex structure making the two G-push-outs above cellu-
lar. Here we use the G~CW-complex structure on XxI of 1.27. Notice

that all the canonical inclusions and retractions above are cellular. o

Let n 2 1 be given. We equip (Dn,Dn_1} with the following structure of a

pair of CW-complexes. The zero-skeleton is a point and the n-2-skeleton
. n=2 . . -
is § obtained by attaching a (n-2)-cell trivially. We get p" T
n-2 . -
S by attaching a (n-1)~cell and the (n-1)-skeleton s*~' of p" by

from

attaching one more (n-1)-cell usinag the identitvy sn—2 -» Sn—2 in bhoth

cases. We end up with " bv attaching a n-cell to Rn_1
Consider the G-push-out

by the identitv.

_ q
G/H:D“1——-> X

G/ExDY T ¢



62

such that X is a G-CW-complex and g{G/H xSn.z) [~ Xn_z and

qe/Exp™ 1y < X, _, holds. Notice that g needs not to be cellular. Never-
theless the process described in 1.29. defines a G-CW-structure on Y

such that (Y,X) is a pair of G-CW-complexes. Notice that Y is obtained
from X by attaching a (n-1)-cell and n-cell in a specific way. If Y has

a G-CW~complex structure isomorphic to the one above we call 3 : X - Y

an elementary expansion.

Lemma 4.3. Let j + A - X be a G-cofibration. Then j is a G-homotopy

equivalence if and only if there is a strong G-deformation retraction

r: X = A, i.e. a G-homotopy equivalence r with roe j = idA and

jor e ldX rel j(a).

Proof: Whitehead [1978] I1.5.9. o

Hence there is a strong G-deformation retraction r : X - A if

j + A - X is an elementary expansion. If ¥ is a second one r and r
are G~homotopic relative 7j(A) because of r = T ojor = r rel j(A). We
call any such strong G-deformation r : X - A an elementary collapse.

Let £ : X - X' and g : A' - A be isomorphisms of G-CW-complexes and
j+2A » Xandr : X - A G-maps. Then j is an elementary expansion
if and only if fo jog' is,and analogously for r as an elementary col-

lapse.

A G-map (j,id) : (X,A) = (¥Y,A) between pairs of G-CW-complexes is an

expansion relative A if it is a finite composition of elementary expan-

sions.

We symbolize this by X /MY rel A.

A G-map (r,id) : (Y¥,A) - (X,A) between pairs of G-CW-complexes is a

collapse relative A if it is a finite composition of elementary collapses




We write YV X rel A.
A finite composition of expansions and collapses relative A
X = )(07‘x1 My e WX =Y

is called a formal deformation relative A and symbolized by X/n Y rel A.

Definition 4.4, A G-map (f,id) : (X,A) - (Y,A) between pairs of G-CW-

complexes is a simple G-homotopy equivalence relative A if it is G-homo-

topic relative A to a formal G-deformation relative A.

We speak of a simple G-homotopy equivalence if A is empty. ©

We want to study in this section

Problem 4.5. When is a G-homotopy equivalence simple? o
We will construct a covariant functor

4.6. wh : {G-CW-compl.} - [{abel. gr.}

and a function assigning to any G-homotopy equivalence £ : X = Y be-

tween finite G-CW-complexes an element
4.7. <%(5) € w®(w)

called its Whitehead torsion,such that the following holds.

Theorem 4.8.

a) Obstruction property.

A G-homotopy equivalence £ : X = Y between finite G-CW~complexes

is simple if and only if TG(f) € WhG(Y) vanishes.

b) Homotopy invariance.

i) If £,9 : X = Y are G-homotopy equivalences between finite G-CW-
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complexes then f =~ g = TG(f} = TG(g)

G G
ii) If f,9 :+ X = Y are G-homotopic then f, =g, : Wh (X) - Wh (¥).

¢) Additivity

Consider the following map between cellular G-push-outs of finite G-

Cw-complexes such i, and k, are inclusions of G-CW-complexes and f,

f1,f2 and f G-homotopy equivalences

XO
i
%1
Y2
o
Y
Then «7(5) = 3,05 + 3,28, - 3_:Cee,).

d) Logarithmic Property

Let £ : X » Yandg:Y 2 % be G-homotopy equivalences between

finite G-CW~complexes. Then TG(gCDf) = TG(g) + q*TG(f}. o

Some preparations are needed.

Lemma 4.9. Consider the diagram of G-spaces

q
A-—m) X —> U

Lo Lo

B—>» Y —3 vy
Q
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Let I be the left, TI the right and III the outer square.
a) Let I be a G-push-out. Then II is a G-push-out if and only if III is
a G-push-out.

b) Let I be a cellular G-push-out with respect to j, i.e. j is the in-

clusion of G-CW-complexes. Then IT is a cellular G-push-out with re-

spect to J if and only if III is a cellular G-pusn-out with respect

to 3.

d) Let j and g be inclusions of G-CW-complexes. Then I is a cellular G-

push-out with respect to j if and only if I is a cellular G-push-out

with respect to q.
Proof: left to the reader. n

Lemma 4.10. Let (X,A) and (Y,A) be pairs of G-CW-complexes with XA/ Y

rel A and £ : A - B be a cellular G-m p. Then

Bufo,BufYrelB

Proof: It suffices to treat the case where Y is obtained from X by an

elementary expansion. Now apply Lemma 4.9. several times to the diagram

G/ExD™ T

|

G/HxD"  —m—

< — X — m

Lemma 4.11. Let £ ¢ X -+ Y be a cellular G-map between G-CW—coleexes

and A a G-CW-subcomplex of X

a) If (X,A) is relatively finite, then

Cyl(f1a) 7cyl(f)

b) If X is finite, then
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Y ACyl(£)

c) If (X,A) is relatively finite, then

AxT UXx{k}7XxxI for k = 0,1
d) If X is finite then

Xx{k}7XxI for k = 0,1

Proof: a) It suffices to treat the case where X~ A contains only one cell

Guxs™ —— 5 a

[ |

G/H x D' ey X

Crossing it with I yields again a cellular G-push-out. Recall that the
mapping cylinder is defined as a cellular G-push-out. By Lemma 4.9. we

get a cellular G-push-out

G/Hx (5" a1 v p") ——  Cyl(flA)
sn—1
G/HxD" x I — Cyl(£)
Notice that (D" ><I,Sn-1 *IT U g ") and (Dn+1,Dn) are isomorphic.

s

b), ¢) and d) follow from a). O

Lemma 4.12. Let £ and g : A - B be cellular G-maps and (X,A) a relative

finite pair of G-CW-complexes. If f and g are G-homotopic, then:

BUfXA.BUquelB

Proof: Let h : AxI - B be a cellular G-homotopy between f and g

(Theorem 2.1.). We get from Lemma 4.10. and 4.11. <)
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Xy AxI) 7B u

h Axo (XxI) rel B

h
and

o
<
>
1t

B U (XU

g h AxI)NAB U

(XxI) rel B o

Ax1 h

Lemma 4.13. Let (X,A) and (Y,A) be relatively finite pairs of G-CW-com~

plexes such that the inclusions are G-homotopy equivalences.

a) Then (X UA Y,A} is a relative finite pair of G-CW-complexes such that

the inclusion is a G-homotopy equivalence.

b) XA X' rel A and YA Y' rel A implies X UA YA X! UA Y' rel A

Proof: a) Lemma 2.13.

b) follows from Lemma 4.10.

Lemma 4.14. Let A« B < X be a triple of G-CW-complexes such that the

inclusions are G-homotopy equivalences and (X,A) relatively finite. Let

r : B = A be any strong G-deformation retraction. Then

XA B U (Aurx) rel A

A
Proof: Let i : A -B be the inclusion. We get from Lemma 4.12.

id X = B Uior X rel B

The claim follows from

B Uior X = B UA (A Ur X) rel A o

Now we can define WhG(A) of a G~CW-complex A. Namely,we consider the
equivalence relation on all relative finite pairs of G~CW-complexes

(X,A) with A¢—) X a G-homotopy equivalence given by (X,A)A, (Y,A) rel A.
Let WhG(A) be the set of equivalence classes. Addition is given by

(X,A) + {Y¥,A) = (X U, Y,A). It is well-defined by Lemma 4.13. The class

A

of (A,A) is the zero-element. An inverse of the class of (X,A) is given

as follows.
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Choose a strong G-deformation retraction r : X - A. Let p:AxI -+ A

be the projection. Our candidate is (A U, (a Up Cyl(r)}),A). We have

AxI/PCyl(r) (Lemma 4.11. a)

A Up Cyl(r) 1A rel A (Lemma 4.10.)

Consider the triple (A,X,A Up Cyl(r)). All inclusions are G-homotopy

equivalences. We get from Lemma 4.14.
AA A Uy, Cyl(r) A X U, (A U, A up Cyl(r)) rel A

This finishes the construction of the abelian group WhG(A). If £f:A » B

is a G-map,define £, : wh®(a) - wnh®(B) by (X,A) -» (B U. X,B). This

f
is well-defined by Lemma 4.10. so that WhG becomes a covariant func-

tor {G-CW-compl.} - abelian groups.

Definition 4.15. Let £ : X -+ Y be a G-map between finite G-CW-com-

plexes. Define its Whitehead torsion

%5 e wmC ()

by the class of (Y Ug Cyl(g),Y) for any cellular G-map g which is G-

homotopic to f. We call Wh®(Y) the Whitehead group of Y. o

The proof that Definition 4.15. makes sense needs some preparation.

Lemma 4.16. Let (X,A) b

a relative finite pair of G-Cw-complexes and

f:X - Y beacellular G-map. If A /X holds,we get
X U, CyL(£1a) 7*Cyl(£)
Proof: It suffices to treat the case of an elementary expansion

G/Hxp™ T —— sy 2

L]

G/HxD®? ——3 ¥
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We get from Lemma 4,9. a G-push-out

G/4 x (D «x ne1 (s"1 I))——y X Up CYL(£18)
G/HxD  x T 4 cyl(£) a
Lemma 4.17.
fo £ f
Let X0 S X

1 > XZ_") “as

n-1
finite G-CW-complexes. Denote by f : X

> be cellular G-maps between
-

Xn their composition. Then
Cyl(f) A Cyl(£,) Ux1 Cyl(£f,) sz

v Cyl(fn_1) rel XOLL Xn

Proof: We only treat the case n

1. Let p

-
-

: Cyl(fo) X, be the pro=-
jection and g : Cyl(fo)

X, be the composition f1o p. Notice that
glxy = £,0 fo' We get

Xy 7PCyl(£))

(Lemma 4.11.

b)
Cyl(g)‘yCyl(fo) Uy Cyl(f1) (Lemma 4.16.)
Cyl(f1 o fo) eylig) (Lemma 4.11. a) o
Lemma 4.18. Let f and g : X =

Y be G-~homotopic cellular G-maps between
finite G-CwWw~complexes. Then

Cyl(f) A Cyl(g) rel X1LY
Proof: Let h : X x I

-

Y be a cellular G-homotopy between f and g. We
have by Lemma 4.11. 4)

Xx{k} A XxzI
Now Lemma 4.16. implies

Cyl(f) Ux:&o}x x I Cyl(h) VYCyl(g) UXX{T} X xI
Now apply Lemma 4.10.

to the projections XxI -» X. o
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Lemma 4.12. and Lemma 4.18, ensure that Definition 4.15, makes sense,

Notice that TG(f) can be written as
4.19. w6 (£) = g, (Cyl(g) ,X)
for any cellular G-map g with g ~a £.

Proof of Theorem 4.8.

b) Lemma 4.12, and Lemma 4.18.

a) Let £ : X -» Y be a simple G-homotopy equivalence, We show TG(f)==O
Without loss of generality we can assume that £ is cellular. Simple

means that f is G-homotopic to a formal deformation

X=X 7% N¥, T ees X = Y

Let g; ¢ Xi - Xi+1 be the corresponding G-map and g : X - Y the

composition of the g; ~s- We prove
4.20. Cyl{gi)‘gxi

If 95 is an elementary expansion, 4.20. follows from Lemma 4.10. and

4.11. &)

X, = X; x{o} ?xixi?xixz Ug X4

= Cyl(gi)
i

If g, 1is an elementary collapse Lemma 4.16. implies 4.20.
X; = X3 x {0} 7%y g xT U X, = Cyl{g;IX,, 1) U X; 7Cyl(g,)
We conclude from Lemma 4.17. and Lemma 4.18.
Cyl(£)A Cyl{(g) A Cyllg ) v evees Cylilg__,) rel X
[o X1 n-1
An iterated application of 4.20. yields

Cyl(g,) UX1 Cyl(g,) UX2 P Cyl(qn_1)ZL X rel X

This proves (Cyl(g),X) = O in Wh*(X) and by 4.19. TC(f) = oO.
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Now consider a G-homotopy equivalence f : X - Y between finite G-CW-

complexes with TG(f) = 0. We want to show that f is simple. We can as-
G

sume f to be cellular. Since f,:Wh (X) - WhG(Y) is an isomorphism

TG(f} = O implies
Cyl(f) A X rel X

Hence the inclusion i : X - Cyl(f) is a formal deformation. We know
from Lemma 4.11. b) that the inclusion Y = Cyl(f) is a formal defor~
mation so that the projection p : Cyl(f) - Y is G-homotopic to a for-
mal deformation. Hence f = po i is G-homotopic to a formal deformation

meaning that f is simple.

d) Consider the G~homotopy equivalences £ : X > Y and g : Y = Z be-
tween finite G-CW-complexes. We claim TG(go f) = TG(q)-fg*TG(f). Con-
sider the triple (Cyl(f) UY Cyl{(g),Cyi(f),X). If r ¢« Cyl(f) = X is

a retraction, we get in WhG(X) by Lemma 4.14.
r, (Cyl (£} UY Cyl(g),Cyl(£f)) + (Cyl(£),X) = (Cyl(f) UY Cyl{g) ,X)
If j :+ Y = Cyl(f) is the inclusion,we get from Lemma 4.17.

r,Js(Cyl(g),¥Y) + (Cyl(f),X) = (Cyl(go £),X)

By Theorem 4.8. b) r,3, = f;1,since rojoef ~, id. Applying g, f, to

G
the equation above yields

TG(q) + g*rG(f) = TG(go f)

G
¢) Since f,:Wh (X) - th(Y) is an isomorphism by Theorem 4.8. b) it

suffices to prove in WhG(x)

(Cyl(f),X) = (X U Cyl(f1),x) + (X Uy Cyl(fz),X) - (X Uy Cyl(fo),X)

X, 2 o

By an iterated application of Lemma 4.9. we obtain a diagram such

that all sguares in it are cellular G~push-outs
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4.21.
X

I\ :

Xy —— Cyl( £,) ——— Cyl(f,)

1 S Cyl(f)

€« 3%

>

By Lemma 4.11. b) we have
Cyl(f,) 7 cyl(k : Cyl(f) =~ Cyl(f,))
and by Lemma 4.10.

cyl(£) 7 cyl(f) UCyl(fZ) cyl (k)

Hence we obtain from Lemma 4.10. in WhG(X)
(X uX2 Cyl(fz),X) = (X ux2 Cyl(k) ,X)

(CyL(£f) ,X) = (Cyl(£) UCyl(fz) Cyl(k) X)

Write Y = Cyl(f) U Cyl(k), Y, = X U, Cyl(k), Y, = X Uy Cyl(£f,)

Cyl(fz) 2 X,

and Yo =X UX Cyl(fo). Then we must show
o

4.22. (Y,X) = (Y1,X) + (YZ,X) - (YO,X)

We get from 4.21. and Lemma 4.9, that YO,Y1,Y2 are G-subcomplexes of Y

with Y =Y, U Y

and Y =Y, NY
1 o

2 1 2"

G
Let r : Yo -+ ¥ be a retraction. Then we get from Lemma 4,14. in Wh (X)

(Y,%)

re (Y,¥)  + (Y,,X)
(Y %) = ry(Y,,Y ) + (Y, X)

(Y,,%) = 1, (Y,,¥ ) + (Y ,X)
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. G
Because of ¥ = Y1 U Y2 and YO = Y1 n Y2 we have in Wh (Y)

(Y,YO) = (Y1'YO) + (Y2'Yo)
These equations implies
(v, X) - (YO,X) = (Y1,x) - (yo,x) + (YZ,X) - (Yo,x)
and hence 4.22,

This finishes the construction of the Whitehead group of a G-CW-complex
and the Whitehead torsion of a G-homotopy equivalence between finite G-

CW-complexes and the proof of Theorem 4.8. o

e ]

Let Q be the Hilbert cube T I,
i=o

Theorem 4.23. Let £ : X - Y be a map between finite CW-complexes. Then

f is a simple homotopy equivalence if and only if £xid : XxQ - Y=xQ

is homotopic to an homeomorphism.

Proof: Chapman [1973], o

Corollary 4.24. Topological invariance of (non-equivariant) Whitehead

torsion.

Let £ : X - Y be a homeomorphism between finite CW-complexes. Then £

is a simple homotopy egquivalence. o

The topological invariance of the Whitehead torsion does not hold in the

equivariant case. We give an outline of two counter examples.

Example 4.25. The starting point is the question whether two topological-
ly conjugatedG-representation of a finite group G are already linearly
isomorphic. This is true if G has odd order (Hsiang-Pardon [1882],
Madsen-Rothenberg [1985a] . Counterexamples for G of even order are
constructed in Cappell-Shaneson [1982], cappell-Shaneson-Steinberger-

Weinberger-West [1988)

Choose a G-homeomorphism £f:V—>W between G-representations,



74

which are not linearly isomorphic. Substituting V by vy =VOV® RBR

and W by W, =W PWOR@R yields a G-homecmorphism £, t SV, - SW,
between the spheres of two G~representations such that VO and Wo are
not linearly isomorphic, WH acts orientation preserving on svg and swg
and X(Svi) = X(swg) = 0 for all H ¢ G, Under these circumstances the
Reidemeister torsion p(SVO) and p(SWO) is defined. We explain it later,
Assume that fo : SVO - SWO has trivial Whitehead torsion. Since

p(Vo) - p(WO) is a function of TG(fO),we have p(VO) = p(WO). Later we
reprove the result of de Rham that p(VO) = p(Wo) implies that Vo and W,
are linearly isomorphic, a contradiction. Hence fO is a G-homeomorphism

SV, - SW, but not simple. o

Example 4.26. The Hauptvermutung says that two homeomorphic simplicial
complexes are already PL-homeomorphic (see Rourke-Sanderson [1972] I

for the definition of a PL-space and PL-homeomorphism). A counterexample
is given in Milnor {[1961] (see also Stallings [1968]1). In Milnor [1961]
two finite G-CW-complexes X and Y together with a G-homeomorphism are
constructed such that the Reidemeister tersion p(X) and p(Y) are defined

and do not agree. Hence f is not a simple G-homotopy equivalence. o
We can extend WhG to a covariant functor

G
4.27. Wh™ : {G-spaces} - ({abel. gr.}

Namely, define WhG(Z) = lim WhG(X) for a G-space Z,where the limit runs

over all G-CW-approximations (X,f) of Z.
4B. Simple structures on G-gpaces

Given a G-space Z, consider all pairs (X,f) consisting of a finite G-CW-
complex X and a G-homotopy equivalence £ : X - Z. We call (X,f) and
(Y,g) equivalent if g*TG(g_1o £f) € WhG(Z) vanishes. This is a well-de-

fined equivalence relation by Theorem 4.8. A simple structure on a G-

space Z is an equivalence class £ of such pairs (X,f).
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Let £ : (Zo,go) > {ZT’ET) be a G-homotopy equivalence between G-spaces

with simple structures. Choose representatives (Xi'fi) for Ei’ Define

a.28. %) € wnC(z)

by t°(f) := £ TG(f;1

1 ofo fo)' This is well-defined by Theorem 4.8.
*

Regard the G-push-out with j1 a G-cofibration

4,29, ZO —_— 22

Assume that Zi has a simple structure gi for i = 0,1,2. We want to assign

to Z a simple structure £.

Choose a commutative diagram

4,30. X1 é___jj__é XO ___jfi_.5 X2
£, fo f2
Z, <___.j~_._a Z, ———j—-—————\)zz
1 2
satisfying

i} Xi is a finite G-CW-complex.
ii) i1 is an inclusion of finite G-CW-complexes and i is cellular.
iii) £ is a G-homotopy equivalence.

iv) (xi,fi) represents gi.

Let £ : X » 2 be the G-map induced on the G-push-outs. Then X is a fi-
nite G-CW-complex and f is a G-homotopy equivalence. Let £ be the simple

structure £ on Z given by (X,f). If Zz is equipped with £ we call 4.29. a
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G-push~out of G-spaces with simple gtructure.

The following construction guarantees that a diagram 4.30. exists. Lemma
4.32. ensures that £ does only depend on Eor B4 and £, but not on the

choices above.

4.31, Consider the G-push-out 4.29., Assume that we are given G-CW-appro-

ximations (Xi'fi) for Z; (1=0,1,2). Choose a cellular G-map 95 IR S Xi

satisfying f; o 9; % Ji0 fo for 1 = 1,2, Let ki : Xo - Cyl(gi) be the

canonical inclusion and pry : Cyl(gi) - X be the canonical projection.

We have fi o pPY, oki o~ ofo- Since ki is a G-cofibration we can change

¢ i
fi o Pr, G-homotopically into fi : Cyl(gi) - 2, such that the following

diagram commutes

34 i,
S —— |
Z, Z, ——» I,
f! f' f.
Cyl(g1)<_k° X, S Cyl(g,)
k
1 (¢}

Then (Cyl(gi),fi) is a G-CW-approximation of Z;- If z; has the G-homotopy
type of a G-CW-complex then f!, fé and fé are G-homotopy eqguivalences

(Theorem 2.4.). If Xi is finite, skeletal-finite, finite-dimensional resp.
finitely dominated then also Cyl(gi). Ié Xi is finite and fi a G-homotopy

equivalence,(xi,fi) and (Cyl(gﬂ,fi) define the same simple structure on

z; by Lemma 4.11. b). o

Consider the commutative diagram
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a) Xi and Y,

b) i1 and k1

bration.

c) fi and 94

Let Z be the

Define X and

maps.
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i1 i2
o> X ——— %
£, £ £,
34 3y W
2, &— I, —— 7,
T
T 94 Tgo 92
kq ko
Y, & > Y, y Y,
are finite G~CW~complexes for 1 = 0,1,2.

are inclusions of finite G-CW-complexes and j1 a G-cofi~

are G-homotopy equivalences for i

G-push=-out
31
ZO C—~————————§ Z1
3 Lo
2 l1
. P
Z2 -———I——*——% Z
2
Y similarly. Let £ : X - Z and g

.

0,1,2.

Y

-

Z be the induced

Lemma 4.32. Then X and Y are finite G-CwW~-complexes and f and g are G-

homotopy equivalences. Moreover we have in WhG(Z)

G -
geto(g o)

G, -1 G, -1 G, =1 -1
= Lyagqat (gq 0Fg) * 1yuTput {9y 0F) = 1490k T (9 oy )

Proof: We can assume that i,, j2 and k2 are also G-cofibrations, other-

wise substitute them by the inclusion of mapping cvlinders. Now we can

construct a diagram
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21 ¢ > ZO < S 22
h1 ho l h2
ky k2
Y1 < - Yo < S Y2

such that hi is a G-homotopy inverse for Iy let h : 2 - Y be the in~-

duced G-homotopy equivalence. We get from Theorem 4.8.

-16, .
h, 't (hef) =

-1_G
11*h1*r (h1 °f1) + 12*h2

1 G
%7 (h2° f2)

1.6
10,1 o £ )
G, -1 G, -1
T1a91.T (9g 0 £9) 15,9, T (9 0 £))
G, -1

1.9 .,7 (g

oxFos o £

o] o
G, -1 -1
g,T (g oh ) =
-1
)
2

G, =1 =1 G, -1
G, -1 -1, _
104904 T {9y ohg ) =0

9,7 o) = g,1%g  onTono) =

G, -1 -1 -1.-16G
9,70(g on ) + g9, 0 Cho ) =
G, -1

G, -1 G, -1 _
Liadqe™ (gq 0 ) + 15,05, T (g 0 £5) = 10,90,7 (9,

of ) a
o* " O% o)

Now one easily extends Theorem 4.8. for finite G-CW-complexes to spaces

with simple structure.

Theorem 4.33.

a) Obstruction property

Let £ : (X,8) =+ (¥,n) be a G-homotopy egquivalence between G-spaces with

simple structures. Then the following statements are equivalent.

1) () = o.
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ii) There are representatives (A,u) and (B,v) of £ and n  such

Hmtvqofou : A -+ B is simple.

iii) For any representatives (A,u) and (B,v) of £ and n the

composition v-1 ofou: A +» B is simple.

b) Homotopy invariance

i) fag= 0(f) =1%(q)

ii) f~g = £f, = g,

c) Additivity

Consider the commutative diagram of G-space with simple structures

Assume that the sequences are G-push-outs of G-spaces with simple struc-

tures. Let i, and j1 be G-cofibrations and for f1, f, and f be G-homoto-

Py equivalences. Then:

G G

_ G G
TOE) = k1*T (f1) + kz*T (fz) - ko*T (fo)
d) Logarithmic property
Let £ : (X,8) =+ (Y¥,n) and g : (¥Y,n) -+ (Z,u) be G-homotopy equivalen-

ces between G-spaces with simple structures. Then we have:

TG(gof) = TG(q) + g*TG(f) o
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4.34, If G is a finite group, the existence and uniqueness of a smooth
eguivariant triangulation of a compact smooth G-manifold M (possibly
with non-empty boundary) is proved by Illman [1978]. Hence M has a pre-
fered simple structure £,. If £f : M - N is a G~homotopy eguivalence

between smooth compact G-manifolds,we can define its Whitehead torsion.

4.35. 2S5y ¢ wnl )

by TG(f : (M,EM) + (N,E.)). We have then for any G-diffecmorphism

£ : M - N that TG(f) vanishes. o

If G is a compact Lie group the existence of an equivariant triangulation
of a compact smooth G-manifold is shown in Illman [1983]. The necessary

uniqueness statement can be derived from Matumoto-Shiota [1987].

4.36. Let G be a compact Lie group. We give now an in comparison with
4.34 elementary construction how to assign to any compact smooth G-mani-
fold M a simple structure EM such that for any G-diffeomorphism £ :M - N
the Whitehead torsion TG(f) 1= TG(f : (M,gM) - (N,EN)) vanishes, In
particular this construction shows that a compact smooth G-manifold M is
G~hcmotopy equivalent to a finite G-CW-complex. The only input will be
the existence and uniqueness of tubular neighbourhocods (see Breden [1972]

VI 2) and the non-egquivariant triangulation theorem, or in other words

that we already know such a construction for G = 1.

We use induction over the orbit types {(H1)’(H2)""'(Hr)} = {(H) €
Con G| H € Iso M}. Notice that M has finite orbit type (see tom Dieck
[1987] I.5.11.). The induction runs over r. In the begin r = 1 write
H = H,. Then we have a G/H-fibre bundle with WH as structure group

p:M - M/G (see Bredon [1972] II.5.8.).

Let £ : X - Y be a G-homotopy equivalence between G-spaces such that
X » X/Gand Y - Y/G are G/H-fibre bundles with WH as structure group.

Suppose that X/G and Y/G are finite CW-complexes and £/G : X/G = Y/G.
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4C., Simple structures on G-manifolds,

is simple. Then the CW-structures on X/G and Y/G lift to G-CW-complex
structures on X and Y (compare 1.25.) and f : X -+ Y is a simple G-ho-
motopy equivalence. Hence any simple structure EM/G lifts uniquely to a
simple structure gM on M. Define gM by this process where gM/G on the
non-equivariant compact smooth manifold M/G comes from a triangulation.
Let £f : M > N be a G-diffeomorphism. Then £/G : M/G -+ N/G is a

{1}

diffeomorphism so that T (£/G : (M/G,E > (N/G,gN/G)) vanishesg.

M/G)
Hence TG(f : (M,EM) > (N,EN)) is zero. This finishes the induction be-

gin.

In the induction step from r -1 to r we write H = H,. Then M(H) = M(H)=

G -MH is a closed G-submanifold of M (see Bredon [1972] VI 2.5.). Let v

be the normal bundle of M in M. A tubular neighbourhood of M in M

(H)

(1)
is a G-embedding

b v - M

such that ¢ restricted to the zero section induces the identity
M(H) - M(H) and the differential of ¢ at the zero section induces the
identity v + v (compare Br&cker-Jinich {19731, 12.10.). Choose an equi-

variant Riemannian metric on v so that the sphere bundle Sv and disc

bundle Dv are defined. Let M be M~2(int Dv) Then M is the G-push-out

4.37. 8V Gy M

Moreover, Dv is the G-push-out

P
Sv —_— M(H)

[ ]

SV XTI —e—y Dv
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where p is the projection and P(y,t) = t «y. By induction hypotheses
there are simple structures SSV on Sv and gﬁ on M. Equip Dv and M with
simple structures gDv and gM such that the two G-push-outs above become
G-push-outs of spaces with simple structures. Notice that then
(M(H);EM(H)) + (Dv,iDv) has torsion zero. We must show that this is
independent of the choice of the Riemannian metric and the tubular

neighbourhood.

Let Sv', Dv', Mé and ¢': v -+ M be induced by a second choice. Then
there is a G-diffeotopy ¢ : MxI -+ M and a pair of G-diffeomorphisms
(F,£f) : (Dv,8v) -+ (Dv',8v') such that vy = id and w1 0% = ¢' o F holds
and F(t +y) = t » F(y) is valid for t € [0,1] and v € Dv (compare Brdcker-
Jinich [1973] 12.13, Bredon [1972], p. 3.12.). Consider the commutative

diagrams

l

SV X I e DV SV e M(H)

T~

SV' X T w3 D'y

Sy — 3 M w1\Mo
r
l £
e \\‘\\gl\\\\~ rTr

F

Dv' -——————4? M

Now an iterated application of Theorem 4.33. shows that the induced
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simple structure EM and gM‘ agree since the induction hypotheses

applies to Sv, Sv', M, M' and Mgy

Let £ : M + N be a G-diffeomorphism. We want to show TG(f) = 0. Let

Vi and vy be the normal bundles of M(H) in M and N(H) in N and

£ 5V T Vg the bundle map induced by f. Choose tubular neighbour-
hoods @M vy M and @N T Ve N and Riemannian metricg such that

®N ove = £ o@M and Ve is an isometry. Now the claim follows from Theorem

4.33. applied to the diagrams

Y

=}
<
ﬁj;//////: 41
w
<
th i
)]
<

[

£
DVN
oy = M £
f
Svf
Svy ¥ I — DGLM_ Dv e Sy 3 Ny
SvN XTI ey DvN
and the induction hypotheses applied to f{H)’ fIM : ¥ > N and Svf.

We leave it to the reader to check that the choice of the numeration
{(H),...,(H)) does not play a role. o

4.p. Isovariant and equivariant s-cobordism theorems

Next we come to the equivariant s-cobordism theorem which is an important
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tool for clasgification of G-manifolds. In the sequel G is a compact
Lie group. Recall that a G-manifold M is a compact smooth manifold to-
gether with a smooth G-action. We will make frequently use of the simple

structure we have assigned to a G-manifold M in 4.36.

4.38. A cobordism (B,M,N) between the G-manifolds M and N is a G-mani-

fold B together with embeddings iM : M > 3B and iN :+ N -+ 3B such

that 3B = image i, U image i, and iM(BM) = image i, N image i _ = iN(aN)

M N M N

holds. In the sequel we often identify M with image iM' We call (B,M,N)
an h-cobordism if the inclusiongs M -+ B and N -+ B are strong G-de-
formation retractions. We want to give criterions for the existence of

a G-diffeomorphism £ : B =+ Mx I such that f restricted to M is the in-
clusion M ~+ Mx {0}. Notice that this would imply that i : M > B is
an isovariant strong G-deformation retraction (i. e. there is an iso-
variant G~map'r : B -+ M such that roi = id and io0or is isovariantly
G~homotopic to id : B - B). Recall that a G-map £ : X = Y is iso-
variant if Gy = Gfx holds for all x € X. Hence we consider isovariant h-

cobordisms (B,M,N), i. e. a ecobordism (B,M,N) such that M - B and

N - B are isovariant G-deformation retractions. o

Lemma 4.39. Let (B,M,N) be a cobordism.

a) It is an h-cobordism if and only if Y 8" ang N' - B¥ are weak

homotopy equivalences for H € Iso B.

b) It is an isovariant h-cobordism if and only if M, = B, and N, - B

are weak homotopy equivalences for H € Iso B.

Proof: a) This follows from Theorem 2.4. and Lemma 4.3.

b) Hauschild [1978] satz Vv.3. o

Consider an isovariant h-cobordism (B,M,N). Define the isovariant White-—

head group
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4.40 wnl_ () = e  wh"H(y)
(H) € Con G
H € Iso M

Inductively over the number of orbit types of M , we define the isovariant

Whitehead torsion

4.41 ISO(B M,N) € WhIso( )
If B has only one orbit type (H) then BH = BH is a (compact) free WH-
manifold. Let t g . (B,M,N) € whl_ (M) = wn""(M_ ) be the equivariant White-
. -1 WH . . .
head torsion R’H*T (Q,H) for the inclusion £H : MH » BH' In the in
duction step choose H € Iso B such that K € Iso B, {(H) c (K} implies
(H)

(H) = (K). Then B is a (compact) G-submanifold of B and analogously

(H)

for M(H)=M(H) < M and N(H)=N(H) c N (see Bredon [1972]VI.2.5.). Let B
be the normal bundle of B(H) in B and define M and N analogously. Iden-

tify the disc bundles with tubular neighbourhoods. Define B = B\int D\JB ,

M=M\int Dv, and i:f:(N\intDvN) ¥ Sv,. Since B, —- B_, M, - M, and

M B K K* K K

ﬁK —» Ny are homotopy equivalences for K € Iso B, we obtain from Lemma

4.39. an isovariant h-cobordism {B,M,N) with one orbit type less. By in-

G G

duction hypotheses TISO(E,M,E) e wn®_ (M) is defined. Let i,: WHISO(M)

WH(M

Iso

—» Wh(I;SO(M) be given by the inclusion i : M — M and j : Wh ) —»

H
—» Wh(I;so(M) the obvious split injection. Now define

-1

= - . WH
(B,W,M)) + jeug;

ISO(B M,N) = 1*(1150 {x (Q,H P My — BH))

We leave it to the reader to show that this is independent of the various

choices like (H) , Vg oo -

Theorem 4.42. (The Isovariant s-Cobordism Theorem). Let M be a G-mani-

fold such that the dimension of any component of M,/WH for H € IsoM is

not smaller than 5.

a}) {B,M,N) is an isovariant h-cobordism with T;O(B,M,N)=O, if and only if

there is a G-diffeomorphism ¢ : (B,M,N) -—» (M xI,Mx{0}, 3MxIUMx {1})
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such that ¢IM is the identity M - Mx {0},

G .
b) Each element in Whgso(M) can be realized as T;.,(B,M,N) for an iso-
variant h-cobordism (B,M,N).
c) Whgso(M) classifies G~diffeomorphism classes relative M of isovariant

h-cobordismg (B,M,N).

Proof: This follows by induction over the orbit type from the non-equi-
variant case. See also Browder-Quinn [1973] 1.4., Hauschild [1978] v.4.,

Rothenberg [1978] 3.4. o

Now we want to relate isovariant Whitehead torsion and equivariant White-

head torsion. We will define for an isovariant h-cobordism (B,M,N) an

homomorphism
G G
.43, : - M
4.43 (M) thSO(M) Wh~ (M)
and prove
Proposition 4.44 $(M) : th M)y - WhG(M) sends TG (B,M,N) to
- © Iso == “Iso '’ —_

G

the equivariant Whitehead torsion Q;lr (v of the inclusion £ :M —B

We define & (M) and prove Proposition 4.44. simultanously by induction
over the orbit type. In the induction step choose H € Iso B and define

(B,M,N) as in the definition of t°

ISO(B,M,N). Let

4.45. K WhWH(MH) o wnC

be induced by restriction with NH + WH, induction with NH ~» G and the

obvious inclusion G *NH MH = M(H} + M. If M has only one orbit type,

let ® (M) Dbe k. The normal bundle of M in M is denoted by Vg The

(H)
pull-back construction with Svy defines a transfer homomorphism

G Cos
trf' : Wwh( %H)) > WhG(SVM)(saasec.15). Notice that for any finite

*
G-CW-complex X together with a G-map £ : X - the pull-back £ Suy

M(H)

carries a canonical simple structure. Namely, this is true for X =

n
G/L><Dn as then f*S\)M is a G-manifold, G-diffeomorphic to G L SV xD
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for an appropriate L-representation V. Composing trf' with the homomor-
phisms given by restriction with NH -~ WH,induction with NH -~ G and

the inclusion Sv + Mor SvM - M yields

M
4.46. BFE s wh' (M) - wnC )
trf : WhWH(MH) > wn
Define ¢(M) by the following diagram if i : M— M is the inclusion
. WH G ) cr 4 ,
and j : Wh (MH) > WhISG(M) the obvious split injection
@
G - WH x G
.47. ey
4.47 WhIso(M) @ wh (MH) N WhIso(M)
o (M)

i, ° o(M) + {k-txf)
whe M)

For the proof of Proposition 4.44. consider the commutative diagram with

G-push-outs of G-spaces with simple structure as squares

4.48, M

Sv. e
Dy, G——

2=
-
=y

=

S~ By B
[l

B

ll
We get from Theorem 4.33.
-1
2*"TG(§,: M - B} =
_ —- - = = -1 WH . =
9.*1 ° 2; TG(D\)M > DVB)-,I,:’L*Q £*11G(9‘ ¢+ M —» B)-trf o SZH*T (Q'H‘M}}_’ BH) =
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G 1 wWH

-1 WH : = TRy o 9~ .M —

K ¢ Q'H*T (QH . MH — BH) +l*° @(M)('[ ISO(B,M,N)) trf QH*T (QH-MH 'BH)
_ G

= o (< (B,M,N)) .

This finishes the proof of Proposition 4.44. o
If N is a manifold,let dim N be max{dim C[C € nO(N}}

Definition 4.49. A G-manifold M satisfies the weak gap conditions if

for H,K € Iso M, H ? K and components C € HO(MH) and D € KO(MK) with DK#¢

CH#Q, D = ¢ the inequality dim G/NKH + dim D + 3 € dim C holds., O

Lemma 4.50. If M satisfies the weak gap conditions then My = f is 2~

Do oH H
connected for H € Iso M, if v i U{CEHO(M ) CH#¢}

Proof: Numerate {(X) € Con G| (H) < (K), K € Iso M} = [(Ky),(Ry),.., (K]}
such that (K;) < (Kj) implies i > j. It suffices to show for any compact

non-equivariant manifold N with dim N < 2 and non-equivariant map

H

f: N - M with f(3N) € M, that £ is homotopic to g : N = MH rela-

H

tive 3N satisfying g(N) € MH' We show inductively for n = 0,%,...,r that
f is homotopic relative 3N to £, N > it such that fn(N) c MH\

n (X.)
(U M *
i=1
is trivial, the induction step from n - 1 to n done as follows.

H
N M)) holds. Then g can be choosen as %:' The begin n = O

By induction hypotheses the intersection of the compact sets fn_1(N) and
n-1 (Ki) u

U M i M 1s empty. We can find a closed subset A « M  satisfying
i=1

n=-1 (K,)

H
U M % nM cint Aand AN £._,(N) = @. Consider f_
i=1

_q @s a map
(K.)

M 1 on MH is contained in M
1 (KXQ

H

N - MH‘\A. Now MH\xA n n M

i

[ -]

\ H ; .
Notice that M is diffeomorphic to G/KH x M, . If D is a path
( Kn) n WK, K,
H .
. = 3 - +
(WKn D) dim G/Kn dim WKn

component of My we have dim G/Ki

X
n WKy
. . H . ‘o
dim D = dim G/NK + dim D. If C is the component of MH containing D, we

have dim(G/Ki x

WK (WKn « D)} + dim N < dim C. By transversality
n
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we can change £ _, :N — Ve \A relative 8N into f :N —M¥\ A satis-
H
(K,

Theorem 4.51. The Eguivariant s-Cobordism Theorem. Let (B,M,N) be an

fying fn(N) n M )y = @. This finishes the induction step. o

h-cobordism such that M satisfies the weak gap conditions 4.49 and

dintMH/WH 2 5 holds for H € Iso M. Then

a) (B,M,N) is an isovariant h-cobordism.

G

fso — wn®(M) is split injective with image Whi(M) (see

b) #(M) : Wh

4.54.).

c) t®(M — B) vanishes if and only if (B,M,N) is G-diffeomorphic to
(Mx I,Mx {0} ,3MxIUM x {1}) relative M = Mx {0} .

d) Any element in Whi(M) can be realized as (M —> B)

e) Whi(M) clagsifies G-diffeomorphism classes relative M of h-cobordisms

over M. =)

Proof: a) We use induction over the orbit type and choose (H) € Con G,
Vyrese @s above. If we take in the diagram 4.48. the K-fixed point sets

for K € Iso B we get a commutative diagram with push-outs as squares

4,52, S\);i NG v

Since M - B is a G-homotopy equivalence,fo,f2 and f are homotopy equi-

valences because of vB‘ M = vy and the covering homotopy theorem (see

(H)
Bredon [1972] TI.7.4.). By Lemma 4.50. i : M - M* and § : BY » 8%
are 2-connected since MK - MK and §K - BK are homotopy equivalences.
We want to show that f1 is a weak homotopy equivalence. Suppose for sim-
plicity that BK is connected, the general case is done just component-
wise. Let §K be the universal covering. Pulling it back to each space
appearing in 4.52. yields again a diagram with push-outs as squares and

cofibrations as mavs (Lemma 1.26.)
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By a Mayer-Vietoris argument ?1 is a weak homology equivalence since %o'
T, and T are homotopy equivalences. Since i,j,f1 and f are 2~-connected
ﬁ is the universal covering of ﬁK. By Whiteheads Theorem (see Whitehead
[1978] 1IVv.7.13. ?1 and hence f1is a weak homotopy equivalence. Since

e - 8K is a weak homotopy equivalence for K € Iso §,we get from Lemnma
4.39. a) that (ﬁ,ﬁ,ﬁ) is an h~cobordism. By the induction hypotheses
(g,ﬁ,ﬁ) is even an isovariant h-cobordism. Because of Lemma 4.39. b}

also (B,M,N) is an isovariant h-cobordism.
b) follows from c¢)

c) We can only give a sketch of the proof since we need the description

of WhG(X) by algebraic Whitehead groups introduced in section 14.

There we establish for a G-space X an isomorphism

wlx) = @ ©® Wh (n, (EWH (C)

H o
(H) Cc¢€ no(x y /WH

*WH(C)

where WH(C) is the isotropy group of C € nO(XH) under the WH-actlion,

EWH(C) the universal WH(C)-principal bundle and Wh(%n1(EWH(C)x )

WH(C)C)
the algebraic Whitehead group of the integral group ring of

m, (EWH (C) XWH(C)C)‘ Under this isomorphism the image ¢ (M) 1is
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e
4.54. wh'(m = ® @ Wh(n, (EWH (C) x )
° (H) CEWO(MH)/WH 1 WH (C)
Cyt 9

One shows inductively over the orbit types that 3 (M) is injective
with image WhS(M)' In the induction