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§ 0. Introduction

Equivariant algebraic K-theory decomposes as a sum of ordinary algebraic K-
theory of group rings (see [4, 5, 7, 12]). This follows for K, because the determinant
of a upper triangular matrix is the product of the entries on the diagonal.

For equivariant L-theory the situation is more complicated. We do obtain a set
of exact orbit sequences similar to the neighbouring family sequences obtained by
Connor and Floyd in [2]. But these exact sequences do not always split in a way
analogous to the splitting of equivariant K-theory. There are easy counterexamples
for G=Z/2. However, if the transformation group has odd order, then the
equivariant L-groups do in fact decompose in the expected fashion, cf.
Theorem 2.11 below.

We work in this paper in the smooth and locally linear PL-category
simultaneously. A consequence of the existence of the exact orbit sequence is that
the equivariant L-groups are equal for these two manifold categories.

The paper is founded upon the definition of equivariant L-theory given in [9].
We refer the reader to that paper for the somewhat cumbersome definitions. A
reference (I.7.?) always refers to the first part [9].

It is our hope that the present definitions of equivariant L-groups and the
calculational techniques presented here will make further calculations possible. It
seems to us to be of some interest to evaluate equivariant L-groups for some of the
standard 2-groups, for example, and to determine the equivariant Rothenberg
sequence.
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§ 1. The Orbit Sequence

Let R=(%, t,.1,,7) be a geometric reference of ambient dimension 7, as defined in
(1.2.3) and (1.3.1). A subset € =Iso(t,) is admissible if with the notion of (1.1.16)

x, H"Z(».K)Y*, (xH) " €b=>(y,K)" e¥
A surgery problem (f, 7. @, 0) from M to N with reference map

0=/ llo- 1) - (RON tpe, thy, @) =>(%, 1o, 11, T)
is called %-restricted if for each isotropy component Demy(N") with
MG/H)(D)e% there is precisely one component Cemy(M ™) with f7(C)<=D, and
if fH|C:C—D is a [simple] WH(x)-homotopy equivalence for xeC. The %-
restricted bordism classes of %-restricted surgery problems with reference to R form
an abelian group %,(R)[¢]. In the sequel ¢ means either #* or £*. Recall that
for #* we require R to be simple, cf. (1.2.4).
Consider two neighbouring admissible sets %, =%, cIso(z;)

G =Gl H)' ), (v H)" ¢%,

Write Z,(R)[%,,%,] for the equivalence classes of surgery problems ( f, £, @) with
reference R such that f is %,-restricted and df is %,-restricted, cf. (I1.2.2iii.). For a
nullbordism (F, &, F, &, F) of &, F we require F to be %,-restricted and 6, F to be ;-
restricted.

There is a sequence, infinite to the left,

(1) o L RG] -5 L (RG] — L, (R[]
5 Z(R)[%] - ZL(R)%,. %]

Here ¢ is restriction to the boundary and i and j are the forgetful maps. The usual
argument from [2] gives

(1.2) Theorem. The sequence (1.1) is exact. O

The Weyl group WH acts on 4(G/H)". For xe%(G/H) let WH(x) be the
isotropy group of £. From (I.1.2) we have the group E=E (x, H), and the
extension

{1} > Auty gu)(X) > E— WH(x)—{1}

Define the orientation homomorphism
(1.3) e=¢p,(x, H): E(x, H)—{+1}
by sending (o, w)e€ E(x, H) to degk™ where k is the composition of H-maps

L(GIH)Y(W)ey
AN

k1, (G/H) (X 1 (GIHY(o*x)oy > 1,(GIH)(x)oq

We will identify the relative groups in (1.1) with the usual algebraic L-groups. More
precisely we shall define an isomorphism

r: % (R)[%. 61~ L(ZE,g). k=Dimg,(x. H).
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Notice ~ when  (%,t)=(nr"N,tpy) that E=n (EWH(X)X pyuN"(x)),
k =dim N¥(x) and that ¢ is given by transport of local orientations in N*(x). The
definition of r requires that R and ) * R satisfy the strong gap conditions (1.1.18).

Let ne %,(R)[%,.%,] be represented by (f. f.¢,0) with 1:n°N—>% a weak
O(G)-equivalence, cf. (I.1.4), and /¥ 2-connected, cf. (I.3. 2) Let C and D be the
components of m,(M*") and n,(N*) with AG/H)(D)" =X and fH(C)cD. The
group Eactson the universal coverings C and D and f#|Clifts to an E-normal map
f:C—D which is an E-homotopy equivalence on the singular E-set.

We define r(n)e L, (ZE, ¢) as follows: After preliminary surgeries the kernel
groups K, (C) are concentrated in the middle dimension. If dimC=2-k only
K. (C)=%1{0} and is (stably) free. There is a quadratic form on K, (C). Indeed, the
construction in [13, p. 45] gives a ZE-linear map K,(C)—Imm (S* C) into the
module of regular homotopy classes of immersions and our gap conditions imply
that Imm (S*, C\C,)— Imm (S¥, C) is bijective. The strong gap conditions for Y * R
are needed to ensure the inequality k +14dim C,<dim C. Now Wall’s construc-
tion of the quadratic form works verbatim. The case dim C=2 - k+ 1 is similar using
[13, Chap. 6] to get a formation.

One can adopt the arguments of [13] to show that r is well defined and injective.
The gap conditions guarantee that the necessary surgeries on M (x) can be done in
the complement of the singular set. The R-stable bundle data give unstable normal
bundle data both in the smooth and in the PL category. Thus each WH (x)-surgery
on M (x) can be extended to a G-surgery on M.

(1.4) Theorem. Suppose that R and ) * R satisfy the strong gap conditions (1.1.18).
Then

r:L(R)[%,, 6, 1= L,(ZE,¢)
is an isomorphism.

The proof of (1.4) will be broken up in a sequence of lemmas and constructions,
but here is the main idea: by the ©—n-lemma (1.3.2) elements of %, (R) can be
represented by surgery problems over a manifold N with n°N—% a weak O(G)-
equivalence. Elements of L,(ZFE, ¢) can be realized as surgery problems (over the
free part) of N (x), and these can be transfered to surgery problems over the (block)
disk bundle of the normal bundle v(N¥(x), N). This gives NH(x)-surgery problems
and then G-surgery problems by applying the induction functor G X yy, — This
defines the inverse of r.

We begin the more detailed account of (1.4) by describing the relevant
constructions on the level of references. Given R=(9, 1,,t,, 1) and Xe ¥(G/H) ", we
define a WH(x)-reference R and NH(x)-references Rj; and R, all based on the
same O (W H(x))-groupoid ¥,.

Let 9(G/H)<=%(G/H) be the subgroupoid of objects y with y=x and define

G (WH(x)/)=%(G/H), and G (WH(x)/K)=0 for K=1.
If ¥=n°N then 4, =n""(N"(x) x EWH(x)). Define O(WH (x))-functors

-4 >B,.,. ' 9-B,
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with k& =dim (¢, (G/H)(x)") by
tiH(y)eH =1,(G/H)(y’ fH
This gives a WH (x)-reference R} =(%,, t¥ 17, 1), The NH(x)-reference Ry has
the underlying O(NH (x))-groupoid p*%, for p: NH(x)—WH(x) the projection
(see [1.§4]) and
to :P*9(G/H), =B, i) g p*%(G/H)—B,

is defined to be complementary to ¢/ inside #;. This can be done in the smooth
category by taking bundles to mean bundles with a metric and maps to preserve this
metric. To define 7, in the PL-category we need the following lemma. Given an
R H-module V, write PLy (V) for its equivariant PL-automorphisms and Fy (V) for
its proper self H-homotopy equivalences.

(1.5) Lemma. Let V=V"@Vy, as RH-modules.
i) If V satisfies the strong gap conditions (1.1.18) then the cartesian product of
maps defines an isomorphism

o PL(V?) x 1 PLy(Vyg) > 1o PLy (V) -
i) If V satisfies the weak gap conditions (1.1.1 8) the join defines an isomorphism
o F(VH) x o Fy(Vig) = 1o F (V).
Proof. There are split fibrations
Fy(V. V)= Fa(V)—>F(V™)
PL,(V, VT PLy(V)>PL(V™)

whose fibres are the subspaces of maps which are the identity on the fixed set. It
remains to be shown that the suspension defines isomorphisms

nOFH(SVH)_*noFH(Vs VH)
noPLH(VH)"NOPLH(V, Vi)

The first isomorphism is a special case of the equivariant Freudenthal suspension
theorem, the second is more complicated. First, the fibre in

PPLy(Vy®RY, R)—PLy(Vy®R', Ri)—>PLy(Vy®R™L R

is i-connected, essentially by the regular neighborhood theorem of [10]. Second, for
the same reason we get

nOPLH(VH(Ja]I{”l,IR‘“);nOPLH(DVH x DIt Dty
and
PLy(DVyx D', D)= PLy(S(Vy X Ri*), S = PL,(V;®R, RY)

by applications of the Alexander trick (cf. [10). O

From (1.5) and the obvious equivalence between G-bundles over G/H and R H-
modules we get the “‘complementary” NH (x)-reference

Ri=(p*% . toy> tin-Tw)
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Finally we have the NH (x)-reference
R, =(p*%F ,1y,t,.7)

where we just restrict 7, and 7 to P*%. in the obvious way. By definition 1/ @1, =1,
and " A1, =1 s0 that

(1.6) Re=p*RI®Rj;  (as NH(x)-references)
Since surgery on WH(x)-free manifolds is the same as surgery on the orbit spaces wi
have
(L.7)  Lemma. &, (R"y=L(Z, ). [
We want (o define the surgery transfer
uf: L(WH(x): R - £(G; R)[%,,%6,]
This requires one realizes the reference Ry by a fibre triple and. for uniqueness, the
construction of universal fibre triple. In detail:

(1.8)  Definition. A fibre triple over a G-space B is a triple @ =(vy, v,, h) of two
G--R" bundles and a fibre homotopy equivalence 4 : Svy— Sy, between the
associated spherical fibrations.

A fibre triple @ induces a reference R(O)
(1.9) R(©)=("B.tp,,.tp,,. Y tp,)

where )’ is the suspension, Conversely, given a reference R= (%.15,1,, 1) of
dimension # we construct a universal fibre iriple O(R) as follows. First, by (1.5) we
can desuspend ¢, so that both fo and ¢, are O(G)-functors with range IB,. Consider
the homotopy pull back

@ > B(G, n)

L

B(G,n) —— BF(G,n—1)

of the classifyving spaces for G—R” bundles (smooth or PL) and G—S"-!
fibrations. There is a canonical fibre triple (y,,7,.4) over @. The equivariant
Eilenberg-MacLane space K(n%®, 1) is the homotopy pull back of

K(xB(G.m).1) "5 K(CBF(G,n—1),1) Se K(nCB(G, n). 1).

The given spherical reference induces mapst;: K(%,1)—K(B,,1)and an homotopy
0:8,ty=S, -1, Thusit givesa map 7': K(9, 1) K(=%®, 1). We define B(R)tobe
the homotopy pull back in

B(R) ——s @

b

K(%.1) ——  Kx%e. 1)
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and get a fibre-triple
(1.10) O(R) = (i§ (7o), i& (71). i3 ()

over B(R). The composition (:n8B(R)—»>nK(%.1)—% is a weak 0 (G)-equiva-
lence and extends to a map of references p: R(@(R))—R. Now O(R) is universal
by the easy

(1.11) Lemma. Given a fibre triple © over B and a map of spherical references
0:R(@)—R', there is an up to homotopy unique map of fibre-triples g: ©@—O(R")
with n> R(gy=e. 0O

In the smooth category the bundles v;=1(y,) can be given a metric and the
spherical fibre space v;\{zero section) can be realized as the sphere bundle Sv;. The
corresponding statement is false in the PL-category: one has to use block bundles
instead. For our applications below we need spherical fibre triples SO =(Svy, Svy. h)
in both categories.

Let B(G. S" ') resp. B(G.n) be the classifying space for locally linear PL block
G —S"" ! bundles resp. PL block G —IR" bundles.

(1.12) Lemma. There is a weak O(G )-homotopy equivalence
7°B(G,S" )=n°B(G.n)
Proof. Consider the O(G)-transformations
°B(G,S" "Y1 B(G,n)n"B(G, n)

both induced from the maps of classifying spaces. They turn out to be weak O(G )-
homotopy equivalences. Namely, we have

B(G,S" ) =UBPL;(SW)

B(G.m" =L BPL; (W)

B(G,n)"=LBPLy (W)

where in all cases the disjoint union Ly varies over isomorphism classes of RH-
modules W of dimension n. For each such W

n, BPL; (SW)—>n, BPLg (W)<n BPL,(W)

are isomorphisms, cf. [10,§2]. O

The construction (1.9) can be carried out with B(G. n) replaced by B(G,S" ")
and gives a spherical fibre triple
(1.13) SO(R)=(Svy,Svy.h)
of two locally linear PL block G — $" 1 bundles and a fibre homotopy equivalence
h. By (1.12) SO(R) induces a reference R(SO(R)). weakly homotopy equivalent to
R. and the obvious analogue of (1.11) remains valid.

We can now define the surgery transfer. Consider the following set of transfer
data () associated with (1.6):
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() i) Bis a free WH(x) space and A7 :a" " 9B-GM is a weak O(WH(x))-
equivalence.
ii) SO =(Sv,.Sv,.h)isaspherical NH (x)-fibre triple (smooth or PL)over B.
iii) o%: R(S@)— R} is a map of NH(x)-references with p*2;' as underlying
O(NH (x))-transformation for p : NH(x)— WH(x) the projection.

For example, we can take B to be the base space of the spherical fibre triple
SO(Rj)in (1.13) and let ¢3; be the map p from (1.11). Thisis the universal situation
which any other set of transfer data map into. For computations it is sometimes
useful to use transfer data different from the universal ones.

To a given set of transfer data, we get a WH(x)-reference

R()=(x""9B, (21 g, (D, ()% 1)
weakly O(WH (x))-homotopy equivalent to R, and hence
LWH(x); R(:) = L (WH(x); R = L (ZE. ¢)

where the last isomorphism is from (1.7). Define neighbouring families %, =%,  to be

¢ ={L=NH(x)|(x.L)" €%}
with %, from (1.4). Given the transfer data (), we define (cf. 1.6)
(1.14) trf () : L(WH(x); R() > L, (NH(x); R) [6. 6]
as follows: ConsiderAan element in %, (WH(x); R(x)) represented by a WH(x)-
surgery problem (/. f, ) with f: M— N and reference map

0 (e ON, tp.., tpy, @) R(x)

whose underlying O(WH (x))-transformation is induced from a WH(x)-map
i N—>B. Let
Dh:Dvy— Dv,

be obtained from 4:Sv,—Sv, by coning. The pull back construction defines a
NH (x)-surgery problem (F, F, @) with

: 7 ; i*Dh
F: f*2*Dv, S A*Dy, ’

A¥Dv,

E:T(f*i*Dvy)=pETM@®pg [*1*v, rief

P& EDPE 27 -

The map trf (x) is independent of the choice of (x) by (1.11). Using induction one
obtains an homomorphism, cf. (I. §4)

(1.15) i L (WH(x); R[4, ,6,/1- £,(G; R) [, %]
Define
(1.16) q:L(ZE, e)~ %,(G; R)[%,. %]

by the composition i, trf(*). The composition of g with r: Z(R)[%,, %]
— L, (ZE. ¢) is the identity as Dv{l = Dv{' = B for the fibre-triple & = (v,. vy, h) over
B. This finishes the proof of Theorem 1.4. O
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Combining (1.2) and (1.4) we get the so called orbit sequence.

(1.17) Theorem. Suppose that R and Y ""* R satisfy the strong gap conditions
(1.1.18) for m=0. Then there is an exact sequence

LS RYE] S 2, (RG] s Ly (ZE2) S
Z(R)[%] > £,(R)[%] -5 L(ZE: O

We give a simple example to show that the equivariant L-groups do not always
decompose as a direct sum of the expected ordinary L-groups.

(1.18)  Example. Let G be Z/2 and V be a free RG-module of dimension n—k.
Suppose k=6 and 2+k + 3 < n. Consider the n-dimensional reference R=(%. ¢, 1.id)
with

9(G/G)=%(G/1)={x}

HGIG)(x)=VOR*  1(G/1)(x)=Gx(VBRF)

From (1.17) we get an exact sequence

Lh(Z) 5 LMZG.e) = #MR) L L@ > L!(ZG.¢)

Here ¢is trivial if and only if n =k mod 2. The boundary ¢ corresponds geometrically
to crossing with RP" %71,

For n=0, 2 and the non-trivial orientation ¢ the L-groups L}(ZG,¢)=Z/2 and
L¥(Z)=17/2 are detected by the Arf-invariant ¢. If /" is a normal map and X a
manifold, we have Sullivan’s product formula

c(fxX)=c(f)x(X)

Hence &: L), (Z)— LMZG, ¢) is an isomorphism for k =1 and »=0. 2 (modulo 4).
For k=3 and n=0,2 @ is zero since the Arf-invariant is zero on Ly(Z). Since 0 is
bijective for k=1 and n==3 the groups #}(R) can be tabulated as follows:

n=0 n=1 n=2 n=3
k=0 VASYASY A Z ZPZL)2 Z
k=1 {0} 00 ()
k=2 VASY/A 10} 21272 {0}
k=3 Z2 10} Zj2 Z2

Indeed the only sticky point is to argue that the exact sequence
0—LYZ[G) > L (R)~ L (Z)~0

is split when n=k =2 (mod4). This can be seen as follows.
We suppress all bundle structures. Let f: K—S* be the Kervaire normal map
which represents the non-trivial element in L7Z). Choose a normal cobordism

FiVoSh< RP g
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with §yF= /' xRP" ¥ ! and with é,F a homotopy equivalence. Let D" * be the
(n —K&)-disk with antipodal G-action. Then

M=Vu, KxD" % 2L Skx Dk H=FufxD"*
represents an element in #)(R) which maps non-trivially under j, since (M ¢, H®)
=(K, /). We must show it has order 2.

We can represent 2{M, H} e #}(R) by the double (DM, DH). Its fixed point
problem is K[ [K L% S¥ [S* which we want to cobord away. Let g: N> S!
% 7,8* be the normal map over the generalized Klein bottle which represents the
non-trivial element in L,(Z[Z], ). e+1. We can take N=S! x znK; (N,g) is a
normal map with Z/2 coefficients whose associated Bockstein is the Kervaire
normal map (K. f), cf. [15,§3]. Cut open N along K to get

go 1 (No. KLIK)—>(S*x I, SkUSk)

Let My=VU(Nyx S"" ¥ 1)U T it has two boundary components, each equal
to $¥x §"7%71 which we identify to get the G-manifold M,, with Bockstein
S*x §"7%71 There is an obvious G-normal map

H1 IM1 —*(Sl X Z/ZSk) x §rk=l

and {M,,H,}=2{M,H} in &}(R). We must check that {M,/G, H,/G} has trivial
Arf-invariant. But as a normal map (of manifolds with Z/2 coefficients)
(M,/G. H,/G) is cobordant to (Nx RP"*71 gx RP""*~ 1) Thus they have the
same Arf-invariant, cf. [14,p. 91]. Finally the product formula shows that
c(gxRpP"*hH=0 O

(1.19)  Corollary. The equivariant surgery groups in the smooth and PL-category
agree.

Proof. This is well-known in the non-equivariant case and follows inductively from
(1.17) in the equivariant setting. [J

§ 2. Decomposition of Equivariant L-Theory

[n this section we show for G of odd order that the orbit sequence of § 1 (under
mild restrictions) reduces to split short exact sequences. Throughout the section we
work in the smooth category, cf. (1.19).

Consider an O(G)-functor ¢ : 4—B,. For each (x, H) we have the G-IR" bundle
{(G/H)(x) over G/H and the H-module t(G/H)(x), 5. Its isomorphism class depends
only on Xe %(G/H) and is invariant under the action of NH(x). This is a necessary
but not sufficient condition for the H-module 1(G/H)(x),; to extend to a NH(x)-
module.

(2.1)  Definition. An O(G)-functor 7: %— B, has the slice extension property if for
each (x, H)" the H-module #(G/H)(x),, extends to an NH(x)-module.

Let R=(9.1,,1,. 1) be a geometric reference of ambient dimension n (see 1.3.1)
which satisfies the following additional properties:
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(2.2) 1) R is simple, cf. (1.2.4)
ii) (%.t,) has the slice extension property 2.1).
iii) R and YR satisfy the strong gap conditions (I.1.18).

Notice from (2.2i.) that the H-modules 1(G/H)(x),y and 1, (G/H)(x),y are linearly
isomorphic by de Rham’s theorem, cf. [12, ch. 4].

Lemma 2.3. Suppose that G has odd order. Let tyand 1, : 4 —1B, be two O(G)-functors
which satisfy the weak gap conditions (1.1.18). Then there is an O(G)-transformation
@ 1o—1, if and only if

i) to(G/H)(X),y and t;(G/H)(x).y are (abstactly) linearly H-isomorphic for
xe¥%(G/H) and HcG.

i) ey (x. D =¢,(x, 1) for xe%(G/).

Proof. We can assume that 4(G/1)" consists of a single element x,. Choose an
isomorphism ¢ : 1(G/1)(xo) =1, (G/1)(x,) of G-R” bundles. The forgetful map

o 1504 (16(G/H) (Xg) ot » 11 (G/H ) (Xo) o) = Tho 150 (1o(G/H ) (x¢)orr» 11 (G/H)(Xg )en)

is bijective since G has odd order. Hence there are precisely two isotopy classes of
bundle isomorphism from 7, (G/H)(x)to t, (G/H)(x). We use ¢, L0 pick one. Indeed,
let ¢ : G/1—>G/H be the projection and let w : 6*x—x, be any morphism in ¥(G/1).
Choose the isomorphism ¢@{(G/H)(x): to(G/H)(x)—t,(G/H)(x) such that the
following diagram of G-R" bundles commutes up to isotopy

L) > 1(G)e) T 1(G)(x)
a*(G/H)(x) Po

LGN~ (G T 4(G/)(x)

This determines the isotopy class of ¢(G/H)(x) by the assumption (ii), and we get
the desired isomorphism ¢ :1,—¢, (compare {8]). O

Notice in particular that under the conditions (2.2) we get (%.15,1,,7)
~(%. 1,. 1, id), provided that the order of G is odd. We continue with a lemma from
bordism theory. A smooth G-manifold M is called almost complex if its R-stable
tangent bundle TM @R* has the structure of a complex G-vector bundle.

(2.4) Lemma. Assume that G has odd order. Let M be a closed almost complex
G-manifold of odd dimension. Then for some r.|G|" copies of M bounds an almost
complex G-manifold Q such that n,(0Q")—my(Q") is surjective for all H=G.

Proof. Let H be a maximal isotropy group for M and Cc M™" a component. The
Weyl group WH acts freely on M*H and the subgroup WH (x) acts freely on C when
xe(C. Let v: C—BU(NH(x). k)" classify the normal bundle of C in M. We get a
map

[ CIWH(x)—» EWH (X)X gy BUNH (x), k)"
which represents a unitrary bordism element {C/WH(x), f }. Since BU(NH (x), 1%
= BU(H, k)" is a product of copies of classifying spaces BU(k;) (see[6]). a simple
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argument with the Atiyah-Hirzebruch spectral sequence shows that

QU EWH(X) X gy BUNH (x), k)" @2 Z[1/|WH(x)]] =0

Hence IWH ()" {C/WH(x), /=0 for suitable r. We get an almost complex
NH(x)-manifold P with 6P =|G|" - C and an NH(x)-bundle 5 over P which restricts
to |G| v(C, M) on the boundary. We extend the nullbordism P of |GI"-C to a
bordism Q of M by (G Xy Dn)U(|G"- M x [0,1]) where we glue along
G X ny o DnléP. Doing this simultaneously for all Ce o (M")/WH we obtain a
bordism Q from |G- M to an almost complex manifold N such that Iso(N) is
strictly smaller than Iso(M) and (1G] MRy -7, (OF) is surjective for K< G.
After a finite number of steps we get the desired nullbordism. O

(2.5)  Proposition. Suppose that G has odd order and R satisfies (2.21.) and (2.2ii.)
and that R and Y* R satisfy the strong gap conditions (1.1.18). Then the map of
Theorem 1.17, localized ar 2,

J®2Zyy: &, (R)[%,1®2Z 5~ L (ZE(x, H), £(x, H)®2zZ,,,

is split surjective.

Proof. We shall construct an homorphism

s Lk(x, H)(ZE(X* H)’ S(X, H))—)”S/pn(R) [(' O]

which splits J®Z,,. By (2.2.ii) we can pick a NH(x)-module V and a linear H-
isomorphism Q: 1, (G/H)(x)l, ®V -1, (G/H)(x).y. We apply Lemma 2.4 to get a
NH(x)-manifold Q with dQ=m-SV for some odd m and T, (0Q %) > 1, (QX)
surjective for K< G. Let P= QUagm - DV. The map s is essentially given by crossing
with P. Namely, let R be the W H (x)-reference associated to R in § 1. Each element

in Lo my(ZE(x. H), e(x, H)) can be represented by a normal WH(x)-map
(/. /. . 0) with

[iMSN [ TM—E ¢ tpi—tps,  and 0:(n° N, tp,, tpy, ) > RY

Suppose for simplicity NH(x) = G, otherwise one further has to apply G x N (—)-
Consider the normal G-map (fxid,. fx idyp. ¢ x id, ) with

0:(n°NxP, Pexprs Pryxp, @ Aid)>R

defined as follows. First, the projection pr: N x P— N induces a unique reference
map

(N x P, Pexrp tPraxrps @ A1d) (%N, p:®tpy, tpyDtpy, ¢ Aid)
This uses that 7,(0Q*) > 7,(Q¥) is onto and Lemma 2.3. Now compose with
(RN, tp.®tpy . tpy Dtpy, ¢ Aid)— (p*%_, 1! ®@tpy. 1 ®tpy .t Aid) >R

where p: G=NH(x)—WH(x) is the projection and the second map comes from
using Lemma 2.3 again.
Finally, observe that jos=m-id for odd m since PH consists of m points. [J
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Recali from [11,3.6.4] that
2.6) L(ZE,e)®zZ[1/2] 5> L,(QE, &)@z Z[1/2]

is an isomorphism for any (E, ¢). It does not matter which kind of L-groups we use
since the relative term in the Rothenberg-sequence is 2-torsion. The symmetrization
map induces an isomorphism

(2.7) 14T L(QE, 6)®2Z[1/2]- L"QE. ) ®7Z[1 2]

Now we use the Mishchenko-Ranicki theory of symmetric chain complexes to
construct an homomorphism

(2.8) 2F0(x H) 4, (R) Y LK I(QE(x. H), (x, H))

where the sums run over (x,H)" elso (#;) and k(x, H)=dim¢ (G/H)%,. Let
we Z,(R) be represented by a normal G-map (f, f.¢) with a reference map
(s kg 1) (7% N, tp., tpy, @) — R such that ¢ fand Z are weak O(G)-equivalences,
cf. (1.3.2).

Let Ceny(M™) and Deny(N") be the components such that f#(C)< D and
AMG/H)Y(D)=x%. The group E(x, H) acts on the universal converings C and D, and I
lifts to a E(x, H)-equivariant map 7: C—D. The chain complexes C.(C, Q) and
C(D, @) consists of finitely generated projective QE(x, H)-modules since they
are finitely generated free over the group m; (C)=m, (D) which has finite index
in E(x, H). By the relative symmetric construction in [11, ch 1] we obtain pairs
of symmetric QE(x, H)-Poincaré chain complexes C.(2C, Q)= C(C, @) and
C.(eD,Q)=C, (D, ®). Glueing them together with the QE(x, H)-homotopy equiv-
alence C(0]) yields a symmetric QE(x, H)-Poincaré chain complex. Its cobordism
class is the element ¢ (x, H)(w)e L**"(QE(x, H), ¢(x, H)) we seek.

(2.10)  Proposition. Suppose that R satisfies (2.2). Then the maps o (x, H )in (2.9
induce an isomorphism

20 o(x. H)®2Z[1/2]: 4,(R)Y®2Z[1/2]
=28 Lo i (ZE(x. H). e(x, H) @7 Z[1/2]
where the sum runs over (x, H)" e Iso(z,).

Proof. This follows from Theorem 1.17 since the composition
L(REo] > L(ZE,6) » LNQE. ) ®72[1)2]
is just o (x, HY®zZ[1/2] composed with ., (R)[6,]—.%,(R). O

(2.11) Theorem. Let R be a geometric reference of ambient dimension n, of. (1.3.1),

satisfying (2.2). If G has odd order, then there is an isomorphism:
L, (R)=)® Ly my(ZE(x, H), e(x, H))

where k(x, H) = Dimy, ;(x, H), ¢f. (1.1.17), and ¢(x, H)=¢y (x, H), ¢f. (1.3), and the
sum runs over (x, H)" elso(t)), ¢f. (1.1.18). O
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§ 3. The Equivariant Rothenberg Sequence

We want to compare % (R) and £(R) for a geometric reference R of ambient
dimension . Define a relative group £*(R) to be the bordism classes of surgery
problems ( £, f. ¢, o) with reference R such that f is a G- -homotopy equivalence and
¢f is a simple G-homotopy equivalence. A nullbordism (F,d,R, 3, F) of 8, F
requires £ to be a G-homotopy equivalence and J, F to be a 51mple G- homotopy
equivalence. Consider the sequence, infinite to the left,

G 5 L (YR L 2 (SR S 2 (R) S £5R) L 2HR)

Here 0 restricts to the boundary and i and j are the forgetful maps. One easily
checks.

(3.2) Theorem. The sequence (3.1) is exact. O

In order to express #,"*(R) algebraically some preparations are needed. Given a
geometric pair (%, ¢,) of ambient dimension #, cf. (I1.3.1), we define
@

(3.3) WhS(%,t,)= Y Wh(ZE(x, H))

(x,H)" elso(t;)
Notice that this depends only on Dimy, ;. If Nis a G-manifold itis customary to write
WhS(N) for Wh%(n%N, tpy). Now suppose that N satisfies the weak gap conditions
(I1.1.18). One may define an involution

(3.4) * :WhE(N)—>WhE(N)

by reversing h-cobordisms over N (see [1]). Consider two G-manifolds M and N
together with an O(G)-equivalence A:n°M—n®N (see [1.1.4]) such that A*wy
=wy. See (1.1.10) for the definition of the equivariant first Stiefel-Whitney class
wy. Then 4 induces an isomorphism A.: Wh?(M)—Wh{ (N) compatible with the
involutions (see [1, 1.10 and 2.13]). It follows from the n-n-lemma (1.3.2) applied to
the empty normal map that there is a G-manifold N together with an O(G)-
equivalence 4: 7% N—% satisfying wy=2*[t,]. Thus we can define an involution

(3.5) « WhS(%,1,)>WhS(%,1,)

depending only on % and 1 by requiring that A:WhF(N)
—Wh(%,1t,) respects the involutions.

Next we consider the Tate cohomology group H*''(Z/2; Wh®(%,1,)). We
define an homomorphism

(3.6) O: LM (R)—»H* Y (Z)2; WhS(%,1,))

by sending a (n-+k)-dimensional normal map (f, f, ¢,0) to the image of the
equivariant Whitehead torsion whS(f)e Wh{(N) under A.. As R is simple and
whe(f)={0} we get whO(f)+(—1)* *(th(f)) 0 in WhS(N) (see [1,4.3]).
Thus wh( /) defines an element in H**'(Z/2; Wh®(%,1,)). Given a nullbordism
for (1. /. ¢, ¢) with underlying map (F, f,, f): (P, M, , M)—(Q, N, N) of triads,
we get whé(f)= —whS(F)—(—1)*- (wh®(F)) if all torsion elements are mapped
to Whe(%,1;) (cf. [1,4.3]). Hence whC(f) represents zero when (f. /. ¢.0) is
nullbordant. The map @ is obviously compatible with the addition.
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(3.7)  Theorem. Suppose that R is a simple geometric reference of ambient dimension
n satisfying the weak gap conditions (1.1.18). Then

O LU (R) A 1 (Z)2; WhS (9, 1,))
is injective for k=0 and bijective for k>1.

Proof. We start with injectivity. Assume that @(f, f, ¢, 0) is zero and that 4: ¢ N
—% is an O(G)-equivalence (cf. 1.3.2). Then whC(f)e H*"'(Z/2; Wh(N))
vanishes so wh9(f)y=u—(—1)*x (u) for some u. Let (P, M, M) be an h-cobor-
dism with wh®(M < P)=wh®(f)+u. Let (F, S ) (P, M+,M)—>(N><1 N x {0},
N xTUN x {1}) be a G-homotopy equivalence. Then wh%(F)= —u and we get

whe(f )=wh®(@F)—whe(f)
= — (=D (WhO(F) = whC(F)—u+(—1)* % () =0

Hence ( f, /. ¢, ¢)is nullbordant ; the necessary bundle data are easily constructed as
Fis a G-homotopy equivalence.

Now suppose k2 1. Considerue Wh®(%, 1) withu+(—1)* x () =0. By the n-n-
lemma (see 1.3.2.) applied to the empty normal map we obtain a G- surgery
problem (f, f. @, ) with reference map to Y*"'R such that 1:7°N—>% is an
O(G)-equivalence and wh(f)={0}. Construct (F, f,.f):(P.M,,M)—>(NxI,
N x{0},0N x TUN x {1}) such that (P, M, , M) is an h-cobordism and whS(F)=u.
Then we have

whe(f ) =wh(f,)+whC(f)=wh®(OF)
= —whS(F)—(—=1)* %« (wh(F))= —u—(— 1)+ (u) =0

One easily extends (F,f,,f) to a G-surgery problem with the required
properties. [

(3.8) Corollary. Under the assumptions of (3.7) there is an exact sequence
L O R) > Z) +,‘(Z"R)—>H"(Z/2 Whe (G, t,)) > L5, (O TR
Ll QTR s HN(Z)2: WhE (%, 1)) . O

§ 4. The Equivariant Surgery Sequence

For a (compact) G-manifold N it is a basic problem to classify its (simple) homo-
topy G-structures of pairs (M, /) with M a G-manifold and f: M—N a (simple)
G-homotopy equivalence (rel J). We can take manifold to mean either smooth or
locally linear PL.

The local tangent representations for M and N need not to agree, but we fix
them. To this end we pick an O(G)-functor

4.1) to:nN->B,

and consider triples (M, f,w) of a G-manifold M, a G-homotopy equivalence
J:M—N with ¢f an isomorphism and an O(G)-transformation w:tpy— f*t,.
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Given (M.f.w), there exists an (O(G)-transformation 1:t5—-tpy (of (O(G)-
functors with range BF,) uniquely determined by

(4.2) Deg (f.(f*towf)™)=1

(cf. [8]). We want to fix also 7 and let T be the triple 7= (ty, 7. k) where k =s or h
indicates if we work with simple G-homotopy equivalences or not: if x =s both f
and 7 should be simple, cf. (1.2.4).

Define the set of T-restricted homotopy G-structures ¥ J(N,dN) to be the
equivalence classes of triples (M, f, w) which satisfy (4.2) and where f is simple if
k=s. Two G-structures (M, f,.w,) and (M,, f;,w,) are equivalent if there is a
(stmple) G-homotopy equivalence of triads

F:(P,0Py, 0P )>(NXxI,Nx0,Nx1UdNxI),
and an O(G)-transformation
Q:tpp— F¥prie,,
and G-isomorphisms (diffeomorphisms or PL-isomorphisms)
u;: M,—»0.P

such that the obvious compatibility conditions are satisfied.

There is a similar definition of T-restricted normal maps .47 (N, dN) where we
drop that fis a (simple) G-homotopy equivalence but retain the bundle data via a
bundle map /: TM ®R*—¢, give an O(G)-transformation witpe— 1y, and still
require degree 1.

With these definitions it is easy to construct an action

Lr (NS 1, D Py, Y1) X SL(N,ON) = FL (N, dN)
and a map
n: g (N,ON)> N T(N,ON)

which is constant on orbits under « and a map given by the surgery obstruction,
cf. (1.§3)

AN TN, ONY> LK N, t,,tpy, 7).
One simply imitates the definitions from [13, ch. 10] using the n-n-theorem in the
definition of «. This gives:

(4.3)  Theorem. If both N and N x I satisfy the strong gap conditions (1.1.18) then
there is an exact sequence

Lra(mON. Y 1.3 tpy. Y. 1) 2 SI(NON) 25 /T (N, 0N)
N LN, ty,tpy, 1)

Thus 2= (0)=Im (1) and two elements 81,8, € 4 (N, ON) agree under n if and only if
they belong to the same orbit. [

If #&(N,ON) contains an isomorphism or, equlvalently, if t,~tpy then the
sequence in 4.3 can be continued to the left to give a long exact sequence. Set
R=(n°N, tpy,tpy,id) and suppose NxD"*! and N satisfy the strong gap
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conditions 1.1.18. Then the sequence

Liimt X"TIR) > SN D™ 8) " W I(Nx D™ )

(4.4) Lo L (TR

is exact if T=(tpy, id. k). The normal invariants are independent of k = or h, and
can, in favourable circumstances be given by an homotopy functor, see [3]and [10].
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