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Preface

The Isomorphism Conjectures due to Baum and Connes and to Farrell and Jones aim
at the topological 𝐾-theory of reduced group 𝐶∗-algebras and the algebraic 𝐾-and
𝐿-theory of group rings. These theories are of major interest for many reasons. For
instance, the algebraic 𝐿-groups are the recipients for various surgery obstructions
and hence highly relevant for the classification of manifolds. Other important ob-
structions such as Wall’s finiteness obstruction and Whitehead torsion take values in
algebraic K-groups. The topological 𝐾-groups of 𝐶∗-algebras play a central role in
index theory and the classification of 𝐶∗-algebras.

In general these 𝐾- and 𝐿-groups are very hard to analyze for group rings or
group 𝐶∗-algebras. The Isomorphism Conjectures identify them with equivariant
homology groups of classifying spaces for families of subgroups. As an illustration,
let us consider the special case that 𝐺 is a torsionfree group and 𝑅 is a regular
ring (with involution). Then the Isomorphism Conjectures predict that the so-called
assembly maps

𝐻𝑛 (𝐵𝐺; K(𝑅)) �−→ 𝐾𝑛 (𝑅𝐺);
𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) �−→ 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺);

𝐾𝑛 (𝐵𝐺)
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺)),

are isomorphisms for all 𝑛 ∈ Z. The target is the algebraic 𝐾-theory of the group ring
𝑅𝐺, the algebraic 𝐿-theory of 𝑅𝐺 with decoration ⟨−∞⟩, or the topological𝐾-theory
of the reduced group 𝐶∗-algebra 𝐶∗𝑟 (𝐺). The source is the evaluation of a specific
homology theory on the classifying space 𝐵𝐺, where 𝐻𝑛 ({•}; K(𝑅)) � 𝐾𝑛 (𝑅),
𝐻𝑛 ({•}; L⟨−∞⟩ (𝑅)) � 𝐿 ⟨−∞⟩𝑛 (𝑅), and 𝐾𝑛 ({•}) � 𝐾𝑛 (C) hold for all 𝑛 ∈ Z.

Since the sources of these assembly maps are much more accessible than the
targets, the Isomorphism Conjectures are key ingredients for explicit computations
of the 𝐾-and 𝐿-groups of group rings and reduced group 𝐶∗-algebras. These often
are motivated by and have applications to concrete problems that arise, for instance,
in the classification of manifolds or 𝐶∗-algebras.

The Baum-Connes Conjecture and the Farrell-Jones Conjecture imply many other
well-known conjectures. In a lot of cases these conjectures were not known to be
true for certain groups until the Baum-Connes Conjecture or the Farrell-Jones Con-
jecture was proved for them. Examples of such prominent conjectures are the Borel
Conjecture about the topological rigidity of aspherical closed manifolds, the (stable)
Gromov-Lawson-Rosenberg Conjecture about the existence of Riemannian metrics
with positive scalar curvature on closed Spin-manifolds, Kaplansky’s Idempotent
Conjecture and the Kadison Conjecture on the non-existence of non-trivial idempo-
tents in the group ring or the reduced group 𝐶∗-algebra of torsionfree groups, the
Novikov Conjecture about the homotopy invariance of higher signatures, and the
conjectures about the vanishing of the reduced projective class group of Z𝐺 and the
Whitehead group of 𝐺 for a torsionfree group 𝐺.

v



vi Preface

The Baum-Connes Conjecture and the Farrell-Jones Conjecture are still open
in general at the time of writing. However, tremendous progress has been made
on the class of groups for which they are known to be true. The techniques of
the sophisticated proofs stem from algebra, dynamical systems, geometry, group
theory, operator theory, and topology. The extreme broad scope of the Baum-Connes
Conjecture and the Farrell-Jones Conjecture is both the main challenge and the main
motivation for writing this book. We hope that, after having read parts of this
monograph, the reader will share the enthusiasm of the author for the Isomorphism
Conjectures.

The monograph is a guide to and gives a panorama of Isomorphism Conjectures
and related topics. It presents or at least indicates the most advanced results and
developments at the time of writing. It can be used by various groups of readers,
such as experts on the Baum-Connes Conjecture or the Farrell-Jones Conjecture,
experienced mathematicians, who may not be experts on these conjectures but want
to learn or just apply them, and also, of course, advanced undergraduate and graduate
students. References for further reading and information have been inserted.

We will give more information about the organization of the book and a user’s
guide in Section 1.11.

Bonn, May 2025 Wolfgang Lück
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Chapter 1
Introduction

The Isomorphism Conjectures due to Paul Baum and Alain Connes and to Tom
Farrell and Lowell Jones are important conjectures, which have many interesting
applications and consequences. However, they are not easy to formulate and it is a
priori not clear why the actual versions are the most promising ones. The current
versions are the final upshot of a longer process, which has led to them step by
step. They have been influenced and steered by various new results that have been
proved during the last decades and given new insight into the objects, problems, and
constructions at which these conjectures aim.

In this introduction we want to motivate these conjectures by explaining how one
can be led to them by general considerations and certain facts. We present brief
surveys about applications of these conjectures, their status, and the methods of
proof. We give information about the contents of this monograph including a user’s
guide.

1.1 Why Should we Care about Isomorphism Conjectures in
𝑲- and 𝑳-Theory?

In this section we give some background and motivation for the reader who has
no previous knowledge about the Baum-Connes Conjecture and the Farrell-Jones
Conjecture. An expert may skip this section.

The Baum-Connes Conjecture aims at the topological 𝐾-theory of the reduced
group 𝐶∗-algebra of a group, whereas the Farrell-Jones Conjecture is devoted to the
algebraic 𝐾- and 𝐿-theory of the group ring of a group. 𝐾- and 𝐿-theory are rather
sophisticated theories. Group rings are very difficult rings, for instance, they are in
general not commutative, are not Noetherian or regular, and may have zero-divisors.
So studying the algebraic 𝐾-theory and 𝐿-theory of group rings is hard and seems
at first glance to be a very special problem. So why should one care?

The answer to this question is that information about the 𝐾- or 𝐿-theory of group
rings or the topological 𝐾-theory of group 𝐶∗-algebras have many applications to
algebra, geometry, group theory, topology, and operator algebras and that meanwhile
these conjectures are known for a large class of groups.

1
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1.1.1 Projective Class Group

Let us illustrate this by considering the most prominent and easy to define 𝐾-group,
the projective class group 𝐾0 (𝑆) of a ring 𝑆. It is the abelian group which we obtain
from the Grothendieck construction applied to the abelian semigroup of isomorphism
classes of finitely generated projective 𝑆-modules under direct sum. Equivalently,
it can be described as the abelian group whose generators are isomorphism classes
[𝑃] of finitely generated projective 𝑆-modules 𝑃 and for every exact sequence
0→ 𝑃0 → 𝑃1 → 𝑃2 → 0 of finitely generated projective 𝑆-modules we require the
relation [𝑃1] = [𝑃0] + [𝑃2]. The reduced projective class group 𝐾0 (𝑆) of a ring 𝑆 is
obtained from 𝐾0 (𝑆) by dividing out the subgroup generated by all finitely generated
free 𝑆-modules. Any finitely generated projective 𝑆-module 𝑃 defines an element
[𝑃] in 𝐾0 (𝑆) and hence also a class [𝑃] in 𝐾0 (𝑆). The decisive property of 𝐾0 (𝑆)
is that [𝑃] = 0 holds in 𝐾0 (𝑆) if and only if 𝑃 is stably free, i.e., there are natural
numbers 𝑚 and 𝑛 satisfying 𝑃 ⊕ 𝑆𝑚 �𝑆 𝑆𝑛. So roughly speaking, [𝑃] ∈ 𝐾0 (𝑆)
measures the deviation of a finitely generated projective 𝑆-module 𝑃 from being
stably free.

Why are we especially interested in the case 𝑆 = 𝑅𝐺, where 𝑅 is a ring, 𝐺 is
a group, and 𝑅𝐺 is the group ring? (The precise definition of 𝑅𝐺 can be found in
Subsection 2.8.) One reason is that a representation of 𝐺 with coefficients in 𝑅 is
the same as an 𝑅𝐺-module. Another reason is that for a connected manifold or 𝐶𝑊-
complex its universal covering comes with an action of the fundamental group 𝜋 and
the cellular Z-chain complex of the universal covering is actually a free Z𝜋-chain
complex. The latter observation opens the door to connections of algebraic 𝐾-theory
to topological problems, as described next.

A 𝐶𝑊-complex 𝑋 is called finitely dominated if there is a finite 𝐶𝑊-complex 𝑌
and maps 𝑖 : 𝑋 → 𝑌 and 𝑟 : 𝑌 → 𝑋 such that 𝑟 ◦ 𝑖 is homotopic to id𝑋. Often one can
construct a finitely dominated𝐶𝑊-complex with interesting properties but one needs
to know whether it is homotopy equivalent to a finite 𝐶𝑊-complex. This problem
is decided by the finiteness obstruction of Wall. A finitely dominated connected
𝐶𝑊-complex 𝑋 with fundamental group 𝜋 determines an element 𝑜(𝑋) ∈ 𝐾0 (Z𝜋),
which vanishes if and only if 𝑋 is homotopy equivalent to a finite 𝐶𝑊-complex,
see Theorem 2.39. So it is interesting to know whether 𝐾0 (Z𝜋) vanishes because
then 𝑜(𝑋) is automatically trivial. One can actually show for a finitely presented
group 𝐺 that 𝐾0 (Z𝐺) vanishes if and only if every finitely dominated connected
𝐶𝑊-complex with fundamental group isomorphic to 𝐺 is homotopy equivalent to
a finite 𝐶𝑊-complex. So we have an algebraic assertion and a topological assertion
for a group 𝐺 which turn out to be equivalent.

The question whether a finitely dominated 𝐶𝑊-complex is homotopy equivalent
to a finite 𝐶𝑊-complex appears naturally in the construction of closed manifolds
with certain properties, since a closed manifold is homotopy equivalent to a finite
𝐶𝑊-complex, and one may be able to construct a finitely dominated𝐶𝑊-complex as
a first approximation up to homotopy. This is explained in Section 2.5. The Spherical
Space Form Problem 9.205 is a prominent example. It aims at the classification of
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closed manifolds whose universal coverings are diffeomorphic or homeomorphic to
the standard sphere.

If 𝑅 is a field and the group 𝐺 is torsionfree, then the Idempotent Conjecture of
Kaplansky predicts that the group ring 𝑅𝐺 has only trivial idempotent, namely, 0
and 1. Roughly speaking, non-trivial idempotents in a ring can be used to decompose
the ring into smaller pieces; think for instance of the theorems of Wedderburn and
Maschke which imply that for a finite group 𝐺 and a field 𝐹 of characteristic zero
the group ring 𝐹𝐺 is a product of matrix algebras over skew-fields. The Idempotent
Conjecture shows that this does not apply to torsionfree groups. On the other hand,
the non-existence of non-trivial idempotents gives hope that one can embed the
group ring 𝐹𝐺 of a torsionfree group and a field 𝐹 into a skew-field as conjectured
by Malcev, which opens the door to many applications in group theory and topology,
see Remark 2.85. This ring theoretic conjecture due to Kaplansky is related to the
projective class group, since it is known to be true if 𝐾0 (𝑅𝐺) vanishes. There are
many instances of groups where no algebraic proof is known for the Idempotent
Conjecture, but one can show with geometric, homotopy theoretic, and 𝐾-theoretic
methods that 𝐾0 (𝑅𝐺) vanishes.

A special version of the Farrell-Jones Conjecture, see Conjecture 2.60, predicts
that 𝐾0 (𝑅𝐺) vanishes if 𝐺 is torsionfree and 𝑅 is Z or a field.

All of this is explained in detail in Chapter 2.

1.1.2 The Whitehead Group

Here is another example of a nice connection between algebraic 𝐾-theory and
topology. One can define 𝐾1 (𝑆) of a ring 𝑆 as the abelianization of the general
linear group GL(𝑆) or, equivalently, as the abelian group generated by conjugacy
classes of automorphisms of finitely generated projective 𝑆-modules with relations
concerning exact sequences and composites of such automorphisms. Given a group
𝐺, the Whitehead group Wh(𝐺) is the quotient of𝐾1 (Z𝐺) by the subgroup generated
by trivial units. For more details we refer to Definition 3.1, Theorem 3.12, and
Definition 3.23. This is related to topology as follows.

Given a closed manifold 𝑀 , an ℎ-cobordism 𝑊 over 𝑀 is a compact manifold
𝑊 such that its boundary 𝜕𝑊 can be written as a disjoint union 𝜕𝑊 = 𝜕0𝑊 ⨿ 𝜕1𝑊 ,
there is a preferred identification of 𝑀 with 𝜕0𝑊 , and the inclusions 𝜕𝑘𝑊 → 𝑊

are homotopy equivalences for 𝑘 = 0, 1. The set of isomorphism classes relative
𝑀 of ℎ-cobordisms over 𝑀 can be identified with Wh(𝜋) if 𝑀 is connected, has
dimension ≥ 5, and 𝜋 denotes its fundamental group, see Theorem 3.47. This is
remarkable since the set of isomorphism classes of ℎ-cobordism relative 𝑀 over 𝑀
a priori depends on 𝑀 , whereas Wh(𝜋) depends only on the fundamental group.
In the classification of closed manifolds it is often a key step to decide whether an
ℎ-cobordism 𝑊 over 𝑀 is trivial, i.e., isomorphic relative 𝑀 to 𝑀 × [0, 1], since
this has the consequence that 𝑀 and 𝜕1𝑊 are isomorphic. It is not hard to show
that Wh({1}) is trivial which, together with the results above, implies the Poincaré
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Conjecture in dimensions ≥ 5, see Theorem 3.51. One can show for a finitely
presented group 𝐺 and any natural number 𝑛 ≥ 5 that Wh(𝐺) is trivial if and only
if for every connected 𝑛-dimensional closed manifold 𝑀 with fundamental group
isomorphic to 𝐺 every ℎ-cobordism over 𝑀 is trivial. So we have again an algebraic
assertion and a topological assertion for a group 𝐺 which turn out to be equivalent.

A special version of the Farrell-Jones Conjecture, see Conjecture 3.110, predicts
that Wh(𝐺) vanishes if𝐺 is torsionfree. All of this is explained in detail in Chapter 3.

1.1.3 The Borel Conjecture and the Novikov Conjecture

One of the author’s favorite conjectures is the Borel Conjecture. It predicts that
an aspherical closed manifold is topologically rigid. Aspherical means that the
universal covering is contractible and topologically rigid means that every homotopy
equivalence from a closed manifold to 𝑀 is homotopic to a homeomorphism. In
particular it implies that two aspherical closed manifolds are homeomorphic if and
only if their fundamental groups are isomorphic. One may view the Borel Conjecture
as the topological counterpart of Mostow rigidity, see Remark 9.169.

If𝐺 denotes the fundamental group of an aspherical closed manifold of dimension
≥ 5, then the Borel Conjecture for 𝑀 holds if 𝐺 satisfies both the 𝐾-theoretic and
the 𝐿-theoretic Farrell-Jones Conjecture for Z𝐺, see Theorem 9.171. Moreover,
all proofs of the Borel Conjecture in dimensions ≥ 4 are based on the Farrell-
Jones Conjecture. So we see again that the Farrell-Jones Conjecture has interesting
applications to topology.
𝐿-theory, which one may think of as the algebraic 𝐾-theory of quadratic forms

over finitely generated projective modules, is an important ingredient in the so-
called Surgery Program 3.53, whose highlight is the Surgery Exact Sequence, see
Theorem 9.127. It aims at the classification of closed manifolds, see Remark 3.53,
and was initiated by the classification of exotic spheres, see Remark 3.52.

All this is explained in Chapter 9. In particular, we refer to Sections 9.12, 9.14,
and 9.15.

Note that both the Baum-Connes Conjecture and the Farrell-Jones Conjecture
imply the prominent Novikov Conjecture about the homotopy invariance of higher
signatures, see Remark 9.143 and Theorem 14.29. The Novikov Conjecture and its
link to both the Baum-Connes Conjecture and the Farrell-Jones Conjecture triggered
a lot of interesting interactions and transfer of methods and techniques between
topology and operator theory.

1.1.4 Further Applications

There are many more striking applications of the Farrell-Jones Conjecture and the
Baum-Connes Conjecture to algebra, geometric group theory, geometry, topology,
and operator algebras, which are listed in Sections 13.12 and 14.8. We hope that, by
browsing through these sections, the reader will be convinced of the great interest
of these conjectures.
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1.1.5 Status of the Full Farrell-Jones Conjecture and the Baum-Connes
Conjecture with Coefficients

The Full Farrell-Jones Conjecture 13.30 implies all the variants of the Farrell-Jones
Conjecture scattered in this monograph, see Theorem 13.65. A list of all the versions
of the Farrell-Jones Conjecture can be found in Subsection 13.11.1.

The Baum Connes Conjecture with coefficients 14.11 is the most general variant
in the Baum-Connes setting.

The class of groups for which the Full Farrell-Jones Conjecture 13.30 is known
to be true is discussed in Theorem 16.1, whereas the class of groups for which the
Baum Connes Conjecture with coefficients 14.11 is known to be true is discussed
in Theorem 16.7. The question whether the Full Farrell-Jones Conjecture 13.30
might be true for all groups and how one might find counterexamples is treated in
Section 16.10. This should convince the reader that in many interesting cases one
knows that these conjectures are known to be true. Roughly speaking, in “daily life”
one can expect that the Farrell-Jones Conjecture is known to be true and one can just
apply it.

If one wants to figure out quickly whether a specific class of groups satisfies one
of these conjectures, one should take a look at Section 16.8. Open cases are discussed
in Section 16.9.

At the time of writing, no counterexamples to the Full Farrell-Jones Conjec-
ture 13.30 are known. This is also true for the Baum-Connes Conjecture 14.11
(without coefficients). Counterexamples to the Baum Connes Conjecture with coef-
ficients 14.11 are discussed in Remark 14.12.

1.1.6 Proofs

The proofs of the Farrell-Jones Conjecture or the Baum-Connes Conjecture are
sophisticated and require a lot of different techniques. The proof of inheritance
properties, such as the passage to subgroups, are usually based on homotopy theoretic
methods. The proofs for specific classes of groups, such as hyperbolic groups, are
based on transfer methods in the Farrell-Jones setting and on𝐾𝐾-theory in the Baum-
Connes setting and for both conjectures require additional geometric input, which
is the interesting and surprising part. For instance flow spaces play a prominent
role in the proof of the Farrell-Jones Conjecture for hyperbolic groups or finite-
dimensional CAT(0)-groups. It is intriguing and astonishing that the proofs of the
Idempotent Conjecture of Kaplansky, which is a purely ring theoretic statement, are
based for many groups on the proof of the Farrell-Jones Conjecture and thus use
geometric input such as flows and compactifications of certain spaces on which the
group in question acts. Often purely algebraic methods are not sufficient to prove the
Idempotent Conjecture.

The reader who wants to get a first impression about the proofs should consult
Chapter 19.
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1.2 The Statement of the Baum-Connes Conjecture and of the
Farrell-Jones Conjecture

Next we record the statements of the Baum-Connes Conjecture and Farrell-Jones
Conjecture. Explanations and motivations will follow. The versions stated below will
be generalized later.

Conjecture 1.1 (Baum-Connes Conjecture). Let 𝐺 be a group. Then there is for
every 𝑛 ∈ Z an isomorphism, called an assembly map,

𝐾𝐺𝑛 (𝐸𝐺)
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺)).

Conjecture 1.2. (Farrell-Jones Conjecture for 𝐾∗ (𝑅𝐺)). Let 𝐺 be a group. Let
𝑅 be an associative ring with unit. Then there is for every 𝑛 ∈ Z an isomorphism,
called an assembly map,

𝐻𝐺𝑛 (𝐸𝐺; K𝑅)
�−→ 𝐾𝑛 (𝑅𝐺).

Conjecture 1.3. (Farrell-Jones Conjecture for 𝐿 ⟨−∞⟩∗ (𝑅𝐺)). Let 𝐺 be a group.
Let 𝑅 be an associative ring with unit and involution. Then there is for every 𝑛 ∈ Z
an isomorphism, called an assembly map,

𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩
𝑅
) �−→ 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺).

The general pattern is that the target of the assembly map is what we want to
understand or to compute, namely, the 𝐾- and 𝐿-theory of group rings and group
𝐶∗-algebras, and that the source is a homological expression, which is much more
accessible than the source and depends only on the values of the 𝐾- or 𝐿-groups
under considerations for finite subgroups or for virtually cyclic subgroups of 𝐺. The
spaces 𝐸𝐺 and 𝐸𝐺 are classifying spaces for the family of finite subgroups and
the family of virtually cyclic subgroups, which are inserted in specific 𝐺-homology
theories.

1.3 Motivation for and Evolution of the Baum-Connes
Conjecture

We will start with the Isomorphism Conjecture that is the easiest and most convenient
to state and motivate, the Baum-Connes Conjecture for the topological 𝐾-theory of
reduced group 𝐶∗-algebras. Then we will pass to the Farrell-Jones Conjecture for
the algebraic 𝐾- and 𝐿-theory of group rings, which is more complicated due to the
appearance of Nil-terms.
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1.3.1 Topological 𝑲-Theory of Reduced Group 𝑪∗-Algebras

The target of the Baum-Connes Conjecture is the topological𝐾-theory of the reduced
group𝐶∗-algebra𝐶∗𝑟 (𝐺) of a group𝐺. We will consider discrete groups𝐺 only. One
defines the topological 𝐾-groups 𝐾𝑛 (𝐴) for any Banach algebra 𝐴 to be the abelian
group 𝐾𝑛 (𝐴) = 𝜋𝑛−1 (GL(𝐴)) for 𝑛 ≥ 1. The famous Bott Periodicity Theorem gives
a natural isomorphism 𝐾𝑛 (𝐴)

�−→ 𝐾𝑛+2 (𝐴) for 𝑛 ≥ 1. Finally one defines 𝐾𝑛 (𝐴)
for all 𝑛 ∈ Z so that the Bott isomorphism theorem is true for all 𝑛 ∈ Z. It turns
out that 𝐾0 (𝐴) is the same as the projective class group of the ring 𝐴, which is
the Grothendieck group of the abelian monoid of isomorphism classes of finitely
generated projective 𝐴-modules with the direct sum as addition. The topological
𝐾-theory of C = 𝐶∗𝑟 ({1}) is trivial in odd dimensions and isomorphic to Z in even
dimensions. More generally, for a finite group 𝐺 the topological 𝐾-theory of 𝐶∗𝑟 (𝐺)
is the complex representation ring 𝑅C (𝐺) in even dimensions and is trivial in odd
dimensions.

Let 𝑃 be an appropriate elliptic differential operator (or more generally an elliptic
complex) on a closed 𝑛-dimensional Riemannian manifold 𝑀 , for instance the Dirac
operator or the signature operator. Then one can consider its index in 𝐾𝑛 (C), which
is dimC (ker(𝑃)) − dimC (coker(𝑃)) ∈ Z for even 𝑛 and is zero for odd 𝑛. If 𝑀 comes
with an isometric𝐺-action of a finite group𝐺 and 𝑃 is compatible with the𝐺-action,
then ker(𝑃) and coker(𝑃) are complex finite-dimensional𝐺-representations and one
obtains an element in 𝐾𝑛 (𝐶∗𝑟 (𝐺)) = 𝑅C (𝐺) by [ker(𝑃)] − [coker(𝑃)] for even 𝑛.
Suppose that 𝐺 is an arbitrary discrete group and that 𝑀 is a (not necessarily com-
pact) 𝑛-dimensional smooth manifold without boundary with a proper cocompact
𝐺-action, a 𝐺-invariant Riemannian metric, and an appropriate elliptic differential
operator 𝑃 compatible with the 𝐺-action. An example is the universal covering
𝑀 = 𝑁 of an 𝑛-dimensional closed Riemannian manifold 𝑁 with 𝐺 = 𝜋1 (𝑁) and
the lift 𝑃 to 𝑁 of an appropriate elliptic differential operator 𝑃 on 𝑁 . Then one can
define an equivariant index of 𝑃 which takes values in 𝐾𝑛 (𝐶∗𝑟 (𝐺)). Therefore the
interest in 𝐾∗ (𝐶∗𝑟 (𝐺)) comes from the fact that it is the natural recipient for indices
of certain equivariant differential operators. All this will be explained in Chapter 10.

1.3.2 Homological Aspects

A first basic problem is to compute 𝐾∗ (𝐶∗𝑟 (𝐺)) or to identify it with more familiar
terms. The key idea comes from the observation that 𝐾∗ (𝐶∗𝑟 (𝐺)) has some homolog-
ical properties. More precisely, if𝐺 is the amalgamated free product𝐺 = 𝐺1 ∗𝐺0 𝐺2
for subgroups 𝐺𝑖 ⊆ 𝐺, then there is a long exact sequence
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(1.4) · · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺0))
𝐾𝑛 (𝐶∗𝑟 (𝑖1 ) )⊕𝐾𝑛 (𝐶∗𝑟 (𝑖2 ) )−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺1)) ⊕ 𝐾𝑛 (𝐶∗𝑟 (𝐺2))

𝐾𝑛 (𝐶∗𝑟 ( 𝑗1 ) )−𝐾𝑛 (𝐶∗𝑟 ( 𝑗2 ) )−−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺))
𝜕𝑛−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺0))

𝐾𝑛−1 (𝐶∗𝑟 (𝑖1 ) )⊕𝐾𝑛−1 (𝐶∗𝑟 (𝑖2 ) )−−−−−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺2)) ⊕ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺1))
𝐾𝑛−1 (𝐶∗𝑟 ( 𝑗1 ) )−𝐾𝑛−1 (𝐶∗𝑟 ( 𝑗2 ) )−−−−−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺))

𝜕𝑛−1−−−→ · · ·

where 𝑖1,𝑖2, 𝑗1, and 𝑗2 are the obvious inclusions, see [812, Theorem 18 on page
632]. If 𝜙 : 𝐺 → 𝐺 is a group automorphism and𝐺⋊𝜙 Z is the associated semidirect
product, then there is a long exact sequence

(1.5)

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺))
𝐾𝑛 (𝐶∗𝑟 (𝜙) )−id
−−−−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺))

𝐾𝑛 (𝐶∗𝑟 (𝑘 ) )−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺 ⋊𝜙 Z))
𝜕𝑛−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺))

𝐾𝑛−1 (𝐶∗𝑟 (𝜙) )−id
−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺))

𝐾𝑛−1 (𝐶∗𝑟 (𝑘 ) )−−−−−−−−−−→ · · ·

where 𝑘 is the obvious inclusion, see [811, Theorem 3.1 on page 151] or more
generally [812, Theorem 18 on page 632].

We compare this with group homology in order to explain the analogy with
homology. Recall that the classifying space 𝐵𝐺 of a group 𝐺 is an aspherical 𝐶𝑊-
complex whose fundamental group is isomorphic to𝐺 and that aspherical means that
all higher homotopy groups are trivial, or, equivalently, that the universal covering
is contractible. The classifying space 𝐵𝐺 is unique up to homotopy. If one has
an amalgamated free product 𝐺 = 𝐺1 ∗𝐺0 𝐺2, then one can find models for the
classifying spaces such that 𝐵𝐺𝑖 is a𝐶𝑊-subcomplex of 𝐵𝐺 and 𝐵𝐺 = 𝐵𝐺1∪𝐵𝐺2
and 𝐵𝐺0 = 𝐵𝐺1 ∩ 𝐵𝐺2. Thus we obtain a pushout of inclusions of 𝐶𝑊-complexes

𝐵𝐺0
𝐵𝑖1 //

𝐵𝑖2
��

𝐵𝐺1

𝐵 𝑗1

��
𝐵𝐺2

𝐵 𝑗2
// 𝐵𝐺.

It yields a long Mayer-Vietoris sequence for the cellular or singular homology

(1.6) · · · 𝜕𝑛+1−−−→ 𝐻𝑛 (𝐵𝐺0)
𝐻𝑛 (𝐵𝑖1 )⊕𝐻𝑛 (𝐵𝑖2 )−−−−−−−−−−−−−−−→ 𝐻𝑛 (𝐵𝐺1) ⊕ 𝐻𝑛 (𝐵𝐺2)

𝐻𝑛 (𝐵 𝑗1 )−𝐻𝑛 (𝐵 𝑗2 )−−−−−−−−−−−−−−−→ 𝐻𝑛 (𝐵𝐺)
𝜕𝑛−−→ 𝐻𝑛−1 (𝐵𝐺0)

𝐻𝑛−1 (𝐵𝑖1 )⊕𝐻𝑛−1 (𝐵𝑖2 )−−−−−−−−−−−−−−−−−−→ 𝐻𝑛−1 (𝐵𝐺2) ⊕ 𝐻𝑛−1 (𝐵𝐺1)
𝐻𝑛−1 (𝐵 𝑗1 )−𝐻𝑛−1 (𝐵 𝑗2 )−−−−−−−−−−−−−−−−−−→ 𝐻𝑛−1 (𝐵𝐺)

𝜕𝑛−1−−−→ · · · .
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If 𝜙 : 𝐺 → 𝐺 is a group automorphism, then a model for 𝐵(𝐺 ⋊𝜙 Z) is given by the
mapping torus of 𝐵𝜙 : 𝐵𝐺 → 𝐵𝐺, which is obtained from the cylinder 𝐵𝐺 × [0, 1]
by identifying the bottom and the top with the map 𝐵𝜙. Associated to a mapping
torus, there is the long exact sequence

(1.7) · · · 𝜕𝑛+1−−−→ 𝐻𝑛 (𝐵𝐺)
𝐻𝑛 (𝐵𝜙)−id
−−−−−−−−−→ 𝐻𝑛 (𝐵𝐺)

𝐻𝑛 (𝐵𝑘 )−−−−−−→ 𝐻𝑛 (𝐵(𝐺 ⋊𝜙 Z))
𝜕𝑛−−→ 𝐻𝑛−1 (𝐵𝐺)

𝐻𝑛−1 (𝐵𝜙)−id
−−−−−−−−−−−→ 𝐻𝑛−1 (𝐵𝐺)

𝐻𝑛 (𝐵𝑘 )−−−−−−→ · · ·

where 𝑘 is the obvious inclusion of 𝐵𝐺 into the mapping torus.

1.3.3 The Baum-Connes Conjecture for Torsionfree Groups

There is an obvious analogy between the sequences (1.4) and (1.6) and the se-
quences (1.5) and (1.7). On the other hand we get for the trivial group 𝐺 = {1}
that 𝐻𝑛 (𝐵{1}) = 𝐻𝑛 ({•}) is Z for 𝑛 = 0 and trivial for 𝑛 ≠ 0 so that the group
homology of 𝐵𝐺 cannot be the same as the topological 𝐾-theory of 𝐶∗𝑟 ({1}). But
there is a better candidate, namely take the topological 𝐾-homology of 𝐵𝐺 instead
of the singular homology. Topological 𝐾-homology is a homology theory defined
for 𝐶𝑊-complexes. At least we mention that for a topologist its definition is routine,
namely, it is the homology theory associated to the 𝐾-theory spectrum which de-
fines the topological 𝐾-theory of𝐶𝑊-complexes, i.e., the cohomology theory which
comes from considering vector bundles over 𝐶𝑊-complexes. In contrast to singular
homology, the topological 𝐾-homology of a point 𝐾𝑛 ({•}) is Z for even 𝑛 and is
trivial for 𝑛 odd. So we still get exact sequences (1.6) and (1.7) if we replace 𝐻∗ by
𝐾∗ everywhere and we have 𝐾𝑛 (𝐵{1}) � 𝐾𝑛 (𝐶∗𝑟 ({1}) for all 𝑛 ∈ Z. This leads to
the following conjecture.

Conjecture 1.8 (Baum-Connes Conjecture for torsionfree groups). Let 𝐺 be a
torsionfree group. Then there is for every 𝑛 ∈ Z an isomorphism, called an assembly
map,

𝐾𝑛 (𝐵𝐺)
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺)).

This is indeed a formulation which will turn out to be equivalent to the Baum-
Connes Conjecture 1.1, provided that 𝐺 is torsionfree. Conjecture 1.8 cannot hold
in general as the example of a finite group 𝐺 already shows. Namely, if 𝐺 is finite,
then the obvious inclusion induces an isomorphism 𝐾𝑛 (𝐵{1}) ⊗Z Q

�−→ 𝐾𝑛 (𝐵𝐺) ⊗Z
Q for every 𝑛 ∈ Z, whereas 𝐾0 (𝐶∗𝑟 ({1}) → 𝐾0 (𝐶∗𝑟 (𝐺)) agrees with the map
𝑅C ({1}) → 𝑅C (𝐺), which is rationally bijective if and only if 𝐺 itself is trivial.
Hence Conjecture 1.8 is not true for non-trivial finite groups.
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1.3.4 The Baum-Connes Conjecture

What is going wrong? The sequences (1.4) and (1.5) exist regardless of whether the
groups are torsionfree or not. More generally, if 𝐺 acts on a tree, then they can be
combined to compute the 𝐾-theory 𝐾∗ (𝐶∗𝑟 (𝐺)) of a group 𝐺 by a certain Mayer-
Vietoris sequence from the stabilizers of the vertices and edges, see Pimsner [812,
Theorem 18 on page 632]). In the special case where all stabilizers are finite, one
sees that 𝐾∗ (𝐶∗𝑟 (𝐺)) is built by the topological 𝐾-theory of the finite subgroups of𝐺
in a homological fashion. This leads to the idea that 𝐾∗ (𝐶∗𝑟 (𝐺)) can be computed in
a homological way, but the building blocks do not only consist of 𝐾∗ (𝐶∗𝑟 ({1})) alone
but of 𝐾∗ (𝐶∗𝑟 (𝐻)) for all finite subgroups 𝐻 ⊆ 𝐺. This suggests to study equivariant
topological 𝐾-theory. It assigns to every proper 𝐺-𝐶𝑊-complex 𝑋 a sequence of
abelian groups 𝐾𝐺𝑛 (𝑋) for 𝑛 ∈ Z such that𝐺-homotopy invariance holds and Mayer-
Vietoris sequences exist. A proper 𝐺-𝐶𝑊-complex is a 𝐶𝑊-complex with 𝐺-action
such that for every 𝑔 ∈ 𝐺 and every open cell 𝑒with 𝑒∩𝑔 ·𝑒 ≠ ∅we have 𝑔𝑥 = 𝑥 for all
𝑥 ∈ 𝑒 and all isotropy groups are finite. Two interesting features are that 𝐾𝐺𝑛 (𝐺/𝐻)
agrees with 𝐾𝑛 (𝐶∗𝑟 (𝐻)) for every finite subgroup 𝐻 ⊆ 𝐺 and that for a free 𝐺-𝐶𝑊-
complex 𝑋 and 𝑛 ∈ Z we have a natural isomorphism 𝐾𝐺𝑛 (𝑋)

�−→ 𝐾𝑛 (𝐺\𝑋). Recall
that 𝐸𝐺 is a free𝐺-𝐶𝑊-complex which is contractible and that 𝐸𝐺 → 𝐺\𝐸𝐺 = 𝐵𝐺

is the universal covering of 𝐵𝐺. We can reformulate Conjecture 1.8 by stating an
isomorphism

𝐾𝐺𝑛 (𝐸𝐺)
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺)).

Now suppose that 𝐺 acts on a tree 𝑇 with finite stabilizers. Then the computation of
Pimsner [812, Theorem 18 on page 632]) mentioned above can be rephrased to the
statement that there is an isomorphism

𝐾𝐺𝑛 (𝑇)
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺)).

In particular the left-hand side is independent of the tree 𝑇 , on which𝐺 acts by finite
stabilizers. This can be explained as follows. It is known that for every finite subgroup
𝐻 ⊆ 𝐺 the 𝐻-fixed point set 𝑇 is again a non-empty tree and hence contractible.
This implies that two trees 𝑇1 and 𝑇2, on which 𝐺 acts with finite stabilizers, are
𝐺-homotopy equivalent and hence have the same equivariant topological 𝐾-theory.
The same remark applies to 𝐾𝑛 (𝐵𝐺) and 𝐾𝐺𝑛 (𝐸𝐺), namely, two models for 𝐵𝐺
are homotopy equivalent and two models for 𝐸𝐺 are 𝐺-homotopy equivalent and
therefore 𝐾𝑛 (𝐵𝐺) and 𝐾𝐺𝑛 (𝐸𝐺) are independent of the choice of a model. This leads
to the idea to look for an appropriate proper𝐺-𝐶𝑊-complex 𝐸𝐺 = 𝐸FIN (𝐺), which
is characterized by a certain universal property and is unique up to 𝐺-homotopy,
such that for a torsionfree group 𝐺 we have 𝐸𝐺 = 𝐸𝐺, for a tree on which 𝐺 acts
with finite stabilizers, we have 𝐸𝐺 = 𝑇 , and there is an isomorphism

𝐾𝐺𝑛 (𝐸𝐺)
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺)).
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In particular for a finite group we would like to have 𝐸𝐺 = 𝐺/𝐺 = {•} and then the
desired isomorphism above is true for trivial reasons. Recall that 𝐸𝐺 is characterized
up to𝐺-homotopy by the property that it is a𝐺-𝐶𝑊-complex such that 𝐸𝐺𝐻 is empty
for 𝐻 ≠ {1} and is contractible for 𝐻 = {1}. Having the case of a tree on which
𝐺 acts with finite stabilizers in mind, we define the classifying space for proper
𝐺-actions 𝐸𝐺 to be a 𝐺-𝐶𝑊-complex such that 𝐸𝐺𝐻 is empty for |𝐻 | = ∞ and is
contractible for |𝐻 | < ∞. Indeed, two models for 𝐸𝐺 are 𝐺-homotopy equivalent, a
tree on which 𝐺 acts with finite stabilizers is a model for 𝐸𝐺, we have 𝐸𝐺 = 𝐸𝐺 if
and only if 𝐺 is torsionfree, and 𝐸𝐺 = 𝐺/𝐺 = {•} if and only if 𝐺 is finite. This
leads to the Baum-Connes Conjecture, stated already as Conjecture 1.1. Classifying
spaces for families will be treated in detail in Chapter 11.

The Baum-Connes Conjecture 1.1 makes sense for all groups, and no counterex-
amples are known at the time of writing. The Baum-Connes Conjecture 1.1 reduces
in the torsionfree case to Conjecture 1.8 and is consistent with the result of Pim-
sner [812, Theorem 18 on page 632] for𝐺 acting on a tree with finite stabilizers. It is
obviously true for finite groups 𝐺. Pimsner’s result holds more generally for groups
acting on trees with not necessarily finite stabilizers. So one should get the analo-
gous result for the left-hand side of the isomorphism appearing in the Baum-Connes
Conjecture 1.1. Essentially this boils down to the question whether the analogs of the
long exact sequences (1.4) and (1.5) hold for the left side of the isomorphism appear-
ing in the Baum-Connes Conjecture 1.1. This follows for (1.4) from the fact that for
𝐺 = 𝐺1 ∗𝐺0 𝐺2 one can find appropriate models for the classifying spaces for proper
𝐺-actions such that there is a 𝐺-pushout of inclusions of proper 𝐺-𝐶𝑊-complexes

𝐺 ×𝐺0 𝐸𝐺0 //

��

𝐺 ×𝐺1 𝐸𝐺1

��
𝐺 ×𝐺2 𝐸𝐺2 // 𝐸𝐺

and for a subgroup 𝐻 ⊆ 𝐺 and a proper 𝐻-𝐶𝑊-complex 𝑋 there is a natural
isomorphism

𝐾𝐻𝑛 (𝑋)
�−→ 𝐾𝐺𝑛 (𝐺 ×𝐻 𝑋).

Thus the associated long exact Mayer-Vietoris sequence yields the long exact se-
quence

· · · 𝜕𝑛+1−−−→ 𝐾
𝐺0
𝑛 (𝐸𝐺0) → 𝐾𝐺1

𝑛 (𝐸𝐺1) ⊕ 𝐾𝐺2
𝑛 (𝐸𝐺2) → 𝐾𝐺𝑛 (𝐸𝐺)

𝜕𝑛−−→
𝐾
𝐺0
𝑛−1 (𝐸𝐺0) → 𝐾

𝐺1
𝑛−1 (𝐸𝐺1) ⊕ 𝐾𝐺2

𝑛−1 (𝐸𝐺2) → 𝐾
𝐺0
𝑛−1 (𝐸𝐺) → · · ·

which corresponds to (1.4). For (1.5) one uses the fact that for a group automorphism
𝜙 : 𝐺 �−→ 𝐺 the 𝐺 ⋊𝜙 Z-𝐶𝑊-complex given by the bilaterally infinite mapping
telescope of the 𝜙-equivariant map 𝐸𝜙 : 𝐸𝐺 → 𝐸𝐺 is a model for 𝐸 (𝐺 ⋊𝜙 Z).
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In general 𝐾𝐺𝑛 (𝐸𝐺) is much bigger than 𝐾𝐺𝑛 (𝐸𝐺) � 𝐾𝑛 (𝐵𝐺) and the canonical
map 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝐺𝑛 (𝐸𝐺) is rationally injective but not necessarily integrally
injective.

1.3.5 Reduced versus Maximal Group 𝑪∗-Algebras

All the arguments above also apply to the maximal group 𝐶∗-algebra, which has
even better functorial properties than the reduced group 𝐶∗-algebra. So a priori one
may think that one should use the maximal group 𝐶∗-algebra instead of the reduced
one. However, the version for the maximal group 𝐶∗-algebra is not true in general
and the version for the reduced group𝐶∗-algebra seems to be the right one. This will
be discussed in more detail in subsection 14.5.1.

If one considers instead of the reduced group𝐶∗-algebra the Banach group algebra
𝐿1 (𝐺), one obtains the Bost Conjecture 14.23.

1.3.6 Applications of the Baum-Connes Conjecture

The assembly map appearing in the Baum-Connes Conjecture 1.1 has an index-
theoretic interpretation. An element in 𝐾𝐺0 (𝐸𝐺) can be represented by a pair
(𝑀, 𝑃∗) consisting of a cocompact proper smooth 𝑛-dimensional 𝐺-manifold 𝑀

with a 𝐺-invariant Riemannian metric together with an elliptic 𝐺-complex 𝑃∗ of
differential operators of order 1 on 𝑀 and its image under the assembly map is a
certain equivariant index ind𝐶∗𝑟 (𝐺) (𝑀, 𝑃∗) in 𝐾𝑛 (𝐶∗𝑟 (𝐺)). There are many impor-
tant consequences of the Baum-Connes Conjecture such as the Kadison Conjecture,
see Subsection 10.4.2, the stable Gromov-Lawson-Rosenberg Conjecture, see Sub-
section 14.8.4, the Novikov Conjecture, see Section 9.14, and the (Modified) Trace
Conjecture, see Subsections 10.4.1 and 14.8.3.

A summary of the applications of the Baum-Connes Conjecture is given in
Section 14.8.

1.4 Motivation for and Evolution of the Farrell-Jones Conjecture
for 𝑲-Theory

Next we want to deal with the algebraic 𝐾-groups 𝐾𝑛 (𝑅𝐺) of the group ring 𝑅𝐺.
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1.4.1 Algebraic 𝑲-Theory of Group Rings

For an associative ring with unit 𝑅 one defines 𝐾0 (𝑅) to be the projective class
group of 𝑅 and 𝐾1 (𝑅) to be the abelianization of GL(𝑅) = colim𝑛→∞ GL𝑛 (𝑅).
The higher algebraic 𝐾-groups 𝐾𝑛 (𝑅) for 𝑛 ≥ 1 are the homotopy groups of a
certain 𝐾-theory space associated to the category of finitely generated projective
𝑅-modules. One can define negative 𝐾-groups 𝐾𝑛 (𝑅) for 𝑛 ≤ −1 by a certain
contracting procedure applied to 𝐾0 (𝑅). Finally there exists a 𝐾-theory spectrum
K(𝑅) such that 𝜋𝑛 (K(𝑅)) = 𝐾𝑛 (𝑅) holds for every 𝑛 ∈ Z. If Z→ 𝑅 is the obvious
ring map sending 𝑛 to 𝑛 · 1𝑅, then one defines for 𝑛 ≤ 1 the reduced 𝐾-groups to be
the cokernel of the induced map 𝐾𝑛 (Z) → 𝐾𝑛 (𝑅). The Whitehead group Wh(𝐺)
of a group 𝐺 is the quotient of 𝐾1 (Z𝐺) by elements given by (1, 1)-matrices of the
shape (±𝑔) for 𝑔 ∈ 𝐺.

The reduced projective class group 𝐾0 (Z𝐺) is the recipient for the finite-
ness obstruction of a finitely dominated 𝐶𝑊-complex 𝑋 with fundamental group
𝐺 = 𝜋1 (𝑋). Finitely dominated means that there is a finite 𝐶𝑊-complex 𝑌 and
maps 𝑖 : 𝑋 → 𝑌 and 𝑟 : 𝑌 → 𝑋 such that 𝑟 ◦ 𝑖 is homotopic to the identity on 𝑋 .
The Whitehead group Wh(𝐺) is the recipient of the Whitehead torsion of a ho-
motopy equivalence of finite 𝐶𝑊-complexes and of a compact ℎ-cobordism over
a closed manifold, where 𝐺 is the fundamental group. An ℎ-cobordism 𝑊 over 𝑀
consists of a manifold 𝑊 whose boundary is the disjoint union 𝜕𝑊 = 𝜕0𝑊

∐
𝜕1𝑊

such that both inclusions 𝜕𝑖𝑊 → 𝑊 are homotopy equivalences, together with an
isomorphism 𝑀

�−→ 𝜕0𝑊 . The finiteness obstruction and the Whitehead torsion are
very important topological obstructions whose vanishing has interesting geometric
and topological consequences. The finiteness obstruction vanishes if and only if the
finitely dominated 𝐶𝑊-complex under consideration is homotopy equivalent to a
finite 𝐶𝑊-complex. The Whitehead torsion of a compact ℎ-cobordism𝑊 over 𝑀 of
dimension ≥ 6 vanishes if and only if 𝑊 is trivial, i.e., is isomorphic to a cylinder
𝑀 × [0, 1] relative 𝑀 = 𝑀 × {0}. This explains why topologists are interested in
𝐾𝑛 (Z𝐺) for groups 𝐺.

All these definitions and results will be explained in Chapters 2, 3, 4, 5, and 6.

1.4.2 Appearance of Nil-Terms

The situation for the algebraic 𝐾-theory of 𝑅𝐺 is more complicated than the one
for the topological 𝐾-theory of 𝐶∗𝑟 (𝐺). As a special case of the sequence (1.5) we
obtain an isomorphism

𝐾𝑛 (𝐶∗𝑟 (𝐺 × Z)) = 𝐾𝑛 (𝐶∗𝑟 (𝐺)) ⊕ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺)).

For algebraic 𝐾-theory the analog is the Bass-Heller-Swan decomposition

𝐾𝑛 (𝑅[Z]) � 𝐾𝑛 (𝑅) ⊕ 𝐾𝑛−1 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅)



14 1 Introduction

where certain additional terms, the Nil-terms 𝑁𝐾𝑛 (𝑅), appear, see Subsection 6.3.4.
If one replaces 𝑅 by 𝑅𝐺, one gets

𝐾𝑛 (𝑅[𝐺 × Z]) � 𝐾𝑛 (𝑅𝐺) ⊕ 𝐾𝑛−1 (𝑅𝐺) ⊕ 𝑁𝐾𝑛 (𝑅𝐺) ⊕ 𝑁𝐾𝑛 (𝑅𝐺).

Such correction terms in the form of Nil-terms also appear when one wants to get
analogs of the sequences (1.4) and (1.5) for algebraic 𝐾-theory, see Section 6.9.

1.4.3 The Farrell-Jones Conjecture for 𝑲∗(𝑹𝑮) for Regular Rings and
Torsionfree Groups

Let 𝑅 be a regular ring, i.e., it is Noetherian and every 𝑅-module possesses a
finite-dimensional projective resolution. For instance, any principal ideal domain is a
regular ring. Then one can prove in many cases for torsionfree groups that the analogs
of the sequences (1.4) and (1.5) hold for algebraic 𝐾-theory, see Waldhausen [974]
and [977]. The same reasoning as in the Baum-Connes Conjecture for torsionfree
groups leads to the following conjecture.

Conjecture 1.9. (Farrell-Jones Conjecture for 𝐾∗ (𝑅𝐺) for torsionfree groups
and regular rings). Let 𝐺 be a torsionfree group and let 𝑅 be a regular ring. Then
there is for every 𝑛 ∈ Z an isomorphism

𝐻𝑛 (𝐵𝐺; K(𝑅)) �−→ 𝐾𝑛 (𝑅𝐺).

Here 𝐻∗ (−; K(𝑅)) is the homology theory associated to the 𝐾-theory spectrum of 𝑅.
It is a homology theory with the property that𝐻𝑛 ({•}; K(𝑅)) = 𝜋𝑛 (K(𝑅)) = 𝐾𝑛 (𝑅)
holds for every 𝑛 ∈ Z.

1.4.4 The Farrell-Jones Conjecture for 𝑲∗(𝑹𝑮) for Regular Rings

If one drops the condition that 𝐺 is torsionfree but requires that the order of every
finite subgroup of 𝐺 is invertible in 𝑅, then in many cases one can still prove that
the analogs of the sequences (1.4) and (1.5) hold for algebraic 𝐾-theory. The same
reasoning as in the Baum-Connes Conjecture leads to the following conjecture.

Conjecture 1.10. (Farrell-Jones Conjecture for 𝐾∗ (𝑅𝐺) for regular rings). Let
𝐺 be a group. Let 𝑅 be a regular ring such that |𝐻 | is invertible in 𝑅 for every finite
subgroup 𝐻 ⊆ 𝐺. Then there is for every 𝑛 ∈ Z an isomorphism

𝐻𝐺𝑛 (𝐸𝐺; K𝑅)
�−→ 𝐾𝑛 (𝑅𝐺).
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Here 𝐻𝐺𝑛 (−; K𝑅) is an appropriate 𝐺-homology theory with the property that
𝐻𝐺𝑛 (𝐺/𝐻; K𝑅) � 𝐻𝐻𝑛 ({•}; K𝑅) � 𝐾𝑛 (𝑅𝐻) holds for every subgroup 𝐻 ⊆ 𝐺

and every 𝑛 ∈ Z, and the isomorphism above is induced by the 𝐺-map 𝐸𝐺 → {•}.
Conjecture 1.10 reduces to Conjecture 1.9 if 𝐺 is torsionfree.

1.4.5 The Farrell-Jones Conjecture for 𝑲∗(𝑹𝑮)

Conjecture 1.9 can be applied in the case 𝑅 = Z, which is not true for Conjecture 1.10.
So what is the right formulation for arbitrary rings 𝑅? The idea is that one not only
needs to take all finite subgroups into account but also all virtually cyclic subgroups.
A group is called virtually cyclic if it is finite or contains Z as subgroup of finite
index. Namely, let 𝐸𝐺 = 𝐸VCY (𝐺) be the classifying space for the family of
virtually cyclic subgroups, i.e., a𝐺-𝐶𝑊-complex 𝐸𝐺 such that 𝐸𝐺𝐻 is contractible
for every virtually cyclic subgroup 𝐻 ⊆ 𝐺 and is empty for every subgroup 𝐻 ⊆ 𝐺
which is not virtually cyclic. The 𝐺-space 𝐸𝐺 is unique up to 𝐺-homotopy. These
considerations lead to the Farrell-Jones Conjecture for 𝐾∗ (𝑅𝐺) stated already as
Conjecture 1.2.

Conjecture 1.2 makes sense for all groups and rings, and no counterexamples
are known at the time of writing. We have absorbed all the Nil-phenomena into the
source by replacing 𝐸𝐺 by 𝐸𝐺. There is a certain price to pay since often there
are nice small geometric models for 𝐸𝐺, whereas the spaces 𝐸𝐺 are much harder
to analyze and are in general huge. There are up to 𝐺-homotopy unique 𝐺-maps
𝐸𝐺 → 𝐸𝐺 and 𝐸𝐺 → 𝐸𝐺 which yield maps

𝐻𝑛 (𝐵𝐺; K(𝑅)) � 𝐻𝐺𝑛 (𝐸𝐺; K𝑅) → 𝐻𝐺𝑛 (𝐸𝐺; K𝑅) → 𝐻𝐺𝑛 (𝐸𝐺; K𝑅).

We will later see that there is a splitting, see Theorem 13.36,

𝐻𝐺𝑛 (𝐸𝐺; K𝑅) � 𝐻𝐺𝑛 (𝐸𝐺; K𝑅) ⊕ 𝐻𝐺𝑛 (𝐸𝐺, 𝐸𝐺; K𝑅)(1.11)

where 𝐻𝐺𝑛 (𝐸𝐺; K𝑅) is the comparatively easy homological part and all Nil-type
information is contained in 𝐻𝐺𝑛 (𝐸𝐺, 𝐸𝐺; K𝑅). If 𝑅 is regular and the order of any
finite subgroup of𝐺 is invertible in 𝑅, then𝐻𝐺𝑛 (𝐸𝐺, 𝐸𝐺; K𝑅) is trivial and hence the

natural map 𝐻𝐺𝑛 (𝐸𝐺; K𝑅)
�−→ 𝐻𝐺𝑛 (𝐸𝐺; K𝑅) is bijective. Therefore Conjecture 1.2

reduces to Conjecture 1.9 and Conjecture 1.10 when they apply.
In the Baum-Connes setting the natural map 𝐾𝐺𝑛 (𝐸𝐺)

�−→ 𝐾𝐺𝑛 (𝐸𝐺) is always
bijective.
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1.4.6 Applications of the Farrell-Jones Conjecture for 𝑲∗(𝑹𝑮)

We have 𝐾𝑛 (Z) = 0 for 𝑛 ≤ −1. Both the map Z
�−→ 𝐾0 (Z) that sends 𝑛 to 𝑛 · [Z]

and the map {±1} → 𝐾1 (Z) that sends ±1 to the class of the (1, 1)-matrix (±1) are
bijective. Therefore an easy spectral sequence argument shows that Conjecture 1.9
implies

Conjecture 1.12. (Farrell-Jones Conjecture 𝐾𝑛 (Z𝐺) in dimensions 𝑛 ≤ 1). Let
𝐺 be a torsionfree group. Then 𝐾𝑛 (Z𝐺) = 0 for 𝑛 ∈ Z, 𝑛 ≤ 0 and Wh(𝐺) = 0.

In particular, the finiteness obstruction and the Whitehead torsion are always
zero for torsionfree fundamental groups. This implies that every ℎ-cobordism over
a simply connected 𝑑-dimensional closed manifold for 𝑑 ≥ 5 is trivial and thus
the Poincaré Conjecture in dimensions ≥ 6 (and with some extra effort also in
dimension 𝑑 = 5). This will be explained in Section 3.5. The Farrell-Jones Conjecture
for 𝐾-theory, see Conjecture 1.2, implies the Bass Conjecture, see Section 2.10.
Kaplansky’s Idempotent Conjecture follows from the Farrell-Jones Conjecture for
𝐾-theory for torsionfree groups and regular rings, see Conjecture 1.9, as explained
in Section 2.9. Further applications of the Conjecture 1.9, e.g., to pseudoisotopy and
to automorphisms of manifolds, will be discussed in Section 9.21.

A summary of the applications of the Farrell-Jones Conjecture is given in Sec-
tion 13.12.

1.5 Motivation for and Evolution of the Farrell-Jones Conjecture
for 𝑳⟨−∞⟩

∗ (𝑹𝑮)

Next we want to deal with the algebraic 𝐿-groups 𝐿 𝜖𝑛 (𝑅𝐺) of the group ring 𝑅𝐺 of
a group 𝐺 with coefficients in an associative ring 𝑅 with unit and involution.

1.5.1 Algebraic 𝑳-Theory of Group Rings

Let 𝑅 be an associative ring with unit. An involution of rings 𝑅 → 𝑅, 𝑟 ↦→ 𝑟 on
𝑅 is a map satisfying 𝑟 + 𝑠 = 𝑟 + 𝑠, 𝑟𝑠 = 𝑠 𝑟, 0 = 0, 1 = 1, and 𝑟 = 𝑟 for all
𝑟, 𝑠 ∈ 𝑅. Given a ring with involution, the group ring 𝑅𝐺 inherits an involution by∑
𝑔∈𝐺 𝑟𝑔 · 𝑔 =

∑
𝑔∈𝐺 𝑟 · 𝑔−1. If the coefficient ring 𝑅 is commutative, we usually

use the trivial involution 𝑟 = 𝑟. Given a ring with involution, one can associate to
it quadratic 𝐿-groups 𝐿ℎ𝑛 (𝑅) for 𝑛 ∈ Z. The abelian group 𝐿ℎ0 (𝑅) can be identified
with the Witt group of non-degenerate quadratic forms on finitely generated free 𝑅-
modules, where every hyperbolic quadratic form represents the zero element and the
addition is given by the orthogonal sum of hyperbolic quadratic forms. The abelian
group 𝐿ℎ2 (𝑅) is essentially given by the skew-symmetric versions. One defines
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𝐿ℎ1 (𝑅) and 𝐿ℎ3 (𝑅) in terms of automorphism of quadratic forms. The 𝐿-groups are
four-periodic, i.e., there is a natural isomorphism 𝐿ℎ𝑛 (𝑅)

�−→ 𝐿ℎ
𝑛+4 (𝑅) for 𝑛 ∈ Z. If

one uses finitely generated projective 𝑅-modules instead of finitely generated free
𝑅-modules, one obtains the proper quadratic 𝐿-groups 𝐿 𝑝𝑛 (𝑅) for 𝑛 ∈ Z. For every
𝑗 ∈ {−∞} ⨿ { 𝑗 ∈ Z | 𝑗 ≤ 1} there are versions 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅), where ⟨ 𝑗⟩ is called a
decoration. The decorations 𝑗 = 0, 1 correspond to the decorations 𝑝, ℎ. If 𝑅 is Z𝐺,
one uses finitely generated based free Z𝐺-modules and takes the Whitehead torsion
into account, then one obtains the simple quadratic 𝐿-groups 𝐿𝑠𝑛 (Z𝐺) = 𝐿

⟨2⟩
𝑛 (Z𝐺)

for 𝑛 ∈ Z.
The relevance of the 𝐿-groups comes from the fact that they are the recipients

for various surgery obstructions. The fundamental surgery problem is the following.
Consider a map 𝑓 : 𝑀 → 𝑋 from a closed manifold 𝑀 to a finite Poincaré complex
𝑋 . We want to know whether we can change it by a process called surgery to a map
𝑔 : 𝑁 → 𝑋 with a closed manifold 𝑁 as source and the same target such that 𝑔 is
a homotopy equivalence. This may answer the question whether a finite Poincaré
complex 𝑋 is homotopy equivalent to a closed manifold. Note that a space which
is homotopy equivalent to a closed manifold must be a finite Poincaré complex, but
not every finite Poincaré complex is homotopy equivalent to a closed manifold. If
𝑓 comes with additional bundle data and has degree 1, we can find 𝑔 if and only if
the so-called surgery obstruction of 𝑓 vanishes, which takes values in 𝐿ℎ𝑛 (Z𝐺) for
𝑛 = dim(𝑋) and 𝐺 = 𝜋1 (𝑋). If we want 𝑔 to be a simple homotopy equivalence,
the obstruction lives in 𝐿𝑠𝑛 (Z𝐺). We see that, analogous to the finiteness obstruction
in 𝐾0 (Z𝐺) and the Whitehead torsion in Wh(𝐺), the algebraic 𝐿-groups are the
recipients for important obstructions whose vanishing has interesting geometric
and topological consequences. Also the question whether two closed manifolds are
diffeomorphic or homeomorphic can be decided via surgery theory, of which the
𝐿-groups are a part.

More explanations about 𝐿-groups and surgery theory will be given in Chapter 9.

1.5.2 The Farrell-Jones Conjecture for 𝑳∗(𝑹𝑮)[1/2]

If we invert 2, i.e., if we consider the localization 𝐿 ⟨− 𝑗 ⟩𝑛 (𝑅𝐺) [1/2], then there is no
difference between the various decorations and the analogs of the sequences (1.4)
and (1.5) are true for 𝐿-theory, see Cappell [204]. The same reasoning as for the
Baum-Connes Conjecture leads to the following conjecture.

Conjecture 1.13. (Farrell-Jones Conjecture for 𝐿∗ (𝑅𝐺) [1/2]). Let𝐺 be a group.
Let 𝑅 be an associative ring with unit and involution. Then there is for every 𝑛 ∈ Z
and every decoration 𝑗 an isomorphism

𝐻𝐺𝑛 (𝐸𝐺; L⟨ 𝑗 ⟩
𝑅
) [1/2] �−→ 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅𝐺) [1/2] .
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Here 𝐻𝐺𝑛 (−; L⟨ 𝑗 ⟩
𝑅
) is an appropriate 𝐺-homology theory with the property that

𝐻𝐺𝑛 (𝐺/𝐻; L⟨ 𝑗 ⟩
𝑅
) � 𝐻𝐻𝑛 ({•}; L⟨ 𝑗 ⟩

𝑅
) � 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅𝐻) holds for every subgroup 𝐻 ⊆ 𝐺

and every 𝑛 ∈ Z and the isomorphism above is induced by the 𝐺-map 𝐸𝐺 → {•}.

1.5.3 The Farrell-Jones Conjecture for 𝑳⟨−∞⟩
∗ (𝑹𝑮)

In general the 𝐿-groups 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅𝐺) depend on the decoration and often the 2-torsion
carries sophisticated information and is hard to handle. Recall that as a special case
of the sequence (1.5) we obtain an isomorphism

𝐾𝑛 (𝐶∗𝑟 (𝐺 × Z)) = 𝐾𝑛 (𝐶∗𝑟 (𝐺)) ⊕ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺)).

The 𝐿-theory analog is given by the Shaneson splitting [913]

𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅[Z]) � 𝐿 ⟨ 𝑗−1⟩

𝑛−1 (𝑅) ⊕ 𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅).

Here for the decoration 𝑗 = −∞ one has to interpret 𝑗 −1 as −∞. Since 𝑆1 is a model
for 𝐵Z, we get an isomorphism

𝐻𝑛 (𝐵Z; L⟨ 𝑗 ⟩ (𝑅)) � 𝐿 ⟨ 𝑗 ⟩
𝑛−1 (𝑅) ⊕ 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅).

Therefore the decoration −∞ shows the right homological behavior and is the right
candidate for the formulation of an isomorphism conjecture.

The analog of the sequence (1.4) does not hold for 𝐿 ⟨ 𝑗 ⟩∗ (𝑅𝐺), certain correction
terms, the UNil-terms come in, which are independent of the decoration ⟨ 𝑗⟩ and
are always (not necessarily finitely generated) 2-primary abelian groups, see Cap-
pell [203], [204]. As in the algebraic 𝐾-theory case this leads to the Farrell-Jones
Conjecture for 𝐿 ⟨−∞⟩∗ (𝑅𝐺), stated already as Conjecture 1.3. The analog of the
sequence (1.5) holds for 𝐿 ⟨−∞⟩∗ (𝑅𝐺), see Theorem 13.60.

In Conjecture 1.3 the term 𝐻𝐺𝑛 (−; L⟨−∞⟩
𝑅
) is an appropriate 𝐺-homology theory

such that 𝐻𝐺𝑛 (𝐺/𝐻; L⟨−∞⟩
𝑅
) � 𝐻𝐻𝑛 ({•}; L⟨−∞⟩

𝑅
) � 𝐿

⟨−∞⟩
𝑛 (𝑅𝐻) holds for every

subgroup 𝐻 ⊆ 𝐺 and every 𝑛 ∈ Z, and the assembly map is induced by the map
𝐸𝐺 → {•}. Conjecture 1.3 makes sense for all groups and rings with involution,
and no counterexamples are known at the time of writing.

After inverting 2 Conjecture 1.3 is equivalent to Conjecture 1.13.
There is an 𝐿-theory version of the splitting (1.11)

𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩
𝑅
) � 𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩

𝑅
) ⊕ 𝐻𝐺𝑛 (𝐸𝐺, 𝐸𝐺; L⟨−∞⟩

𝑅
),(1.14)

provided that there exists an integer 𝑖0 such that 𝐾𝑖 (𝑅𝑉) = 0 holds for all virtually
cyclic subgroups 𝑉 ⊆ 𝐺 and 𝑖 ≤ 𝑖0.
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1.5.4 Applications of the Farrell-Jones Conjecture for 𝑳⟨−∞⟩
∗ (𝑹𝑮)

For applications in geometry and topology the simple 𝐿-groups 𝐿𝑠𝑛 (Z𝐺) are the most
interesting ones. The difference between the various decorations is measured by the
so-called Rothenberg sequences and given in terms of the Tate cohomology of Z/2
with coefficients in 𝐾𝑛 (Z𝐺) for 𝑛 ≤ 0 and Wh(𝐺) with respect to the involution
coming from the standard involution on the group ring Z𝐺 sending

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔

to
∑
𝑔∈𝐺 𝜆𝑔 · 𝑔−1. Hence the decorations do not matter if 𝐾𝑛 (Z𝐺) for 𝑛 ≤ 0 and

Wh(𝐺) vanish. In view of Conjecture 1.12, this leads to the following version of
Conjecture 1.3 for torsionfree groups

Conjecture 1.15. (Farrell-Jones Conjecture for 𝐿∗ (Z𝐺) for torsionfree groups).
Let 𝐺 be a torsionfree group. Then there is for every 𝑛 ∈ Z and every decoration 𝑗

an isomorphism
𝐻𝑛 (𝐵𝐺; L⟨ 𝑗 ⟩ (Z)) �−→ 𝐿

⟨ 𝑗 ⟩
𝑛 (Z𝐺).

Moreover, the source, target, and the map itself are independent of the decoration 𝑗 .

Here 𝐻𝑛 (−; L⟨ 𝑗 ⟩ (Z)) is the homology theory associated to the 𝐿-theory spectrum
L⟨− 𝑗 ⟩ (Z) and satisfies 𝐻𝑛 ({•}; L⟨ 𝑗 ⟩ (Z)) � 𝜋𝑛

(
L⟨ 𝑗 ⟩ (Z)

)
� 𝐿

⟨ 𝑗 ⟩
𝑛 (Z).

The 𝐿-theoretic assembly map appearing in Conjecture 1.15 has a topological
meaning. It appears in the so-called Surgery Exact Sequence, which we will discuss
in more detail in Section 9.12. Let L𝑠 (Z)⟨1⟩ be the 1-connected cover L𝑠 (Z)⟨1⟩ of
L𝑠 (Z). There is a canonical map 𝜄 : 𝐻𝑛 (𝐵𝐺; L𝑠 (Z)⟨1⟩) → 𝐻𝑛 (𝐵𝐺; L𝑠 (Z)). Let 𝑁
be an aspherical oriented closed manifold with fundamental group𝐺, i.e., an oriented
closed manifold homotopy equivalent to 𝐵𝐺. Then 𝐺 is torsionfree, the source of
the composite 𝐻𝑛 (𝐵𝐺; L𝑠 (Z)⟨1⟩) → 𝐿𝑠𝑛 (𝑅𝐺) of the assembly map appearing in
Conjecture 1.15 with 𝜄 consists of bordism classes of normal maps 𝑀 → 𝑁 with 𝑁
as target, and the composite sends such a normal map to its surgery obstruction. This
is analogous to the Baum-Connes setting where the assembly map can be described
by assigning to an equivariant index problem its index.

The third term in the Surgery Exact Sequence is the so-called structure set of 𝑁 .
It is the set of equivalence classes of simple homotopy equivalences 𝑓0 : 𝑀0 → 𝑁

with a closed topological manifold as source and 𝑁 as target where 𝑓0 : 𝑀0 → 𝑁 and
𝑓1 : 𝑀1 → 𝑁 are equivalent if there is a homeomorphism 𝑔 : 𝑀0 → 𝑀1 such that
𝑓1 ◦ 𝑔 and 𝑓0 are homotopic. Conjecture 1.15 implies that this structure set is trivial
provided that the dimension of 𝑁 is greater or equal to five. Hence Conjecture 1.15
implies in dimensions ≥ 5 the following famous conjecture if 𝐺 is isomorphic to the
fundamental group.

Conjecture 1.16 (Borel Conjecture). Let 𝑀 and 𝑁 be two aspherical closed topo-
logical manifolds whose fundamental groups are isomorphic. Then they are home-
omorphic, and every homotopy equivalence from 𝑀 to 𝑁 is homotopic to a homeo-
morphism.
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The Borel Conjecture is a topological rigidity theorem for aspherical closed mani-
folds and analogous to the Mostow Rigidity Theorem, which says that two hyperbolic
closed Riemannian manifolds with isomorphic fundamental groups are isometrically
diffeomorphic. The Borel Conjecture is false if one replaces topological manifold
by smooth manifold and homeomorphism by diffeomorphism. Its connection to the
Borel Conjecture is one of the main features of the Farrell-Jones Conjecture. More
details will be given in Subsections 9.15.2 and 9.15.3.

The Farrell-Jones Conjecture for 𝐿-theory 1.3 implies the Novikov Conjecture, see
Section 9.14. It also has applications to the problem whether Poincaré duality groups
or torsionfree hyperbolic groups with spheres as boundary are fundamental groups
of aspherical closed manifolds, see Sections 9.17 and 9.18. Product decompositions
of aspherical closed manifolds are treated in Section 9.20.

A summary of the applications of the Farrell-Jones Conjecture is given in Sec-
tion 13.12.

1.6 More General Versions of the Farrell-Jones Conjecture

We will also treat versions of the Farrell-Jones Conjecture in equivariant additive
categories, or more generally, in equivariant higher categories, see Sections 13.3
and 13.4. There will be versions with finite wreath products, see Section 13.5. The
most general version is the Full Farrell-Jones Conjecture 13.30, see Section 13.6,
which implies all other variants of the Farrell-Jones Conjecture, see Section 13.11.

1.7 Status of the Baum-Connes and the Farrell-Jones Conjecture

A detailed report on the groups for which these conjectures have been proved will
be given in Chapter 16. For example, the Baum-Connes Conjecture 1.1 is known for
a class of groups which includes amenable groups, hyperbolic groups, knot groups,
fundamental groups of compact 3-manifolds (possibly with boundary), and one-
relator groups, but is open for SL𝑛 (Z) for 𝑛 ≥ 3, where for a commutative ring 𝑅
we write SL𝑛 (𝑅) for the group of invertible (𝑛, 𝑛)-matrices with det(𝐴) = 1. The
class of groups for which the Farrell-Jones Conjectures 1.2 and 1.3 have been proved
contains hyperbolic groups, finite-dimensional CAT(0)-groups, fundamental groups
of (not necessarily compact) 3-manifolds (possibly with boundary), solvable groups,
lattices in almost connected Lie groups, and arithmetic groups, but they are open
for amenable groups in general. If one allows coefficients, one can prove inheritance
properties for the Baum-Connes Conjecture and the Farrell-Jones Conjecture, e.g.,
the class of groups for which they are true is closed under taking subgroups, finite
direct products, free products, colimits over directed sets whose structure map are
injective in the Baum-Connes case and can be arbitrary in the Farrell-Jones case.
This will be explained in Sections 13.7 and 14.6.
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The Full Farrell-Jones Conjecture 13.30, which implies all other variants of the
Farrell-Jones Conjecture, is known to be true for some groups with unusual prop-
erties, e.g., groups with expanders, Tarski monsters, lacunary hyperbolic groups,
subgroups of finite products of hyperbolic groups, self-similar groups, see Theo-
rem 16.1. At the time of writing we have no specific candidate of a group or of a
general property of groups such that the Full Farrell-Jones Conjecture 13.30, or one
of its consequences, e.g., the Novikov Conjecture and the Borel Conjecture, might
be false. So we have no good starting point for a search for counterexamples, see
Section 16.10.

At the time of writing no counterexample to the Baum-Connes Conjecture is
known to the author. There exist counterexamples to the Baum-Connes Conjecture
with coefficients, as explained in Section 16.10.

1.8 Structural Aspects

1.8.1 The Meta-Isomorphism Conjecture

The formulations of the Baum-Connes Conjecture 1.1 and of the Farrell-Jones Con-
jecture 1.2 and 1.3 are very similar in the homological picture. It allows a formulation
of the following Meta-Isomorphism Conjecture, of which both conjectures are special
cases and which also has other very interesting specializations, e.g., for pseudoiso-
topy, 𝐴-theory, topological Hochschild homology, and topological cyclic homology,
see Section 15.2.

Meta-Isomorphism Conjecture 1.17. Given a group𝐺, a𝐺-homology theoryH𝐺
∗ ,

and a family F of subgroups of 𝐺, we say that the Meta-Isomorphism Conjecture is
satisfied if the 𝐺-map 𝐸F (𝐺) → {•} induces for every 𝑛 ∈ Z an isomorphism

𝐴F : H𝐺
𝑛 (𝐸F (𝐺)) → H𝐺

𝑛 ({•}).

This general formulation is an excellent framework to construct transformations
between the assembly maps appearing in different Isomorphism Conjectures. For
instance, the cyclotomic trace relates the 𝐾-theoretic Farrell-Jones Conjecture with
coefficients in Z to the Isomorphism Conjecture for topological cyclic homology,
see Subsection 15.14.3, and via symmetric signatures one can link the Farrell-Jones
Conjecture for algebraic 𝐿-theory with coefficient in Z to the Baum-Connes Con-
jecture, see Subsection 15.14.4. Moreover, basic computational tools and techniques
for equivariant homology theories apply both to the Baum-Connes Conjecture 1.1
and the Farrell-Jones Conjectures 1.2 and 1.3.
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1.8.2 Assembly

One important idea is the assembly principle, which leads to assembly maps in a
canonical and universal way by asking for the best approximation of a homotopy
invariant functor from 𝐺-spaces to spectra by an equivariant homology theory. It is
an important ingredient for the identification of the various descriptions of assembly
maps appearing in the Baum-Connes Conjecture and the Farrell-Jones Conjecture.
For instance, the assembly map appearing in the Baum-Connes Conjecture 1.1
can be interpreted as assigning to an appropriate equivariant elliptic complex its
equivariant index, and the assembly map appearing in the 𝐿-theoretic Farrell-Jones
Conjecture 1.3 is related to the map appearing in the Surgery Exact Sequence, which
assigns to a surgery problem its surgery obstruction. We have already explained above
that these identifications are the basis for some of applications of the Isomorphism
Conjectures, and we will see that they are also important for proofs. There is a
homotopy-theoretic approach to the assembly map based on homotopy colimits over
the orbit category, which motivates the name assembly. Roughly speaking, the name
assembly refers to assembling the values of the 𝐾-and 𝐿-groups of the reduced group
𝐶∗-algebra or the group ring of a group 𝐺 from their values on finite or virtually
cyclic subgroups of 𝐺. All this will be explained in Chapter 18.

This parallel treatment of the Baum-Connes Conjecture and the Farrell-Jones
Conjecture and of other variants is one of the topics of this book. However, the
geometric interpretations of the assembly maps in terms of indices, surgery obstruc-
tions, or forget control are quite different. Therefore the methods of proof for the
Farrell-Jones Conjecture and the Baum-Connes Conjecture use different input. Al-
though there are some similarities in the proofs, it is not clear how to export methods
of proof from one conjecture to the other.

1.9 Computational Aspects

In general the target 𝐾𝑛 (𝐶∗𝑟 (𝐺)) of the assembly map appearing in the Baum-Connes
Conjecture 1.1 is very hard to compute, whereas the source 𝐾𝐺𝑛 (𝐸𝐺) is much more
accessible because one can apply standard techniques from algebraic topology such
as spectral sequences and equivariant Chern characters and there are often nice
small geometric models for 𝐸𝐺. For the Farrell-Jones Conjectures 1.2 and 1.3,
this applies also to the parts 𝐻𝐺𝑛 (𝐸𝐺; K𝑅) and 𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩

𝑅
) respectively ap-

pearing in the splittings (1.11) and (1.14). The other parts 𝐻𝐺𝑛 (𝐸𝐺, 𝐸𝐺; K𝑅) or

𝐻𝐺𝑛 (𝐸𝐺, 𝐸𝐺; L⟨−∞⟩
𝑅
) are harder to handle, since they involve Nil- or UNil-terms and

the 𝐺-𝐶𝑊-complex 𝐸𝐺 is not proper and in general huge. Most of the known com-

putations of 𝐾𝑛 (𝐶∗𝑟 (𝐺)), 𝐾𝑛 (𝑅𝐺), and 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅𝐺) are based on the Baum-Connes
Conjecture 1.1 and the Farrell-Jones Conjectures 1.2 and 1.3.
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Classifications of manifolds and of𝐶∗-algebras rely on and thus motivate explicit
calculations of 𝐾- and 𝐿-groups. In this context it is often important not only to
determine the 𝐾- and 𝐿-groups abstractly, but to develop detection techniques so
that one can identify or distinguish specific elements associated to the original clas-
sification problem or give geometric or index-theoretic interpretations to elements
in the 𝐾- and 𝐿-groups.

A general guide for computations and a list of known cases including applications
to classification problems will be given in Chapter 17.

1.10 Are the Baum-Connes Conjecture and the Farrell-Jones
Conjecture True in General?

The title of this section is the central and at the time of writing unsolved question. One
motivation for writing this monograph is to stimulate some very clever mathematician
to work on this problem and finally find an answer. Let us speculate about the possible
answer.

We are skeptical about the Baum-Connes Conjecture for two reasons: there are
counterexamples for the version with coefficients, and the left side of the Baum-
Connes assembly map is functorial under arbitrary group homomorphisms, whereas
the right side is not. The Bost Conjecture, which predicts an isomorphism

𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐿1 (𝐺)),

has a much better chance to be true in general. The possible failure of the Baum-
Connes Conjecture may come from the possible failure of the canonical map
𝐾𝑛 (𝐿1 (𝐺)) → 𝐾𝑛 (𝐶𝑟∗ (𝐺)) to be bijective.

In spite of the Baum-Connes Conjecture, we do not see an obvious flaw with the
Bost Conjecture or the Farrell-Jones Conjecture. As explained in Section 1.7 above,
we have no starting point for the construction of a counterexample, and all abstract
properties we know for the right side do hold for the left side of the assembly map
and vice versa. In particular for the Bass Conjecture and for the Novikov Conjecture
which follow from the Farrell-Jones Conjecture, the class of groups for which they
are known to be true is impressive. There are some conclusions from the Farrell-
Jones Conjecture which are not trivial and true for all groups. These are arguments
in favor of a positive answer

The following arguments are in favor of a negative answer. The universe of groups
is overwhelmingly large. We have Gromov’s saying on our neck that a statement
which holds for all groups is either trivial or false. We have no philosophical reason
why the Bost Conjecture or the Farrell-Jones Conjecture should be true in general.
Finding a counterexample will probably require some new ideas, maybe from logic
or random groups.
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The upshot of this discussion is that the author is skeptical about the Baum-
Connes Conjecture, but does not dare to make any predictions about the chances
for the other conjectures, in particular for the Novikov Conjecture, to be true for all
groups.

We will elaborate on this discussion in Section 16.10.

1.11 The Organization of the Book and a User’s Guide

We have written the text in a way such that one can read small units, e.g., a single
chapter, independently from the rest, concentrate on certain aspects, and extract easily
and quickly specific information. Hopefully we have found the right mixture between
definitions, theorems, examples, and remarks so that reading the book is entertaining
and illuminating. We have successfully used parts of this book, sometimes a single
chapter, for seminars, reading courses, and advanced lecture courses.

The book consists of three parts and a supplement, which we briefly review next.
We will also give some further information on how to use the book.

Note that not all of the proofs are included in full. At least we convey the basic
ideas and include references to sources.

1.11.1 Introduction to 𝑲- and 𝑳-Theory (Part I)

In the first part “Introduction to 𝐾- and 𝐿-Theory”, which encompasses Chapters 2
to 10, we introduce and motivate the relevant theories, namely, algebraic 𝐾-theory,
algebraic 𝐿-theory, and topological 𝐾-theory. In these chapters we present some ap-
plications and more accessible special versions of the Baum-Connes and the Farrell-
Jones Conjecture. They are rather independent of one another and one can start
reading each of them without having gone though the others. If a reader just wants
to get some information, for instance about Wall’s finiteness obstruction, Whitehead
torsion, or the projective class group, she or he can directly start reading the relevant
chapter, learn the basics about these invariants, and understand the relevant special
versions of the Baum-Connes Conjecture or the Farrell-Jones Conjecture without
going through the other chapters. Each of these chapters is eligible for a lecture
course, seminar, or reading course.

1.11.2 The Isomorphism Conjectures (Part II)

In the second part “The Isomorphism Conjectures”, which consists of Chapters 11
to Chapter 18, we introduce the Baum-Connes Conjecture and the Farrell-Jones
Conjecture in their most general form, namely, for arbitrary groups and with coef-
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ficients. We discuss further applications and in particular how they can be used for
computations. We give a report about the status of these conjectures and discuss
open problems.

Note that the Farrell-Jones Conjecture comes in different levels. It can be con-
sidered for rings (with involution) as coefficients and hence aims at the algebraic
𝐾-theory and 𝐿-theory of group rings. This is the most relevant version for applica-
tions, where it often suffices to treat lower and middle 𝐾-theory, torsionfree groups,
and Z or a field as coefficients. One may twist the group rings and allow orientation
characters. The next level is to pass to equivariant additive categories (with involu-
tion) as coefficients, which has the advantage that it automatically leads to useful
inheritance properties of the Farrell-Jones Conjecture and encompasses the case of
rings as coefficients. For algebraic 𝐾-theory one can even allow higher categories
as coefficients. This contains the version of additive categories as coefficients and
also the versions of the Farrell-Jones Conjecture for Waldhausen’s 𝐴-theory, for
pseudoisotopy, and for Whitehead spaces as special cases. There are also versions
“with finite wreath product”, where the passage to overgroups of finite index is built
in.

So there are many variations of the Farrell-Jones Conjecture, but the Full Farrell-
Jones Conjecture 13.30 implies all of them.

We also state Meta-Conjectures, which reduce to the Baum-Connes Conjecture,
the Farrell-Jones Conjecture, or other types of Isomorphism Conjectures if one feeds
the right theory into them. There are versions of the Farrell-Jones Conjecture for
Waldhausen’s 𝐴-theory, pseudoisotopy, Whitehead spaces, topological Hochschild
homology, topological cyclic homology, and homotopy 𝐾-theory.

We also briefly discuss the Farrell-Jones Conjecture for totally disconnected
groups and Hecke Algebras, where for the first time a version of the Farrell-Jones
Conjecture for topological groups is considered. The Baum-Connes Conjecture has
already been intensively studied for topological groups. However, in this monograph
we will confine ourselves to discrete groups.

1.11.3 Methods of Proofs (Part III)

In the third part “Methods of Proofs”, which ranges from Chapter 19 to Chapter 25, we
give a survey on the background, history, philosophy, strategies, and some ingredients
of the proofs. We will concentrate on the Farrell-Jones Conjecture in this part III.

The reader, who is interested in proofs, should first go through Chapter 19. There
motivations for the proofs of the Farrell-Jones Conjecture and some information
about their long history is given without getting lost in technical details. So it will
be a soft introduction to the methods of proofs conveying ideas only. Mainly we
explain why controlled topology, flows, and transfers come in, which one would not
expect at first glance in view of the homotopy-theoretic nature of the Farrell-Jones
Conjecture.
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In Chapter 20 we isolate some conditions about a group which guarantee that it
satisfies the Full Farrell-Jones Conjecture or some special version of it. Note that
here 𝐾- or 𝐿-theory do not yet play any role and one can use the results of this section
without any previous knowledge about them. This will be interesting for someone
who is already familiar with geometric group theory but has no background in 𝐾- or
𝐿-theory.

Depending on how ambitious the reader is, she or he should go through the other
chapters. We recommend to read Section 23.7, where details of the proof of the
Farrell-Jones Conjecture for the surjectivity of the 𝐾-theoretic assembly map in
dimension 1 is given, which does not use much knowledge about algebraic 𝐾-theory
but uses all the basic ideas appearing in the proof of the Full Farrell-Conjecture.

The reader who wants to understand the proof in the most advanced setting,
namely the one for higher categories as coefficients, and for the largest class of
groups, namely the class of Dress-Farrell-Hsiang-Jones groups, is recommended to
read through Chapter 24. For this some background in higher category theory is
necessary.

We give a very brief overview of the methods of proof for the Baum-Connes
Conjecture in Chapter 25.

1.11.4 Supplement

The book contains a number of exercises. They are not needed for the exposition of
the book, but give some illuminating insight. Moreover, the reader may test whether
she or he has understood the text or improve her or his understanding by trying to
solve the exercises. Hints to the solutions of the exercises are given in Chapter 26.

If one wants to find a specific topic, the extensive index of the monograph can
be used to find the right spot for a specific topic. The index contains an item
“Theorem”, under which all theorems with their names appearing in the book are
listed, and analogously there is an item “Conjecture”.

1.11.5 Prerequisites

We require that the reader is familiar with basic notions in topology (𝐶𝑊-complexes,
chain complexes, homology, homotopy groups, manifolds, coverings, cofibrations,
fibrations, . . . ), functional analysis (Hilbert spaces, bounded operators, differential
operators, . . . ), algebra (groups, modules, group rings, elementary homological
algebra, . . . ), group theory (presentations, Cayley graphs, hyperbolic groups, . . . ),
and elementary category theory (functors, transformations, additive categories, . . . ).
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1.12 Notations and Conventions

Here is a briefing on our main conventions and notations. Details are of course
discussed in the text.

• Ring will mean (not necessarily commutative) associative ring with unit unless
explicitly stated otherwise;

• Module always means left module unless explicitly stated otherwise;
• Group means discrete group unless explicitly stated otherwise;
• We will always work in the category of compactly generated spaces, com-

pare [927] and [1006, I.4]. In particular every space is automatically Hausdorff;
• For our conventions concerning spectra see Section 12.4. Spectra are denoted

by boldface letters such as E;
• We use the standard symbols Z, Q, R, C, Z �̂� , and Q �̂� for the integers, the rational

numbers, the real numbers, the complex numbers, the 𝑝-adic numbers, and the
𝑝-adic rationals;

• We use the following symbols to denote various groups:

symbol name
Z/𝑛 finite cyclic group of order 𝑛
𝑆𝑛 symmetric group of permutations of the set {1, 2, . . . 𝑛}
𝐴𝑛 alternating group of even permutations of the set {1, 2, . . . , 𝑛}
𝐷∞ infinite dihedral group
𝐷2𝑛 dihedral group of order 2𝑛
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Chapter 2
The Projective Class Group

2.1 Introduction

This chapter is devoted to the projective class group 𝐾0 (𝑅) of a ring 𝑅.
We give in Section 2.2 three equivalent definitions of 𝐾0 (𝑅), namely, by

the universal additive invariant for finitely generated projective modules, by the
Grothendieck construction applied to the abelian monoid of isomorphism classes
of finitely generated projective modules, and by idempotent matrices, and discuss
the significance of 𝐾0 (𝑅) for the category of finitely generated projective modules.
Some calculations for principal ideal domains and Dedekind rings are provided in
Section 2.3.

We explain the connections to geometry. We prove Swan’s Theorem 2.27, which
identifies 𝐾0 (𝐶0 (𝑋)) for the ring 𝐶0 (𝑋) of continuous functions on a compact
space 𝑋 with the Grothendieck group of the abelian monoid of isomorphism classes
of vector bundles over 𝑋 , see (2.31). The relevance of 𝐾0 (Z𝐺) for topologists is
illustrated by Wall’s finiteness obstruction, which also leads to a geometric descrip-
tion of 𝐾0 (Z𝐺) in terms of finitely dominated spaces and is discussed in detail in
Section 2.5.

We introduce variants of the 𝐾-theoretic Farrell-Jones Conjecture for projective
class groups in Section 2.8. A prototype asserts that for a torsionfree group 𝐺 and a
regular ring 𝑅, e.g., 𝑅 = Z or 𝑅 a field, the change of rings map

𝐾0 (𝑅)
�−→ 𝐾0 (𝑅𝐺)

is bijective. It implies the conjecture that for a torsionfree group 𝐺 the reduced
projective class group 𝐾0 (Z𝐺) vanishes, which is for finitely presented𝐺 equivalent
to the conjecture that every finitely dominated 𝐶𝑊-complex with 𝜋1 (𝑋) � 𝐺 is
homotopy equivalent to a finite𝐶𝑊-complex. We also introduce a version where the
group is not necessarily torsionfree, but 𝑅 is a regular ring with Q ⊆ 𝑅 or a field of
prime characteristic.

In Section 2.9 we consider Kaplansky’s Idempotent Conjecture, which asserts for
a torsionfree group 𝐺 and a field 𝐹 that 0 and 1 are the only idempotents in 𝐹𝐺.
It is a consequence of the Farrell-Jones Conjecture. We also discuss various Bass
Conjectures, all of which are implied by the Farrell-Jones Conjecture, in Section 2.10.

Finally, we give a survey of 𝐾0 (Z𝐺) for finite groups 𝐺 and of 𝐾0 (𝐶∗𝑟 (𝐺)) in
Section 2.12 and of 𝐾0 (N (𝐺)) in Section 2.13, where 𝐶∗𝑟 (𝐺) is the reduced group
𝐶∗-algebra and N(𝐺) the group von Neumann algebra.

29



30 2 The Projective Class Group

2.2 Definition and Basic Properties of the Projective Class Group

Definition 2.1 (Projective class group 𝐾0 (𝑅)). Let 𝑅 be an (associative) ring
(with unit). Define its projective class group 𝐾0 (𝑅) to be the abelian group
whose generators are isomorphism classes [𝑃] of finitely generated projective
𝑅-modules 𝑃 and whose relations are [𝑃0] + [𝑃2] = [𝑃1] for any exact sequence
0→ 𝑃0 → 𝑃1 → 𝑃2 → 0 of finitely generated projective 𝑅-modules.

Define 𝐺0 (𝑅) analogously but replacing finitely generated projective by finitely
generated.

Given a ring homomorphism 𝑓 : 𝑅 → 𝑆, we can assign to an 𝑅-module 𝑀 an
𝑆-module 𝑓∗𝑀 by 𝑆 ⊗𝑅 𝑀 where we consider 𝑆 as a right 𝑅-module using 𝑓 . We say
that 𝑓∗𝑀 is obtained by induction with f from 𝑀 . If 𝑀 is finitely generated or free
or projective, the same is true for 𝑓∗𝑀 . This construction is natural, compatible with
direct sums, and sends an exact sequence 0→ 𝑃0 → 𝑃1 → 𝑃2 → 0 of finitely gener-
ated projective 𝑅-modules to an exact sequence 0→ 𝑓∗𝑃0 → 𝑓∗𝑃1 → 𝑓∗𝑃2 → 0 of
finitely generated projective 𝑆-modules. Hence we get a homomorphism of abelian
groups

𝑓∗ = 𝐾0 ( 𝑓 ) : 𝐾0 (𝑅) → 𝐾0 (𝑆), [𝑃] ↦→ [ 𝑓∗𝑃],(2.2)

which is also called the change of rings homomorphism. Thus𝐾0 becomes a covariant
functor from the category of rings to the category of abelian groups.

Remark 2.3 (The universal property of the projective class group). One should
view 𝐾0 (𝑅) together with the assignment sending a finitely generated projec-
tive 𝑅-module 𝑃 to its class [𝑃] in 𝐾0 (𝑅) as the universal additive invariant
or the universal dimension function for finitely generated projective 𝑅-modules.
Namely, suppose that we are given an abelian group and an assignment 𝑑 that as-
sociates to a finitely generated projective 𝑅-module an element 𝑑 (𝑃) ∈ 𝐴 such that
𝑑 (𝑃0) + 𝑑 (𝑃2) = 𝑑 (𝑃1) holds for any exact sequence 0 → 𝑃0 → 𝑃1 → 𝑃2 → 0
of finitely generated projective 𝑅-modules. Then there is precisely one homomor-
phism of abelian groups 𝜙 : 𝐾0 (𝑅) → 𝐴 such that 𝜙( [𝑃]) = 𝑑 (𝑃) holds for every
finitely generated projective 𝑅-module 𝑃. The analogous statement holds for 𝐺0 (𝑅)
if we consider finitely generated 𝑅-modules instead of finitely generated projective
𝑅-modules.

A ring is an integral domain if every zero-divisor is trivial, i.e., if 𝑟, 𝑠 ∈ 𝑅 satisfy
𝑟𝑠 = 0, then 𝑟 = 0 or 𝑠 = 0. A principal ideal domain is a commutative integral
domain for which every ideal is a principal ideal, i.e., of the form (𝑟) = {𝑟 ′𝑟 | 𝑟 ′ ∈ 𝑅}
for some 𝑟 ∈ 𝑅.

Example 2.4 (𝐾0 (𝑅) and𝐺0 (𝑅) of a principal ideal domain). Let 𝑅 be a principal
ideal domain. Then we get isomorphisms of abelian groups

Z
�−→ 𝐾0 (𝑅), 𝑛 ↦→ [𝑅𝑛];

𝐾0 (𝑅)
�−→ 𝐺0 (𝑅), [𝑃] ↦→ [𝑃] .
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This follows from the structure theorem of finitely generated 𝑅-modules over princi-
pal ideal domains. It implies that any finitely generated 𝑅-module 𝑀 can be written
as a direct sum 𝑅𝑛 ⊕ 𝑇 for some torsion 𝑅-module 𝑇 for which there exists an exact
sequence of 𝑅-modules of the shape 0 → 𝑅𝑠 → 𝑅𝑠 → 𝑇 → 0. Moreover, 𝑀 is
projective if and only if 𝑇 is trivial and we have 𝑅𝑚 = 𝑅𝑛 ⇐⇒ 𝑚 = 𝑛.

Definition 2.5 (Reduced projective class group 𝐾0 (𝑅)). Define the reduced pro-
jective class group 𝐾0 (𝑅) to be the quotient of 𝐾0 (𝑅) by the abelian subgroup
{[𝑅𝑚] − [𝑅𝑛] | 𝑛, 𝑚 ∈ Z, 𝑚, 𝑛 ≥ 0}, which is the same as the abelian subgroup
generated by the class [𝑅].

We conclude from Example 2.4 that the reduced projective class group 𝐾0 (𝑅) is
isomorphic to the cokernel of the homomorphism

𝑓∗ : 𝐾0 (Z) → 𝐾0 (𝑅)

where 𝑓 is the unique ring homomorphism Z→ 𝑅, 𝑛 ↦→ 𝑛 · 1𝑅.

Remark 2.6 (The projective class group as a Grothendieck group). Let Proj(𝑅)
be the abelian semigroup of isomorphisms classes of finitely generated projective
𝑅-modules with the addition coming from the direct sum. Let𝐾 ′0 (𝑅) be the associated
abelian group given by the Grothendieck construction applied to Proj(𝑅). There is a
natural homomorphism

𝜙 : 𝐾 ′0 (𝑅)
�−→ 𝐾0 (𝑅)

sending the class of a finitely generated projective 𝑅-module 𝑃 in 𝐾 ′0 (𝑅) to its class
in 𝐾0 (𝑅). This is a well-defined isomorphism of abelian groups.

The analogous definition of 𝐺′0 (𝑅) and the construction of a homomorphism
𝐺′0 (𝑅) → 𝐺0 (𝑅) makes sense, but the latter map is not bijective in general. It works
for 𝐾0 (𝑅) because every exact sequence of projective 𝑅-modules 0→ 𝑃0 → 𝑃1 →
𝑃2 → 0 splits and thus yields an isomorphism 𝑃1 � 𝑃0 ⊕ 𝑃2. In general 𝐾-theory
deals with exact sequences, not with direct sums. Therefore Definition 2.1 of 𝐾0 (𝑅)
reflects better the underlying idea of 𝐾-theory than its definition in terms of the
Grothendieck construction.

Exercise 2.7. Prove that the homomorphism 𝜙 : 𝐾 ′0 (𝑅) → 𝐾0 (𝑅) appearing in
Remark 2.6 is a well-defined isomorphism of abelian groups.

Remark 2.8 (What does the reduced projective class group measure?). Let 𝑃 be
a finitely generated projective 𝑅-module. Then we conclude from Remark 2.6 that
its class [𝑃] ∈ 𝐾0 (𝑅) is trivial if and only if 𝑃 is stably finitely generated free, i.e.,
𝑃 ⊕ 𝑅𝑟 � 𝑅𝑠 for appropriate integers 𝑟, 𝑠 ≥ 0. So the reduced projective class group
𝐾0 (𝑅)measures the deviation of a finitely generated projective 𝑅-module from being
stably finitely generated free. Note that, in general, stably finitely generated free does
not imply finitely generated free, as Examples 2.9 and 2.28 will show.

Example 2.9 (Dunwoody’s example). An interesting Z𝐺-module 𝑃 that is sta-
bly finitely generated free but not finitely generated free is constructed by Dun-
woody [317] for 𝐺 the torsionfree one-relator group ⟨𝑎, 𝑏 | 𝑎2 = 𝑏3⟩, which is the
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fundamental group of the trefoil knot. Note that 𝐾0 (Z𝐺) is known to be trivial, in
other words, every finitely generated projective 𝑅𝐺-module is stably finitely gener-
ated free. It is also worth mentioning that Z𝐺 contains no idempotent besides 0 and
1. Hence any direct summand in Z𝐺 is free.

More examples of this kind are given in Berridge-Dunwoody [134].

One basic feature of algebraic 𝐾-theory is Morita equivalence.

Theorem 2.10 (Morita equivalence for 𝐾0 (𝑅)). For every ring 𝑅 and integer
𝑛 ≥ 1, there is a natural isomorphism

𝜇 : 𝐾0 (𝑅)
�−→ 𝐾0 (M𝑛 (𝑅)).

Proof. We can consider 𝑅𝑛 as an M𝑛 (𝑅)-𝑅-bimodule, denoted by M𝑛 (𝑅)𝑅
𝑛
𝑅. Then

𝜇 sends [𝑃] to [M𝑛 (𝑅)𝑅
𝑛
𝑅 ⊗𝑅 𝑃]. We can also consider 𝑅𝑛 as an 𝑅-M𝑛 (𝑅)-

bimodule denoted by 𝑅𝑅
𝑛

M𝑛 (𝑅) . Define 𝜈 : 𝐾0 (M𝑛 (𝑅)) → 𝐾0 (𝑅) by sending [𝑄]
to [𝑅𝑅𝑛M𝑛 (𝑅) ⊗M𝑛 (𝑅) 𝑄]. Then 𝜇 and 𝜈 are inverse to one another. ⊓⊔

Exercise 2.11. Check that 𝜇 and 𝜈 are inverse to one another.

We omit the easy proof of the next lemma.

Lemma 2.12. Let 𝑅0 and 𝑅1 be rings. Denote by pr𝑖 : 𝑅0 × 𝑅1 → 𝑅𝑖 for 𝑖 = 0, 1 the
projection. Then we obtain an isomorphism

(pr0)∗ × (pr1)∗ : 𝐾0 (𝑅0 × 𝑅1)
�−→ 𝐾0 (𝑅0) × 𝐾0 (𝑅1).

Example 2.13 (Rings with non-trivial 𝐾0 (𝑅)). We conclude from Example 2.4 and
Lemma 2.12 that for a principal ideal domain 𝑅 we have

𝐾0 (𝑅 × 𝑅) � Z ⊕ Z;
𝐾0 (𝑅 × 𝑅) � Z.

The 𝑅 × 𝑅-module 𝑅 × {0} is finitely generated projective but not stably finitely
generated free. It is a generator of the infinite cyclic group 𝐾0 (𝑅 × 𝑅).

Notation 2.14 (M(𝑅), GL(𝑅), and Idem(𝑅)). Let M𝑚,𝑛 (𝑅) be the set of (𝑚, 𝑛)-
matrices over 𝑅. For 𝐴 ∈ M𝑚,𝑛 (𝑅), let 𝑟𝐴 : 𝑅𝑚 → 𝑅𝑛, 𝑥 → 𝑥𝐴 be the
𝑅-homomorphism of (left) 𝑅-modules given by right multiplication by 𝐴. Let
M𝑛 (𝑅) be the ring of (𝑛, 𝑛)-matrices over 𝑅. Denote by GL𝑛 (𝑅) the group of
invertible (𝑛, 𝑛)-matrices over 𝑅. Let Idem𝑛 (𝑅) be the subset of M𝑛 (𝑅) of idem-
potent matrices 𝐴, i.e., (𝑛, 𝑛)-matrices satisfying 𝐴2 = 𝐴. There are embeddings

𝑖𝑡 ,𝑛 : M𝑛 (𝑅) → M𝑛+1 (𝑅), 𝐴 ↦→
(
𝐴 0
0 𝑡

)
for 𝑡 = 0, 1 and 𝑛 ≥ 1. The embedding

𝑖1,𝑛 induces an embedding GL𝑛 (𝑅) → GL𝑛+1 (𝑅) of groups. Let GL(𝑅) be the
union of the GL𝑛 (𝑅)-s, which is a group again. Denote by M(𝑅) the union of the
M𝑛 (𝑅)-s with respect to the embeddings 𝑖0. This is a ring without unit. Let Idem(𝑅)
be the set of idempotent elements in 𝑀 (𝑅). This is the same as the union of the
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Idem𝑛 (𝑅)-s with respect to the embeddings Idem𝑛 (𝑅) → Idem𝑛+1 (𝑅) coming from
the embeddings 𝑖0,𝑛 : M𝑛 (𝑅) → M𝑛+1 (𝑅).

Remark 2.15 (The projective class groups in terms of idempotent matrices). The
projective class groups 𝐾0 (𝑅) can also be defined in terms of idempotent matrices.
Namely, the conjugation action of GL𝑛 (𝑅) on M𝑛 (𝑅) induces an action of GL(𝑅)
on M(𝑅) which leaves Idem(𝑅) fixed. One obtains a bijection of sets

𝜙 : GL(𝑅)\ Idem(𝑅) → Proj(𝑅), [𝐴] ↦→ im (𝑟𝐴 : 𝑅𝑛 → 𝑅𝑛) .

This becomes a bijection of abelian semigroups if we equip the source with the

addition coming from (𝐴, 𝐵) ↦→
(
𝐴 0
0 𝐵

)
and the target with the one coming from

the direct sum. So we can identify 𝐾0 (𝑅) with the Grothendieck group associated to
the abelian semigroup GL(𝑅)\ Idem(𝑅) by Remark 2.6.

Exercise 2.16. Show that the map 𝜙 appearing in Remark 2.15 is a well-defined
isomorphism of abelian semigroups.

Example 2.17 (A ring 𝑅 with trivial 𝐾0 (𝑅)). Let 𝐹 be a field and let 𝑉 be an
𝐹-vector space with an infinite countable basis. Consider the ring 𝑅 = end𝐹 (𝑉).
Next we prove that 𝐾0 (𝑅) is trivial.

By Remark 2.15 it suffices to show for every integer 𝑛 ≥ 0 and two idempotent
matrices 𝐴, 𝐵 ∈ Idem𝑛 (𝑅) that the matrices 𝐴 ⊕ 0 ⊕ 1 and 𝐵 ⊕ 0 ⊕ 1 in M𝑛+2 (𝑅)
are conjugate by an element in GL𝑛+2 (𝑅). This follows from the observations that
both the kernel and the image of the 𝐹-linear endomorphisms 𝑟𝐴⊕0⊕1 and 𝑟𝐵⊕0⊕1 of
𝑉𝑛+2 have infinite countable dimension, two 𝐹-vector spaces of infinite countable
dimension are isomorphic, and the inclusions induce isomorphisms ker(𝑟𝐴⊕0⊕1) ⊕
im(𝑟𝐴⊕0⊕1)

�−→ 𝑉𝑛+2, and ker(𝑟𝐵⊕0⊕1) ⊕ im(𝑟𝐵⊕0⊕1)
�−→ 𝑉𝑛+2.

Lemma 2.18. Let 𝐺 be a group. Let 𝑅 be a commutative integral domain with
quotient field 𝐹. Then we obtain an isomorphism

𝐾0 (𝑅𝐺)
�−→ 𝐾0 (𝑅𝐺) ⊕ Z, [𝑃] ↦→ ([𝑃], dim𝐹 (𝐹 ⊗𝑅𝐺 𝑃))

where 𝐹 is considered as an 𝑅𝐺-module with respect to the trivial 𝐺-action and the
inclusion of rings 𝑗 : 𝑅 → 𝐹.

Proof. Since 𝐹 ⊗𝑅𝐺 𝑃 is a finite-dimensional 𝐹-vector space for finitely generated
𝑃 and 𝐹 ⊗𝑅𝐺 (𝑃 ⊕ 𝑄) �𝐺 (𝐹 ⊗𝑅𝐺 𝑃) ⊕ (𝐹 ⊗𝑅𝐺 𝑄), this is a well-defined homo-
morphism. Bijectivity follows from dim𝐹 (𝐹 ⊗𝑅𝐺 𝑅𝐺𝑛) = 𝑛. ⊓⊔
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2.3 The Projective Class Group of a Dedekind Domain

Let 𝑅 be a commutative integral domain with quotient field 𝐹. A non-zero
𝑅-submodule 𝐼 ⊂ 𝐹 is called a fractional ideal if for some 𝑟 ∈ 𝑅 we have 𝑟 𝐼 ⊆ 𝑅.
A fractional ideal 𝐼 is called principal if 𝐼 is of the form

{
𝑟𝑎
𝑏
| 𝑟 ∈ 𝑅

}
for some

𝑎, 𝑏 ∈ 𝑅 with 𝑎, 𝑏 ≠ 0.

Definition 2.19 (Dedekind domain). A commutative integral domain 𝑅 is called a
Dedekind ring if for any fractional ideal 𝐼 there exists another fractional ideal 𝐽 with
𝐼𝐽 = 𝑅.

Note that in Definition 2.19 the fractional ideal 𝐽 must be given by {𝑥 ∈ 𝐹 |
𝑥 · 𝐼 ⊆ 𝑅}.

The fractional ideals in a Dedekind ring form by definition a group under multi-
plication of ideals with 𝑅 as unit. The principal fractional ideals form a subgroup.
The class group 𝐶 (𝑅) is the quotient of these abelian groups.

A proof of the next theorem can be found for instance in [727, Corollary 11 on
page 14] and [860, Theorem 1.4.12 on page 20].

Theorem 2.20 (The reduced projective class group and the class group of
Dedekind domains). Let 𝑅 be a Dedekind domain. Then every fractional ideal
is a finitely generated projective 𝑅-module and we obtain an isomorphism of abelian
groups

Z ⊕ 𝐶 (𝑅) �−→ 𝐾0 (𝑅), (𝑛, [𝐼]) ↦→ 𝑛 · [𝑅] + [𝐼] − [𝑅] .

In particular, we get an isomorphism

𝐶 (𝑅) �−→ 𝐾0 (𝑅), [𝐼] ↦→ [𝐼] .

A ring is called hereditary if every ideal is projective, or, equivalently, if ev-
ery submodule of a projective 𝑅-module is projective, see [215, Theorem 5.4 in
Chapter I.5 on page 14].

Theorem 2.21 (Characterization of Dedekind domains). The following assertions
are equivalent for a commutative integral domain with quotient field 𝐹:

(i) 𝑅 is a Dedekind domain;
(ii) For every pair of ideals 𝐼 ⊆ 𝐽 of 𝑅, there exists an ideal 𝐾 ⊆ 𝑅 with 𝐼 = 𝐽𝐾;

(iii) 𝑅 is hereditary;
(iv) Every finitely generated torsionfree 𝑅-module is projective;
(v) 𝑅 is Noetherian and integrally closed in its quotient field 𝐹 and every non-zero

prime ideal is maximal.

Proof. This follows from [271, Proposition 4.3 on page 76 and Proposition 4.6 on
page 77] and the fact that a finitely generated torsionfree module over an integral
domain 𝑅 can be embedded into 𝑅𝑛 for some integer 𝑛 ≥ 0. See also [57, Chapter 13].

⊓⊔
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Remark 2.22 (The class group in terms of ideals of 𝑅). One calls two ideals 𝐼 and
𝐽 in 𝑅 equivalent if there exist non-zero elements 𝑟 and 𝑠 in 𝑅 with 𝑟 𝐼 = 𝑠𝐽. Then
𝐶 (𝑅) is the same as the equivalence classes of ideals under multiplication of ideals
and the class given by the principal ideals as unit. Two ideals 𝐼 and 𝐽 of 𝑅 define the
same element in 𝐶 (𝑅) if and only if they are isomorphic as 𝑅-modules, see [860,
Proposition 1.4.4 on page 17].

Recall that an algebraic number field is a finite algebraic extension of Q and the
ring of integers in 𝐹 is the integral closure of Z in 𝐹.

Theorem 2.23 (The class group of a ring of integers is finite). Let 𝑅 be the ring
of integers in an algebraic number field. Then 𝑅 is a Dedekind domain and its class
group 𝐶 (𝑅) and hence its reduced projective class group 𝐾0 (𝑅) are finite.

Proof. See [860, Theorem 1.4.18 on page 22 and Theorem 1.4.19 on page 23]. ⊓⊔

Remark 2.24 (Class group of Z[exp(2𝜋𝑖/𝑝)]). Let 𝑝 be a prime number. The ring
of integers in the algebraic number field Q[exp(2𝜋𝑖/𝑝)] is Z[exp(2𝜋𝑖/𝑝)]. Its class
group𝐶 (Z[exp(2𝜋𝑖/𝑝)]) is finite by Theorem 2.23. However, its structure as a finite
abelian group is only known for finitely many small primes, see [727, Remark 3.4
on page 30] or [990, Tables §3 on page 352ff].

Example 2.25 (𝐾0 (Z[
√
−5])). The reduced projective class group 𝐾0 (Z[

√
−5]) of

the Dedekind domain Z[
√
−5] is cyclic of order two. A generator is given by the

maximal ideal (3, 2 +
√
−5) in Z[

√
−5]. (For more details see [860, Exercise 1.4.20

on page 25]).

2.4 Swan’s Theorem

Let 𝐹 be the field R or C. Let 𝑋 be a compact space. Denote by 𝐶 (𝑋, 𝐹) or briefly
by 𝐶 (𝑋) the ring of continuous functions from 𝑋 to 𝐹. Let 𝜉 and 𝜂 be (finite-
dimensional locally trivial) 𝐹-vector bundles over 𝑋 . Denote by 𝐶 (𝜉) the 𝐹-vector
space of continuous sections of 𝜉. This becomes a 𝐶 (𝑋)-module under pointwise
multiplication. If 𝐹 denotes the trivial 1-dimensional vector bundle 𝑋 × 𝐹 → 𝑋 ,
then 𝐶 (𝐹) and 𝐶 (𝑋) are isomorphic as 𝐶 (𝑋)-modules. If 𝜉 and 𝜂 are isomorphic
as 𝐹-vector bundles, then 𝐶 (𝜉) and 𝐶 (𝜂) are isomorphic as 𝐶 (𝑋)-modules. There
is an obvious isomorphism of 𝐶 (𝑋)-modules

𝐶 (𝜉) ⊕ 𝐶 (𝜂) �−→ 𝐶 (𝜉 ⊕ 𝜂).(2.26)

Since 𝑋 is compact, every 𝐹-vector bundle has a finite bundle atlas and admits
a Riemannian metric. This implies the existence of an 𝐹-vector bundle 𝜉′ such
that 𝜉 ⊕ 𝜉′ is isomorphic as an 𝐹-vector bundle to a trivial 𝐹-vector bundle 𝐹𝑛.
Hence 𝐶 (𝜉) is a finitely generated projective 𝐶 (𝑋)-module. Denote by hom(𝜉, 𝜂)
the 𝐶 (𝑋)-module of morphisms of 𝐹-vector bundles from 𝜉 to 𝜂, i.e., of continuous
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maps between the total spaces that commutes with the bundle projections to 𝑋 and
induce linear (not necessarily injective or bijective) maps between the fibers over 𝑥
for all 𝑥 ∈ 𝑋 . This becomes a 𝐶 (𝑋)-module under pointwise multiplication. Such
a morphism 𝑓 : 𝜉 → 𝜂 induces a 𝐶 (𝑋)-homomorphism 𝐶 ( 𝑓 ) : 𝐶 (𝜉) → 𝐶 (𝜂) by
composition. The next result is due to Swan [939].

Theorem 2.27 (Swan’s Theorem). Let 𝑋 be a compact space and 𝐹 = R,C. Then:

(i) Let 𝜉 and 𝜂 be 𝐹-vector bundles. Then we obtain an isomorphism of 𝐶 (𝑋)-
modules

Γ(𝜉, 𝜂) : hom(𝜉, 𝜂) −→ hom𝐶 (𝑋) (𝐶 (𝜉), 𝐶 (𝜂)), 𝑓 ↦→ 𝐶 ( 𝑓 );

(ii) We have 𝜉 � 𝜂⇐⇒ 𝐶 (𝜉) �𝐶 (𝑋) 𝐶 (𝜂);
(iii) If 𝑃 is a finitely generated projective𝐶 (𝑋)-module, then there exists an 𝐹-vector

bundle 𝜉 satisfying 𝐶 (𝜉) �𝐶 (𝑋) 𝑃.

Proof. (i) Obviously Γ(𝜉 ⊕ 𝜉′, 𝜂) can be identified with Γ(𝜉, 𝜂) ⊕ Γ(𝜉′, 𝜂) and
Γ(𝜉, 𝜂 ⊕ 𝜂′) can be identified with Γ(𝜉, 𝜂) ⊕Γ(𝜉, 𝜂′′) under the identification (2.26).
Since a direct sum of two maps is a bijection if and only if each of the maps is a
bijection and for every 𝜉 there is an 𝜉′ such that 𝜉 ⊕ 𝜉′ is trivial, it suffices to treat
the case where 𝜉 = 𝐹𝑚 and 𝜂 = 𝐹𝑛 for appropriate integers 𝑚, 𝑛 ≥ 0. There is an
obvious commutative diagram

hom(𝐹𝑚, 𝐹𝑛)
Γ (𝐹𝑚 ,𝐹𝑛 ) //

�

��

hom𝐶 (𝑋) (𝐶 (𝐹𝑚), 𝐶 (𝐹𝑛))

�

��
M𝑚,𝑛 (hom(𝐹, 𝐹))

M𝑚,𝑛 (Γ (𝐹,𝐹 ) )
// M𝑚,𝑛 (𝐶 (𝐹)).

Hence it suffices to treat the claim for 𝑚 = 𝑛 = 1, which is obvious.
(ii) This follows from assertion (i).

(iii) Given a finitely generated projective 𝐶 (𝑋)-module 𝑃, choose a 𝐶 (𝑋)-map
𝑝 : 𝐶 (𝑋)𝑛 → 𝐶 (𝑋)𝑛 satisfying 𝑝2 = 𝑝 and im(𝑝) �𝐶 (𝑋) 𝑃. Because of assertion (ii)
we can choose a morphism of 𝐹-vector bundles 𝑞 : 𝐹𝑛 → 𝐹𝑛 with Γ(𝐹𝑛, 𝐹𝑛) (𝑞) =
𝑝. We conclude 𝑞2 = 𝑞 from 𝑝2 = 𝑝 and the injectivity of Γ(𝐹𝑛, 𝐹𝑛). Elementary
bundle theory shows that the image of 𝑞 and the image of 1 − 𝑞 are 𝐹-subvector
bundles in 𝐹𝑛 satisfying im(𝑞)⊕im(1−𝑞) = 𝐹𝑛. One easily checks𝐶 (im(𝑞)) �𝐶 (𝑋)
𝑃. ⊓⊔

One may summarize Theorem 2.27 by saying that we obtain an equivalence
of 𝐶 (𝑋)-additive categories from the category of 𝐹-vector bundles over 𝑋 to the
category of finitely generated projective 𝐶 (𝑋)-modules by sending 𝜉 to 𝐶 (𝜉).
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Example 2.28 (𝐶 (𝑇𝑆𝑛)). Consider the 𝑛-dimensional sphere 𝑆𝑛. Let 𝑇𝑆𝑛 be its
tangent bundle. Then 𝐶 (𝑇𝑆𝑛) is a finitely generated projective 𝐶 (𝑆𝑛)-module. It is
free if and only if 𝑇𝑆𝑛 is trivial. This is equivalent to the condition that 𝑛 = 1, 3, 7,
see [155]. On the other hand 𝐶 (𝑇𝑆𝑛) is always stably finitely generated free as a
𝐶 (𝑆𝑛)-module, since 𝑇𝑆𝑛 is stably finitely generated free as an 𝐹-vector bundle
because the direct sum of 𝑇𝑆𝑛 and the normal bundle 𝜈(𝑆𝑛,R𝑛+1) of the standard
embedding 𝑆𝑛 ⊆ R𝑛+1 is 𝑇R𝑛+1 |𝑆𝑛 and both 𝐹-vector bundles 𝜈(𝑆𝑛,R𝑛+1) and
𝑇R𝑛+1 |𝑆𝑛 are trivial.

Exercise 2.29. Consider an integer 𝑛 ≥ 1. Show that there exists a 𝐶 (𝑆𝑛)-module
𝑀 with 𝐶 (𝑇𝑆𝑛) �𝐶 (𝑆𝑛 ) 𝐶 (𝑆𝑛) ⊕ 𝑀 if and only if 𝑆𝑛 admits a nowhere vanishing
vector field. (This is equivalent to requiring that 𝜒(𝑆𝑛) = 0, or, equivalently, that 𝑛
is odd.)

Remark 2.30 (Topological 𝐾-theory in dimension 0). Let 𝑋 be a compact space.
Let Vect𝐹 (𝑋) be the abelian semigroup of isomorphism classes of 𝐹-vector bun-
dles over 𝑋 where the addition comes from the Whitney sum. Let 𝐾0 (𝑋) be the
abelian group obtained from the Grothendieck construction to it. It is called the 0-th
topological 𝐾-group of 𝑋 . If 𝑓 : 𝑋 → 𝑌 is a map of compact spaces, the pullback
construction yields a homomorphism 𝐾0 ( 𝑓 ) : 𝐾0 (𝑌 ) → 𝐾0 (𝑋). Thus we obtain a
contravariant functor 𝐾0 from the category of compact spaces to the category of
abelian groups. Since the pullback of a vector bundle with two homotopic maps
yields isomorphic vector bundles, 𝐾0 ( 𝑓 ) depends only on the homotopy class of
𝑓 . Actually there is a sequence of such homotopy invariant covariant functors 𝐾𝑛
for 𝑛 ∈ Z that constitutes a generalized cohomology theory 𝐾∗ called topological
𝐾-theory. It is 2-periodic if 𝐹 = C, i.e., there are natural so-called Bott isomor-
phisms 𝐾𝑛 (𝑋) �−→ 𝐾𝑛+2 (𝑋) for 𝑛 ∈ Z. If 𝐹 = R, it is 8-periodic. We will give further
explanations and generalizations of topological 𝐾-theory later in Section 10.2

Swan’s Theorem 2.27 yields an identification

𝐾0 (𝑋) � 𝐾0 (𝐶 (𝑋)) [𝜉] ↦→ [𝐶0 (𝜉)] .(2.31)

Exercise 2.32. Let 𝑓 : 𝑋 → 𝑌 be a map of compact spaces. Composition with 𝑓

yields a ring homomorphism 𝐶 ( 𝑓 ) : 𝐶 (𝑌 ) → 𝐶 (𝑋). Show that under the identifica-
tion (2.31) the maps 𝐾0 ( 𝑓 ) : 𝐾0 (𝑌 ) → 𝐾0 (𝑋) and𝐶 ( 𝑓 )∗ : 𝐾0 (𝐶 (𝑌 )) → 𝐾0 (𝐶 (𝑋))
coincide.

Exercise 2.33. Compute 𝐾0 (𝐶 (𝐷𝑛)) for the 𝑛-dimensional disk 𝐷𝑛 for 𝑛 ≥ 0.

2.5 Wall’s Finiteness Obstruction

We now discuss the geometric relevance of 𝐾0 (Z𝐺).
Let 𝑋 be a 𝐶𝑊-complex. It is called finite if it consists of finitely many cells.

This is equivalent to the condition that 𝑋 is compact. We call 𝑋 finitely dominated
if there exists a finite domination (𝑌, 𝑖, 𝑟), i.e., a finite 𝐶𝑊-complex 𝑌 together with
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maps 𝑖 : 𝑋 → 𝑌 and 𝑟 : 𝑌 → 𝑋 such that 𝑟 ◦ 𝑖 is homotopic to the identity on 𝑋 . If 𝑋
is finitely dominated, its set of path components 𝜋0 (𝑋) is finite and the fundamental
group 𝜋1 (𝐶) of each component 𝐶 of 𝑋 is finitely presented, see Lemma 2.42.

While studying existence problems for compact manifolds with prescribed proper-
ties (like for example the existence of certain group actions), it happens occasionally
that it is relatively easy to construct a finitely dominated 𝐶𝑊-complex with the de-
sired property within a given homotopy type, whereas it is not at all clear whether one
can also find a homotopy equivalent finite 𝐶𝑊-complex. If the goal is to construct
a compact manifold, this is a necessary step in the construction. Wall’s finiteness
obstruction, which we will explain below, decides this question.

An example of such a geometric problem is the Spherical Space Form Prob-
lem 9.205, i.e., the classification of closed manifolds 𝑀 whose universal coverings
are diffeomorphic or homeomorphic to the standard sphere. Such examples arise
as unit spheres in unitary representations of finite groups, but there are also ex-
amples that do not occur in this way. This problem initiated not only the theory
of the finiteness obstruction, but also surgery theory for closed manifolds with
non-trivial fundamental group. We refer to the survey articles [284] and [694] for
more information about the Spherical Space Form problem. It was finally solved by
Madsen-Thomas-Wall [701, 702].

The finiteness obstruction also appears in the Ph.D.-thesis [915] of Siebenmann,
who dealt with the problem whether a given smooth or topological manifold can be
realized as the interior of a compact manifold with boundary.

Next we explain the definition and the main properties of the finiteness obstruction,
illustrating that it is a kind of Euler characteristic, but now counting elements in the
projective class group instead of counting ranks of finitely generated free modules.

2.5.1 Chain Complex Version of the Finiteness Obstruction

Definition 2.34 (Types of chain complexes). We call an 𝑅-chain complex finitely
generated, free, or projective respectively if each 𝑅-chain module is finitely gen-
erated, free, or projective. It is called positive if 𝐶𝑛 = 0 for 𝑛 ≤ −1. It is called
finite-dimensional if there exists a natural number 𝑁 such that 𝐶𝑛 = 0 for |𝑛| ≤ 𝑁 . It
is called finite if it is finite-dimensional and finitely generated.

For the remainder of this section all chain complexes𝐶∗ are understood to be pos-
itive. Let 𝑅 be a ring and 𝐶∗ be an 𝑅-chain complex. A finite domination (𝐹∗, 𝑖∗, 𝑝∗)
of𝐶∗ consists of a finite free 𝑅-chain complex 𝐹∗ and 𝑅-chain maps 𝑖∗ : 𝐶∗ → 𝐹∗ and
𝑟∗ : 𝐹∗ → 𝐶∗ such that 𝑟∗ ◦ 𝑖∗ ≃ id𝐶∗ holds. The existence of a finite domination is
equivalent to the existence of a finite projective 𝑅-chain complex 𝑃∗ which is 𝑅-chain
homotopy equivalence to 𝐶∗. For a proof of this claim we refer for instance to [644,
Proposition 11.11 on page 222], or to the explicit construction in Subsection 23.7.5.
For any such choice of 𝑃∗, define the finiteness obstruction 𝑜(𝐶∗) ∈ 𝐾0 (𝑅) to be
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𝑜(𝐶∗) :=
∑︁
𝑛≥0
(−1)𝑛 · [𝑃𝑛] .(2.35)

The reduced finiteness obstruction 𝑜(𝐶∗) ∈ 𝐾0 (𝑅) is the image of 𝑜(𝐶∗) under
the projection 𝐾0 (𝑅) → 𝐾0 (𝑅). The definition is indeed independent of the choice
of 𝑃∗, since for two finite projective 𝑅-chain complexes 𝑃∗ and 𝑄∗ coming with
an 𝑅-chain homotopy equivalence 𝑓∗ : 𝑃∗

≃−→ 𝑄∗ the mapping cone cone∗ ( 𝑓∗), see
Definition 3.29, is contractible and hence we obtain an 𝑅-isomorphism

𝑃odd ⊕ 𝑄ev
�−→ 𝑃ev ⊕ 𝑄odd

from the isomorphism (3.30) and its inverse (3.31).

Lemma 2.36. (i) If the two 𝑅-chain complexes 𝐶∗ and 𝐷∗ are 𝑅-chain homotopy
equivalent and one of them is finitely dominated, then both are finitely dominated
and we get

𝑜(𝐶∗) = 𝑜(𝐷∗);

(ii) Let 0 → 𝐶∗ → 𝐷∗ → 𝐸∗ → 0 be an exact sequence of 𝑅-chain complexes. If
two of the 𝑅-chain complexes 𝐶∗, 𝐷∗, and 𝐸∗ are finitely dominated, then all
three are finitely dominated and we get

𝑜(𝐷∗) = 𝑜(𝐶∗) + 𝑜(𝐸∗);

(iii) Let 𝐶∗ be a finitely dominated 𝑅-chain complex. Then it is 𝑅-chain homotopy
equivalent to a finite free 𝑅-chain complex if and only if 𝑜(𝐶∗) vanishes.

Proof. (i) This follows directly from the definitions.
(ii) One can construct a commutative diagram of 𝑅-chain complexes

0 // 𝐶′∗ //

≃
��

𝐷′∗ //

≃
��

𝐸 ′∗ //

≃
��

0

0 // 𝐶∗ // 𝐷∗ // 𝐸∗ // 0

such that the rows are exact, the upper row consists of finite projective 𝑅-chain
complexes, and the vertical maps are 𝑅-chain homotopy equivalences, see for in-
stance [644, Lemma 11.6 on page 216].
(iii) Suppose that 𝑜(𝐶∗) = 0. Choose a finite projective 𝑅-chain complex 𝑃∗ which
is 𝑅-chain homotopy equivalent to 𝐶∗. An elementary 𝑅-chain complex 𝐸∗ over
an 𝑅-module 𝑀 is an 𝑅-chain complex which is concentrated in two consecutive
dimensions and its only non-trivial differential is given by id𝑀 : 𝑀 → 𝑀 . By adding
elementary 𝑅-chain complexes over finitely generated free 𝑅-modules, one can ar-
range that 𝑃∗ is of the shape · · · → 0 → 𝑃𝑛 → 𝑃𝑛−1 → · · · → 𝑃0 such that 𝑃𝑖
is finitely generated free for 𝑖 ≤ 𝑛 − 1. Since 𝑜(𝐶∗) = (−1)𝑛 · [𝑃𝑛] = 0 holds in
𝐾0 (𝑅), the 𝑅-module 𝑃𝑛 is stably free. Hence, by adding one further elementary
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chain complex over a finitely generated free 𝑅-module, one can arrange that 𝑃∗ is
finite free. ⊓⊔

2.5.2 Space Version of the Finiteness Obstruction

In the sequel we ignore base point questions. This is not a real problem since an
inner automorphism of a group 𝐺 induces the identity on 𝐾0 (𝑅𝐺).

Given a finitely dominated connected𝐶𝑊-complex 𝑋 with fundamental group 𝜋,
we consider its universal covering 𝑋 and the associated cellular Z𝜋-chain complex
𝐶∗ (𝑋). Given a finite domination (𝑌, 𝑖, 𝑟), we regard the 𝜋-covering 𝑌 over 𝑌 asso-
ciated to the epimorphism 𝑟∗ : 𝜋1 (𝑌 ) → 𝜋1 (𝑋). The pullback construction yields a
𝜋-covering 𝑖∗𝑌 over 𝑋 . Then 𝐹∗ = 𝐶∗ (𝑖∗𝑌 ) is a finite free Z𝜋-chain complex. The
maps 𝑖 and 𝑟 yield Z𝜋-chain maps 𝑟∗ : 𝐹∗ → 𝐶∗ (𝑋) and 𝑖∗ : 𝐶∗ (𝑋) → 𝐹∗ such that
𝑟∗ ◦ 𝑖∗ is Z𝜋-chain homotopic to the identity on 𝐶∗ (𝑋). Thus (𝐹∗, 𝑖∗, 𝑟∗) is a finite
domination of the Z𝜋-chain complex 𝐶∗ (𝑋). We have defined 𝑜(𝐶∗ (𝑋)) ∈ 𝐾0 (Z𝜋)
in (2.35). Now define the unreduced finiteness obstruction

𝑜(𝑋) := 𝑜(𝐶∗ (𝑋)) ∈ 𝐾0 (Z𝜋).(2.37)

Define the finiteness obstruction

(2.38) 𝑜(𝑋) ∈ 𝐾0 (Z𝜋)

to be the image of 𝑜(𝑋) under the canonical projection 𝐾0 (Z𝜋) → 𝐾0 (Z𝜋). Obvi-
ously 𝑜(𝑋) = 0 if 𝑋 is homotopy equivalent to a finite 𝐶𝑊-complex 𝑍 since in this
case we can take 𝑃∗ = 𝐶∗ (𝑍) and 𝐶∗ (𝑍) is a finite free Z𝜋-chain complex. The next
result is due to Wall, see [983] and [984].

Theorem 2.39 (Properties of the Finiteness Obstruction). Let 𝑋 be a finitely
dominated connected 𝐶𝑊-complex.

(i) The space 𝑋 is homotopy equivalent to a finite 𝐶𝑊-complex if and only if 𝑜(𝑋)
vanishes;

(ii) Every element in 𝐾0 (Z𝐺) can be realized as the finiteness obstruction 𝑜(𝑋) of
a finitely dominated connected 3-dimensional 𝐶𝑊-complex 𝑋 with 𝐺 = 𝜋1 (𝑋),
provided that 𝐺 is finitely presented.

Theorem 2.39 illustrates why it is important to study the algebraic object 𝐾0 (Z𝜋)
when one is dealing with geometric or topological questions. The favorite case is
when 𝐾0 (Z𝜋) vanishes because then the finiteness obstruction is obviously zero and
one does not have to make a specific computation of 𝑜(𝑋) in 𝐾0 (Z𝜋).

Exercise 2.40. Let 𝑋 be a finitely dominated connected 𝐶𝑊-complex with funda-
mental group 𝜋. Define a homomorphism of abelian groups

𝜓 : 𝐾0 (Z𝜋) → Z, [𝑃] ↦→ dimQ (Q ⊗Z𝜋 𝑃).
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Show that 𝜓 sends 𝑜(𝑋) to the Euler characteristic 𝜒(𝑋).

Remark 2.41. One can extend the finiteness obstruction also to not necessarily
connected 𝐶𝑊-complexes. If 𝑋 is a (not necessarily connected) finitely dominated
𝐶𝑊-complex, we define

𝐾0 (Z[𝜋1 (𝑋)]) :=
⊕

𝐶∈𝜋0 (𝑋)
𝐾0 (Z[𝜋1 (𝐶)]);

𝐾0 (Z[𝜋1 (𝑋)]) :=
⊕

𝐶∈𝜋0 (𝑋)
𝐾0 (Z[𝜋1 (𝐶)]),

and the unreduced finite obstruction and the finiteness obstruction to be

𝑜(𝑋) := {𝑜(𝐶) | 𝐶 ∈ 𝜋0 (𝑋)} ∈ 𝐾0 (Z[𝜋1 (𝑋)]);
𝑜(𝑋) := {𝑜(𝐶) | 𝐶 ∈ 𝜋0 (𝑋)} ∈ 𝐾0 (Z[𝜋1 (𝑋)]).

Note that𝐾0 (Z[𝜋1 (𝑋)]) and𝐾0 (Z[𝜋1 (𝑋)]) are covariant functors in 𝑋 in the obvious
way.

For more information about the finiteness obstruction we refer for instance to [380,
382, 642, 669, 740, 743, 761, 838, 965, 983, 984].

2.5.3 Outline of the Proof of the Obstruction Property

In this subsection we outline the proof of Theorem 2.39.
The elementary proofs of the next two lemmas can be found in [983, Lemma 1.3]

and [644, Lemma 14.8 on page 280].

Lemma 2.42. Let 𝐺 be a finitely presented group. Let 𝑖 : 𝐻 → 𝐺 and 𝑟 : 𝐺 → 𝐻 be
group homomorphisms with 𝑟 ◦ 𝑖 = id𝐻 . Then 𝐻 is finitely presented.

Lemma 2.43. Let 𝐺 be a finitely generated group and 𝐻 be a finitely presented
group. Then the kernel ker( 𝑓 ) of any group epimorphism 𝑓 : 𝐺 → 𝐻 is finitely
generated as a normal subgroup, i.e., there exists a finite subset 𝑆 of ker( 𝑓 ) such
that the intersection of all normal subgroups of 𝐺 containing 𝑆 is ker( 𝑓 ).

The next Lemma 2.44 follows from Lemma 2.42 and Lemma 2.43.

Lemma 2.44. Let (𝑌, 𝑖, 𝑟) be a finite domination of the𝐶𝑊-complex 𝑋 . Then we can
arrange by attaching finitely many 2-cells to 𝑌 that the map 𝜋1 (𝑟) : 𝜋1 (𝑌 ) → 𝜋1 (𝑋)
is bijective and hence 𝑟 is 2-connected.

Lemma 2.45. Let𝑌 be a finitely dominated connected𝐶𝑊-complex whose finiteness
obstruction 𝑜(𝑌 ) vanishes. Then there are:

(i) A finite 2-dimensional connected 𝐶𝑊-complex 𝑍;
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(ii) A 2-connected map ℎ : 𝑍 → 𝑌 ;
(iii) A finite free Z𝜋-chain complex 𝐶∗ with 𝐶∗ |2 = 𝐶∗ (𝑍) and a Z𝜋-chain homotopy

equivalence 𝑓∗ : 𝐶∗ → 𝐶∗ (𝑌 ) with 𝑓∗ |2 = 𝐶∗ ( ℎ̃), where here and in the sequel we
identify 𝜋 = 𝜋1 (𝑍) with 𝜋1 (𝑌 ) using the isomorphism 𝜋1 (ℎ) : 𝜋1 (𝑍)

�−→ 𝜋1 (𝑌 ).

Proof. By Lemma 2.44 we obtain a finite domination (𝑌, 𝑖, 𝑟) such that 𝑟 : 𝑌 → 𝑋 is
2-connected. Take 𝑍 to be the 2-skeleton 𝑌2 of 𝑌 and ℎ : 𝑍 → 𝑋 to be the restriction
of 𝑟 to 𝑍 .

Since ℎ is 2-connected, the induced Z𝜋-chain map 𝐶∗ ( ℎ̃) : 𝐶∗ (𝑍) → 𝐶∗ (𝑌 ) is
2-connected and hence 𝐻𝑛 (cone∗ (𝐶∗ ( ℎ̃))) = 0 for 𝑛 ≤ 2. Let 𝑃∗ be the Z𝜋-subchain
complex of cone∗ (𝐶∗ ( ℎ̃)) given by

. . .
𝑐5−→ cone4 (𝐶∗ ( ℎ̃))

𝑐4−→ cone3 (𝐶∗ ( ℎ̃))
𝑐3−→ ker(𝑐2) → 0→ 0→ 0

where 𝑐∗ is the differential of cone(𝐶∗ ( ℎ̃)). Because of the exact sequence

0→ ker(𝑐2) → cone2 (𝐶∗ ( ℎ̃))
𝑐2−→ cone1 (𝐶∗ ( ℎ̃))

𝑐1−→ cone0 (𝐶∗ ( ℎ̃)) → 0

the Z𝜋-chain complex 𝑃∗ is projective. The inclusion 𝑖∗ : 𝑃∗ → cone∗ (𝐶∗ ( ℎ̃)) is
a homology equivalence of projective Z𝜋-chain complexes and hence a Z𝜋-chain
homotopy equivalence. Put 𝑄∗ = Σ−3𝑃∗. Then 𝑄∗ is a positive projective Z𝜋-chain
complex such that Σ3𝑄∗ is Z𝜋-chain homotopy equivalent to cone∗ (𝐶∗ ( ℎ̃)).

The mapping cylinder cyl(𝐶∗ ( ℎ̃)), see Definition 3.29, is Z𝜋-chain homotopy
equivalent to 𝐶∗ (𝑌 ) and there is an obvious short exact sequence of Z𝜋-chain com-
plexes

0→ 𝐶∗ (𝑍) → cyl∗ (𝐶∗ ( ℎ̃)) → cone(𝐶∗ ( ℎ̃)) → 0.

Since 𝐶∗ (𝑍) is finite free and 𝐶∗ (𝑌 ) is finitely dominated, we conclude from
Lemma 2.36 (i) and (ii) that 𝑄∗ is finitely dominated and that we get in 𝐾0 (Z𝜋)

𝑜(𝑄∗) = −𝑜(𝑃∗) = −𝑜(cone∗ (𝐶∗ ( ℎ̃))) = 𝑜(cyl∗ (𝐶∗ ( ℎ̃))) − 𝑜(𝐶∗ (𝑍))
= 𝑜(𝐶∗ (𝑌 )) − 𝑜(𝐶∗ (𝑍)) = 0 − 0 = 0.

Lemma 2.36 (iii) implies that 𝑄∗ is Z𝜋-chain homotopy equivalent to a finite
free positive Z𝜋-chain complex 𝐹∗. Choose a Z𝜋-chain homotopy equivalence
𝑔∗ : Σ3𝐹∗ → cone∗ (𝐶∗ ( ℎ̃)). We get a commutative diagram of Z𝜋-chain complexes
with exact rows and Z𝜋-chain homotopy equivalences as vertical arrows

0 // 𝐶∗ (𝑍) //

id
��

𝐶∗ //

𝑔′∗
��

Σ3𝐹∗

𝑔∗
��

// 0

0 // 𝐶∗ (𝑍) // cyl∗ (𝐶∗ ( ℎ̃)) // cone∗ (𝐶∗ ( ℎ̃)) // 0
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by requiring that the right square is a pull back. Now define the desired Z𝜋-chain map
𝑓∗ : 𝐶∗ → 𝐶∗ (𝑌 ) to be the composite of 𝑔′∗ with the canonical Z𝜋-chain homotopy
equivalence cyl∗ (𝐶∗ ( ℎ̃)) → 𝐶∗ (𝑌 ). ⊓⊔

Next we present the main tool to pass from chain complexes to 𝐶𝑊-complexes.
Its proof can be found in [984, Theorem 2] or in the more general equivariant setting
in [644, Theorem 13.19 on page 268].

Theorem 2.46 (Realization Theorem). Let ℎ : 𝑍 → 𝑌 be a map between connected
𝐶𝑊-complexes such that 𝜋1 (ℎ) : 𝜋1 (𝑍) → 𝜋1 (𝑌 ) is an isomorphism. In the sequel
we identify 𝜋 = 𝜋1 (𝑌 ) with 𝜋1 (𝑍) using 𝜋1 (ℎ). Put 𝑑 = dim(𝑍) and suppose
2 ≤ 𝑑 < ∞. Assume the existence of a free Z𝜋-chain complex 𝐶∗ with a preferred
Z𝜋-basis and a Z𝜋-chain homotopy equivalence 𝑓∗ : 𝐶∗ → 𝐶∗ (𝑌 ) such that the
restriction 𝐶∗ |𝑑 to dimensions 0, 1, . . ., 𝑑 agrees with 𝐶∗ (𝑍) and 𝑓∗ |𝑑 = 𝐶∗ ( ℎ̃).

Then we can construct a 𝐶𝑊-complex 𝑋 such that its 𝑑-skeleton 𝑋𝑑 agrees with
𝑍 and a cellular homotopy equivalence 𝑔 : 𝑋 → 𝑍 satisfying under the obvious
identification 𝜋 = 𝜋1 (𝑋) = 𝜋1 (𝑌 ) = 𝜋1 (𝑍):

(i) We have 𝑔 |𝑍 = ℎ;
(ii) There is a Z𝜋-chain isomorphism 𝑢∗ : 𝐶 �−→ 𝐶∗ (𝑋) such that the given Z𝜋-basis

on 𝐶∗ is mapped bijectively to the cellular Z𝜋-basis of 𝑋;
(iii) We have 𝐶∗ (𝑔) ◦ 𝑢∗ = 𝑓∗.

Remark 2.47. Note that there is no absolute version of the Realization Theorem 2.46
in the sense that, for a 𝑑-dimensional 𝐶𝑊-complex 𝑍 with fundamental group 𝜋 and
dimension 𝑑 ≥ 2 and a based free Z𝜋-chain complex 𝐶∗ with 𝐶∗ |𝑑 = 𝐶∗ (𝑍), we can
find a 𝐶𝑊-complex 𝑋 with 𝑋𝑑 = 𝑍 and 𝐶∗ (𝑋) = 𝐶∗. Moreover, the assumption
dim(𝑍) ≥ 2 cannot be dropped in the Realization Theorem 2.46.

Lemma 2.48. Let 𝑋 be a connected 𝐶𝑊-complex. Then it is finitely dominated if
and only if 𝜋1 (𝑋) is finitely presented and the Z[𝜋1 (𝑋)]-chain complex 𝐶∗ (𝑋) is
finitely dominated.

Proof. This follows essentially from Theorem 2.46; details of the proof can be
found in [984, Corollary 5.1] or in the more general equivariant setting in [644,
Proposition 14.6 (a) on page 282]. ⊓⊔

Next we can give the proof of Theorem 2.39.

Proof of Theorem 2.39. (i) If the finitely dominated connected 𝐶𝑊-complex 𝑌 is
homotopy equivalent to a finite 𝐶𝑊-complex, we get 𝑜(𝑌 ) = 0 directly from the
definitions. Now suppose that𝑌 is a finitely dominated connected𝐶𝑊-complex with
𝑜(𝑌 ) = 0. We conclude from Lemma 2.45 and Theorem 2.46 that 𝑌 is homotopy
equivalent to a 𝐶𝑊-complex 𝑋 for which its cellular Z𝜋-chain complex 𝐶∗ (𝑋) is
finite free. The latter implies that 𝑋 is finite.
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(ii). Since 𝐺 is finitely presented, we can choose a connected finite 2-dimensional
𝐶𝑊-complex 𝑍 with 𝜋1 (𝑍) = 𝐺. Consider any element 𝜉 ∈ 𝐾0 (Z𝜋). Choose a
finitely generated projective 𝑅-module 𝑃 and a natural number 𝑛 such that 𝜉 =

[𝑃] − [Z𝜋𝑛] holds. Choose an exact sequence 0→
⊕

𝐼3
Z𝜋

𝑢−→
⊕

𝐼2
Z𝜋 → 𝑃→ 0.

Now consider 𝑋 ′ = 𝑋 ∨∨
𝑖2∈𝐼 𝑆

2. For each 𝑖3 ∈ 𝐼3 we attach a 3-cell to 𝑋 ′ with an
attaching map 𝑞𝑖3 : 𝑆2 → 𝑋 ′ such that [𝑞𝑖3 ] ∈ 𝜋2 (𝑋 ′) corresponds to the image of
the basis element in

⊕
𝐼3
Z𝜋 associated to 𝑖3 under the composite⊕
𝐼3

Z𝜋
𝑢−→

⊕
𝐼2

Z𝜋
𝑗
−→ 𝜋2 (𝑋 ′)

where 𝑗 sends the basis element associated to 𝑖2 ∈ 𝐼2 to the element in 𝜋2 (𝑋 ′)
given by the obvious inclusion of 𝑆2 → 𝑋 ′ associated to 𝑖2. Call the resulting
3-dimensional 𝐶𝑊-complex 𝑌 . Note that we can identify 𝜋 with 𝜋1 (𝑌 ). We obtain
an exact sequence of free Z𝜋-chain complexes

0→ 𝐶∗ (𝑋) → 𝐶∗ (𝑌 ) → 𝐶∗ (𝑌, 𝑋) → 0.

The Z𝜋-chain complex 𝐶∗ (𝑌, 𝑋) is concentrated in dimensions 2 and 3 and its third
differential is 𝑢. This implies that 𝐶∗ (𝑌, 𝑋) is Z𝜋-chain homotopy equivalent to the
Z𝜋-chain complex concentrated in dimension 2 with 𝑃 as second Z𝜋-chain module.
Hence 𝐶∗ (𝑌, 𝑋) is finitely dominated and 𝑜(𝐶∗ (𝑌, 𝑋)) = [𝑃] by Lemma 2.36 (i).
Lemma 2.36 (ii) implies that𝐶∗ (𝑌 ) is finitely dominated. Then𝑌 is finitely dominated
as a 𝐶𝑊-complex by Lemma 2.48. Lemma 2.36 (ii) implies that we get for some
integer 𝑚

𝑜(𝐶∗ (𝑌 )) = 𝑜(𝐶∗ (𝑍)) + 𝑜(𝐶∗ (𝑌, 𝑋)) = 𝑚 · [Z𝜋] + [𝑃] .

By attaching to𝑌 finitely many trivial 2 and 3-cells, we can arrange that𝑌 is a finitely
dominated connected 𝐶𝑊-complex with 𝜋1 (𝑌 ) = 𝐺 and 𝑜(𝑌 ) = [𝑃] − [Z𝜋𝑛] =
𝜉. ⊓⊔

Exercise 2.49. Let
𝑋0

𝑖1 //

𝑖2
�� 𝑗0   

𝑋1

𝑗1

��
𝑋2

𝑗2
// 𝑋

be a cellular pushout, i.e., the diagram is a pushout, the map 𝑖1 is an inclusion
of 𝐶𝑊-complexes, the map 𝑖2 is cellular and 𝑋 carries the induced 𝐶𝑊-structure.
Suppose that 𝑋0, 𝑋1, 𝑋2 are finitely dominated.

Then 𝑋 is finitely dominated and we get in 𝐾0 (Z[𝜋1 (𝑋)])

𝑜(𝑋) = ( 𝑗1)∗ (𝑜(𝑋1)) + ( 𝑗2)∗ (𝑜(𝑋2)) − ( 𝑗0)∗ (𝑜(𝑋1)).
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2.6 Geometric Interpretation of Projective Class Group and
Finiteness Obstruction

Next we give a geometric construction of 𝐾0 (Z𝜋) that is in the spirit of the well-
known interpretation of the Whitehead group in terms of deformation retractions,
which we will present later in Section 3.4. The material of this section is taken
from [642], where more information and details of the proofs can be found.

Given a space 𝑌 , we want to define an abelian group Wa(𝑌 ). The underlying set
is the set of equivalence classes of an equivalence relation ∼ defined on the set of
maps 𝑓 : 𝑋 → 𝑌 with finitely dominated 𝐶𝑊-complexes as source and the given
space 𝑌 as target. We call 𝑓0 : 𝑋0 → 𝑌 and 𝑓4 : 𝑋4 → 𝑌 equivalent if there exists a
commutative diagram

𝑋0
𝑖0 //

𝑓0

""

𝑋1
𝑗1 //

𝑓1

��

𝑋2

𝑓2

��

𝑋3
𝑗3oo

𝑓3

��

𝑋4
𝑖4oo

𝑓4

||
𝑌

such that 𝑗1 and 𝑗3 are homotopy equivalences and 𝑖0 and 𝑖4 are inclusions of 𝐶𝑊-
complexes with the property that the larger one is obtained from the smaller one by
attaching finitely many cells. Obviously this relation is symmetric and reflexive. It
needs some work to show transitivity and hence that it is an equivalence relation.
The addition in Wa(𝑌 ) is given by the disjoint sum, i.e., define the sum of the class
of 𝑓0 : 𝑋0 → 𝑌 and 𝑓1 : 𝑋1 → 𝑌 to be the class of 𝑓0

∐
𝑓1 : 𝑋0

∐
𝑋1 → 𝑌 . It is easy

to check that this is compatible with the equivalence relation. The neutral element is
represented by ∅ → 𝑌 . The inverse of the class [ 𝑓 ] of 𝑓 : 𝑋 → 𝑌 is constructed as
follows. Choose a finite domination (𝑍, 𝑖, 𝑟) of 𝑋 . Construct a map 𝐹 : cyl(𝑖) → 𝑋

from the mapping cylinder of 𝑖 to 𝑌 such that 𝐹 |𝑋 = id𝑋 and 𝐹 |𝑍 = 𝑟. Then an
inverse of [ 𝑓 ] is given by the class [ 𝑓 ′] of the composite

𝑓 ′ : cyl(𝑖) ∪𝑋 cyl(𝑖)
𝐹∪id𝑋𝐹−−−−−−→ 𝑋

𝑓
−→ 𝑌 .

This finishes the definition of the abelian group Wa(𝑌 ). A map 𝑓 : 𝑌0 → 𝑌1 induces
a homomorphism of abelian groups Wa( 𝑓 ) : Wa(𝑌0) → Wa(𝑌1) by composition.
Thus Wa defines a functor from the category of spaces to the category of abelian
groups.

Exercise 2.50. Show that [ 𝑓 ] + [ 𝑓 ′] = 0 holds for the composite 𝑓 ′ above.

Given a finitely dominated 𝐶𝑊-complex 𝑋 , define its geometric finiteness ob-
struction 𝑜geo (𝑋) ∈ Wa(𝑋) by the class of id𝑋.
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Theorem 2.51 (The geometric finiteness obstruction). Let 𝑋 be a finitely domi-
nated 𝐶𝑊-complex. Then 𝑋 is homotopy equivalent to a finite 𝐶𝑊-complex if and
only if 𝑜geo (𝑋) = 0 in Wa(𝑋).

Proof. Obviously 𝑜geo (𝑋) = 0 if 𝑋 is homotopy equivalent to a finite 𝐶𝑊-complex.
Suppose 𝑜geo (𝑋) = 0. Hence there are a 𝐶𝑊-complex 𝑌 , a map 𝑟 : 𝑌 → 𝑋 and a
homotopy equivalence ℎ : 𝑌 → 𝑍 to a finite 𝐶𝑊-complex 𝑍 such that 𝑌 is obtained
from X by attaching finitely many cells and 𝑟 ◦ 𝑖 = id𝑋 holds for the inclusion
𝑖 : 𝑋 → 𝑌 . The mapping cylinder cyl(𝑟) is built from the mapping cylinder cyl(𝑖)
by attaching a finite number of cells and is homotopy equivalent to 𝑋 . Choose a
homotopy equivalence 𝑔 : cyl(𝑖) → 𝑍 . Consider the push-out

cyl(𝑖) 𝑖 //

𝑔

��

cyl(𝑟)

𝑔′

��
𝑍

𝑖′
// 𝑍 ′

where 𝑖 is the inclusion. Since 𝑔 is a homotopy equivalence, the same is true for 𝑔′.
Hence 𝑋 is homotopy equivalent to the finite 𝐶𝑊-complex 𝑍 ′. ⊓⊔

Theorem 2.52 (Identifying the finiteness obstruction with its geometric coun-
terpart). Let 𝑌 be a space. Then there is a natural isomorphism of abelian groups

Φ : Wa(𝑌 ) �−→
⊕

𝐶∈𝜋0 (𝑌 )
𝐾0 (Z𝜋1 (𝐶)).

Proof. We only explain the definition of Φ. Consider an element [ 𝑓 ] ∈ Wa(𝑌 )
represented by a map 𝑓 : 𝑋 → 𝑌 from a finitely dominated 𝐶𝑊-complex 𝑋 to 𝑌 .
Given a path component𝐶 of 𝑋 , let𝐶 𝑓 be the path component of𝑌 containing 𝑓 (𝐶).
The map 𝑓 induces a map 𝑓 |𝐶 : 𝐶 → 𝐶 𝑓 and hence a map ( 𝑓 |𝐶 )∗ : 𝐾0 (Z𝜋1 (𝐶)) →
𝐾0 (Z𝜋1 (𝐶 𝑓 )). Since 𝑋 is finitely dominated, every path component𝐶 of 𝑋 is finitely
dominated, and we can consider its finiteness obstruction 𝑜(𝐶) ∈ 𝐾0 (Z𝜋1 (𝐶)). Let
𝜙( [ 𝑓 ])𝐶 be the image of 𝑜(𝐶) under the composite

𝐾0 (Z𝜋1 (𝐶))
( 𝑓 |𝐶 )∗−−−−−→ 𝐾0 (Z𝜋1 (𝐶 𝑓 )) →

⊕
𝐶∈𝜋0 (𝑌 )

𝐾0 (Z𝜋1 (𝐶)).

Since 𝜋0 (𝑋) is finite, we can define

𝜙( [ 𝑓 ]) :=
∑︁

𝐶∈𝜋0 (𝑋)
𝜙( [ 𝑓 ])𝐶 .

We omit the easy proof that this is compatible with the equivalence relation appearing
in the definition of Wa(𝑌 ), that 𝜙 is a homomorphism of abelian groups and that
Theorem 2.39 implies that Φ is bijective. ⊓⊔
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2.7 Universal Functorial Additive Invariants

In this section we describe the pair (𝐾0 (Z𝜋1 (𝑋)), 𝑜(𝑋)) by an abstract property.

Definition 2.53 (Functorial additive invariant for finitely dominated 𝐶𝑊-comp-
lexes). A functorial additive invariant for finitely dominated𝐶𝑊-complexes consists
of a covariant functor 𝐴 from the category of finitely dominated 𝐶𝑊-complexes to
the category of abelian groups together with an assignment 𝑎 that associates to every
finitely dominated 𝐶𝑊-complex 𝑋 an element 𝑎(𝑋) ∈ 𝐴(𝑋) such that the following
axioms are satisfied:

• Homotopy invariance of 𝐴
If 𝑓 , 𝑔 : 𝑋 → 𝑌 are homotopic maps between finitely dominated 𝐶𝑊-complexes,
then 𝐴( 𝑓 ) = 𝐴(𝑔);
• Homotopy invariance of 𝑎(𝑋)

If 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence of finitely dominated 𝐶𝑊-complexes,
then 𝐴( 𝑓 ) (𝑎(𝑋)) = 𝑎(𝑌 );
• Additivity

Let
𝑋0

𝑖1 //

𝑖2
�� 𝑗0   

𝑋1

𝑗1

��
𝑋2

𝑗2
// 𝑋

be a cellular pushout, i.e., the diagram is a pushout, the map 𝑖1 is an inclusion
of 𝐶𝑊-complexes, the map 𝑖2 is cellular and 𝑋 carries the induced 𝐶𝑊-structure.
Suppose that 𝑋0, 𝑋1, 𝑋2 are finitely dominated.
Then 𝑋 is finitely dominated and

𝑎(𝑋) = 𝐴( 𝑗1) (𝑎(𝑋1)) + 𝐴( 𝑗2) (𝑎(𝑋2)) − 𝐴( 𝑗0) (𝑎(𝑋0));

• Normalization
𝑎(∅) = 0.

Example 2.54 (Componentwise Euler characteristic). Let 𝐴 be the covariant func-
tor sending a finitely dominated 𝐶𝑊-complex 𝑋 to 𝐻0 (𝑋;Z) =

⊕
𝐶∈𝜋0 (𝑋) Z. Let

𝑎(𝑋) ∈ 𝐴(𝑋) be the componentwise Euler characteristic, i.e., the collection of inte-
gers {𝜒(𝐶) | 𝐶 ∈ 𝜋0 (𝑋)}. Then (𝐴, 𝑎) is a functorial additive invariant for finitely
dominated 𝐶𝑊-complexes.

Definition 2.55 (Universal functorial additive invariant for finitely dominated
𝐶𝑊-complexes). A universal functorial additive invariant for finitely dominated
𝐶𝑊-complexes (𝑈, 𝑢) is a functorial additive invariant with the property that for
any functorial additive invariant (𝐴, 𝑎) there is precisely one natural transformation
𝑇 : 𝑈 → 𝐴 with the property that 𝑇 (𝑋) (𝑢(𝑋)) = 𝑎(𝑋) holds for every finitely
dominated 𝐶𝑊-complex 𝑋 .
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Exercise 2.56. Show that the functorial additive invariant defined in Example 2.54
is the universal one if we restrict to finite 𝐶𝑊-complexes.

Obviously the universal additive functorial invariant is unique (up to unique
natural equivalence) if it exists. It is also easy to construct it. However, it turns out
that there exists a concrete model, namely, the following theorem is proved in [642,
Theorem 4.1].

Theorem 2.57 (The finiteness obstruction is the universal functorial additive
invariant). The covariant functor 𝑋 ↦→

⊕
𝐶∈𝜋0 (𝑋) 𝐾0 (Z𝜋1 (𝐶)) together with the

componentwise finiteness obstruction {𝑜(𝐶) | 𝐶 ∈ 𝜋0 (𝑋)} is the universal functorial
additive invariant for finitely dominated 𝐶𝑊-complexes.

Exercise 2.58. (i) Construct for finitely dominated𝐶𝑊-complexes 𝑋 and𝑌 a natural
bilinear pairing

𝑃(𝑋,𝑌 ) : 𝑈 (𝑋) ×𝑈 (𝑌 ) → 𝑈 (𝑋 × 𝑌 )

sending (𝑢(𝑋), 𝑢(𝑌 )) to 𝑢(𝑋×𝑌 )where (𝑈, 𝑢) is the universal functorial additive
invariant for finitely dominated 𝐶𝑊-complexes;

(ii) Let 𝑋 be a finitely dominated 𝐶𝑊-complex. Let 𝑌 be a finite 𝐶𝑊-complex such
that 𝜒(𝐶) = 0 for every component 𝐶 of 𝑌 . Show that 𝑋 × 𝑌 is homotopy
equivalent to a finite 𝐶𝑊-complex.

2.8 Variants of the Farrell-Jones Conjecture for 𝑲0(𝑹𝑮)

In this section we state variants of the Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺), where
𝑅𝐺, sometimes also written as 𝑅[𝐺], is the group ring of a group𝐺 with coefficients
in an associative ring 𝑅 with unit. Elements in 𝑅𝐺 are given by formal finite sums∑
𝑔∈𝐺 𝑟𝑔 · 𝑔, and addition and multiplication is given by(∑︁

𝑔∈𝐺
𝑟𝑔 · 𝑔

)
+

(∑︁
𝑔∈𝐺

𝑠𝑔 · 𝑔
)

:=
∑︁
𝑔∈𝐺
(𝑟𝑔 + 𝑠𝑔) · 𝑔;(∑︁

𝑔∈𝐺
𝑟𝑔 · 𝑔

)
·
(∑︁
𝑔∈𝐺

𝑠𝑔 · 𝑔
)

:=
∑︁
𝑔∈𝐺

( ∑︁
ℎ,𝑘∈𝐺,
𝑔=ℎ𝑘

𝑟ℎ · 𝑠𝑘

)
· 𝑔.

The Farrell-Jones Conjecture itself will give a complete answer for arbitrary
groups and rings, but to formulate the full version some additional effort will be
needed. If one assumes that 𝑅 is regular and 𝐺 is torsionfree or that 𝑅 is regular and
Q ⊆ 𝑅, then the conjecture reduces to easy to formulate statements, which we will
present next. Moreover, these special cases are already very interesting.

Definition 2.59 (Projective resolution). Let 𝑀 be an 𝑅-module. A projective reso-
lution (𝑃∗, 𝜙) of 𝑀 is a positive projective 𝑅-chain complex 𝑃∗ with 𝐻𝑛 (𝑃∗) = 0 for
𝑛 ≥ 1 together with an 𝑅-isomorphism 𝜙 : 𝐻0 (𝑃∗)

�−→ 𝑀 . It is called finite, finitely
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generated, free, finite-dimensional, or 𝑑-dimensional if the 𝑅-chain complex 𝑃∗ has
this property.

A ring 𝑅 is Noetherian if any submodule of a finitely generated 𝑅-module is
again finitely generated. A ring 𝑅 is called regular if it is Noetherian and any finitely
generated 𝑅-module has a finite-dimensional projective resolution. Any principal
ideal domain such as Z, any field, and, more generally, any Dedekind domain is
regular, see Theorem 2.21.

Conjecture 2.60 (Farrell-Jones Conjecture for 𝐾0 (𝑅) for torsionfree𝐺 and reg-
ular 𝑅). Let 𝐺 be a torsionfree group and let 𝑅 be a regular ring. Then the map
induced by the inclusion of the trivial group into 𝐺

𝐾0 (𝑅)
�−→ 𝐾0 (𝑅𝐺)

is bijective.
In particular we get for any principal ideal domain 𝑅 and torsionfree 𝐺

𝐾0 (𝑅𝐺) = 0.

Remark 2.61 (Relevance of Conjecture 2.60). In view of Remark 2.8 Conjec-
ture 2.60 is equivalent to the statement that for a torsionfree group 𝐺 and a regular
ring 𝑅 every finitely generated projective 𝑅𝐺-module is stably finitely generated
free. This is the algebraic relevance of this conjecture. Its geometric meaning comes
from the following conclusion of Theorem 2.39. Namely, if 𝑅 = Z and𝐺 is a finitely
presented torsionfree group, it is equivalent to the statement that every finitely domi-
nated𝐶𝑊-complex with 𝜋1 (𝑋) � 𝐺 is homotopy equivalent to a finite𝐶𝑊-complex.

Definition 2.62 (Family of subgroups). A family F of subgroups of a group 𝐺 is
a set of subgroups that is closed under conjugation with elements of 𝐺 and under
passing to subgroups.

Our main examples of families are listed below

Notation 2.63.
notation subgroups
TR trivial group
FCY finite cyclic subgroups
FIN finite subgroups
CYC cyclic subgroups
VCY virtually cyclic subgroups
ALL all subgroups

Definition 2.64 (Orbit category). The orbit category Or(𝐺) has as objects homo-
geneous spaces 𝐺/𝐻 and as morphisms 𝐺-maps. Given a family F of subgroups
of 𝐺, let the F -restricted orbit category OrF (𝐺) be the full subcategory of Or(𝐺)
whose objects are homogeneous spaces 𝐺/𝐻 with 𝐻 ∈ F .
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Definition 2.65 (Subgroup category). The subgroup category Sub(𝐺) has as ob-
jects subgroups 𝐻 of 𝐺. For 𝐻, 𝐾 ⊆ 𝐺, let conhom𝐺 (𝐻, 𝐾) be the set of all group
homomorphisms 𝑓 : 𝐻 → 𝐾 for which there exists a group element 𝑔 ∈ 𝐺 such that
𝑓 is given by conjugation with 𝑔. The group of inner automorphisms inn(𝐾) consists
of those automorphisms 𝐾 → 𝐾 that are given by conjugation with an element
𝑘 ∈ 𝐾 . It acts on conhom(𝐻, 𝐾) from the left by composition. Define the set of
morphisms in Sub(𝐺) from 𝐻 to 𝐾 to be inn(𝐾)\ conhom(𝐻, 𝐾). Composition of
group homomorphisms defines the composition of morphisms in Sub(𝐺).

Given a family F , define the F -restricted category of subgroups SubF (𝐺) to be
the full subcategory of Sub(𝐺) that is given by objects 𝐻 belonging to F .

Exercise 2.66. Show that SubF (𝐺) is a quotient category of OrF (𝐺).
Note that there is a morphism from 𝐻 to 𝐾 only if 𝐻 is conjugate to a subgroup of

𝐾 . Clearly 𝐾0 (𝑅(−)) yields a functor from SubF (𝐺) to abelian groups since inner
automorphisms on a group 𝐾 induce the identity on 𝐾0 (𝑅𝐾). Using the inclusions
into 𝐺, one obtains a map

colim𝐻∈SubF (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺).

We briefly recall the notion of a colimit of a covariant functor 𝐹 : C → Z-MOD
from a small category C into the category of abelian groups, where small means
that the objects of C form a set. Given an abelian group 𝐴, let 𝐶𝐴 be the constant
functor C → Z-MOD that sends every object in C to 𝐴 and every morphism in C
to id𝐴. Given a homomorphism 𝑓 : 𝐴→ 𝐵 of abelian groups, let 𝐶 𝑓 : 𝐶𝐴→ 𝐶𝐵 be
the obvious transformation. The colimit, sometimes also called the direct limit, of
𝐹 consists of an abelian group colimC 𝐹 together with a transformation 𝑇𝐹 : 𝐹 →
𝐶colimC 𝐹 such that for any abelian group 𝐵 and transformation 𝑇 : 𝐹 → 𝐶𝐵 there
exists precisely one homomorphism of abelian groups 𝜙 : colimC 𝐹 → 𝐵 satisfying
𝐶𝜙 ◦ 𝑇𝐹 = 𝑇 . The colimit is unique (up to unique isomorphism) and always exists.
If we replace abelian group by ring or by 𝑅-module respectively, we get the notion
of a colimit, sometimes also called a direct limit, of functors from a small category
to rings or 𝑅-modules respectively.

Conjecture 2.67 (Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for regular 𝑅 with
Q ⊆ 𝑅). Let 𝑅 be a regular ring with Q ⊆ 𝑅 and let 𝐺 be a group.

Then the homomorphism

𝐼FIN (𝐺, 𝐹) : colim𝐻∈SubFIN (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺)(2.68)

coming from the various inclusions of finite subgroups of 𝐺 into 𝐺 is a bijection.

One can also ask for the following stronger version of Conjecture 2.67, which
also encompasses Conjecture 2.60.

Conjecture 2.69 (Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for regular 𝑅). Let 𝑅 be
a regular ring and let 𝐺 be a group. Let P(𝐺, 𝑅) be the set of primes which are not
invertible in 𝑅 and for which 𝐺 contains an element of order 𝑝.
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Then the homomorphism

𝐼FIN (𝐺, 𝐹) : colim𝐻∈SubFIN (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺)

coming from the various inclusions of finite subgroups of 𝐺 into 𝐺 is a P(𝐺, 𝑅)-
isomorphism, i.e., an isomorphism after inverting all primes in P(𝐺, 𝑅).

We mention that the surjectivity of the map 𝐼FIN (𝐺, 𝐹) is equivalent to the
surjectivity of the map induced by the various inclusions of subgroups 𝐻 ∈ FIN
into 𝐺 ⊕

𝐻∈FIN
𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺),

because this map factorizes as⊕
𝐻∈FIN

𝐾0 (𝑅𝐻)
𝜓
−→ colim𝐻∈SubFIN (𝐺) 𝐾0 (𝑅𝐻)

𝐼FIN (𝐺,𝐹 )−−−−−−−−−→ 𝐾0 (𝑅𝐺),

where the first map 𝜓 is surjective.

Remark 2.70 (Module-theoretic relevance of Conjecture 2.67). Conjecture 2.67
implies that for a regular ring 𝑅 with Q ⊆ 𝑅 every finitely generated projective
𝑅-module is, up to adding finitely generated free 𝑅𝐺-modules, a direct sum of
finitely many 𝑅𝐺-modules of the shape 𝑅𝐺 ⊗𝑅𝐻 𝑃 for a finite subgroup 𝐻 ⊆ 𝐺 and
a finitely generated projective 𝑅𝐻-module 𝑃. So it predicts the (stable) structure of
finitely generated projective 𝑅𝐺-modules in the most elementary way. We mention,
however, that the situation is much more complicated in the case where we drop the
assumption that 𝑅 is regular and Q ⊆ 𝑅. In particular, for 𝑅 = Z new phenomena
will occur, as explained later, which are related to so-called negative 𝐾-groups
and Nil-groups. For instance, the obvious inclusion Z/6 → Z × Z/6 does not
induce a surjection 𝐾0 (Z[Z/6]) → 𝐾0 (Z[Z × Z/6]), since 𝐾0 (Z[Z/6]) = 0 and
𝐾0 (Z[Z × Z/6]) � Z, whereas by 𝐾0 (Q[Z/6]) → 𝐾0 (Q[Z × Z/6]) is known to be
bijective as predicted by Conjecture 2.67.

Remark 2.71 (Conjecture 2.67 and the Atiyah Conjecture). Conjecture 2.67 plays
a role in a program aiming at a proof of the Atiyah Conjecture about 𝐿2-Betti
numbers, as explained in [650, Section 10.2]. Atiyah defined the 𝑛-th 𝐿2-Betti number
of the universal covering 𝑀 of a closed Riemannian manifold 𝑀 to be the non-
negative real number

𝑏
(2)
𝑛 (𝑀) := lim

𝑡→∞

∫
F

tr
(
e−𝑡Δ𝑛 ( �̃�, �̃� )

)
d�̃�

where F is a fundamental domain for the 𝜋1 (𝑀)-action and e−𝑡Δ𝑛 ( �̃�, �̃� ) denotes the
heat kernel on 𝑀 . The version of the Atiyah Conjecture which we are interested in
and which is at the time of writing open says that 𝑑 · 𝑏 (2)𝑛 (𝑀) is an integer if 𝑑 is an
integer such that the order of any finite subgroup of 𝜋1 (𝑀) divides 𝑑. In particular
𝑏
(2)
𝑛 (𝑀) is expected to be an integer if 𝜋1 (𝑀) is torsionfree. This gives an interesting
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connection between the analysis of heat kernels and the projective class group of
complex group rings C𝐺.

If one drops the condition that there exists a bound on the order of finite subgroups
of 𝜋1 (𝑀), then also transcendental real numbers can occur as the 𝐿2-Betti number
of the universal covering 𝑀 of a closed Riemannian manifold 𝑀 , see [58, 433, 809].

An 𝑅-module 𝑀 is called Artinian if for any descending series of submodules
𝑀1 ⊇ 𝑀2 ⊇ · · · there exists an integer 𝑘 such that 𝑀𝑘 = 𝑀𝑘+1 = 𝑀𝑘+2 = · · ·
holds. An 𝑅-module 𝑀 is called simple or irreducible if 𝑀 ≠ {0} and 𝑀 contains
only {0} and 𝑀 as submodules. A ring 𝑅 is called Artinian if both 𝑅 considered
as a left 𝑅-module is Artinian and 𝑅 considered as a right 𝑅-module is Artinian,
or, equivalently, every finitely generated left 𝑅-module and every finitely generated
right 𝑅-module is Artinian. Skew-fields and finite rings are Artinian, whereas Z is
not Artinian.

Conjecture 2.72 (Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for an Artinian ring 𝑅).
Let 𝐺 be a group and 𝑅 be an Artinian ring.

Then the canonical map

𝐼FIN (𝐺, 𝑅) : colim𝐻∈SubFIN (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺)

is an isomorphism

2.9 Kaplansky’s Idempotent Conjecture

In this section we discuss the following conjecture.

Conjecture 2.73 (Kaplansky’s Idempotent Conjecture). Let 𝑅 be an integral
domain and let𝐺 be a torsionfree group. Then all idempotents of 𝑅𝐺 are trivial, i.e.,
equal to 0 or 1.

Remark 2.74 (Kaplansky’s Idempotent Conjecture for prime characteristic).
There is a reasonable more general version of Conjecture 2.73 where one replaces
the condition that 𝐺 is torsionfree by the weaker condition that any prime 𝑝 which
divides the order of some finite subgroup 𝐻 ⊆ 𝐺 is not invertible in the integral
domain 𝑅. If 𝑅 is a skew-field of prime characteristic 𝑝, then this condition reduces
to the condition that any finite subgroup 𝐻 of 𝐺 is a 𝑝-group.

The version of Kaplansky’s Idempotent Conjecture 2.73 described in Remark 2.74
is consistent with the observation that the only known idempotents in a group ring
𝑅𝐺 come from idempotents in 𝑅 or by the following construction.

Example 2.75 (Construction of idempotents). Let 𝐺 be a group and 𝑔 ∈ 𝐺 be
an element of finite order. Suppose that the order |𝑔 | is invertible in 𝑅. Define an
element 𝑥 := |𝑔 |−1 ·∑ |𝑔 |

𝑖=1 𝑔
𝑖 . Then 𝑥2 = 𝑥, i.e., 𝑥 is an idempotent in 𝑅𝐺.
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Exercise 2.76. Show that the version of Kaplansky’s Idempotent Conjecture of
Remark 2.74 holds for 𝐺 = Z/2.

Exercise 2.77. Consider the ring 𝑅 = Z[𝑥]/(2𝑥2 − 3𝑥 + 1). In the sequel denote by
𝑢 the class of 𝑢 ∈ Z[𝑥] in 𝑅. Show:

(i) 2 is not invertible in 𝑅;
(ii) There are precisely two non-trivial idempotents in 𝑅, namely 2 − 2𝑥 and
−1 + 2𝑥;

(iii) The element 𝑥 + (1 − 𝑥) · 𝑡 is a non-trivial idempotent in 𝑅[Z/2].

Remark 2.78 (Sofic groups). In the next theorem we will use the notion of a sofic
group that was introduced by Gromov and originally called subamenable group.
Every residually amenable group is sofic but the converse is not true. The class of
sofic groups is closed under taking subgroups, direct products, amalgamated free
products, colimits and inverse limits, and, if 𝐻 is a sofic normal subgroup of 𝐺
with amenable quotient 𝐺/𝐻, then 𝐺 is sofic. To the authors’ knowledge there is
no example of a group that is not sofic. There is a note by Dave Witte Morris [752]
following Deligne [300] where a central extension 1→ Z→ 𝐺 → 𝑆𝑃(2𝑛,R) → 1
is constructed such that 𝐺 is not residually finite. The group 𝐺 is viewed as a
candidate for a group which is not sofic. It is unknown but likely to be true that all
hyperbolic groups are sofic. For more information about the notion of a sofic group
we refer to [332].

Definition 2.79 (Directly finite). An 𝑅-module 𝑀 is called directly finite if every
𝑅-module 𝑁 satisfying 𝑀 �𝑅 𝑀 ⊕ 𝑁 is trivial. A ring 𝑅 is called directly finite (or
von Neumann finite) if it is directly finite as a module over itself, or, equivalently, if
𝑟, 𝑠 ∈ 𝑅 satisfy 𝑟𝑠 = 1, then 𝑠𝑟 = 1. A ring is called stably finite if the matrix algebra
M𝑛 (𝑅) is directly finite for all 𝑛 ≥ 1.

Remark 2.80 (Stable finiteness). Stable finiteness for a ring 𝑅 is equivalent to the
following statement. Every finitely generated projective 𝑅-module 𝑃 whose class in
𝐾0 (𝑅) is zero is already the trivial module, i.e., 0 = [𝑃] ∈ 𝐾0 (𝑅) implies 𝑃 � 0.

If 𝐹 is a field of characteristic zero, then 𝐹𝐺 is stably finite for every group 𝐺.
This is proved by Kaplansky [544], see also Passman [791, Corollary 1.9 on page
38]. If 𝑅 is a skew-field and 𝐺 is a sofic group, then 𝑅𝐺 is stably finite. This is
proved for free-by-amenable groups by Ara-Meara-Perera [35] and extended to sofic
groups by Elek-Szabo [331, Corollary 4.7]. These results have been extended to
extensions with a finitely generated residually finite groups as kernel and a sofic
finitely generated group as quotient by Berlai [128].

The next theorem is taken from [88, Theorem 1.12].

Theorem 2.81 (The Farrell-Jones Conjecture and Kaplansky’s Idempotent
Conjecture). Let 𝐺 be a group. Let 𝑅 be a ring whose idempotents are all triv-
ial. Suppose that

𝐾0 (𝑅) ⊗Z Q −→ 𝐾0 (𝑅𝐺) ⊗Z Q
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is an isomorphism.
Then 0 and 1 are the only idempotents in 𝑅𝐺 if one of the following conditions is

satisfied:

(i) 𝑅𝐺 is stably finite;
(ii) 𝑅 is a field of characteristic zero;

(iii) 𝑅 is a skew-field and 𝐺 is sofic.

Remark 2.82 (The Farrell-Jones Conjecture and Kaplansky’s Idempotent Con-
jecture). Theorem 2.81 implies that for a skew-field 𝐷 of characteristic zero and
a torsionfree group 𝐺 Kaplansky’s Idempotent Conjecture 2.73 is true for 𝐷𝐺,
provided that Conjecture 2.60 holds and that 𝐷 is commutative or 𝐺 is sofic.

Remark 2.83 (The Farrell-Jones Conjecture and the Kaplansky’s Idempotent
Conjecture for prime characteristic). Suppose that 𝐷 is a skew-field of prime
characteristic 𝑝, that Conjecture 2.72 holds for𝐺 and 𝐷, and that all finite subgroups
of 𝐺 are 𝑝-groups. Then 𝐾0 (𝐷)

�−→ 𝐾0 (𝐷𝐺) is an isomorphism since for a finite
𝑝-group 𝐻 the group ring 𝐷𝐻 is a local ring, see [271, Theorem 5.24 on page 114],
and hence 𝐾0 (𝐷𝐻) = 0 by Lemma 2.123. If we furthermore assume that 𝐺 is sofic,
then Theorem 2.81 implies that all idempotents in 𝐷𝐺 are trivial.

Remark 2.84 (Reducing the case of a field of characteristic zero to C). Let 𝐹 be
a field of characteristic zero and let 𝑢 =

∑
𝑔∈𝐺 𝑥𝑔 · 𝑔 ∈ 𝐹𝐺 be an element. Let 𝐾 be

the finitely generated field extension of Q given by 𝐾 = Q(𝑥𝑔 | 𝑔 ∈ 𝐺) ⊂ 𝐹. Then 𝑢
is already an element in 𝐾𝐺. The field 𝐾 embeds into C since 𝐾 is finitely generated,
it is a finite algebraic extension of a transcendental extension 𝐾 ′ of Q, see [617,
Theorem 1.1 on p. 356], and 𝐾 ′ has finite transcendence degree over Q. Since the
transcendence degree of C over Q is infinite, there exists an embedding 𝐾 ′ ↩→ C
induced by an injection of a transcendence basis of 𝐾 over Q into a transcendence
basis of C over Q. It extends to an embedding 𝐾 ↩→ C because C is algebraically
closed. Hence 𝑢 can be viewed as an element in C𝐺. This reduces the case of fields
𝐹 of characteristic zero to the case 𝐹 = C.

Next we mention some further results.
Formanek [398, Theorem 9], see also [189, Proposition 4.2], has shown that

all idempotents of 𝐹𝐺 are trivial, provided that 𝐹 is a field of characteristic zero
and there are infinitely many primes 𝑝 for which there do not exist an element
𝑔 ∈ 𝐺, 𝑔 ≠ 1 and an integer 𝑘 ≥ 1 such that 𝑔 and 𝑔𝑝𝑘 are conjugate. Torsionfree
hyperbolic groups satisfy these conditions. Hence Formanek’s results imply that
all idempotents in 𝐹𝐺 are trivial if 𝐺 is torsionfree hyperbolic and 𝐹 is a field of
characteristic zero.

Delzant [301] has proved the Kaplansky’s Idempotent Conjecture 2.73 for all
integral domains 𝑅 for a torsionfree hyperbolic group 𝐺, provided that 𝐺 admits an
appropriate action with large enough injectivity radius. Delzant actually deals with
zero-divisors and units as well.
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Remark 2.85 (Conjectures related to the Idempotent conjecture). There are also
the Zero-Divisor Conjecture due to Kaplansky, which predicts for an integral do-
main 𝑅 and a torsionfree group 𝐺 that 𝑅𝐺 has no non-trivial zero-divisors, and
the Embedding Conjecture due to Malcev, which predicts for an integral domain 𝑅
and a torsionfree group 𝐺 that 𝑅𝐺 can be emdedded into a skew-field. Obviously
the Embedding Conjecture implies the Zero-Divisor Conjecture, which in turn im-
plies the Idempotent Conjecture 2.73. The Zero-Divisor Conjecture does not follow
from Conjecture 2.60. For a ring 𝑅 with Q ⊆ 𝑅 = C the Zero-Divisor Conjecture
follows from the Atiyah Conjecture about the integrality of 𝐿2-Betti numbers for
torsionfree groups, see [650, Lemma 10.15 on page 376]. There is also the Unit-
Conjecture 3.125, which implies the Zero-Divisor Conjecture, see [610, (6.20) on
page 95], and is discussed in Section 3.14.

2.10 The Bass Conjectures

2.10.1 The Bass Conjecture for Fields of Characteristic Zero as Coefficients

Let𝐺 be a group. Let con(𝐺) be the set of conjugacy classes (𝑔) of elements 𝑔 ∈ 𝐺.
Denote by con(𝐺) 𝑓 the subset of con(𝐺) consisting of those conjugacy classes (𝑔)
for which each representative 𝑔 has finite order. Let 𝑅 be a commutative ring. Let
class(𝐺, 𝑅) and class(𝐺, 𝑅) 𝑓 be the free 𝑅-module with the set con(𝐺) and con(𝐺) 𝑓
as basis. This is the same as the 𝑅-module of 𝑅-valued functions on con(𝐺) and
con(𝐺) 𝑓 with finite support. Define the universal 𝑅-trace

tr𝑢𝑅𝐺 : 𝑅𝐺 → class(𝐺, 𝑅),
∑︁
𝑔∈𝐺

𝑟𝑔 · 𝑔 ↦→
∑︁
𝑔∈𝐺

𝑟𝑔 · (𝑔).(2.86)

It extends to a function tr𝑢
𝑅𝐺

: M𝑛 (𝑅𝐺) → class(𝐺, 𝑅) on (𝑛, 𝑛)-matrices over 𝑅𝐺
by taking the sum of the traces of the diagonal entries. Let 𝑃 be a finitely generated
projective 𝑅𝐺-module. Choose a matrix 𝐴 ∈ M𝑛 (𝑅𝐺) such that 𝐴2 = 𝐴 and the
image of the 𝑅𝐺-map 𝑟𝐴 : 𝑅𝐺𝑛 → 𝑅𝐺𝑛 given by right multiplication with 𝐴 is
𝑅𝐺-isomorphic to 𝑃. Define the Hattori-Stallings rank of 𝑃 to be

HS𝑅𝐺 (𝑃) = tr𝑢𝑅𝐺 (𝐴) ∈ class(𝐺, 𝑅).(2.87)

The Hattori-Stallings rank depends only on the isomorphism class of the 𝑅𝐺-module
𝑃. It induces an 𝑅-homomorphism, the Hattori-Stallings homomorphism,

HS𝑅𝐺 : 𝐾0 (𝑅𝐺) ⊗Z 𝑅 → class(𝐺, 𝑅), [𝑃] ⊗ 𝑟 ↦→ 𝑟 · HS𝑅𝐺 (𝑃).(2.88)

Let 𝐹 be a field of characteristic zero. Fix an integer 𝑚 ≥ 1. Let 𝐹 (𝜁𝑚) ⊃ 𝐹 be
the Galois extension given by adjoining the primitive 𝑚-th root of unity 𝜁𝑚 to 𝐹.
Denote by Γ(𝑚, 𝐹) the Galois group of this extension of fields, i.e., the group of
automorphisms𝜎 : 𝐹 (𝜁𝑚) → 𝐹 (𝜁𝑚) that induce the identity on𝐹. It can be identified
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with a subgroup of Z/𝑚∗ by sending𝜎 to the unique element 𝑢(𝜎) ∈ Z/𝑚∗ for which
𝜎(𝜁𝑚) = 𝜁

𝑢(𝜎)
𝑚 holds. Let 𝑔1 and 𝑔2 be two elements of 𝐺 of finite order. We call

them 𝐹-conjugate if for some (and hence all) positive integers 𝑚 with 𝑔𝑚1 = 𝑔𝑚2 = 1
there exists an element 𝜎 in the Galois group Γ(𝑚, 𝐹) with the property that 𝑔𝑢(𝜎)1
and 𝑔2 are conjugate. Two elements 𝑔1 and 𝑔2 are 𝐹-conjugate for 𝐹 = Q, R, or C, if
the cyclic subgroups ⟨𝑔1⟩ and ⟨𝑔2⟩ are conjugate if 𝑔1 and 𝑔2, or 𝑔1 and 𝑔−1

2 , or 𝑔1
and 𝑔2 are conjugate, respectively.

Denote by con𝐹 (𝐺) 𝑓 the set of 𝐹-conjugacy classes (𝑔)𝐹 of elements 𝑔 ∈ 𝐺 of
finite order. Let class𝐹 (𝐺) 𝑓 be the 𝐹-vector space with the set con𝐹 (𝐺) 𝑓 as basis,
or, equivalently, the 𝐹-vector space of functions con𝐹 (𝐺) 𝑓 → 𝐹 with finite support.
There are obvious inclusions of 𝐹-modules

class𝐹 (𝐺) 𝑓 ⊆ class(𝐺, 𝐹) 𝑓 ⊆ class(𝐺, 𝐹).

Lemma 2.89. Suppose that 𝐹 is a field of characteristic zero and 𝐻 is a finite group.
Then the Hattori-Stallings homomorphism, see (2.88), induces an isomorphism

HS𝐹𝐻 : 𝐾0 (𝐹𝐻) ⊗Z 𝐹
�−→ class𝐹 (𝐻) 𝑓 .

Proof. Since 𝐻 is finite, an 𝐹𝐻-module is a finitely generated projective 𝐹𝐻-module
if and only if it is a (finite-dimensional) 𝐻-representation with coefficients in 𝐹 and
𝐾0 (𝐹𝐻) is the same as the representation ring Rep𝐹 (𝐻). The Hattori-Stallings rank
HS𝐹𝐻 (𝑉) and the character 𝜒𝑉 of a 𝐺-representation 𝑉 with coefficients in 𝐹 are
related by the formula

𝜒𝑉 (ℎ−1) = |𝐶𝐺 ⟨ℎ⟩| · HS𝐹𝐻 (𝑉) (ℎ)(2.90)

for ℎ ∈ 𝐻 where 𝐶𝐺 ⟨ℎ⟩ is the centralizer of ℎ in 𝐺. Hence Lemma 2.89 follows
from representation theory, see for instance [908, Corollary 1 in Chapter 12 on
page 96]. ⊓⊔

Exercise 2.91. Prove formula (2.90).

The following conjecture is the obvious generalization of Lemma 2.89 to infinite
groups.

Conjecture 2.92 (Bass Conjecture for fields of characteristic zero as coeffi-
cients). Let 𝐹 be a field of characteristic zero and let 𝐺 be a group. The Hattori-
Stallings homomorphism of (2.88) induces an isomorphism

HS𝐹𝐺 : 𝐾0 (𝐹𝐺) ⊗Z 𝐹 → class𝐹 (𝐺) 𝑓 .
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Lemma 2.93. Suppose that 𝐹 is a field of characteristic zero and𝐺 is a group. Then
the composite

(2.94) colim𝐻∈SubFIN (𝐺) 𝐾0 (𝐹𝐻) ⊗Z 𝐹
𝐼FIN (𝐺,𝐹 )⊗Zid𝐹−−−−−−−−−−−−−−→ 𝐾0 (𝐹𝐺) ⊗Z 𝐹

HS𝐹𝐺−−−−−→ class(𝐺, 𝐹)

is injective and has as image class𝐹 (𝐺) 𝑓 where 𝐼FIN (𝐺, 𝐹) is the map defined
in (2.68).

Proof. This follows from the commutative diagram below, compare [646, Lemma 2.15
on page 220].

colim𝐻∈SubFIN (𝐺) 𝐾0 (𝐹𝐻) ⊗Z 𝐹

colim𝐻∈SubFIN (𝐺) HS𝐹𝐻 �

��

𝐼FIN (𝐺,𝐹 )⊗Zid𝐹 // 𝐾0 (𝐹𝐺) ⊗Z 𝐹

HS𝐹𝐺
��

colim𝐻∈SubFIN (𝐺) class𝐹 (𝐻) 𝑓
𝑗

�
// class𝐹 (𝐺) 𝑓

𝑖 // class(𝐺, 𝐹).

Here the isomorphism 𝑗 is the direct limit over the obvious maps class𝐹 (𝐻) 𝑓 →
class𝐹 (𝐺) 𝑓 given by extending a class function in the trivial way and the map 𝑖 is
the natural inclusion and in particular injective. ⊓⊔

Exercise 2.95. Let 𝐹 be a field of characteristic zero. Show that the group 𝐺 must
be torsionfree if 𝐾0 (𝐹𝐺) is a torsion group.

Theorem 2.96 (The Farrell-Jones Conjecture and the Bass Conjecture for fields
of characteristic zero). The Farrell-Jones Conjecture 2.67 for 𝐾0 (𝑅𝐺) for regular
𝑅 and Q ⊆ 𝑅 implies the Bass Conjecture 2.92 for fields of characteristic zero as
coefficients.

Proof. This follows from Lemma 2.93. ⊓⊔

The Bost Conjecture 14.23 implies the Bass Conjecture 2.92 for fields of char-
acteristic zero as coefficients, provided that 𝐹 = C, see [131, Theorem 1.4 and
Lemma 1.5].

Exercise 2.97. Let 𝐹 be field of characteristic zero and let 𝐺 be a group. Suppose
that the Farrell-Jones Conjecture 2.67 for 𝐾0 (𝑅𝐺) for regular 𝑅 and Q ⊆ 𝑅 holds
for 𝑅 = 𝐹. Consider any finitely generated projective 𝐹𝐺-module 𝑃. Then the
Hattori-Stallings rank HS𝐹𝐺 (𝑃) evaluated at the unit 𝑒 ∈ 𝐺 belongs to Q ⊆ 𝐹.

Remark 2.98 (Zalesskii’s Theorem). Zalesskii [1031], see also [189, Theorem 3.1],
has shown for every field 𝐹, every group 𝐺, and every idempotent 𝑥 ∈ 𝐹𝐺 that
HS𝐹𝐺 ((𝑥)) evaluated at the unit 𝑒 ∈ 𝐺 belongs to the prime field of 𝐹, where (𝑥) is
the finitely generated projective 𝐹𝐺-module given by the two-sided ideal (𝑥) ⊆ 𝐹𝐺
spanned by 𝑥.
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2.10.2 The Bass Conjecture for Integral Domains as Coefficients

Conjecture 2.99 (Bass Conjecture for integral domains as coefficients). Let 𝑅
be a commutative integral domain and let 𝐺 be a group. Let 𝑔 ∈ 𝐺 be an element in
𝐺. Suppose that either the order |𝑔 | is infinite or that the order |𝑔 | is finite and not
invertible in 𝑅.

Then for every finitely generated projective 𝑅𝐺-module 𝑃 the value of its Hattori-
Stallings rank HS𝑅𝐺 (𝑃) at (𝑔) is trivial.

Sometimes the Bass Conjecture 2.99 for integral domains as coefficients is called
the Strong Bass Conjecture, see [104, 4.5]. The Weak Bass Conjecture, see [104,
4.4], states for a finitely generated projective Z𝐺-module 𝑃 that the evaluation of its
Hattori-Stallings rank at the unit HSZ𝐺 (𝑃) (1) agrees with dimZ (Z⊗Z𝐺 𝑃). Note that
HSZ𝐺 (𝑃) (1) is the same as the von Neumann dimension dimN(𝐺) (N (𝐺) ⊗Z𝐺 𝑃) for
a finitely generated projective Z𝐺-module 𝑃, see [650, Corollary 9.61 on page 362].

Exercise 2.100. Show that the Weak Bass Conjecture follows from the Bass Con-
jecture 2.99 for integral domains as coefficients.

The Bass Conjecture 2.99 can be interpreted topologically. Namely, the Bass
Conjecture 2.99 is true for a finitely presented group 𝐺 in the case 𝑅 = Z if and
only if every homotopy idempotent self-map of an oriented smooth closed manifold
whose dimension is greater than 2 and whose fundamental group is isomorphic
to 𝐺, is homotopic to one that has precisely one fixed point, see [132]. The Bass
Conjecture 2.99 for 𝐺 in the case 𝑅 = Z (or 𝑅 = C) also implies for a finitely
dominated 𝐶𝑊-complex with fundamental group 𝐺 that its Euler characteristic
agrees with the 𝐿2-Euler characteristic of its universal covering, see [327, 0.3].

The next results follows from the argument in [372, Section 5].

Theorem 2.101 (The Farrell-Jones Conjecture and the Bass Conjecture for
integral domains). Let 𝐺 be a group. Suppose that

𝐼 (𝐺, 𝐹) ⊗Z Q : colimOrFIN (𝐺) 𝐾0 (𝐹𝐻) ⊗Z Q→ 𝐾0 (𝐹𝐺) ⊗Z Q

is surjective for all fields 𝐹 of prime characteristic.
Then the Bass Conjecture 2.99 is satisfied for 𝐺 and every commutative integral

domain 𝑅.
In particular, the Bass Conjecture 2.99 follows from the Farrell-Jones Conjec-

ture 2.72.

For finite 𝐺 and 𝑅 an integral domain such that no prime dividing the order of
|𝐺 | is a unit in 𝑅, Conjecture 2.99 was proved by Swan [937, Theorem 8.1], see
also [104, Corollary 4.2]. The Bass Conjecture 2.99 has been proved by Bass [104,
Proposition 6.2 and Theorem 6.3] for 𝑅 = C and 𝐺 a torsionfree linear group and by
Eckmann [325, Theorem 3.3] for 𝑅 = Q, provided that𝐺 has at most cohomological
dimension 2 over Q.

The following result is due to Linnell [632, Lemma 4.1].
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Theorem 2.102 (The Bass Conjecture for integral domains and elements of
finite order). Let G be a group.

(i) Let 𝑝 be a prime, and let 𝑃 be a finitely generated projective Z(𝑝)𝐺-module.
Suppose for 𝑔 ∈ 𝐺 that HS(𝑃) (𝑔) ≠ 0. Then there exists an integer 𝑛 ≥ 1 such
that 𝑔 and 𝑔𝑝𝑛 are conjugate in 𝐺 and we get for the Hattori-Stallings rank
HS(𝑃) (𝑔) = HS(𝑃) (𝑔𝑝𝑛 );

(ii) Let 𝑃 be a finitely generated projective Z𝐺-module. Suppose for 𝑔 ∈ 𝐺 that
𝑔 ≠ 1 and HS(𝑃) (𝑔) ≠ 0. Then there exist subgroups𝐶, 𝐻 of𝐺 such that 𝑔 ∈ 𝐶,
𝐶 ⊆ 𝐻, 𝐶 is isomorphic to the additive group Q, 𝐻 is finitely generated, and the
elements of 𝐶 lie in finitely many 𝐻-conjugacy classes. In particular the order
of 𝑔 is infinite.

More information about the Bass Conjectures can be found in [103, 131, 133,
189, 234, 336, 337, 338, 546, 650, 788, 893, 894].

2.11 The Passage from the Integral to the Rational Group Ring

The following conjecture is taken from [673, Conjecture 85 on page 754].

Conjecture 2.103 (The rational 𝐾0 (Z𝐺)-to-𝐾0 (Q𝐺)-Conjecture). The change of
ring maps

Q ⊗Z 𝐾0 (Z𝐺) → Q ⊗Z 𝐾0 (Q𝐺)

is trivial.

If 𝐺 satisfies the Farrell-Jones Conjecture 2.67 for 𝐾0 (𝑅𝐺) for regular 𝑅 with
Q ⊆ 𝑅, then it satisfies the rational 𝐾0 (Z𝐺)-to-𝐾0 (Q𝐺)-Conjecture 2.103, see [673,
Proposition 87 on page 754].

Remark 2.104. The question whether an integral version of Conjecture 2.103 holds,
i.e., whether the change of ring maps

𝐾0 (Z𝐺) → 𝐾0 (Q𝐺)

is trivial, is discussed in [673, Remark 89 on page 756].
The answer is no in general. Counterexamples have been constructed by

Lehner [625], who actually carefully analyzes the image of the map 𝐾0 (Z𝐺) →
𝐾0 (Q𝐺). The group 𝐺 = 𝑄𝐷32 ∗𝑄16 𝑄𝐷32 is a counterexample, where 𝑄𝐷32 is the
quasi-dihedral group of order 32, and 𝑄16 is the generalized quaternion group of
order 16, see [625, Theorem 1.5].
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2.12 Survey on Computations of 𝑲0(𝑹𝑮) for Finite Groups

In this section we give a brief survey about computations of 𝐾0 (𝑅𝐺) for finite groups
𝐺 and certain rings 𝑅. The upshot will be that the reduced projective class group
𝐾0 (Z𝐺) is a finite abelian group, but in most cases it is non-trivial and unknown, and
that for 𝐹 a field of characteristic zero 𝐾0 (𝐹𝐺) is a well-known finitely generated
free abelian group.

The following result is due to Swan [937, Theorem 8.1 and Proposition 9.1].

Theorem 2.105 (𝐾0 (𝑅𝐺) is finite for finite 𝐺 and 𝑅 the ring of integers in an
algebraic number field). Let 𝐺 be a finite group. Let 𝑅 be the ring of algebraic
integers in an algebraic number field, e.g., 𝑅 = Z. Then 𝐾0 (𝑅𝐺) is finite.

A proof of the next theorem will be given in Section 3.8. It was originally proved
by Rim [852].

Theorem 2.106 (Rim’s Theorem). Let 𝑝 be a prime number. The homomorphism
induced by the ring homomorphism Z[Z/𝑝] → Z[exp(2𝜋𝑖/𝑝)] sending the genera-
tor of Z/𝑝 to the primitive 𝑝-th root of unity exp(2𝜋𝑖/𝑝)

𝐾0 (Z[Z/𝑝])
�−→ 𝐾0 (Z[exp(2𝜋𝑖/𝑝)])

is a bijection.

Example 2.107 (𝐾0 (Z[Z/𝑝])). Let 𝑝 be a prime. We have already mentioned in
Remark 2.23 that Z[exp(2𝜋𝑖/𝑝)] is the ring of integers in the algebraic number field
Q[exp(2𝜋𝑖/𝑝)] and hence a Dedekind domain and that the structure of its ideal class
group𝐶 (Z[exp(2𝜋𝑖/𝑝)]) is only known for a few primes. Thus the message of Rim’s
Theorem 2.106 is that we know the structure of the finite abelian group 𝐾0 (Z[Z/𝑝])
only for a few primes. Here is a table taken from [727, page 30] or [990, Tables §3
on page 352ff].

𝑝 𝐾0 (Z[Z/𝑝])
≤ 19 {0}
23 Z/3
29 Z/2 ⊕ Z/2 ⊕ Z/2
31 Z/9
37 Z/37
41 Z/11 ⊕ Z/11
43 Z/211
47 Z/5 ⊕ Z/139

Remark 2.108 (Strategy to study 𝐾0 (Z𝐺) for finite𝐺). A Z-order Λ is a Z-algebra
that is finitely generated projective over Z. Its locally free class group is defined as
the subgroup of 𝐾0 (Λ)

𝐶𝑙 (Λ) :=
{
[𝑃] − [𝑄] | 𝑃(𝑝) �Λ(𝑝) 𝑄 (𝑝) for all primes 𝑝

}
(2.109)
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where (𝑝) denotes localization at the prime 𝑝. This is the part of 𝐾0 (Λ) that can be
described by localization sequences. Its significance for Λ = Z𝐺 lies in the result
of Swan [937], see also Curtis-Reiner [271, Theorem 32.11 on page 676] and [272,
(49.12 on page 221], that 𝐾0 (Z𝐺) � 𝐶𝑙 (Z𝐺) for every finite group 𝐺. Now fix a
maximal Z-order Z𝐺 ⊆ M ⊆ Q𝐺. Such a maximal order has better ring properties
than Z𝐺, namely, it is a hereditary ring. The map 𝑖∗ : 𝐶𝑙 (Z𝐺) → 𝐶𝑙 (M) induced
by the inclusion 𝑖 : Z𝐺 →M is surjective. Define

𝐷 (Z𝐺) = ker (𝑖∗ : 𝐶𝑙 (Z𝐺) → 𝐶𝑙 (M)) .(2.110)

The definition of 𝐷 (Z𝐺) is known to be independent of the choice of the maximal
order M. Thus the study of 𝐾0 (Z𝐺) splits into the study of 𝐷 (Z𝐺) and 𝐶𝑙 (M).
The analysis of 𝐶𝑙 (M) can be intractable and involves studying cyclotomic fields,
whereas the analysis of 𝐷 (Z𝐺) essentially uses 𝑝-adic logarithms.

Remark 2.111 (Finiteness obstructions and 𝐷 (Z𝐺)). Often calculations concern-
ing finiteness obstructions are done by first showing that its image in 𝐶𝑙 (M) =
𝐾0 (Z𝐺)/𝐷 (Z𝐺) is trivial, and then determining it in 𝐷 (Z𝐺). For instance, Mis-
lin [739] proved that the finiteness obstruction for every finitely dominated homolog-
ically nilpotent space with the finite group 𝐺 as fundamental group lies in 𝐷 (Z𝐺),
but that not every element in 𝐷 (Z𝐺) occurs this way. Questions concerning the
Spherical Space Form Problem involve direct computations in 𝐷 (Z𝐺), see for in-
stance Bentzen [122], Bentzen-Madsen [123], and Milgram [719]. The group𝐷 (Z𝐺)
enters also in the work of Oliver on actions of finite groups on disks, see [771, 772].

For computations of 𝐷 (Z𝐺) for finite 𝑝-groups we refer to Oliver [773, 774] and
Oliver-Taylor [777].

A survey on 𝐷 (Z𝐺) and the methods of its computations can be found in
Oliver [775].

Theorem 2.112 (Vanishing results for 𝐷 (Z𝐺)).

(i) Let 𝐺 be a finite abelian group 𝐺. Then 𝐷 (Z𝐺) = 0 holds if and only if 𝐺
satisfies one of the conditions:

(a) 𝐺 has prime order;
(b) 𝐺 is cyclic of order 4, 6, 8, 9, 10, 14;
(c) 𝐺 is Z/2 × Z/2;

(ii) If 𝐺 is a finite group that is not abelian and satisfies 𝐷 (Z𝐺) = 0, then it is 𝐷2𝑛
for 𝑛 ≥ 3, 𝐴4, 𝐴5,or 𝑆4;

(iii) One has 𝐷 (Z𝐺) = 0 if 𝐺 is 𝐴4, 𝐴5 or 𝑆4;
(iv) 𝐷 (Z𝐷2𝑛) = 0 for 𝑛 < 60 and 𝐷 (Z𝐷120) = Z/2;
(v) 𝐷 (Z𝐷2𝑛) = 0 if 𝑛 satisfies one of the following conditions:

(a) 𝑛 is an odd prime;
(b) 𝑛 is a power of a regular odd prime;
(c) 𝑛 is a power of 2.
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Proof. (i) This is proved by Cassou-Nogués [218], see also [272, Theorem 50.16 on
page 253].

(ii) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266].

(iii) This follows from Reiner-Ulom [849], see also [272, Theorem 50.29 on
page 266].

(iv) This is proved in Endo-Miyata [340], see [272, Theorem 50.30 on page 266].

(v) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266]. ⊓⊔

Theorem 2.113 (Finite groups with vanishing 𝐾0 (Z𝐺)).

(i) Let 𝐺 be a finite abelian group 𝐺. Then 𝐾0 (Z𝐺) = 0 holds if and only if 𝐺
satisfies one of the conditions:

(a) 𝐺 is cyclic of order 𝑛 for 1 ≤ 𝑛 ≤ 11;
(b) 𝐺 is cyclic of order 13, 14, 17, 19;
(c) 𝐺 is Z/2 × Z/2;

(ii) If 𝐺 is a non-abelian finite group with 𝐾0 (Z𝐺) = 0, then 𝐺 is 𝐷2𝑛 for 𝑛 ≥ 3,
𝐴4, 𝐴5, or 𝑆4;

(iii) We have 𝐾0 (Z𝐺) = 0 for 𝐺 = 𝐴4, 𝑆4, 𝐷6, 𝐷8, 𝐷12.

Proof. (i) This is proved by Cassou-Nogués [218], see also [272, Corollary 50.17
on page 253].

(ii) This follows from Theorem 2.112 (ii).

(iii) The cases 𝐺 = 𝐴4, 𝑆4, 𝐷6, 𝐷8 are already treated in [848, Theorem 6.4 and
Theorem 8.2]. Because of Theorem 2.112 (iii) it suffices to show for the maximal
orderM for the groups𝐺 = 𝐴4, 𝑆4, 𝐷6, 𝐷8, 𝐷12 that𝐶𝑙 (M) = 0. This follows from
the fact that Q𝐺 is a products of matrix algebras over Q and hence the maximal
Z-orderM is a products of matrix rings over Z. ⊓⊔

Exercise 2.114. Determine all finite groups 𝐺 of order ≤ 9 for which 𝐾0 (Z𝐺) is
non-trivial.

Theorem 2.115 (𝐾0 (𝑅𝐺) for finite 𝐺 and an Artinian ring 𝑅). Let 𝑅 be an
Artinian ring. Let 𝐺 be a finite group. Then 𝑅𝐺 is also an Artinian ring. There are
only finitely many isomorphism classes [𝑃1], [𝑃2], . . ., [𝑃𝑛] of irreducible finitely
generated projective 𝑅𝐺-modules, and we obtain an isomorphism of abelian groups

Z𝑛
�−→ 𝐾0 (𝑅𝐺), (𝑘1, 𝑘2, . . . 𝑘𝑛) ↦→

𝑛∑︁
𝑖=1

𝑘𝑖 · [𝑃𝑖] .

Proof. This follows from [271, Proposition 16.7 on page 406 and the paragraph after
Corollary 6.22 on page 132]. ⊓⊔
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Let 𝐹 be a field of characteristic zero or of characteristic 𝑝 for a prime number
𝑝 not dividing |𝐺 |. Then 𝐾0 (𝐹𝐺) is the same as the representation ring Rep𝐹 (𝐺)
of 𝐺 with coefficients in the field 𝐹 since the ring 𝐹𝐺 is semisimple i.e., every
submodule of a module is a direct summand. If 𝐹 is a field of characteristic zero,
then representations are detected by their characters, see Lemma 2.89. For more
information about modules over 𝐹𝐺 for a finite group 𝐺 and a field 𝐹 we refer for
instance to Curtis-Reiner [271, Chapter 1 and Chapter 2] and Serre [908].

Exercise 2.116. Compute 𝐾0 (𝐹𝐷8) for 𝐹 = Q, R and C.

2.13 Survey on Computations of 𝑲0(𝑪
∗
𝒓 (𝑮)) and 𝑲0(N(𝑮))

Let 𝐺 be a group. Let B(𝐿2 (𝐺)) denote the algebra of bounded linear operators
on the Hilbert space 𝐿2 (𝐺) whose orthonormal basis is 𝐺. The reduced group
𝐶∗-algebra 𝐶∗𝑟 (𝐺) is the closure in the norm topology of the image of the reg-
ular representation C𝐺 → B(𝐿2 (𝐺)) that sends an element 𝑢 ∈ C𝐺 to the (left)
𝐺-equivariant bounded operator 𝐿2 (𝐺) → 𝐿2 (𝐺) given by right multiplication with
𝑢−1. The group von Neumann algebra N(𝐺) is the closure in the weak topology.
There is an identification N(𝐺) = B(𝐿2 (𝐺))𝐺 . One has natural inclusions

C𝐺 ⊆ 𝐶∗𝑟 (𝐺) ⊆ N (𝐺) ⊆ B(𝐿2 (𝐺)).

We have C𝐺 = 𝐶∗𝑟 (𝐺) = N(𝐺) if and only if 𝐺 is finite. If 𝐺 = Z, then the
Fourier transform gives identifications 𝐶∗𝑟 (Z) = 𝐶 (𝑆1) and N(Z) = 𝐿∞ (𝑆1).

Remark 2.117 (𝐾0 (𝐶∗𝑟 (𝐺)) versus 𝐾0 (C𝐺)). We will later see that the study of
𝐾0 (𝐶∗𝑟 (𝐺)) is not done according to its algebraic nature. Instead we will introduce
and analyze the topological 𝐾-theory of 𝐶∗𝑟 (𝐺) and explain that in dimension 0
the algebraic and the topological 𝐾-theory of 𝐶∗𝑟 (𝐺) agree. In order to explain
the different flavor of 𝐾0 (𝐶∗𝑟 (𝐺)) in comparison with 𝐾0 (C𝐺), we mention the
conclusion of the Baum-Connes Conjecture for torsionfree groups 10.44 that for
torsionfree 𝐺 there exists an isomorphism⊕

𝑛≥0
𝐻2𝑛 (𝐵𝐺;Q) �−→ 𝐾0 (𝐶∗𝑟 (𝐺)) ⊗Z Q.

The space 𝐵𝐺 is the classifying space of the group 𝐺, which is up to homotopy
characterized by the property that it is a 𝐶𝑊-complex with 𝜋1 (𝐵𝐺) � 𝐺 whose
universal covering is contractible. We denote by 𝐻∗ (𝑋, 𝑅) the singular or cellular
homology of a space or 𝐶𝑊-complex 𝑋 with coefficient in a commutative ring 𝑅.
We can identify 𝐻∗ (𝐵𝐺; 𝑅) with the group homology of 𝐺 with coefficients in 𝑅.

We see that 𝐾0 (𝐶∗𝑟 (𝐺)) can be huge also for torsionfree groups, whereas
𝐾0 (C𝐺) � Z for torsionfree 𝐺 is a conclusion of the Farrell-Jones Conjecture 2.60
for 𝐾0 (𝑅) for torsionfree 𝐺 and regular 𝑅. We see already here a homological be-
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havior of 𝐾0 (𝐶∗𝑟 (𝐺)), which is not yet evident in the case of group rings so far and
will become clear later.

Remark 2.118 (𝐾0 (N (𝐺))). The projective class group 𝐾0 (A) can be computed
for any von Neumann algebra A using the center-valued universal trace, see for
instance [650, Section 9.2]. In particular one gets for a finitely generated group 𝐺
that does not contain Z𝑛 as subgroup of finite index an isomorphism

𝐾0 (N (𝐺)) � Z(N(𝐺))Z/2.

HereZ(N(𝐺)) is the center of the group von Neumann algebra and the Z/2-action
comes from taking the adjoint of an operator in B(𝐿2 (𝐺)), see [650, Example 9.34
on page 353]. If 𝐺 is a finitely generated group that does not contain Z𝑛 as subgroup
of finite index and for which the conjugacy class (𝑔) of an element 𝑔 different from
the unit is always infinite, thenZ(N(𝐺)) = C and one obtains an isomorphism

𝐾0 (N (𝐺)) � R.

A pleasant feature ofN(𝐺) is that there is no difference between stably isomorphic
and isomorphic in the sense that for three finitely generated projectiveN(𝐺)-modules
𝑃0, 𝑃1, and 𝑄 we have 𝑃0 ⊕ 𝑄 �N(𝐺) 𝑃1 ⊕ 𝑄 if and only if 𝑃0 �N(𝐺) 𝑃1.

We see that in the case of the group von Neumann algebra we can compute
𝐾0 (N (𝐺)) completely, but the answer does not show any homological behavior in
𝐺. In fact, the Farrell-Jones Conjecture and the Baum-Connes Conjecture have no
analog for group von Neumann algebras.

Exercise 2.119. Let 𝐺 be a torsionfree hyperbolic group that is not cyclic. Prove
𝐾0 (N (𝐺)) � R.

Remark 2.120 (Change of rings homomorphisms for 𝐾0 for Z𝐺 → C𝐺 →
𝐶∗𝑟 (𝐺) → N(𝐺)). We summarize what is conjectured or known about the string of
change of rings homomorphism

𝐾0 (Z𝐺)
𝑖1−→ 𝐾0 (C𝐺)

𝑖2−→ 𝐾0 (𝐶∗𝑟 (𝐺))
𝑖3−→ 𝐾0 (N (𝐺))

coming from the various inclusion of rings. The first map 𝑖1 is conjectured to be
rationally trivial, see [673, Conjecture 85 on page 754], but is not integrally trivial,
see [625, Theorem 5.1]. The second map 𝑖2 is conjectured to be rationally injective,
compare [649, Theorem 0.5], but is not surjective in general. The map 𝑖3 is in general
not injective, not surjective, and not trivial. It is known that the composite 𝑖3 ◦ 𝑖2 ◦ 𝑖1
is trivial, see for instance [650, Theorem 9.62 on page 362]..
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2.14 Notes

Algebraic 𝐾-theory is compatible with direct limits, as explained for the projective
class group next. A directed set 𝐼 is a non-empty set with a partial ordering ≤ such
that for two elements 𝑖0 and 𝑖1 there exists an element 𝑖 with 𝑖0 ≤ 𝑖 and 𝑖1 ≤ 𝑖. A
directed system of rings is a set of rings {𝑅𝑖 | 𝑖 ∈ 𝐼} indexed by a directed set 𝐼
together with a choice of a ring homomorphism 𝜙𝑖, 𝑗 : 𝑅𝑖 → 𝑅 𝑗 for 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗
such that 𝜙𝑖,𝑘 = 𝜙 𝑗 ,𝑘 ◦ 𝜙𝑖, 𝑗 holds for 𝑖, 𝑗 , 𝑘 ∈ 𝐼 with 𝑖 ≤ 𝑗 ≤ 𝑘 and 𝜙𝑖,𝑖 = id holds
for 𝑖 ∈ 𝐼. The colimit, sometimes also called the direct limit, of {𝑅𝑖 | 𝑖 ∈ 𝐼} is a ring
denoted by colim𝑖∈𝐼 𝑅𝑖 together with ring homomorphisms 𝜓 𝑗 : 𝑅 𝑗 → colim𝑖∈𝐼 𝑅𝑖
for every 𝑗 ∈ 𝐼 such that 𝜓 𝑗 ◦ 𝜙𝑖, 𝑗 = 𝜓𝑖 holds for 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 and the
following universal property is satisfied: For every ring 𝑆 and every system of ring
homomorphisms {𝜇𝑖 : 𝑅𝑖 → 𝑆 | 𝑖 ∈ 𝐼} such that 𝜇 𝑗 ◦𝜙𝑖, 𝑗 = 𝜇𝑖 holds for 𝑖, 𝑗 ∈ 𝐼 with
𝑖 ≤ 𝑗 , there is precisely one ring homomorphism 𝜇 : colim𝑖∈𝐼 𝑅𝑖 → 𝑆 satisfying
𝜇 ◦ 𝜓𝑖 = 𝜇𝑖 for every 𝑖 ∈ 𝐼. If we replace ring by group or module everywhere, we
get the notion of directed system and direct limit of groups or modules respectively.
This is a special case of the direct limit of a functor, namely, consider 𝐼 as category
with the set 𝐼 as objects and precisely one morphism from 𝑖 to 𝑗 if 𝑖 ≤ 𝑗 , and no
other morphisms.

Remark 2.121 (Filtered categories). One may consider instead of a directed set a
filtered category, i.e, a nonempty category 𝐼 such that for every two objects 𝑖 and
𝑗 there is an object 𝑘 together with two morphisms 𝑖 → 𝑘 and 𝑗 → 𝑘 and for
two morphism 𝑓 , 𝑔 : 𝑖 → 𝑗 with the same source and target there is a morphism
ℎ : 𝑗 → 𝑘 with ℎ 𝑗 ◦ 𝑓 = ℎ ◦ 𝑘 , and all the results about colimits over directed
sets stay true if one considers colimits over filtered categories. Then one talks about
filtered systems instead of filtered sets.

Let {𝑅𝑖 | 𝑖 ∈ 𝐼} be a direct system of rings. For every 𝑖 ∈ 𝐼, we obtain a change of
rings homomorphism (𝜓𝑖)∗ : 𝐾0 (𝑅𝑖) → 𝐾0 (𝑅). The universal property of the direct
limit yields a homomorphism

colim𝑖∈𝐼 (𝜓𝑖)∗ : colim𝑖∈𝐼 𝐾0 (𝑅𝑖)
�−→ 𝐾0 (𝑅),(2.122)

which turns out to be an isomorphism, see [860, Theorem 1.2.5].
We denote by 𝑅× the group of units in 𝑅. A ring 𝑅 is called local if the set

𝐼 := 𝑅 − 𝑅× forms a (left) ideal. If 𝐼 is a left ideal, it is automatically a two-sided
ideal and it is maximal both as a left ideal and as a right ideal. A ring 𝑅 is local if and
only if it has a unique maximal left ideal and a unique maximal right ideal and these
two coincide. An example of a local ring is the ring of formal power series 𝐹 [[𝑡]]
with coefficients in a field 𝐹. If 𝑅 is a commutative ring and 𝐼 is a prime ideal, then
the localization 𝑅𝐼 of 𝑅 at 𝐼 is a local ring.

Theorem 2.123 (𝐾0 (𝑅) of local rings). Let 𝑅 be a local ring. Then every finitely
generated projective 𝑅-module is free and 𝐾0 (𝑅) is infinite cyclic with [𝑅] as
generator.



66 2 The Projective Class Group

Proof. See for instance [727, Lemma 1.2 on page 5] or [860, Theorem 1.3.11 on
page 14]. ⊓⊔

The proof is based on Nakayama’s Lemma, which says for a ring 𝑅 and a finitely
generated 𝑅-module 𝑀 that rad(𝑅)𝑀 = 𝑀 ⇐⇒ 𝑀 = 0 holds. Here rad(𝑅) is the
radical, or Jacobson radical, i.e., the two-sided ideal that is given by the intersection
of all maximal left ideals, or, equivalently, of all maximal right ideals of 𝑅. The
radical is the same as the set of elements 𝑟 ∈ 𝑅 for which there exists an 𝑠 ∈ 𝑆 such
that 1 − 𝑟𝑠 has a left inverse in 𝑅.

If 𝑅 is a commutative ring and 𝑠𝑝𝑒𝑐(𝑅) is its spectrum consisting of its prime
ideals and equipped with the Zariski topology, then we obtain for every finitely
generated projective 𝑅-module 𝑃 a continuous rank function Spec(𝑅) → Z by
sending a prime ideal 𝐼 to the rank of the finitely generated free 𝑅𝐼 -module 𝑃𝐼 =
𝑃 ⊗𝑅 𝑅𝐼 . This makes sense because of Theorem 2.123 since 𝑅𝐼 is local. If 𝑅 is a
commutative integral domain, this rank function is constant. For more details we
refer for instance to [860, Proposition 1.3.12 on page 15].

Exercise 2.124. Prove for an integer 𝑛 ≥ 1 that 𝐾0 (Z/𝑛) is the free abelian group
whose rank is the number of prime numbers dividing 𝑛.

A ring is called semilocal if 𝑅/rad(𝑅) is Artinian, or, equivalently, 𝑅/rad(𝑅) is
semisimple. If 𝑅 is commutative, then 𝑅 is semilocal if and only if it has only finitely
many maximal ideas, see [916, page 69]. For a semilocal ring 𝑅, the projective class
group 𝐾0 (𝑅) is a finitely generated free abelian group, see [916, Proposition 14 on
page 28]. More information about semilocal rings can be found for instance in [610,
§ 20].

Lemma 2.125. For any ring 𝑅 and nilpotent two-sided ideal 𝐼 ⊆ 𝑅, the map
𝐾0 (𝑅) → 𝐾0 (𝑅/𝐼) induced by the projection 𝑅 → 𝑅/𝐼 is bijective.

Proof. See [998, Lemma 2.2 in Section II.2 on page 70]. ⊓⊔

Given two groups𝐺1 and𝐺2, let𝐺1 ∗𝐺2 by the amalgamated free product. Then
the natural maps 𝐺𝑘 → 𝐺0 ∗ 𝐺1 for 𝑘 = 1, 2 induce an isomorphism, see [421,
Theorem 1.1],

𝐾0 (Z[𝐺1]) ⊕ 𝐾0 (Z[𝐺1]) � 𝐾0 (Z[𝐺1 ∗ 𝐺2]).(2.126)

This is a first glimpse of a homological behavior of 𝐾0 if one compares this with the
corresponding isomorphism of group homology

𝐻𝑛 (𝐺1) ⊕ 𝐻𝑛 (𝐺1) � 𝐻𝑛 (𝐺1 ∗ 𝐺2).

Exercise 2.127. Show that the projections pr𝑘 : 𝐺1 × 𝐺2 → 𝐺𝑘 for 𝑘 = 1, 2 do not
in general induce isomorphisms

𝐾0 (Z[𝐺1 × 𝐺2]) → 𝐾0 (Z[𝐺1]) × 𝐾0 (Z[𝐺2]).
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There are also equivariant versions of the finiteness obstructions, see for in-
stance [32], [642], and [644, Chapter 3 and 11]. Finiteness obstructions for categories
are investigated in [391, 390].

Andrej Jaikin-Zapirain pointed out that he and Pablo Sánchez-Peralta have proved
the following result confirming Conjecture 2.60 in a special case.

A presentation 𝐺 = ⟨𝑋 | 𝑅⟩ is called a Cohen–Lyndon presentation if for each
𝑟 ∈ 𝑅, there exists a transversal 𝑇𝑟 of the normal subgroup 𝑁 = ⟨⟨𝑅⟩⟩, such that 𝑁
is freely generated by the set {𝑟𝑔 | 𝑟 ∈ 𝑅, 𝑔 ∈ 𝑇𝑟 }.

They prove that if 𝐺 has a Cohen-Lyndon presentation and 𝑆 is a regular ring,
then the natural map

𝐾0 (𝑆) → 𝐾0 (𝑆[𝐺])

is an isomorphism.





Chapter 3
The Whitehead Group

3.1 Introduction

This chapter is devoted to the first 𝐾-group 𝐾1 (𝑅) of a ring 𝑅 and the Whitehead
group Wh(𝐺) of a group 𝐺.

We give two equivalent definitions of𝐾1 (𝑅), namely, as the universal determinant
and in terms of invertible matrices. We explain some basic calculations of 𝐾1 (𝑅) for
rings with Euclidian algorithm, local rings, and rings of integers in algebraic number
fields.

We introduce the Whitehead group of a group and the Whitehead torsion of
a homotopy equivalence of finite 𝐶𝑊-complexes algebraically and geometrically.
The relevance of these notions are illustrated by the s-Cobordism Theorem and its
applications to the classification of manifolds and by the classification of lens spaces
by Reidemeister torsion.

The next topic is the Bass-Heller-Swan decomposition and the long exact sequence
associated to a pullback of rings and to a two-sided ideal. These are important tools
for computations and relate 𝐾0 (𝑅) and 𝐾1 (𝑅).

We discuss Swan homomorphisms and free homotopy representations. Thus we
provide a link between torsion invariants and finiteness obstructions.

We explain the variant of the Farrell-Jones Conjecture that for a torsionfree group
G the reduced projective class group 𝐾0 (Z𝐺) and the Whitehead group Wh(𝐺)
vanish. It implies that any ℎ-cobordism with torsionfree fundamental group and
dimension ≥ 6 is trivial.

Finally, we give a survey of computations of 𝐾1 (Z𝐺) for finite groups 𝐺 and of
the algebraic 𝐾1-group of commutative Banach algebras, commutative 𝐶∗-algebras,
and of some group von Neumann algebras.

3.2 Definition and Basic Properties of 𝑲1(𝑹)

Definition 3.1 (𝐾1-group 𝐾1 (𝑅)). Let 𝑅 be a ring. Define the 𝐾1-group of a ring
𝐾1 (𝑅) to be the abelian group whose generators are conjugacy classes [ 𝑓 ] of auto-
morphisms 𝑓 : 𝑃→ 𝑃 of finitely generated projective 𝑅-modules with the following
relations:

• Additivity
Given a commutative diagram of finitely generated projective 𝑅-modules

69
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0 // 𝑃1
𝑖 //

𝑓1

��

𝑃2
𝑝 //

𝑓2

��

𝑃3 //

𝑓3

��

0

0 // 𝑃1
𝑖 // 𝑃2

𝑝 // 𝑃3 // 0

with exact rows and automorphisms as vertical arrows, we get

[ 𝑓1] + [ 𝑓3] = [ 𝑓2];

• Composition formula
Given automorphisms 𝑓 , 𝑔 : 𝑃 → 𝑃 of a finitely generated projective 𝑅-module
𝑃, we get

[𝑔 ◦ 𝑓 ] = [ 𝑓 ] + [𝑔] .

Define 𝐺1 (𝑅) analogously but replacing finitely generated projective by finitely
generated everywhere.

Given a ring homomorphism 𝑓 : 𝑅 → 𝑆, we obtain a change of rings homomor-
phism

𝑓∗ = 𝐾1 ( 𝑓 ) : 𝐾1 (𝑅) → 𝐾1 (𝑆), [𝑔 : 𝑃→ 𝑃] ↦→ [ 𝑓∗𝑔 : 𝑓∗𝑃→ 𝑓∗𝑃](3.2)

analogously as we have defined it for the projective class group in (2.2). Thus 𝐾1
becomes a covariant functor from the category of rings to the category of abelian
groups.

Exercise 3.3. Show that 𝐾1 (𝑅) = 0 holds for the ring 𝑅 appearing in Example 2.17.

Remark 3.4 (The universal property of 𝐾1 (𝑅)). One should view 𝐾1 (𝑅) together
with the assignment sending an automorphism 𝑓 : 𝑃 → 𝑃 of a finitely generated
projective 𝑅-module 𝑃 to its class [ 𝑓 ] ∈ 𝐾1 (𝑅) as the universal determinant.
Namely, for any abelian group 𝐴 and assignment 𝑎 which sends the automorphism
𝑓 of a finitely generated projective 𝑅-module to 𝑎( 𝑓 ) ∈ 𝐴 such that (𝐴, 𝑎) satisfies
additivity and the composition formula appearing in Definition 3.1, there exists
precisely one homomorphism of abelian groups 𝜙 : 𝐾1 (𝑅) → 𝐴 such that 𝜙( [ 𝑓 ]) =
𝑎( 𝑓 ) holds for every automorphism 𝑓 of a finitely generated projective 𝑅-module.

We always have the following map of abelian groups

𝑖 : 𝑅×/[𝑅× , 𝑅×] → 𝐾1 (𝑅), [𝑥] ↦→ [𝑟𝑥 : 𝑅 → 𝑅](3.5)

where 𝑟𝑥 denotes right multiplication by 𝑥. It is neither injective nor surjective in
general. However, we have

Theorem 3.6 (𝐾1 (𝐹) of skew-fields). The map 𝑖 defined in (3.5) is an isomorphism
if 𝑅 is a skew-field or, more generally, a local ring. It is surjective (with an explicitly
described kernel) if 𝑅 is a semilocal ring.
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Proof. See for instance [916, Corollary 43 on page 133], [860, Corollary 2.2.6 on
page 69], and [916, Proposition 53 on page 140]. ⊓⊔

Exercise 3.7. LetH be the skew-field of quaternions {𝑎+𝑏𝑖+𝑐 𝑗+𝑑𝑘 | 𝑎, 𝑏, 𝑐, 𝑑 ∈ R}.
SinceH is a 4-dimensional vector space, there is an embedding GL𝑛 (H) → GL4𝑛 (R).
Its composite with the determinant over R yields a homomorphism 𝜇𝑛 : GL𝑛 (H) →
R>0 to the multiplicative group of positive real numbers. Show that the system of
homomorphisms 𝜇𝑛 induces an isomorphism

𝜇 : 𝐾1 (H)
�−→ R>0.

The proofs of the next two results are analogous to those of Theorem 2.10 and
Lemma 2.12.

Theorem 3.8 (Morita equivalence for 𝐾1 (𝑅)). For every ring 𝑅 and integer 𝑛 ≥ 1,
there is natural isomorphism

𝜇 : 𝐾1 (𝑅)
�−→ 𝐾1 (M𝑛 (𝑅)).

Lemma 3.9. Let 𝑅0 and 𝑅1 be rings. Denote by pr𝑖 : 𝑅0 × 𝑅1 → 𝑅𝑖 for 𝑖 = 0, 1 the
projection. Then we obtain an isomorphism

(pr0)∗ × (pr1)∗ : 𝐾1 (𝑅0 × 𝑅1)
�−→ 𝐾1 (𝑅0) × 𝐾1 (𝑅1).

Lemma 3.10. Define the abelian group 𝐾 𝑓

1 (𝑅) analogous to 𝐾1 (𝑅) but with finitely
generated projective replaced by finitely generated free everywhere. Then the canon-
ical homomorphism

𝛼 : 𝐾 𝑓

1 (𝑅)
�−→ 𝐾1 (𝑅), [ 𝑓 ] ↦→ [ 𝑓 ]

is an isomorphism.

Proof. Given an automorphism 𝑓 : 𝑃 → 𝑃 of a finitely generated projective
𝑅-module 𝑃, we can choose a finitely generated projective 𝑅-module 𝑄, a finitely
generated free 𝑅-module 𝐹 and an 𝑅-isomorphism 𝜙 : 𝑃 ⊕ 𝑄 �−→ 𝐹. We ob-
tain an automorphism 𝜙 ◦ ( 𝑓 ⊕ id𝑄) ◦ 𝜙−1 : 𝐹 → 𝐹 and thus an element
[𝜙 ◦ ( 𝑓 ⊕ id𝑄) ◦ 𝜙−1] ∈ 𝐾 𝑓

1 (𝑅). One easily checks that it is independent of the
choice of 𝑄 and 𝜙 and then that it depends only on [ 𝑓 ] ∈ 𝐾1 (𝑅). Thus we obtain
a homomorphism of abelian groups 𝛽 : 𝐾1 (𝑅) → 𝐾

𝑓

1 (𝑅). One easily checks that 𝛼
and 𝛽 are inverse to one another. ⊓⊔

Next we give a matrix description of 𝐾1 (𝑅). Denote by 𝐸𝑛 (𝑖, 𝑗) for 𝑛 ≥ 1 and
1 ≤ 𝑖, 𝑗 ≤ 𝑛 the (𝑛, 𝑛)-matrix whose entry at (𝑖, 𝑗) is one and is zero elsewhere.
Denote by 𝐼𝑛 the identity matrix of size 𝑛. An elementary (𝑛, 𝑛)-matrix is a matrix
of the form 𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗) for 𝑛 ≥ 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 and 𝑟 ∈ 𝑅. Let 𝐴
be an (𝑛, 𝑛)-matrix. The matrix 𝐵 = 𝐴 · (𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗)) is obtained from 𝐴 by
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adding the 𝑖-th column multiplied by 𝑟 from the right to the 𝑗-th column. The matrix
𝐶 = (𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗)) · 𝐴 is obtained from 𝐴 by adding the 𝑗-th row multiplied by
𝑟 from the left to the 𝑖-th row. Let E(𝑅) ⊂ GL(𝑅) be the subgroup generated by all
elements in GL(𝑅) that are represented by elementary matrices.

Lemma 3.11. The subgroup E(𝑅) of GL(𝑅) coincides with the commutator sub-
group [GL(𝑅),GL(𝑅)].

Proof. For 𝑛 ≥ 3, pairwise distinct numbers 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑛, and 𝑟 ∈ 𝑅, we can write
𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑘) as a commutator in GL𝑛 (𝑅), namely,

𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑘)
= (𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗)) · (𝐼𝑛 + 𝐸𝑛 ( 𝑗 , 𝑘)) · (𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗))−1 · (𝐼𝑛 + 𝐸𝑛 ( 𝑗 , 𝑘))−1.

This implies E(𝑅) ⊂ [GL(𝑅),GL(𝑅)].
Let 𝐴 and 𝐵 be two elements in GL𝑛 (𝑅). Let [𝐴] and [𝐵] be the elements in

GL(𝑅) represented by 𝐴 and 𝐵. Given two elements 𝑥 and 𝑦 in GL(𝑅), we write
𝑥 ∼ 𝑦 if there are elements 𝑒1 and 𝑒2 in E(𝑅) with 𝑥 = 𝑒1𝑦𝑒2, in other words, if the
classes of 𝑥 and 𝑦 in E(𝑅)\GL(𝑅)/E(𝑅) agree. One easily checks

[𝐴𝐵] ∼
[(
𝐴𝐵 0
0 𝐼𝑛

)]
∼

[(
𝐴𝐵 𝐴

0 𝐼𝑛

)]
∼

[(
0 𝐴

−𝐵 𝐼𝑛

)]
∼

[(
0 𝐴

−𝐵 0

)]
since each step is given by multiplication from the right or left by a block matrix of

the form
(
𝐼𝑛 0
𝐶 𝐼𝑛

)
or

(
𝐼𝑛 𝐶

0 𝐼𝑛

)
and such a block matrix is obviously obtained from 𝐼2𝑛

by a sequence of column and row operations and hence its class in GL(𝑅) belongs
to E(𝑅). Analogously we get

[𝐵𝐴] ∼
[(

0 𝐵

−𝐴 0

)]
.

Since the element in GL(𝑅) represented by
(

0 −𝐼𝑛
𝐼𝑛 0

)
belongs to E(𝑅), we conclude[(

0 𝐴

−𝐵 0

)]
∼

[(
𝐴 0
0 𝐵

)]
∼

[(
0 𝐵

−𝐴 0

)]
and hence

[𝐴𝐵] ∼ [𝐵𝐴] .

This implies for any element 𝑥 ∈ GL(𝑅) and 𝑒 ∈ E(𝑅) that 𝑥𝑒𝑥−1 ∼ 𝑒𝑥−1𝑥 = 𝑒 and
hence 𝑥𝑒𝑥−1 ∈ E(𝑅). Therefore E(𝑅) is normal. Given a commutator 𝑥𝑦𝑥−1𝑦−1 for
𝑥, 𝑦 ∈ GL(𝑅), we conclude for appropriate elements 𝑒1, 𝑒2, 𝑒3 in E(𝑅)

𝑥𝑦𝑥−1𝑦−1 = 𝑒1𝑦𝑥𝑒2𝑥
−1𝑦−1 = 𝑒1 (𝑦𝑥)𝑒2 (𝑦𝑥)−1 = 𝑒1𝑒3 ∈ E(𝑅).

⊓⊔
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Theorem 3.12 (𝐾1 (𝑅) equals GL(𝑅)/[GL(𝑅),GL(𝑅)]). There is a natural iso-
morphism

GL(𝑅)/[GL(𝑅),GL(𝑅)] �−→ 𝐾1 (𝑅).

Proof. Because of Lemma 3.10 it suffices to construct mutually inverse homomor-
phisms of abelian groups 𝛼 : GL(𝑅)/[GL(𝑅),GL(𝑅)] → 𝐾

𝑓

1 (𝑅) and 𝛽 : 𝐾 𝑓

1 (𝑅) →
GL(𝑅)/[GL(𝑅),GL(𝑅)]. The map 𝛼 sends the class [𝐴] of 𝐴 ∈ GL𝑛 (𝑅) to the
class [𝑟𝐴] of 𝑟𝐴 : 𝑅𝑛 → 𝑅𝑛, 𝑥 ↦→ 𝑥𝐴. This is a well-defined homomorphism of
abelian groups since [𝑟𝐴𝐵] = [𝑟𝐴] + [𝑟𝐵], [𝑟𝐴⊕𝐼1 ] = [𝑟𝐴] holds for all 𝑛 ∈ Z, 𝑛 ≥ 1
and 𝐴, 𝐵 ∈ GL𝑛 (𝑅), and 𝐾1 (𝑅) is abelian. The map 𝛽 sends the class [ 𝑓 ] of an
automorphism 𝑓 of a finitely generated free 𝑅-module 𝐹 to the class [𝐴( 𝑓 , 𝐵)] of
the invertible (𝑛, 𝑛)-matrix 𝐴( 𝑓 , 𝐵) associated to 𝑓 after a choice of some ordered
𝑅-basis 𝐵 for 𝐹. This class is independent of the choice of 𝐵, since for another choice
of an ordered bases 𝐵′ there exists a 𝑈 ∈ GL𝑛 (𝑅) with 𝑈𝐴( 𝑓 , 𝐵)𝑈−1 = 𝐴( 𝑓 , 𝐵′),
which implies

[𝐴( 𝑓 , 𝐵′)] = [𝑈𝐴( 𝑓 , 𝐵)𝑈−1] = [𝑈] [𝐴( 𝑓 , 𝐵)] [𝑈]−1

= [𝑈] [𝑈]−1 [𝐴( 𝑓 , 𝐵)] = [𝐴( 𝑓 , 𝐵)] .

Thus we have defined 𝛽 on generators. It remains to check the relations. Obviously
the composition formula is satisfied. Additivity is satisfied because of the following
calculation in GL(𝑅)/[GL(𝑅),GL(𝑅)] for 𝐴 ∈ GL𝑚 (𝑅), 𝐵 ∈ GL𝑛 (𝑅) and 𝐶 ∈
𝑀𝑚,𝑛 (𝑅) based on Lemma 3.11[(

𝐴 0
𝐵 𝐶

)]
=

[(
𝐴 0
0 𝐼𝑛

)
·
(
𝐼𝑚 0
0 𝐶

)
·
(
𝐼𝑚 0

𝐶−1𝐵 𝐼𝑛

)]
=

[(
𝐴 0
0 𝐼𝑛

)]
·
[(
𝐼𝑚 0
0 𝐶

)]
·
[(

𝐼𝑚 0
𝐶−1𝐵 𝐼𝑛

)]
= [𝐴] · [𝐶] · [𝐼𝑚+𝑛] = [𝐴] · [𝐶] .

One easily checks that 𝛼 and 𝛽 are inverse to one another. ⊓⊔

Remark 3.13 (What 𝐾1 (𝑅) measures). We conclude from Lemma 3.11 and Theo-
rem 3.12 that two matrices 𝐴 ∈ GL𝑚 (𝑅) and 𝐵 ∈ GL𝑛 (𝑅) represent the same class
in 𝐾1 (𝑅) if and only if 𝐵 can be obtained from 𝐴 by a sequence of the following
operations:

(i) Elementary row operation
𝐵 is obtained from 𝐴 by adding the 𝑘-th row multiplied by 𝑟 from the left to the
𝑙-th row for 𝑟 ∈ 𝑅 and 𝑘 ≠ 𝑙;

(ii) Elementary column operation
𝐵 is obtained from 𝐴 by adding the 𝑘-th column multiplied by 𝑟 from the right
to the 𝑙-th row for 𝑟 ∈ 𝑅 and 𝑘 ≠ 𝑙;

(iii) Stabilization
𝐵 is obtained by taking the direct sum of 𝐴 and 𝐼1, i.e., 𝐵 looks like the block

matrix
(
𝐴 0
0 1

)
;
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(iv) Destabilization
𝐴 is the direct sum of 𝐵 and 𝐼1. (This is the inverse operation to (iii).)

Since multiplication from the left or right by an elementary matrix corresponds
to the operation (i) or the operation (ii), the abelian group 𝐾1 (𝑅) is trivial if and only
if any invertible matrix 𝐴 ∈ GL𝑛 (𝑅) can be reduced by a sequence of the operations
above to the empty matrix.

One could delete the operation (i) or the operation (ii) from the list above without
changing the conclusion. This follows from the fact that E(𝑅) is a normal subgroup
of GL(𝑅).

The elementary proof of the next lemma is left to the reader.

Lemma 3.14. Let 𝑅 be a commutative ring. Then the determinant defines a homo-
morphism of abelian groups

det : 𝐾1 (𝑅) → 𝑅× , [ 𝑓 ] ↦→ det( 𝑓 ).

It satisfies det ◦𝑖 = id𝑅× for the map 𝑖 defined in (3.5). In particular the map det is
surjective.

Definition 3.15 (𝑆𝐾1 (𝑅) of a commutative ring 𝑅). Let 𝑅 be a commutative ring.
Define

𝑆𝐾1 (𝑅) := ker
(
det : 𝐾1 (𝑅) → 𝑅×

)
.

We will see in Section 3.12 that there are commutative group rings Z𝐺 for which
the surjective map det : 𝐾1 (Z𝐺) → Z𝐺× is not injective, or, equivalently, with
non-trivial 𝑆𝐾1 (Z𝐺). Here is another example.

Example 3.16. The following example is taken from [106, Example 4.4], see
also [860, Exercise 2.3.11 on page 82]. Let Λ be obtained from the polynomial
ring R[𝑥, 𝑦] by dividing out the ideal generated by 𝑥2 + 𝑦2 − 1. This is a Dedekind
domain. The matrix

𝑀 :=
(
𝑥 𝑦

−𝑦 𝑥

)
∈ SL2 (Λ)

represents a non-trivial element in 𝑆𝐾1 (Λ). The proof uses Mennicke symbols and
is based on the observation that the function

𝑆1 → SL𝑛 (R), (𝑥, 𝑦) ↦→ ©«
𝑥 𝑦 0
−𝑦 𝑥 0
0 0 𝐼𝑛−2

ª®¬
represents a non-trivial element in 𝜋1 (SL𝑛 (R)) � 𝜋1 (SO(𝑛)) � Z/2 for 𝑛 ≥ 3.

Theorem 3.17 (𝐾1 (𝑅) = 𝑅× for commutative rings with Euclidean algorithm).
Let 𝑅 be a commutative ring with Euclidean algorithm in the sense of [860, 2.3.1 on
page 74], for instance a field or Z.

Then the determinant induces an isomorphism

det : 𝐾1 (𝑅)
�−→ 𝑅× .
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Proof. Because of Lemma 3.14 it suffices to show for 𝐴 ∈ GL𝑛 (𝑅) with det(𝐴) = 1
that it can be reduced to the empty matrix by a sequence of operations appearing
in Remark 3.13. But this is a well-known result of elementary algebra, see for
instance [860, Theorem 2.3.2 on page 74]. ⊓⊔

Exercise 3.18. Prove 𝐾1 (Z[𝑖]) � {1,−1, 𝑖,−𝑖} � Z/4.

Remark 3.19 (𝐾1 (𝑅) of principal ideal domains). There exist principal ideal do-
mains 𝑅 such that det : 𝐾1 (𝑅) → 𝑅× is not bijective. For instance Grayson [435]
gives such an example, namely, take Z[𝑥] and invert 𝑥 and all polynomials of the
shape 𝑥𝑚 − 1 for 𝑚 ≥ 1. Other examples can be found in Ischebeck [517].

Theorem 3.20 (Vanishing of 𝑆𝐾1 of ring of integers in an algebraic number
field). Let 𝑅 be the ring of integers in an algebraic number field. Then the determinant
induces an isomorphism

det : 𝐾1 (𝑅)
�−→ 𝑅× .

Proof. See [106, page 77] or [727, Corollary 16.3 on page 159]. ⊓⊔

The proof of the next classical result can be found for instance in [859, Theo-
rem 2.3.8 on page 79].

Theorem 3.21 (Dirichlet Unit Theorem). Let 𝑅 be the ring of integers in an
algebraic number field 𝐹. Let 𝑟1 be the number of distinct embeddings of 𝐹 into R
and let 𝑟2 be the number of distinct conjugate pairs of embeddings of 𝐹 into C with
image not contained in R. Then:

(i) 𝑟1 + 2𝑟2 is the degree [𝐹 : Q] of the extension Q ⊆ 𝐹;
(ii) The abelian group 𝑅× is finitely generated:

(iii) The torsion subgroup of 𝑅× is the finite cyclic group of roots of unity in 𝐹;
(iv) The rank of 𝑅× is 𝑟1 + 𝑟2 − 1.

Exercise 3.22. Let 𝑅 be the ring of integers in an algebraic number field 𝐹. Then
𝐾1 (𝑅) is finite if and only if 𝐹 is Q or an imaginary quadratic field.

3.3 Whitehead Group and Whitehead Torsion

In this section we will assign to a homotopy equivalence 𝑓 : 𝑋 → 𝑌 of finite 𝐶𝑊-
complexes its Whitehead torsion 𝜏( 𝑓 ) in the Whitehead group Wh(𝜋(𝑌 )) associated
to 𝑌 . A basic feature is that the Whitehead torsion can distinguish manifolds or
spaces that are homotopy equivalent. The notion of Whitehead torsion goes back to
the papers by J.H.C. Whitehead [1007, 1008, 1009].

The reduced 𝐾1-group 𝐾1 (𝑅) is defined to be the cokernel of the map 𝐾1 (Z) →
𝐾1 (𝑅) induced by the unique ring homomorphism Z → 𝑅. The homomorphism
det : 𝐾1 (Z) → {±1} is a bijection, because Z is a ring with Euclidean algorithm,
see Theorem 3.17. Hence 𝐾1 (𝑅) is the same as the quotient of 𝐾1 (𝑅) by the cyclic
subgroup of at most order two generated by the class of the (1, 1)-matrix (−1).
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Definition 3.23 (Whitehead group). Define the Whitehead group Wh(𝐺) of a
group 𝐺 to be the cokernel of the map 𝐺 × {±1} → 𝐾1 (Z𝐺) that sends (𝑔,±1) to
the class of the invertible (1, 1)-matrix (±𝑔).

Obviously a group homomorphism 𝑢 : 𝐺 → 𝐻 induces a homomorphism of
abelian groups

(3.24) 𝑢∗ = Wh(𝑢) : Wh(𝐺) →Wh(𝐻).

Exercise 3.25. Using the ring homomorphism 𝑓 : Z[Z/5] → C that sends the gen-
erator of Z/5 to exp(2𝜋𝑖/5) and the norm of a complex number, define a homomor-
phism of abelian groups

𝜙 : Wh(Z/5) → R>0.

Show that 1 − 𝑡 − 𝑡−1 is a unit in Z[Z/5] whose class in Wh(Z/5) is an element
of infinite order. (Actually Wh(Z/5) is an infinite cyclic group with this class as
generator.)

For a ring 𝑅 and a group 𝐺 we denote by

𝐴0 = 𝐾0 (𝑖) : 𝐾0 (𝑅) → 𝐾0 (𝑅𝐺)(3.26)

the map induced by the inclusion 𝑖 : 𝑅 → 𝑅𝐺. Sending (𝑔, [𝑃]) ∈ 𝐺 × 𝐾0 (𝑅) to
the class of the 𝑅𝐺-automorphism 𝑅[𝐺] ⊗𝑅 𝑃 → 𝑅[𝐺] ⊗𝑅 𝑃, 𝑢 ⊗ 𝑥 ↦→ 𝑢𝑔−1 ⊗ 𝑥
defines a map Φ : 𝐺/[𝐺,𝐺] ⊗Z 𝐾0 (𝑅) → 𝐾1 (𝑅𝐺). Define a homomorphism

𝐴1 := Φ ⊕ 𝐾1 (𝑖) : (𝐺/[𝐺,𝐺] ⊗Z 𝐾0 (𝑅)) ⊕ 𝐾1 (𝑅) → 𝐾1 (𝑅𝐺).(3.27)

Definition 3.28 (Generalized Whitehead group). For a regular ring 𝑅 and a group
𝐺 we define the generalized Whitehead group Wh𝑅1 (𝐺) as the cokernel of the map
𝐴1 introduced in (3.27). Denote by Wh𝑅0 (𝐺) the cokernel of the map 𝐴0 defined
in (3.26).

Note that the abelian group WhZ1 (𝐺) of Definition 3.28 agrees with the abelian
group Wh(𝐺) of Definition 3.23.

Next we will define torsion invariants on the level of chain complexes.
We begin with some input about chain complexes. Let 𝑓∗ : 𝐶∗ → 𝐷∗ be a chain

map of 𝑅-chain complexes for some ring 𝑅. Define cyl∗ ( 𝑓∗) to be the chain complex
with 𝑛-th differential

𝐶𝑛−1 ⊕ 𝐶𝑛 ⊕ 𝐷𝑛

©«
−𝑐𝑛−1 0 0
− id 𝑐𝑛 0
𝑓𝑛−1 0 𝑑𝑛

ª®®®¬−−−−−−−−−−−−−−→ 𝐶𝑛−2 ⊕ 𝐶𝑛−1 ⊕ 𝐷𝑛−1.

Define cone∗ ( 𝑓∗) to be the quotient of cyl∗ ( 𝑓∗) by the obvious copy of𝐶∗. Hence the
𝑛-th differential of cone∗ ( 𝑓∗) is
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𝐶𝑛−1 ⊕ 𝐷𝑛

(−𝑐𝑛−1 0
𝑓𝑛−1 𝑑𝑛

)
−−−−−−−−−−−→ 𝐶𝑛−2 ⊕ 𝐷𝑛−1.

Given a chain complex 𝐶∗, define Σ𝐶∗ to be the quotient of cone∗ (id𝐶∗ ) by the
obvious copy of 𝐶∗, i.e., the chain complex with 𝑛-th differential

𝐶𝑛−1
−𝑐𝑛−1−−−−−→ 𝐶𝑛−2.

Definition 3.29 (Mapping cylinder and mapping cone). Given a chain map
𝑓∗ : 𝐶∗ → 𝐷∗, we call cyl∗ ( 𝑓∗) the mapping cylinder and cone∗ ( 𝑓∗) the mapping
cone. For a chain complex 𝐶∗, we call Σ𝐶∗ the suspension.

These algebraic notions of mapping cylinder, mapping cone, and suspension are
modelled on their geometric counterparts. Namely, the cellular chain complex of a
mapping cylinder of a cellular map 𝑓 of 𝐶𝑊-complexes is the mapping cylinder of
the chain map induced by 𝑓 . As suggested already from the geometric picture, there
exists obvious exact sequences such as 0 → 𝐶∗ → cyl∗ ( 𝑓∗) → cone∗ ( 𝑓∗) → 0 and
0→ 𝐷∗ → cone∗ ( 𝑓∗) → Σ𝐶∗ → 0.

A chain contraction 𝛾∗ for an 𝑅-chain complex 𝐶∗ is a collection of
𝑅-homomorphisms 𝛾𝑛 : 𝐶𝑛 → 𝐶𝑛+1 for 𝑛 ∈ Z satisfying 𝑐𝑛+1◦𝛾𝑛+𝛾𝑛−1◦𝑐𝑛 = id𝐶𝑛
for all 𝑛 ∈ Z. We call a finite free 𝑅-chain complex based free if each 𝑅-chain
module 𝐶𝑛 comes with a preferred basis. Suppose that 𝐶∗ is a finite based free
𝑅-chain complex which is contractible, i.e., which possesses a chain contraction.
Put 𝐶odd = ⊕𝑛∈Z𝐶2𝑛+1 and 𝐶ev = ⊕𝑛∈Z𝐶2𝑛. Let 𝛾∗ and 𝛿∗ be two chain contractions.
Define 𝑅-homomorphisms

(𝑐∗ + 𝛾∗)odd : 𝐶odd → 𝐶ev;(3.30)
(𝑐∗ + 𝛿∗)ev : 𝐶ev → 𝐶odd.(3.31)

Choose on each of the bases an ordering. Let 𝐴 be the matrix of (𝑐∗ + 𝛾∗)odd
with respect to the given ordered bases. Let 𝐵 be the matrix of (𝑐∗ + 𝛿∗)ev with
respect to the given ordered bases. We define 𝜇𝑛 := (𝛾𝑛+1 − 𝛿𝑛+1) ◦ 𝛿𝑛 and 𝜈𝑛 :=
(𝛿𝑛+1−𝛾𝑛+1)◦𝛾𝑛. One easily checks that the endomorphisms (id+𝜇∗)odd, (id+𝜈∗)ev,
(𝑐∗ + 𝛾∗)odd ◦ (id+𝜇∗)odd ◦ (𝑐∗ + 𝛿∗)ev, and (𝑐∗ + 𝛿∗)ev ◦ (id+𝜈∗)ev ◦ (𝑐∗ + 𝛾∗)odd are
given by upper triangular matrices whose diagonal entries are identity maps. Hence
𝐴 and 𝐵 are invertible and their classes [𝐴], [𝐵] ∈ 𝐾1 (𝑅) satisfy [𝐴] = −[𝐵].
Since [𝐵] is independent of the choice of 𝛾∗, the same is true for [𝐴]. Moreover
[𝐴] is independent of the choice of orderings on the bases, since the class of any
permutation automorphism of a finitely generated free 𝑅-module in 𝐾1 (𝑅) is in the
image of the homomorphism 𝐾1 (Z) → 𝐾1 (𝑅). Thus we can associate to a finite
based free contractible 𝑅-chain complex 𝐶∗ an element

𝜏(𝐶∗) := [𝐴] ∈ 𝐾1 (𝑅).(3.32)
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Let 𝑓∗ : 𝐶∗ → 𝐷∗ be a homotopy equivalence of finite based free 𝑅-chain com-
plexes. Its mapping cone cone( 𝑓∗) is a contractible finite based free 𝑅-chain complex.
Define the Whitehead torsion of 𝑓∗ by

𝜏( 𝑓∗) := 𝜏(cone∗ ( 𝑓∗)) ∈ 𝐾1 (𝑅).(3.33)

Now we can pass to 𝐶𝑊-complexes. Let 𝑓 : 𝑋 → 𝑌 be a cellular homotopy
equivalence of connected finite 𝐶𝑊-complexes. Let 𝑝𝑋 : 𝑋 → 𝑋 and 𝑝𝑌 : 𝑌 → 𝑌

be the universal coverings. Identify 𝜋1 (𝑌 )with 𝜋1 (𝑋) using the isomorphism induced
by 𝑓 . (We ignore base point questions here and in the sequel. This can be done since
an inner automorphism of a group 𝐺 induces the identity on 𝐾1 (Z𝐺) and hence
also on Wh(𝐺).) There is a lift �̃� : 𝑋 → 𝑌 which is 𝜋1 (𝑌 )-equivariant. It induces
a Z𝜋1 (𝑌 )-chain homotopy equivalence 𝐶∗ ( �̃� ) : 𝐶∗ (𝑋) → 𝐶∗ (𝑌 ). The 𝐶𝑊-structure
defines a basis for each Z𝜋1 (𝑌 )-chain module 𝐶𝑛 (𝑋) and 𝐶𝑛 (𝑌 ) which is unique up
to multiplying each basis element by a unit of the form ±𝑔 ∈ Z𝜋1 (𝑌 ) and permuting
the elements of the basis. Pick such a cellular basis for each chain module. We can
apply (3.33) to it and thus obtain an element in 𝐾1 (Z𝜋1 (𝑌 )). Its image under the
projection 𝐾1 (Z𝜋1 (𝑌 )) →Wh(𝜋1 (𝑌 )) is denoted by

𝜏( 𝑓 ) ∈ Wh(𝜋1 (𝑌 )).(3.34)

Since we consider 𝜏( 𝑓 ) in Wh(𝜋1 (𝑌 )), the choice of the cellular basis does not
matter anymore.

Given a (not necessarily cellular) homotopy equivalence of connected finite 𝐶𝑊-
complexes 𝑓 : 𝑋 → 𝑌 , we can define its Whitehead torsion 𝜏( 𝑓 ) as follows. We can
choose by the Cellular Approximation Theorem a cellular map 𝑓 ′ : 𝑋 → 𝑌 that is
homotopic to 𝑓 , and define the Whitehead torsion 𝜏( 𝑓 ) by 𝜏( 𝑓 ′). Since the White-
head torsion of two cellular maps which are homotopic, and hence even cellularly
homotopic by the Cellular Approximation Theorem, agrees, it is independent of the
choice of 𝑓 ′.

If 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence of finite 𝐶𝑊-complexes, then define
Wh(𝜋1 (𝑌 )) :=

⊕
𝐶∈𝜋0 (𝑌 ) Wh(𝜋1 (𝐶)) and 𝜏( 𝑓 ) ∈ Wh(𝜋1 (𝑌 )) by the collection of

the Whitehead torsions of the homotopy equivalences induced between path com-
ponents. Obviously a map 𝑔 : 𝑌1 → 𝑌2 induces a homomorphism of abelian groups
𝑔∗ : Wh(𝜋1 (𝑌1)) → Wh(𝜋1 (𝑌2)) by the homomorphisms between the various fun-
damental groups of the path components induced by 𝑔.

Definition 3.35 (Whitehead torsion). We call 𝜏( 𝑓 ) the (algebraic) Whitehead tor-
sion of the homotopy equivalence 𝑓 : 𝑋 → 𝑌 of finite 𝐶𝑊-complexes.

Exercise 3.36. Let 0 → 𝐶∗
𝑖∗−→ 𝐷∗

𝑝∗−−→ 𝐸∗ → 0 be an exact sequence of projective
𝑅-chain complexes. Suppose that 𝐸∗ is contractible. Construct an 𝑅-chain map
𝑠∗ : 𝐸∗ → 𝐷∗ such that 𝑝∗ ◦ 𝑠∗ = id𝐸∗ . Show that 𝑖∗ ⊕ 𝑠∗ : 𝐶∗ ⊕ 𝐸∗ → 𝐷∗ is an
isomorphism of 𝑅-chain complexes. Give a counterexample to the conclusion if one
drops the condition that 𝐸∗ is contractible.
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The basic properties of this invariant are summarized in the following theorem,
whose proof can be found for instance in [247, (22.1), (22.4), (23.1), and (23.2)], [667,
Chapter 3], or [648, Chapter 2].

Theorem 3.37 (Basic properties of Whitehead torsion).

(i) Sum formula

Let the following two diagrams be pushouts of finite 𝐶𝑊-complexes

𝑋0
𝑖1 //

𝑖2
��

𝑋1

𝑗1

��
𝑋2

𝑗2
// 𝑋

𝑌0
𝑘1 //

𝑘2
��

𝑌1

𝑙1
��

𝑌2
𝑙2
// 𝑌

where the left vertical arrows are inclusions of 𝐶𝑊-complexes, the upper hor-
izontal maps are cellular, and 𝑋 and 𝑌 are equipped with the induced 𝐶𝑊-
structure. Let 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 be homotopy equivalences for 𝑖 = 0, 1, 2 satisfying
𝑓1 ◦ 𝑖1 = 𝑘1 ◦ 𝑓0 and 𝑓2 ◦ 𝑖2 = 𝑘2 ◦ 𝑓0. Put 𝑙0 = 𝑙1 ◦ 𝑘1 = 𝑙2 ◦ 𝑘2. Denote by
𝑓 : 𝑋 → 𝑌 the map induced by 𝑓0, 𝑓1, and 𝑓2 and the pushout property.
Then 𝑓 is a homotopy equivalence and

𝜏( 𝑓 ) = (𝑙1)∗𝜏( 𝑓1) + (𝑙2)∗𝜏( 𝑓2) − (𝑙0)∗𝜏( 𝑓0);

(ii) Homotopy invariance

Let 𝑓 ≃ 𝑔 : 𝑋 → 𝑌 be homotopic maps of finite 𝐶𝑊-complexes. Then the
homomorphisms 𝑓∗, 𝑔∗ : Wh(𝜋1 (𝑋)) → Wh(𝜋1 (𝑌 )) agree. If additionally 𝑓

and 𝑔 are homotopy equivalences, then we obtain

𝜏(𝑔) = 𝜏( 𝑓 );

(iii) Composition formula

Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 be homotopy equivalences of finite 𝐶𝑊-
complexes. Then we get

𝜏(𝑔 ◦ 𝑓 ) = 𝑔∗𝜏( 𝑓 ) + 𝜏(𝑔);

(iv) Product formula

Let 𝑓 : 𝑋 ′ → 𝑋 and 𝑔 : 𝑌 ′ → 𝑌 be homotopy equivalences of connected finite
𝐶𝑊-complexes. Then

𝜏( 𝑓 × 𝑔) = 𝜒(𝑋) · 𝑗∗𝜏(𝑔) + 𝜒(𝑌 ) · 𝑖∗𝜏( 𝑓 )

where 𝜒(𝑋), 𝜒(𝑌 ) ∈ Z denote the Euler characteristics, 𝑗∗ : Wh(𝜋1 (𝑌 )) →
Wh(𝜋1 (𝑋 × 𝑌 )) is the homomorphism induced by 𝑗 : 𝑌 → 𝑋 × 𝑌, 𝑦 ↦→ (𝑦, 𝑥0)
for some base point 𝑥0 ∈ 𝑋 and 𝑖∗ is defined analogously.
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Let 𝑋 be a finite simplicial complex. Let 𝑋 ′ be its barycentric subdivision. Then
one can show 𝜏( 𝑓 ) = 0 for the map 𝑓 : 𝑋 → 𝑋 ′ whose underlying map of spaces
is the identity. However, if 𝑋1 and 𝑋2 are two finite 𝐶𝑊-complexes with the same
underlying space, it is not at all clear that 𝜏( 𝑓 ) = 0 holds for the map 𝑓 : 𝑋1 → 𝑋2
whose underlying map of spaces is the identity. This problem is solved by the
following (in comparison with the other statements above much deeper) result due
to Chapman [227], [228], see also [247, Appendix] and [798, Section 5].

Theorem 3.38 (Topological invariance of Whitehead torsion). The Whitehead
torsion of a homeomorphism 𝑓 : 𝑋 → 𝑌 of finite 𝐶𝑊-complexes vanishes.

3.4 Geometric Interpretation of Whitehead Group and
Whitehead Torsion

In this section we introduce the concept of a simple homotopy equivalence 𝑓 : 𝑋 → 𝑌

of finite 𝐶𝑊-complexes geometrically. We will show that the obstruction for a
homotopy equivalence 𝑓 : 𝑋 → 𝑌 of finite 𝐶𝑊-complexes to be simple is the
Whitehead torsion.

We have the inclusion of spaces 𝑆𝑛−2 ⊂ 𝑆𝑛−1
+ ⊂ 𝑆𝑛−1 ⊂ 𝐷𝑛 where 𝑆𝑛−1

+ ⊂ 𝑆𝑛−1 is
the upper hemisphere. The pair (𝐷𝑛, 𝑆𝑛−1

+ ) carries an obvious relative𝐶𝑊-structure.
Namely, attach an (𝑛 − 1)-cell to 𝑆𝑛−1

+ by the attaching map id : 𝑆𝑛−2 → 𝑆𝑛−2 to
obtain 𝑆𝑛−1. Then we attach to 𝑆𝑛−1 an 𝑛-cell by the attaching map id : 𝑆𝑛−1 → 𝑆𝑛−1

to obtain 𝐷𝑛. Let 𝑋 be a 𝐶𝑊-complex. Let 𝑞 : 𝑆𝑛−1
+ → 𝑋 be a map satisfying

𝑞(𝑆𝑛−2) ⊂ 𝑋𝑛−2 and 𝑞(𝑆𝑛−1
+ ) ⊂ 𝑋𝑛−1. Let 𝑌 be the space 𝐷𝑛 ∪𝑞 𝑋 , i.e., the pushout

𝑆𝑛−1
+

𝑞 //

𝑖

��

𝑋

𝑗

��
𝐷𝑛

𝑔
// 𝑌

where 𝑖 is the inclusion. Then 𝑌 inherits a 𝐶𝑊-structure by putting 𝑌𝑘 = 𝑗 (𝑋𝑘) for
𝑘 ≤ 𝑛 − 2, 𝑌𝑛−1 = 𝑗 (𝑋𝑛−1) ∪ 𝑔(𝑆𝑛−1) and 𝑌𝑘 = 𝑗 (𝑋𝑘) ∪ 𝑔(𝐷𝑛) for 𝑘 ≥ 𝑛. Note that
𝑌 is obtained from 𝑋 by attaching one (𝑛 − 1)-cell and one 𝑛-cell. Since the map
𝑖 : 𝑆𝑛−1

+ → 𝐷𝑛 is a homotopy equivalence and cofibration, the map 𝑗 : 𝑋 → 𝑌 is a
homotopy equivalence and a cofibration. We call 𝑗 an elementary expansion and say
that 𝑌 is obtained from 𝑋 by an elementary expansion. There is a map 𝑟 : 𝑌 → 𝑋

with 𝑟 ◦ 𝑗 = id𝑋. This map is unique up to homotopy relative 𝑗 (𝑋). We call any such
map an elementary collapse and say that 𝑋 is obtained from 𝑌 by an elementary
collapse.

Definition 3.39 (Simple homotopy equivalence). Let 𝑓 : 𝑋 → 𝑌 be a map of finite
𝐶𝑊-complexes. We call it a simple homotopy equivalence if there is a sequence of
maps
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𝑋 = 𝑋 [0]
𝑓0−→ 𝑋 [1]

𝑓1−→ 𝑋 [2]
𝑓2−→ · · ·

𝑓𝑛−1−−−→ 𝑋 [𝑛] = 𝑌

such that each 𝑓𝑖 is an elementary expansion or elementary collapse and 𝑓 is homo-
topic to the composite of the maps 𝑓𝑖 .

Remark 3.40 (Combinatorial meaning of simple homotopy equivalence). The
idea of the definition of a simple homotopy equivalence is that such a map can
be written as a composite of elementary maps, namely, elementary expansions and
collapses, which are obviously homotopy equivalences and in some sense the smallest
and most elementary steps to pass from one finite 𝐶𝑊-complex to another without
changing the homotopy type. If one works with simplicial complexes, an elementary
map has a purely combinatorial description. An elementary collapse means to delete
a simplex and one of its faces that is not shared by another simplex. So one can
describe the passage from one finite simplicial complex to another coming from
a simple homotopy equivalence by finitely many combinatorial data. This does not
work for two finite simplicial complexes that are homotopy equivalent but not simple
homotopy equivalent.

This approach is similar to the idea in knot theory that two knots are equivalent
if one can pass from one knot to the other by a sequence of elementary moves, the
so-called Reidemeister moves. A Reidemeister move obviously does not change the
equivalence class of a knot and, indeed, it turns out that one can pass from one knot
to a second knot by a sequence of Reidemeister moves if and only if the two knots
are equivalent, see for instance [187, Chapter 1] or [989]. The analogous statement
is not true for homotopy equivalences 𝑓 : 𝑋 → 𝑌 of finite 𝐶𝑊-complexes because
there is an obstruction for 𝑓 to be simple, namely, its Whitehead torsion.

Exercise 3.41. Consider the simplicial complex 𝑋 with four vertices 𝑣0, 𝑣1, 𝑣2, and
𝑣3, the edges {𝑣0, 𝑣1}, {𝑣1, 𝑣2}, {𝑣0, 𝑣2}, and {𝑣2, 𝑣3} and one 2-simplex {𝑣0, 𝑣1, 𝑣2}.
Describe a sequence of elementary collapses and expansions transforming it to the
one-point-space {•}.

Recall that the mapping cylinder cyl( 𝑓 ) of a map 𝑓 : 𝑋 → 𝑌 is defined by the
pushout

𝑋 × {0}
𝑓 //

��

𝑌

��
𝑋 × [0, 1] // cyl( 𝑓 ).

There are natural inclusions 𝑖𝑋 : 𝑋 = 𝑋 × {1} → cyl( 𝑓 ) and 𝑖𝑌 : 𝑌 → cyl( 𝑓 ) and a
natural projection 𝑝 : cyl( 𝑓 ) → 𝑌 . Note that 𝑖𝑋 is a cofibration and 𝑝 ◦ 𝑖𝑋 = 𝑓 and
𝑝𝑌 ◦ 𝑖𝑌 = id𝑌 . Define the mapping cone cone( 𝑓 ) by the quotient cyl( 𝑓 )/𝑖𝑋 (𝑋).

Lemma 3.42. Let 𝑓 : 𝑋 → 𝑌 be a cellular map of finite 𝐶𝑊-complexes and 𝐴 ⊂ 𝑋
be a 𝐶𝑊-subcomplex. Then the inclusion cyl( 𝑓 |𝐴) → cyl( 𝑓 ) is a composite of
elementary expansions and hence a simple homotopy equivalence. In particular the
inclusion 𝑖𝑌 : 𝑌 → cyl( 𝑓 ) is a simple homotopy equivalence.



82 3 The Whitehead Group

Proof. It suffices to treat the case where 𝑋 is obtained from 𝐴 by attaching an 𝑛-cell
by an attaching map 𝑞 : 𝑆𝑛−1 → 𝑋 . Then there is an obvious pushout

𝑆𝑛−1 × [0, 1] ∪𝑆𝑛−1×{0} 𝐷
𝑛 × {0} //

��

cyl( 𝑓 |𝐴)

��
𝐷𝑛 × [0, 1] // cyl( 𝑓 )

and an obvious homeomorphism

(𝐷𝑛 × [0, 1], 𝑆𝑛−1 × [0, 1] ∪𝑆𝑛−1×{0} 𝐷
𝑛 × {0}) → (𝐷𝑛+1, 𝑆𝑛+).

⊓⊔

Lemma 3.43. A map 𝑓 : 𝑋 → 𝑌 of finite 𝐶𝑊-complexes is a simple homotopy
equivalence if and only if 𝑖𝑋 : 𝑋 → cyl( 𝑓 ) is a simple homotopy equivalence.

Proof. This follows from Lemma 3.42 since the composite of a simple homotopy
equivalence and a homotopy inverse of a simple homotopy equivalence is again a
simple homotopy equivalence. ⊓⊔

We only sketch the proof of the next result. More details can be found for instance
in [247, (22.2)] or [648, Chapter 2]. However, we try to give enough information
about its proof to illustrate why the geometric problem to decide whether a homotopy
equivalence is simple is equivalent to a question about an invertible matrix 𝐴, which
has a positive answer precisely if the class of 𝐴 vanishes in the Whitehead group.
Then the key will be Remark 3.13.

Theorem 3.44 (Whitehead torsion and simple homotopy equivalences).

(i) Let 𝑋 be a finite 𝐶𝑊-complex. Then for any element 𝑥 ∈ Wh(𝜋1 (𝑋)) there
is an inclusion 𝑖 : 𝑋 → 𝑌 of finite 𝐶𝑊-complexes such that 𝑖 is a homotopy
equivalence and 𝑖−1

∗ (𝜏(𝑖)) = 𝑥;
(ii) Let 𝑓 : 𝑋 → 𝑌 be a homotopy equivalence of finite 𝐶𝑊-complexes. Then its

Whitehead torsion 𝜏( 𝑓 ) ∈ Wh(𝜋1 (𝑌 )) vanishes if and only if 𝑓 is a simple
homotopy equivalence.

Proof. (i) We can assume without loss of generality that 𝑋 is connected. Put 𝜋 =

𝜋1 (𝑋). Choose an element 𝐴 ∈ GL𝑛 (Z𝜋) representing 𝑥 ∈ Wh(𝜋). Choose 𝑛 ≥ 2.
In the sequel we fix a zero-cell in 𝑋 as base point. Put 𝑋 ′ = 𝑋 ∨ ∨𝑛

𝑗=1𝑆
𝑛. Let

𝑏 𝑗 ∈ 𝜋𝑛 (𝑋 ′) be the element represented by the inclusion of the 𝑗-th copy of 𝑆𝑛 into
𝑋 ′ for 𝑗 = 1, 2, . . . , 𝑛. Recall that 𝜋𝑛 (𝑋 ′) is a Z𝜋-module. Choose for 𝑖 = 1, 2, . . . , 𝑛
a map 𝑓𝑖 : 𝑆𝑛 → 𝑋 ′𝑛 such that [ 𝑓𝑖] =

∑𝑛
𝑗=1 𝑎𝑖, 𝑗 · 𝑏 𝑗 holds in 𝜋𝑛 (𝑋 ′). Attach to 𝑋 ′

for each 𝑖 ∈ {1, 2, . . . , 𝑛} an (𝑛 + 1)-cell by 𝑓𝑖 : 𝑆𝑛 → 𝑋 ′𝑛. Let 𝑌 be the resulting
𝐶𝑊-complex and 𝑖 : 𝑋 → 𝑌 be the inclusion. Then 𝑖 is an inclusion of finite 𝐶𝑊-
complexes and induces an isomorphism on the fundamental groups. In the sequel
we identify 𝜋 and 𝜋1 (𝑌 ) by 𝜋1 (𝑖). The cellular Z𝜋-chain complex 𝐶∗ (𝑌, 𝑋) is
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concentrated in dimensions 𝑛 and (𝑛 + 1) and its (𝑛 + 1)-differential is given by the
matrix 𝐴 with respect to the cellular basis. Hence 𝐶∗ (𝑌, 𝑋) is a contractible finite
based free Z𝜋-chain complex with 𝜏(𝐶∗ (𝑌, 𝑋)) = [𝐴] in Wh(𝜋). This implies that
𝑖 : 𝑋 → 𝑌 is a homotopy equivalence with 𝑖−1

∗ (𝜏(𝑖)) = 𝑥.

(ii) Suppose that 𝑓 is a simple homotopy equivalence. We want to show 𝜏( 𝑓 ) = 0.
Because of Theorem 3.37 (iii) it suffices to prove for an elementary expansion
𝑗 : 𝑋 → 𝑌 that its Whitehead torsion 𝜏( 𝑗) ∈ Wh(𝑌 ) vanishes. We can assume
without loss of generality that 𝑌 is connected. In the sequel we write 𝜋 = 𝜋1 (𝑌 ) and
identify 𝜋 with 𝜋1 (𝑋) by 𝜋1 ( 𝑓 ). The following diagram of based free finite Z𝜋-chain
complexes

0 // 𝐶∗ (𝑋)
𝐶∗ ( �̃� ) // 𝐶∗ (𝑌 )

pr∗ // 𝐶∗ (𝑌, 𝑋) // 0

0 // 𝐶∗ (𝑋)
id∗ //

id∗

OO

𝐶∗ (𝑋)
pr∗ //

𝐶∗ ( �̃� )

OO

0 //

0∗

OO

0

has based exact rows and Z𝜋-chain homotopy equivalences as vertical arrows. Ele-
mentary facts about chain complexes, in particular the conclusion from Exercise 3.36,
imply

𝜏
(
𝐶∗ ( �̃�)

)
= 𝜏

(
id∗ : 𝐶∗ (𝑋) → 𝐶∗ (𝑋)

)
+ 𝜏

(
0∗ : 0→ 𝐶∗ (𝑌, 𝑋)

)
= 0 + 𝜏

(
𝐶∗ (𝑌, 𝑋)

)
= 𝜏

(
𝐶∗ (𝑌, 𝑋)

)
.

The Z𝜋-chain complex 𝐶∗ (𝑌, 𝑋) is concentrated in two consecutive dimensions and
its only non-trivial differential is id : Z𝜋 → Z𝜋 if we identify the two non-trivial
Z𝜋-chain modules with Z𝜋 using the cellular basis. This implies 𝜏(𝐶∗ (𝑌, 𝑋)) = 0
and hence 𝜏( 𝑗) := 𝜏(𝐶∗ ( �̃�)) = 0.

Now suppose that 𝜏( 𝑓 ) = 0. We want to show that 𝑓 is simple. We can assume
without loss of generality that 𝑋 is connected, otherwise treat each path component
separately. Because of Lemma 3.43 we can assume that 𝑓 is an inclusion 𝑖 : 𝑋 → 𝑌

of connected finite 𝐶𝑊-complexes which is a homotopy equivalence. We have to
show that we can achieve by a sequence of elementary collapses and expansions that
𝑌 = 𝑋 , i.e., we must get rid of all the cells in 𝑌 − 𝑋 .

Since 𝜒(𝑋) = 𝜒(𝑌 ), it is clear that one cannot remove a single cell, this always
has to be done in pairs. In the first step one shows for an 𝑛-dimensional cell 𝑒𝑛 that
one can attach one new (𝑛+1)-cell 𝑒𝑛+1 and a new (𝑛+2)-cell 𝑒𝑛+2 by an elementary
expansion and then get rid of 𝑒𝑛 and 𝑒𝑛+1 by an elementary collapse. The outcome
is that one can replace an 𝑛-cell by an (𝑛 + 2)-cell. Analogously one can show that
one can replace an (𝑛 + 2)-cell by an 𝑛-cell. Thus one can arrange for some integer
𝑛 ≥ 2 that 𝑌 is obtained from 𝑋 by attaching 𝑘 cells of dimension 𝑛 trivially and
then attaching 𝑘 cells of dimension (𝑛 + 1). Hence the cellular Z𝜋-chain complex
𝐶∗ (𝑌, 𝑋) is concentrated in dimension 𝑛 and (𝑛+1). After we have picked a cellular
basis, its (𝑛 + 1)-differential is given by an invertible (𝑘, 𝑘)-matrix 𝐴. By definition
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𝜏( 𝑓 ) is the class of this matrix in Wh(𝜋). In Remark 3.13 we have described what
𝜏( 𝑓 ) = [𝐴] = 0 means, namely, there is a sequence of operations that transform 𝐴

to the empty matrix. Note that 𝑋 = 𝑌 holds if and only if 𝐴 is the empty matrix. Now
the main idea is to show that each of these operations can be realized by elementary
expansions and collapses. ⊓⊔

Next we describe the Whitehead group geometrically. Fix a finite 𝐶𝑊-complex
𝑋 . Consider two pairs of finite 𝐶𝑊-complexes (𝑌, 𝑋) and (𝑍, 𝑋) such that the
inclusions of 𝑋 into 𝑌 and 𝑍 are homotopy equivalences. We call them equivalent if
there is a chain of pairs of finite 𝐶𝑊-complexes

(𝑌, 𝑋) = (𝑌 [0], 𝑋), (𝑌 [1], 𝑋), (𝑌 [2], 𝑋), . . . , (𝑌 [𝑛], 𝑋) = (𝑍, 𝑋)

such that for each 𝑘 ∈ {1, 2, . . . , 𝑛} either 𝑌 [𝑘] is obtained from 𝑌 [𝑘 − 1] by
an elementary expansion or 𝑌 [𝑘 − 1] is obtained from 𝑌 [𝑘] by an elementary
expansion. Denote by Whgeo (𝑋) the equivalence classes [𝑌, 𝑋] of such pairs (𝑌, 𝑋).
This becomes an abelian group under the addition [𝑌, 𝑋] + [𝑍, 𝑋] := [𝑌 ∪𝑋 𝑍, 𝑋].
The zero element is given by [𝑋, 𝑋]. The inverse of [𝑌, 𝑋] is constructed as follows.
Choose a map 𝑟 : 𝑌 → 𝑋 with 𝑟𝑋 = id. Let 𝑝 : 𝑋 × [0, 1] → 𝑋 be the projection.
Then [(cyl(𝑟) ∪𝑝 𝑋) ∪𝑟 𝑋, 𝑋] + [𝑌, 𝑋] = 0.

A map 𝑔 : 𝑋 → 𝑋 ′ induces a homomorphism 𝑔∗ : Whgeo (𝑋) → Whgeo (𝑋 ′) by
sending [𝑌, 𝑋] to [𝑌∪𝑔 𝑋 ′, 𝑋 ′]. We obviously have id∗ = id and (𝑔◦ℎ)∗ = 𝑔∗◦ℎ∗. In
other words, we obtain a covariant functor on the category of finite 𝐶𝑊-complexes
with values in abelian groups. More information about this construction can be found
for instance in [247, § 6 in Chapter II].

Given a homotopy equivalence of finite 𝐶𝑊-complexes 𝑓 : 𝑋 → 𝑌 , define its
geometric Whitehead torsion 𝜏geo ( 𝑓 ) ∈ Whgeo (𝑋) to be the class of (cyl( 𝑓 ), 𝑋).
Because of Lemma 3.43 we have 𝜏geo ( 𝑓 ) = 0 if and only 𝑓 is a simple homotopy
equivalence

The next result is essentially a consequence of Theorem 3.44. Details of its proof
can be found in [247, §21].

Theorem 3.45 (Geometric and algebraic Whitehead groups).

(i) Let 𝑋 be a finite 𝐶𝑊-complex. The map

𝜏 : Whgeo (𝑋) →Wh(𝜋1 (𝑋))

sending [𝑌, 𝑋] to 𝑖−1
∗ 𝜏(𝑖) for the inclusion 𝑖 : 𝑋 → 𝑌 is a natural isomorphism

of abelian groups.
It sends 𝜏geo ( 𝑓 ) to 𝑓 −1

∗ 𝜏( 𝑓 ) for a homotopy equivalence 𝑓 : 𝑋 → 𝑌 of finite
𝐶𝑊-complexes.

(ii) A homotopy equivalence 𝑓 : 𝑋 → 𝑌 is a simple homotopy equivalence if and
only if 𝜏( 𝑓 ) ∈ Wh(𝑌 ) vanishes.

Exercise 3.46. Let 𝑌 be a simply connected finitely dominated 𝐶𝑊-complex. Show
that there exists a finite 𝐶𝑊-complex 𝑋 and a homotopy equivalence 𝑓 : 𝑋 → 𝑌 .
Prove that for any two finite 𝐶𝑊-complexes 𝑋0 and 𝑋1 and homotopy equivalences
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𝑓𝑖 : 𝑋𝑖 → 𝑌 for 𝑖 = 0, 1 there exists a simple homotopy equivalence 𝑔 : 𝑋0 → 𝑋1
with 𝑓1 ◦ 𝑔 ≃ 𝑓0.

3.5 The 𝒔-Cobordism Theorem

One of the main applications of Whitehead torsion is the theorem below.

Theorem 3.47 (𝑠-Cobordism Theorem). Let 𝑀0 be a connected closed manifold
of dimension 𝑛 ≥ 5 with fundamental group 𝜋 = 𝜋1 (𝑀0). Then:

(i) Let (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) be an ℎ-cobordism over 𝑀0. Then 𝑊 is trivial over 𝑀0
if and only if its Whitehead torsion 𝜏(𝑊, 𝑀0) ∈ Wh(𝜋) vanishes;

(ii) For any 𝑥 ∈ Wh(𝜋) there is an ℎ-cobordism (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) over 𝑀0 with
𝜏(𝑊, 𝑀0) = 𝑥 ∈ Wh(𝜋);

(iii) The function assigning to an ℎ-cobordism (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) over𝑀0 its White-
head torsion yields a bijection from the diffeomorphism classes relative 𝑀0 of
ℎ-cobordisms over 𝑀0 to the Whitehead group Wh(𝜋).

Here are some definitions. An 𝑛-dimensional cobordism (sometimes also called
just a bordism) (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) consists of a compact 𝑛-dimensional manifold
𝑊 , closed (𝑛 − 1)-dimensional manifolds 𝑀0 and 𝑀1, a disjoint decomposition
𝜕𝑊 = 𝜕0𝑊

∐
𝜕1𝑊 of the boundary 𝜕𝑊 of𝑊 , and diffeomorphisms 𝑓0 : 𝑀0 → 𝜕𝑊0

and 𝑓1 : 𝑀1 → 𝜕𝑊1. If we want to specify 𝑀0, we say that 𝑊 is a cobordism over
𝑀0. If 𝑓0 and 𝑓1 are obvious from the context, we briefly write (𝑊 ; 𝜕0𝑊, 𝜕1𝑊). We
call a cobordism (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) an ℎ-cobordism if the inclusions 𝜕𝑖𝑊 → 𝑊 for
𝑖 = 0, 1 are homotopy equivalences and an 𝑠-cobordism if the inclusions 𝜕𝑖𝑊 → 𝑊

for 𝑖 = 0, 1 are simple homotopy equivalences. Two cobordisms (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1)
and (𝑊 ′;𝑀0, 𝑓

′
0 , 𝑀

′
1, 𝑓
′
1 ) over 𝑀0 are diffeomorphic relative 𝑀0 if there is a dif-

feomorphism 𝐹 : 𝑊 → 𝑊 ′ with 𝐹 ◦ 𝑓0 = 𝑓 ′0 . We call an ℎ-cobordism over 𝑀0
trivial if it is diffeomorphic relative 𝑀0 = 𝑀0 × {0} to the trivial ℎ-cobordism
(𝑀0 × [0, 1];𝑀0 × {0}, (𝑀0 × {1})). Note that the choice of the diffeomorphisms 𝑓𝑖
do play a role although they are often suppressed in the notation.

The Whitehead torsion of an ℎ-cobordism (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) over 𝑀0

𝜏(𝑊, 𝑀0) ∈ Wh(𝜋1 (𝑀0))(3.48)

is defined to be the preimage of the Whitehead torsion, see Definition 3.35,

𝜏

(
𝑀0

𝑓0−→ 𝜕0𝑊
𝑖0−→ 𝑊

)
∈ Wh(𝜋1 (𝑊))

under the isomorphism (𝑖0 ◦ 𝑓0)∗ : Wh(𝜋1 (𝑀0))
�−→ Wh(𝜋1 (𝑊)) where the map

𝑖0 : 𝜕0𝑊 → 𝑊 is the inclusion. Here we use the fact that each smooth closed
manifold has a𝐶𝑊-structure, which comes for instance from a smooth triangulation,
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or that each closed topological manifold of dimension different from 4 has a 𝐶𝑊-
structure, which comes from a handlebody decomposition, and that the choice of
𝐶𝑊-structure does not matter by the topological invariance of the Whitehead torsion,
see Theorem 3.38.

The idea of the proof of Theorem 3.47 is analogous to that of Theorem 3.44, but
now one uses a handlebody decomposition instead of a 𝐶𝑊-structure and carries
out the manipulation for handlebodies instead of cells. Here a handlebody of index 𝑘
corresponds to a 𝑘-dimensional cell. More details can be found for instance in [667,
Chapter 2].

The ℎ-Cobordism Theorem 3.50 is due to Smale [920]. The 𝑠-Cobordism Theo-
rem 3.47 is due to Barden, Mazur, and Stallings, see [66, 711]. In the PL category
proofs can be found in [877, 6.19 on page 88]. Its topological version follows
from Kirby and Siebenmann [579, Conclusion 7.4 on page 320]. More information
about the 𝑠-Cobordism Theorem can be found for instance in [575], [725], [877,
page 87-90]. The 𝑠-Cobordism Theorem is known to be false for dim(𝑀0) = 4
in general, by the work of Donaldson [312], but it is true for 𝑛 = dim(𝑀0) = 4
for good fundamental groups in the topological category by results of Quinn and
Freedman [118, 401, 402, 403]. Counterexamples in the case dim(𝑀0) = 3 are
constructed by Matsumoto and Siebenmann [710] and Cappell and Shaneson [206]
where the relevant 4-dimensional 𝑠-cobordism is a topological manifold. It is not
known whether one can choose the 𝑠-cobordism to be smooth in these counterexam-
ples. It follows from Kwasik and Schultz [598] and Perelman’s proof of the Thurston
Geometrization Conjecture, see [580, 751], that every ℎ-cobordism between two
orientable closed 3-manifolds is an 𝑠-cobordism.

Exercise 3.49. Show for 𝑛 ≥ 6 that there exists an 𝑛-dimensional ℎ-cobordism
(𝑊 ;𝑀0, 𝑀1) which is not trivial such that the ℎ-cobordism (𝑊×𝑆3;𝑀0×𝑆3, 𝑀1×𝑆3)
is trivial.

Since the Whitehead group of the trivial group vanishes, see Theorem 3.17, the
𝑠-Cobordism Theorem 3.47 implies, see also [725],

Theorem 3.50 (ℎ-Cobordism Theorem). Let 𝑀0 be a simply connected
closed 𝑛-dimensional manifold with dim(𝑀0) ≥ 5. Then every ℎ-cobordism
(𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) over 𝑀0 is trivial.

Theorem 3.51 (Poincaré Conjecture). The Poincaré Conjecture is true for a closed
𝑛-dimensional manifold 𝑀 with dim(𝑀) ≥ 5, namely, if 𝑀 is simply connected and
its homology𝐻𝑝 (𝑀) is isomorphic to𝐻𝑝 (𝑆𝑛) for all 𝑝 ∈ Z, then𝑀 is homeomorphic
to 𝑆𝑛.

Proof. We only give the proof for dim(𝑀) ≥ 6. Since 𝑀 is simply connected and
𝐻∗ (𝑀) � 𝐻∗ (𝑆𝑛), one can conclude from the Hurewicz Theorem and White-
head Theorem [1006, Theorem IV.7.13 on page 181 and Theorem IV.7.17 on
page 182] that there is a homotopy equivalence 𝑓 : 𝑀 → 𝑆𝑛. Let 𝐷𝑛

𝑖
⊂ 𝑀

for 𝑖 = 0, 1 be two embedded disjoint disks. Let 𝑊 be obtained from 𝑀 by re-
moving the interior of the two disks 𝐷𝑛0 and 𝐷𝑛1 . Then 𝑊 turns out to be a
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simply connected ℎ-cobordism. Hence we can find because of Theorem 3.50 a
homeomorphism 𝐹 : (𝜕𝐷𝑛0 × [0, 1], 𝜕𝐷

𝑛
0 × {0}, 𝜕𝐷

𝑛
0 × {1}) → (𝑊, 𝜕𝐷𝑛0 , 𝜕𝐷

𝑛
1 )

that is the identity on 𝜕𝐷𝑛0 = 𝜕𝐷𝑛0 × {0} and induces some (unknown) home-
omorphism 𝑓1 : 𝜕𝐷𝑛0 × {1} → 𝜕𝐷𝑛1 . By the Alexander trick one can extend
𝑓1 : 𝜕𝐷𝑛0 = 𝜕𝐷𝑛0 × {1} → 𝜕𝐷𝑛1 to a homeomorphism 𝑓1 : 𝐷𝑛0 → 𝐷𝑛1 . Namely,
any homeomorphism 𝑓 : 𝑆𝑛−1 → 𝑆𝑛−1 extends to a homeomorphism 𝑓 : 𝐷𝑛 → 𝐷𝑛

by sending 𝑡 · 𝑥 for 𝑡 ∈ [0, 1] and 𝑥 ∈ 𝑆𝑛−1 to 𝑡 · 𝑓 (𝑥). Now define a homeomor-
phism ℎ : 𝐷𝑛0 × {0} ∪𝑖0 𝜕𝐷

𝑛
0 × [0, 1] ∪𝑖1 𝐷

𝑛
0 × {1} → 𝑀 for the canonical inclusions

𝑖𝑘 : 𝜕𝐷𝑛0 × {𝑘} → 𝜕𝐷𝑛0 × [0, 1] for 𝑘 = 0, 1 by ℎ|𝐷𝑛0 ×{0} = id, ℎ|𝜕𝐷𝑛0 ×[0,1] = 𝐹

and ℎ|𝐷𝑛0 ×{1} = 𝑓1. Since the source of ℎ is obviously homeomorphic to 𝑆𝑛, Theo-
rem 3.51 follows.

In the case dim(𝑀) = 5 one uses the fact that 𝑀 is the boundary of a contractible
6-dimensional manifold 𝑊 and applies Theorem 3.50 to 𝑊 with an embedded disk
removed. ⊓⊔

The Poincaré Conjecture, see Theorem 3.51, is known in all dimensions, where
dimension 3 is due to the work of Perelman, see [580, 750, 751, 803, 804, 805],
and dimension 4 is due to Freedman, see [118, 401, 402, 403]. The first proof of
the Poincaré Conjecture in the topological category in dimension ≥ 5 was given
by Newman [758] using engulfing theory. The smooth version of the Poincaré
Conjecture holds in dimensions ≤ 3, is open in dimension 4, and holds in dimensions
5, 6, 12, 56, and 61. It is conjectured that it holds only in finitely many dimensions
and that it is actually false in all dimensions except 1, 2, 3, 4, 5, 6, 12, 56, and 61.
This is discussed for instance in [667, Remark 12.36 on page 445].

Remark 3.52 (Exotic Spheres). Note that the proof of the Poincaré Conjecture in
Theorem 3.51 works only in the topological category but not in the smooth category.
In other words, we cannot conclude the existence of a diffeomorphism ℎ : 𝑆𝑛 → 𝑀 .
The proof in the smooth case breaks down when we apply the Alexander trick.
The construction of 𝑓 given by coning 𝑓 yields only a homeomorphism 𝑓 and
not a diffeomorphism, even if we start with a diffeomorphism 𝑓 . The map 𝑓 is
smooth outside the origin of 𝐷𝑛 but not necessarily at the origin. Indeed, not every
diffeomorphism 𝑓 : 𝑆𝑛−1 → 𝑆𝑛−1 can be extended to a diffeomorphism 𝐷𝑛 → 𝐷𝑛

and there exist so-called exotic spheres, i.e., closed manifolds that are homeomorphic
to 𝑆𝑛 but not diffeomorphic to 𝑆𝑛. The classification of these exotic spheres is one of
the early very important achievements of surgery theory and one motivation for its
further development. For more information about exotic spheres we refer for instance
to [576], [611], [628], [648, Chapter 6] and [667, Chapter 12].

Remark 3.53 (The Surgery Program). In some sense the 𝑠-Cobordism Theo-
rem 3.47 is one of the first theorems where diffeomorphism classes of certain
manifolds are determined by an algebraic invariant, namely, the Whitehead torsion.
Moreover, the Whitehead group Wh(𝜋) depends only on the fundamental group
𝜋 = 𝜋1 (𝑀0), whereas the diffeomorphism classes of ℎ-cobordisms over 𝑀0 a priori
depend on 𝑀0 itself. The 𝑠-Cobordism Theorem 3.47 is one step in a program to
decide whether two closed manifolds 𝑀 and 𝑁 are diffeomorphic, which is in general
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a very hard question. The idea is to construct an ℎ-cobordism (𝑊 ;𝑀, 𝑓 , 𝑁, 𝑔) with
vanishing Whitehead torsion. Then 𝑊 is diffeomorphic to the trivial ℎ-cobordism
over 𝑀 , which implies that 𝑀 and 𝑁 are diffeomorphic. So the Surgery Program is:

(i) Construct a simple homotopy equivalence 𝑓 : 𝑀 → 𝑁;
(ii) Construct a cobordism (𝑊 ;𝑀, 𝑁) and a map (𝐹, 𝑓 , id) : (𝑊 ;𝑀, 𝑁) →
(𝑁 × [0, 1], 𝑁 × {0}, 𝑁 × {1});

(iii) Modify 𝑊 and 𝐹 relative boundary by so-called surgery such that 𝐹 becomes
a simple homotopy equivalence and thus 𝑊 becomes an ℎ-cobordism whose
Whitehead torsion is trivial.

The advantage of this approach will be that it can be reduced to problems in
homotopy theory and algebra, which can sometimes be handled by well-known
techniques. In particular one will sometimes get computable obstructions for two
homotopy equivalent manifolds to be diffeomorphic. Often surgery theory has proved
to be very useful when one wants to distinguish two closed manifolds which have
very similar properties. The classification of homotopy spheres is one example.
Moreover, surgery techniques can be applied to problems that are of a different
nature than of diffeomorphism or homeomorphism classifications, for instance for
the construction of group actions.

More information about surgery theory will be given in Chapter 9.

3.6 Reidemeister Torsion and Lens Spaces

In this section we briefly deal with Reidemeister torsion, which was defined earlier
than (and motivated the definition of) Whitehead torsion. Reidemeister torsion was
the first invariant in algebraic topology that could distinguish between spaces which
are homotopy equivalent but not homeomorphic. Namely, it can be used to classify
lens spaces up to homeomorphism, see Reidemeister [847]. We will give no proofs.
More information and complete proofs can be found in [247, Chapter V], [648,
Section 2.4], and [667, Section 3.5].

Let 𝑋 be a finite𝐶𝑊-complex with fundamental group 𝜋. Let𝑈 be an orthogonal
finite-dimensional 𝜋-representation. Denote by 𝐻∗ (𝑋;𝑈) the homology of 𝑋 with
coefficients in𝑈, i.e., the homology of the R-chain complex𝑈 ⊗Z𝜋 𝐶∗ (𝑋). Suppose
that 𝑋 is 𝑈-acyclic, i.e., 𝐻𝑛 (𝑋;𝑈) = 0 for all 𝑛 ≥ 0. If we fix a cellular basis
for 𝐶∗ (𝑋) and some orthogonal R-basis for 𝑈, then 𝑈 ⊗Z𝜋 𝐶∗ (𝑋) is a contractible
based free finite R-chain complex and yields an element 𝜏(𝑈 ⊗Z𝜋 𝐶∗ (𝑋)) ∈ 𝐾1 (R),
see (3.32). Define the Reidemeister torsion

𝜌(𝑋;𝑈) ∈ R>0(3.54)

to be the image of 𝜏(𝑈⊗Z𝜋𝐶∗ (𝑋)) ∈ 𝐾1 (R) under the homomorphism𝐾1 (R) → R>0

sending the class [𝐴] of 𝐴 ∈ GL𝑛 (R) to | det(𝐴) |. Note that for any trivial unit
±𝛾 the automorphism of 𝑈 given by multiplication by ±𝛾 is orthogonal and that
the absolute value of the determinant of any orthogonal automorphism of 𝑈 is 1.



3.6 Reidemeister Torsion and Lens Spaces 89

Therefore 𝜌(𝑋;𝑈) ∈ R>0 is independent of the choice of cellular basis for 𝐶∗ (𝑋)
and the orthogonal basis for𝑈, and hence is an invariant of the 𝐶𝑊-complex 𝑋 and
the orthogonal representation𝑈.

We state without proof the next result, which essentially says that the Whitehead
torsion of a homotopy equivalence is related to the difference of the Reidemeister
torsion of the target and the source when defined.

Lemma 3.55. Let 𝑓 : 𝑋 → 𝑌 be a homotopy equivalence of connected finite 𝐶𝑊-
complexes and let 𝑈 be an orthogonal finite-dimensional 𝜋 = 𝜋1 (𝑌 )-representa-
tion. Suppose that 𝑌 is 𝑈-acyclic. Let 𝑓 ∗𝑈 be the orthogonal 𝜋1 (𝑋)-representation
obtained from𝑈 by restriction with the isomorphism 𝜋1 ( 𝑓 ).

Let 𝑑𝑈 : Wh(𝜋(𝑌 )) → R>0 be the map sending the class [𝐴] of 𝐴 ∈
GL𝑛 (Z𝜋1 (𝑌 )) to |det(id𝑈 ⊗Z𝜋𝑟𝐴 : 𝑈 ⊗Z𝜋 Z𝜋𝑛 → 𝑈 ⊗Z𝜋 Z𝜋𝑛) |.

Then 𝑋 is 𝑓 ∗𝑈-acyclic and we get

𝜌(𝑌 ;𝑈)
𝜌(𝑋; 𝑓 ∗𝑈) = 𝑑𝑈 (𝜏( 𝑓 )).

Next we introduce lens spaces. Let 𝐺 be a cyclic group of finite order |𝐺 |.
Let 𝑉 be a unitary finite-dimensional 𝐺-representation. Define its unit sphere 𝑆𝑉
and its unit disk 𝐷𝑉 to be the 𝐺-subspaces 𝑆𝑉 = {𝑣 ∈ 𝑉 | | |𝑣 | | = 1} and
𝐷𝑉 = {𝑣 ∈ 𝑉 | | |𝑢 | | ≤ 1} of 𝑉 . Note that a complex finite-dimensional vector
space has a preferred orientation as real vector space, namely, the one given by the
R-basis {𝑏1, 𝑖𝑏1, 𝑏2, 𝑖𝑏2, . . . , 𝑏𝑛, 𝑖𝑏𝑛} for anyC-basis {𝑏1, 𝑏2, . . . , 𝑏𝑛}. AnyC-linear
automorphism of a complex finite-dimensional vector space preserves this orienta-
tion. Thus 𝑆𝑉 and 𝐷𝑉 are oriented compact Riemannian manifolds with isometric
orientation preserving 𝐺-action. We call a unitary 𝐺-representation 𝑉 free if the
induced 𝐺-action on its unit sphere 𝑆𝑉 is free. Then 𝑆𝑉 → 𝐺\𝑆𝑉 is a covering
and the quotient space 𝐿 (𝑉) := 𝐺\𝑆𝑉 inherits from 𝑆𝑉 the structure of an oriented
closed Riemannian manifold.

Definition 3.56 (Lens space). We call the closed oriented Riemannian manifold
𝐿 (𝑉) the lens space associated to the free finite-dimensional unitary representation
𝑉 of the finite cyclic group 𝐺.

Exercise 3.57. Show that the 3-dimensional real projective space RP3 is a lens
space. Let R− be the non-trivial orthogonal Z/2-representation. Show that RP3 is
R−-acyclic and compute the Reidemeister torsion 𝜌(RP3;R−).

One can also specify these lens spaces by numbers as follows.

Notation 3.58. Let Z/𝑡 be the cyclic group of order 𝑡 ≥ 2. The 1-dimensional unitary
representation 𝑉𝑘 for 𝑘 ∈ Z/𝑡 has as underlying vector space C and 𝑙 ∈ Z/𝑡 acts on it
by multiplication with exp(2𝜋𝑖𝑘𝑙/𝑡). Note that 𝑉𝑘 is free if and only if 𝑘 ∈ (Z/𝑡)× ,
and is trivial if and only if 𝑘 = 0 in Z/𝑡. Define the lens space 𝐿 (𝑡; 𝑘1, . . . , 𝑘𝑐) for
an integer 𝑐 ≥ 1 and elements 𝑘1, . . . , 𝑘𝑐 in (Z/𝑡)× by 𝐿 (⊕𝑐

𝑖=1𝑉𝑘𝑖 ).
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Lens spaces form a very interesting family of manifolds, which can be completely
classified as we will see. Two lens spaces 𝐿 (𝑉) and 𝐿 (𝑊) of the same dimension
𝑛 ≥ 3 have the same homotopy groups, namely, their fundamental group is 𝐺
and their 𝑝-th homotopy group is isomorphic to 𝜋𝑝 (𝑆𝑛) for 𝑝 ≥ 2. They also
have the same homology with integral coefficients, namely 𝐻𝑝 (𝐿 (𝑉)) � Z for
𝑝 ∈ {0, 𝑛}, 𝐻𝑝 (𝐿 (𝑉)) � 𝐺 for 𝑝 odd and 1 ≤ 𝑝 < 𝑛, and 𝐻𝑝 (𝐿 (𝑉)) = 0 for all
other values of 𝑝. Also their cohomology groups agree. Nevertheless not all of them
are homotopy equivalent. Moreover, there are homotopy equivalent lens spaces that
are not diffeomorphic, see Example 3.62.

We state without proof the following result.

Theorem 3.59 (Homotopy Classification of lens spaces). The lens spaces
𝐿 (𝑡; 𝑘1, . . . , 𝑘𝑐) and 𝐿 (𝑡; 𝑙1, . . . , 𝑙𝑐) are homotopy equivalent if and only if there
are 𝑒 ∈ (Z/𝑡)× and 𝜖 ∈ {±1} satisfying

∏𝑐
𝑖=1 𝑘𝑖 = 𝜖 · 𝑒𝑐 ·

∏𝑐
𝑖=1 𝑙𝑖 in (Z/𝑡)× .

The lens spaces 𝐿 (𝑡; 𝑘1, . . . , 𝑘𝑐) and 𝐿 (𝑡; 𝑙1, . . . , 𝑙𝑐) are oriented homotopy equiv-
alent if and only if there is an 𝑒 ∈ (Z/𝑡)× satisfying

∏𝑐
𝑖=1 𝑘𝑖 = 𝑒

𝑐 ·∏𝑐
𝑖=1 𝑙𝑖 in (Z/𝑡)× .

Theorem 3.60 (Diffeomorphism Classification of Lens Spaces).

(i) Let𝐺 be a finite cyclic group. Let 𝐿 (𝑉) and 𝐿 (𝑊) be two lens spaces of the same
dimension 𝑛 ≥ 3. Then the following statements are equivalent:

(a) There is an automorphism 𝛼 : 𝐺 → 𝐺 such that 𝑉 and 𝛼∗𝑊 are isomorphic
as orthogonal 𝐺-representations;

(b) There is an isometric diffeomorphism 𝐿 (𝑉) → 𝐿 (𝑊);
(c) There is a diffeomorphism 𝐿 (𝑉) → 𝐿 (𝑊);
(d) There is a homeomorphism 𝐿 (𝑉) → 𝐿 (𝑊);
(e) There is a simple homotopy equivalence 𝐿 (𝑉) → 𝐿 (𝑊);
(f) There is an automorphism 𝛼 : 𝐺 → 𝐺 such that for any orthogonal finite-

dimensional representation𝑈 with𝑈𝐺 = 0

𝜌(𝐿 (𝑊);𝑈) = 𝜌(𝐿 (𝑉);𝛼∗𝑈)

holds;
(g) There is an automorphism 𝛼 : 𝐺 → 𝐺 such that for any non-trivial

1-dimensional unitary 𝐺-representation𝑈

𝜌(𝐿 (𝑊); res𝑈) = 𝜌(𝐿 (𝑉);𝛼∗ res𝑈)

holds where the orthogonal representation res𝑈 is obtained from 𝑈 by
restricting the scalar multiplication from C to R;

(ii) Two lens spaces 𝐿 (𝑡; 𝑘1, . . . , 𝑘𝑐) and 𝐿 (𝑡; 𝑙1, . . . , 𝑙𝑐) are homeomorphic if and
only if there are 𝑒 ∈ (Z/𝑡)× , signs 𝜖𝑖 ∈ {±1} and a permutation 𝜎 ∈ Σ𝑐 such
that 𝑘𝑖 = 𝜖𝑖 · 𝑒 · 𝑙𝜎 (𝑖) holds in (Z/𝑡)× for 𝑖 = 1, 2, . . . , 𝑐.

Proof. We give only a sketch of the proof of assertion (i). Assertion (ii) is a direct
consequence of assertion (i).
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The implications (ia) ⇒ (ib) ⇒ (ic) ⇒ (id) and (if) ⇒ (ig) are obvious. The
implication (id) ⇒ (ie) follows from Theorem 3.38. The implication (ie) ⇒ (if)
follows from Lemma 3.55. The hard part of the proof is the implication (ig)⇒ (ia).
It involves proving the formula

𝜌(𝐿 (𝑉 ⊕𝑊); res𝑈) = 𝜌(𝐿 (𝑉); res𝑈) · 𝜌(𝐿 (𝑊); res𝑈)

for two free unitary 𝐺-representations 𝑉 and 𝑊 and then directly computing
𝜌(𝐿 (𝑉); res𝑈) for every free 1-dimensional unitary representation 𝑉 . Finally one
has to show that the values of the Reidemeister torsion distinguish 𝑉 and𝑊 viewed
as orthogonal representations up to automorphisms of 𝐺. This proof is based on
the number-theoretic result mentioned below, whose proof can be found for instance
in [294] or [399]. ⊓⊔

Lemma 3.61 (Franz’ Independence Lemma). Let 𝑡 ≥ 2 be an integer and 𝑆 =

{ 𝑗 ∈ Z | 0 < 𝑗 < 𝑡, ( 𝑗 , 𝑡) = 1}. Let (𝑎 𝑗 ) 𝑗∈𝑆 be a sequence of integers indexed by 𝑆
such that

∑
𝑗∈𝑆 𝑎 𝑗 = 0, 𝑎 𝑗 = 𝑎𝑡− 𝑗 for 𝑗 ∈ 𝑆 and

∏
𝑗∈𝑆 (𝜁 𝑗 − 1)𝑎 𝑗 = 1 holds for every

𝑡-th root of unity 𝜁 ≠ 1. Then 𝑎 𝑗 = 0 for 𝑗 ∈ 𝑆.

Example 3.62. We conclude from Theorem 3.59 and Theorem 3.60 (ii) the following
facts:

(i) Any homotopy equivalence 𝐿 (7; 𝑘1, 𝑘2) → 𝐿 (7; 𝑘1, 𝑘2) has degree 1. Thus
𝐿 (7; 𝑘1, 𝑘2) possesses no orientation reversing self-diffeomorphism;

(ii) 𝐿 (5; 1, 1) and 𝐿 (5; 2, 1) have the same homotopy groups, homology groups and
cohomology groups, but they are not homotopy equivalent;

(iii) 𝐿 (7; 1, 1) and 𝐿 (7; 2, 1) are homotopy equivalent, but not homeomorphic.

Example 3.63 (ℎ-cobordisms between lens spaces). The rigidity of lens spaces is
illustrated by the following fact. Let (𝑊, 𝐿, 𝐿′) be an ℎ-cobordism of lens spaces that
is compatible with the orientations and the identifications of 𝜋1 (𝐿) and 𝜋1 (𝐿′) with
𝐺. Then𝑊 is diffeomorphic relative 𝐿 to 𝐿 × [0, 1] and 𝐿 and 𝐿′ are diffeomorphic,
see [726, Corollary 12.13 on page 410].

Remark 3.64 (Differential geometric characterization of lens spaces). Lens
spaces with their preferred Riemannian metric have constant positive sectional cur-
vature. A closed Riemannian manifold with constant positive sectional curvature
and cyclic fundamental group is isometrically diffeomorphic to a lens space after
possibly rescaling the Riemannian metric by a constant [1018].

Remark 3.65 (de Rham’s Theorem). The results above when interpreted as state-
ments about unit spheres in free representations are generalized by De Rham’s
Theorem [293], see also [639, Proposition 3.2 on page 478], [645, page 317],
and [876, section 4], as follows. It says for a finite group 𝐺 and two orthogonal
𝐺-representations 𝑉 and 𝑊 whose unit spheres 𝑆𝑉 and 𝑆𝑊 are 𝐺-diffeomorphic
that 𝑉 and 𝑊 are isomorphic as orthogonal 𝐺-representations. This remains true if
one replaces 𝐺-diffeomorphic by 𝐺-homeomorphic provided that 𝐺 has odd order,
see [504], [699], but not for any finite group 𝐺, see [205, 207, 460, 462, 463].
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We refer to [247], [648, Chapter 2], and [726] for more information about Reide-
meister torsion and lens spaces.

Remark 3.66 (Further appearance of Reidemeister torsion). The Alexander poly-
nomial of a knot can be interpreted as a kind of Reidemeister torsion of the canoni-
cal infinite cyclic covering of the knot complement, see [724], [959]. Reidemeister
torsion appears naturally in surgery theory [695]. Counterexamples to the (poly-
hedral) Hauptvermutung that two homeomorphic simplicial complexes are already
PL-homeomorphic are given by Milnor [723], see also [842], and detected by Rei-
demeister torsion. Seiberg-Witten invariants for 3-manifolds are closely related to
torsion invariants, see Turaev [958].

Remark 3.67 (Analytic Reidemeister torsion). Ray-Singer [845] defined the ana-
lytic counterpart of topological Reidemeister torsion using a regularization of the
zeta-function. Ray and Singer conjectured that the analytic and topological Reide-
meister torsion agree. This conjecture was proved independently by Cheeger [236]
and Müller [753]. Manifolds with boundary and manifolds with symmetries, sum
(= glueing) formulas and fibration formulas are treated in [179, 273, 639, 645, 682,
966]. For a survey on analytic and topological torsion we refer for instance to [661].
There are also 𝐿2-versions of these notions, see for instance [190, 210, 637], [650,
Chapter 3], [680, 707].

3.7 The Bass-Heller-Swan Theorem for 𝑲1

In the section we want to compute 𝐾1 (𝑅[Z]) for a ring 𝑅. This computation, the
so-called Bass-Heller-Swan decomposition, marks the beginning of the (long) way
towards the final formulation of the Farrell-Jones Conjecture for algebraic 𝐾-theory.

3.7.1 The Bass-Heller-Swan Decomposition for 𝑲1

We need some preparation to formulate it. In the sequel we write 𝑅[Z] as the ring
𝑅[𝑡, 𝑡−1] of finite Laurent polynomials in 𝑡 with coefficients in 𝑅. Obviously the ring
𝑅[𝑡] of polynomials in 𝑡 with coefficients in 𝑅 is a subring of 𝑅[𝑡, 𝑡−1]. Define the
ring homomorphisms

ev0 : 𝑅[𝑡] → 𝑅,
∑
𝑛∈Z 𝑟𝑛𝑡

𝑛 ↦→ 𝑟0
𝑖′ : 𝑅 → 𝑅[𝑡], 𝑟 ↦→ 𝑟 · 𝑡0;
𝑖 : 𝑅 → 𝑅[𝑡, 𝑡−1], 𝑟 ↦→ 𝑟 · 𝑡0.

Definition 3.68 (𝑁𝐾𝑛 (𝑅)). Define for 𝑛 = 0, 1

𝑁𝐾𝑛 (𝑅) := ker
(
(ev0)∗ : 𝐾𝑛 (𝑅[𝑡]) → 𝐾𝑛 (𝑅)

)
.
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Example 3.69. Let 𝐹 be a field. Put 𝑅 = 𝐹 [𝑡]/(𝑡2). Every element in 𝑅 can be
uniquely written as 𝑎 + 𝑏𝑡 for 𝑎, 𝑏 ∈ 𝐹. We have (1 + 𝑏𝑡) · (1 − 𝑏𝑡) = 1 − 𝑏2𝑡2 = 1
in 𝑅. Hence the element 𝑎 + 𝑏𝑡 ∈ 𝑅 is a unit if and only if 𝑎 ≠ 0. We conclude that
𝑅 is a local ring with (𝑡) = {𝑏𝑡 | 𝑏 ∈ 𝐹} as the unique maximal ideal. Since 𝑅 is
commutative, the homomorphism

𝑖𝑅 : 𝑅× �−→ 𝐾1 (𝑅), [𝑥] ↦→ [𝑟𝑥 : 𝑅 → 𝑅]

is bijective by Theorem 3.6. Let ev0 : 𝑅 → 𝐹 be the ring homomorphism sending
𝑎 + 𝑏𝑡 to 𝑎. Its kernel is (𝑡). It induces a group homomorphism 𝑅[𝑥]× → 𝐹 [𝑥]× .
Since 𝐹 [𝑥]× is the multiplicative group of non-trivial polynomials over 𝐹 of degree
0 and (1+ 𝑡𝑣𝑥) · (1− 𝑡𝑣𝑥) = 1− 𝑣2𝑡2𝑥2 = 1 holds in 𝑅[𝑥] for all 𝑣 ∈ 𝐹 [𝑥], we obtain
an isomorphism of abelian groups

𝜙 : 𝑅× ⊕ 𝐹 [𝑥] �−→ 𝑅[𝑥]× , (𝑢, 𝑣) ↦→ 𝑢 · (1 + 𝑡𝑣𝑥).

Since 𝑅[𝑥] is commutative, the map 𝑖𝑅[𝑥 ] : 𝑅[𝑥]×
�−→ 𝐾1 (𝑅[𝑥]) is injective, a

retraction is given by the determinant. We conclude that the following composite is
an injection of abelian groups

𝐹 [𝑥]
𝜙 |𝐹 [𝑥 ]−−−−−→ coker

(
𝑅× → 𝑅[𝑥]×

) 𝑖−→ coker (𝐾1 (𝑅) → 𝐾1 (𝑅[𝑥])) � 𝑁𝐾1 (𝑅)

where 𝑖 is the map induced by 𝑖𝑅 and 𝑖𝑅[𝑥 ] . This implies that 𝑁𝐾1 (𝑅) is an abelian
group which is not finitely generated.

Example 3.69 illustrates the following fact. If 𝑅 is any ring, then 𝑁𝐾1 (𝑅) is either
trivial or infinitely generated as an abelian group, see Theorem 6.20. So in general
𝑁𝐾1 (𝑅) is hard to compute. At least we have the following useful results. If 𝑅 is
a ring of finite characteristic 𝑁 , then we obtain 𝑁𝐾𝑛 (𝑅) [1/𝑁] = 0 for 𝑛 = 0, 1,
see Theorem 6.17. If 𝑁𝐾𝑛 (𝑅) = 0 and 𝐺 is finite, then 𝑁𝐾𝑛 (𝑅𝐺) [1/|𝐺 |] = 0 for
𝑛 = 0, 1, see Theorem 6.18.

Recall that an endomorphism 𝑓 : 𝑃 → 𝑃 of an 𝑅-module 𝑃 is called nilpotent if
there exists a positive integer 𝑛 with 𝑓 𝑛 = 0.

Definition 3.70 (Nil-group Nil0 (𝑅)). Define the 0-th Nil-group Nil0 (𝑅) to be the
abelian group whose generators are conjugacy classes [ 𝑓 ] of nilpotent endomor-
phisms 𝑓 : 𝑃 → 𝑃 of finitely generated projective 𝑅-modules with the following
relation. Given a commutative diagram of finitely generated projective 𝑅-modules

0 // 𝑃1
𝑖 //

𝑓1

��

𝑃2
𝑝 //

𝑓2

��

𝑃3 //

𝑓3

��

0

0 // 𝑃1
𝑖 // 𝑃2

𝑝 // 𝑃3 // 0
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with exact rows and nilpotent endomorphisms as vertical arrows, we get

[ 𝑓1] + [ 𝑓3] = [ 𝑓2] .

Let 𝜄 : 𝐾0 (𝑅) → Nil0 (𝑅) be the homomorphism sending the class [𝑃] of a
finitely generated projective 𝑅-module 𝑃 to the class [0: 𝑃 → 𝑃] of the trivial
endomorphism of 𝑃.

Definition 3.71 (Reduced Nil-group Ñil0 (𝑅)). Define the reduced 0-th Nil-groups
Ñil0 (𝑅) to be the cokernel of the map 𝜄.

The homomorphism Nil0 (𝑅) → 𝐾0 (𝑅), [ 𝑓 : 𝑃 → 𝑃] ↦→ [𝑃] is a retraction of
the map 𝜄. So we get a natural splitting

Nil0 (𝑅)
�−→ Ñil0 (𝑅) ⊕ 𝐾0 (𝑅).

Denote by
𝑗 : 𝑁𝐾1 (𝑅) → 𝐾1 (𝑅[𝑡])

the inclusion. Let
𝑙± : 𝑅[𝑡] → 𝑅[𝑡, 𝑡−1]

be the inclusion of rings sending 𝑡 to 𝑡±1. Define

𝑗± := 𝐾1 (𝑙±) ◦ 𝑗 : 𝑁𝐾1 (𝑅) → 𝐾1 (𝑅[𝑡, 𝑡−1]).

The homomorphism
𝐵 : 𝐾0 (𝑅) → 𝐾1 (𝑅[𝑡, 𝑡−1])

sends the class [𝑃] of a finitely generated projective 𝑅-module 𝑃 to the class
[𝑟𝑡⊗𝑅id𝑃] of the 𝑅[𝑡, 𝑡−1]-automorphism 𝑟𝑡⊗𝑅id𝑃 : 𝑅[𝑡, 𝑡−1]⊗𝑅𝑃→ 𝑅[𝑡, 𝑡−1]⊗𝑅𝑃
that maps 𝑢 ⊗ 𝑝 to 𝑢𝑡 ⊗ 𝑝. The homomorphism

𝑁 ′ : Nil0 (𝑅) → 𝐾1 (𝑅[𝑡])

sends the class [ 𝑓 ] of the nilpotent endomorphism 𝑓 : 𝑃→ 𝑃 of the finitely generated
projective 𝑅-module 𝑃 to the class [id−𝑟𝑡 ⊗𝑅 𝑓 ] of the 𝑅[𝑡]-automorphism

id−𝑟𝑡 ⊗𝑅 𝑓 : 𝑅[𝑡] ⊗𝑅 𝑃→ 𝑅[𝑡] ⊗𝑅 𝑃, 𝑢 ⊗ 𝑝 ↦→ 𝑢 ⊗ 𝑝 − 𝑢𝑡 ⊗ 𝑓 (𝑝).

This is indeed an automorphism. Namely, if 𝑓 𝑛+1 = 0, then an inverse is given by∑𝑛
𝑘=0 (𝑟𝑡 ⊗𝑅 𝑓 )𝑘 . The composite of 𝑁 ′ with both (ev0)∗ : 𝐾1 (𝑅[𝑡]) → 𝐾1 (𝑅) and

𝜄 : 𝐾0 (𝑅) → Nil0 (𝑅) is trivial. Hence 𝑁 ′ induces a homomorphism

𝑁 : Ñil0 (𝑅) → 𝑁𝐾1 (𝑅).

The proof of the following theorem can be found for instance in [105] (for regular
rings), [102, Chapter XII], [860, Theorem 3.2.22 on page 149], and [998, 3.6 in
Section III.3 on page 205].
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Theorem 3.72 (Bass-Heller-Swan decomposition for𝐾1). The following maps are
isomorphisms of abelian groups, natural in 𝑅,

𝑁 : Ñil0 (𝑅)
�−→ 𝑁𝐾1 (𝑅);

𝑗 ⊕ 𝐾1 (𝑖′) : 𝑁𝐾1 (𝑅) ⊕ 𝐾1 (𝑅)
�−→ 𝐾1 (𝑅[𝑡]);

𝐵 ⊕ 𝐾1 (𝑖) ⊕ 𝑗+ ⊕ 𝑗− : 𝐾0 (𝑅) ⊕ 𝐾1 (𝑅) ⊕ 𝑁𝐾1 (𝑅) ⊕ 𝑁𝐾1 (𝑅)
�−→ 𝐾1 (𝑅[𝑡, 𝑡−1]).

One easily checks that Theorem 3.72 applied to 𝑅 = Z𝐺 implies the following
reduced version

Theorem 3.73 (Bass-Heller-Swan decomposition for Wh(𝐺 × Z)). Let 𝐺 be a
group. Then there is an isomorphism of abelian groups, natural in 𝐺

𝐵 ⊕Wh(𝑖) ⊕ 𝑗+ ⊕ 𝑗− : 𝐾0 (Z𝐺) ⊕Wh(𝐺) ⊕ 𝑁𝐾1 (Z𝐺) ⊕ 𝑁𝐾1 (Z𝐺)
�−→Wh(𝐺 × Z).

Example 3.74 (𝐾0 (Z𝐺) affects Wh(𝐺)). The Whitehead group Wh(𝑆𝑛) of the sym-
metric group 𝑆𝑛 is trivial, see Theorem 3.116 (iii), whereas 𝐾0 (Z[𝑆𝑛]) is a finite
non-trivial group for 𝑛 ≥ 5, see Theorem 2.113 (ii). In the sequel we let 𝑛 ≥ 5. We
conclude from Theorem 3.73 that Wh(𝑆𝑛 × Z) is non-trivial for 𝑛 ≥ 5, whereas the
obvious map

colim𝐻∈SubFIN (𝑆𝑛×Z) Wh(𝐻) →Wh(𝑆𝑛 × Z)

is the zero map and hence not surjective. Also the map

colim𝐻∈SubFIN (𝐺) 𝐾1 (Z𝐻) → 𝐾1 (Z[𝑆𝑛 × Z])

cannot be surjective. Hence there is no hope that a formula which computes 𝐾𝑛 (𝑅𝐺)
in terms of the values 𝐾𝑛 (𝑅𝐻) for all finite or all virtually cyclic subgroups 𝐻 of 𝐺
(such as appearing in Conjecture 2.67) is true in general. The general picture will
be that a computation of a 𝐾 or 𝐿-group of 𝑅𝐺 in dimension 𝑛 involves 𝐾- and
𝐿-groups of 𝑅𝐻 in all dimensions ≤ 𝑛 where 𝐻 runs through all virtually cyclic
subgroups of 𝐺.

Denote by
𝑘± : 𝑅 → 𝑅[𝑡±1]

the ring homomorphism sending 𝑟 to 𝑟 · 𝑡0. Obviously 𝑙± ◦ 𝑘± = 𝑖. Define a map

𝐶 : 𝐾1 (𝑅[𝑡, 𝑡−1]) → 𝐾0 (𝑅)

by sending the class [ 𝑓 ] of an 𝑅[𝑡, 𝑡−1]-automorphism 𝑓 : 𝑅[𝑡, 𝑡−1]𝑛 → 𝑅[𝑡, 𝑡−1]𝑛
to the element [𝑃( 𝑓 , 𝑙)]−𝑙 · [𝑅] where 𝑙 is a large enough positive integer and 𝑃( 𝑓 , 𝑙)
is the finitely generated projective 𝑅-module 𝑓 (𝑡𝑙−1 · 𝑅[𝑡−1]) ∩ 𝑅[𝑡]. We omit the
proof that 𝑃( 𝑓 , 𝑙) is a finitely generated projective 𝑅-module for large enough 𝑙, that
the class [𝑃( 𝑓 , 𝑙)] − 𝑙 · [𝑅] is independent of 𝑙 and depends only on [ 𝑓 ], and that
the map 𝐶 is a well-defined homomorphism of abelian groups.
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Theorem 3.75 (Fundamental Theorem of 𝐾-theory in dimension 1). There is a
sequence which is natural in 𝑅 and exact

0→ 𝐾1 (𝑅)
𝐾1 (𝑘+ )⊕−𝐾1 (𝑘− )−−−−−−−−−−−−−−→ 𝐾1 (𝑅[𝑡]) ⊕ 𝐾1 (𝑅[𝑡−1])

𝐾1 (𝑙+ )∗⊕𝐾1 (𝑙− )−−−−−−−−−−−−→ 𝐾1 (𝑅[𝑡, 𝑡−1]) 𝐶−→ 𝐾0 (𝑅) → 0

where 𝑘+, 𝑘− , 𝑙+, and 𝑙− are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contraction,

natural in 𝑅.

Proof. One checks 𝐶 ◦ 𝐵 = id𝐾0 (𝑅) and 𝐶 ◦ 𝑖∗ = 𝐶 ◦ 𝑗− = 𝐶 ◦ 𝑗+ = 0. Now apply
Theorem 3.72. ⊓⊔

3.7.2 The Grothendieck Decomposition for 𝑮0 and 𝑮1

There is also a 𝐺-theory version of the Bass-Heller-Swan decomposition, which is
due to Grothendieck. Its proof can be found in [105] or [860, Theorem 3.2.12 on
page 141, Theorem 3.2.16 on page 143 and Theorem 3.2.19 on page 147].

Theorem 3.76 (Grothendieck decomposition for 𝐺0 and 𝐺1). Let 𝑅 be a Noethe-
rian ring.

(i) The inclusions 𝑅 → 𝑅[𝑡] and 𝑅 → 𝑅[𝑡, 𝑡−1] induce isomorphisms of abelian
groups

𝐺0 (𝑅)
�−→ 𝐺0 (𝑅[𝑡]);

𝐺0 (𝑅)
�−→ 𝐺0 (𝑅[𝑡, 𝑡−1]);

(ii) There are natural isomorphisms

𝑖′∗ : 𝐺1 (𝑅)
�−→ 𝐺1 (𝑅[𝑡]);

𝐵 ⊕ 𝑖∗ : 𝐺0 (𝑅) ⊕ 𝐺1 (𝑅)
�−→ 𝐺1 (𝑅[𝑡, 𝑡−1]),

where 𝑖′∗, 𝐵, and 𝑖∗ are defined analogously to the maps appearing in Theo-
rem 3.72.

Exercise 3.77. Show that the map Z
�−→ 𝐺0 (𝑅[Z𝑛]) sending 𝑛 to 𝑛 · [𝑅[Z𝑛]] is an

isomorphism for a principal ideal domain 𝑅 and 𝑛 ≥ 0.
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3.7.3 Regular Rings

Theorem 3.78 (Hilbert Basis Theorem). If 𝑅 is Noetherian, then 𝑅[𝑡] and 𝑅[𝑡, 𝑡−1]
are Noetherian.

Proof. See for instance [860, Theorem 3.2.1 on page 133 and Corollary 3.2.2 on
page 134]. ⊓⊔

Let (𝑃) be a property of groups, e.g., being finite or being cyclic. A group 𝐺
is called virtually (P) if 𝐺 contains a subgroup 𝐻 ⊂ 𝐺 of finite index such that 𝐻
has property (P). A group 𝐺 is poly-(P) if there is a finite sequence of subgroups
{1} = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 ⊂ . . . 𝐺𝑟 = 𝐺 such that 𝐺𝑖 is normal in 𝐺𝑖+1 and the quotient
𝐺𝑖+1/𝐺𝑖 has property (P) for 𝑖 = 0, 1, 2, . . . , 𝑟 − 1. Thus the notions of virtually
finitely generated abelian, virtually free, virtually nilpotent, poly-cyclic, poly-Z, and
virtually poly-cyclic are defined, where poly-Z stands for poly-(infinite cyclic).

Theorem 3.79 (Noetherian group rings). If 𝑅 is a Noetherian ring and 𝐺 is a
virtually poly-cyclic group, then 𝑅𝐺 is Noetherian.

Proof. See for instance [650, Lemma 10.55 on page 397]. ⊓⊔

No counterexample is known to the conjecture that C𝐺 is Noetherian if and only
if 𝐺 is virtually poly-cyclic.

Theorem 3.80 (Regular group rings).

(i) The rings 𝑅[𝑡] and 𝑅[𝑡, 𝑡−1] are regular if 𝑅 is regular;
(ii) The ring 𝑅𝐺 is regular if 𝑅 is regular and 𝐺 is poly-Z;

(iii) The ring 𝑅𝐺 is regular if 𝑅 is regular, Q ⊆ 𝑅 and 𝐺 is virtually poly-cyclic;

Proof. (i) This is proved for instance in [860, Theorem 3.2.3 on page 134 and
Corollary 3.2.4 on page 136].

(ii) This follows from [880, Theorem 8.2.2 on page 533 and Theorem 8.2.18 on
page 537] in the case where 𝑅 is a field.

(iii) This follows from [880, Theorem 8.2.2 on page 533 and Theorem 8.2.20 on
page 538] in the case where 𝑅 is a field. ⊓⊔

A ring is called semihereditary if every finitely generated ideal is projective,
or, equivalently, if every finitely generated submodule of a projective 𝑅-module is
projective, see [215, Proposition 6.2 in Chapter I.6 on page 15].

Theorem 3.81 (Bass-Heller-Swan decomposition for 𝐾1 for regular rings). Sup-
pose that 𝑅 is semihereditary or regular. Then we get

Ñil0 (𝑅) = 𝑁𝐾1 (𝑅) = 0,

and the Bass-Heller-Swan decomposition of Theorem 3.72 reduces to the isomor-
phism

𝐵 ⊕ 𝑖∗ : 𝐾0 (𝑅) ⊕ 𝐾1 (𝑅)
�−→ 𝐾1 (𝑅[𝑡, 𝑡−1]).
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Proof. The proof for regular 𝑅 can be found for instance in [860, Exercise 3.2.25 on
page 152] or [940, Corollary 16.5 on page 226].

Suppose that 𝑅 is semihereditary. Consider a nilpotent endomorphism 𝑓 : 𝑃→ 𝑃

of the finitely generated projective 𝑅-module 𝑃. Define 𝐼1 ( 𝑓 ) = im( 𝑓 ) and 𝐾1 ( 𝑓 ) =
ker( 𝑓 ). Let 𝑓 |𝐼1 ( 𝑓 ) : 𝐼1 ( 𝑓 ) → 𝐼1 ( 𝑓 ) be the endomorphism induced by 𝑓 . Since 𝑅
is semihereditary, 𝐼1 ( 𝑓 ) is a finitely generated projective 𝑅-module. We obtain a
commutative diagram

0 // 𝐾1 ( 𝑓 )
𝑖 //

0
��

𝑃
𝑓 //

𝑓

��

𝐼1 ( 𝑓 ) //

𝑓 |𝐼1 ( 𝑓 )
��

0

0 // 𝐾1 ( 𝑓 )
𝑖 // 𝑃

𝑓 // 𝐼1 ( 𝑓 ) // 0

with exact rows and nilpotent endomorphisms of finitely generated projective
𝑅-modules as vertical arrows. Hence we get [ 𝑓 : 𝑃 → 𝑃] = [𝐼1 ( 𝑓 ) : 𝐼1 ( 𝑓 ) →
𝐼1 ( 𝑓 )] in Ñil0 (𝑅). Define inductively 𝐼𝑛+1 ( 𝑓 ) = 𝐼1

(
𝑓 |𝐼𝑛 ( 𝑓 )

)
. Hence we get for all

𝑛 ≥ 1
[ 𝑓 : 𝑃→ 𝑃] = [ 𝑓 |𝐼𝑛 ( 𝑓 ) : 𝐼𝑛 ( 𝑓 ) → 𝐼𝑛 ( 𝑓 )] .

Since 𝑓 is nilpotent, there exists some 𝑛 with 𝐼𝑛 ( 𝑓 ) = 0. This implies [ 𝑓 ] = 0 in
Ñil0 (𝑅). Now apply Theorem 3.72. ⊓⊔

Exercise 3.82. Prove that 𝐾0 (Z[Z𝑛]) = Wh(Z𝑛) = 0 for all 𝑛 ≥ 0.

Remark 3.83 (Glimpse of a homological behavior of 𝐾-theory). In the case when
𝑅 is regular, Theorem 3.81 imbues a homological flavor into 𝐾-theory. Just observe
the analogy between the two formulas

𝐾1 (𝑅[Z]) � 𝐾0 (𝑅[{1}]) ⊕ 𝐾1 (𝑅[{1}]);
𝐻1 (Z; 𝐴) � 𝐻0 ({1}; 𝐴) ⊕ 𝐻1 ({1}; 𝐴),

where in the second line we consider group homology with coefficients in some
abelian group 𝐴, which corresponds to the role of 𝑅 in the first line.

Remark 3.84 (Von Neumann algebras are semihereditary but not Noetherian).
Note that any von Neumann algebra is semihereditary. This follows from the facts
that any von Neumann algebra is a Baer ∗-ring and hence in particular a Rickart
𝐶∗-algebra [124, Definition 1, Definition 2 and Proposition 9 in Chapter 1.4] and
that a 𝐶∗-algebra is semihereditary if and only if it is Rickart [34, Corollary 3.7 on
page 270]. The group von Neumann algebraN(𝐺) is Noetherian if and only if 𝐺 is
finite, see [650, Exercise 9.11 on page 367].

Lemma 3.85. If 𝑅 is regular, then the canonical homomorphism

𝑓 : 𝐾0 (𝑅)
�−→ 𝐺0 (𝑅), [𝑃] ↦→ [𝑃]

is a bijection.
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Proof. We have to define an inverse homomorphism

𝑟 : 𝐺0 (𝑅) → 𝐾0 (𝑅).

Given a finitely generated 𝑅-module 𝑀 , we can choose a finite projective resolution
𝑃∗ = (𝑃∗, 𝜙) since 𝑅 is by assumption regular. We want to define

𝑟 ( [𝑀]) :=
∑︁
𝑛≥0
(−1)𝑛 · [𝑃𝑛] .

The Fundamental Lemma of Homological Algebra implies for two projective res-
olutions 𝑃∗ and 𝑄∗ of 𝑀 the existence of an 𝑅-chain homotopy equivalence
𝑓∗ : 𝑃∗ → 𝑄∗, see for instance [997, Comparison Theorem 2.2.6 on page 35].
We conclude from Lemma 2.36 (i)∑︁

𝑛≥0
(−1)𝑛 · [𝑃𝑛] = 𝑜(𝑃∗) = 𝑜(𝑄∗) =

∑︁
𝑛≥0
(−1)𝑛 · [𝑄𝑛] .

Hence the choice of projective resolution does not matter in the definition of
𝑟 ( [𝑀]). It remains to show for an exact sequence of finitely generated 𝑅-modules
0 → 𝑀 → 𝑀 ′ → 𝑀 ′′ → 0 that 𝑟 (𝑀) − 𝑟 (𝑀 ′) + 𝑟 (𝑀 ′′) = 0 holds. This follows
from Lemma 2.36 (ii) since we can construct from finite projective 𝑅-resolutions 𝑃∗
of 𝑀 and 𝑃′′∗ of 𝑀 ′′ a finite projective 𝑅-resolution 𝑃′∗ of 𝑀 ′ such that there exists
a short exact sequence of 𝑅-chain complexes 0→ 𝑃∗ → 𝑃′∗ → 𝑃′′∗ → 0, see [644,
Lemma 11.6 on page 216]. Hence 𝑟 is well-defined. One easily checks that 𝑟 and 𝑓

are inverse to one another. ⊓⊔

3.8 The Mayer-Vietoris 𝑲-Theory Sequence of a Pullback of
Rings

Theorem 3.86 (Mayer-Vietoris sequence for middle 𝐾-theory of a pullback of
rings). Consider a pullback of rings

𝑅
𝑖1 //

𝑖2

��

𝑅1

𝑗1

��
𝑅2

𝑗2
// 𝑅0

such that 𝑗1 or 𝑗2 is surjective. Then there exists a natural exact sequence of six
terms
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𝐾1 (𝑅)
(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾1 (𝑅1) ⊕ 𝐾1 (𝑅2)

( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾1 (𝑅0)
𝜕1−−→ 𝐾0 (𝑅)

(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾0 (𝑅1) ⊕ 𝐾0 (𝑅2)
( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾0 (𝑅0).

Its construction and its proof requires some preparation. In particular we need the
following basic construction due to Milnor [727, page 20]. Let 𝑗𝑘 : 𝑃𝑘 → ( 𝑗𝑘)∗𝑃𝑘
be the map sending 𝑥 ∈ 𝑃𝑘 to 1 ⊗ 𝑥 ∈ 𝑅0 ⊗ 𝑗𝑘 𝑃𝑘 for 𝑘 = 1, 2. Define a ring
homomorphism 𝑖0 = 𝑗1 ◦ 𝑖1 = 𝑗2 ◦ 𝑖2 : 𝑅 → 𝑅0. Given 𝑅𝑘-modules 𝑃𝑘 for 𝑘 =

0, 1, 2 and isomorphisms of 𝑅0-modules 𝑓𝑘 : ( 𝑗𝑘)∗𝑃𝑘
�−→ 𝑃0 for 𝑘 = 1, 2, define an

𝑅-module 𝑀 = 𝑀 (𝑃1, 𝑃2, 𝑓1, 𝑓2) by the pullback of abelian groups

𝑀 //

��

𝑃1

𝑓1◦ 𝑗1
��

𝑃2
𝑓2◦ 𝑗2
// 𝑃0

together with the 𝑅-multiplication on 𝑀 induced by the 𝑅-actions on 𝑃𝑘 that comes
from the ring homomorphisms 𝑖𝑘 : 𝑅 → 𝑅𝑘 for 𝑘 = 0, 1, 2.

Lemma 3.87. (i) The 𝑅-module 𝑀 is projective if 𝑃0 and 𝑃1 are projective.
The 𝑅-module 𝑀 is finitely generated projective if 𝑃0 and 𝑃1 are finitely gener-
ated projective;

(ii) Every projective 𝑅-module 𝑃 can be realized up to isomorphism as 𝑀 for
appropriate projective 𝑅𝑘-modules 𝑃𝑘 for 𝑘 = 0, 1, 2 and isomorphisms of
𝑅0-modules 𝑓𝑘 : ( 𝑗𝑘)∗𝑃𝑘

�−→ 𝑃0 for 𝑘 = 1, 2;
(iii) The 𝑅𝑘-modules (𝑖𝑘)∗𝑀 and 𝑃𝑘 are isomorphic for 𝑘 = 1, 2.

Proof. This is proved in Milnor [727, Theorems 2.1, 2.2 and 2.3 on page 20] or in
[916, Proposition 59 on page 155, Proposition 60 on page 157, Proposition 61 on
page 158]. ⊓⊔

Now we can give the proof of Theorem 3.86

Proof. The main step is to construct the boundary homomorphism 𝜕1. Given an ele-
ment 𝑥 ∈ 𝐾1 (𝑅0), we can find an automorphism 𝑓 : 𝑅𝑛0

�−→ 𝑅𝑛0 of a finitely generated
free 𝑅-module with 𝑥 = [ 𝑓 ], see Lemma 3.10. The 𝑅0-module 𝑀 (𝑅𝑛1 , 𝑅

𝑛
2 , id𝑅𝑛0 , 𝑓 )

is a finitely generated projective 𝑅0-module by Lemma 3.87 (i). Define

𝜕1 (𝑥) := [𝑀 (𝑅𝑛1 , 𝑅
𝑛
2 , id𝑅𝑛0 , 𝑓 )] − [𝑅

𝑛
0 ] .

This is a well-defined homomorphism of abelian groups, see [916, page 164]. The
elementary proof of the exactness of the sequence of six terms can be found in [916,
Proposition 63 on page 164]. ⊓⊔

Now we are ready to give the promised proof of Rim’s Theorem 2.106.
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Proof. Consider the pullback of rings

Z[Z/𝑝] 𝑖1 //

𝑖2

��

Z[exp(2𝜋𝑖/𝑝)]

𝑗1

��
Z

𝑗2
// F𝑝

where here and in the sequel F𝑞 denotes the field with 𝑞 elements, 𝑖1 sends the
generator of Z/𝑝 to exp(2𝜋𝑖/𝑝), the map 𝑖2 sends the generator of Z/𝑝 to 1 ∈ Z, the
map 𝑗2 is the projection and the homomorphism 𝑗1 sends exp(2𝜋𝑖/𝑝) to 1. Obviously
𝑗1 and 𝑗2 are surjective. Hence we get from Theorem 3.86 an exact sequence

𝐾1 (Z[Z/𝑝])
(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾1 (Z[exp(2𝜋𝑖/𝑝)]) ⊕ 𝐾1 (Z)

( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾1 (F𝑝)
𝜕1−−→

𝐾0 (Z[Z/𝑝])
(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾0 (Z[exp(2𝜋𝑖/𝑝)]) ⊕ 𝐾0 (Z)

( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾0 (F𝑝).

The map ( 𝑗2)∗ : 𝐾0 (Z) → 𝐾0 (F𝑝) is bijective by Example 2.4. Hence it re-
mains to prove that ( 𝑗1)∗ : 𝐾1 (Z[exp(2𝜋𝑖/𝑝)]) → 𝐾1 (F𝑝) is surjective. Because
of Theorem 3.17 we have to find for each integer 𝑘 with 1 ≤ 𝑘 ≤ 𝑝 − 1 a unit
𝑢 ∈ Z[exp(2𝜋𝑖/𝑝)]× satisfying 𝑗1 (𝑢) = 𝑘 . Put 𝜉 = exp(2𝜋𝑖/𝑝). Choose an integer 𝑙
such that 𝑘𝑙 = 1 mod 𝑝. Define

𝑢 := 1 + 𝜉 + 𝜉2 + · · · + 𝜉𝑘−1;
𝑣 := 1 + 𝜉𝑘 + 𝜉2𝑘 + · · · + 𝜉 (𝑙−1)𝑘 .

Since (𝜉 − 1)𝑢 = 𝜉𝑘 − 1 and (𝜉𝑘 − 1) · 𝑣 = 𝜉 − 1 and Z[exp(2𝜋𝑖/𝑝)] is an integral
domain, we get 𝑢𝑣 = 1 and hence 𝑢 ∈ Z[exp(2𝜋𝑖/𝑝)]× . Obviously 𝑗1 (𝑢) = 𝑘 . ⊓⊔

3.9 The 𝑲-Theory Sequence of a Two-Sided Ideal

Let 𝐼 ⊆ 𝑅 be a two-sided ideal in the ring 𝑅. The double of the ring 𝑅 along the ideal
𝐼 is the subring 𝐷 (𝑅, 𝐼) of 𝑅 × 𝑅 consisting of pairs (𝑟1, 𝑟2) satisfying 𝑟1 − 𝑟2 ∈ 𝐼.
Let 𝑝𝑘 : 𝐷 (𝑅, 𝐼) → 𝑅 send (𝑟1, 𝑟2) to 𝑟𝑘 for 𝑘 = 1, 2.

Definition 3.88 (𝐾𝑛 (𝑅, 𝐼)). Define for 𝑛 = 0, 1 the abelian group 𝐾𝑛 (𝑅, 𝐼) to be the
kernel of the homomorphism

(𝑝1)∗ : 𝐾𝑛 (𝐷 (𝑅, 𝐼)) → 𝐾𝑛 (𝑅).
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Theorem 3.89 (Exact sequence of a two-sided ideal for middle 𝐾-theory). We
obtain an exact sequence, natural in 𝐼 ⊆ 𝑅,

𝐾1 (𝑅, 𝐼)
𝑗1−→ 𝐾1 (𝑅)

pr1−−→ 𝐾1 (𝑅/𝐼)
𝜕1−−→ 𝐾0 (𝑅, 𝐼)

𝑗1−→ 𝐾0 (𝑅)
pr0−−→ 𝐾0 (𝑅/𝐼).

Proof. We obtain a pullback of rings

𝐷 (𝑅, 𝐼) 𝑝1 //

𝑝2

��

𝑅

pr
��

𝑅 pr
// 𝑅/𝐼

such that pr is surjective. We get from Theorem 3.86 the exact sequence

𝐾1 (𝐷 (𝑅, 𝐼))
(𝑝1 )∗⊕(𝑝2 )∗−−−−−−−−−−→ 𝐾1 (𝑅) ⊕ 𝐾1 (𝑅)

− pr∗ + pr∗−−−−−−−→ 𝐾1 (𝑅/𝐼)
𝜕−→

𝐾0 (𝐷 (𝑅, 𝐼))
(𝑝1 )∗⊕(𝑝2 )∗−−−−−−−−−−→ 𝐾0 (𝑅) ⊕ 𝐾0 (𝑅)

− pr∗ + pr∗−−−−−−−→ 𝐾0 (𝑅/𝐼).

This yields the desired exact sequence if we define 𝑗𝑛 : 𝐾𝑛 (𝑅, 𝐼) → 𝐾𝑛 (𝑅) to be the
restriction of (𝑝2)∗ : 𝐾𝑛 (𝐷 (𝑅, 𝐼)) → 𝐾𝑛 (𝑅) to 𝐾𝑛 (𝑅, 𝐼) for 𝑛 = 0, 1 and let 𝜕1 be
the map induced by 𝜕. ⊓⊔

Next we give alternative descriptions of 𝐾0 (𝑅, 𝐼).
Let 𝑆 be a ring, but now for some time we do not require that it has a unit. If

we want to emphasize that we do not require this, we say that 𝑆 is a ring without
unit, although it may have one. The point is that a homomorphism of rings without
units 𝑓 : 𝑆 → 𝑆′ is a map compatible with the abelian group structure and the
multiplication but no requirement about the unit is made. The ring obtained from 𝑆

by adjoining a unit 𝑆+ has as underlying group 𝑆 ⊕ Z. The multiplication is given by

(𝑠1, 𝑛1) · (𝑠2, 𝑛2) := (𝑠1𝑠2 + 𝑛1𝑠2 + 𝑛2𝑠1, 𝑛1𝑛2).

The unit in 𝑆+ is given by (0, 1). We obtain a natural embedding 𝑖𝑆 : 𝑆 → 𝑆+ by
sending 𝑠 to (𝑠, 0). Let 𝑝𝑆 : 𝑆+ → Z be the homomorphism of rings with unit
sending (𝑠, 𝑛) to 𝑛. We obtain an exact sequence of rings without unit 0 → 𝑆

𝑖𝑆−→
𝑆+

𝑝𝑆−−→ Z→ 0. If 𝑓 : 𝑆 → 𝑆′ is a homomorphism of rings without unit, we obtain a
homomorphism 𝑓+ : 𝑆+ → 𝑆′+ of rings with unit by sending (𝑠, 𝑛) to ( 𝑓 (𝑠), 𝑛). If 𝑆
has a unit 1𝑆 , then we obtain an isomorphism of rings with unit 𝑢𝑆 : 𝑆+

�−→ 𝑆 × Z by
sending (𝑠, 𝑛) to (𝑠 + 𝑛 · 1𝑆 , 𝑛).

Definition 3.90 (𝐾𝑛 (𝑆) for rings without unit). Let 𝑆 be a ring without unit. Define
for 𝑛 = 0, 1

𝐾𝑛 (𝑆) := ker ((𝑝𝑆)∗ : 𝐾𝑛 (𝑆+) → 𝐾𝑛 (Z)) .
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Given a homomorphism 𝑓 : 𝑆 → 𝑆′ of rings without unit, the homomor-
phism ( 𝑓+)∗ : 𝐾𝑛 (𝑆+) → 𝐾𝑛 (𝑆′+) induces a homomorphism of abelian groups
𝑓∗ : 𝐾𝑛 (𝑆) → 𝐾𝑛 (𝑆′). Thus we obtain a covariant functor from the category of
rings without unit to the category of abelian groups by sending 𝑆 to 𝐾𝑛 (𝑆).

If 𝑆 happens to already have a unit, we get back the old definition (up to natu-
ral isomorphism). Namely, the isomorphism 𝐾0 (𝑢𝑆) : 𝐾𝑛 (𝑆+)

�−→ 𝐾𝑛 (𝑆 × Z) sends
ker((𝑝𝑆)∗) to the kernel of the map (prZ)∗ : 𝐾𝑛 (𝑆 × Z) → 𝐾𝑛 (Z) given by the
projection prZ : 𝑆 × Z → Z and the inclusion 𝑗 : 𝑆 → 𝑆 × Z, 𝑠 ↦→ (𝑠, 0) in-
duces an isomorphism of 𝐾𝑛 (𝑆) to the kernel of the map prZ by Theorem 2.12 and
Theorem 3.9.

Lemma 3.91. Let 𝐼 be a two-sided ideal in the ring 𝑅. Let 𝐾0 (𝐼) be the projective
class group of the ring 𝐼 without unit, see Definition 3.90. Then there is a natural
isomorphism

𝐾0 (𝐼)
�−→ 𝐾0 (𝑅, 𝐼).

In particular, 𝐾0 (𝑅, 𝐼) depends only on the ring without unit 𝐼 but not on 𝑅.

Proof. The isomorphism is induced by the homomorphism of rings with unit 𝐼+ →
𝐷 (𝑅, 𝐼) sending (𝑠, 𝑛) to (𝑛 · 1𝑅, 𝑛 · 1𝑅 + 𝑠). The proof that it is bijective can be
found for instance in [860, Theorem 1.5.9 on page 30]. ⊓⊔

Exercise 3.92. Let 𝑛 be a positive integer. Compute

𝐾0 ((𝑛)) �
{

0 if 𝑛 = 2;
(Z/𝑛)×/{±1} if 𝑛 ≥ 3,

for the ideal (𝑛) = {𝑚𝑛 | 𝑚 ∈ Z} ⊆ Z. Prove for the ideal (𝑁Z/2) ⊆ Z[Z/2]
generated by the norm element that (𝑁Z/2) and (2Z) are isomorphic as rings without
unit. Conclude

𝐾0 (Z[Z/2]) = 0.

Next we give an alternative description of 𝐾1 (𝑅, 𝐼). Define GL(𝑅, 𝐼) to be the
kernel of the map GL(𝑅) → GL(𝑅/𝐼) induced by the projection 𝑅 → 𝑅/𝐼. Let
E(𝑅, 𝐼) be the smallest normal subgroup of E(𝑅) that contains all matrices of the
shape 𝐼𝑛 + 𝑟 · 𝐸𝑛𝑖, 𝑗 for 𝑛 ∈ Z, 𝑛 ≥ 1, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝑖 ≠ 𝑗 , 𝑟 ∈ 𝐼. Note that
E(𝑅, 𝐼) ⊆ GL(𝑅, 𝐼). The proof of the next result can be found for instance in [860,
Theorem 2.5.3 on page 93].

Theorem 3.93 (Relative Whitehead Lemma). Let 𝐼 ⊆ 𝑅 be a two-sided ideal.
Then:

(i) The subgroup E(𝑅, 𝐼) of GL(𝑅) is normal;
(ii) There is an isomorphism, natural in (𝑅, 𝐼)

GL(𝑅, 𝐼)/E(𝑅, 𝐼) �−→ 𝐾1 (𝑅, 𝐼);
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(iii) The center of GL(𝑅)/E(𝑅, 𝐼) is GL(𝑅, 𝐼)/E(𝑅, 𝐼);
(iv) We have E(𝑅, 𝐼) = [E(𝑅),E(𝑅, 𝐼)] = [GL(𝑅),E(𝑅, 𝐼)].

Example 3.94 (𝐾1 (𝑅, 𝐼) depends on 𝑅). In contrast to 𝐾0 (𝑅, 𝐼) it is not true that
𝐾1 (𝑅, 𝐼) is independent of 𝑅, as shown by Swan [942, Section 1]. Let 𝑆 be a ring
and put

𝑅 =

{ (
𝑎 𝑏

0 𝑑

)
| 𝑎, 𝑏, 𝑑 ∈ 𝑆

}
;

𝑅′ =

{ (
𝑛 𝑏

0 𝑛

)
| 𝑛 ∈ Z, 𝑏 ∈ 𝑆

}
;

𝐼 =

{ (
0 𝑏
0 0

)
| 𝑏 ∈ 𝑆

}
.

Then 𝐾1 (𝑅, 𝐼) = {0} and 𝐾1 (𝑅′, 𝐼) � 𝑆.

Remark 3.95 (Congruence Subgroup Problem). Given a commutative ring 𝑅,
the Congruence Subgroup Problem asks if every normal subgroup of GL(𝑅) is
of the form SL(𝑅, 𝐼) := {𝐴 ∈ GL(𝑅, 𝐼) | det(𝐴) = 1} for some two-sided ideal
𝐼 ⊆ 𝑅. Bass has shown that for any normal subgroup 𝐻 ⊆ GL(𝑅) there exists an
ideal 𝐼 ⊆ 𝑅 satisfying E(𝑅, 𝐼) ⊆ 𝐻 ⊆ GL(𝑅, 𝐼), see [102, Theorem 2.1 (a) on
page 229] or [859, Exercise 2.5.21 on page 106]. Hence the Congruence Subgroup
Problem has a positive answer if and only for every two-sided ideal 𝐼 ⊆ 𝑅 we have
E(𝑅, 𝐼) = SL(𝑅, 𝐼), see [859, Exercise 2.5.21 on page 106]. More information
about this problem can be found for instance in [106].

Exercise 3.96. Show that the Congruence Subgroup Problem has a positive answer
for every field 𝐹.

3.10 Swan Homomorphisms

3.10.1 The Classical Swan Homomorphism

The definitions and results of this subsection are taken from Swan [938]. This paper
marked the beginning of a development that finally leads to a solution of the Spherical
Space Form Problem 9.205, which we have also discussed in Section 2.5. It presents
a nice and illuminating interaction between geometry, group theory, and algebraic
𝐾-theory.

Let 𝐺 be a finite group. Let 𝑁𝐺 ∈ Z𝐺 be the norm element, i.e., 𝑁𝐺 :=
∑
𝑔∈𝐺 𝑔.

Consider the following pullback of rings
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(3.97) Z𝐺
𝑖1 //

𝑖2

��

Z𝐺/(𝑁𝐺)

𝑗1

��
Z

𝑗2
// Z/|𝐺 |

where (𝑁𝐺) ⊆ Z𝐺 is the ideal generated by 𝑁𝐺 , 𝑖1 and 𝑗2 are the obvious projections,
𝑖2 is induced by the group homomorphism 𝐺 → {1}, and 𝑗1 is the unique ring
homomorphism for which the diagram above commutes. One easily checks that it is a
pullback and that the maps 𝑖1 and 𝑗1 are surjective. Hence we can apply Theorem 3.86
and obtain a boundary homomorphism 𝜕 : 𝐾1 (Z/|𝐺 |) → 𝐾0 (Z𝐺). The obvious
homomorphism 𝑖 : Z/|𝐺 |× → 𝐾1 (Z/|𝐺 |) is an isomorphism by Theorem 3.6, since
the commutative finite ring Z/|𝐺 | is a commutative semilocal ring and hence the
determinant det : 𝐾1 (Z/|𝐺 |) → Z/|𝐺 |× is an inverse of 𝑖.

Definition 3.98 (Swan homomorphism). The (classical) Swan homomorphism is
the composite

sw𝐺 : Z/|𝐺 |× 𝑖−→ 𝐾1 (Z/|𝐺 |)
𝜕−→ 𝐾0 (Z𝐺).

Lemma 3.99. Let 𝑛 ∈ Z/|𝐺 |× be an element represented by 𝑛 ∈ Z. Then the ideal
(𝑛, 𝑁𝐺) ⊆ Z𝐺 generated by 𝑛 and 𝑁𝐺 is a finitely generated projective Z𝐺-module
and

sw(𝑛) = [(𝑛, 𝑁𝐺)] − [Z𝐺] .

Proof. Let 𝑃1 be the Z-module Z, 𝑃2 be the Z𝐺/(𝑁𝐺)-module Z𝐺/(𝑁𝐺), and 𝑃0
be the Z/|𝐺 |-module Z/|𝐺 |. Consider the automorphism 𝑟𝑛 : Z/|𝐺 | → Z/|𝐺 | given
by multiplication by 𝑛. Define a Z𝐺-module 𝑃 by the pullback

𝑃 //

𝑖2

��

Z𝐺/(𝑁𝐺)

𝑟𝑛◦ 𝑗1
��

Z
𝑗2
// Z/|𝐺 |.

One easily checks that the Z𝐺 map (𝑛, 𝑁𝐺) → Z which sends 𝑛 to 𝑛 and 𝑁𝐺 to
|𝐺 | and the Z𝐺 map (𝑛, 𝑁𝐺) → Z𝐺/(𝑁𝐺) which sends 𝑛 to the class of 1 and
𝑁𝐺 to 0 induce an isomorphism of Z𝐺-modules (𝑛, 𝑁𝐺)

�−→ 𝑃. We conclude from
Lemma 3.87 (i) that (𝑟, 𝑁𝐺) is a finitely generated projective Z𝐺-module and that
sw(𝑛) = [(𝑛, 𝑁𝐺)] − [Z𝐺]. ⊓⊔

Remark 3.100 (Another description of the Swan homomorphism). For every
𝑛 ∈ Z with (𝑛, |𝐺 |) = 1, the abelian group Z/𝑛 with the trivial 𝐺-action is a
Z𝐺-module that possesses a finite projective resolution 𝑃∗, see [171, Theorem
VI.8.12 on page 152]. Since two finite projective resolutions of Z/𝑛 are Z𝐺-chain
homotopic, their finiteness obstructions agree, Lemma 2.36 (i). Thus we can define
[Z/𝑛] ∈ 𝐾0 (Z𝐺) by 𝑜(𝑃∗) =

∑
𝑛≥0 (−1)𝑛 · [𝑃𝑛] for any finite projective resolution

𝑃∗. We get
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sw(𝑛) = −[Z/𝑛]

for any integer 𝑛 ∈ Z with (𝑛, |𝐺 |) = 1. This follows essentially from [938,
Lemma 6.2] and Lemma 3.99.

Exercise 3.101. Show that sw𝐺 is trivial for a finite cyclic group 𝐺.

3.10.2 The Classical Swan Homomorphism and Free Homotopy
Representations

Let 𝐺 be a finite group. A free 𝑑-dimensional 𝐺-homotopy representation 𝑋 is a
𝑑-dimensional 𝐶𝑊-complex 𝑋 together with a 𝐺-action such that for any open cell
𝑒 we have 𝑔𝑒 ∩ 𝑒 ≠ ∅ ⇒ 𝑔 = 1 and the space 𝑋 is homotopy equivalent to 𝑆𝑑 . Then
𝐺\𝑋 is a finitely dominated 𝐶𝑊-complex, see [644, Lemma 20.2 on page 392].
Let 𝑓 : 𝑋 → 𝑌 be a 𝐺-map of free 𝑑-dimensional 𝐺-homotopy representations for
𝑑 ≥ 2. Let 𝑛 ≥ 0 be the integer such that the homomorphism of infinite cyclic groups
𝐻𝑑 ( 𝑓 ) : 𝐻𝑑 (𝑋) → 𝐻𝑑 (𝑌 ) sends a generator of 𝐻𝑑 (𝑋) to ±𝑛-times the generator of
𝐻𝑑 (𝑌 ). Let 𝑜(𝐺\𝑋), 𝑜(𝐺\𝑌 ) ∈ 𝐾0 (Z𝐺) be the finiteness obstructions of 𝑋 and 𝑌
with respect to the obvious identification 𝐺 = 𝜋1 (𝑋) = 𝜋1 (𝑌 ).

Lemma 3.102. Let 𝐺 be a finite group of order ≥ 3.

(i) The 𝐺-action on 𝐻𝑚 (𝑋) is trivial for 𝑚 ≥ 0 and 𝑑 is odd;
(ii) We have 𝑛 ≥ 1, (𝑛, |𝐺 |) = 1, and

sw𝐺 (𝑛) = 𝑜(𝐺\𝑌 ) − 𝑜(𝐺\𝑋).

Proof. (i) Let 𝐶∗ (𝑋) be the cellular Z𝐺-chain complex. The conditions about the
𝐺-actions imply that𝐶∗ (𝑋) is a free Z𝐺-chain complex and is the same as𝐶∗ (�𝐺\𝑋).
Since 𝐺\𝑋 is finitely dominated, we can find a finite projective Z𝐺-chain complex
𝑃∗ that is Z𝐺-chain homotopy equivalent to 𝐶∗ (𝑋), see [644, Proposition 11.11
on page 222] or Subsection 23.7.5. Since C𝐺 is semisimple, every submodule of a
finitely generated C𝐺-module is finitely generated projective again. This implies the
following equality in 𝐾0 (C𝐺) = 𝑅C (𝐺):∑︁

𝑚≥0
(−1)𝑚 · [𝑃𝑚 ⊗Z𝐺 C𝐺] = [𝐻0 (𝑋;C)] + (−1)𝑑 · [𝐻𝑑 (𝑋;C)] .

The Bass Conjecture for integral domains 2.99 has been proved for finite groups
and 𝑅 = Z by Swan [937, Theorem 8.1]. This implies that 𝑃𝑛 ⊗Z𝐺 C𝐺 is a finitely
generated free C𝐺-module for every 𝑛. Since 𝑃∗ ⊗Z𝐺 Z ≃ 𝐶∗ (𝐺\𝑋), we conclude∑
𝑚≥0 (−1)𝑚 · [𝑃𝑚 ⊗Z𝐺 C𝐺] = 𝜒(𝐺\𝑋) · [C𝐺]. Hence we get the following equality

in 𝑅C (𝐺)

𝜒(𝐺\𝑋) · [C𝐺] = [𝐻0 (𝑋;C)] + (−1)𝑑 · [𝐻𝑑 (𝑋;C)] .
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Obviously 𝐻0 (𝑋;C) is C𝐺-isomorphic to the trivial 1-dimensional 𝐺-representa-
tion [C]. Since 𝐻𝑑 (𝑋) � Z, there is a group homomorphism 𝑤 : 𝐺 → {±1} such
that 𝐻𝑑 (𝑋;C) is the 1-dimensional 𝐺-representation C𝑤 for which 𝑔 ∈ 𝐺 acts by
multiplication by 𝑤(𝑔). Thus we get in 𝑅C (𝐺)

𝜒(𝐺\𝑋) · [C𝐺] = [C] + (−1)𝑑 · [C𝑤] .

Computing the characters on both sides yields the following equalities for 𝑔 ∈ 𝐺

𝜒(𝐺\𝑋) · |𝐺 | = 1 + (−1)𝑑;
0 = 1 + (−1)𝑑 · 𝑤(𝑔) for 𝑔 ≠ 1.

Since we assume |𝐺 | ≥ 3 and 𝜒(𝐺\𝑋) is an integer, the first equality implies that
𝑑 is odd. The second inequality implies that 𝑤(𝑔) = 1 for all 𝑔 ∈ 𝐺. Hence 𝐺 acts
trivially on 𝐻𝑚 (𝑋) for all 𝑚 ≥ 0.

(ii) Let 𝐶∗ (𝑋) and 𝐶∗ (𝑌 ) be the free cellular Z𝐺-chain complexes. Choose finite
projective Z𝐺-chain complexes 𝑃∗ and𝑄∗ together with Z𝐺-chain homotopy equiv-
alences 𝑢∗ : 𝑃∗ → 𝐶∗ (𝑋) and 𝑣∗ : 𝑄∗ → 𝐶∗ (𝑌 ). The map 𝑓 : 𝑋 → 𝑌 induces a
Z𝐺-chain map 𝐶∗ ( 𝑓 ) : 𝐶∗ (𝑋) → 𝐶∗ (𝑌 ). Choose a Z𝐺-chain map ℎ∗ : 𝑃∗ → 𝑄∗
satisfying 𝑣∗ ◦ ℎ∗ ≃ 𝐶∗ ( 𝑓 ) ◦𝑢∗. Let cone∗ = cone∗ (ℎ∗) be the mapping cone of ℎ∗. It
is a (𝑑 +1)-dimensional free Z𝐺-chain complex such that 𝐻𝑚 (cone∗) = 0 for 𝑚 ≠ 𝑑

and 𝐻𝑑 (cone(𝐶∗ ( 𝑓 ))) is Z𝐺-isomorphic to Z/𝑛 with the trivial 𝐺-action. This fol-
lows from the long exact homology sequence associated to the short exact sequence
of Z𝐺-chain complexes 0 → 𝑄∗ → cone(ℎ∗) → Σ𝑃∗ → 0 and assertion (i). Let
𝐷∗ be the Z𝐺-chain subchain complex of cone∗ such that 𝐷𝑑+1 = cone𝑑+1, 𝐷𝑑 is
the kernel of the 𝑑-th differential of cone∗ and 𝐷𝑘 = 0 for 𝑘 ≠ 𝑑, 𝑑 + 1. Then 𝐷∗ is
a projective Z𝐺-chain complex and the inclusion 𝐷∗ → cone∗ induces an isomor-
phism on homology and hence is a Z𝐺-chain homotopy equivalence. In particular,
we get a short exact sequence 0→ 𝐷𝑑+1 → 𝐷𝑑 → Z/𝑛 → 0. This excludes 𝑛 = 0
since the cohomological dimension of a non-trivial finite group is ∞. Suppose that
(𝑛, |𝐺 |) = 1 is not true. Then we can find a prime number 𝑝 such that Z/𝑝 is a
subgroup of 𝐺 and Z/𝑝𝑙 is a direct summand in Z/𝑛 for some 𝑙 ≥ 1. This implies
that the cohomological dimension of the trivial Z[Z/𝑝]-module Z/𝑝𝑙 is bounded by
1. An easy computation shows that Ext𝑛Z[Z/𝑝] (Z,Z/𝑝

𝑙) does not vanish for all 𝑛 ≥ 2,
a contradiction. Hence (𝑛, |𝐺 |) = 1.

We conclude from Lemma 2.36

(−1)𝑑 · [Z/𝑛] = (−1)𝑑+1 · [𝐷𝑑+1] + (−1)𝑑 · [𝐷𝑑] = 𝑜(𝐷∗) = 𝑜(cone∗)
= [𝑄∗] − [𝑃∗] = 𝑜(𝐺\𝑌 ) − 𝑜(𝐺\𝑋).

Since 𝑑 is odd by assertion (i), we conclude sw(𝑛) = 𝑜(𝐺\𝑌 ) − 𝑜(𝐺\𝑋) from
Remark 3.100. ⊓⊔

Exercise 3.103. Let 𝑋 be a free 𝑑-dimensional 𝐺-homotopy representation of the
finite cyclic group 𝐺. Then 𝐺\𝑋 is homotopy equivalent to a finite 𝐶𝑊-complex.
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3.10.3 The Generalized Swan Homomorphism

In this subsection we briefly introduce the generalized Swan homomorphism. For
proofs and more information we refer to [644, Chapter 19].

Fix a finite group 𝐺. Let 𝑚 be its order |𝐺 |. We obtain a pullback of rings

Z𝐺 //

��

Z[1/𝑚]𝐺

��
Z(𝑚)𝐺 // Q𝐺.

Despite the fact that neither the right horizontal arrow nor the lower vertical arrow are
surjective, one obtains a long exact sequence, which is an example of a localization
sequence

(3.104) 𝐾1 (Z𝐺) → 𝐾1 (Z[1/𝑚]𝐺) ⊕ 𝐾1 (Z(𝑚)𝐺) → 𝐾1 (Q𝐺)
𝜕−→ 𝐾0 (Z𝐺)

→ 𝐾0 (Z[1/𝑚]𝐺) ⊕ 𝐾0 (Z(𝑚)𝐺) → 𝐾0 (Q𝐺).

In the sequel, we denote by 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺) the cokernel of the change of rings
homomorphism 𝐾1 (Z(𝑚)𝐺) → 𝐾1 (Q𝐺).

Definition 3.105 (Generalized Swan homomorphism). The generalized Swan ho-
momorphism

sw𝐺 : Z/𝑚× → 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺)

sends 𝑟 to the element in𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺) that is given by the element in𝐾1 (Q𝐺)
represented by the Q𝐺-automorphism 𝑟 · id : Q→ Q of the trivial Q𝐺-module Q.

This is well-defined by the argument in [644, page 381]. The following result is
taken from [644, Theorem 19.4 on page 381]

Theorem 3.106 (The generalized Swan homomorphism). Let 𝐺 be a finite group
of order 𝑚.

(i) The composite of the generalized Swan homomorphism

sw𝐺 : Z/𝑚× → 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺)

introduced in Definition 3.105 with the homomorphism

𝜕 : 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺) → 𝐾0 (Z𝐺)

induced by the boundary homomorphism of the localization sequence (3.104) is
the classical Swan homomorphism sw𝐺 : Z/𝑚× → 𝐾0 (Z𝐺) of Definition 3.98;

(ii) The generalized Swan homomorphism sw𝐺 : Z/𝑚× → 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺) is
injective.
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3.10.4 The Generalized Swan Homomorphism and Free Homotopy
Representations

In this subsection we briefly discuss Reidemeister torsion for free homotopy repre-
sentations. For proofs and more information we refer to [644, Chapter 20].

Let 𝐺 be a finite group of order 𝑚 = |𝐺 |. Let 𝑋 be a free 𝑑-dimensional
𝐺-homotopy representation. Suppose that we have fixed an orientation, i.e., a gen-
erator of 𝐻𝑑 (𝑋;Z). Then we can define a kind of Reidemeister torsion of 𝑋

𝜌𝐺 (𝑋) ∈ 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺)(3.107)

as follows. The change of rings map 𝐾0 (Z𝐺) → 𝐾0 (Z(𝑚)𝐺) is trivial, see [937,
Theorem 7.1 and Theorem 8.1]. Hence there is a finite free Z(𝑚)𝐺-chain complex 𝐹∗
together with a Z(𝑚)𝐺-chain homotopy equivalence 𝑓∗ : 𝐹∗ → 𝐶∗ (𝑋) ⊗Z𝐺 Z(𝑚)𝐺.
Choose a Z(𝑚)𝐺-basis for 𝐹∗. Then 𝐹∗ ⊗Z(𝑚)𝐺 Q𝐺 is a finite based free Q𝐺-chain
complex. Note that we have preferred isomorphisms of abelian group 𝐻0 (𝑋) � Z
and 𝐻𝑑 (𝑋) � Z and 𝐺 acts trivially on 𝐻0 (𝑋) and 𝐻𝑑 (𝑋). This induces preferred
Q𝐺-isomorphisms 𝐻𝑖 (𝐹∗ ⊗Z(𝑚)𝐺 Q𝐺) � Q for 𝑖 = 0, 𝑑 where we equip Q with the
trivial 𝐺-action. This enables us to define a torsion invariant 𝜏(𝐹∗ ⊗Z(𝑚)𝐺 Q𝐺) ∈
𝐾1 (Q𝐺) although 𝐹∗ ⊗Z(𝑚)𝐺 Q𝐺 is not acyclic. Define 𝜌𝐺 (𝑋) to be its image under
the projection 𝐾1 (Q𝐺) → 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺). One easily checks that 𝜌𝐺 (𝑋) is
independent of the choice of 𝐹∗, 𝑓∗, and the choice of the Z(𝑚)𝐺-basis for 𝐹∗. The
proof of the following result is a special case of the results in [644, Theorem 20.37
on page 403 and Corollary 20.39 on page 404].

Theorem 3.108 (Torsion and free homotopy representations). Let 𝐺 be a finite
group of order 𝑚 = |𝐺 | ≥ 3. Let 𝑋 and 𝑌 be free oriented 𝐺-homotopy representa-
tions.

(i) The homomorphism 𝜕 : 𝐾1 (Q𝐺)/𝐾1 (Z(𝑚)𝐺) → 𝐾0 (Z𝐺) sends the torsion
𝜌𝐺 (𝑋) to the finiteness obstruction 𝑜(𝐺\𝑋);

(ii) Let 𝑓 : 𝑋 → 𝑌 be a 𝐺-map, which always exists. Then its degree deg( 𝑓 ) is
prime to 𝑚 and

sw𝐺 (deg( 𝑓 )) = 𝜌𝐺 (𝑌 ) − 𝜌𝐺 (𝑋);

(iii) The free 𝐺-homotopy representations 𝑋 and 𝑌 are oriented 𝐺-homotopy equiv-
alent if and only if 𝜌𝐺 (𝑋) = 𝜌𝐺 (𝑌 ).

Theorem 3.108 gives an interesting relation between torsion invariants and fi-
nite obstructions and generalizes the homotopy classification of lens spaces to free
𝐺-homotopy representations.

All this can be extended to not necessarily free 𝐺-homotopy representations,
see [644, Section 20]. The theory of 𝐺-homotopy representations was initiated by
tom Dieck-Petrie [955].
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3.11 Variants of the Farrell-Jones Conjecture for 𝑲1(𝑹𝑮)

In this section we state variants of the Farrell-Jones Conjecture for 𝐾1 (𝑅𝐺). The
Farrell-Jones Conjecture itself will give a complete answer for arbitrary rings but
to formulate the full version some additional effort will be needed. If one assumes
that 𝑅 is regular and 𝐺 is torsionfree, the conjecture reduces to an easy to formulate
statement, which we will present next. Moreover, this special case is already very
interesting.

Conjecture 3.109 (Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) and 𝐾1 (𝑅𝐺) for regu-
lar 𝑅 and torsionfree 𝐺). Let 𝐺 be a torsionfree group and let 𝑅 be a regular ring.
Then the maps defined in (3.26) and (3.27)

𝐴0 : 𝐾0 (𝑅)
�−→ 𝐾0 (𝑅𝐺);

𝐴1 : 𝐺/[𝐺,𝐺] ⊗Z 𝐾0 (𝑅) ⊕ 𝐾1 (𝑅)
�−→ 𝐾1 (𝑅𝐺),

are both isomorphisms. In particular the groups Wh𝑅0 (𝐺) and Wh𝑅1 (𝐺) introduced
in Definition 3.28 vanish.

We mention the following important special case of Conjecture 3.109.

Conjecture 3.110 (Farrell-Jones Conjecture for𝐾0 (Z𝐺) and Wh(𝐺) for torsion-
free 𝐺). Let 𝐺 be a torsionfree group. Then 𝐾0 (Z𝐺) and Wh(𝐺) vanish.

We have already discussed the𝐾0-part of the two conjectures above in Section 2.8.
The following exercise shows that we cannot expect to have an analog for 𝐾1 (𝑅𝐺)
of the Conjecture 2.67.

Exercise 3.111. Let 𝐺 be a group and let 𝑅 be a ring. Suppose that the map

colim𝐻∈SubFIN (𝐺×Z) 𝐾1 (𝑅𝐻) → 𝐾1 (𝑅[𝐺 × Z])

is surjective. Show that then 𝐾0 (𝑅𝐺) = 0 and hence 𝐾0 (𝑅) = 0. In particular, 𝑅
cannot be a commutative integral domain.

Remark 3.112 (Relevance of Conjecture 3.110). In view of Remark 3.13 Conjec-
ture 3.110 predicts for a torsionfree group 𝐺 that any matrix 𝐴 in GL𝑛 (Z𝐺) can
be transformed by a sequence of the operations mentioned in Remark 3.13 to a
(1, 1)-matrix of the form (±𝑔) for some 𝑔 ∈ 𝐺. This is the algebraic relevance of
this conjecture. Its geometric meaning comes from the following conclusion of the
𝑠-Cobordism Theorem 2.39. Namely, if 𝐺 is a finitely presented torsionfree group,
and 𝑛 an integer with 𝑛 ≥ 6, then it implies that every compact 𝑛-dimensional
ℎ-cobordism is trivial.
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3.12 Survey on Computations of 𝑲1(Z𝑮) for Finite Groups

In contrast to 𝐾0 (Z𝐺) for finite groups 𝐺, the Whitehead group Wh(𝐺) of a finite
group is very well understood. The key source for the computation of Wh(𝐺) for
finite groups 𝐺 is the book written by Oliver [776].

Definition 3.113 (𝑆𝐾1 (Z𝐺) and Wh′ (𝐺)). Let 𝐺 be a finite group. Define

𝑆𝐾1 (Z𝐺) := ker((𝐾1 (Z𝐺) → 𝐾1 (Q𝐺)) ;
Wh′ (𝐺) = Wh(𝐺)/tors(Wh(𝐺)).

Remark 3.114 (𝑆𝐾1 (Z𝐺) and reduced norms). Let 𝐺 be a finite group. The
reduced norm on C𝐺 is defined as the composite of isomorphisms of abelian groups

nrC𝐺 : 𝐾1 (C𝐺)
𝜙∗−−→ 𝐾1

(
𝑘∏
𝑖=1

𝑀𝑟𝑖 (C)
)
�−→

𝑘∏
𝑖=1

𝐾1 (𝑀𝑟𝑖 (C))

�−→
𝑘∏
𝑖=1

𝐾1 (C)
∏𝑘
𝑖=1 det
−−−−−−→

𝑘∏
𝑖=1

C×

where the isomorphism of rings 𝜙 : C𝐺 �−→∏𝑘
𝑖=1 𝑀𝑟𝑖 (C) comes from Wedderburn’s

Theorem applied to the semisimple ring C𝐺 and the remaining three isomorphisms
come from Theorem 3.6, Lemma 3.8, and Lemma 3.9. The reduced norm on 𝑅𝐺 for
𝑅 = Z,Q is defined as the composite

nr𝑅𝐺 : 𝐾1 (𝑅𝐺)
𝑖𝑅−−→ 𝐾1 (C𝐺)

nrC𝐺−−−−→
𝑘∏
𝑖=1

C×

where 𝑖𝑅 is the obvious change of rings homomorphism. The map 𝑖Q is injective,
see [776, Theorem 2.5 on page 43]). Thus we can identify

𝑆𝐾1 (Z𝐺) = ker
(
nrZ𝐺 : 𝐾1 (Z𝐺) →

𝑘∏
𝑖=1

C×
)
.

This identification is useful for investigating 𝑆𝐾1 (Z𝐺) and Wh′ (𝐺). We conclude
that for abelian groups the two definitions of 𝑆𝐾1 (Z𝐺) appearing in Definition 3.15
and Definition 3.113 agree.

We denote by 𝑟𝐹 (𝐺) the number of isomorphism classes of irreducible represen-
tations of the finite 𝐺 over the field 𝐹. Recall that 𝑟𝐹 = | con𝐹 (𝐺) | by Lemma 2.89.
The proof of the next result can be found for instance in [776, Theorem 2.5 on
page 48] and is based on the Dirichlet Unit Theorem 3.21.
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Theorem 3.115 (𝑆𝐾1 (Z𝐺) = tors(Wh(𝐺))). Let 𝐺 be a finite group. Then the
abelian group 𝑆𝐾1 (Z𝐺) is finite and agrees with the torsion subgroup tors(Wh(𝐺))
of Wh(𝐺). The group Wh′ (𝐺) = Wh(𝐺)/tors(Wh(𝐺)) is a finitely generated free
abelian group of rank 𝑟R (𝐺) − 𝑟Q (𝐺).

Hence the next step is to compute 𝑆𝐾1 (Z𝐺). This is done using localization
sequences, see [776, Theorem 1.17 on page 36 and Section 3c], which also involve
the second algebraic 𝐾-group, see Chapter 5, and are consequences of the general
result of Quillen stated in Theorem 6.49. Define

𝑆𝐾1 (Z �̂�𝐺) := ker
(
𝐾1 (Z �̂�𝐺) → 𝐾1 (Q �̂�𝐺)

)
.

Put
Cl1 (Z𝐺) := ker

(
𝑆𝐾1 (Z𝐺) →

∏
𝑝 | |𝐺 |

𝑆𝐾1 (Z �̂�𝐺)
)

where 𝑝 runs over all prime numbers dividing |𝐺 |. Then one obtains an exact
sequence, see [776, (2) on page 7],

0→ Cl1 (Z𝐺) → 𝑆𝐾1 (Z𝐺) →
∏
𝑝 | |𝐺 |

𝑆𝐾1 (Z �̂�𝐺) → 0.

The analysis of Cl1 (Z𝐺) and 𝑆𝐾1 (Z �̂�𝐺) is carried out independently and with
different methods. Besides localization sequences 𝑝-adic logarithms play a key role.
Details can be found in Oliver [776].

Given groups 𝐺 and 𝑄, the wreath product 𝐺 ≀ 𝑄 is defined to be the semidirect
product

∏
𝑄 𝐺 ⋊𝑄 where 𝑄 acts on

∏
𝑄 𝐺 ⋊𝑄 permuting the factors.

Theorem 3.116 (Finite groups with vanishing Wh(𝐺) or 𝑆𝐾1 (Z𝐺)). Let 𝐺 be a
finite group.

(i) Let 𝑝 be a prime number. If the 𝑝-Sylow subgroup 𝑆𝑝𝐺 of 𝐺 is isomorphic
to Z/𝑝𝑛 or Z/𝑝𝑛 × Z/𝑝 for some 𝑛 ≥ 0, then 𝑆𝐾1 (Z𝐺) (𝑝) = 0, i.e., the finite
abelian group 𝑆𝐾1 (Z𝐺) contains no 𝑝-torsion;

(ii) Let 𝐺 be a finite abelian group. Then 𝑆𝐾1 (Z𝐺) = 0 if and only if one of the
following conditions hold:

(a) For every prime 𝑝 the 𝑝-Sylow subgroup 𝑆𝑝𝐺 is isomorphic to Z/𝑝𝑛 or
Z/𝑝𝑛 × Z/𝑝 for some 𝑛 ≥ 0;

(b) We have 𝐺 = (Z/2)𝑛 for some 𝑛 ≥ 1;

(iii) Let CWh be the smallest class of groups that is closed under finite products and
wreath products with 𝑆𝑛 for every 𝑛 ≥ 2 and contains the trivial group. Let
C𝑆𝐾1 be the smallest class of groups that is closed under finite products and
wreath products with 𝑆𝑛 for every 𝑛 ≥ 2 and contains the dihedral groups 𝐷2𝑛
for 𝑛 ≥ 1.
Then Wh(𝐺) = 0 for 𝐺 ∈ CWh and 𝑆𝐾1 (Z𝐺) = 0 if 𝐺 ∈ C𝑆𝐾1 ;
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(iv) We have 𝑆𝐾1 (Z𝐺) = 0 if 𝐺 is one of the following groups:

(a) 𝐺 is finite cyclic;
(b) Z/𝑝𝑛 × Z/𝑝 for some prime 𝑝 and 𝑛 ≥ 1;
(c) (Z/2)𝑛 for 𝑛 ≥ 1;
(d) 𝐺 is any symmetric group;
(e) 𝐺 is any dihedral group;
(f) 𝐺 is any semidihedral 2-group.

Proof. (i) See Oliver [776, Theorem 14.2 (i) on page 330].
(ii) See Oliver [776, Theorem 14.2 (iii) on page 330].
(iii) See Oliver [776, Theorem 14.1 on page 328].
(iv) This follows essentially from the other assertions. See Oliver [776, Examples 1
and 2 on page 14]. ⊓⊔

The group 𝑆𝐾1 (Z𝐺) can be computed for many examples. We mention the
following example taken from [776, Theorem 14.6 on page 336].

Example 3.117 (𝑆𝐾1 (Z[𝐴𝑛])). We have 𝑆𝐾1 (Z[𝐴𝑛]) � Z/3 if we can write
𝑛 =

∑𝑟
𝑖=1 3𝑚𝑖 such that 𝑚1 > 𝑚2 > · · · > 𝑚𝑟 > 0 and

∑𝑟
𝑖=1 𝑚𝑖 is odd. Otherwise we

get 𝑆𝐾1 (Z[𝐴𝑛]) = {0}.

Exercise 3.118. Show that the Whitehead group Wh(Z/𝑚) of the finite cyclic group
Z/𝑚 of order 𝑚 is a free abelian group of rank ⌊𝑚/2⌋ + 1 − 𝛿(𝑚), where ⌊𝑚/2⌋ is
the greatest integer less or equal to 𝑚/2 and 𝛿(𝑚) is the number of divisors of 𝑚.

Let 𝑝 be a prime. Show that Wh(Z/𝑝) is isomorphic to Z(𝑝−1)/2−1 if 𝑝 is odd
and is trivial if 𝑝 = 2.

Exercise 3.119. Find the finite abelian group of smallest order for which Wh(𝐺) is
finite and non-trivial.

The following result taken from [776, Theorem 14.5 on page 333] is rather
puzzling. If 𝑝 is any prime, 𝑘 ≥ 1 is any natural number, and F𝑝𝑘 is the finite field
with 𝑝𝑘 elements, then

𝑆𝐾1 (Z[SL2 (F𝑝𝑘 )]) �
{
Z/3 × Z/3 if 𝑝 = 3, 𝑘 is odd, and 𝑘 ≥ 5;
{0} otherwise.

The standard involution on Z𝐺 sending
∑
𝑔∈𝐺 𝜆𝑔 · 𝑔 to

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔−1 induces an

involution ∗ : Wh(𝐺) →Wh(𝐺). If 𝐺 is a finite group, then the induced involution
on Wh′ (𝐺) is trivial by a result of Wall, see [776, Corollary 7.5 on page 182].
Computation of the induced involution on 𝑆𝐾1 (Z𝐺) can be found in [776], e.g., the
involution induced on Cl1 (Z𝐺) ⊆ 𝑆𝐾1 (Z𝐺) is the identity, see [776, Theorem 5.12
on page 151] or [61]. Note that it is not true that the involution on Wh(𝐺) is trivial
for all finite groups 𝐺.
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3.13 Survey on Computations of Algebraic 𝑲1(𝑪
∗
𝒓 (𝑮)) and

𝑲1(N(𝑮))

Define SL(𝑅) := {𝐴 ∈ GL(𝑅) | det(𝐴) = 1}. Let 𝐵 be a commutative Banach
algebra. Then GL𝑛 (𝐵) inherits a topology, namely, the subspace topology for the
obvious embedding GL𝑛 (𝐵) ⊆ 𝑀𝑛 (𝐵) =

∏𝑛2

𝑖=1 𝐵. Equip GL(𝐵) = ⋃
𝑛≥1 GL𝑛 (𝐵)

with the weak topology, i.e., a subset 𝐴 ⊂ GL(𝐵) is closed if and only if 𝐴∩GL𝑛 (𝐵)
is a closed subset of GL𝑛 (𝐵) for all 𝑛 ≥ 1. Equip SL(𝐵) ⊆ GL(𝐵) with the subspace
topology.

The following results are due to Milnor [727, Corollary 7.2 on page 57 and
Corollary 7.3 on page 58].

Theorem 3.120 (𝐾1 (𝐵) of a commutative Banach algebra). Let 𝐵 be a commu-
tative Banach algebra. Then there is a natural isomorphism

𝐾1 (𝐵)
�−→ 𝐵× × 𝜋0 (SL(𝐵)).

Define the infinite special orthogonal group SO =
⋃
𝑛≥1 SO(𝑛) and infinite

special unitary group SU =
⋃
𝑛≥1 SU(𝑛) for SO(𝑛) = {𝐴 ∈ GL𝑛 (R) | 𝐴𝐴𝑡 =

𝐼, det(𝐴) = 1} the special 𝑛-th orthogonal group and SU(𝑛) = {𝐴 ∈ GL𝑛 (C) |
𝐴𝐴∗ = 𝐼, det(𝐴) = 1} the special 𝑛-th unitary group. Denote by [𝑋, SO] and
[𝑋, SU] respectively the set of homotopy classes of maps from 𝑋 to SO and SU
respectively.

Theorem 3.121 (𝐾1 (𝐶 (𝑋)) of a commutative 𝐶∗-algebra 𝐶 (𝑋)). Let 𝑋 be com-
pact space. Then there are natural isomorphisms

𝐾1 (𝐶 (𝑋,R))
�−→ 𝐶 (𝑋,R)× × [𝑋, SO];

𝐾1 (𝐶 (𝑋,C))
�−→ 𝐶 (𝑋,C)× × [𝑋, SU] .

The sets [𝑋, SO] and [𝑋, SU] are closely related to the topological 𝐾-groups
𝐾𝑂−1 (𝑋) and 𝐾−1 (𝑋).

If 𝐵 is a group 𝐶∗-algebra 𝐶∗𝑟 (𝐺), then not much is known about the algebraic
𝐾-group 𝐾1 (𝐵) in general. At least we mention [345, Remark 1.3], where it is shown
that for a simple infinite unital 𝐶∗-algebra 𝐵 the canonical map from the algebraic to
the topological 𝐾1-group is bijective. An example for 𝐵 is 𝐶∗𝑟 (𝐹𝑔) for the free group
𝐹𝑔 of rank 𝑔 for 𝑔 ≥ 2.

However, the algebraic 𝐾1-group of a von Neumann algebra is fully understood,
see [650, Section 9.3],[678]. We mention the special case, see [650, Example 9.34
on page 353], that for a finitely generated group 𝐺 which is not virtually finitely
generated abelian the Fuglede-Kadison determinant induces an isomorphism

𝐾1 (N (𝐺))
�−→ Z(N(𝐺))+,inv(3.122)

where Z(N(𝐺))+,inv consists of the elements of the center of N(𝐺) that are both
positive and invertible.
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The connection between the algebraic and the topological 𝐾-theory of a
𝐶∗-algebra will be discussed in Section 10.7.

3.14 Notes

A universal property describing the Whitehead group and the Whitehead torsion
similar to the description of the finiteness obstruction in Section 2.7 is presented
in [644, Theorem 6.11].

Geometric versions or analogs of maps related to the Bass-Heller-Swan decom-
position are described in [350], [380], [644, (7.34) on page 130], and [840, § 10].

Given two groups𝐺1 and𝐺2, let𝐺1 ∗𝐺2 by the amalgamated free product. Then
the natural maps 𝐺𝑘 → 𝐺0 ∗ 𝐺1 for 𝑘 = 1, 2 induce an isomorphism, see [924],

Wh(𝐺1) ⊕Wh(𝐺2) � Wh(𝐺1 ∗ 𝐺2).(3.123)

Compare this with the analog for the reduced projective class groups stated in (2.126).

Exercise 3.124. Show that the projections pr𝑘 : 𝐺1 × 𝐺2 → 𝐺𝑘 for 𝑘 = 1, 2 do not
in general induce an isomorphism

Wh(𝐺1 × 𝐺2)
�−→ Wh(𝐺1) ×Wh(𝐺2).

There are also equivariant versions of the Whitehead torsion, see for instance [644,
Chapter 4 and Chapter 12], where more references can be found.

Next we discuss the following conjecture.

Conjecture 3.125 (Unit-Conjecture). Let 𝑅 be an integral domain and 𝐺 be a
torsionfree group. Then every unit in 𝑅𝐺 is trivial, i.e., of the form 𝑟 · 𝑔 for some
unit 𝑟 ∈ 𝑅× and 𝑔 ∈ 𝐺.

For more information about it we refer for instance to [610, page 95]. We have
discussed its relations to some other conjectures already in Remark 2.85.

Remark 3.126 (Status of the Unit Conjecture and its stable version). Actually,
Gardam found an explicit counterexample to the Unit Conjecture, see [417, Theo-
rem A]. His group 𝐺 is given by the presentation

⟨𝑎, 𝑏 | 𝑏𝑎2𝑏−1 = 𝑎−2, 𝑎𝑏2𝑎−1 = 𝑏−2⟩.

It can be written as a non-split extension 1→ Z3 → 𝐺 → Z/2 × Z/2→ 1 and is a
crystallographic group. The underlying coefficient ring is the field of two elementsF2.
Note that Gardam found his counterexample using computer algebra, but in his paper
he presents a short human-readable proof. Counterexamples where the coefficient
ring is a field of (arbitrary) prime characteristic were constructed by Murray [755].
Gardam [418, Theorem A] constructed counterexamples with coefficients in C for
the same group 𝐺 as above.
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Note that Conjecture 3.109 does not imply the Unit Conjecture 3.125. At least the
bijectivity of the map 𝐴1 implies the stable version of the Unit Conjecture 3.125 that
the class [𝑥] ∈ 𝐾1 (𝑅𝐺) of any unit 𝑥 ∈ 𝑅𝐺× is represented by the class [𝑢] of some
trivial unit 𝑢, or, equivalently, by a sequence of elementary row and column operation
and (de-)stabilization one can transform the (1, 1)-matrix (𝑥) to the (1, 1)-matrix
(𝑢), see Remark 3.13, provided that 𝐾0 (𝑅) vanishes.

Note, that the map (Z𝐺)× → 𝐾1 (Z𝐺) sending a unit to its class in the 𝐾1-group
is in general not injective and in general not every unit is a trivial unit, as the
following example shows. If 𝐺 is a finite group, then a result of Hartley-Pickel [468,
Theorem 2] says that exactly one of the following cases occurs:

• 𝐺 is abelian and (Z𝐺)× is abelian;
• 𝐺 is a Hamiltonian 2-group and (Z𝐺)× = {±𝑔 | 𝑔 ∈ 𝐺};
• (Z𝐺)× contains a free subgroup of rank 2.

Hence for the symmetric group 𝑆𝑛 for 𝑛 ≥ 3, the group of units Z[𝑆𝑛]× is infi-
nite, whereas Wh(𝑆𝑛) vanishes, see Theorem 3.116 (iii), and hence 𝐾1 (Z[𝑆𝑛]) and
{±𝑔 | 𝑔 ∈ 𝑆𝑛} are finite. This implies that the map (Z[𝑆𝑛])× → 𝐾1 (Z[𝑆𝑛]) has
an infinite kernel for 𝑛 ≥ 3 and that there are infinitely many elements in (Z[𝑆𝑛])×
which are not trivial units.



Chapter 4
Negative Algebraic 𝑲-Theory

4.1 Introduction

In this chapter we introduce negative 𝐾-groups. They are designed such that the
Bass-Heller-Swan decomposition and the long exact sequence of a pullback of rings
and of a two-sided ideal extend beyond 𝐾0. We give a geometric interpretation
of negative 𝐾-groups of group rings in terms of bounded ℎ-cobordisms. We state
variants of the Farrell-Jones Conjecture for negative 𝐾-groups and give a survey of
computations for group rings of finite groups.

4.2 Definition and Basic Properties of Negative 𝑲-Groups

Recall that we get from Theorem 3.75 an isomorphism

𝐾0 (𝑅) = coker
(
𝐾1 (𝑅[𝑡]) ⊕ 𝐾1 (𝑅[𝑡−1]) → 𝐾1 (𝑅[𝑡, 𝑡−1])

)
.

This motivates the following definition of negative 𝐾-groups due to Bass.

Definition 4.1. Given a ring 𝑅, define inductively for 𝑛 = −1,−2, . . .

𝐾𝑛 (𝑅) := coker
(
𝐾𝑛+1 (𝑅[𝑡]) ⊕ 𝐾𝑛+1 (𝑅[𝑡−1]) → 𝐾𝑛+1 (𝑅[𝑡, 𝑡−1])

)
.

Define for 𝑛 = −1,−2, . . .

𝑁𝐾𝑛 (𝑅) := coker (𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑅[𝑡])) .

Obviously a ring homomorphism 𝑓 : 𝑅 → 𝑆 induces for 𝑛 ≤ −1 a map of abelian
groups

(4.2) 𝐾𝑛 ( 𝑓 ) : 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑆).

The Bass-Heller-Swan decomposition 3.72 for 𝐾1 (𝑅[𝑡, 𝑡−1]) extends to negative
𝐾-theory.

117
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Theorem 4.3 (Bass-Heller-Swan decomposition for middle and lower𝐾-theory).
There are isomorphisms of abelian groups, natural in 𝑅, for 𝑛 = 1, 0,−1,−2, . . .

𝑁𝐾𝑛 (𝑅) ⊕ 𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (𝑅[𝑡]);

𝐾𝑛 (𝑅) ⊕ 𝐾𝑛−1 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (𝑅[𝑡, 𝑡−1]).

There is a sequence which is natural in 𝑅 and exact for 𝑛 = 1, 0,−1, . . .

0→ 𝐾𝑛 (𝑅)
𝐾𝑛 (𝑘+ )⊕−𝐾𝑛 (𝑘− )−−−−−−−−−−−−−−→ 𝐾𝑛 (𝑅[𝑡]) ⊕ 𝐾𝑛 (𝑅[𝑡−1])

𝐾𝑛 (𝑙+ )⊕𝐾𝑛 (𝑙− )∗−−−−−−−−−−−−−→ 𝐾𝑛 (𝑅[𝑡, 𝑡−1]) 𝐶𝑛−−→ 𝐾𝑛−1 (𝑅) → 0

where 𝑘+, 𝑘− , 𝑙+, and 𝑙− are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contraction,

natural in 𝑅.

Proof. We give the proof only for 𝑛 = 0, then an iteration of the argument proves the
claim for all 𝑛 ≤ 0. Take 𝑆 = 𝑅[Z] = 𝑅[𝑥, 𝑥−1]. We obtain a commutative diagram

0

��

0

��
𝐾0 (𝑅)

𝑓3 //

𝐾0 (𝑘+ )⊕−𝐾0 (𝑘− )
��

𝐾1 (𝑆)

𝐾0 (𝑘+ )⊕−𝐾0 (𝑘− )
��

𝐾0 (𝑅[𝑡]) ⊕ 𝐾0 (𝑅[𝑡−1])
𝑓2 //

𝐾0 (𝑙+ )⊕𝐾0 (𝑙− )
��

𝐾1 (𝑆[𝑡]) ⊕ 𝐾1 (𝑆[𝑡−1])

𝐾0 (𝑙+ )⊕𝐾0 (𝑙− )
��

𝐾0 (𝑅[𝑡, 𝑡−1])
𝑓1 //

𝐶′

��

𝐾1 (𝑆[𝑡, 𝑡−1])

𝐶

��
𝐾−1 (𝑅)

𝑓0 //

��

𝐾0 (𝑆)

��
0 0

where the right column is the exact sequence appearing in Theorem 3.75, the map𝐶′
is the canonical projection, the maps 𝑓1, 𝑓2, and 𝑓3 come from the Bass-Heller-Swan
decompositions for 𝑆 = 𝑅[𝑥, 𝑥−1], 𝑆[𝑡] = 𝑅[𝑡] [𝑥, 𝑥−1], 𝑆[𝑡−1] = 𝑅[𝑡−1] [𝑥, 𝑥−1],
and 𝑆[𝑡, 𝑡−1] = 𝑅[𝑡, 𝑡−1] [𝑥, 𝑥−1], and the map 𝑓0 is the unique map that makes the
diagram commutative. There are natural retractions 𝑟𝑘 of 𝑓𝑘 for 𝑘 = 1, 2, 3 for which
the diagram remains commutative, and a natural chain contraction 𝛾 = {𝛾𝑘 | 𝑘 =

0, 1, 2} of the right column, see Theorem 3.72. Let 𝑟0 : 𝐾0 (𝑆) → 𝐾−1 (𝑅) be the
unique map that satisfies 𝑟0 ◦ 𝐶 = 𝐶′ ◦ 𝑟1. An easy diagram shows that 𝑟0 is well-
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defined, since 𝐶′ ◦ 𝑟3 sends the kernel of 𝐶 to zero. One easily checks 𝑟0 ◦ 𝑓0 = id.
We obtain a chain contraction for the left column by considering the composites
𝑟𝑘+1 ◦ 𝛾𝑘 ◦ 𝑓𝑘 for 𝑘 = 0, 1, 2. ⊓⊔

Remark 4.4 (Extending exact sequences to negative 𝐾-theory). The Mayer-
Vietoris sequence of a pullback of rings, see Theorem 3.86, can be extended to
negative 𝐾-theory and also to 𝐾2, as we will explain in Theorem 5.9. Similarly, the
long exact sequence of a two-sided ideal appearing in Theorem 3.89 can be extended
to negative 𝐾-theory and also to 𝐾2, as we will explain in Theorem 5.12.

Exercise 4.5. Let 𝑅 and 𝑆 be rings. Show for 𝑛 ≤ 1 that the projections induce an
isomorphism

𝐾𝑛 (𝑅 × 𝑆)
�−→ 𝐾𝑛 (𝑅) × 𝐾𝑛 (𝑆).

Definition 4.6. Define for 𝑛 ≤ 1 inductively for 𝑝 = 0, 1, 2, . . .

𝑁0𝐾𝑛 (𝑅) := 𝐾𝑛 (𝑅);
𝑁 𝑝+1𝐾𝑛 (𝑅) := coker (𝑁 𝑝𝐾𝑛 (𝑅) → 𝑁 𝑝𝐾𝑛 (𝑅[𝑡])) .

Obviously 𝑁1𝐾𝑛 (𝑅) agrees with 𝑁𝐾𝑛 (𝑅).

Theorem 4.7 (Bass-Heller-Swan decomposition for lower and middle 𝐾-theory
for regular rings). Suppose that 𝑅 is regular. Then we get

𝐾𝑛 (𝑅) = 0 for 𝑛 ≤ −1;
𝑁 𝑝𝐾𝑛 (𝑅) = 0 for 𝑛 ≤ 1 and 𝑝 ≥ 1,

and the Bass-Heller-Swan decomposition appearing in Theorem 4.3 reduces for
𝑛 ≤ 1 to the natural isomorphism

𝐾𝑛−1 (𝑅) ⊕ 𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (𝑅[𝑡, 𝑡−1]).

Proof. The Bass-Heller-Swan decomposition, see Theorem 4.3, applied to 𝑅 and
𝑅[𝑡] together with the obvious maps 𝑖 : 𝑅 → 𝑅[𝑡] and 𝜖 : 𝑅[𝑡] → 𝑅 satisfying
𝜖 ◦ 𝑖 = id𝑅 yield a natural Bass-Heller-Swan decomposition

(4.8) 𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛−1 (𝑅) ⊕ 𝑁2𝐾𝑛 (𝑅) ⊕ 𝑁2𝐾𝑛 (𝑅)
�−→ 𝑁𝐾𝑛 (𝑅[Z]).

Hence 𝑁𝐾𝑛−1 (𝑅) = 0 if 𝑁𝐾𝑛 (𝑅[Z]) = 0. If 𝑅 is regular, then 𝑅[Z] is regular
by Theorem 3.80 (i). Hence 𝑁𝐾𝑛−1 (𝑅) vanishes for all regular rings 𝑅 if 𝑁𝐾𝑛 (𝑅)
vanishes for all regular rings. We have shown in Theorem 3.81 that 𝑁𝐾1 (𝑅) vanishes
for all regular rings 𝑅. We conclude by induction over 𝑛 that 𝑁𝐾𝑛 (𝑅) vanishes for all
regular rings 𝑅 and 𝑛 ≤ 1. Obviously 𝑁 𝑝𝐾𝑛 (𝑅) is a direct summand in 𝑁𝐾𝑛 (𝑅[𝑡])
and 𝑅[𝑡] is regular by Theorem 3.80 (i). Hence 𝑁 𝑝𝐾𝑛 (𝑅) vanishes for 𝑝 ≥ 1 and
𝑛 ≤ 1 if 𝑅 is a regular ring.



120 4 Negative Algebraic 𝐾-Theory

Next we show 𝐾−1 (𝑅) = 0 for every regular ring 𝑅. It suffices to show that the
obvious map 𝐾0 (𝑅[𝑡]) → 𝐾0 (𝑅[𝑡, 𝑡−1]) is surjective. The homomorphism

𝛼 : 𝐺0 (𝑅[𝑡]) → 𝐺0 (𝑅[𝑡, 𝑡−1]), [𝑀] → [𝑀 ⊗𝑅[𝑡 ] 𝑅[𝑡, 𝑡−1]]

is well-defined, since 𝑅[𝑡, 𝑡−1] is a localization of 𝑅[𝑡] and hence flat as an 𝑅[𝑡]-
module. Since 𝑅 by assumption and hence 𝑅[𝑡] and 𝑅[𝑡, 𝑡−1] by Theorem 3.80 (i)
are regular, we conclude from Lemma 3.85 that it remains to prove surjectivity of
𝛼. Let 𝑀 be a finitely generated 𝑅[𝑡, 𝑡−1]-module. Since 𝑅[𝑡, 𝑡−1] is Noetherian,
we can find a matrix 𝐴 ∈ 𝑀𝑚,𝑛 (𝑅[𝑡, 𝑡−1]) such that there exists an exact sequence
of 𝑅[𝑡, 𝑡−1]-modules 𝑅[𝑡, 𝑡−1]𝑚 𝐴−→ 𝑅[𝑡, 𝑡−1]𝑛 → 𝑀 → 0. Since 𝑡 is invertible
in 𝑅[𝑡, 𝑡−1], the sequence remains exact if we replace 𝐴 by 𝑡𝑘𝐴 for some 𝑘 ≥ 1.
Hence we can assume without loss of generality that 𝐴 ∈ 𝑀𝑚,𝑛 (𝑅[𝑡]). Define the
𝑅[𝑡]-module 𝑁 to be the cokernel of 𝑅[𝑡]𝑚 𝐴−→ 𝑅[𝑡]𝑛. Then 𝑁 ⊗𝑅[𝑡 ] 𝑅[𝑡, 𝑡−1] is
𝑅[𝑡, 𝑡−1]-isomorphic to 𝑀 and hence 𝛼( [𝑁]) = [𝑀].

Now 𝐾𝑛 (𝑅) = 0 follows inductively for 𝑛 ≤ −1 for every regular ring from
Theorem 3.80 (i) and the Bass-Heller-Swan decomposition 4.3.

Finally apply Theorem 4.3. ⊓⊔

Exercise 4.9. Let 𝑅 be a regular ring. Prove

𝐾1 (𝑅[Z𝑘]) = 𝐾1 (𝑅) ⊕
𝑘⊕
𝑖=1

𝐾0 (𝑅);

𝐾0 (𝑅[Z𝑘]) � 𝐾0 (𝑅);
𝐾𝑛 (𝑅[Z𝑘]) � 0 for 𝑛 ≤ −1.

Example 4.10 (𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) for 𝑛 ≤ 0 and a prime 𝑝). Let 𝑝 be a prime
number. We want to show

𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) = 0 for 𝑛 ≤ −1 and 𝑘 ≥ 0

and that 𝐾0 (Z[Z/𝑝 × Z𝑘]) is finitely generated for 𝑘 ≥ 0. Consider the pullback of
rings appearing in the proof of Rim’s Theorem in Section 3.8.

Z[Z/𝑝] 𝑖1 //

𝑖2

��

Z[exp(2𝜋𝑖/𝑝)]

𝑗1

��
Z

𝑗2
// F𝑝 .

If we apply − ⊗Z Z[Z𝑘], we obtain the pullback of rings
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Z[Z/𝑝 × Z𝑘] 𝑖1 //

𝑖2

��

Z[exp(2𝜋𝑖/𝑝)] [Z𝑘]

𝑗1

��
Z[Z𝑘]

𝑗2
// F𝑝 [Z𝑘] .

The ring Z[exp(2𝜋𝑖/𝑝)] is a Dedekind domain, see Theorem 2.23, and in particular
regular. The rings Z and F𝑝 are regular as well. Hence the rings Z[exp(2𝜋𝑖/𝑝)] [Z𝑘],
Z[Z𝑘], and F𝑝 [Z𝑘] are regular by Theorem 3.80 (i). The negative 𝐾-groups of
Z[exp(2𝜋𝑖/𝑝)] [Z𝑘], Z[Z𝑘] and F𝑝 [Z𝑘] vanish by Theorem 4.7. The obvious maps

𝐾0 (Z)
�−→ 𝐾0 (Z[Z𝑘]);

𝐾0 (Z[exp(2𝜋𝑖/𝑝)]) �−→ 𝐾0 (Z[exp(2𝜋𝑖/𝑝)] [Z𝑘]);
𝐾0 (F𝑝)

�−→ 𝐾0 (F𝑝 [Z𝑘]),

are bijective because of Theorem 4.7. Hence the associated long exact Mayer-Vietoris
sequence, see Remark 4.4, implies that 𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) = 0 holds for 𝑛 ≤ −2 and
that we get the exact sequence

𝐾1 (F𝑝 [Z𝑘]) → 𝐾0 (Z[Z/𝑝 × Z𝑘])
→ 𝐾0 (Z) ⊕ 𝐾0 (Z[exp(2𝜋𝑖/𝑝)]) → 𝐾0 (F𝑝) → 𝐾−1 (Z[Z/𝑝 × Z𝑘]) → 0.

Since F𝑝 is a field and hence 𝐾0 (F𝑝) is generated by [F𝑝], see Example 2.4,
we conclude 𝐾−1 (Z[Z/𝑝 × Z𝑘]) = 0. Example 2.4, Theorem 3.17, and Theo-
rem 4.7 imply 𝐾1 (F𝑝 [Z𝑘]) � 𝐾1 (F𝑝) ⊕ 𝐾0 (F𝑝)𝑘 � (F𝑝)× ⊕ Z𝑘 . The abelian group
𝐾0 (Z) ⊕ 𝐾0 (Z[exp(2𝜋𝑖/𝑝)]) is finitely generated by Theorem 2.23. Hence
𝐾0 (Z[Z/𝑝 × Z𝑘]) is finitely generated.

Exercise 4.11. Consider 𝑘 ∈ {0, 1, 2, . . .}. Show 𝐾𝑛 (Z[Z/3 × Z𝑘]) = 0 for 𝑛 ≤ 0.
Prove that 𝑁 𝑝𝐾𝑛 (Z[Z/3 × Z𝑘]) = 0 holds for 𝑛 ≤ −1 and 𝑝 ≥ 0 and for 𝑛 = 0 and
𝑝 ≥ 1.

Example 4.12 (Negative 𝐾-theory of Z[Z/6]). We want to show

𝐾𝑛 (Z[Z/6]) �
{
Z 𝑛 = −1;
0 𝑛 ≤ −2.

Consider the pullback of rings

Z[Z/2] 𝑖1 //

𝑖2

��

Z

𝑗1

��
Z

𝑗2
// Z/2
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where 𝑖1 sends 𝑎+𝑏𝑡 to 𝑎−𝑏 and 𝑖2 sends 𝑎+𝑏𝑡 to 𝑎+𝑏 for 𝑡 ∈ Z/2 the generator and
the two maps from Z to Z/2 are the canonical projections. Since Z[Z/3] is free as an
abelian group, this remains to be a pullback of rings if we apply−⊗ZZ[Z/3]. We have
isomorphisms of rings Z[Z/2] ⊗Z Z[Z/3] = Z[Z/6] and Z ⊗Z Z[Z/3] = Z[Z/3].
From the pullback for 𝑝 = 3 appearing in Example 4.10 we obtain an isomorphism
of rings

F2 ⊗Z Z[Z/3] � F2 × (F2 ⊗Z Z[exp(2𝜋𝑖/3)]).

The ring Z[exp(2𝜋𝑖/3)] is as an abelian group free with two generators 1 and
𝜔 = exp(2𝜋𝑖/3) and the multiplication is uniquely determined by 𝜔2 = −1 − 𝜔.
Hence F2 ⊗Z Z[exp(2𝜋𝑖/3)] contains four elements, namely 0, 1, 1 ⊗ 𝜔, and the
sum 1 + 1 ⊗ 𝜔. Since (1 ⊗ 𝜔) · (1 + 1 ⊗ 𝜔) = 1, it is the field F4 consisting of four
elements. Hence we obtain a pullback of rings

Z[Z/6] 𝑖1 //

𝑖2
��

Z[Z/3]

𝑗1

��
Z[Z/3]

𝑗2
// F2 × F4.

Since𝐾𝑛 (F2×F4) � 𝐾𝑛 (F2)×𝐾𝑛 (F4) vanishes for 𝑛 ≤ −1 and𝐾𝑛 (Z[Z/3]) vanishes
for 𝑛 ≤ −1 by Example 4.10, the associated long exact Mayer-Vietoris sequence, see
Remark 4.4, implies that 𝐾𝑛 (Z[Z/6]) = 0 holds for 𝑛 ≤ −2 and there is an exact
sequence

𝐾0 (Z[Z/3]) ⊕ 𝐾0 (Z[Z/3]) → 𝐾0 (F2 × F4) → 𝐾−1 (Z[Z/6]) → 0.

Since 𝐾0 (Z[Z/3]) is trivial, see Example 2.107, and the projections induce an
isomorphism𝐾0 (F2×F4)

�−→ 𝐾0 (F2)×𝐾0 (F4) � Z⊕Z, we conclude𝐾−1 (Z[Z/6]) �
Z.

Exercise 4.13. Consider 𝑘 ∈ {0, 1, 2, . . .}. Compute

𝐾𝑛 (Z[Z𝑘 × Z/6]) �

Z𝑘+1 for 𝑛 = 0;
Z for 𝑛 = −1;
0 for 𝑛 ≤ −2,

and prove 𝑁 𝑝𝐾𝑛 (Z[Z/6 × Z𝑘]) = 0 for 𝑝 ≥ 1 and 𝑛 ≤ 0.

The Bass-Heller-Swan decomposition can be used to show that certain results
about the 𝐾-groups in a fixed degree 𝑚 have implications for all the 𝐾-groups in
degree 𝑛 ≤ 𝑚, as illustrated by the next result.
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Lemma 4.14. Consider a ring 𝑅 and 𝑚 ∈ Z with 𝑚 ≤ 1. Suppose that for every
𝑘 ≥ 1 the map 𝐾𝑚 (𝑅) → 𝐾𝑚 (𝑅[Z𝑘]) induced by the inclusion 𝑅 → 𝑅[Z𝑘] is
bijective.

Then 𝐾𝑛 (𝑅[Z𝑙]) = 0 for 𝑛 ≤ 𝑚 − 1 and 𝑁𝐾𝑛 (𝑅[Z𝑙]) = 0 for 𝑛 ≤ 𝑚 hold for all
𝑙 ≥ 0.

Proof. Since the bijectivity of 𝐾𝑚 (𝑅) → 𝐾𝑚 (𝑅[Z𝑘]) for all 𝑘 ≥ 1 implies the
bijectivity of 𝐾𝑚 (𝑅[Z𝑙]) → 𝐾𝑚 ((𝑅[Z𝑙]) [Z𝑘]) for all 𝑘, 𝑙 ≥ 0 because of the
identification (𝑅[Z𝑙]) [Z𝑘] = 𝑅[Z𝑘+𝑙], it suffices to treat the case 𝑙 = 0.

Consider any integer 𝑘 ≥ 1. The assumptions in Lemma 4.14 imply that the
map 𝐾𝑚 (𝑅[Z𝑘−1]) → 𝐾𝑚 (𝑅[Z𝑘]) induced by the inclusion 𝑅[Z𝑘−1] → 𝑅[Z𝑘]
is bijective. Theorem 4.3 applied to the ring 𝑅[Z𝑘−1] together with the identity
𝑅[Z𝑘] = (𝑅[Z𝑘−1]) [Z] shows that 𝐾𝑚−1 (𝑅[Z𝑘−1]) = 0 and 𝑁𝐾𝑚 (𝑅[Z𝑘−1]) = 0.
Using Theorem 4.3 and the Bass-Heller-Swan decomposition for 𝑁𝐾 , see (4.8),
one shows inductively for 𝑖 = 0, 1, . . . , (𝑘 − 1) that 𝐾𝑚−1− 𝑗 (𝑅[Z𝑘−𝑖−1]) = 0 and
𝑁𝐾𝑚− 𝑗 (𝑅[Z𝑘−𝑖−1]) = 0 holds for 𝑗 = 0, 1 . . . , 𝑖. Then the case 𝑖 = 𝑘 − 1 shows that
𝐾𝑛 (𝑅) = 0 for 𝑚 − 𝑘 ≤ 𝑛 ≤ 𝑚 − 1 and 𝑁𝐾𝑛 (𝑅) = 0 for 𝑚 − 𝑘 + 1 ≤ 𝑛 ≤ 𝑚. Since
𝑘 ≥ 1 was arbitrary, Lemma 4.14 follows. ⊓⊔

Exercise 4.15. Consider a ring 𝑅 and𝑚 ∈ Zwith𝑚 ≤ 1. Suppose that𝐾𝑚 (𝑅[Z𝑘]) = 0
holds for every 𝑘 ≥ 1. Then𝐾𝑖 (𝑅[Z𝑙]) = 𝑁𝐾𝑖 (𝑅[Z𝑙]) = 0 holds for 𝑖 ≤ 𝑚 and 𝑙 ≥ 0.

Theorem 4.16 (The middle and lower 𝐾-theory of 𝑅𝐺 for finite 𝐺 and Artinian
𝑅). Let 𝐺 be a finite group, and let 𝑅 be an Artinian ring. Then:

(i) For every 𝑘 ≥ 0 the map

𝐾0 (𝑅𝐺)
�−→ 𝐾0 (𝑅𝐺 [Z𝑘])

induced by the inclusion is bijective;
(ii) Given any 𝑘 ≥ 0, we have 𝐾𝑛 (𝑅𝐺 [Z𝑘]) = 0 for 𝑛 ≤ −1 and 𝑁𝐾𝑛 (𝑅𝐺 [Z𝑘]) = 0

for 𝑛 ≤ 0.

Proof. (i) Denote by 𝐽 = rad(𝑅𝐻) ⊆ 𝑅𝐻 the Jacobson radical of 𝑅𝐻. Since 𝑅 and
hence 𝑅𝐻 are Artinian, there exists a natural number 𝑙 with 𝐽𝐽𝑙 = 𝐽𝑙 . By Nakayama’s
Lemma, see [916, Proposition 8 in Chapter 2 on page 20], 𝐽𝑙 is {0}, in other words, 𝐽
is nilpotent. The ring 𝑅𝐻/𝐽 is a semisimple Artinian ring, see [610, Definition 20.3
on page 311 and (20.3) on page 312], and in particular regular. Theorem 3.80 (ii)
implies that (𝑅𝐻/𝐽) [Z𝑘] is regular for all 𝑘 ≥ 1. We derive from Theorem 4.7 that
𝐾𝑛 ((𝑅𝐻/𝐽) [Z𝑘]) = 0 for 𝑛 ≤ −1 and 𝑁𝐾𝑛 ((𝑅𝐻/𝐽) [Z𝑘]) for 𝑛 ≤ 0 hold for all
𝑘 ≥ 0. We conclude from Theorem 4.7 by induction over 𝑘 = 0, 1, 2, . . . that the
inclusion 𝑅𝐻/𝐽 → (𝑅𝐻/𝐽) [Z𝑘] induces an isomorphism

𝐾0 (𝑅𝐻/𝐽)
�−→ 𝐾0 ((𝑅𝐻/𝐽) [Z𝑘])

for all 𝑘 ≥ 0.
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The following diagram

𝐾0 (𝑅𝐻) //

��

𝐾0 (𝑅𝐻 [Z𝑘])

��
𝐾0 (𝑅𝐻/𝐽) // 𝐾0 ((𝑅𝐻/𝐽) [Z𝑘])

commutes. Since 𝐽 is a nilpotent two-sided ideal of 𝑅𝐻, 𝐽 [Z𝑘] is a nilpo-
tent two-sided ideal of 𝑅𝐻 [Z𝑘]. Obviously (𝑅𝐻/𝐽) [Z𝑘] can be identified with
(𝑅𝐻 [Z𝑘])/(𝐽 [Z𝑘]). Hence the vertical arrows in the diagram above are bijective
by Lemma 2.125. Since the lower horizontal arrow is bijective for every 𝑘 ≥ 1, the
upper horizontal arrow is bijective for every 𝑘 ≥ 1.
(ii) This follows from assertion (i) and Lemma 4.14 applied in the case 𝑚 = 0 to the
ring 𝑅𝐺. ⊓⊔

4.3 Geometric Interpretation of Negative K-Groups

One possible geometric interpretation of negative 𝐾-groups is in terms of bounded
ℎ-cobordisms.

We consider manifolds𝑊 parametrized over R𝑘 , i.e., manifolds that are equipped
with a surjective proper map 𝑝 : 𝑊 → R𝑘 . Recall that proper map means that
preimages of compact subsets are compact again. We will always assume that the
fundamental group(oid) is bounded, see [797, Definition 1.3]. A map 𝑓 : 𝑊 → 𝑊 ′

between two manifolds parametrized over R𝑘 is called bounded if {𝑝′ ◦ 𝑓 (𝑥) −
𝑝(𝑥) | 𝑥 ∈ 𝑊} is a bounded subset of R𝑘 .

A bounded cobordism (𝑊 ;𝑀0, 𝑓0, 𝑀1, 𝑓1) is defined just as in Section 3.5
but compact manifolds are replaced by manifolds parametrized over R𝑘 and
the parametrization for 𝑀𝑙 is given by 𝑝𝑊 ◦ 𝑓𝑙 . If we assume that the inclu-
sions 𝑖𝑙 : 𝜕𝑘𝑊 → 𝑊 are homotopy equivalences, then there exist deformations
𝑟𝑙 : 𝑊 × 𝐼 → 𝑊 such that 𝑟𝑙 |𝑊×{0} = id𝑊 and 𝑟𝑙 (𝑊 × {1}) ⊂ 𝜕𝑙𝑊 . A bounded
cobordism is called a bounded h-cobordism if the inclusions 𝑖𝑙 are homotopy equiv-
alences and additionally the deformations can be chosen such that the two sets

𝑆𝑙 = {𝑝𝑊 (𝑟𝑙 (𝑥, 𝑡)) − 𝑝𝑊 (𝑟𝑙 (𝑥, 1)) | 𝑥 ∈ 𝑊, 𝑡 ∈ [0, 1]}

are bounded subsets of R𝑘 .
The following theorem, see [797] and [1001, Appendix], contains the

𝑠-Cobordism Theorem 3.47 as a special case, gives another interpretation of ele-
ments in 𝐾0 (Z𝜋) and explains one aspect of the geometric relevance of negative
𝐾-groups.
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Theorem 4.17 (Bounded ℎ-Cobordism Theorem). Suppose that 𝑀0 is parametri-
zed over R𝑘 and satisfies dim𝑀0 ≥ 5. Let 𝜋 be its fundamental group(oid). Equiv-
alence classes of bounded ℎ-cobordisms over 𝑀0 modulo bounded diffeomorphism
relative 𝑀0 correspond bijectively to elements in 𝜅1−𝑘 (𝜋) where

𝜅1−𝑘 (𝜋) =


Wh(𝜋) if 𝑘 = 0;
𝐾0 (Z𝜋) if 𝑘 = 1;
𝐾1−𝑘 (Z𝜋) if 𝑘 ≥ 2.

4.4 Variants of the Farrell-Jones Conjecture for Negative
𝑲-Groups

In this section we state variants of the Farrell-Jones Conjecture for negative𝐾-theory.
The Farrell-Jones Conjecture itself will give a complete answer for arbitrary rings
but to formulate the full version some additional effort will be needed. If one assumes
that 𝑅 is regular and 𝐺 torsionfree or that 𝑅 = Z, the conjecture reduces to an easy
to formulate statement, which we will present next.

Conjecture 4.18 (The Farrell-Jones Conjecture for negative 𝐾-theory and reg-
ular coefficient rings). Let 𝑅 be a regular ring and 𝐺 be a group such that for every
finite subgroup 𝐻 ⊆ 𝐺 the element |𝐻 | · 1𝑅 of 𝑅 is invertible in 𝑅. Then we get

𝐾𝑛 (𝑅𝐺) = 0 for 𝑛 ≤ −1.

Exercise 4.19. Prove that Conjecture 4.18 is true if 𝐺 is finite.

Conjecture 4.20 (The Farrell-Jones Conjecture for negative 𝐾-theory of the
ring of integers in an algebraic number field). Let 𝑅 be the ring of integers in an
algebraic number field. Then, for every group 𝐺, we have

𝐾𝑛 (𝑅𝐺) = 0 for 𝑛 ≤ −2,

and the canonical map

colim𝐻∈SubFIN (𝐺) 𝐾−1 (𝑅𝐻) � // 𝐾−1 (𝑅𝐺)

is an isomorphism.

Conjecture 4.21 (The Farrell-Jones Conjecture for negative 𝐾-theory and
Artinian rings as coefficient rings). Let 𝐺 be a group, and let 𝑅 be an Artinian
ring. Then we have

𝐾𝑛 (𝑅𝐺) = 0 for 𝑛 ≤ −1.
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4.5 Survey on Computations of Negative 𝑲-Groups for Finite
Groups

The following result is due to Carter [217]. See also [102, Theorem 10.6 on page 695]
and [626].

Theorem 4.22 (Negative 𝐾-theory of 𝑅𝐺 for a finite group 𝐺 and a Dedekind
domain of characteristic zero 𝑅). Let 𝑅 be a Dedekind domain of characteristic
zero. Let 𝑘 be its fraction field. For any maximal ideal 𝑃 of 𝑅, let 𝑘𝑃 be the 𝑃-adic
completion. Let 𝐺 be a finite group of order 𝑛 = |𝐺 |.

For a field 𝐹 we denote by 𝑟𝐹 (𝐺) the number of isomorphism classes of irreducible
representations of 𝐺 over the field 𝐹. Then:

(i) 𝐾𝑚 (𝑅𝐺) = 0 for 𝑚 ≤ −2;
(ii) 𝐾−1 (𝑅𝐺) is a finitely generated group;

(iii) Suppose that no prime divisor of 𝑛 is invertible in 𝑅. Then the rank 𝑟 of the
finitely generated abelian group 𝐾−1 (𝑅𝐺) is given by

𝑟 = 1 − 𝑟𝑘 (𝐺) +
∑︁
𝑝 |𝑛𝑅

𝑟𝑘𝑃 (𝐺) − 𝑟𝑅/𝑃 (𝐺)

where the sum runs over all maximal (= non-zero prime) ideals 𝑃 dividing 𝑛𝑅;
(iv) Let 𝑅 be the ring of integers in an algebraic number field 𝑘 . Then

𝐾−1 (𝑅𝐺) = Z𝑟 ⊕ Z/2𝑠

There is an explicit description of the integer 𝑠 in terms of global and local
Schur indices.
If 𝐺 contains a normal abelian subgroup of odd index, then 𝐾−1 (𝑅𝐺) is
torsionfree;

(v) Let 𝐴 be a finite abelian group. Then 𝐾−1 (Z𝐴) vanishes if and only if |𝐴| is a
prime power;

(vi) The group 𝐾−1 (Z𝐺) is torsion if and only if every element of 𝐺 has a prime
power order;

(vii) If the order of |𝐺 | is not divisible by 4 or if 𝐺 contains a normal abelian
subgroup of odd index, then the group 𝐾−1 (Z𝐺) is torsionfree;

(viii) If the order of |𝐺 | is a 𝑝-power for some odd prime 𝑝, then the group 𝐾−1 (Z𝐺)
vanishes.

If 𝑅 = Z, then 𝑟 = 1− 𝑟Q (𝐺) +
∑
𝑝 |𝑛 𝑟Q𝑝 (𝐺) − 𝑟F𝑝 (𝐺) where 𝑝 runs through the

prime numbers dividing 𝑛.
A computation of 𝐾−1 (Z𝐺) for all finite groups of order ≤ 100 can be found

in Lehner [626]. In particular, 𝐾−1 (Z𝐺) is torsionfree for 𝑛 ≤ 15 and the smallest
group for which 𝐾−1 (Z𝐺) is not torsionfree is the generalized quaternion group𝑄16
of order 16. Actually we have 𝐾−1 (Z[𝑄16]) � Z/2.
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4.6 Notes

More information about 𝑁𝐾𝑛 (𝑅𝐺) for all 𝑛 ∈ Z will be given in Theorem 6.17,
Theorem 6.18, Theorem 6.19, and Theorem 6.21.

More information about negative 𝐾-groups can be found for instance in [30, 102,
216, 217, 368, 530, 686, 700, 796, 797, 825, 840, 860, 998].





Chapter 5
The Second Algebraic 𝑲-Group

5.1 Introduction

This chapter is devoted to the second algebraic 𝐾-group.
We give two equivalent definitions, namely, in terms of the Steinberg group and in

terms of the universal central extension of E(𝑅). We extend the long exact sequence
associated to a pullback of rings and to a two-sided ideal beyond 𝐾1 to 𝐾2. The long
exact sequence associated to a pullback of rings cannot be extended to the left to
higher algebraic 𝐾-groups, whereas this will be done for the long exact sequence
associated to a two-sided ideal later.

We will introduce the second Whitehead group and state a variant of the Farrell-
Jones Conjecture for it, namely, that it vanishes for torsionfree groups. Finally we
give some information about computations of the second algebraic 𝐾-group.

5.2 Definition and Basic Properties of 𝑲2(𝑹)

Definition 5.1 (𝑛-th Steinberg group). For 𝑛 ≥ 3 and a ring 𝑅, define its 𝑛-th
Steinberg group St𝑛 (𝑅) to be the group given by generators and relations as follows.
The set of generators is

{𝑥𝑟𝑖, 𝑗 | 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} and 𝑟 ∈ 𝑅}.

The relations are

(i) 𝑥𝑟
𝑖, 𝑗
· 𝑥𝑠
𝑖, 𝑗

= 𝑥𝑟+𝑠
𝑖, 𝑗

for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} and 𝑟, 𝑠 ∈ 𝑅;
(ii) [𝑥𝑟

𝑖, 𝑗
, 𝑥𝑠
𝑗,𝑘
] = 𝑥𝑟𝑠

𝑖,𝑘
for 𝑖, 𝑗 , 𝑘 ∈ {1, 2, . . . , 𝑛} with 𝑖 ≠ 𝑘 and 𝑟, 𝑠 ∈ 𝑅;

(iii) [𝑥𝑟
𝑖, 𝑗
, 𝑥𝑠
𝑘,𝑙
] = 1 for 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, 2, . . . , 𝑛} with 𝑖 ≠ 𝑙, 𝑗 ≠ 𝑘 , and 𝑟, 𝑠 ∈ 𝑅,

where [𝑎, 𝑏] denotes the commutator 𝑎𝑏𝑎−1𝑏−1.
The idea behind the Steinberg group is that for every ring 𝑅 the corresponding

relations hold in GL𝑛 (𝑅) if we replace 𝑥𝑟
𝑖, 𝑗

by the matrix 𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗) appearing
in Section 3.2. Hence we get a canonical group homomorphism

𝜙𝑅𝑛 : St𝑛 (𝑅) → GL𝑛 (𝑅), 𝑥𝑟𝑖, 𝑗 ↦→ 𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗).

The image of 𝜙𝑅𝑛 is by definition the subgroup of GL𝑛 (𝑅) generated by all elements
of the form 𝐼𝑛 + 𝑟 · 𝐸𝑛 (𝑖, 𝑗) for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} and 𝑟 ∈ 𝑅. There is an obvious
inclusion St𝑛 (𝑅) → St𝑛+1 (𝑅) sending a generator 𝑥𝑟

𝑖, 𝑗
to 𝑥𝑟

𝑖, 𝑗
.

129
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Definition 5.2 (Steinberg group). Define the Steinberg group St(𝑅) to be the union
of the groups St𝑛 (𝑅).

The set of maps {𝜙𝑅𝑛 | 𝑛 ≥ 3} defines a homomorphism of groups

𝜙𝑅 : St(𝑅) → GL(𝑅).(5.3)

The image of 𝜙𝑅 is just the group E(𝑅), which agrees with [GL(𝑅),GL(𝑅)], see
Lemma 3.11.

Definition 5.4 (𝐾2 (𝑅)). Define the algebraic 𝐾2-group 𝐾2 (𝑅) of a ring 𝑅 to be the
kernel of the group homomorphism 𝜙𝑅 : St(𝑅) → GL(𝑅) of (5.3).

Obviously a ring homomorphism 𝑓 : 𝑅 → 𝑆 induces a map of abelian groups

(5.5) 𝐾2 ( 𝑓 ) : 𝐾2 (𝑅) → 𝐾2 (𝑆).

Exercise 5.6. Show that there is a natural exact sequence

0→ 𝐾2 (𝑅) → St(𝑅) → GL(𝑅) → 𝐾1 (𝑅) → 0.

5.3 The Steinberg Group as Universal Extension

A central extension of a group 𝑄 is a surjective group homomorphism 𝜙 : 𝐺 → 𝑄

with 𝑄 as target such that the kernel of 𝜙 is contained in the center {𝑔 ∈ 𝐺 |
𝑔′𝑔 = 𝑔𝑔′ for all 𝑔′ ∈ 𝐺} of 𝐺. A central extension 𝜙 : 𝑈 → 𝑄 of a group 𝑄
is called universal if for every central extension 𝜓 : 𝐺 → 𝑄 there is precisely one
group homomorphism 𝑓 : 𝑈 → 𝐺 with 𝜓 ◦ 𝑓 = 𝜙. If a group 𝑄 admits a universal
central extension, it is unique up to unique isomorphism. A group 𝑄 possesses a
universal central extension if and only if it is perfect, i.e., it is equal to its commutator
subgroup, see [727, Theorem 5.7 on page 44] or [860, Theorem 4.1.3 on page 163].
In this case the kernel of the universal central extension 𝜙 : 𝑈 → 𝑄 is isomorphic to
the second homology 𝐻2 (𝑄;Z) of 𝑄, see [727, Corollary 5.8 on page 46] or [860,
Theorem 4.1.3 on page 163]. A central extension 𝜙 : 𝐺 → 𝑄 of a group𝑄 is universal
if and only if 𝐺 is perfect and every central extension 𝜓 : 𝐻 → 𝐺 of 𝐺 splits, i.e.,
there is a homomorphism 𝑠 : 𝐺 → 𝐻 with 𝜓 ◦ 𝑠 = id𝐺 , see [727, Theorem 5.3 on
page 43] or [860, Theorem 4.1.3 on page 163]. A central extension 𝜙 : 𝐺 → 𝑄 of
a perfect group 𝑄 is universal if and only if 𝐻1 (𝐺;Z) = 𝐻2 (𝐺;Z) = 0, see [860,
Corollary 4.1.18 on page 177]. The proof of the next result can be found in [727,
Theorem 5.10 on page 47] or [860, Theorem 4.2.7 on page 190].

Theorem 5.7 (𝐾2 (𝑅) and universal central extensions of E(𝑅)). The canonical
epimorphism 𝜙𝑅 : St(𝑅) → E(𝑅) coming from the map (5.3) is the universal central
extension of E(𝑅).

Exercise 5.8. Prove 𝐾2 (𝑅) � 𝐻2 (E(𝑅);Z).
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5.4 Extending Exact Sequences of Pullbacks and Ideals

Theorem 5.9 (Mayer-Vietoris sequence for 𝐾-theory in degree ≤ 2 of a pullback
of rings). Consider a pullback of rings

𝑅
𝑖1 //

𝑖2

��

𝑅1

𝑗1

��
𝑅2

𝑗2
// 𝑅0

such that both 𝑗1 and 𝑗2 are surjective. Then there exists a natural exact sequence,
infinite to the right,

𝐾2 (𝑅)
(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾2 (𝑅1) ⊕ 𝐾2 (𝑅2)

( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾2 (𝑅0)
𝜕2−−→ 𝐾1 (𝑅)

(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾1 (𝑅1) ⊕ 𝐾1 (𝑅2)
( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾1 (𝑅0)

𝜕1−−→ 𝐾0 (𝑅)
(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾0 (𝑅1) ⊕ 𝐾0 (𝑅2)

( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾0 (𝑅0)
𝜕0−−→ 𝐾−1 (𝑅)

(𝑖1 )∗⊕(𝑖2 )∗−−−−−−−−→ 𝐾−1 (𝑅1) ⊕ 𝐾−1 (𝑅2)
( 𝑗1 )∗−( 𝑗2 )∗−−−−−−−−−→ 𝐾−1 (𝑅0)

𝜕−1−−→ · · · .

Proof. See [727, Theorem 6.4 on page 55] for the extension to 𝐾2. The extension for
negative 𝐾-theory follows for example from the fact that the passage going from 𝑅

to 𝑅[Z] sends a pullback of rings to a pullback of rings. ⊓⊔

Remark 5.10 (Surjectivity assumption is necessary). Swan [942, Corollary 1.2]
has shown that the assumption that both 𝑗1 and 𝑗2 are surjective in Theorem 5.9
is necessary. It is not enough that 𝑗1 or 𝑗2 is surjective, in contrast to the weaker
Theorem 3.86.

Remark 5.11 (No exact sequence for pullbacks in higher degrees). Swan [942,
Corollary 6.9] has shown that it is not possible to define a functor 𝐾3 so that the
natural exact sequence appearing in Theorem 5.9 can be extended to 𝐾3.

Theorem 5.12 (Exact sequence of a two-sided ideal 𝐾-theory in degree ≤ 2).
Given a two-sided ideal 𝐼 ⊂ 𝑅, we obtain an exact sequence, natural in 𝐼 ⊆ 𝑅 and
infinite to the right

𝐾2 (𝑅)
pr∗−−→ 𝐾2 (𝑅/𝐼)

𝜕2−−→ 𝐾1 (𝑅, 𝐼)
𝑗1−→ 𝐾1 (𝑅)

pr∗−−→ 𝐾1 (𝑅/𝐼)
𝜕1−−→ 𝐾0 (𝑅, 𝐼)

𝑗0−→ 𝐾0 (𝑅)
pr∗−−→ 𝐾0 (𝑅/𝐼)

𝜕0−−→ 𝐾−1 (𝑅, 𝐼)
𝑗−1−−→ 𝐾−1 (𝑅)

pr∗−−→ · · ·

where pr : 𝑅 → 𝑅/𝐼 is the projection.
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Proof. See [727, Theorem 6.2 on page 54], [860, Theorem 3.3.4. on page 155 and
Theorem 4.3.1 on page 200], or [998, Theorem 5.7.1 in Section III.5 on page 223].

⊓⊔

Remark 5.13 (Dependence of𝐾𝑛 (𝑅, 𝐼) on 𝑅). The group𝐾𝑛 (𝑅, 𝐼) can be identified
for 𝑛 ≤ 0 with 𝐾𝑛 (𝐼), see Definition 3.90, and hence depends only on the structure
of 𝐼 as a ring without unit but not on the embedding 𝐼 ⊆ 𝑅. But for 𝑛 ≥ 1 the group
𝐾𝑛 (𝑅, 𝐼) does depend on the embedding 𝐼 ⊆ 𝑅, see Example 3.94.

The sequence appearing in Theorem 5.12 is indeed an extension of the long exact
sequence appearing in Theorem 3.89.

Often one wants to get information about 𝐾2 in order to compute 𝐾1-groups using
for instance Theorem 5.12. This is illustrated by the following example.

Example 5.14. Let 𝑅 be the ring of integers in an algebraic number field, and let
𝑃 be a non-zero prime ideal. Then the exact sequence appearing in Theorem 5.12
induces an exact sequence

𝐾2 (𝑅/𝑃) → 𝑆𝐾1 (𝑅, 𝑃) → 𝑆𝐾1 (𝑅) → 𝑆𝐾1 (𝑅/𝑃)

where 𝑆𝐾1 (𝑅) has been defined in Definition 3.15 and we put:

𝑆𝐾1 (𝑅, 𝑃) := (SL(𝑅) ∩ GL(𝑅, 𝑃))/E(𝑅, 𝑃)
� ker

(
det : GL(𝑅, 𝑃) → {𝑟 ∈ 𝑅 | 𝑟 ≡ 1 mod 𝑃}

)
.

Since 𝑅/𝑃 is a finite field, 𝑆𝐾1 (𝑅/𝑃) and 𝐾2 (𝑅/𝑃) vanish by Theorem 3.17 and
Theorem 5.18 (v). Hence we obtain an isomorphism

𝑆𝐾1 (𝑅, 𝑃)
�−→ 𝑆𝐾1 (𝑅).

The group 𝑆𝐾1 (𝑅) vanishes by [727, Corollary 16.3]. Hence also 𝑆𝐾1 (𝑅, 𝑃) van-
ishes.

Example 5.15 (𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) for 𝑛 ≤ 1 and a prime 𝑝). Let 𝑝 be a prime
number. We want to show

𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) = 0 for 𝑛 ≤ −1 and 𝑘 ≥ 0

and that 𝐾0 (Z[Z/𝑝 × Z𝑘]) and 𝐾1 (Z[Z/𝑝 × Z𝑘]) are finitely generated. All of
these statements except the claim for 𝐾1 (Z[Z/𝑝 × Z𝑘]) have already been proved in
Example 4.10. The same method of proof applies to this case, since Theorem 5.9
yields the exact sequence

𝐾2 (F𝑝 [Z𝑘]) → 𝐾1 (Z[Z/𝑝 × Z𝑘]) → 𝐾1 (Z[Z𝑘]) ⊕ 𝐾1 (Z[exp(2𝜋𝑖/𝑝)] [Z𝑘])

and 𝐾2 (F𝑝 [Z𝑘]), 𝐾1 (Z[Z𝑘]), and 𝐾1 (Z[exp(2𝜋𝑖/𝑝)]) are finitely generated abelian
groups by Theorem 4.7, as 𝐾𝑚 (F𝑝) for 𝑚 = 0, 1, 2, 𝐾𝑚 (Z) for 𝑚 = 0, 1, and
𝐾𝑚 (Z[exp(2𝜋𝑖/𝑝)]) for 𝑚 = 0, 1 are finitely generated and 𝐾𝑚 (F𝑝), 𝐾𝑚 (Z), and
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𝐾𝑚 (Z[exp(2𝜋𝑖/𝑝)]) vanish for 𝑚 ≤ −1 because of Example 2.4, Theorem 2.23,
Theorem 3.17, Theorem 3.21, Theorem 3.80 (i) Theorem 4.7, and Theorem 5.18 (iv).

5.5 Steinberg Symbols

Let 𝑅 be a commutative ring and 𝑢, 𝑣 ∈ 𝑅× . Consider the elements 𝑑1,2 (𝑢), 𝑑1,3 (𝑣) ∈
E(𝑅) given by the invertible (3, 3)-matrices

©«
𝑢 0 0
0 𝑢−1 0
0 0 1

ª®¬ and ©«
𝑣 0 0
0 1 0
0 0 𝑣−1

ª®¬ .
Let 𝑑1,2 (𝑢) and 𝑑1,3 (𝑣) be any preimages of 𝑑1,2 (𝑢) and 𝑑1,3 (𝑣) under the canonical
map 𝜙𝑅 : St(𝑅) → E(𝑅). Then the commutator [𝑑1,2 (𝑢), 𝑑1,3 (𝑣)] in St(𝑅) defines
an element in the kernel of 𝜙𝑅 : St(𝑅) → E(𝑅) and hence in 𝐾2 (𝑅). It depends only
on 𝑢 and 𝑣. The proof of the facts above can be found for instance in [860, page 192].

Definition 5.16 (Steinberg symbol). Let 𝑅 be a commutative ring and 𝑢, 𝑣 ∈ 𝑅× .
The element in 𝐾2 (𝑅) given by the construction above is called the Steinberg symbol
of 𝑢 and 𝑣 and is denoted by {𝑢, 𝑣}.

Exercise 5.17. Prove that the Steinberg symbol of Definition 5.16 is well-defined.

Theorem 5.18 (Properties of the Steinberg symbol). Let 𝑅 be a commutative ring.
Then:

(i) The Steinberg symbol defines a bilinear skew-symmetric pairing

𝑅× × 𝑅× → 𝐾2 (𝑅), (𝑢, 𝑣) ↦→ {𝑢, 𝑣},

i.e., {𝑢1 · 𝑢2, 𝑣} = {𝑢1, 𝑣} + {𝑢2, 𝑣} and {𝑢, 𝑣} = −{𝑣, 𝑢} for all 𝑢1, 𝑢2, 𝑢, 𝑣 in
𝑅×;

(ii) For 𝑢 ∈ 𝑅× we have {𝑢,−𝑢} = 0;
(iii) If for 𝑢 ∈ 𝑅× also 1 − 𝑢 ∈ 𝑅× , then {𝑢, 1 − 𝑢} = 0;
(iv) (Matsumoto’s Theorem) If 𝐹 is a field, then 𝐾2 (𝐹) is isomorphic to the abelian

group given by the generators {𝑢, 𝑣} for 𝑢, 𝑣 ∈ 𝐹× and the relations:

(a) {𝑢, 1 − 𝑢} = 0 for 𝑢 ∈ 𝐹 with 𝑢 ≠ 0, 1;
(b) {𝑢1 · 𝑢2, 𝑣} = {𝑢1, 𝑣} + {𝑢2, 𝑣} for 𝑢1, 𝑢2, 𝑣 ∈ 𝐹×;
(c) {𝑢, 𝑣1 · 𝑣2} = {𝑢, 𝑣1} + {𝑢, 𝑣2} for 𝑢, 𝑣1, 𝑣2 ∈ 𝐹×;

(v) If 𝐹 is a finite field, then 𝐾2 (𝐹) = 0;
(vi) We have 𝐾2 (Z) = Z/2. A generator is given by the Steinberg symbol {−1,−1};

(vii) Let𝑚 ≥ 2 be an integer. If𝑚 ≠ 0 mod 4, then𝐾2 (Z/𝑚) = {0}. If𝑚 = 0 mod 4,
then 𝐾2 (Z/𝑚) = Z/2 and a generator is given by the Steinberg symbol {1, 1};
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(viii) (Tate) We have 𝐾2 (Q) = Z/2 ×∏
𝑝 F
×
𝑝 where 𝑝 runs through the odd prime

numbers;
(ix) (Bass, Tate) Let 𝑅 be a Dedekind domain with quotient field 𝐹. Then there is

an exact sequence

𝐾2 (𝐹) →
⊕
𝑃

𝐾1 (𝑅/𝑃) → 𝐾1 (𝑅) → 𝐾1 (𝐹)

→
⊕
𝑃

𝐾0 (𝑅/𝑃) → 𝐾0 (𝑅) → 𝐾0 (𝐹) → 0,

where 𝑃 runs through the maximal ideals of 𝑅.

Proof. (i) See [727, Theorem 8.2 on page 64] or [860, Lemma 4.2.14 on page 194].
(ii) and (iii) See [727, Theorem 9.8 on page 74] or [860, Theorem 4.2.17 on page 197].
(iv) See [727, Theorem 11.1 on page 93] or [860, Theorem 4.3.15 on page 214].
(v) See [727, Theorem 9.13 on page 78] or [860, Theorem 4.3.13 and Remark 4.3.14
on page 213].
(vi) See [727, Corollary 10.2 on page 81].
(vii) See [727, Corollary 10.8 on page 92], [307, Theorem 5.1], and [860, Exer-
cise 4.3.19 on page 217].
(viii) See [727, Theorem 11.6 on page 101].
(ix) See [727, Corollary 13.1 on page 123] and [102, pages 702, 323]. ⊓⊔

5.6 The Second Whitehead Group

Let 𝑅 be a ring. Consider 𝑢 ∈ 𝑅× and integers 𝑖, 𝑗 ≥ 1. If 𝑥𝑢
𝑖, 𝑗

is the canonical
generator of St(𝑅), see Definition 5.1, then define

𝑤𝑢𝑖, 𝑗 := 𝑥𝑢𝑖, 𝑗𝑥
−𝑢−1

𝑗 ,𝑖 𝑥𝑢𝑖 𝑗 ∈ St(𝑅).

Let 𝐺 be a group. Let 𝑊𝐺 be the subgroup of St(Z𝐺) generated by all elements of
the shape 𝑤𝑔

𝑖, 𝑗
for 𝑔 ∈ 𝐺 and integers 𝑖, 𝑗 ≥ 1. Recall that we can think of 𝐾2 (Z𝐺)

as a subgroup of St(Z𝐺).

Definition 5.19 (The second Whitehead group). Let 𝐺 be a group. Define the
second Whitehead group of 𝐺 by

Wh2 (𝐺) := 𝐾2 (Z𝐺)/(𝐾2 (Z𝐺) ∩𝑊𝐺).

Exercise 5.20. Show that the second Whitehead group of the trivial group vanishes
using the fact, see [860, Example 4.2.19 on page 198], that 𝑤1,2 (1)4 = {−1,−1}
holds in St(Z).
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Let 𝐼 denote the unit interval [0, 1]. Let𝑀 be a closed smooth manifold. A smooth
pseudoisotopy of 𝑀 is a diffeomorphism ℎ : 𝑀 × 𝐼 → 𝑀 × 𝐼 that restricted to 𝑀 ×
{0} ⊆ 𝑀×𝐼 is the obvious inclusion. The group 𝑃Diff (𝑀) of smooth pseudoisotopies
is the group of all such diffeomorphisms under composition. Pseudoisotopies play an
important role if one tries to understand the homotopy type of the topological group
Diff (𝑀) of self-diffeomorphisms of 𝑀 . Two self-diffeomorphisms 𝑓0, 𝑓1 : 𝑀 → 𝑀

are called isotopic if there is a smooth map ℎ : 𝑀 × [0, 1] → 𝑀 , called an isotopy,
such that ℎ𝑡 : 𝑀 → 𝑀, 𝑥 ↦→ ℎ(𝑥, 𝑡) is a self-diffeomorphism for each 𝑡 ∈ [0, 1] and
ℎ𝑘 = 𝑓𝑘 for 𝑘 = 0, 1. They are called pseudoisotopic if there exists a diffeomorphism
𝐻 : 𝑀 × [0, 1] → 𝑀 × [0, 1] such that 𝐻 (𝑥, 𝑘) = ( 𝑓𝑘 (𝑥), 𝑘) for all 𝑥 ∈ 𝑀 and
𝑘 = 0, 1. If ℎ is an isotopy, then we obtain a pseudoisotopy by𝐻 (𝑥, 𝑘) = (ℎ(𝑥, 𝑘), 𝑘).
Hence isotopic self-diffeomorphisms are pseudoisotopic. The converse is not true in
general, there is no reason why a pseudoisotopy should be level preserving, i.e., it
need not send 𝑀 × {𝑡} to 𝑀 × {𝑡} for every 𝑡 ∈ [0, 1].

In order to decide whether two self-diffeomorphisms are isotopic, it is often very
useful to firstly decide whether they are pseudoisotopic, which is in general easier.

The set of path components 𝜋0 (Diff (𝑀)) of the space Diff (𝑀) agrees with the
set of isotopy classes of self-diffeomorphisms of 𝑀 . The group 𝑃DIFF (𝑀) acts on
Diff (𝑀) by ℎ · 𝑓 := ℎ1 ◦ 𝑓 . If 𝑃DIFF (𝑀) is path-connected, then two pseudoisotopic
diffeomorphisms 𝑀 → 𝑀 are isotopic, since the orbit of the identity id𝑀 : 𝑀 → 𝑀

under the 𝑃DIFF (𝑀)-action consists of the diffeomorphisms 𝑀 → 𝑀 that are
pseudoisotopic to the identity. If 𝑀 is simply connected, 𝑃DIFF (𝑀) is known to be
path connected by a result of Cerf [219, 220] if dim(𝑀) ≥ 5.

The relevance of the second Whitehead group comes from the following result,
see [469, 470].

Theorem 5.21 (Pseudoisotopy and the second Whitehead group). Let 𝑀 be a
smooth closed manifold of dimension ≥ 5. Then there is an epimorphism

𝜋0 (𝑃DIFF (𝑀)) →Wh2 (𝜋1 (𝑀)).

More information about pseudoisotopy and its relation to algebraic 𝐾-theory will
be given in Chapter 7. The Farrell-Jones Conjecture for pseudoisotopy will be stated
as Conjecture 15.63.

5.7 A Variant of the Farrell-Jones Conjecture for the Second
Whitehead Group

Conjecture 5.22 (Farrell-Jones Conjecture for Wh2 (𝐺) for torsionfree 𝐺). Let
𝐺 be a torsionfree group. Then Wh2 (𝐺) vanishes.
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5.8 The Second Whitehead Group of Some Finite Groups

We give some information about 𝐾2 (Z𝐺) and Wh2 (𝐺) for some finite groups.
The group 𝐾2 (𝑅𝐺) is finite for every finite group 𝐺 and every ring of integer 𝑅

in a number field, see [597, Theorem 1.1]. In particular 𝐾2 (Z𝐺) and Wh2 (𝐺) are
finite for any finite group 𝐺.

We have

Wh2 (𝐺) = 0, for 𝐺 = {1},Z/2,Z/3,Z/4;
|Wh2 (Z/6) | ≤ 2;

Wh2 (𝐷6) � Z/2,

where 𝐷6 is the dihedral group of order six. The claim for the finite cyclic groups
follow from [318, page 482] and [928, pages 218 and 221]. We get 𝐾2 (Z𝐷6) �
(Z/2)3 from [928, Theorem 3.1]. This implies Wh2 (𝐷6) � Z/2 as explained in [683,
Theorem 3.2.d.iii].

Given a prime 𝑝, the 𝑝-rank of an abelian group 𝐴 is dimF𝑝 (F𝑝 ⊗Z 𝐴). The
2-rank of the finite abelian group Wh2

(
(Z/2)𝑛

)
is at least (𝑛 − 1) · 2𝑛 − (𝑛+2) (𝑛−1)

2
by [302, Corollary 7]. If 𝑝 is an odd prime, then the 𝑝-rank of the finite abelian group
Wh2

(
(Z/𝑝)𝑛

)
is at least (𝑛 − 1) · (𝑝𝑛 − 1) −

(𝑝+𝑛−1
𝑝

)
− 𝑛(𝑛−1)

2 by [302, Corollary 8].
In particular Wh2

(
(Z/𝑝)𝑛

)
is non-trivial for a prime 𝑝 and 𝑛 ≥ 2.

Some information about 𝐾2 (F𝑝𝐺) for finite groups can be found in [704].

Exercise 5.23. Determine all integers 𝑛 ≥ 1 for which 𝐾𝑖 (Z[Z/𝑛]) for all 𝑖 ≤ 0,
Wh(Z/𝑛), and Wh2 (Z/𝑛) vanish.

5.9 Notes

We have already mentioned that often computations involving 𝐾1 use information
about 𝐾2, since there are various long exact sequences relating 𝐾-groups of different
rings. Examples of such sequences have been given in Theorem 5.9, Theorem 5.12,
and Theorem 5.18 (ix). Another important class of such exact sequences are given
by localization sequences, see [776, Chapter 3].

The second algebraic 𝐾-group of fields also plays a role in number theory, as
for instance explained in [727, Chapters 11, 15, 16], [922, Chapter 8] and [859,
Chapter 4, Section 4]. Keywords are Hilbert symbols, Gauss’ laws of quadratic
reciprocity, Brauer groups, and the Mercurjev-Suslin Theorem. Relations to operator
theory are discussed in [727, Chapter 7], and [859, Chapter 4, Section 4].

Further references to 𝐾2 and the second Whitehead group are [23, 303, 304, 305,
306, 307, 470, 703, 929, 998].



Chapter 6
Higher Algebraic 𝑲-Theory

6.1 Introduction

In this chapter we extend the definition of the algebraic 𝐾-groups 𝐾𝑛 (𝑅) to all
integers 𝑛 ∈ Z.

We first present the plus-construction to define higher algebraic 𝐾-theory and
record the basic properties. We introduce algebraic𝐾-theory with coefficients inZ/𝑘 .
We discuss other constructions of𝐾-theory that apply to more general situations such
as to exact categories or Waldhausen categories. These constructions lead only to
spaces and one can find deloopings which result in spectra whose homotopy groups
are the algebraic 𝐾-groups also in negative degrees. We present the 𝐾-theoretic
Farrell-Jones Conjecture for torsionfree groups and regular rings. We introduce
Mayer-Vietoris sequences for amalgamated free products and Wang sequences for
HNN extensions for the algebraic 𝐾-theory of group rings. The appearance of Nil-
terms in these exact sequences is responsible for some complications concerning
algebraic 𝐾-theory and the Farrell-Jones Conjecture that do not occur in the Baum-
Connes setting. We discuss homotopy 𝐾-theory, a theory that is on the one hand
close to algebraic 𝐾-theory and on the other hand is free of Nil-phenomena. We
briefly explain relations between algebraic 𝐾-theory and cyclic homology.

6.2 The Plus-Construction

Let 𝑅 be a ring. So far the algebraic 𝐾-groups 𝐾𝑛 (𝑅) for 𝑛 ≤ 2 have been described
in a purely algebraic fashion by generators and relations. The definition of the higher
algebraic 𝐾-groups 𝐾𝑛 (𝑅) for 𝑛 ≥ 3 has been achieved topologically, namely, one
assigns to a ring 𝑅 a space 𝐾 (𝑅) and defines 𝐾𝑛 (𝑅) by the 𝑛-th homotopy group
𝜋𝑛 (𝐾 (𝑅)) for 𝑛 ≥ 0. This will coincide with the previous definition for 𝑛 = 0, 1, 2.
There are various definitions of the space 𝐾 (𝑅) that extend to more general settings,
as explained below, which are appropriate in different situations. We briefly recall
the technically less demanding one, the plus-construction.

A space 𝑍 is called acyclic if it has the homology of a point, i.e., the singular
homology with integer coefficients 𝐻𝑛 (𝑍) vanishes for 𝑛 ≥ 1 and is isomorphic to
Z for 𝑛 = 0.

Exercise 6.1. Prove that an acyclic space is path connected and that its fundamental
group 𝜋 is perfect and satisfies 𝐻2 (𝜋;Z) = 0.

137
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In the following we will suppress choices of and questions about base points.
The homotopy fiber hofib( 𝑓 ) of a map 𝑓 : 𝑋 → 𝑌 of path connected spaces has the
property that it is the fiber of a fibration 𝑝 𝑓 : 𝑋 → 𝐸 𝑓 which comes with a homotopy
equivalence ℎ : 𝐸 𝑓 → 𝑋 satisfying 𝑝 𝑓 = 𝑓 ◦ ℎ, see [1006, Theorem 7.30 in Chapter
I.7 on page 42]. The long exact homotopy sequence associated to 𝑓 , see [1006,
Corollary 8.6 in Chapter IV.8 on page 187], looks like

(6.2) · · · 𝜕3−−→ 𝜋2 (hofib( 𝑓 ))
𝜋2 (𝑖)−−−−→ 𝜋2 (𝑋)

𝜋2 ( 𝑓 )−−−−−→ 𝜋2 (𝑌 )
𝜕2−−→ 𝜋1 (hofib( 𝑓 ))

𝜋1 (𝑖)−−−−→ 𝜋1 (𝑋)
𝜋1 ( 𝑓 )−−−−−→ 𝜋1 (𝑌 )

𝜕1−−→ 𝜋0 (hofib( 𝑓 )) → {{•}}.

Definition 6.3 (Acyclic map). Let 𝑋 and 𝑌 be connected 𝐶𝑊-complexes. A map
𝑓 : 𝑋 → 𝑌 is called acyclic if its homotopy fiber hofib( 𝑓 ) is acyclic.

We conclude for an acyclic map 𝑓 : 𝑋 → 𝑌 from the long exact homotopy
sequence (6.2) that 𝑓1 : 𝜋1 (𝑋) → 𝜋1 (𝑌 ) is surjective and its kernel is a perfect
subgroup 𝑃 of 𝜋1 (𝑋), since 𝑃 is a quotient of the perfect group 𝜋1 (hofib( 𝑓 )) and
𝜋0 (hofib( 𝑓 )) consists of one element. Obviously a space 𝑍 is acyclic if and only if
the map 𝑍 → {•} is acyclic.

Definition 6.4 (Plus-construction). Let 𝑋 be a connected 𝐶𝑊-complex and 𝑃 ⊆
𝜋1 (𝑋) be a perfect subgroup. A map 𝑓 : 𝑋 → 𝑋+ to a 𝐶𝑊-complex is called a plus-
construction of 𝑋 relative to 𝑃 if 𝑓 is acyclic and the kernel of 𝑓1 : 𝜋1 (𝑋) → 𝜋1 (𝑋+)
is 𝑃.

The next result is due to Quillen. A proof can be found for instance in [860,
Theorem 5.2.2 on page 266 and Proposition 5.2.4 on page 268].

Theorem 6.5 (Properties of the plus-construction). Let 𝑋 be a connected 𝐶𝑊-
complex and let 𝑃 ⊆ 𝜋1 (𝑋) be a perfect subgroup. Then:

(i) There exists a plus-construction 𝑓 : 𝑋 → 𝑋+ relative to 𝑃. (One can construct
𝑋+ by attaching 2- and 3-cells to 𝑋);

(ii) Let 𝑓 : 𝑋 → 𝑋+ be a plus-construction relative to 𝑃, and let 𝑔 : 𝑋 → 𝑌 be a
map such that the kernel of 𝜋1 (𝑔) : 𝜋1 (𝑋) → 𝜋1 (𝑌 ) contains 𝑃. Then there is a
map 𝑔 : 𝑋+ → 𝑌 which is up to homotopy uniquely determined by the property
that 𝑔 ◦ 𝑓 is homotopic to 𝑔;

(iii) If 𝑓1 : 𝑋 → 𝑋+1 and 𝑓2 : 𝑋 → 𝑋+2 are two plus-constructions for 𝑋 relative to 𝑃,
then there exists a homotopy equivalence 𝑔 : 𝑋+1 → 𝑋+2 which is up to homotopy
uniquely determined by the property 𝑔 ◦ 𝑓1 ≃ 𝑓2;

(iv) If 𝑓 : 𝑋 → 𝑋+ is a plus-construction relative to 𝑃, then 𝜋1 ( 𝑓 ) : 𝜋1 (𝑋) →
𝜋1 (𝑋+) can be identified with the canonical projection 𝜋1 (𝑋) → 𝜋1 (𝑋)/𝑃;

(v) If 𝑓 : 𝑋 → 𝑋+ is a plus-construction, then 𝐻𝑛 ( 𝑓 ;𝑀) : 𝐻𝑛 (𝑋; 𝑓 ∗𝑀) →
𝐻𝑛 (𝑋+;𝑀) is bijective for all 𝑛 ≥ 0 and all local coefficient systems 𝑀 on
𝑋+.
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Remark 6.6 (Perfect radical). Every group𝐺 has a unique largest perfect subgroup
𝑃 ⊆ 𝐺, called the perfect radical of 𝐺. In the following we will always use the
perfect radical of 𝐺 for 𝑃 unless explicitly stated otherwise.

Exercise 6.7. Show that every group has a unique largest perfect subgroup.

Exercise 6.8. Show that E(𝑅) = [GL(𝑅),GL(𝑅)] is the perfect radical of GL(𝑅).

Definition 6.9 (Higher algebraic 𝐾-groups of a ring). Let 𝐵GL(𝑅) → 𝐵GL(𝑅)+
be a plus-construction in the sense of Definition 6.4 for the classifying space 𝐵GL(𝑅)
of GL(𝑅) (relative to the perfect radical of GL(𝑅), which is 𝐸 (𝑅)). Define the 𝐾-
theory space associated to 𝑅

𝐾 (𝑅) := 𝐾0 (𝑅) × 𝐵GL(𝑅)+

where we equip 𝐾0 (𝑅) with the discrete topology. Define the 𝑛-th algebraic 𝐾-group

𝐾𝑛 (𝑅) := 𝜋𝑛 (𝐾 (𝑅)) for 𝑛 ≥ 0.

This definition makes sense because of Theorem 6.5 (i) and (iii). Note that for
𝑛 ≥ 1 we have 𝐾𝑛 (𝑅) = 𝜋𝑛 (𝐵GL(𝑅)+).

Exercise 6.10. Show that the Definition 6.9 of 𝐾𝑛 (𝑅) for 𝑛 = 0, 1 is compatible with
the one of Definitions 2.1 and 3.1.

For 𝑛 = 0, 1, 2, Definition 6.9 is compatible with the previous Definitions 2.1, 3.1,
and 5.4, and we have 𝐾3 (𝑅) � 𝐻3 (St(𝑅)) and 𝐾𝑛 (𝑅) = 𝜋𝑛 (𝐵St(𝑅)+) for 𝑛 ≥ 3,
see [859, Corollary 5.2.8 on page 273], [423].

A ring homomorphism 𝑓 : 𝑅 → 𝑆 induces a group homomorphism GL(𝑅) →
GL(𝑆) and hence maps 𝐵GL(𝑅) → 𝐵GL(𝑆) and 𝐵GL(𝑅)+ → 𝐵GL(𝑆)+. We
have already defined a map 𝐾0 ( 𝑓 ) : 𝐾0 (𝑅) → 𝐾0 (𝑆) in (2.2). Therefore 𝑓 in-
duces a map 𝐾 ( 𝑓 ) : 𝐾 (𝑅) → 𝐾 (𝑆) and hence for every 𝑛 ≥ 0 a map of abelian
groups 𝐾𝑛 ( 𝑓 ) : 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑆). This turns out to be compatible with the pre-
vious definitions for 𝑛 = 0, 1, 2 in (2.2), (3.2), and (5.5). We have also defined
𝐾𝑛 ( 𝑓 ) : 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑆) for 𝑛 ≤ −1 in (4.2). Hence we get a covariant functor from
the category of rings to the category of abelian groups by 𝐾𝑛 (−) for 𝑛 ∈ Z.

Definition 6.11 (Relative 𝐾-groups). Define for a two-sided ideal 𝐼 ⊆ 𝑅 and 𝑛 ≥ 0

𝐾𝑛 (𝑅, 𝐼) := 𝜋𝑛
(
hofib(𝐾 (pr) : 𝐾 (𝑅) → 𝐾 (𝑅/𝐼))

)
for pr : 𝑅 → 𝑅/𝐼 the projection.

The long exact homotopy sequence (6.2) associated to 𝐾 (pr) : 𝐾 (𝑅) → 𝐾 (𝑅/𝐼)
together with Theorem 5.12 implies

Theorem 6.12 (Long exact sequence of a two-sided ideal for higher algebraic
𝐾-theory). Let 𝐼 ⊆ 𝑅 be a two sided ideal. Then there is a long exact sequence,
infinite to both sides,
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· · · 𝜕3−−→ 𝐾2 (𝑅, 𝐼)
𝑗2−→ 𝐾2 (𝑅)

𝐾2 (pr)
−−−−−→ 𝐾2 (𝑅/𝐼)

𝜕2−−→ 𝐾1 (𝑅, 𝐼)
𝑗1−→ 𝐾1 (𝑅)

𝐾1 (pr)
−−−−−→ 𝐾1 (𝑅/𝐼)

𝜕1−−→ 𝐾0 (𝑅, 𝐼)
𝑗0−→ 𝐾0 (𝑅)

𝐾0 (pr)
−−−−−→ 𝐾0 (𝑅/𝐼)

𝜕0−−→ 𝐾−1 (𝑅, 𝐼)
𝑗−1−−→ 𝐾−1 (𝑅)

𝐾−1 (pr)
−−−−−−→ 𝐾−1 (𝑅/𝐼)

𝜕−1−−→ · · · .

The existence of the long exact sequence of a two-sided ideal of Theorem 6.12
has been an important requirement of an extension of middle and lower algebraic
𝐾-theory to higher degrees. It is indeed an extension of the long exact sequences
appearing in Theorem 3.89 and Theorem 5.12.

For more information about the plus-construction we refer for instance to [130],
[859, Chapter 5], [922, Chapter 2].

6.3 Survey on Main Properties of Algebraic 𝑲-Theory of Rings

6.3.1 Compatibility with Finite Products

The basic idea of the proof of the following result for 𝑛 ≥ 1 can be found in [821,
(8) in §2 on page 20]. The case 𝑛 ≤ 1 follows from Lemma 2.12, Lemma 3.9, and
by inspecting Definition 4.1, see also Exercise 4.5.

Theorem 6.13 (Algebraic 𝐾-theory and finite products). Let 𝑅0 and 𝑅1 be rings.
Denote by pr𝑖 : 𝑅0 × 𝑅1 → 𝑅𝑖 for 𝑖 = 0, 1 the projection. Then we obtain for 𝑛 ∈ Z
isomorphisms

𝐾𝑛 (pr0) × 𝐾𝑛 (pr1) : 𝐾𝑛 (𝑅0 × 𝑅1)
�−→ 𝐾𝑛 (𝑅0) × 𝐾𝑛 (𝑅1).

6.3.2 Morita Equivalence

The idea of the proof of the next result is essentially the same as that of Theorem 2.10.

Theorem 6.14 (Morita equivalence for algebraic 𝐾-theory). For every ring 𝑅

and integer 𝑘 ≥ 1 there are for all 𝑛 ∈ Z natural isomorphisms

𝜇𝑛 : 𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (M𝑘 (𝑅)).

6.3.3 Compatibility with Colimits over Directed Sets

We conclude from [821, (12) in §2 on page 20], (at least in the connective setting)
and [900, Lemma 6 in Section 7].
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Theorem 6.15 (Algebraic 𝐾-theory and colimits over directed sets). Let
{𝑅𝑖 | 𝑖 ∈ 𝐼} be a directed system of rings. Then the canonical map

colim𝑖∈𝐼 𝐾𝑛 (𝑅𝑖)
�−→ 𝐾𝑛

(
colim𝑖∈𝐼 𝑅𝑖

)
is bijective for 𝑛 ∈ Z.

Actually, one may consider more generally filtered colimits.

6.3.4 The Bass-Heller-Swan Decomposition

We have already explained the following result for 𝑛 ≤ 1 in Theorem 3.72 and
Theorem 4.3. Definition 3.68 of 𝑁𝐾𝑛 (𝑅) makes sense for every 𝑛 ∈ Z. The proof
for higher algebraic 𝐾-theory can be found in [922, Theorem 9.8 on page 207], see
also [859, Theorem 5.3.30 on page 295]. More general versions where twistings are
allowed and additive categories are considered are presented in [434, 436, 457, 531,
533, 609, 686].

Theorem 6.16 (Bass-Heller-Swan decomposition for algebraic 𝐾-theory).

(i) There are isomorphisms of abelian groups, natural in 𝑅, for 𝑛 ∈ Z

𝑁𝐾𝑛 (𝑅) ⊕ 𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (𝑅[𝑡]);

𝐾𝑛 (𝑅) ⊕ 𝐾𝑛−1 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (𝑅[𝑡, 𝑡−1]).

There is a sequence, which is natural in 𝑅 and exact, for 𝑛 ∈ Z

0→ 𝐾𝑛 (𝑅)
𝐾𝑛 (𝑘+ )⊕−𝐾𝑛 (𝑘− )−−−−−−−−−−−−−−→ 𝐾𝑛 (𝑅[𝑡]) ⊕ 𝐾𝑛 (𝑅[𝑡−1])

𝐾𝑛 (𝑙+ )⊕𝐾𝑛 (𝑙− )−−−−−−−−−−−−→ 𝐾𝑛 (𝑅[𝑡, 𝑡−1]) 𝐶𝑛−−→ 𝐾𝑛−1 (𝑅) → 0

where 𝑘+, 𝑘− , 𝑙+, and 𝑙− are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contraction,
natural in 𝑅;

(ii) If 𝑅 is regular, then

𝑁𝐾𝑛 (𝑅) = {0} for 𝑛 ∈ Z;
𝐾𝑛 (𝑅) = {0} for 𝑛 ≤ −1.

6.3.5 Some Information about NK-groups

The proof of the next result can be found in Weibel [995, Corollary 3.2].
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Theorem 6.17 (𝑁𝐾𝑛 (𝑅) [1/𝑁] vanishes for characteristic 𝑁). Let 𝑅 be a ring of
finite characteristic 𝑁 . Then we get for 𝑛 ∈ Z

𝑁𝐾𝑛 (𝑅) [1/𝑁] = 0.

Theorem 6.18 (Vanishing criterion of 𝑁𝐾𝑛 (𝑅𝐺) for finite groups). Let 𝑅 be a
ring and let 𝐺 be a finite group. Fix 𝑛 ∈ Z. Suppose 𝑁𝐾𝑛 (𝑅) = 0. Then we get

𝑁𝐾𝑛 (𝑅𝐺) [1/|𝐺 |] = 0.

Proof. This follows from Hambleton-Lück [457, Theorem A]. ⊓⊔

The following result is taken from Hambleton-Lück [457, Corollary B].

Theorem 6.19 (𝑝-elementary induction for 𝑁𝐾𝑛 (𝑅𝐺)). Let 𝑅 be a ring and let 𝐺
be a finite group. For all 𝑛 ∈ Z, the sum of the induction maps⊕

𝐸

𝑁𝐾𝑛 (𝑅𝐸) (𝑝) → 𝑁𝐾𝑛 (𝑅𝐺) (𝑝)

is surjective, where 𝐸 runs through all 𝑝-elementary subgroups.

The following theorem due to Prasolov [814] is an extension of a result due to
Farrell [351] for 𝑛 = 1 to 𝑛 ≥ 1.

Theorem 6.20 (𝑁𝐾𝑛 (𝑅) is trivial or infinitely generated for 𝑛 ≥ 1). Let 𝑅 be a
ring. Then 𝑁𝐾𝑛 (𝑅) is either trivial or infinitely generated as abelian group for 𝑛 ≥ 1.

Theorem 6.21 (Vanishing of 𝑁𝐾𝑛 (Z[𝐺 × Z𝑘]) for 𝑛 ≤ 1, 𝑘 ≥ 0 and finite 𝐺
of square-free order). Let 𝐺 be a finite group whose order is square-free. Then
𝑁𝐾𝑛 (Z[𝐺 × Z𝑘]) = 0 for 𝑛 ≤ 1 and 𝑘 ≥ 0.

Proof. Fix a prime 𝑝. We know from Example 5.15 that 𝐾1 (Z[Z/𝑝 × Z𝑘]) is
finitely generated for every 𝑘 ≤ 0. We conclude from Theorem 6.16 that
𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) is finitely generated for every 𝑛 ≤ 1 and 𝑘 ≥ 0 and hence that
𝑁𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) is finitely generated for every 𝑛 ≤ 1 and 𝑘 ≥ 0. Theorem 6.20
implies that 𝑁𝐾𝑛 (Z[Z/𝑝 × Z𝑘]) is trivial every 𝑛 ≤ 1 and 𝑘 ≥ 0.

We conclude from [457, Theorem A] that for any ring 𝑅, any finite group 𝐺, and
any prime number 𝑝, there is a surjection⊕

𝑃

𝑁𝐾𝑛 (𝑅𝑃) (𝑝) → 𝑁𝐾𝑛 (𝑅𝐺) (𝑝) ,

where 𝑃 runs through the 𝑝-subgroups of𝐺. This implies that 𝑁𝐾𝑛 (𝑅𝐺) vanishes if
𝑁𝐾𝑛 (𝑅𝑃) (𝑝) vanishes for every prime 𝑝 and every 𝑝-subgroup 𝑃 of𝐺. In particular,
𝑁𝐾𝑛 (𝑅𝐺) vanishes for a finite group 𝐺 of square-free order if 𝑁𝐾𝑛 (𝑅[Z/𝑝]) (𝑝)
vanishes for every prime number 𝑝. Put 𝑅 = Z[Z𝑘]. Then 𝑅[Z/𝑝] = Z[Z/𝑝 × Z𝑘]
and 𝑅𝐺 = Z[𝐺 × Z𝑘], and we know already that 𝑁𝐾𝑛 (𝑅[Z/𝑝]) (𝑝) vanishes for
every prime number 𝑝, 𝑛 ≤ 1 and 𝑘 ≥ 0. Hence 𝑁𝐾𝑛 (Z[𝐺 × Z𝑘]) = 𝑁𝐾𝑛 (𝑅𝐺)
vanishes for 𝑛 ≤ 1 and 𝑘 ≥ 0 if 𝐺 is a finite group of square-free order. ⊓⊔
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Theorem 6.21 has been proved in the case 𝑘 = 0 by Harmon [467].

Exercise 6.22. Let 𝐺 be a finite group of square-free order. Show for all 𝑘 ≥ 1

𝐾𝑛 (Z[𝐺 × Z𝑘]) =


𝐾1 (Z𝐺) ⊕ 𝐾0 (Z𝐺)𝑘 ⊕ 𝐾−1 (Z𝐺)𝑘 (𝑘−1)/2 if 𝑛 = 1;
𝐾0 (Z𝐺) ⊕ 𝐾−1 (Z𝐺)𝑘 if 𝑛 = 0;
𝐾−1 (Z𝐺) if 𝑛 = −1;
{0} if 𝑛 ≤ −2.

6.3.6 Algebraic 𝑲-Theory of Finite Fields

The following result has been proved by Quillen [820].

Theorem 6.23 (Algebraic 𝐾-theory of finite fields). Let F𝑞 be a finite field of order
𝑞. Then 𝐾𝑛 (F𝑞) vanishes if 𝑛 = 2𝑘 for some integer 𝑘 ≥ 1, and is a finite cyclic
group of order 𝑞𝑘 − 1 if 𝑛 = 2𝑘 − 1 for some integer 𝑘 ≥ 1.

Recall that𝐾0 (𝐹) � Z and𝐾𝑛 (𝐹) = {0} for 𝑛 ≤ −1 if 𝐹 is a field, see Example 2.4
and Theorem 4.7.

6.3.7 Algebraic 𝑲-Theory of the Ring of Integers in a Number Field

The computation of the higher algebraic 𝐾-groups of Z or, more generally, of the
ring of integers 𝑅 in an algebraic number field 𝐹, is very hard. Quillen [820] showed
that these are finitely generated as abelian groups. Their ranks as abelian groups have
been determined by Borel [152].

Theorem 6.24 (Rational Algebraic 𝐾-theory of ring of integers of number
fields). Let 𝑅 be a ring of integers in an algebraic number field. Let 𝑟1 be the
number of distinct embeddings of 𝐹 into R and let 𝑟2 be the number of distinct
conjugate pairs of embeddings of 𝐹 into C with image not contained in R. Then

𝐾𝑛 (𝑅) ⊗Z Q �



{0} 𝑛 ≤ −1;
Q 𝑛 = 0;
Q𝑟1+𝑟2−1 𝑛 = 1;
Q𝑟1+𝑟2 𝑛 ≥ 2 and 𝑛 = 1 mod 4;
Q𝑟2 𝑛 ≥ 2 and 𝑛 = 3 mod 4;
{0} 𝑛 ≥ 2 and 𝑛 = 0 mod 2.

We have 𝐾𝑛 (Z) = {0} for 𝑛 ≤ −1 and the first values of 𝐾𝑛 (Z) for 𝑛 =

0, 1, 2, 3, 4, 5, 6, 7 are given by Z, Z/2, Z/2, Z/48, {0}, Z, {0}, Z/240.
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The Lichtenbaum-Quillen Conjecture makes a prediction about the torsion,
see [630, 631], relating the algebraic 𝐾-groups to number theory via the zeta-
function. We refer to the survey article of Weibel [994], where a complete picture
about the algebraic 𝐾-theory of ring of integers in algebraic number fields and in
particular of 𝐾∗ (Z) is given and a list of relevant references can be found. See also
Weibel [998, Section VI.10 on pages 527ff].

An outline of how the next corollary follows from Theorem 6.49 can be found
in [821, page 29] and [859, page 294]. It is a basic tool for computations.

Corollary 6.25. Let 𝑅 be a Dedekind domain with quotient field 𝐹. Then there is an
exact sequence

· · · → 𝐾𝑛+1 (𝐹) →
⊕
𝑃

𝐾𝑛 (𝑅/𝑃) → 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝐹) →
⊕
𝑃

𝐾𝑛−1 (𝑅/𝑃)

· · · → 𝐾1 (𝐹) →
⊕
𝑃

𝐾0 (𝑅/𝑃) → 𝐾0 (𝑅) → 𝐾0 (𝐹) → 0

where 𝑃 runs through the maximal ideals of 𝑅.

Exercise 6.26. Consider the part of the sequence

𝐾1 (Z) → 𝐾1 (Q)
𝜕1−−→

⊕
𝑝

𝐾0 (F𝑝) → 𝐾0 (Z) → 𝐾0 (Q) → 0

of Corollary 6.25 for 𝑅 = Z. Compute the five terms appearing in it. Guess what the
map 𝜕1 is and determine the others.

Exercise 6.27. Show that the map 𝐾𝑛 (Z) → 𝐾𝑛 (Q) is injective if 𝑛 = 2𝑘 for 𝑘 ≥ 1,
is surjective if 𝑛 = 2𝑘 − 1 for 𝑘 ≥ 2, and rationally bijective for 𝑛 ≥ 2.

6.4 Algebraic 𝑲-Theory with Coefficients

By invoking the Moore space associated to Z/𝑘 , one can introduce 𝐾-theory mod 𝑘 ,
denoted by 𝐾𝑛 (𝑅;Z/𝑘), for any integer 𝑘 ≥ 2 and every 𝑛 ∈ Z. Its main feature is
that there exists a long exact sequence

(6.28) · · · → 𝐾𝑛+1 (𝑅;Z/𝑘) → 𝐾𝑛 (𝑅)
𝑘 ·id−−−→ 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑅;Z/𝑘)

→ 𝐾𝑛−1 (𝑅)
𝑘 ·id−−−→ 𝐾𝑛−1 (𝑅) → 𝐾𝑛−1 (𝑅;Z/𝑘) → · · · .

The next theorem is due to Suslin [934].

Theorem 6.29 (Algebraic 𝐾-theory mod 𝑘 of algebraically closed fields). The
inclusion of algebraically closed fields induces isomorphisms on 𝐾∗ (−;Z/𝑘).
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Let 𝑝 be a prime number. Quillen [820] has computed the algebraic 𝐾-groups for
any algebraic extension of the field F𝑝 of 𝑝 elements for every prime 𝑝. One can
determine 𝐾𝑛 (F𝑝;Z/𝑘) for the algebraic closure F𝑝 of F𝑝 from (6.28). Hence one
obtains 𝐾𝑛 (𝐹;Z/𝑘) for any algebraically closed field of prime characteristic 𝑝 by
Suslin’s Theorem 6.29.

The next theorem is due to Suslin [935]. We will explain the topological 𝐾-groups
𝐾TOP
𝑛 (R) and 𝐾TOP

𝑛 (C) of the 𝐶∗-algebras R and C in Subsection 10.3.2. There are
mod 𝑘 versions 𝐾TOP

𝑛 (R;Z/𝑘) and 𝐾TOP
𝑛 (C;Z/𝑘), for which a long exact sequence

analogous to that of (6.28) exists.

Theorem 6.30 (Algebraic and topological 𝐾-theory mod 𝑘 for R and C). The
comparison map from algebraic to topological 𝐾-theory induces for all integers
𝑘 ≥ 2 and all 𝑛 ≥ 0 isomorphisms

𝐾𝑛 (R;Z/𝑘) �−→ 𝐾TOP
𝑛 (R;Z/𝑘);

𝐾𝑛 (C;Z/𝑘) �−→ 𝐾TOP
𝑛 (C;Z/𝑘).

Generalizations of Theorem 6.30 to𝐶∗-algebras will be discussed in Section 10.7.
Since 𝐾TOP

𝑛 (C) is Z for 𝑛 even and vanishes for 𝑛 odd and for every algebraically
closed field 𝐹 of characteristic 0 we have an injectionQ→ 𝐹 for the algebraic closure
Q of Q, Theorem 6.29 and Theorem 6.30 imply for every algebraically closed field
𝐹 of characteristic zero

𝐾𝑛 (𝐹;Z/𝑘) �

Z/𝑘 𝑛 ≥ 0, 𝑛 even;
{0} 𝑛 ≥ 1, 𝑛 odd.
{0} 𝑛 ≤ −1.

Exercise 6.31. Using the fact that 𝐾TOP
𝑛 (R) is 8-periodic and its values for

𝑛 = 0, 1, 2, 3, 4, 5, 6, 7 are given by Z, Z/2, Z/2, {0}, Z, {0}, {0}, {0}, compute
𝐾𝑛 (R;Z/𝑘) and 𝐾TOP

𝑛 (R;Z/𝑘) for 𝑛 ∈ Z and 𝑘 ≥ 3 an odd natural number.

6.5 Other Constructions of Connective Algebraic 𝑲-Theory

The plus-construction works for rings and finitely generated free or projective mod-
ules. However, it turns out that it is important to consider more general situations
where one can feed in categories with certain extra structures. The main examples are
Quillen’s𝑄-construction, see [821, §2], [859, Chapter 5], [922, Chapter 4], designed
for exact categories, the group completion construction, see [434, 906], designed
for symmetric monoidal categories, and Waldhausen’s 𝑤𝑆•-construction, see [979]
and Subsection 7.3.2, designed for categories with cofibrations and weak equiva-
lences. Given a ring 𝑅, the category of finitely generated projective 𝑅-modules yields
examples of the type of categories above and the appropriate construction always
yields the same, namely, the𝐾-groups as defined by the plus-construction above. The
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𝑄-construction and exact categories can be used to define 𝐾-theory for the category
of finitely generated 𝑅-modules (dropping projective) or the category of locally free
O𝑋-modules of finite rank over a scheme 𝑋 . One important feature is that the notion
of exact sequences can be different from the one given by split exact sequences, or,
equivalently, by direct sums. Whereas in Quillen’s setting one needs exact structures
in an algebraic sense, Waldhausen’s 𝑤𝑆•-construction is also suitable for categories
where the input are spaces and one can replace isomorphisms by weak equivalences.

We briefly recall the setup of exact categories beginning with additive categories.
A categoryC is called small if its objects form a set. An additive categoryA is a small
categoryA such that for two objects 𝐴 and 𝐵 the morphism set morA (𝐴, 𝐵) has the
structure of an abelian group, there exists a zero-object, i.e., an object which is both
initial and terminal, the direct sum 𝐴⊕𝐵 of two objects 𝐴 and 𝐵 exists, and the obvious
compatibility conditions hold, e.g., composition of morphisms is bilinear. A functor
of additive categories 𝐹 : A0 → A1 is a functor respecting the zero-objects such
that for two objects 𝐴 and 𝐵 in A0 the map morA0 (𝐴, 𝐵) → morA1 (𝐹 (𝐴), 𝐹 (𝐵))
sending 𝑓 to 𝐹 ( 𝑓 ) respects the abelian group structures and 𝐹 (𝐴 ⊕ 𝐵) is a model
for 𝐹 (𝐴) ⊕ 𝐹 (𝐵).

A skeleton D of a category C is a full subcategory such that D is small and the
inclusion D → C is an equivalence of categories, or, equivalently, for every object
𝐶 ∈ C there is an object 𝐷 in D together with an isomorphism 𝐶

�−→ 𝐷 in C.

Definition 6.32 (Exact category). An exact categoryP is a full additive subcategory
of some abelian category A with the following properties:

• P is closed under extensions in A, i.e., for any exact sequence 0→ 𝑃0 → 𝑃1 →
𝑃2 → 0 in A with 𝑃0, 𝑃2 in P we have 𝑃1 ∈ P;
• P has a small skeleton.

An exact functor 𝐹 : P0 → P1 is a functor of additive categories that sends exact
sequences to exact sequences.

Examples of exact categories are abelian categories possessing a small skeleton,
the category of finitely generated projective 𝑅-modules, the category of finitely
generated 𝑅-modules, the category of vector bundles over a compact space, the
category of algebraic vector bundles over a projective algebraic variety, and the
category of locally free sheaves of finite rank on a scheme.

An additive category becomes an exact category in the sense of Quillen with re-
spect to split exact sequences. On the other hand there are interesting exact categories
where the exact sequences are not necessarily split exact sequences.

The 𝑄-construction, see [821, §2], [859, Chapter 5], [922, Chapter 4], assigns to
any exact category P its 𝐾-theory space 𝐾 (P) and one defines 𝐾𝑛 (P) := 𝜋𝑛 (𝐾 (P))
for 𝑛 ≥ 0. If P is the category of finitely generated projective 𝑅-modules, this defini-
tion coincides with the Definition 6.9 of 𝐾𝑛 (𝑅) coming from the plus-construction.

The 𝑄-construction allows us to define algebraic 𝐾-theory for objects naturally
appearing in algebraic geometry, arithmetic geometry, and number theory, since
these give exact categories as described above.
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Example 6.33 (The category of nilpotent endomorphism). Let NIL(𝑅) be the
exact category whose objects are pairs (𝑃, 𝑓 ) of finitely generated projective
𝑅-modules together with nilpotent endomorphisms 𝑓 : 𝑃 → 𝑃. Its 𝐾-theory
Nil𝑛 (𝑅) := 𝐾𝑛 (NIL(𝑅)) splits as 𝐾𝑛 (𝑅) ⊕ Ñil𝑛 (𝑅) for 𝑛 ≥ 0 where Ñil𝑛 (𝑅) is
the cokernel of the homomorphism 𝐾𝑛 (𝑅) → 𝐾𝑛 (NIL(𝑅)) induced by the obvious
functor sending a finitely generated projective 𝑅-module 𝑃 to 0 : 𝑃→ 𝑃. We get for
𝑛 ≥ 1

𝑁𝐾𝑛 (𝑅) = Ñil𝑛−1 (𝑅).

This has been considered for 𝑛 = 1 already in Theorem 3.72. A proof, which works
also for the more general context of non-connective 𝐾-theory of additive categories
where a twist with an automorphism is allowed, can be found in [686, Theorem 0.4],
see also [436].

6.6 Non-Connective Algebraic 𝑲-Theory of Additive Categories

The approaches mentioned in Section 6.5 will always yield spaces 𝐾 (𝑅) such that
the algebraic 𝐾-groups are defined to be its homotopy groups. Since a space has no
negative homotopy groups, this definition will not encompass the negative algebraic
𝐾-groups. In order to take these into account, one has to find appropriate deloopings.

So the task is to replace the space𝐾 (𝑅) by a (non-connective) spectrum K(𝑅) such
that one can define 𝐾𝑛 (𝑅) by 𝜋𝑛 (K(𝑅)) for 𝑛 ∈ Z and this definition coincides with
the other definitions for all 𝑛 ∈ Z. For rings this has been achieved by Gersten [422]
and Wagoner [973].

We would like to feed in additive categories.
The category of spectra SPECTRA will be introduced in Section 12.4. Denote

by ADDCAT the category of additive categories. There is an obvious notion of
the direct sum of two additive categories. We will use a construction of Pedersen-
Weibel [800], see also Schlichting [209] or Lück-Steimle [684], of a functor

K : ADDCAT → SPECTRA, A ↦→ K(A).(6.34)

Definition 6.35 (Algebraic 𝐾-groups of additive categories). We call K(A) the
non-connective 𝐾-theory spectrum associated to an additive category. Define for
𝑛 ∈ Z the 𝑛-th algebraic 𝐾-group of an additive category A by

𝐾𝑛 (A) := 𝜋𝑛 (K(A)).

Definition 6.36 (Flasque and Eilenberg swindle). An additive categoryA is called
flasque if there exists a functor of additive categories 𝑆 : A → A together with
a natural equivalence 𝑇 : idA ⊕𝑆

�−→ 𝑆. Sometimes the pair (𝑆, 𝑇) is called an
Eilenberg swindle.

The next result follows from Pedersen-Weibel [800], see also Cardenas-Pedersen
[209] or Lück-Steimle [684].



148 6 Higher Algebraic 𝐾-Theory

Theorem 6.37 (Properties of K(A)).

(i) If 𝑅 is a ring and A is the additive category of finitely generated projective
𝑅-modules, then 𝐾𝑛 (A) coincides with 𝐾𝑛 (𝑅) for 𝑛 ∈ Z;

(ii) Let 𝐹1 and 𝐹2 be functors of additive categories. If there exists a natural equiva-
lence of such functors from 𝐹1 to 𝐹2, then the maps of spectra K(𝐹1) and K(𝐹2)
are homotopic;
In particular, a functor 𝐹 : A → A′ of additive categories which is an equiva-
lence of categories induces a homotopy equivalence K(𝐹) : K(A) → K(A′);

(iii) If A is flasque, then K(A) is weakly contractible.

Exercise 6.38. Give a definition of 𝐾0 (A) and 𝐾1 (A) as abelian groups in terms of
generators and relations such that in the case where 𝑅 is a ring andA is the category
of finitely generated projective 𝑅-modules, this definition coincides with the ones
appearing in Definitions 2.1 and 3.1. Show that 𝐾0 (A) and 𝐾1 (A) are trivial if A
is flasque.

Exercise 6.39. LetA be the category of countably generated projective 𝑅-modules.
Show that 𝐾𝑛 (A) = 0 for all 𝑛 ∈ Z.

Remark 6.40 (Non-connective 𝐾-theory spectra for exact categories). Schlicht-
ing [900] has constructed for an exact category P a delooping of the space 𝐾 (P).
Thus he can assign to an exact category P a (non-connective) spectrum K(P) and
define 𝐾𝑛 (P) := 𝜋𝑛 (K(P)) for 𝑛 ∈ Z. If P is the category of finitely generated pro-
jective 𝑅-modules, this definition coincides with our previous definition of 𝐾𝑛 (𝑅).
If the exact sequences in P are given by split exact sequences, this definition agrees
with the one of Definition 6.35 when we consider P as an additive category.

Later we will use the following construction for additive categories.
Given an additive category A, its idempotent completion Idem(A) is defined to

be the following additive category. Objects are morphisms 𝑝 : 𝐴→ 𝐴 inA satisfying
𝑝 ◦ 𝑝 = 𝑝. A morphism 𝑓 from 𝑝1 : 𝐴1 → 𝐴1 to 𝑝2 : 𝐴2 → 𝐴2 is a mor-
phism 𝑓 : 𝐴1 → 𝐴2 in A satisfying 𝑝2 ◦ 𝑓 ◦ 𝑝1 = 𝑓 . The identity of an object
(𝐴, 𝑝) is given by the morphism 𝑝 : (𝐴, 𝑝) → (𝐴, 𝑝). The structure of an addi-
tive category on 𝐴 induces the structure of an additive category on Idem(A) in
the obvious way. A functor of additive categories 𝐹 : A → A′ induces a func-
tor Idem(𝐹) : Idem(A) → Idem(A′) of additive categories by sending (𝐴, 𝑝) to
(𝐹 (𝐴), 𝐹 (𝑝)).

There is an obvious embedding

𝜂(A) : A → Idem(A)

sending an object 𝐴 to id𝐴 : 𝐴 → 𝐴 and a morphism 𝑓 : 𝐴 → 𝐵 to the mor-
phism given by 𝑓 again. An additive category A is called idempotent complete if
𝜂(A) : A → Idem(A) is an equivalence of additive categories, or, equivalently,
if for every idempotent 𝑝 : 𝐴 → 𝐴 in 𝐴 there exists objects 𝐵 and 𝐶 and an iso-
morphism 𝑓 : 𝐴 �−→ 𝐵 ⊕ 𝐶 in A such that 𝑓 ◦ 𝑝 ◦ 𝑓 −1 : 𝐵 ⊕ 𝐶 → 𝐵 ⊕ 𝐶 is given
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by
(

id𝐵 0
0 0

)
. The idempotent completion Idem(A) of an additive category A is

idempotent complete.

Theorem 6.41. The map 𝜂 induces an equivalence

K(𝜂) : K(A) ≃−→ K(Idem(A))

on the non-connective 𝐾-theory spectra.

Proof. This follows from [949, Theorem A.9.1] and [684, Corollary 3.7]. ⊓⊔

Note that Theorem 6.41 is not true for the standard construction of the connective
𝐾-theory of an additive category. Therefore in the construction of the connective
𝐾-theory spectrum we always replace A by its idempotent completion Idem(A).
This passage does not change 𝐾𝑛 (A) for 𝑛 ≥ 1, but it does change 𝐾0 (A), see [949,
Theorem A.9.1]. This is analogous to the fact that in previous constructions of the
connective 𝐾-theory of a ring we had to take the cross product with 𝐾0 (A), see
Definition 6.9.

Let 𝑅 be a ring. Let 𝑅-MODfgf and 𝑅-MODfgp respectively be the additive
category of finitely generated free 𝑅-modules and of finitely generated projective
𝑅-modules. We obtain an equivalence of additive categories Idem(𝑅-MODfgf)

≃−→
𝑅-MODfgp by sending an object (𝐹, 𝑝) to im(𝑝). Let 𝑅⊕ be the additive category
which has as objects the natural numbers 0, 1, 2, . . . and morphisms from 𝑚 to 𝑛
are given by (𝑚, 𝑛)-matrices over 𝑅. The composition is given by multiplication
of matrices, more precisely, given morphisms 𝐴 : 𝑙 → 𝑚 and 𝐵 : 𝑚 → 𝑛, their
composite is 𝐴𝐵 : 𝑙 → 𝑚. The direct sum of two objects 𝑚 and 𝑛 is the object 𝑚 + 𝑛
and the direct sum of morphisms is given by the block sum of matrices. We have the
obvious equivalence of additive categories

(6.42) 𝑅⊕
≃−→ 𝑅-MODfgf

which sends an object𝑚 to 𝑅𝑚 and a morphism 𝐴 : 𝑚 → 𝑛 to the 𝑅-linear homomor-
phism 𝑟𝐴 : 𝑅𝑚 → 𝑅𝑛, (𝑠1, . . . , 𝑠𝑚) ↦→ (𝑠1, . . . , 𝑠𝑚)𝐴 given by right multiplication
with 𝐴. Thus we obtain an equivalence of additive categories, natural in the ring 𝑅,

(6.43) Θ𝑅 : Idem
(
𝑅⊕

) ≃−→ 𝑅-MODfgp.

Note that Idem
(
𝑅⊕

)
is small, in contrast to 𝑅-MODfgp. The non-connective

𝐾-theory spectrum of a ring K(𝑅) is defined to be K(𝑅⊕) for K defined in (6.34).
Then 𝜋𝑛 (K(𝑅)) can be identified with all other definitions of 𝐾𝑛 (𝑅) above for every
𝑛 ∈ Z.
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6.7 Survey on Main Properties of Algebraic 𝑲-Theory of Exact
Categories

Next we state some basic and important general results about the algebraic 𝐾-theory
of exact categories.

6.7.1 Additivity

For a proof of the next result we refer for instance to [821, Corollary 1 in §3 on
page 22], [922, Corollary 4.3 on page 41], [998, Theorem 1.2 in Section V.I on
page 366] (at least in the connective setting), and [900, Corollary 4 in Section 7].

Theorem 6.44 (Additivity Theorem for exact categories). Let 0 → 𝐹0
𝑖−→ 𝐹1

𝑝
−→

𝐹2 → 0 be an exact sequence of functors 𝐹𝑘 : P1 → P2 of exact categories P1 and
P2, i.e., 𝑖 and 𝑝 are natural transformations such that for each object 𝑃 the sequence
0→ 𝐹0 (𝑃)

𝑖 (𝑃)
−−−→ 𝐹1 (𝑃)

𝑝 (𝑃)
−−−−→ 𝐹2 (𝑃) → 0 is exact.

Then we get for the induced morphisms 𝐾𝑛 (𝐹𝑘) : 𝐾𝑛 (P1) → 𝐾𝑛 (P2) for every
𝑛 ∈ Z

𝐾𝑛 (𝐹1) = 𝐾𝑛 (𝐹0) + 𝐾𝑛 (𝐹2).

6.7.2 Resolution Theorem

LetM andP be exact categories which are contained in the same abelian categoryA.
Suppose thatP is a full subcategory ofM. A finite resolution of an object𝑀 ofM by
objects in P is an exact sequence 0→ 𝑃𝑛 → 𝑃𝑛−1 → · · · → 𝑃1 → 𝑃0 → 𝑀 → 0
for some natural number 𝑛. We say that P is closed under extensions in M if for
any exact sequence 0 → 𝑀0 → 𝑀1 → 𝑀2 → 0 inM with 𝑀0, 𝑀2 in P we have
𝑀1 ∈ P. For a proof of the next theorem we refer for instance to [821, Corollary 1
in §4 on page 25] or [922, Theorem 4.6 on page 41], [998, Theorem 3.1 in Section V.3
on page 385] (at least in the connective setting), and [900].

Theorem 6.45 (Resolution Theorem). LetM and P be exact categories which are
contained in the same abelian category A. Suppose that P is a full subcategory of
M and is closed under extensions inM. Suppose that every object inM has a finite
resolution by objects in P.

Then the inclusion P →M induces for every 𝑛 ∈ Z an isomorphism

𝐾𝑛 (P)
�−→ 𝐾𝑛 (M).

Exercise 6.46. Let 𝑅 be a regular ring. Show that for every 𝑛 ∈ Z the canonical map
𝐾𝑛 (𝑅) → 𝐺𝑛 (𝑅) is bijective.
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6.7.3 Devissage

For a proof of the next result we refer for instance to [821, Theorem 4 in §5 on
page 28], [922, Theorem 4.8 on page 42], or [998, Theorem 4.1 in Section V.4 on
page 400].

Theorem 6.47 (Devissage). Let A be an abelian category. Let B be a full abelian
subcategory of A which is closed under taking subobjects, quotients, and finite
products in A. Suppose that each object 𝐴 in A has a finite filtration in A

0 = 𝐴0 ⊆ 𝐴1 ⊆ 𝐴2 ⊆ · · · ⊆ 𝐴𝑛 = 𝐴

such that 𝐴𝑖/𝐴𝑖−1 is isomorphic to an object in B for 𝑖 = 1, 2, . . . , 𝑛.
Then the inclusion of exact categories 𝑖 : B → A induces an isomorphism

𝐾𝑛 (𝑖) : 𝐾𝑛 (B)
�−→ 𝐾𝑛 (A)

for 𝑛 ≥ 0.

Note that in Theorem 6.47 the condition 𝑛 ≥ 0 appears. To the author’s knowledge
it is not known whether Theorem 6.47 also holds for 𝑛 ≤ −1. If A is a Noetherian
abelian category, then its negative 𝐾-groups vanish and Theorem 6.47 also holds for
negative 𝐾-groups for trivial reasons, see [900, Theorem 7].

An object 𝑁 in an abelian category is called simple if 𝑁 ≠ 0 and any monomor-
phism 𝑀 → 𝑁 is the zero-homomorphism or an isomorphism. For a simple object
𝑀 its ring of automorphisms endA (𝑀) is a skew-field (Schur’s Lemma). An object
𝑁 in an abelian category is called semisimple if it is isomorphic to a finite direct sum
of simple objects. A zero object is called an object of length 0. Call the simple objects
of an abelian category objects of length≤ 1. We define inductively for 𝑙 ≥ 2 an object
𝑀 to be of length ≤ 𝑙 if there exists an exact sequence 0 → 𝑀1 → 𝑀 → 𝑀2 → 0
for an object 𝑀1 of length ≤ 1 and an object 𝑀2 of length ≤ (𝑙 − 1). An object is
of finite length if it has length ≤ 𝑙 for some natural number 𝑙. For a proof of the
following corollary of Theorem 6.47 we refer to [821, Corollary 1 in §5 on page 28].

Corollary 6.48. Let A be an abelian category. Suppose that there is a subset 𝑆 of
the set of objects of A with the property that any simple object in A is isomorphic
to precisely one object in 𝑆. Let A𝑠𝑠 be the full subcategory of A consisting of
semisimple objects and letA 𝑓 𝑙 be the full subcategory consisting of objects of finite
length. Then we obtain for every 𝑛 ∈ Z, 𝑛 ≥ 0 isomorphisms⊕

𝑀∈𝑆
𝐾𝑛 (endA (𝑀))

�−→ 𝐾𝑛 (A𝑠𝑠)
�−→ 𝐾𝑛 (A 𝑓 𝑙).
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In particular we get in the situation of Corollary 6.48 from Example 2.4 and
Theorem 3.6

𝐾0 (A 𝑓 𝑙) �
⊕
𝑆

Z;

𝐾1 (A 𝑓 𝑙) �
∏
𝑆

endA (𝑆)×/[endA (𝑆)× , endA (𝑆)×] .

6.7.4 Localization

Theorem 6.49 (Localization). Let A be a small abelian category and let B be an
additive subcategory such that for any exact sequence 0→ 𝑀0 → 𝑀1 → 𝑀2 → 0
in A the object 𝑀1 belongs to B if and only if both 𝑀0 and 𝑀2 belong to B. Then
there exists a well-defined quotient abelian categoryA/B. It has the same objects as
A, and its morphisms are obtained from those inA by formally inverting morphisms
whose kernel and cokernel belong to B.

Then there are obvious functors B → A and A → A/B that induce a long
exact sequence

· · · → 𝐾𝑛+1 (A/B) → 𝐾𝑛 (B) → 𝐾𝑛 (A) → 𝐾𝑛 (A/B) → · · · .

The full description of A/B can be found in [922, Appendix B.3] or [998,
Section II.6 on page 119]. A proof of the last theorem is given in [821, Theorem 5
in §5 on page 29], [922, Theorem 4.9 on page 42], [998, Theorem 5.1 in Section V.5
on page 402] (at least in the connective setting), and [900, Theorem 1].

The next example is taken from [998, Application 6.1 in Section V.6 on page 406]

Example 6.50. Let 𝑅 be a Noetherian ring and 𝑠 be an element in the center of 𝑅
which is different from 0. Then one can consider the subcategory of finitely generated
𝑠-torsion modules of the abelian category of finitely generated 𝑅-modules and the
localization sequence of Theorem 6.49 reduces to a long exact sequence

· · · → 𝐺𝑛+1 (𝑅[𝑠−1]) → 𝐺𝑛 (𝑅/(𝑠)) → 𝐺𝑛 (𝑅) → 𝐺𝑛 (𝑅[𝑠−1])
→ 𝐺𝑛−1 (𝑅/(𝑠)) → 𝐺𝑛−1 (𝑅) → · · ·

where, roughly speaking, 𝑅[𝑠−1] is obtained from 𝑅 by inverting 𝑠.

Exercise 6.51. Let 𝑝 be a prime number. Then we obtain a long exact sequence

· · · → 𝐾𝑛+1 (Z[𝑝−1]) → 𝐾𝑛 (F𝑝) → 𝐾𝑛 (Z) → 𝐾𝑛 (Z[𝑝−1])
· · · → 𝐾1 (Z[𝑝−1]) → 𝐾0 (F𝑝) → 𝐾0 (Z) → 𝐾0 (Z[𝑝−1]) → 0.
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6.7.5 Filtered Colimits

For a proof of the next theorem we refer for instance to [821, (9) in §2 on page 20]
or [922, Lemma 3.8 on page 35], [998, (6.4) in Section IV.6 on page 321] (at least
in the connective setting), and [900, Corollary 5].

Theorem 6.52 (𝐾-theory and directed colimits). LetA be an exact category. Let
{A𝑖 | 𝑖 ∈ 𝐼} be a directed set of exact subcategories of A, directed by inclusion
such that A is the union of the categories A in the sense that for every object 𝐴 in
A and every morphism 𝑓 : 𝐴→ 𝐴′ there is an 𝑖 ∈ 𝐼 with 𝐴 ∈ A and 𝑓 ∈ A𝑖 . Then
the canonical map

colim𝑖∈𝐼 𝐾𝑛 (A𝑖) → 𝐾𝑛 (A)

is bijective for 𝑛 ∈ Z.

Theorem 6.52 holds more generally for filtered colimits.

6.8 The 𝑲-Theoretic Farrell-Jones Conjecture for Torsionfree
Groups and Regular Rings

The Farrell-Jones Conjecture for algebraic 𝐾-theory, which we will formulate in full
generality in Conjecture 13.1, reduces for a torsionfree group and a regular ring to
the following conjecture. Under the additional assumption that there is a finite model
for 𝐵𝐺 it appears already in [503].

Conjecture 6.53 (Farrell-Jones Conjecture for 𝐾-theory for torsionfree groups
and regular rings). Let 𝐺 be a torsionfree group. Let 𝑅 be a regular ring. Then the
assembly map

𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺)

is an isomorphism for 𝑛 ∈ Z.

Here 𝐻∗ (−; K(𝑅)) denotes the homology theory that is associated to the (non-
connective)𝐾-spectrum K(𝑅). Recall that𝐻𝑛 ({•}; K(𝑅)) is𝐾𝑛 (𝑅) for 𝑛 ∈ Z, where
here and elsewhere {•} denotes the space consisting of one point. The space 𝐵𝐺
is the classifying space of the group 𝐺, which is up to homotopy characterized by
the property that it is a 𝐶𝑊-complex with 𝜋1 (𝐵𝐺) � 𝐺 whose universal covering
is contractible. The technical details of the construction of 𝐻𝑛 (−; K(𝑅)) and the
assembly map will be explained in a more general setting in Sections 12.4 and 12.5.

The point of Conjecture 6.53 is that on the right-hand side of the assembly
map we have the group 𝐾𝑛 (𝑅𝐺) we are interested in, whereas the left-hand side is a
homology theory and hence much easier to compute. A basic tool for the computation
of a homology theory is the Atiyah-Hirzebruch spectral sequence, which in our case
has as 𝐸2-term 𝐸2

𝑝,𝑞 = 𝐻𝑝 (𝐵𝐺;𝐾𝑞 (𝑅)) and converges to 𝐻𝑝+𝑞 (𝐵𝐺; K(𝑅)).
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Remark 6.54 (The conditions appearing in Conjecture 6.53 are necessary). The
condition that𝐺 is torsionfree and that 𝑅 is regular are necessary in Conjecture 6.53.
If one drops one of these conditions, one obtains counterexamples as follows.

If 𝐺 is a finite group, then we obtain an isomorphism

𝐾𝑛 (𝑅) ⊗Z Q � 𝐻𝑛 ({•}; K(𝑅)) ⊗Z Q
�−→ 𝐻𝑛 (𝐵𝐺; K(𝑅)) ⊗Z Q.

Hence Conjecture 6.53 would predict for a finite group that the change of rings
homomorphism 𝐾𝑛 (𝑅) ⊗Z Q

�−→ 𝐾𝑛 (𝑅𝐺) ⊗Z Q is bijective. This contradicts for
instance Lemma 2.89.

In view of the Bass-Heller-Swan decomposition 6.16, Conjecture 6.53 is true for
𝐺 = Z in degree 𝑛 only if 𝑁𝐾𝑛 (𝑅) vanishes.

Exercise 6.55. Let 𝑅 be a regular ring. Let 𝐺 = 𝐺1 ∗𝐺0 𝐺2 be an amalgamated
free product of torsionfree groups, where 𝐺0 is a common subgroup of 𝐺1 and 𝐺2.
Suppose that Conjecture 6.53 is true for 𝐺0, 𝐺1, 𝐺2, and 𝐺 with coefficients in the
ring 𝑅. Show that then there exists a long exact Mayer-Vietoris sequence

· · · → 𝐾𝑛 (𝑅𝐺0) → 𝐾𝑛 (𝑅𝐺1) ⊕ 𝐾𝑛 (𝑅𝐺2) → 𝐾𝑛 (𝑅𝐺)
→ 𝐾𝑛−1 (𝑅𝐺0) → 𝐾𝑛−1 (𝑅𝐺1) ⊕ 𝐾𝑛−1 (𝑅𝐺2) → · · · .

Exercise 6.56. Let 𝑅 be a regular ring. Let 𝜙 : 𝐺 → 𝐺 be an automorphism of the
torsionfree group 𝐺. Suppose that Conjecture 6.53 is true for 𝐺 and the semidirect
product 𝐺 ⋊𝜙 Z with coefficients in the ring 𝑅. Show that then there exists a long
exact Wang sequence

· · · → 𝐾𝑛 (𝑅𝐺)
id −𝐾𝑛 (𝜙)−−−−−−−−→ 𝐾𝑛 (𝑅𝐺) → 𝐾𝑛 (𝑅[𝐺 ⋊𝜙 Z])

→ 𝐾𝑛−1 (𝑅𝐺)
id −𝐾𝑛−1 (𝜙)−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐺) → · · · .

Remark 6.57 (𝐾∗ (Z𝐺) ⊗Z Q for torsionfree 𝐺). Rationally the Atiyah-Hirzebruch
spectral sequence always collapses and the homological Chern character gives an
isomorphism

ch:
⊕
𝑝+𝑞=𝑛

𝐻𝑝 (𝐵𝐺;Q) ⊗Q
(
𝐾𝑞 (𝑅) ⊗Z Q

) �−→ 𝐻𝑛 (𝐵𝐺; K(𝑅)) ⊗Z Q.

The Atiyah-Hirzebruch spectral sequence and the Chern character will be dis-
cussed in a much more general setting in Subsection 12.6.1 and Section 12.7.

Because of Theorem 6.24 the left-hand side of the isomorphism described in
Remark 6.57 specializes for 𝑅 = Z to 𝐻𝑛 (𝐵𝐺;Q) ⊕

⊕∞
𝑘=1 𝐻𝑛−(4𝑘+1) (𝐵𝐺;Q).

Hence Conjecture 6.53 predicts for a torsionfree group 𝐺

𝐾𝑛 (Z𝐺) ⊗Z Q � 𝐻𝑛 (𝐵𝐺;Q) ⊕
∞⊕
𝑘=1

𝐻𝑛−(4𝑘+1) (𝐵𝐺;Q).(6.58)
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Conjecture 6.59 (Nil-groups for regular rings and torsionfree groups). Let𝐺 be
a torsionfree group and let 𝑅 be a regular ring. Then we get

𝑁𝐾𝑛 (𝑅𝐺) = 0 for all 𝑛 ∈ Z.

Exercise 6.60. Show that a torsionfree group 𝐺 satisfies Conjecture 6.59 for all
regular rings 𝑅 if it satisfies Conjecture 6.53 for all regular rings 𝑅.

6.9 Mayer-Vietoris Sequences for Amalgamated Free Products
and Wang Sequences for HNN-Extensions

We have seen in the introduction that for the topological 𝐾-theory of reduced group
𝐶∗-algebras there exist Mayer-Vietoris sequences associated to amalgamated free
products, see (1.4), and long exact Wang sequences for semidirect products of the
shape 𝐺 = 𝐻 ⋊𝜙 Z, see (1.5). These lead to the final formulation of the Baum-
Connes Conjecture 1.1. Because of Exercises 6.55 and 6.56 one can expect similar
long exact sequences to exist for the algebraic 𝐾-theory of group rings for torsionfree
groups and regular rings, but not in general, as one can derive for instance from the
Bass-Heller-Swan decomposition 6.16.

We want to explain the more complicated general answer for the algebraic
𝐾-theory of group rings, which is given by Waldhausen [975] and [976].

A ring 𝑅 is called regular coherent if every finitely presented 𝑅-module possesses
a finite projective resolution. A ring 𝑅 is regular if and only if it is regular coherent
and Noetherian. A group 𝐺 is called regular or regular coherent respectively if for
any regular ring 𝑅 the group ring 𝑅𝐺 is regular or regular coherent. If𝐺 = 𝐺1∗𝐺0𝐺2
for regular coherent groups 𝐺1 and 𝐺2 and a regular group 𝐺0 or if 𝐺 = 𝐻 ⋊𝜙 Z for
a regular group 𝐻, then𝐺 is regular coherent. In particular, Z𝑛 is regular and regular
coherent, whereas a non-abelian finitely generated free group is regular coherent but
not regular. For proofs of the claims above and for more information about regular
coherent groups we refer to [976, Theorem 19.1].

The maps of spectra appearing in the theorem below are all induced by obvious
functors between categories.

Theorem 6.61 (Waldhausen’s cartesian squares for non-connective algebraic
𝐾-theory). Let𝐺 = 𝐺1 ∗𝐺0 𝐺2 be an amalgamated free product and let 𝑅 be a ring.

(i) There exists a homotopy cartesian square of spectra

Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2)
j //

i
��

K(𝑅𝐺1) ∨K(𝑅𝐺2)

k1
��

K(𝑅𝐺0) k0
// K(𝑅𝐺)
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where Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) is a certain non-connective Nil-spectrum associ-
ated to𝐺 = 𝐺1 ∗𝐺0 𝐺2 and 𝑅 and K is the (non-connective) 𝐾-theory spectrum;

(ii) There is a map f : K(𝑅𝐺0) ∨K(𝑅𝐺0) → Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) and for 𝑘 = 1, 2
a map g𝑘 : Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) → K(𝑅𝐺0) with the following properties. The
composite g𝑘 ◦ f : K(𝑅𝐺0) ∨K(𝑅𝐺0) → K(𝑅𝐺0) is the projection to the 𝑘-th
summand, the composite

K(𝑅𝐺0) ∨K(𝑅𝐺0)
f−→ Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2)

l−→ K(𝑅𝐺1) ∨K(𝑅𝐺2)

is homotopic to K( 𝑗1) ∨K( 𝑗2) for 𝑗𝑘 : 𝐺0 → 𝐺𝑘 the canonical inclusion, and
i ◦ f is homotopic to id∨ id : K(𝑅𝐺0) ∨K(𝑅𝐺0) → K(𝑅𝐺0);

(iii) If 𝑅 is regular and 𝐺0 is regular coherent, then f : K(𝑅𝐺0) ∨ K(𝑅𝐺0) →
Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) is a weak homotopy equivalence;

(iv) The composite of the map ΩK(𝑅𝐺) → Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) associated to
the homotopy cartesian square of assertion (i) with the canonical map from
Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) to the homotopy cofiber of the map f induces a split
surjection on homotopy groups.

Proof. All these claims are proved for connective 𝐾-theory in Waldhausen [976,
11.2, 11.3, 11.6]. In [75, Section 9 and 10] the definitions and assertions are extended
to the non-connective version except for assertion (iv). Assertion (iv) can be derived
from the connective version by using the Bass-Heller-Swan decomposition 6.16. ⊓⊔

Theorem 6.62 (Mayer-Vietoris sequence of an amalgamated free product for
algebraic 𝐾-theory). Let 𝐺 = 𝐺1 ∗𝐺0 𝐺2 be an amalgamated free product and
let 𝑅 be a ring. Denote by 𝑖𝑘 : 𝐺0 → 𝐺𝑘 and 𝑗𝑘 : 𝐺𝑘 → 𝐺 the obvious inclu-
sions. Define 𝑁𝐾𝑛 (𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) to be the (𝑛 − 1)-homotopy group of the ho-
motopy cofiber of the map f appearing in Theorem 6.61 (ii). Let 𝑝𝑛 : 𝐾𝑛 (𝑅𝐺) →
𝑁𝐾𝑛 (𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) be the split surjection coming from Theorem 6.61 (iv). Then:

(i) We obtain a splitting

𝐾𝑛 (𝑅𝐺) � ker(𝑝𝑛) ⊕ 𝑁𝐾𝑛 (𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2);

(ii) There exists a long exact Mayer-Vietoris sequence

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝑅𝐺0)
𝐾𝑛 (𝑖1 )⊕𝐾𝑛 (𝑖2 )−−−−−−−−−−−−→ 𝐾𝑛 (𝑅𝐺1) ⊕ 𝐾𝑛 (𝑅𝐺2)

𝐾𝑛 ( 𝑗1 )−𝐾𝑛 ( 𝑗2 )−−−−−−−−−−−−→ ker(𝑝𝑛)
𝜕𝑛−−→ 𝐾𝑛−1 (𝑅𝐺0)

𝐾𝑛−1 (𝑖1 )⊕𝐾𝑛−1 (𝑖2 )−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐺1) ⊕ 𝐾𝑛−1 (𝑅𝐺2)
𝐾𝑛−1 ( 𝑗1 )−𝐾𝑛−1 ( 𝑗2 )−−−−−−−−−−−−−−−→ · · · ;

(iii) If 𝐺0 is regular coherent and 𝑅 is regular, then

𝑁𝐾𝑛 (𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2) = 0 for 𝑛 ∈ Z

and the sequence of assertion (ii) reduces to the long exact sequence
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· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝑅𝐺0)
𝐾𝑛 (𝑖1 )⊕𝐾𝑛 (𝑖2 )−−−−−−−−−−−−→ 𝐾𝑛 (𝑅𝐺1) ⊕ 𝐾𝑛 (𝑅𝐺2)

𝐾𝑛 ( 𝑗1 )−𝐾𝑛 ( 𝑗2 )−−−−−−−−−−−−→ 𝐾𝑛 (𝑅𝐺)
𝜕𝑛−−→ 𝐾𝑛−1 (𝑅𝐺0)

𝐾𝑛−1 (𝑖1 )⊕𝐾𝑛−1 (𝑖2 )−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐺1) ⊕ 𝐾𝑛−1 (𝑅𝐺2)
𝐾𝑛−1 ( 𝑗1 )−𝐾𝑛−1 ( 𝑗2 )−−−−−−−−−−−−−−−→ · · · .

Exercise 6.63. Show that Theorem 6.61 implies Theorem 6.62.

Analogously one gets the next theorem from Waldhausen [975] and [976] us-
ing [75, Section 9 and 10].

Theorem 6.64 (Wang sequence associated to an HNN-extension for algebraic
𝐾-theory). Let 𝛼, 𝛽 : 𝐻 → 𝐾 be two injective group homomorphisms. Let 𝐺 be the
associated HNN-extension and let 𝑗 : 𝐾 → 𝐺 be the canonical inclusion. Then there
are certain Nil-groups 𝑁𝐾𝑛 (𝑅𝐻, 𝑅𝐾, 𝛼, 𝛽) and homomorphisms 𝑝𝑛 : 𝐾𝑛 (𝑅𝐺) →
𝑁𝐾𝑛 (𝑅𝐻, 𝑅𝐾, 𝛼, 𝛽) such that the following holds:

(i) There is a long exact Wang sequence

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝑅𝐻)
𝐾𝑛 (𝛼)−𝐾𝑛 (𝛽)−−−−−−−−−−−−→ 𝐾𝑛 (𝑅𝐾)

𝐾𝑛 ( 𝑗 )−−−−−→ ker(𝑝𝑛)
𝜕𝑛−−→ 𝐾𝑛−1 (𝑅𝐻)

𝐾𝑛−1 (𝛼)−𝐾𝑛−1 (𝛽)−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐾)
𝐾𝑛−1 ( 𝑗 )−−−−−−→ · · · ;

(ii) The map 𝑝𝑛 : 𝐾𝑛 (𝑅𝐺) → 𝑁𝐾𝑛 (𝑅𝐻, 𝑅𝐾, 𝛼, 𝛽) is split surjective;
(iii) If 𝑅 is regular and 𝐻 is regular coherent, then 𝑁𝐾𝑛 (𝑅𝐻, 𝑅𝐾, 𝛼, 𝛽) vanishes for

all 𝑛 ∈ Z. In this case the Wang sequence reduces to

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝑅𝐻)
𝐾𝑛 (𝛼)−𝐾𝑛 (𝛽)−−−−−−−−−−−−→ 𝐾𝑛 (𝑅𝐾)

𝐾𝑛 ( 𝑗 )−−−−−→ 𝐾𝑛 (𝑅𝐺)
𝜕𝑛−−→ 𝐾𝑛−1 (𝑅𝐻)

𝐾𝑛−1 (𝛼)−𝐾𝑛−1 (𝛽)−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐾)
𝐾𝑛−1 ( 𝑗 )−−−−−−→ · · · .

Remark 6.65 (Wang sequence of a semidirect product𝐺 = 𝐾 ⋊𝜙 Z for algebraic
𝐾-theory). A semidirect product𝐺 = 𝐾 ⋊𝜙 Z for a group automorphism 𝜙 : 𝐾 → 𝐾

is a special case of an HNN-extension, namely take 𝐻 = 𝐾 , 𝛼 = id, and 𝛽 = 𝜙. In
this case the Wang sequence appearing in Theorem 6.64 (i) takes the form

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝑅𝐾)
id −𝐾𝑛 (𝜙)−−−−−−−−→ 𝐾𝑛 (𝑅𝐾)

𝐾𝑛 ( 𝑗 )−−−−−→ ker(𝑝𝑛)
𝜕𝑛−−→ 𝐾𝑛−1 (𝑅𝐾)

id −𝐾𝑛−1 (𝜙)−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐾)
𝐾𝑛−1 ( 𝑗 )−−−−−−→ · · ·

and we get an isomorphism

𝑁+𝐾𝑛 (𝑅𝐾, 𝜙) ⊕ 𝑁−𝐾𝑛 (𝑅𝐾, 𝜙)
�−→ 𝑁𝐾𝑛 (𝑅𝐾, 𝑅𝐾, id, 𝜙).

Here 𝑁±𝐾𝑛 (𝑅𝐾, 𝜙) is the kernel of the split surjection 𝐾𝑛 (𝑅𝐾𝜙 [𝑡±1]) → 𝐾𝑛 (𝑅𝐾)
that is induced by the homomorphism 𝑅𝐾𝜙 [𝑡±1] → 𝑅𝐾 obtained by evaluation at
𝑡 = 0.
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Such a Wang sequence is established more generally for additive categories
in [686, Theorem 0.1].

We mention the following computation from [666, Corollary 1.14].

Theorem 6.66 (Vanishing of 𝑁𝐾𝑛 (𝑅𝐾, 𝜙)). Let 𝑅 be a regular ring. Let 𝜙 : 𝐾 �−→ 𝐾

be an automorphism of the finite group 𝐾 . Let P(𝐾, 𝑅) be the set of primes which
divide the order of 𝐾 and are not invertible in 𝑅.

Then for every 𝑛 ∈ Z the abelian group 𝑁±𝐾𝑛 (𝑅𝐾, 𝜙) vanishes after inverting
all primes in P(𝐾, 𝑅). In particular, we get 𝑁±𝐾𝑛 (𝑅𝐾, 𝜙) ⊗Z Q = 0 for all 𝑛 ∈ Z.

6.10 Homotopy Algebraic 𝑲-Theory

Homotopy algebraic 𝐾-theory has been introduced for rings by Weibel [996]. He
constructs for a ring 𝑅 a spectrum KH(𝑅) and defines

𝐾𝐻𝑛 (𝑅) := 𝜋𝑛 (KH(𝑅)) for 𝑛 ∈ Z.(6.67)

The main feature of homotopy 𝐾-theory is that it is homotopy invariant, i.e., for
every ring 𝑅 and every 𝑛 ∈ Z the canonical inclusion induces an isomorphism [996,
Theorem 1.2 (i)]

𝐾𝐻𝑛 (𝑅)
�−→ 𝐾𝐻𝑛 (𝑅[𝑡]).(6.68)

Note that homotopy invariance does not hold for algebraic 𝐾-theory unless 𝑅 is
regular, see Theorem 6.16.

A consequence of homotopy invariance is that we get for every ring 𝑅 and 𝑛 ∈ Z
isomorphisms, see [996, Theorem 1.2 (iii)],

𝐾𝐻𝑛 (𝑅) ⊕ 𝐾𝐻𝑛−1 (𝑅)
�−→ 𝐾𝐻𝑛 (𝑅Z).(6.69)

Hence the are no Nil-terms appearing for the trivial HNN-extension 𝐺 × Z. It
turns out that there are no Nil-phenomena concerning amalgamated free products and
HNN-extensions in general, as illustrated by the next result, which follows from [75,
Theorem 11.3].

Theorem 6.70 (Mayer-Vietoris sequence of an amalgamated free product for
homotopy 𝐾-theory). Let 𝐺 = 𝐺1 ∗𝐺0 𝐺2 be an amalgamated free product and let
𝑅 be a ring. Denote by 𝑖𝑘 : 𝐺0 → 𝐺𝑘 and 𝑗𝑘 : 𝐺𝑘 → 𝐺 the obvious inclusions.
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Then there exists a Mayer-Vietoris sequence

· · · 𝜕𝑛+1−−−→ 𝐾𝐻𝑛 (𝑅𝐺0)
𝐾𝐻𝑛 (𝑖1 )⊕𝐾𝐻𝑛 (𝑖2 )−−−−−−−−−−−−−−−→ 𝐾𝐻𝑛 (𝑅𝐺1) ⊕ 𝐾𝐻𝑛 (𝑅𝐺2)

𝐾𝐻𝑛 ( 𝑗1 )−𝐾𝐻𝑛 ( 𝑗2 )−−−−−−−−−−−−−−−→ 𝐾𝐻𝑛 (𝑅𝐺)
𝜕𝑛−−→ 𝐾𝐻𝑛−1 (𝑅𝐺0)

𝐾𝐻𝑛−1 (𝑖1 )⊕𝐾𝐻𝑛−1 (𝑖2 )−−−−−−−−−−−−−−−−−−→ 𝐾𝐻𝑛−1 (𝑅𝐺1) ⊕ 𝐾𝐻𝑛−1 (𝑅𝐺2)
𝐾𝐻𝑛−1 ( 𝑗1 )−𝐾𝐻𝑛−1 ( 𝑗2 )−−−−−−−−−−−−−−−−−−→ · · · .

Theorem 6.71 (Wang sequence associated to an HNN-extension for homotopy
𝐾-theory). Let 𝛼, 𝛽 : 𝐻 → 𝐾 be two injective group homomorphisms. Let 𝐺 be the
associated HNN-extension and let 𝑗 : 𝐾 → 𝐺 be the canonical inclusion. Then there
is a long exact Wang sequence

· · · 𝜕𝑛+1−−−→ 𝐾𝐻𝑛 (𝑅𝐻)
𝐾𝐻𝑛 (𝛼)−𝐾𝐻𝑛 (𝛽)−−−−−−−−−−−−−−−→ 𝐾𝐻𝑛 (𝑅𝐾)

𝐾𝐻𝑛 ( 𝑗 )−−−−−−→ 𝐾𝐻𝑛 (𝑅𝐺)
𝜕𝑛−−→ 𝐾𝐻𝑛−1 (𝑅𝐻)

𝐾𝐻𝑛−1 (𝛼)−𝐾𝐻𝑛−1 (𝛽)−−−−−−−−−−−−−−−−−−→ 𝐾𝐻𝑛−1 (𝑅𝐾)
𝐾𝐻𝑛−1 ( 𝑗 )−−−−−−−−→ · · · .

There is a natural map of (non-connective) spectra K(𝑅) → KH(𝑅) and hence
one obtains natural homomorphisms

𝐾𝑛 (𝑅) → 𝐾𝐻𝑛 (𝑅) for 𝑛 ∈ Z.(6.72)

This map is in general neither injective nor surjective. It is bijective if 𝑅 is regular by
Theorem 6.16. In some sense homotopy algebraic𝐾-theory is the best approximation
of algebraic 𝐾-theory by a homotopy invariant functor.

Exercise 6.73. Let 𝑅 = 𝑅0 ⊕ 𝑅1 ⊕ 𝑅2 ⊕ . . . be a graded ring. Show that the inclusion
𝑖 : 𝑅0 → 𝑅 induces isomorphisms 𝐾𝐻𝑛 (𝑅0)

�−→ 𝐾𝐻𝑛 (𝑅) for 𝑛 ∈ Z.

The same discussion as for the Baum Conjecture in Subsection 1.3.3 leads to the
following conjecture.

Conjecture 6.74 (Farrell-Jones Conjecture for homotopy 𝐾-theory for torsion-
free groups). Let 𝐺 be a torsionfree group. Then the assembly map

𝐻𝑛 (𝐵𝐺; KH(𝑅)) → 𝐾𝐻𝑛 (𝑅𝐺)

is an isomorphism for every 𝑛 ∈ Z and every ring 𝑅.

Lemma 6.75. (i) Let 𝑅 be a ring of finite characteristic 𝑁 . Then the canonical map
from algebraic 𝐾-theory to homotopy 𝐾-theory induces an isomorphism

𝐾𝑛 (𝑅) [1/𝑁]
�−→ 𝐾𝐻𝑛 (𝑅) [1/𝑁]

for all 𝑛 ∈ Z;
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(ii) Let 𝐻 be a finite group and let 𝑅 be a regular ring. Then for all 𝑛 ∈ Z the
canonical map from algebraic 𝐾-theory to homotopy 𝐾-theory

𝐾𝑛 (𝑅𝐻)
�−→ 𝐾𝐻𝑛 (𝑅𝐻)

becomes an isomorphism after inverting all the primes 𝑝 which divide the order
of 𝐻 and are not invertible in 𝑅.

Proof. The proof can be found [88, Lemma 3.11], where in assertion (ii) all primes
have to be inverted and 𝑅 = Z. The proof in [88, Lemma 3.11] carries over to the
case where 𝑅 is any regular ring and one has only to invert all the primes 𝑝 which
divide the order of 𝐻 and are not invertible in 𝑅 because of Theorem 6.66. ⊓⊔

Conjecture 6.76 (Comparison of algebraic K-theory and homotopy 𝐾-theory
for torsionfree groups). Let 𝑅 be a regular ring and let 𝐺 be a torsionfree group.
Then the canonical map

𝐾𝑛 (𝑅𝐺) → 𝐾𝐻𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z.

Note that Conjecture 6.76 follows from Conjecture 6.53 and Conjecture 6.74.

6.11 Algebraic 𝑲-Theory and Cyclic Homology

Fix a commutative ring 𝑘 , referred to as the ground ring. Let 𝑅 be a 𝑘-algebra. We
denote by 𝐻𝐻⊗𝑘∗ (𝑅) the Hochschild homology of 𝑅 relative to the ground ring 𝑘 ,
and similarly by 𝐻𝐶⊗𝑘∗ (𝑅), 𝐻𝑃⊗𝑘∗ (𝑅), and 𝐻𝑁⊗𝑘∗ (𝑅) the cyclic, the periodic cyclic,
and the negative cyclic homology of 𝑅 relative to 𝑘 . Hochschild homology receives
a map from the algebraic 𝐾-theory, which is known as the Dennis trace map. There
are variants of the Dennis trace taking values in cyclic, periodic cyclic, and negative
cyclic homology (sometimes called Chern characters), as displayed in the following
commutative diagram.

𝐻𝑁
⊗𝑘
∗ (𝑅) //

ℎ

��

𝐻𝑃
⊗𝑘
∗ (𝑅)

��
𝐾∗ (𝑅)

ntr
88

dtr // 𝐻𝐻⊗𝑘∗ (𝑅) // 𝐻𝐶⊗𝑘∗ (𝑅).

(6.77)

For the definition of these maps, see [636, Chapters 8 and 11] and [674, Section 5].
The article [674] investigates which parts of 𝐾𝑛 (𝑅𝐺) ⊗Z Q can be detected by using
the linear traces above. Here is an example, see [674, Theorem 0.7].
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Theorem 6.78 (Detection Result for Q and C as coefficients). For every group 𝐺
and every integer 𝑛 ≥ 0, there exist injective homomorphisms⊕

(𝐶 ) ∈ (FCY)
𝐻∗ (𝐵𝑁𝐺𝐶;Q) → 𝐾∗ (Q𝐺) ⊗Z Q;⊕

(𝑔) ∈con(𝐺) , |𝑔 |<∞
𝐻∗ (𝐵𝐶𝐺 ⟨𝑔⟩;C) → 𝐾∗ (C𝐺) ⊗Z C,

where we denote by (F CY) the conjugacy classes of finite cyclic subgroups of𝐺, by
con(𝐺) the set of conjugacy classes (𝑔) of elements 𝑔 ∈ 𝐺, by 𝑁𝐺𝐶 the normalizer
of 𝐶 ⊆ 𝐺, and by 𝐶𝐺 ⟨𝑔⟩ the centralizer of 𝑔 ∈ 𝐺.
Remark 6.79. In [150], Bökstedt, Hsiang, and Madsen define the cyclotomic trace,
a map out of 𝐾-theory, which takes values in topological cyclic homology. The
cyclotomic trace map can be thought of as an even more elaborate refinement of
the Dennis trace map. In contrast to the Dennis trace, the cyclotomic trace has the
potential to detect almost all of the rationalized 𝐾-theory of an integral group ring.
This question is investigated in detail by Lück-Rognes-Reich-Varisco [675, 676].
More information will be given in Subsection 15.11.2.

6.12 Notes

A good source of survey articles about algebraic 𝐾-theory is the handbook of
𝐾-theory, edited by Friedlander and Grayson [406]. There the relevance of higher
algebraic 𝐾-theory for algebra, topology, arithmetic geometry, and number theory
is explained. Other good sources are the books by Rosenberg [860], Srinivas [922],
and Weibel [998].

The relation of the exact sequences for amalgamated free products and HNN-
extensions appearing in Sections 6.9 and 6.10 to the Farrell-Jones Conjecture is
explained in Section 15.7.

The exact sequences for amalgamated free products and HNN-extensions appear-
ing in Sections 6.9 and 6.10 are the main ingredients in the proof that Conjecture 6.53
holds for a certain class of groups CL, see [976, Theorem 19.4 on page 249] in the
connective case and [75, Corollary 0.12] in general. The classCL is described and an-
alyzed in [976, Definition 19.2 on page 248 and Theorem 17.5 on page 250] and [75,
Definition 0.10]. It is closed under taking subgroups and contains for instance all
torsionfree one-relator groups.

We remark that algebraic 𝐾-theory does commute with infinite products for
additive categories, see [212] and also [573, Theorem 1.2], but not with infinite
products of rings.

The question of finding conditions under which the long exact sequence associated
to a pullback of rings (see Remark 4.4 and Remark 5.11) can be extended to higher
algebraic 𝐾-theory is investigated by Land-Tamme [616], actually for ring spectra.

The group 𝐾2𝑛 (𝑅𝐺) is finite for every finite group 𝐺, every ring of integer 𝑅 in
a number field, and every 𝑛 ≥ 1, see [597, Theorem 1.1].





Chapter 7
Algebraic 𝑲-Theory of Spaces

7.1 Introduction

We give a brief introduction to the 𝐾-theory of spaces called 𝐴-theory. This theory
was initialized by Waldhausen. Its benefit is that it allows us to study interesting
spaces of geometric structures such as groups of diffeomorphisms or homeomor-
phism of manifolds, pseudoisotopy spaces, spaces of ℎ-cobordisms, and Whitehead
spaces. It is an instance of a very successful strategy in topology to extend algebraic
notions to spaces. Other examples of this type are topological Hochschild homology
and topological cyclic homology. We will see in Section 9.21 how the results of this
chapter combined with surgery theory lead to quite explicit results about the homo-
topy groups of the space Top(𝑀) of self-homeomorphisms and the space Diff (𝑀)
of self-diffeomorphisms for an aspherical closed (smooth) manifold 𝑀 .

7.2 Pseudoisotopy

Let 𝐼 denote the unit interval [0, 1]. A topological pseudoisotopy of a compact
manifold𝑀 is a homeomorphism ℎ : 𝑀×𝐼 → 𝑀×𝐼 that restricted to𝑀×{0}∪𝜕𝑀×𝐼
is the obvious inclusion. The space 𝑃(𝑀) of pseudoisotopies is the group of all such
homeomorphisms, where the group structure comes from composition. If we allow
𝑀 to be non-compact, we will demand that ℎ has compact support, i.e., there is a
compact subset 𝐶 ⊆ 𝑀 such that ℎ(𝑥, 𝑡) = (𝑥, 𝑡) for all 𝑥 ∈ 𝑀 − 𝐶 and 𝑡 ∈ [0, 1]
holds.

There is a stabilization map 𝑃(𝑀) → 𝑃(𝑀×𝐼) given by crossing a pseudoisotopy
with the identity on the interval 𝐼 and the stable pseudoisotopy space is defined as
P(𝑀) = hocolim 𝑗→∞ 𝑃(𝑀 × 𝐼 𝑗 ). There also exist smooth versions 𝑃DIFF (𝑀) and
PDIFF (𝑀) = hocolim 𝑗→∞ 𝑃DIFF (𝑀× 𝐼 𝑗 ). For closed manifolds of dimension ≥ 6,
the PL-version agrees with the topological version, see [191].

The natural maps 𝑃Diff (𝑀) → PDiff (𝑀) induce isomorphisms on the 𝑖-th homo-
topy group if the dimension 𝑛 of 𝑀 is large compared to the dimension 𝑛 by work
of Igusa, building on earlier work of Hatcher, roughly for 𝑖 ≤ 𝑛/3, see [471, 512].
This implies that the same also holds for the map 𝑃(𝑀) → P(𝑀) for smoothable
manifolds 𝑀 , see the argument in [981, Corollary 1.4.2]. Meanwhile more infor-
mation on this connectivity range is known due to work of Goodwillie, Krannich,
Kupers, and Randal-Williams, see [430, 583, 584]. This is most conveniently stated
in terms of the following quantities on the connectivity of the single stabilization
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map 𝑠𝑀 : 𝑃Diff (𝑀) → 𝑃Diff (𝑀 × 𝐼)

𝜙(𝑀) := min{𝑘 ≥ 0 | 𝑠𝑀×𝐼𝑚 is 𝑘-connected for all 𝑚 ≥ 0};
𝜙(𝑀)Q := min{𝑘 ≥ 0 | 𝑠𝑀×𝐼𝑚 is rationally 𝑘-connected for all 𝑚 ≥ 0}.

Note that lower bounds for 𝜙(𝑀) imply lower bounds for 𝜙(𝑀)Q and upper bounds
for 𝜙(𝑀)Q imply upper bounds for 𝜙(𝑀). Igusa’s work shows 𝜙(𝑀) ≳ 𝑛/3 for all
𝑀 (precisely: 𝜙(𝑀) ≥ min( 𝑛−4

3 , 𝑛−7
2 )) and the following can be extracted from the

papers by Goodwillie, Krannich, Kupers, and Randal-Williams mentioned above:

(i) 𝜙(𝑀)Q ≤ 𝑛 − 4 for spin-manifolds 𝑀 of dimension 𝑛 ≥ 5;
(ii) 𝜙(𝑀)Q = 𝑛 − 4 for simply connected spin-manifolds 𝑀 of dimension 𝑛 ≥ 10.

Next we want to define a delooping of 𝑃(𝑀). Let 𝑝 : 𝑀×R𝑘 × 𝐼 → R𝑘 denote the
natural projection. For a manifold 𝑀 the space 𝑃𝑏 (𝑀;R𝑘) of bounded pseudoiso-
topies is the space of all self-homeomorphisms ℎ : 𝑀×R𝑘×𝐼 → 𝑀×R𝑘×𝐼 satisfying:
(i) The restriction of ℎ to 𝑀 ×R𝑘 × {0} ∪ 𝜕𝑀 ×R𝑘 × [0, 1] is the inclusion, (ii) the
map ℎ is bounded in the R𝑘-direction, i.e., the set {𝑝 ◦ ℎ(𝑦) − 𝑝(𝑦) | 𝑦 ∈ 𝑀 ×R𝑘 × 𝐼}
is a bounded subset of R𝑘 , and (iii) the map ℎ has compact support in the
𝑀-direction, i.e., there is a compact subset 𝐶 ⊆ 𝑀 such that ℎ(𝑥, 𝑦, 𝑡) = (𝑥, 𝑦, 𝑡)
for all 𝑥 ∈ 𝑀 − 𝐶, 𝑦 ∈ R𝑘 and 𝑡 ∈ [0, 1]. There is an obvious stabilization
map 𝑃𝑏 (𝑀;R𝑘) → 𝑃𝑏 (𝑀 × 𝐼;R𝑘) and a stable bounded pseudoisotopy space
P𝑏 (𝑀;R𝑘) = hocolim 𝑗→∞ 𝑃𝑏 (𝑀 × 𝐼 𝑗 ;R𝑘). There is a homotopy equivalence
P𝑏 (𝑀;R𝑘) → ΩP𝑏 (𝑀;R𝑘+1), see [472, Appendix II]. Hence the sequences of
spaces P𝑏 (𝑀;R𝑘) for 𝑘 = 0, 1, 2, . . . and Ω−𝑖P𝑏 (𝑀) for 𝑖 = 0,−1,−2, . . . define
an Ω-spectrum P(𝑀). Analogously one defines the differentiable bounded pseu-
doisotopies PDIFF

𝑏
(𝑀;R𝑘) and an Ω-spectrum PDIFF (𝑀).

Definition 7.1 ((Non-connective) pseudoisotopy spectrum). We call the Ω-spectra
P(𝑋) and PDIFF (𝑋) associated to a topological space 𝑋 the (non-connective) pseu-
doisotopy spectrum and the smooth (non-connective) pseudoisotopy spectrum of
𝑋 .

Remark 7.2 (Strict Functoriality). A priori the pseudoisotopy space and its non-
connective version are only homotopy functors in the following sense. They assign to
a map between manifolds only a homotopy class of maps between the pseudoisotopy
spaces and not a specific map. At least the homotopy class of maps between the
pseudoisotopy spaces depends only on the homotopy class of the map between
manifolds we started with. The homotopy class of the identity is sent to the homotopy
class of the identity and the construction is compatible with composition up to
homotopy. Moreover, it is a priori not clear what the values of the pseudoisotopy
space on general topological spaces are.

There are several places in the literature where a construction as a strict functor
from the category of topological spaces to the category of non-connective spectra
is indicated, but it seems to be the case that the only places where all the details
of this non-trivial extensions are carried out in the smooth, topological, and PL
category are the PhD theses of Enkelmann [343] and Pieper [810]. This is important
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for the construction of the assembly map appearing in the Farrell-Jones Conjecture
for pseudoisotopy spaces 15.63, since we want the pseudoisotopy functor to digest
for instance classifying spaces of groups and groupoids, which obviously are not
compact manifolds in general, and to construct the assembly map we need strict
functoriality.

Theorem 7.3 (Pseudoisotopy is a homotopy-invariant functor). Let 𝑓 : 𝑋 → 𝑌

be a weak homotopy equivalence. Then the induced maps

P( 𝑓 ) : P(𝑋) → P(𝑌 );
PDIFF ( 𝑓 ) : PDIFF (𝑋) → PDIFF (𝑌 ),

are weak homotopy equivalences.

Proof. See [472, Proposition 1.3]. ⊓⊔

Remark 7.4. There is also a PL-version PPL (𝑋) of P(𝑋). Since the canonical map
PPL (𝑋) → P(𝑋) is a weak homotopy equivalence, we do not consider it further.

7.3 Whitehead Spaces and 𝑨-Theory

7.3.1 Categories with Cofibrations and Weak Equivalences

The following definition is a generalization of the notion of an exact category of
Definition 6.32 in the sense of Quillen. It allows us to deal with spaces instead of
algebraic objects such as modules. It is due to Waldhausen.

A category C is called pointed if it comes with a distinguished zero-object, i.e.,
an object that is both initial and terminal.

Definition 7.5 (Category with cofibrations and weak equivalences). A category
with cofibrations and weak equivalences is a small pointed category with a subcat-
egory 𝑐𝑜C, called the category of cofibrations, in C and a subcategory 𝑤C, called
the category of weak equivalences, in C such that the following axioms are satisfied:

(i) The isomorphisms in C are cofibrations, i.e., belong to 𝑐𝑜C;
(ii) For every object 𝐶 the map ∗ → 𝐶 is a cofibration, where ∗ is the distinguished

zero-object;

(iii) If in the diagram 𝐴 𝐵oo
𝑖oo 𝑓 // 𝐶 the left arrow is a cofibration, the

pushout
𝐴 //

𝑖 //

𝑓

��

𝐵

𝑓

��
𝐶 //

𝑖 // 𝐷

exists and 𝑖 is a cofibration;
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(iv) The isomorphisms in C are contained in 𝑤C;
(v) If in the commutative diagram

𝐵

≃
��

𝐴oooo //

≃
��

𝐶

≃
��

𝐵′ 𝐴′oooo // 𝐶′

the horizontal arrows on the left are cofibrations, and all vertical arrows are
weak equivalences, then the induced map on the pushout of the upper row to
the pushout of the lower row is a weak homotopy equivalence.

Example 7.6 (Exact categories are categories with cofibrations and weak equiv-
alences). Let P ⊆ A be an exact category in the sense of Definition 6.32. The
zero-object is just a zero-object in the abelian category A. A cofibration in P is a
morphism 𝑖 : 𝐴→ 𝐵 that occurs in an exact sequence 0→ 𝐴→ 𝐵→ 𝐶 → 0 of P.
The weak equivalences are given by the isomorphisms.

Exercise 7.7. Let C be the category of finite projective 𝑅-chain complexes. Define
cofibrations to be chain maps 𝑖∗ : 𝐶∗ → 𝐷∗ such that 𝑖𝑛 : 𝐶𝑛 → 𝐷𝑛 is split injective
for all 𝑛 ≥ 0. Define weak equivalences to be homology equivalences. Show that C
is a category with cofibrations and weak equivalences in the sense of Definition 7.5,
ignoring the fact that C is not small.

Example 7.8 (The category R(𝑋) of retractive spaces). Let 𝑋 be a space. A
retractive space over 𝑋 is a triple (𝑌, 𝑟, 𝑠) consisting of a space𝑌 and maps 𝑠 : 𝑋 → 𝑌

and 𝑟 : 𝑌 → 𝑋 such that 𝑠 is a cofibration and 𝑟 ◦ 𝑠 = id𝑋. A morphism from (𝑌, 𝑟, 𝑠)
to (𝑌 ′, 𝑟 ′, 𝑠′) is a map 𝑓 : 𝑌 → 𝑌 ′ satisfying 𝑟 ′ ◦ 𝑓 = 𝑟 and 𝑓 ◦ 𝑠 = 𝑠′. The zero-
object is (𝑋, id𝑋, id𝑋). A morphism 𝑓 : (𝑌, 𝑟, 𝑠) → (𝑌 ′, 𝑟 ′, 𝑠′) is declared to be a
cofibration if the underlying map of spaces 𝑓 : 𝑌 → 𝑌 ′ is a cofibration. Now there are
several possibilities to define weak equivalences. One may require that 𝑓 : 𝑌 → 𝑌 ′

is a homeomorphism, a homotopy equivalence, weak homotopy equivalence, or
a homology equivalence with respect to some fixed homology theory. Then one
obtains a category R(𝑋) with cofibrations and weak equivalences in the sense of
Definition 7.5 except that R(𝑋) is not small.

To achieve that R(𝑋) is small and later to get interesting 𝐾-theory, one may
for instance require that (𝑌, 𝑋) is a relative 𝐶𝑊-complex which is relatively finite,
𝑠 : 𝑋 → 𝑌 is the inclusion, and morphisms are cellular maps. Denote this category
with cofibrations and weak equivalences by R 𝑓 (𝑋), where we choose all weak ho-
motopy equivalences as weak equivalences and inclusion of relative 𝐶𝑊-complexes
as cofibrations.
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7.3.2 The 𝒘𝑺•-Construction

Let C be a category with cofibrations and weak equivalences. Next we briefly recall
Waldhausen’s 𝑤𝑆•-construction, see [979, Section 1.3].

For an integer 𝑛 ≥ 0 let [𝑛] be the ordered set {0, 1, 2, . . . , 𝑛}. LetΔ be the category
whose set of objects is {[𝑛] | 𝑛 = 0, 1, 2, . . .} and whose set of morphisms from [𝑚]
to [𝑛] consists of the order preserving maps. A simplicial category is a contravariant
functor fromΔ to the categoryCAT of categories. Analogously, a simplicial category
with cofibrations and weak equivalences is a contravariant functor from Δ to the
category CAT cof,weq of categories with cofibrations and weak equivalences. Now
we assign to C a simplicial category with cofibrations and weak equivalences 𝑆•C
as follows. Define 𝑆𝑛C to be the category for which an object is a sequence of

cofibrations 𝐴0,1
𝑘0,1−−−→ 𝐴0,2

𝑘0,2−−−→ · · ·
𝑘0,𝑛−1−−−−→ 𝐴0,𝑛 together with explicit choices of

quotient objects pr𝑖, 𝑗 : 𝐴0, 𝑗 → 𝐴𝑖, 𝑗 = 𝐴0, 𝑗/𝐴0,𝑖 for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝑖 < 𝑗 , i.e.,
we fix pushouts

𝐴0,𝑖
𝑘0, 𝑗−1◦···◦𝑘0,𝑖 //

��

𝐴0,, 𝑗

pr𝑖, 𝑗
��

0 // 𝐴𝑖, 𝑗 .

Morphisms are given by a collection of morphisms { 𝑓𝑖, 𝑗 } which make the obvious
diagrams commute.

With these explicit choices of quotient objects, it is easy to define the relevant
face and degeneracy maps. For instance the face map 𝑑𝑖 : 𝑆𝑛C → 𝑆𝑛−1C is given for
𝑖 ≥ 1 by dropping 𝐴0,𝑖 and for 𝑖 = 0 by passing to 𝐴0,2/𝐴0,1 → 𝐴0,3/𝐴0,1 → · · · →
𝐴0,𝑛/𝐴0,1. An arrow in 𝑆𝑛C is declared to be a cofibration if each arrow 𝐴𝑖, 𝑗 → 𝐴′

𝑖, 𝑗

is a cofibration and analogously for weak equivalences.
We obtain a simplicial category 𝑤𝑆•C by considering the category of weak

equivalences of 𝑆•C. Let |𝑤𝑆•C| be the geometric realization of the simplicial
category 𝑤𝑆•C which is the geometric realization of the bisimplicial set obtained by
the composite of the functor nerve of a category with 𝑤𝑆•C.

Definition 7.9 (Algebraic 𝐾-theory space of a category with cofibrations and
weak equivalences). Let C be a category with cofibrations and weak equivalences.
Its algebraic 𝐾-theory space 𝐾 (C) is defined by

𝐾 (C) := Ω|𝑤𝑆•C|.

The 1-skeleton in the 𝑆• direction of |𝑤𝑆•C| is obtained from |𝑤𝑆C| × [0, 1] =
|𝑤𝑆1C| × Δ1 by collapsing {∗} × [0, 1] ∪ |𝑤𝑆C| × {0} to a point because of
|𝑤𝑆0 | = {•}. Hence there is a canonical map |𝑤C| → Ω|𝑤𝑆•C| that is the ad-
joint of the obvious identification of the 1-skeleton in the 𝑆•-direction of |𝑤𝑆•C|
with the reduced suspension |𝑤C| ∧ 𝑆1. If we apply the construction to 𝑆𝑛C, we
obtain a map of spaces |𝑤𝑆𝑛C| → Ω|𝑤𝑆•𝑆𝑛C|. The collection of these maps for
𝑛 ≥ 0 yields a map of simplicial spaces and hence by geometric realization a map of
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spaces |𝑤𝑆•C| → Ω|𝑤𝑆•𝑆•C|. By iterating this construction, we obtain a sequence
of maps

|𝑤C| → Ω|𝑤𝑆•C| → ΩΩ|𝑤𝑆•𝑆•C| → ΩΩΩ|𝑤𝑆•𝑆•𝑆•C| → · · ·

such that all maps except the first one are weak homotopy equivalences. So 𝐾 (C) is
an infinite loop space beyond the first term.

7.3.3 𝑨-Theory

Next we recall Waldhausen’s definition of the 𝐴-theory of a topological space,
see [979, Chapter 2].

Definition 7.10 (Connective 𝐴-theory). Let 𝑋 be a topological space. Let R 𝑓 (𝑋)
be the category with cofibrations and weak equivalences defined in Example 7.8.
Define the 𝐴-theory space 𝐴(𝑋) associated to 𝑋 to be the algebraic 𝐾-theory space
𝐾 (R 𝑓 (𝑋)) in the sense of Definition 7.9.

Remark 7.11 (The 𝑤𝑆•-construction encompasses the 𝑄-construction). Wald-
hausen’s construction encompasses the 𝑄-construction of Quillen, see [979, Sec-
tion 1.9].

As in the case of the algebraic𝐾-theory of rings or pseudoisotopy, it will be crucial
for us to consider a non-connective version. Vogell [967] has defined a delooping
of 𝐴(𝑋) yielding a non-connective Ω-spectrum A(𝑋) for a topological space. The
idea is similar to the construction of the (non-connective) pseudoisotopy spectrum
in Section 7.2, where one considers parametrizations over R𝑘 and imposes control
conditions. This construction actually yields a covariant functor from the category
of topological spaces to the category of Ω-spectra

A : TOP → Ω-SPECTRA.(7.12)

Definition 7.13 (Non-connective 𝐴-theory). We call A(𝑋) the (non-connective)
𝐴-theory spectrum associated to the topological space 𝑋 . We write for 𝑛 ∈ Z

𝐴𝑛 (𝑋) := 𝜋𝑛 (A(𝑋)).

Note that 𝐴𝑛 (𝑋) agrees with 𝜋𝑛 (𝐴(𝑋)) for 𝑛 ≥ 1 if 𝐴(𝑋) is the space appearing
in Definition 7.10. Actually there is a map of spectra, natural in 𝑋 ,

i(𝑋) : 𝐴(𝑋) → A(𝑋)(7.14)

which induces isomorphisms 𝜋𝑛 (i(𝑋)) : 𝜋𝑛 (𝐴(𝑋))
�−→ 𝜋𝑛 (A(𝑋)) for 𝑛 ≥ 1.

Remark 7.15 (𝜋0 (𝐴(𝑋))). If 𝑋 is path connected, then 𝐴0 (𝑋) � Z. The isomor-
phism comes from taking the Euler characteristic of a relatively finite relative 𝐶𝑊-
complex (𝑌, 𝑋).
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One may replace in the definition of 𝐴(𝑋) the category R 𝑓 (𝑋) by the full
subcategory of R(𝑋) of those triples (𝑌, 𝑟, 𝑠) such that (𝑌, 𝑋) is a relative 𝐶𝑊-
complex consisting of countably many cells, 𝑠 : 𝑋 → 𝑌 is the inclusion and the
object (𝑌, 𝑟, 𝑠) is up to homotopy the retract of an object (𝑌 ′, 𝑟 ′, 𝑠′) such that (𝑌 ′, 𝑋)
is a relatively finite relative 𝐶𝑊-complex. Then 𝜋𝑛 (𝐴(𝑋)) is unchanged for 𝑛 ≥ 1,
whereas 𝜋0 (𝐴(𝑋)) can now be identified with 𝐾0 (Z[𝜋1 (𝑋)]) if 𝑋 is path connected.
The identification comes from taking an appropriate finiteness obstruction. With this
new definition the map 𝜋0 (i) : 𝜋0 (𝐴(𝑋)) → 𝜋0 (A(𝑋)) is bijective.

For the proof of the next result see [979, Proposition 2.1.7].

Theorem 7.16 (𝐴-theory is a homotopy-invariant functor). Let 𝑓 : 𝑋 → 𝑌 be a
weak homotopy equivalence. Then the induced maps

𝐴( 𝑓 ) : 𝐴(𝑋) → 𝐴(𝑌 );
A( 𝑓 ) : A(𝑋) → A(𝑌 ),

are weak homotopy equivalences.

Let 𝑋 be a connected space with fundamental group 𝜋 = 𝜋1 (𝑋) which admits a
universal covering 𝑝𝑋 : 𝑋 → 𝑋 . Consider an object in R 𝑓 (𝑋). Recall that it is given
by a relatively finite relative 𝐶𝑊-complex (𝑌, 𝑋) together with a map 𝑟 : 𝑌 → 𝑋

satisfying 𝑟 |𝑋 = id𝑋. Let𝑌 → 𝑌 be the 𝜋-covering obtained from 𝑝𝑋 : 𝑋 → 𝑋 by the
pullback construction applied to 𝑟 : 𝑌 → 𝑋 . The cellularZ𝜋-chain complex𝐶∗ (𝑌, 𝑋)
of the relative free 𝜋-𝐶𝑊-complex (𝑌, 𝑋) is a finite free Z𝜋-chain complex. This
yields a functor of categories with cofibrations and weak equivalences from R 𝑓 (𝑋)
to the category of finite free Z𝜋-chain complexes. The algebraic 𝐾-theory of the
category of finite free Z𝜋-chain complexes agrees with that of the finitely generated
free Z𝜋-modules. Hence we get a natural map of spectra called the linearization map

L(𝑋) : A(𝑋) → K(Z𝜋1 (𝑋)).(7.17)

The next result follows by combining [968, Section 4] and [978, Proposition 2.2
and Proposition 2.3].

Theorem 7.18 (Connectivity of the linearization map). Let 𝑋 be a connected
𝐶𝑊-complex. Then:

(i) The linearization map L(𝑋) of (7.17) is 2-connected, i.e., the map

𝐿𝑛 (𝑋) := 𝜋𝑛 (L(𝑋)) : 𝐴𝑛 (𝑋) → 𝐾𝑛 (Z𝜋1 (𝑋))

is bijective for 𝑛 ≤ 1 and surjective for 𝑛 = 2;
(ii) Rationally the map 𝐿𝑛 (𝑋) is bijective for all 𝑛 ∈ Z provided that 𝑋 is aspherical.

Exercise 7.19. Show that the canonical map of spectra 𝐴({•}) → A({•}) is a weak
homotopy equivalence.
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Remark 7.20. We obtain from the transformation L of (7.17) for every group𝐺 and
every 𝑛 ∈ Z a commutative diagram

(7.21) 𝐻𝑛 (𝐵𝐺; A({•}))

𝐻𝑛 (id𝐵𝐺 ;L({•}) )
��

// 𝐴𝑛 (𝐵𝐺)

𝐿𝑛 (𝐵𝐺)
��

𝐻𝑛 (𝐵𝐺; K(Z)) // 𝐾𝑛 (Z𝐺)

whose horizontal arrows are assembly maps. We conclude from Theorem 7.18 that
its vertical arrows are bijective for 𝑛 ≤ 1, surjective for 𝑛 = 2, and rationally bijective
for all 𝑛 ∈ Z. Hence the upper horizontal arrow is rationally bijective if and only if
the lower horizontal arrow is rationally bijective. Recall that Conjecture 6.53 says
that the lower horizontal map is bijective. So one may wonder whether the upper
horizontal is always bijective. The answer is no, already for𝐺 = Z the assembly map

𝐻𝑛 (𝐵Z; A({•})) = 𝐴𝑛−1 ({•}) ⊕ 𝐴𝑛 ({•}) → 𝐴𝑛 (𝐵Z) = A(𝑆1)

is known to be not surjective by the following consideration.
Let 𝑁𝐴𝑛 ({•}) be the Nil-term occurring in the Bass-Heller-Swan-isomorphisms

for non-connective 𝐴-theory, see [510, 511],

(7.22) 𝐴𝑛 (𝑆1) = 𝐴𝑛 ({•}) ⊕ 𝐴𝑛−1 ({•}) ⊕ 𝑁𝐴𝑛 ({•}) ⊕ 𝑁𝐴𝑛 ({•}).

We conclude 𝑁𝐴𝑛 ({•}) = {0} for 𝑛 ≤ 1 and 𝑁𝐴𝑛 ({•}) ⊗Z Q = {0} for 𝑛 ∈ Z
from (7.21) and Theorem 13.51. On the other hand, 𝑁𝐴𝑛 ({•}) for 𝑛 = 2, 3 is an
infinite-dimensional F2-vector space. For more information about 𝑁𝐴𝑛 ({•}) we refer
to Grunewald-Klein-Macko [445] and Hesselholt [478].

Exercise 7.23. Show that the linearization map

𝐿2 (𝑆1) : 𝐴2 (𝑆1) → 𝐾2 (Z𝜋1 (𝑆1))

is not injective using the fact that Wh2 (Z) vanishes.

7.3.4 Whitehead Spaces

Waldhausen [978, 979] defines the functor Wh(𝑋) from spaces to infinite loop
spaces, which can be viewed as connective Ω-spectra, and a fibration sequence

𝑋+ ∧ 𝐴({•}) → 𝐴(𝑋) →Wh(𝑋).(7.24)

Here 𝑋+ ∧ 𝐴({•}) → 𝐴(𝑋) is an assembly map. After taking homotopy groups,
it can be compared with the algebraic 𝐾-theory assembly map that appears in
Conjecture 6.53 via a commutative diagram
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𝜋𝑛 (𝑋+ ∧ 𝐴({•}))

�

��

// 𝜋𝑛 (𝐴(𝑋))

��
𝜋𝑛 (𝑋+ ∧ A({•})) = 𝐻𝑛 (𝑋; A({•}))

𝐻𝑛 (𝑋;L)
��

// 𝜋𝑛 (A(𝑋))

𝜋𝑛 (L)
��

𝐻𝑛 (𝐵𝜋1 (𝑋); K(Z)) // 𝐾𝑛 (Z𝜋1 (𝑋)).

(7.25)

Here the vertical arrows from the first row to the second row come from the map i
of (7.14). The left one of these is bijective for 𝑛 ∈ Z by Exercise 7.19 and the right
one is bijective for 𝑛 ≥ 1. As already discussed in Remark 7.20, the lower vertical
arrows from the second row to the third row come from the linearization map L
of (7.17) and because of Theorem 7.18 the left lower vertical arrow is bijective for
𝑛 ≤ 1 and rationally bijective for 𝑛 ∈ Z. In the case where 𝑋 is aspherical, the lower
right vertical map 𝜋𝑛 (𝐿) is bijective for 𝑛 ≤ 1 and rationally bijective for all 𝑛 ∈ Z
because of Theorem 7.18. Because of (7.24) and the fact that

Ω2 Wh(𝑋) ≃ P(𝑋),(7.26)

see [322, Section 9] and [981], Conjecture 6.53 implies rational vanishing results
for the groups 𝜋𝑛 (P(𝑀)) if 𝑀 is an aspherical closed manifold.

Theorem 7.27 (Homotopy groups of Wh(𝐵𝐺) andP(𝐵𝐺) rationally for torsion-
free 𝐺). Let 𝐺 be a torsionfree group. Suppose that Conjecture 6.53 holds for 𝐺
and 𝑅 = Z. Then we get for all 𝑛 ≥ 0

𝜋𝑛 (Wh(𝐵𝐺)) ⊗Z Q = 0;
𝜋𝑛 (P(𝐵𝐺)) ⊗Z Q = 0.

Exercise 7.28. Show that 𝜋1 (Wh(𝐵𝐺)) is Wh(𝐺).

There is also a smooth version of the Whitehead space WhDIFF (𝑋) defined as
the homotopy cofiber

Σ∞ (𝑋+) → 𝐴(𝑋) →WhDIFF (𝑋)(7.29)

where Σ∞ (𝑋+) → 𝐴(𝑋) factors as the unit map Σ∞ (𝑋+) = 𝑋+ ∧ S → Σ∞ (𝑋+) ∧
𝐴({•}) and the assembly map Σ∞ (𝑋+) ∧ 𝐴({•}) → 𝐴(𝑋). We have

Ω2 WhDIFF (𝑋) ≃ PDIFF (𝑋).(7.30)

Again there is a close relation to 𝐴-theory via the natural splitting of connective
spectra due to Waldhausen [978, 980, 981]

𝐴(𝑋) ≃ Σ∞ (𝑋+) ∨WhDIFF (𝑋).(7.31)
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Here Σ∞ (𝑋+) denotes the suspension spectrum associated to 𝑋+. Since for every
space 𝜋𝑛 (Σ∞ (𝑋+)) ⊗ZQ � 𝐻𝑛 (𝑋;Q), Conjecture 6.53 combined with Remark 6.57
and Theorem 7.18 yields the following result.

Theorem 7.32 (Homotopy groups of WhDIFF (𝐵𝐺) and PDIFF (𝐵𝐺) rationally
for torsionfree 𝐺). Let 𝐺 be a torsionfree group. Suppose that Conjecture 6.53
holds for 𝑅 = Z and 𝐺. Then we get for all 𝑛 ≥ 0

𝜋𝑛 (WhDIFF (𝐵𝐺)) ⊗Z Q �
∞⊕
𝑘=1

𝐻𝑛−4𝑘−1 (𝐵𝐺;Q);

𝜋𝑛 (PDIFF (𝐵𝐺)) ⊗Z Q �
∞⊕
𝑘=1

𝐻𝑛−4𝑘+1 (𝐵𝐺;Q).

Note that Theorem 7.27 and Theorem 7.32 is a key ingredient in the computation
of the homotopy groups of Top(𝑀) and Diff (𝑀) for a closed (smooth) manifold 𝑀 ,
as they appear in Theorem 9.195 and Theorem 9.196.

Exercise 7.33. Show that there is no connected closed manifold 𝑀 with the property
that the homomorphism induced by the forgetful map 𝜋𝑛 (WhDIFF (𝑀)) ⊗Z Q →
𝜋𝑛 (Wh(𝑀)) ⊗Z Q is bijective for all 𝑛 ≥ 0. Use the fact that the composite of the
obvious inclusion of WhDIFF (𝑋) into Σ∞ (𝑋+) ∨WhDIFF (𝑋) with the inverse of
the splitting (7.31) and the map 𝐴(𝑋) → Wh(𝑋) of (7.24) is up to homotopy the
obvious forgetful map WhDIFF (𝑀) →Wh(𝑀).

Remark 7.34. There are also non-connective versions Wh of the Whitehead space
Wh defined by the homotopy fibration sequence of non-connective spectra

𝑋+ ∧ A({•}) → A(𝑋) →Wh(𝑋)(7.35)

and WhDIFF (𝑋) of the smooth Whitehead space WhDIFF (𝑋) defined to be the
homotopy cofiber in the sequence of non-connective spectra

Σ∞ (𝑋+) → A(𝑋) →WhDIFF (𝑋)(7.36)

such that the results above have non-connective versions working for all 𝑛 ∈ Z.

Integral computations of the homotopy groups of Whitehead spaces are much
harder. We at least state one example, which follows directly from [344, Theorem 1.3].

Theorem 7.37 (Homotopy groups of Wh(𝐵𝐺) of a torsionfree hyperbolic group
𝐺). Let 𝐺 be a torsionfree hyperbolic group. Then we get for 𝑛 ∈ Z an isomorphism

𝜋𝑛 (Wh(𝐵𝐺)) �
⊕
(𝐶 )

𝑁𝐴𝑛 ({•}) ⊕ 𝑁𝐴𝑛 ({•})

where (𝐶) ranges over the conjugacy classes of maximal infinite cyclic subgroups 𝐶
of 𝐺 and 𝑁𝐴𝑛 ({•}) has been introduced in (7.22).

In particular, 𝜋𝑛 (Wh(𝐵𝐺)) = 0 for 𝑛 ≤ 1.
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7.4 Notes

One of the basic tools to investigate the algebraic 𝐾-theory of spaces is the Additivity
Theorem, see [712] and [979, Theorem 1.4.2]. If C is a category with cofibrations
and weak equivalences, we can assign to it a category with cofibrations and weak
equivalences 𝐸 (C) whose objects are exact sequences 𝐴 𝑖−→ 𝐵

𝑝
−→ 𝐶, where exact

means that the map 𝑖 is a cofibration and the following diagram is a pushout

𝐴
𝑖 //

��

𝐵

𝑝

��
∗ // 𝐶

Theorem 7.38 (Additivity Theorem for categories with cofibrations and weak
equivalences). Let 𝐹1 and 𝐹3 respectively be the functors 𝐸 (C) → C of categories
with cofibrations and weak equivalences sending an object 𝐴 𝑖−→ 𝐵

𝑝
−→ 𝐶 to 𝐴 and 𝐶

respectively. Then we obtain a weak homotopy equivalence

𝐾 (𝐹1) × 𝐾 (𝐹3) : 𝐾 (𝐸 (C))
≃−→ 𝐾 (C) × 𝐾 (C).

Further useful tools are the Approximation Theorem, see [979, Theorem 1.6.7],
the Fibration Theorem, see [979, Theorem 1.6.4], and the Cofinality Theorem,
see [979, Theorem 1.5.9], which give criteria to decide when a functor of categories
with cofibrations and weak equivalences induces a weak homotopy equivalence on
the 𝐾-theory spaces.

To the author’s knowledge, it is not known how to define a non-connective
𝐾-theory spectrum for an arbitrary Waldhausen category. If we restrict ourselves
to homotopical Waldhausen category, a non-connective 𝐾-theory spectrum has been
defined by Bunke-Kasprowski-Winges [186, Definition 2.37].

There is also a space of parametrized ℎ-cobordisms𝐻 (𝑀) for a closed topological
manifold 𝑀 . Roughly speaking, the space is designed such that a map 𝑁 → 𝐻 (𝑀) is
the same as a bundle over 𝑁 whose fibers are ℎ-cobordisms over 𝑀 . The set of path
component 𝜋0 (𝐻 (𝑀)) agrees with the isomorphism classes of ℎ-cobordisms over
𝑀 . In particular the 𝑠-Cobordism Theorem 3.47 is equivalent to the statement that for
dim(𝑀) ≥ 5 we obtain a bijection 𝜋0 (𝐻 (𝑀))

�−→ Wh(𝜋1 (𝑀)) coming from taking
the Whitehead torsion, or, equivalently, that we obtain a bijection 𝜋0 (𝐻 (𝑀))

�−→
𝜋0 (ΩWh(𝑀)). There is also a stable version, the space of stable parametrized
ℎ-cobordisms K(𝑀) = hocolim 𝑗→∞ 𝐻 (𝑀 × 𝐼 𝑗 ).

Theorem 7.39 (The stable parametrized ℎ-cobordism theorem). If 𝑀 is a closed
topological manifold, then there is a homotopy equivalence

K(𝑀) ≃−→ ΩWh(𝑀).
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There is also a smooth version of the result above. For the proof and more
information about the stable parametrized ℎ-cobordism theorem we refer to [981].



Chapter 8
Algebraic 𝑲-Theory of Higher Categories

8.1 Introduction

The development of higher category theory over the last few decades has further
promoted a shift in perspective on mathematical concepts which prioritizes universal
properties over explicit constructions. As a result of the work of Barwick [99] and
Blumberg, Gepner, and Tabuada [143], this includes algebraic 𝐾-theory, which can
be characterized in terms of a universal property once the requisite ∞-categorical
machinery has been set up.

In Section 8.3, we describe connective and non-connective algebraic 𝐾-theory as
the universal additive and universal localizing invariant under the groupoid core on
stable ∞-categories, and extend their domain of definition slightly to cover right-
exact∞-categories.

Section 8.4 compares this definition of algebraic 𝐾-theory to the algebraic
𝐾-theory functors from previous chapters, thus explaining in which sense this ver-
sion of algebraic 𝐾-theory subsumes (almost) all instances of algebraic 𝐾-theory
encountered previously.

In Section 8.5 we explain how to produce from right-exact 𝐺-∞-categories the
necessary data, namely an equivariant homology theory, that will allow for the
formulation of the Farrell-Jones Conjecture in the setting of higher categories in
Subsection 13.3.1. This encompasses the construction of an appropriate equiva-
riant homology theory and the Farrell-Jones Conjecture with coefficients in additive
𝐺-categories appearing in Section 13.3.

A reader who is only interested in the Farrell-Jones Conjecture for group rings
may just skip this chapter.

Throughout this chapter, as well as Chapter 24, we will assume familiarity with
the basic notions of higher category theory as laid out for example in [242, 613,
691, 851]. This includes the notions of∞-category, functors between∞-categories,
adjoints, limits and colimits, Kan extensions, and the concept of cofinality. Parts of
the discussion will also use the theory of (symmetric) monoidal ∞-categories and
(commutative) algebra objects in such∞-categories, which is developed in [689].

8.2 Notational and Terminological Conventions

We adopt the following notational and terminological conventions:

• We denote by CAT∞ the∞-category of small∞-categories;

175
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• We denote by Spc the full subcategory of CAT∞ spanned by the ∞-groupoids,
synonymously “spaces”, “weak homotopy types”, or “anima”. Moreover, Spc∗ :=
Spc∗/ is the∞-category of pointed spaces;
• The groupoid core functor 𝜄 : CAT∞ → Spc takes an ∞-category to its sub-

category of equivalences. This functor is right adjoint to the inclusion functor
Spc→ CAT∞;
• The inclusion functor Spc→ CAT∞ also admits a left adjoint, sometimes called

groupoidification, which we denote by |−| : CAT∞ → Spc;
• Given an ∞-category C and a collection of morphisms 𝑆 in C, the Dwyer-Kan

localization of C at 𝑆 is a functor ℓ : C → C[𝑆−1] such that the restriction functor

ℓ∗ : Fun(C[𝑆−1],D) → Fun(C,D)

is fully faithful with essential image given by those functors which send every
morphism in 𝑆 to an invertible morphism in D;
• There exists a functor

(8.1) 𝐿 : Top→ Spc,

which exhibits the∞-category Spc as the Dwyer-Kan localization of the category
of topological spaces at the weak homotopy equivalences;
• In order to make the notation consistent, we deviate from standard usage and write

morC : Cop × C → Spc for the functor which sends a pair of objects (𝑥, 𝑦) in an
∞-category C to its space of morphisms (and therefore gives rise to the Yoneda
embedding C → Fun(Cop, Spc));
• We denote the ∞-category of functors between two ∞-categories C and D by

Fun(C,D). Mapping spaces in functor categories will typically be denoted by nat
instead of the unwieldy morFun(C,D) ;
• We denote by Sp the ∞-category of spectra. Recall that this ∞-category can be

characterized uniquely by a number of universal properties, for example as the
stabilization of the finitely complete ∞-category Spc∗ [689, Section 1.4.3], or as
the stable, presentable∞-category freely generated by a single object S, the sphere
spectrum, see [689, Corollary 1.4.4.5]. We will recall the notion of stability in
Definition 8.3 below.
The ∞-category Sp is also the ∞-category obtained from SPECTRA using the
Bousfield-Friedlander model structure [158]. In particular, any functor valued in
SPECTRA gives rise to an Sp-valued functor by composition with the localization
functor

(8.2) L : SPECTRA→ Sp,

which sends weak homotopy equivalences to equivalences. The notions of homo-
topy equivalence, homotopy fiber sequence, . . . in SPECTRA correspond to the
intrinsic notions of equivalence, fiber sequence, . . . in the∞-category Sp.
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There exists an adjunction Σ∞ : Spc∗ ⇄ Sp :Ω∞ in which Σ∞ sends a pointed
space to its suspension spectrum andΩ∞ sends a spectrum to its underlying infinite
loop space.
One recovers the homotopy groups of a spectrum 𝑋 by setting 𝜋𝑛 (𝑋) :=
𝜋0 (morSp (Σ𝑛S, 𝑋)). As usual, a spectrum 𝑋 is connective if 𝜋𝑛 (𝑋) = 0 for
𝑛 < 0. The inclusion of the full subcategory Sp≥0 of connective spectra admits
a right adjoint 𝜏≥0 : Sp → Sp≥0 which produces the connective cover of a given
spectrum;
• The word “unique” will be used in favor of “essentially unique” to indicate that

an object or map is determined up to a contractible space of choices, as happened
already above when we referred for example to “the” Yoneda embedding.

8.3 The Universal Property of Algebraic 𝑲-Theory

The works of Barwick [99] and Blumberg, Gepner, and Tabuada [143] provide two
different routes to formulating a universal property for algebraic 𝐾-theory. Since we
will ultimately be interested in non-connective algebraic 𝐾-theory, we focus on the
approach of [143] and understand algebraic 𝐾-theory as an invariant of small stable
∞-categories. Let us begin by introducing the relevant notions.

Definition 8.3. An∞-category C is
(i) pointed if it admits a zero object, i.e., there exist both an initial object ∅ and a

final object ∗, and the unique morphism ∅ → ∗ is an equivalence;
(ii) stable if it is pointed, admits all finite limits and all finite colimits, and a com-

mutative square in C is a pushout if and only if it is a pullback.
An exact functor 𝐹 : C → D between stable ∞-categories is a functor which

preserves both finite limits and finite colimits. Denote by Funex (C,D) ⊆ Fun(C,D)
the full subcategory of exact functors.

The ∞-category CATST is the subcategory of CAT∞ given by small stable ∞-
categories and exact functors. In particular, the mapping spaces in CATST are given
by

morCATST (C,D) ≃ 𝜄Funex (C,D),

the groupoid core of the∞-category of exact functors from C to D.

Remark 8.4. The homotopy category of a stable ∞-category C carries an induced
triangulated structure, in which the shift functor is induced by the suspension
Σ : C → C and the distinguished triangles correspond to commutative diagrams

𝑥
𝑓 //

��

𝑦 //

𝑔

��

0

��
0 // 𝑧

ℎ // Σ𝑥

with both squares bicartesian [689, Theorem 1.1.2.14].
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Example 8.5.

(i) The ∞-category Sp of spectra is a stable ∞-category, as is its full subcategory
Sp𝜔 of compact spectra. The inclusion functor Sp𝜔 → Sp is exact;

(ii) If R is anE1-ring spectrum, the∞-category R-MOD of left R-modules is stable,
and so is its full subcategoryPERF(R) of compact objects. The inclusion functor
PERF(R) → R-MOD is exact. Since S-MOD ≃ Sp, this generalizes the first
example;

(iii) For a small additive categoryA, consider the categoryCh(A) of bounded chain
complexes over A. Localizing at the subcategory ℎCh(A) of chain homotopy
equivalences, one obtains a stable∞-category

(8.6) Kb (A) := Ch(A)[ℎCh(A)−1] .

This can be deduced from Proposition 8.29 below, using the criterion that a
pointed, finitely cocomplete∞-category is stable if the suspension functor is an
equivalence [689, Corollary 1.4.2.27].
Comparing universal properties, one finds that the homotopy category ofKb (A)
is equivalent to the classical homotopy category of bounded chain complexes
over A, cf. [997, Section 10.1]. This equivalence refines to an equivalence of
triangulated categories;

(iv) If A is a small abelian category, define

(8.7) Db (A) := Ch(A)[𝑞Ch(A)−1],

as the localization at the subcategory 𝑞Ch(A) of quasi-isomorphisms. As in the
case ofKb (A), Proposition 8.29 below implies that this is a stable∞-category.
The homotopy category ofDb (A) is equivalent to the classical bounded derived
category of A, also as a triangulated category.
Since every chain homotopy equivalence is a quasi-isomorphism, the identity
functor onA induces a functorKb (A) → Db (A) which is exact. This functor
vanishes on the full subcategory of Kb (A) spanned by the acyclic complexes
overA, and it is in fact universal among exact functors with this property in the
sense that restriction along this functor induces for every stable∞-category C a
fully faithful functor

Funex (Db (A), C) → Funex (Kb (A), C)

whose essential image is given by those functors which vanish on the full
subcategory of acyclic complexes. This exhibits the bounded derived category
as a Verdier quotient of Kb (A), which is the next concept we introduce.

Definition 8.8. Let C be a small stable∞-category.

(i) A full stable subcategory C is a full subcategoryU ⊆ C which contains the zero
object and is closed under finite limits and finite colimits in C;
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(ii) LetU be a full stable subcategory of C. A Verdier quotient of C byU is an exact
functor 𝑝 : C → C′ to a stable∞-category C′ such that the restriction functor

𝑝∗ : Funex (C′,D) → Funex (C,D)

is fully faithful with essential image given by those exact functors which vanish
onU.

By definition, a full stable subcategory of a stable ∞-category is also stable. By
passing to groupoid cores, their universal property implies that Verdier quotients are
cofibers in the∞-category CATST .

By stability, an exact functor 𝐹 : C → D vanishes on a full stable subcategory
U of C if and only if 𝐹 inverts all morphisms in C whose cofiber is equivalent to an
object inU. In particular, a Verdier quotient 𝑝 : C → C′ is always a localization at
the collection of morphisms whose cofiber lies in ker(𝑝) := {𝑥 ∈ C | 𝑝(𝑥) ≃ 0}. In
fact, the converse is also true and proves the existence of arbitrary Verdier quotients.

Proposition 8.9 ([193, Proposition A.1.5 and Lemma A.1.8]). Let C be a small
stable∞-category and letU be a full stable subcategory of C. Then the localization
C/U of C at the subcategory of morphisms whose cofiber is equivalent to an object
inU is stable, and the localization functor 𝑝 : C → C/U is exact. In particular, 𝑝
is a Verdier quotient of C byU.

Moreover, the kernel of 𝑝 is exactly the full stable subcategory of objects in C
which are retracts of objects inU.

Example 8.10. As remarked above, the canonical functor Kb (A) → Db (A) is a
Verdier quotient of Kb (A) by the full subcategory of acyclic complexes for every
abelian category A.

A particular class of Verdier quotients is given by those which are actually Bous-
field localization, i.e., those Verdier quotients which admit a right adjoint. Such an
adjoint is automatically fully faithful, since Verdier quotients are localizations [193,
Lemma A.2.1].

Definition 8.11 ([193, Definition A.2.4]).

(i) A split Verdier quotient is a Verdier quotient 𝑝 : C → C′ which admits both a
left and a right adjoint;

(ii) A split Verdier square is a pullback square

A //

𝑝

��

B
𝑞

��
C // D

of stable∞-categories in which 𝑝 and 𝑞 are split Verdier quotients.
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Example 8.12. Let C and D be stable∞-categories.

(i) The commutative square
C × D //

��

C

��
D // 0

in which all arrows are the obvious projection functors is a split Verdier square;
(ii) The commutative square

C
𝑓 //

��

Fun( [1], C)

𝑐

��
0 // C

in which 𝑓 sends 𝑥 ∈ C to 𝑥 → 0 and 𝑐 sends 𝑥 → 𝑦 to cofib(𝑥 → 𝑦) is a split
Verdier square.

Definition 8.13. Let X be an∞-category. A functor 𝐹 : CATST → X is

(i) finitary if it preserves filtered colimits;
(ii) an additive invariant if it preserves zero objects and sends split Verdier squares

to pullback squares.

Denote by Funfadd (CATST ,X) the full subcategory of Fun(CATST ,X) spanned by
the finitary additive invariants.

Example 8.14. A key example of a finitary additive invariant is the groupoid core
functor 𝜄 : CATST → Spc. In fact, this functor preserves all limits because the
inclusion functor CATST → CAT∞ preserves limits [689, Theorem 1.1.4.4], and 𝜄
is a right adjoint. Similarly, the inclusion functor preserves filtered colimits by [689,
Proposition 1.1.4.6], and 𝜄 does so because it is corepresented by a compact object,
namely the category with a single object and a single morphism.

Note that taking infinite loop spaces induces a functor Ω∞ : Sp≥0 → Spc which
preserves pullbacks and filtered colimits.

Theorem 8.15 (Group completion). The functor

Ω∞ ◦ − : Funfadd (CATST , Sp≥0) → Funadd (CATST , Spc)

is fully faithful and admits a left adjoint

(−)grp : Funadd (CATST , Spc) → Funfadd (CATST , Sp≥0)

called group completion.
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Proof. This is a consequence of an appropriate version of the Additivity Theo-
rem [193, Theorem 2.7.4], see also [193, Remark 3.4.9]. For the special case that
the groupoid core functor admits a group completion in the sense of the theorem,
see [474, Section 5]. ⊓⊔

Definition 8.16. Define the connective algebraic 𝐾-theory functor by

𝐾 := 𝜄grp : CATST → Sp≥0,

where the groupoid core functor 𝜄 and (−)grp have been defined in Example 8.14 and
Theorem 8.15.

Unwinding what left adjointness of (−)grp means, we obtain for every finitary
additive invariant 𝐹 : CATST → Sp≥0 an equivalence

nat(𝐾, 𝐹) ≃ nat(𝜄,Ω∞ ◦ 𝐹).

An important point is that the group completion functor admits a more concrete de-
scription in terms of the Segal-Waldhausen 𝑆•-construction. To this end, observe that
𝑆• (C) makes perfectly good sense for a stable∞-category C: the∞-category 𝑆𝑛 (C)
is the full subcategory of Fun(Ar[𝑛], C) spanned by those functors 𝑥 : Ar[𝑛] → C
such that 𝑥(𝑖, 𝑖) is a zero object for all 𝑖 and each square

𝑥(𝑖, 𝑗) //

��

𝑥(𝑖, 𝑘)

��
0 ≃ 𝑥(𝑖, 𝑖) // 𝑥( 𝑗 , 𝑘)

is a pushout for all 𝑖 ≤ 𝑗 ≤ 𝑘 . One observes that 𝑆𝑛+1 (C) is equivalent to Fun( [𝑛], C),
but as usual the additional data encoded in 𝑆𝑛+1 (C) are needed to define a simplicial
∞-category 𝑆• (C).

For every finitary additive invariant 𝐹, we have natural equivalences

Ω∞𝐹grp (C) ≃ Ω|𝐹 (𝑆• (C)) |.

This follows from the discussion in [193, Section 2.7], using that the𝑄-construction
is the edgewise subdivision of the 𝑆•-construction. This is explained for example
in [98]. Since taking groupoid cores defines a finitary additive invariant, we obtain
in particular

Ω∞𝜄grp (C) ≃ Ω|𝜄𝑆• (C)|.

This matches the formula for algebraic K-theory given in Section 7.3.2, even though
the type of input category is different. We will make the comparison more precise in
Section 8.4 below.

It turns out that algebraic K-theory preserves more fiber sequences than just
the split Verdier sequences, as witnessed by the following analog of Waldhausen’s
Fibration Theorem taken from [474, Theorem 6.1].
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Theorem 8.17 (𝐾-theory and Verdier quotients). Let 𝑝 : C → D be a Verdier
quotient. Then the sequence

𝐾 (ker(𝑝)) → 𝐾 (C) → 𝐾 (D)

is a cofiber sequence of connective spectra.

This theorem does not apply to every sequenceU → C → C/U obtained from
a stable ∞-category C and a full stable subcategoryU, sinceU need not be closed
under retracts in C.

Definition 8.18. A stable∞-category C is idempotent complete if every idempotent
in C splits.

There exists an endofunctor Idem: CATST → CATST which is a Bousfield local-
ization onto the full subcategory of idempotent complete stable ∞-categories [689,
Corollary 1.1.3.7].

Theorem 8.17 then yields for every stable ∞-category C with a full stable sub-
categoryU a cofiber sequence of connective spectra

𝐾 (Idem(U)) → 𝐾 (Idem(C)) → 𝐾 (Idem(C)/Idem(U)).

In general, there is no reason to expect that the induced functor

Idem(C)/Idem(U) → Idem(C/U)

is an equivalence, but it is an idempotent completion. By virtue of the Cofinality
Theorem [99, Theorem 10.19], the induced map on 𝐾-theory is an injection on 𝜋0
and an isomorphism on all higher homotopy groups, so

𝐾 (Idem(U)) → 𝐾 (Idem(C)) → 𝐾 (Idem(C/U))

is still a fiber sequence of connective spectra. This leads to the following definition.

Definition 8.19. Let X be an∞-category.

(i) A functor 𝐹 : CATST → X is a localizing invariant if

𝐹 (U) → 𝐹 (C) → 𝐹 (C/U)

is a fiber sequence inX for every stable∞-category C and full stable subcategory
U of C;

(ii) Denote by Funfloc (CATST ,X) the∞-category of finitary localizing invariants.

The next theorem is taken from [243, Theorem 4.3.3].

Theorem 8.20 (Comparing functors from CATST to Sp and Sp≥0). The functor

𝜏≥0 : Funfloc (CATST , Sp) → Funfloc (CATST , Sp≥0)

is an equivalence.
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Definition 8.21. The non-connective algebraic 𝐾-theory functor

K : CATST → Sp

is the unique finitary localizing invariant satisfying 𝜏≥0K ≃ 𝐾 ◦ Idem.

From the preceding discussion, one immediately deduces that non-connective
algebraic 𝐾-theory also enjoys a universal property.

Corollary 8.22. Let 𝐹 : CATST → Sp be a finitary localizing invariant. Then
restriction along the natural transformation 𝐾 ◦ Idem ≃ 𝜏≥0K → K induces an
equivalence

nat(K, 𝐹) ∼−→ nat(𝐾 ◦ Idem, 𝐹).

Proof. Since 𝐾 ◦ Idem takes values in connective spectra, we have

nat(𝐾 ◦ Idem, 𝐹) ≃ nat(𝐾 ◦ Idem, 𝜏≥0𝐹),

so the statement follows from Theorem 8.20. ⊓⊔

For later applications, it is useful to extend the definition of algebraic 𝐾-theory
to a slightly larger class of∞-categories.

Definition 8.23. An∞-category C is right-exact if it is pointed and admits all finite
colimits. Denote by CATREX the subcategory of CAT∞ given by the small right-
exact∞-categories and functors which preserve finite colimits.

There is an easy characterization of those right-exact ∞-categories which are
stable: a right-exact ∞-category C is stable if and only if the suspension functor
Σ is an equivalence [689, Corollary 1.4.2.27]. In addition, a functor 𝐹 : C → D
between stable ∞-categories is exact if and only if it preserves finite colimits [689,
Proposition 1.1.4.1], so CATST is a full subcategory of CATREX.

Proposition 8.24 ([690, Proposition C.1.17]). The fully faithful functor CATST →
CATREX admits a left adjoint

SW: CATREX→ CATST

called Spanier-Whitehead stabilization. This functor has the property

SW(C) ≃ colim
(
C Σ−→ C Σ−→ C → . . .

)
.

We extend the algebraic 𝐾-theory functors to CATREX by precomposing with
the Spanier-Whitehead stabilization. The resulting functors

𝐾 : CATREX→ Sp≥0, C ↦→ 𝐾 (SW(C))

and
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K : CATREX→ Sp, C ↦→ K(SW(C))

preserves filtered colimits. The property of being a localizing invariant also gener-
alizes to this context.

Proposition 8.25. Let C be a small right-exact ∞-category and let U be a full
subcategory of C which is closed under finite colimits. Define𝑊U as the collection
of morphisms whose cofiber is equivalent to an object inU.

(i) The Dwyer-Kan localization C[𝑊−1
U ] is right-exact and the localization functor

C → C[𝑊−1
U ] preserves finite colimits;

(ii) The induced functor SW(C)/SW(U) → SW(C[𝑊−1
U ]) is an equivalence. In

particular, the induced sequence

K(U) → K(C) → K(C[𝑊−1
U ])

is a cofiber sequence of spectra.

Proof. See for example [180, Lemma 2.4.6]. ⊓⊔

Remark 8.26. It is not quite true that C[𝑊−1
U ] is the cofiber of the inclusionU → C

in CATREX: there may be functors C → D which preserve finite colimits and
vanish onU, but do not invert every morphism in𝑊U .

8.4 Relating the Different Definitions of Algebraic 𝑲-Theory

The goal of this section is to indicate a comparison of the algebraic𝐾-theory functors
introduced in 8.3 with the previous definitions of algebraic 𝐾-theory.

Theorem 8.27 (Identification of non-connective𝐾-theory for additive categories
in the classical setting and in the setting of higher categories). Let A be an
additive category. Let K(A) in SPECTRA be the non-connective 𝐾-theory spectrum
of (6.34). Let L(K(A)) in Sp be its image under the functor L of (8.2). LetKb (A)
be the stable ∞-category associated to A in (8.6). Denote by K(Kb (A)) in Sp the
associated non-connective 𝐾-theory spectrum defined in (8.21).

Then there is a weak equivalence of spectra in Sp, natural in A,

L(K(A)) ≃−→ K(Kb (A)).

We begin by discussing connective algebraic 𝐾-theory. As explained in the pre-
vious section, the connective algebraic 𝐾-theory 𝐾 (C) of a right-exact ∞-category
is given in terms of the 𝑆•-construction. This allows us to identify the algebraic
𝐾-theory of certain categories with cofibrations and weak equivalences with the
algebraic 𝐾-theory of a right-exact∞-category.
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Definition 8.28.

(i) A subcategory 𝑤C of some category C satisfies the two-out-of-six property: if
for any three composable morphisms 𝐶0

𝑓1−→ 𝐶1
𝑓2−→ 𝐶2

𝑓3−→ 𝐶3 in C both 𝑓2 ◦ 𝑓1
and 𝑓3 ◦ 𝑓2 are weak equivalences, then 𝑓1, 𝑓2, 𝑓3, and 𝑓3 ◦ 𝑓2 ◦ 𝑓1 are also weak
equivalences;

(ii) The category with cofibrations and weak equivalences (C, 𝑐𝑜C, 𝑤C) admits fac-
torizations if every morphism in C can be factorized into a cofibration followed
by a weak equivalence; no functoriality of this factorization is assumed;

(iii) A homotopical Waldhausen category (C, 𝑐𝑜C, 𝑤C) is a category with cofibra-
tions and weak equivalences which admits factorizations and whose subcategory
of weak equivalences satisfies the two-out-of-six-property.

Proposition 8.29. Let (C, 𝑐𝑜C, 𝑤C) be a category with cofibrations and weak equiv-
alences which admits factorizations. Let ℓ : C → C[𝑤C−1] be the Dwyer-Kan lo-
calization of C at 𝑤C.

(i) The∞-category C[𝑤C−1] is right-exact, and the localization functor ℓ preserves
zero objects and pushouts along cofibrations;

(ii) If (C, 𝑐𝑜C, 𝑤C) is a homotopical Waldhausen category, the comparison map

𝐾 (C) → Ω∞𝐾 (C[𝑤C−1])

induced by ℓ is an equivalence in Spc.

Proof. The first assertion is [242, Proposition 7.5.6]. In particular, the 𝑆•-construction
is defined for C[𝑤C−1], since its definition involves only finite colimits.

Since 𝑤C is assumed to satisfy the two-out-of-six property, a morphism in C is
inverted by the localization functor ℓ if and only if it is a weak equivalence: this
follows either using the methods of [242, Corollary 7.5.19], or directly by appealing
to [145, Theorem 6.4]. Therefore, [242, Corollary 7.6.18] implies that

|𝑤C| → 𝜄C[𝑤C−1]

is an equivalence in Spc.
The category 𝑆𝑛C inherits the structure of a homotopical Waldhausen category

from C. In particular,

|𝑤𝑆𝑛C| → 𝜄

(
𝑆𝑛 (C)[𝑤𝑆𝑛 (C)−1]

)
is an equivalence for all 𝑛. Moreover, there is a natural comparison map

𝑆𝑛 (C)[𝑤𝑆𝑛 (C)−1] → 𝑆𝑛 (C[𝑤C−1])

which is an equivalence for all 𝑛 by [242, Corollary 7.6.18]. In particular, we obtain
a natural equivalence

Ω|𝑤𝑆•C| → Ω|𝜄𝑆• (C[𝑤C−1]) |.
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Finally, the natural map

Ω|𝜄𝑆• (C[𝑤C−1]) | → Ω|𝜄𝑆• (SW(C[𝑤C−1])) | ≃ Ω∞𝐾 (C[𝑤C−1])

is an equivalence by [99, Corollary 8.2.1]. ⊓⊔

Corollary 8.30. Let E be an exact category. Let 𝐾 (E) in SPECTRA be the classical
𝐾-theory of an exact category a la Quillen. Let L(𝐾 (E)) in Sp be its image under
the functor L of (8.2). Let 𝐾 (Db (E)) in Sp be the connective 𝐾-theory spectrum of
Db (E) in terms of higher categories, see (8.7) and Definition 8.16.

Then there is a weak equivalence of connective spectra in Sp, natural in E,

L(𝐾 (E)) ≃−→ 𝐾 (Db (E)).

In particular, there is a natural equivalence of connective spectra in Sp
L(𝐾 (A)) ≃ 𝐾 (Kb (A)) for every additive category A.

Proof. The Cofinality Theorem (see e.g., [923, Theorem 2.1] for exact categories
and [949, 1.10.1] for the category of chain complexes) allows us to assume with-
out loss of generality that E is weakly idempotent complete. The category Ch(E)
of bounded chain complexes over E carries a homotopical Waldhausen structure
whose weak equivalences are the quasi-isomorphisms. The Gillet-Waldhausen the-
orem [949, 1.11.7] identifies 𝐾 (E) with the algebraic 𝐾-theory of the homotopical
Waldhausen category Ch(E). Since Db (E) is precisely the Dwyer-Kan localiza-
tion of Ch(E) at the quasi-isomorphisms, the statement follows from Proposi-
tion 8.29. ⊓⊔

Next we deal with non-connective algebraic 𝐾-theory for additive categories. In
order to make this comparison, recall that an additive ∞-category A, just as in the
case of ordinary categories, is an ∞-category with a zero object, finite products,
and finite coproducts such that the obvious comparison map 𝑎 ⊔ 𝑏 → 𝑎 × 𝑏 is an
equivalence for all objects 𝑎 and 𝑏 of A, and such that the shear map

𝑠𝑎 :
(
id id
0 id

)
: 𝑎 ⊕ 𝑎 → 𝑎 ⊕ 𝑎

is an equivalence for every object 𝑎. The small additive ∞-categories and additive
functors form an ∞-category ADD∞. Using [691, Proposition 5.5.8.15], one can
show that the forgetful functor CATST → ADD∞ admits a left adjoint

Pst, 𝑓
Σ

: ADD∞ → CATST .

Explicitly, this functor sends an additive ∞-category A to the Spanier-Whitehead
stabilization of the finite colimit closure of the essential image of the Yoneda em-
bedding in the∞-category of additive presheaves.

The existence of this left adjoint directly implies a localization theorem for addi-
tive∞-categories.
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Proposition 8.31. Let A be an additive ∞-category and let U ⊆ A be a full
additive subcategory. If A → A//U is a cofiber of the inclusion map U → A in
the∞-category ADD∞, then

K(Pst, 𝑓
Σ
(U)) → K(Pst, 𝑓

Σ
(A)) → K(Pst, 𝑓

Σ
(A//U))

is a cofiber sequence in Sp.

Proof. If U ⊆ A is a full additive subcategory, one observes by unpacking the
construction of Pst, 𝑓

Σ
that Pst, 𝑓

Σ
(U) → Pst, 𝑓

Σ
(U) is also fully faithful. Since Pst, 𝑓

Σ
,

being a left adjoint, preserves cofiber sequences, the statement follows immediately
from the fact that K is a localizing invariant. ⊓⊔

The catch of Proposition 8.31 is that, even ifU andA are additive categories (in
the classical sense), the cofiber A//U is not necessarily an additive category, it can
a priori only be defined as an ∞-category. To obtain a better understanding of the
situation, let us give an explicit construction of the cofiber in ADD∞.

Given an additive∞-categoryA and a full additive subcategoryU, one can con-
sider the wide subcategoryAU ofA given by the projections onto direct summands
whose complement is an object ofU.

Lemma 8.32. The Dwyer-Kan localization A → A[A−1
U ] is a cofiber of the inclu-

sion functorU → A in ADD∞.

Proof. The subcategory AU is closed under direct sums, so it follows from [242,
Proposition 7.1.7 and Corollary 7.1.16] that the Dwyer-Kan localization A[A−1

U ]
is also an additive ∞-category and that the localization functor A → A[A−1

U ] is
additive. Observing that an additive functor A → B vanishes onU if and only if it
inverts AU , the universal property of the localization implies the lemma. ⊓⊔

Proposition 8.33. Let A be an additive category and let U ⊆ A be a full additive
subcategory. Suppose that the following condition is satisfied:

(★) Every morphism 𝑢 → 𝑎 from an object 𝑢 inU to an object 𝑎 ofA factors in the
form 𝑢

𝑓
−→ 𝑣

𝑖−→ 𝑎 for some morphism 𝑓 inU and a direct summand inclusion 𝑖.

ThenA//U is an (ordinary) category and in particular an additive category (in the
classical sense).

Proof. Denote by AU (𝑎) the full subcategory of 𝑎 ↓ A on the objects 𝑎 → 𝑎′

which lie inAU . We claim that this category is filtered. It is non-empty since id𝑎 is
an object in AU (𝑎). Given two objects 𝑝1 : 𝑎 → 𝑎1 and 𝑝 : 𝑎 → 𝑎2, we can apply
condition (★) to the induced map ker(𝑝1) ⊕ ker(𝑝2) → 𝑎 to obtain a summand
inclusion 𝑖 : 𝑢 → 𝑎 such that the projection 𝑝 : 𝑎 → coker(𝑖) factors over both 𝑝1
and 𝑝2. If two morphisms 𝑓 , 𝑔 : 𝑎1 → 𝑎2 define a morphism between 𝑝1 : 𝑎 → 𝑎1
and 𝑝2 : 𝑎 → 𝑎2 in AU (𝑎), then 𝑔 = 𝑓 because 𝑝1 is an epimorphism.
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Consider now the functor

𝑀𝑎 := colim
𝑎→𝑎′∈AU (𝑎)

morA (−, 𝑎′) : Aop → Spc.

Since AU (𝑎) is filtered and A is a category, this colimit may equivalently be
computed in the category of sets. Next, we show that for every morphism 𝑞 : 𝑏1 → 𝑏2
in AU , the induced map 𝑞∗ : 𝑀𝑎 (𝑏2) → 𝑀𝑎 (𝑏1) is a bijection.

We can think of elements in 𝑀𝑎 (𝑏1) as zig-zags 𝑏1
𝑓
−→ 𝑎′

𝑝
←− 𝑎 with 𝑓 an arbitrary

morphism in A and 𝑝 in AU . Condition (★) allows us to factor the composite
morphism ker(𝑞) → 𝑏1

𝑓
−→ 𝑎′ into a morphism ker(𝑞) → 𝑢 in U followed by a

summand inclusion 𝑖 : 𝑢 → 𝑎′. Then the zig-zag 𝑏1 coker(𝑖) ← 𝑎 represents the
same element as the original zig-zag, and 𝑏1 → coker(𝑖) factors over 𝑞. This shows
that 𝑞∗ is surjective.

For injectivity, note that a zig-zag 𝑏2
𝑔
−→ 𝑎′

𝑝
←− 𝑎 in 𝑀𝑎 (𝑏2) maps to 0 under 𝑞∗

precisely if 𝑔𝑞 : 𝑏1 → 𝑎′ becomes trivial after postcomposition with a morphism
𝑝′ : 𝑎′ → 𝑎′′ inAU (𝑎). Since 𝑞 is an epimorphism, this implies 𝑝′𝑔 = 0 as required.

Since 𝑀𝑎 inverts AU , it follows from general facts that 𝑀𝑎 ≃ morA//U (−, 𝑎),
see [474, Step 1 in the proof of Theorem 6.9]. We have already observed that all
values of 𝑀𝑎 are discrete, so this finishes the proof. ⊓⊔

Corollary 8.34. Let A be an additive category and let U ⊆ A be a full additive
subcategory satisfying the condition (★) appearing in Proposition 8.33. Denote by
A/U the usual quotient of additive categories. Then

K(Kb (U)) → K(Kb (A)) → K(Kb (A/U))

is a cofiber sequence in Sp.

Proof. The additive functor B → Kb (B) induces an equivalence Pst, 𝑓
Σ
(B) ∼−→

Kb (B) for every additive category B, see e.g., [180, Theorem 7.4.9] for a proof. By
Proposition 8.33, we have A//U ≃ A/U, so the corollary follows from Proposi-
tion 8.31. ⊓⊔

After these preparations, we can now show that the usual constructions of non-
connective algebraic 𝐾-theory for additive categories produce spectra which are
equivalent to K(Kb (A)). There exist various constructions of functors

F : ADDCAT → ADDCAT

equipped with a natural transformation id⇒ F such thatA → FA is fully faithful
and satisfies condition (★) appearing in Proposition 8.33 for every additive category,
and K(Kb (FA)) ≃ 0. In particular,

K(Kb (FA/A)) ≃ ΣK(Kb (A)).
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Setting SA := FA, iterating this construction, and taking connective covers, we
obtain natural equivalences

𝐾 (Idem(Kb (S𝑛A))) ≃ 𝜏≥0K(Kb (S𝑛A))
≃ 𝜏≥0Σ

𝑛K(Kb (A))
≃ Σ𝑛𝜏≥−𝑛K(Kb (A)),

where 𝜏≥−𝑛 is the (−𝑛)-connective cover of a spectrum. Using the cofinality theorem,
we find that

K(Kb (A)) ≃ colim
(
𝐾 (Kb (A)) → Ω𝐾 (Kb (SA)) → Ω2𝐾 (Kb (S2A)) → . . .

)
.

The typical construction of a non-connective algebraic 𝐾-theory spectrum for addi-
tive categories takes such a functor F and defines

K(A) := colim
(
𝐾 (A) → Ω𝐾 (SA) → Ω2𝐾 (S2A) → . . .

)
,

where the structure maps are induced by the squares

𝐾 (S𝑛A) //

��

𝐾 (FS𝑛A)

��
0 // 𝐾 (S𝑛+1A)

using that 𝐾 (FS𝑛A) ≃ 0. In light of Corollary 8.30, this induces the required weak
homotopy equivalence

L(K(A)) ≃−→ K(Kb (A)).

and hence Theorem 8.27 is proven.

8.5 Spectra over Groupoids and Equivariant Homology Theories

In this section, we explain how to produce from right-exact 𝐺-∞-categories the
necessary data, namely an equivariant homology theory, that will allow for the
formulation of the Farrell-Jones Conjecture in the setting of higher categories in
Subsection 13.3.1. We will also show that this encompasses the construction of
an appropriate equivariant homology theory and the Farrell-Jones Conjecture with
coefficients in additive 𝐺-categories, see Section 13.3. We will also deal with the
analogous statement for the Farrell-Jones Conjecture for Waldhausen A-theory, see
Section 15.10.

Recall that for a group 𝐺, the category 𝐼 (𝐺) is the category with one object
and group of automorphisms 𝐺. As an ∞-category, the standard notation for this
category would be 𝐵𝐺, but we retain the name 𝐼 (𝐺) for notational consistency.



190 8 Algebraic 𝐾-Theory of Higher Categories

Definition 8.35. A right-exact 𝐺-∞-category is a functor

C : 𝐼 (𝐺) → CATREX.

The name 𝐺-∞-category is chosen to provide consistent terminology. Note that
many authors use the same term to describe contravariant functors from the orbit
category of 𝐺 to CAT∞.

The main result of this section will be the following result.

Theorem 8.36 (Equivariant homology theories associated to right exact
𝐺-∞-categories). Let 𝐺 be a group.

(i) Let C be right-exact 𝐺-∞-category C. Then one can assign to C a covariant
functor, see (8.38),

KC : GROUPOIDS↓ 𝐼 (𝐺) → Sp

and an equivariant homology theory H ?↓𝐺
∗ (−; KC) over 𝐺 in the sense of Def-

inition 12.91 such that for every group (𝐻, 𝜉) over 𝐺 and subgroup 𝐿 ⊆ 𝐻 we
have a natural identification

H 𝐿, 𝜉 |𝐿
𝑛 ({•}; KC) = H𝐻,𝜉

𝑛 (𝐻/𝐿,KC) = 𝜋𝑛 (KC (𝐿, 𝜉 |𝐿));

(ii) Let A be an additive 𝐺-category. Then we can construct a right-exact
𝐺-∞-category Kb (A), see (8.40), such that equivariant homology theories
over 𝐺 given byH ?↓𝐺

∗ (−; KKb (A) ) of assertion (i) andH ↓𝐺?∗ (−; KA) coming
from (13.10) and Theorem 12.93 are naturally equivalent.

Most of the remainder of this section is occupied with the proof of Theorem 8.36.

8.5.1 From Right-Exact 𝑮-∞-Categories to Spectra over Groupoids

Recall that G𝐺 (𝑆) denotes the transport groupoid of a 𝐺-set. Note that there is an
obvious identification of G𝐺 (𝐺/𝐺) with the groupoid 𝐼 (𝐺).

Proposition 8.37. Let C be a right-exact 𝐺-∞-category. Then there exists a functor

𝐸C : GROUPOIDS↓ 𝐼 (𝐺) → CATREX

with the following properties:

(i) 𝐸C sends an object pr : G → 𝐼 (𝐺) to colimG C ◦ pr;
(ii) The restriction of 𝐸C along the functor

𝑂 : Or(𝐺) → GROUPOIDS↓ 𝐼 (𝐺)

𝐺/𝐻 ↦→
(
G𝐺 (𝐺/𝐻) → G𝐺 (𝐺/𝐺) � 𝐼 (𝐺)

)
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is a left Kan extension of the functor C : 𝐼 (𝐺) → CATREX along the fully
faithful functor 𝑗 : 𝐼 (𝐺) → Or(𝐺) which sends the unique object in 𝐼 (𝐺) to 𝐺
and a morphism 𝑔 to 𝐺-map 𝑟𝑔−1 : 𝐺 → 𝐺 given by right multiplication by 𝑔−1.
Moreover, 𝐸C (G𝐺 (𝐺/𝐻) → 𝐼 (𝐺)) ≃ colim𝐼 (𝐻 ) C.

Proof. The proof relies on the (un)straightening equivalence [691, Theorem 3.2.0.1].
Denoting by �CAT∞ the very large∞-category of large∞-categories, this equivalence
allows us to identify the functor category

Fun(GROUPOIDS↓ 𝐼 (𝐺) op, �CAT∞)

with the subcategory of �CAT∞ ↓ (GROUPOIDS ↓ 𝐼 (𝐺) ) given by the cartesian
fibrations and morphisms being those functors over GROUPOIDS ↓ 𝐼 (𝐺) which
preserve cartesian morphisms. Given such a functor 𝐸 , we denote its unstraightening
by Un(𝐹) → GROUPOIDS↓ 𝐼 (𝐺) .

Consider now the functor

𝐴 : GROUPOIDS↓ 𝐼 (𝐺) op → �CAT∞

which sends a groupoid G → 𝐼 (𝐺) over 𝐼 (𝐺) to the functor category
Fun(G,CATREX) as well as the constant functor

𝐶 : GROUPOIDS↓ 𝐼 (𝐺) op → �CAT∞

with value CATREX. There exists a natural transformation 𝑡 : 𝐶 ⇒ 𝐴 such that the
component of 𝑡 at G → 𝐼 (𝐺) is the functor which sends a right-exact ∞-category
C to the constant diagram with value C in Fun(G,CATREX). Via unstraightening,
this natural transformation corresponds to a commutative diagram

GROUPOIDS↓ 𝐼 (𝐺) × CATREX
Un(𝑡 ) //

**

Un(𝐴)

𝑝
ww

GROUPOIDS↓ 𝐼 (𝐺)

in which the functor Un(𝑡) preserves cartesian morphisms. Since CATREX admits
all colimits, the functor CATREX → Fun(G,CATREX) taking constant diagrams
has a left adjoint for all G. Hence [689, Proposition 7.3.2.6] applies to show that
Un(𝑡) has a left adjoint 𝐿 over GROUPOIDS↓ 𝐼 (𝐺) , which on each fiber is given
by the colimit functor colimG : Fun(G,CATREX) → CATREX.

We are now going to construct a functor GROUPOIDS↓ 𝐼 (𝐺) → CATREX by
precomposing 𝐿 with a certain section to 𝑝. One consequence of the unstraightening
equivalence is the fact that limits in �CAT∞ are given by the∞-category of cartesian
sections in the cartesian fibration associated to a diagram [691, Corollary 3.3.3.2].
In particular, the ∞-category of cartesian sections to 𝑝 is a model for the limit of
𝐴. Noting that the indexing category GROUPOIDS↓ 𝐼 (𝐺) op has an initial object,
this limit is equivalent to 𝐴(id𝐼 (𝐺) ) = Fun(𝐼 (𝐺),CATREX). The given right-exact
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𝐺-∞-category C specifies an object in this ∞-category, and therefore induces a
cartesian section 𝑠 : GROUPOIDS↓ 𝐼 (𝐺) → Un(𝐴) of 𝑝. Composing this section
with 𝐿 and projecting to CATREX now provides a functor

𝐸C : GROUPOIDS↓ 𝐼 (𝐺) → CATREX.

Since 𝑠 is a cartesian section, 𝑠 sends an object pr : G → 𝐼 (𝐺) to the image C ◦ pr
of C under the restriction functor along pr. Since 𝐿 is given fiberwise by the colimit
functor, it follows that 𝐸C (pr) ≃ colimG C ◦ pr as claimed.

Consider now the restriction 𝐸C ◦𝑂. Then observe that𝑂 is naturally isomorphic
to the functor

𝐽 : Or(𝐺) → GROUPOIDS↓ 𝐼 (𝐺)
𝐺/𝐻 ↦→ ( 𝑗 ↓𝐺/𝐻 → 𝑗 ↓𝐺/𝐺 � 𝐼 (𝐺)) ,

where the isomorphism 𝐼 (𝐺) � 𝑗 ↓𝐺/𝐺 sends a morphism 𝑔 : 𝐺/𝐺 → 𝐺/𝐺 in
𝐼 (𝐺) to the morphism 𝑟𝑔−1 : 𝐺 → 𝐺 in 𝑗 ↓𝐺/𝐺 . Generalizing this identification,
such a natural isomorphism is induced by the isomorphism of categories

G𝐺 (𝐺/𝐻) �−→ 𝑗 ↓𝐺/𝐻

𝑔𝐻 ↦→
(
𝐺

𝑒 ↦→𝑔𝐻
−−−−−→ 𝐺/𝐻

)
,

(
𝑔𝐻

𝛾
−→ 𝑔′𝐻

)
↦→

𝐺
𝑟
𝛾−1

//

𝑒 ↦→𝑔𝐻 ""

𝐺

𝑒 ↦→𝑔′𝐻||
𝐺/𝐻.

From the preceding description of 𝐸C , it now follows that

𝐸C (𝐺/𝐻) ≃ colim 𝑗↓𝐺/𝐻 C,

which is precisely the pointwise formula for the left Kan extension along 𝑗 . Since the
functor 𝐼 (𝐻) → 𝑗 ↓𝐺/𝐻 which sends the unique object in 𝐼 (𝐻) to 𝐺 𝑒 ↦→𝑒𝐻−−−−−→ 𝐺/𝐻
and an element ℎ ∈ 𝐺 to the multiplication map with ℎ is an equivalence of
categories, it also follows that 𝐸C (𝐺/𝐻) ≃ colim𝐼 (𝐻 ) C.

This finishes the proof of Proposition 8.37. ⊓⊔

By composing 𝐸C with the algebraic 𝐾-theory functor, one obtains for every
right-exact 𝐺-∞-category C a functor

(8.38) KC : GROUPOIDS↓ 𝐼 (𝐺) → Sp.

By construction, the functor KC inverts equivalences of groupoids over 𝐼 (𝐺).
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8.5.2 From Spectra over Groupoids to Equivariant Homology Theories

Let us explain how such a functor gives rise to a 𝐺-homology theory on the
∞-category of𝐺-spaces. By Elmendorf’s theorem [334], the∞-category obtained by
localizing the category of 𝐺-𝐶𝑊-complexes at the collection of equivariant homo-
topy equivalences is equivalent to the∞-category Fun(Or(𝐺)op, Spc) of presheaves
on the orbit category of 𝐺. Given a functor E : Or(𝐺) → Sp, the universal property
of the Yoneda embedding implies that E extends uniquely to a colimit-preserving
functor

H𝐺 (−; E) : Fun(Or(𝐺)op, Spc) → Sp

such that the composition of H𝐺 (−; E) with the Yoneda embedding Or(𝐺) →
Fun(Or(𝐺)op, Spc) is identified with E.

Starting from a functor E : Or(𝐺) → SPECTRA, Chapter 12.10 provides an alter-
native approach to the construction of such a homology theory. Here is an indication
in which sense the two constructions lead to isomorphic outcomes. In Chapter 12.10,
a𝐺-homology theory is obtained from E by considering the SPECTRA-valued func-
tor on 𝐺-𝐶𝑊-complexes which sends 𝑋 to map𝐺 (−, 𝑋+) ∧Or(𝐺) E and taking ho-
motopy groups. The proof of this statement amounts to showing that the Sp-valued
functor taking 𝑋 to L

(
map𝐺 (−, 𝑋+) ∧Or(𝐺) E

)
has the following properties:

• It inverts 𝐺-equivariant homotopy equivalences. In particular, it factors uniquely
over the localization Fun(Or(𝐺)op, Spc) of the category of 𝐺-𝐶𝑊-complexes;
• The induced functor hE : Fun(Or(𝐺)op, Spc) → Sp preserves colimits. To see

this, it is enough to check that the induced functor preserves initial objects,
pushouts, and filtered colimits. The preservation of initial objects is obvious. For
pushouts, one can, for example, rely on Proposition 8.29 again to see that every
pushout in Fun(Or(𝐺)op, Spc) can be realized by a pushout of 𝐺-𝐶𝑊-complexes
along the inclusion of a subcomplex. Then the preservation of pushouts follows
from excision as formulated in Definition 12.1. By a similar argument, the preser-
vation of filtered colimits follows from the disjoint union axiom for 𝐺-homology
theories.

As a colimit-preserving functor on Fun(Or(𝐺)op, Spc), the functor hE is uniquely
determined by its restriction along the Yoneda embedding. Essentially by construc-
tion, this restriction is given by L◦E, so hE is equivalent to the functor H𝐺 (−; L◦E)
considered above.

More generally, consider now a functor E : GROUPOIDS ↓ 𝐼 (𝐺) → Sp. If
𝜉 : 𝐻 → 𝐺 is a group over 𝐺, then we can restrict E along the functor

𝑇𝜉 : Or(𝐻) → GROUPOIDS↓ 𝐼 (𝐺)

𝐻/𝐿 ↦→
(
G𝐻 (𝐻/𝐿) → G𝐻 (𝐻/𝐻) � 𝐼 (𝐻)

𝐼 ( 𝜉 )
−−−−→ 𝐼 (𝐺)

)
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to obtain the functor E ◦ 𝑇𝜉 : Or(𝐺) → Sp. This functor in turn induces a colimit-
preserving functor

H𝐻,𝜉 (−; E) : Fun(Or(𝐻)op, Spc) → Sp.

Suppose that𝛼 : (𝐻, 𝜉) → (𝐾, 𝜈) is a morphism of groups over𝐺. Then the induction
functor Or(𝐻) → Or(𝐾), 𝐺/𝐻 ↦→ 𝛼∗𝐺/𝐻 induces a restriction functor

Fun(Or(𝐾)op, Spc) → Fun(Or(𝐻)op, Spc).

Since Spc is cocomplete, this restriction functor has a left adjoint

𝛼∗ : Fun(Or(𝐻)op, Spc) → Fun(Or(𝐾)op, Spc)

which corresponds to the analogous induction functor on the level of 𝐺-𝐶𝑊-
complexes. Being a left adjoint, 𝛼∗ preserves colimits, so H𝐾,𝜈 (𝛼∗−; E) is a colimit-
preserving functor Fun(Or(𝐻)op, Spc) → Sp. Using the universal property of the
Yoneda embedding once more, natural transformations between H𝐻,𝜉 (−,E) and
H𝐾,𝜈 (𝛼∗−; E) are identified with natural transformations of the restricted functors
Or(𝐻) → Sp. Since 𝛼 induces a natural transformation 𝑇𝜉 ⇒ 𝑇𝜈 , this observation
shows that 𝛼 gives rise to a natural transformation

ind𝛼 : H𝐻,𝜉 (−,E) ⇒ H𝐾,𝜈 (𝛼∗−; E).

One can check that this produces (by passing to homotopy groups) an equivariant
homology theory over 𝐺 in the sense of Definition 12.91.

Now to finish the proof of assertion (i) of Theorem 8.36, just apply the construction
above for E = KC defined in (8.38).

Remark 8.39. If we start with a functor E : GROUPOIDS ↓ 𝐼 (𝐺) → SPECTRA
instead, one observes that the proof of Theorem 12.93 actually produces natural
transformations ind𝛼 of functors Or(𝐻) → SPECTRA for every morphism 𝛼 of
groups over 𝐺, and that these transformations agree with the transformations for the
functor L ◦ E after applying the localization functor L : SPECTRA → Sp. Hence,
the equivariant homology theory over𝐺 giving by considering the homotopy groups
of H?

∗ (−; L◦E) and considering a𝐺-𝐶𝑊-complex as𝐺-∞-space defined above and
the equivariant homology theory 𝐻?

∗ (−; E) over𝐺 constructed in Theorem 12.30 are
naturally equivalent.

We refer to Section 12.10 and Chapter 15 for more details and explanations of
how such equivariant homology theories allow for the formulation of Isomorphism
Conjectures.
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8.5.3 The Special Case of Additive 𝑮-Categories

In this subsection, we will compare the output of Proposition 8.37 to analogous
constructions for the algebraic𝐾-theory of additive categories, see Subsection 13.3.1.

As explained in Example 8.5, one obtains from any additive category A a stable
∞-categoryKb (A), see (8.6), by localizing the category of bounded chain complexes
overA at the chain homotopy equivalences. IfA carries a𝐺-action, the functoriality
of the localization implies that we obtain a right-exact 𝐺-∞-category, again denoted
by Kb (A),

(8.40) Kb (A) : 𝐼 (𝐺) → CATREX.

Through Proposition 8.37, we obtain a functor

𝐸Kb (A) ◦𝑂 : Or(𝐺) → CATREX

which is a left Kan extension of Kb (A) along the inclusion 𝐼 (𝐺) → Or(𝐺).
Now [180, Corollary 7.4.16] identifies this functor with another functor

𝐸A : Or(𝐺) → CATREX

which is given as follows. By localizing the category of additive categories at the
equivalences, one obtains an∞-category ADDCAT∞. Since sendingA to Kb (A)
respects equivalences, we obtain an induced functorKb : ADDCAT∞ → CATREX.
Regarding A as an object with 𝐺-action in ADDCAT∞, one can take the left Kan
extension 𝑗!A of A along 𝑗 : 𝐼 (𝐺) → Or(𝐺). Postcomposing with Kb yields the
functor 𝐸A := Kb ◦ 𝑗!A.

After applying 𝐾-theory, the discussion from the preceding section yields an
identification

KKb (A) ◦𝑂 ≃ K ◦ 𝑗!A.

As explained in [182, Section 3.3], the latter functor is equivalent to the compos-
ite of the functor KA : Or(𝐺) → SPECTRA of (13.10), which sends 𝐺/𝐻 to
K

(∫
G𝐺 (𝐺/𝐻 ) A ◦ pr

)
, with the functor L of (8.2). This together with Remark 8.39

finishes the proof of assertion (ii) of Theorem 8.36 and hence of Theorem 8.36.

8.5.4 The Special Case of Waldhausen’s 𝑨-Theory

In this subsection, we will compare the output of Proposition 8.37 to the analogous
constructions for 𝐴-theory, see Conjecture 15.61.
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Recall the following notation:

• We denote by R 𝑓 : SPACES → Waldho the functor which sends a space 𝑋 to
the Waldhausen category of finite retractive spaces over 𝑋 , whose subcategory
of weak equivalences we denote by ℎR 𝑓 (𝑋). In order to shorten notation, let us
denote the localization R 𝑓 (𝑋) [ℎR 𝑓 (𝑋)−1] simply by R 𝑓 (𝑋) [ℎ−1];
• We denote by A := K◦R 𝑓 : SPACES→ Sp the non-connective 𝐴-theory functor.

Proposition 8.41. Let 𝑍 be a free𝐺-CW-complex. Denoting by 𝐿 (𝑍) : 𝐼 (𝐺) → Spc
the underlying homotopy type with 𝐺-action, we obtain a right-exact 𝐺-∞-category
𝐿 (𝑍) ⊗ Spc𝜔 because CATREX is cocomplete.

Then the functors

A𝐺𝑍 : Or(𝐺) → Sp, 𝐺/𝐻 ↦→ A(𝑍 ×𝐺 𝐺/𝐻)

and
K𝐿 (𝑍 )⊗Spc𝜔 ◦𝑂 : Or(𝐺) → Sp

are equivalent.

Proof. Proposition 8.37 implies that the second functor is obtained by left Kan
extending 𝐿 (𝑍) ⊗ Spc𝜔 along the inclusion functor 𝐼 (𝐺) → Or(𝐺). Observing
that free 𝐺-CW-complexes are principal 𝐺-bundles, the proposition is now a direct
consequence of [180, Corollary 7.5.6]. ⊓⊔

8.5.5 Ring Spectra as Coefficients

Finally, let us mention that this framework also incorporates the 𝐾-theory of
group rings over ring spectra. If R is any ring spectrum, we can equip the stable
∞-category PERF(R) of perfect R-modules with the trivial 𝐺-action. It is known
that colim𝐼 (𝐺) PERF(R) ≃ PERF(R[𝐺]), where R[𝐺] := Σ∞+ 𝐺 ⊗ R denotes the
group ring of 𝐺 over R, see for example [121, Corollary 3.6]. In light of Proposi-
tion 8.37, the functor KPERF(R) induces a functor Or(𝐺) → Sp which sends 𝐺/𝐻
to a spectrum equivalent to K(R[𝐻]).

Note that this reduces to Waldhausen’s 𝐴-theory if we take R to be the sphere spec-
trum S, as the non-connective 𝐾-theory of S[𝐺] is the non-connective Waldhausen
theory A(𝐵𝐺), and also encompasses the case of group rings 𝑅𝐺 for (ordinary)
rings 𝑅.
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8.6 Karoubi Filtrations and the Associated Weak Homotopy
Fibration Sequences

This section is devoted to the notion of a Karoubi filtration, which is given by a full
additive subcategoryU of an additive categoryA satisfying certain conditions, and
the existence of the associated weak homotopy fibration sequences

K(U) → K(A) → K(A/U);
L⟨−∞⟩ (U) → L⟨−∞⟩ (A) → L⟨−∞⟩ (A/U),

which induce long exact sequences of 𝐾- and 𝐿-groups. This will be a basic tool
in Chapter 21, where we will define 𝐺-homology theories in terms of controlled
topology and need to check the axioms of a 𝐺-homology theory such as the long
exact sequence of a pair or excision.

8.6.1 Karoubi Filtration and Quotient Categories

If U is a full additive subcategory of A, then one can define the quotient category
A/U as follows. The set of objects of A/U agrees with the set of objects of A.
The set of morphism morA/U (𝐴, 𝐴′) for objects 𝐴 and 𝐴′ in A/U is defined to
be morA (𝐴, 𝐴′)/∼ for the equivalence relation ∼ where we call two morphisms
𝑓 , 𝑓 ′ : 𝐴 → 𝐴′ in A equivalent if their difference 𝑓 − 𝑓 ′ : 𝐴 → 𝐴′ factorizes in A
as a composite 𝐴 → 𝑈 → 𝐴′ for some object 𝑈 in U. We leave to the reader the
elementary proof of the fact that A/U inherits from A the structure of an additive
category such that the obvious projection 𝑝 : A → A/U is a functor of additive
categories. For a morphism 𝑓 : 𝐴 → 𝐴′ in A, we denote by [ 𝑓 ] : 𝐴 → 𝐴′ the
morphism in A/U represented by 𝑓 .

Definition 8.42 (Quotients for additive categories). We call the additive category
A/U the quotient category of A byU.

Definition 8.43 (U-filtered). We say thatA is rightU-filtered or, equivalently, that
the inclusionU → A is a right Karoubi filtration, if the following holds:

The additive subcategory U ⊆ A is full. Moreover, given an object 𝐴 in A, an
objects 𝑈 ∈ U, and a morphism 𝑓 : 𝐴 → 𝑈, there are objects 𝐴U in U and 𝐴⊥ in
A and morphisms 𝑖U : 𝐴U → 𝐴 and 𝑖⊥ : 𝐴⊥ → 𝐴 satisfying:

• 𝑖U ⊕ 𝑖⊥ : 𝐴U ⊕ 𝐴⊥ �−→ 𝐴 is an isomorphism in A;
• There exists a morphism 𝑓 U : 𝐴U → 𝑈 such that the following diagram commutes
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𝐴
𝑓 // 𝑈

𝐴U ⊕ 𝐴⊥
�𝑖U⊕𝑖⊥

OO

pr
𝐴U
// 𝐴U

𝑓U

OO

where pr𝐴U : 𝐴U ⊕ 𝐴⊥ → 𝐴U is the canonical projection.

We say that A is left U-filtered or, equivalently, that the inclusion U → A is a
left Karoubi filtration, if the following holds:

The additive subcategory U ⊆ A is full. Moreover, given an object 𝐴 in A, an
object 𝑉 ∈ U, and a morphism 𝑔 : 𝑉 → 𝐴 in A, there are objects 𝐴U inU and 𝐴⊥
in A and morphisms 𝑖U : 𝐴U → 𝐴 and 𝑖⊥ : 𝐴⊥ → 𝐴 satisfying:

• 𝑖U ⊕ 𝑖⊥ : 𝐴U ⊕ 𝐴⊥ �−→ 𝐴 is an isomorphism in A;
• There exists a morphism 𝑔U : 𝑉 → 𝐴U such that the following diagram commutes

𝑉
𝑔 //

𝑔U

��

𝐴

𝐴U
𝑖
𝐴U
// 𝐴U ⊕ 𝐴⊥

� 𝑖U⊕𝑖⊥

OO

where 𝑖𝐴U : 𝐴U → 𝐴U ⊕ 𝐴⊥ is the canonical inclusion.
We say that A is U-filtered or, equivalently, that the inclusion U → A is a

Karoubi filtration, if it is both left and rightU-filtered.

Remark 8.44. The morphisms 𝑓 U and 𝑔U appearing in Definition 8.43 are uniquely
determined by the desired properties. Namely, if 𝑓 U and 𝑔U exist, then 𝑓 U = 𝑓 ◦ 𝑖U
and 𝑔U = prU ◦(𝑖U ⊕ 𝑖⊥)−1 ◦ 𝑔.

Remark 8.45 (Relation to the classical definition of a Karoubi filtration). If one
requires in the definition of U-filtered appearing in Definition 8.43 additionally
that 𝑈 = 𝑉 , then it reduces to [566, Definition 5.4]. One easily checks that Defini-
tion 8.43 and [566, Definition 5.4] are equivalent, the special case 𝑈 = 𝑉 in [566,
Definition 5.4] implies the general case of Definition 8.43 by considering𝑈⊕𝑉 . Note
that [566, Definition 5.4] agrees with the more complicated notion of aU-filtration
due to Karoubi [547], see [566, Lemma 5.6].

8.6.2 The Weak Homotopy Fibration Sequence of a Karoubi Filtration

The main result of this section is stated next.
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Theorem 8.46 (The weak homotopy fibration sequence of a Karoubi filtration).
Let A be an additive category and 𝑖 : U → A be the inclusion of a full additive

subcategory. Let 𝑝 : A → A/U be the canonical projection. Suppose thatA is left
U-filtered or rightU-filtered.

(i) The sequence of spectra

K(U)
K(𝑖)
−−−→ K(A)

K(𝑝)
−−−−→ K(A/U)

is a weak homotopy fibration sequence of non-connective spectra, i.e., the com-
posite K(𝑝) ◦ K(𝑖) admits a preferred nullhomotopy, since there is a preferred
natural transformation from 𝑝 ◦ 𝑖 to the trivial functor, and the induced map

K(U) → hofib
(
K(𝑝) : K(A) → K(A/U)

)
is a weak homotopy equivalence.
In particular we get a long exact sequence, infinite to both sides,

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (U)
𝐾𝑛 (𝑖)−−−−→ 𝐾𝑛 (A)

𝐾𝑛 (𝑝)−−−−−→ 𝐾𝑛 (A/U)
𝜕𝑛−−→ 𝐾𝑛−1 (U)

𝐾𝑛−1 (𝑖)−−−−−−→ 𝐾𝑛−1 (A)
𝐾𝑛−1 (𝑝)−−−−−−−→ 𝐾𝑛−1 (A/U)

𝜕𝑛−1−−−→ · · · ;

(ii) Suppose additionally thatA is an additive category with involution such that the
involution induces the structure of an additive category with involution onU.
ThenA/U inherits the structure of an additive category with involution and the
sequence of spectra

L⟨−∞⟩ (U)
L⟨−∞⟩ (𝑖)
−−−−−−→ L⟨−∞⟩ (A)

L⟨−∞⟩ (𝑝)
−−−−−−−→ L⟨−∞⟩ (A/U)

is a weak homotopy fibration sequence of non-connective spectra.
In particular we get a long exact sequence, infinite to both sides,

· · · 𝜕𝑛+1−−−→ 𝐿
⟨−∞⟩
𝑛 (U)

𝐿
⟨−∞⟩
𝑛 (𝑖)
−−−−−−−→ 𝐿

⟨−∞⟩
𝑛 (A)

𝐿
⟨−∞⟩
𝑛 (𝑝)
−−−−−−−→ 𝐿

⟨−∞⟩
𝑛 (A/U)

𝜕𝑛−−→ 𝐿
⟨−∞⟩
𝑛−1 (U)

𝐿
⟨−∞⟩
𝑛−1 (𝑖)−−−−−−−→ 𝐿

⟨−∞⟩
𝑛−1 (A)

𝐿
⟨−∞⟩
𝑛−1 (𝑝)−−−−−−−→ 𝐿

⟨−∞⟩
𝑛−1 (A/U)

𝜕𝑛−1−−−→ · · · .

Proof. (i) Corollary 8.34 takes care of the case when A is left U-filtered. Since
in an additive category finite sums and finite products agree, the category Aop is
right U-filtered if A is left U-filtered. Since 𝐾-theory does not see the difference
between A and Aop, assertion (i) follows from Corollary 8.34.

If one assumes that A is U-filtered, more classical proofs can be found for
instance in [209, 211, 801], based on the work of Karoubi [547].
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(ii) Note that for an additive categoryA with involution leftU filtered is equivalent
to rightU filtered and hence toU-filtered. Now apply [214, Theorem 4.2]. ⊓⊔
Example 8.47. Suppose that U → A is a left or right Karoubi filtration and A
is flasque. Then there is weak homotopy equivalence K(U) ≃−→ ΩK(A/U) by the
following argument.

We get a weak homotopy equivalence

K(U) ≃−→ hofib
(
K(A) → K(A/U)

)
from Theorem 8.46 (i). The projection K(A) → ∗ to the trivial spectrum ∗ is a weak
homotopy equivalence by Theorem 6.37 (iii) and hence induces a weak homotopy
equivalence

hofib
(
K(A) → K(A/U)

) ≃−→ hofib
(
∗ → K(A/U)

)
= ΩK(A/U).

8.7 Notes

Without question, higher categories have become a very important tool in many
branches of mathematics in the last years, including 𝐾-theory. Here we want briefly
to discuss its relevance in connection with the Isomorphism Conjectures.

If one goes through the list of applications of the Farrell-Jones Conjecture in Sec-
tion 13.12, one sees that for all of them except the applications to the computations
of homotopy groups of automorphisms of aspherical closed manifolds it suffices to
consider rings as coefficients. For the computations of homotopy groups of auto-
morphisms of aspherical closed manifolds, it is enough to know the Farrell-Jones
Conjecture for 𝐴-theory, which has already been treated in detail in [344]. The pas-
sage from rings to additive categories is not directly relevant for applications, but is
clearly motivated by the fact that it also allows us to handle twisted group rings and
orientation characters and ensures all the useful inheritance properties. At the time
of writing, we know no application of the Farrell-Jones Conjecture to prominent
problems in algebra, geometry, group theory, or topology where it does not suffice
to deal with rings as coefficients or with the 𝐴-theory version and one is forced
to consider higher categories. We also think that computations using cyclotomic
traces have come to their limit concerning the detection of the algebraic 𝐾-theory of
integral group rings.

Nevertheless, we expect that in the future the version of the Farrell-Jones Conjec-
ture for higher categories will become important. Actually there are already instances
where the passage to higher categories was necessary to get information about the
classical setting. The constructions of natural transformations from the topological
𝐾-theory to the algebraic 𝐿-theory of 𝐶∗-algebra have been poorly (and incorrectly)
treated in the classical setting, but in a very satisfactory way using higher category
theory in [614, 615] and thus open the door to a link between the Farrell-Jones Con-
jecture and the Baum-Connes Conjecture as explained in Subsection 15.14.4. Even
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for computations of the topological 𝐾-theory of 𝐶∗-algebras methods from higher
category theory are useful and actually needed, see for instance [615, Theorem B].

Another related topic is Hermitian 𝐾-theory in the setting of higher categories
and all its applications, see for instance Calmès, Dotto, Harpaz, Hebestreit, Land,
Moi, Nardin, Nikolaus, and Steimle [193, 194, 195, 196].

So far the 𝐿-theoretic version of the Farrell-Jones Conjecture has only been
established for additive categories with involution. Christoph Winges is at the time
of writing working on a generalization to the setting of higher categories for all
Dress-Farrell-Hsiang-Jones groups.





Chapter 9
Algebraic 𝑳-Theory

9.1 Introduction

In Remark 3.53 we have briefly discussed the Surgery Program. Starting with a map
of degree one of connected closed manifolds 𝑓 : 𝑀 → 𝑁 , the goal is to modify it by
surgery steps so that it becomes a homotopy equivalence. This will change the source
but not the target, and can only be carried out if the map 𝑓 is covered by bundle
data. With the bundle data, one is able to make the map highly connected, but in the
last step towards a homotopy equivalence an obstruction, the surgery obstruction,
occurs, whose appearance is among other things due to Poincaré duality. This
surgery obstruction takes values in the algebraic 𝐿-groups 𝐿𝑛 (Z𝐺) for 𝐺 = 𝜋1 (𝑁).
An introduction to the surgery obstruction and the algebraic 𝐿-groups will be given
in this chapter. These are the key tools for the classification of manifolds besides the
𝑠-Cobordism Theorem 3.47. All this will be carried out in Sections 9.2 to 9.5 in the
even-dimensional case and in Sections 9.6 to 9.8 in the odd-dimensional case.

We will also consider normal maps between compact manifolds with boundary
that induce homotopy equivalences on the boundary. Here we want to achieve a
homotopy equivalence by surgery on the interior, see Section 9.9.

Since the Whitehead torsion appears in the 𝑠-Cobordism Theorem 3.47, it will
be important to achieve a simple homotopy equivalence and not only a homotopy
equivalence by surgery. This leads to the simple surgery obstruction and decorated
L-groups, see Section 9.10. The various decorated 𝐿-groups are linked by Rothen-
berg sequences. The 𝐿-theoretic analog of the Bass-Heller-Swan decomposition for
𝐾-theory is the Shaneson splitting.

We will present the 𝐿-theoretic Farrell-Jones Conjecture for torsionfree groups
9.114, which relates the algebraic 𝐿-groups 𝐿𝑛 (Z𝐺) to the homology of 𝐵𝐺 with
coefficient in the 𝐿-theory spectrum, analogous to the Farrell-Jones Conjecture
for torsionfree groups and regular rings for 𝐾-theory 6.53. This together with the
Surgery Exact Sequence of Section 9.12 opens the door to many applications.
We will discuss the Novikov Conjecture 9.137 about the homotopy invariance of
higher signatures and the Borel Conjecture 9.163 about the topologically rigidity of
aspherical closed manifolds. Moreover, we will deal with the problems of whether
a given finitely presented Poincaré duality group occurs as the fundamental group
of an aspherical closed manifold, see Section 9.17, which hyperbolic groups have
spheres as their boundary, see Section 9.18, the stable Cannon Conjecture, see
Section 9.19, and when a product decomposition of the fundamental group of an
aspherical closed manifold already implies a product decomposition of the manifold
itself, see Section 9.20. Automorphism groups of aspherical closed manifolds are

203
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treated in Section 9.21. A brief survey on computations of 𝐿-theory of group rings
of finite groups is presented in Section 9.22.

This chapter is an extract of the book [667] by Lück and Macko.

9.2 Symmetric and Quadratic Forms

9.2.1 Symmetric Forms

Definition 9.1 (Ring with involution). A ring with involution 𝑅 is an associative
ring 𝑅 with unit together with an involution of rings

: 𝑅 → 𝑅, 𝑟 ↦→ 𝑟,

i.e., a map satisfying 𝑟 = 𝑟, 𝑟 + 𝑠 = 𝑟 + 𝑠, 𝑟 · 𝑠 = 𝑠 · 𝑟, and 1 = 1 for 𝑟, 𝑠 ∈ 𝑅.

If 𝑅 is commutative, we can equip it with the trivial involution 𝑟 = 𝑟.
Below we fix a ring 𝑅 with involution. Module is to be understood as left module

unless explicitly stated otherwise.

Example 9.2 (Involutions on group rings). Let 𝑤 : 𝐺 → {±1} be a group homo-
morphism. Then the group ring 𝑅𝐺 inherits an involution, the so-called 𝑤-twisted
involution, that sends

∑
𝑔∈𝐺 𝑟𝑔 · 𝑔 to

∑
𝑔∈𝐺 𝑤(𝑔) · 𝑟𝑔 · 𝑔−1.

Remark 9.3 (Dual modules). The main purpose of the involution is to ensure that
the dual of a left 𝑅-module can be viewed as a left 𝑅-module again. Namely, let 𝑀
be a left 𝑅-module. Then 𝑀∗ := hom𝑅 (𝑀, 𝑅) carries a canonical right 𝑅-module
structure given by ( 𝑓 𝑟) (𝑚) = 𝑓 (𝑚) · 𝑟 for a homomorphism of left 𝑅-modules
𝑓 : 𝑀 → 𝑅 and 𝑚 ∈ 𝑀 . The involution allows us to view 𝑀∗ = hom𝑅 (𝑀, 𝑅) as a
left 𝑅-module, namely, define 𝑟 𝑓 for 𝑟 ∈ 𝑅 and 𝑓 ∈ 𝑀∗ by (𝑟 𝑓 ) (𝑚) := 𝑓 (𝑚) · 𝑟 for
𝑚 ∈ 𝑀 .

Notation 9.4. Given a finitely generated projective 𝑅-module 𝑃, we denote by
𝑒(𝑃) : 𝑃 �−→ (𝑃∗)∗ the canonical isomorphism of (left) 𝑅-modules that sends 𝑝 ∈ 𝑃
to the element in (𝑃∗)∗ given by 𝑃∗ → 𝑅, 𝑓 ↦→ 𝑓 (𝑝).

We will often use the following elementary fact. Let 𝑓 : 𝑃 → 𝑄 be a homo-
morphism of finitely generated projective 𝑅-modules. Then the following diagram
commutes

𝑃
𝑓 //

�𝑒 (𝑃)
��

𝑄

𝑒 (𝑄)�

��
(𝑃∗)∗

( 𝑓 ∗ )∗
// (𝑄∗)∗.

(9.5)
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Exercise 9.6. Show that the map 𝑒(𝑃) : 𝑃 → (𝑃∗)∗ of Notation (9.4) is a well-
defined isomorphism of finitely generated projective 𝑅-modules, is compatible with
direct sums, and is natural, i.e., the diagram (9.5) commutes.
Definition 9.7 (Non-singular 𝜖-symmetric form). Let 𝜖 ∈ {±1}. An 𝜖-symmetric
form (𝑃, 𝜙) over an associative ring 𝑅with involution is a finitely generated projective
(left) 𝑅-module 𝑃 together with an 𝑅-map 𝜙 : 𝑃 → 𝑃∗ such that the composite
𝑃

𝑒 (𝑃)
−−−−→ (𝑃∗)∗

𝜙∗

−−→ 𝑃∗ agrees with 𝜖 · 𝜙.
A morphism 𝑓 : (𝑃, 𝜙) → (𝑃′, 𝜙) of 𝜖-symmetric forms is an 𝑅-homomorphism

𝑓 : 𝑃→ 𝑃′ satisfying 𝑓 ∗ ◦ 𝜙′ ◦ 𝑓 = 𝜙.
We call an 𝜖-symmetric form (𝑃, 𝜙) non-singular if 𝜙 is an isomorphism.
If 𝜖 is 1 or −1 respectively, we often replace 𝜖-symmetric by symmetric or skew-

symmetric respectively. The direct sum of two 𝜖-symmetric forms is defined in the
obvious way. The direct sum of two non-singular 𝜖-symmetric forms is again a
non-singular 𝜖-symmetric form.
Remark 9.8 (𝜖-symmetric forms as pairings). We can rewrite an 𝜖-symmetric form
(𝑃, 𝜙) as a pairing

𝜆 : 𝑃 × 𝑃→ 𝑅, (𝑝, 𝑞) ↦→ 𝜙(𝑝) (𝑞).

The conditions that 𝜙 is 𝑅-linear and that 𝜙(𝑝) is 𝑅-linear for all 𝑝 ∈ 𝑃 translates to

𝜆(𝑝, 𝑟1 · 𝑞1 + 𝑟2 · 𝑞2, ) = 𝑟1 · 𝜆(𝑝, 𝑞1) + 𝑟2 · 𝜆(𝑝, 𝑞2);
𝜆(𝑟1 · 𝑝1 + 𝑟2 · 𝑝2, 𝑞) = 𝜆(𝑝1, 𝑞) · 𝑟1 + 𝜆(𝑝2, 𝑞) · 𝑟2.

The condition 𝜙 = 𝜖 · 𝜙∗ ◦ 𝑒(𝑃) translates to 𝜆(𝑞, 𝑝) = 𝜖 · 𝜆(𝑝, 𝑞).
If we consider the real numbersR as a ring with involution by the trivial involution,

then a non-singular 1-symmetric form 𝜙 on a finite-dimensional R-vector space 𝑉
such that 𝜙(𝑥) (𝑥) ≥ 0 holds for all 𝑥 ∈ R𝑛 is the same as a scalar product on 𝑉 .
If we consider the complex numbers C as a ring with involution by taking complex
conjugation, then the corresponding statement holds for a finite-dimensional complex
vector space.
Definition 9.9 (The standard hyperbolic 𝜖-symmetric form). Let 𝑃 be a finitely
generated projective 𝑅-module. The standard hyperbolic 𝜖-symmetric form 𝐻 𝜖 (𝑃)
is given by the 𝑅-module 𝑃 ⊕ 𝑃∗ and the 𝑅-isomorphism

𝜙 : (𝑃 ⊕ 𝑃∗)

(
0 1
𝜖 0

)
−−−−−→ 𝑃∗ ⊕ 𝑃

id ⊕𝑒 (𝑃)
−−−−−−−→ 𝑃∗ ⊕ (𝑃∗)∗

𝛾
−→ (𝑃 ⊕ 𝑃∗)∗

where 𝛾 is the obvious 𝑅-isomorphism.
If we write the standard hyperbolic 𝜖-symmetric form 𝐻 𝜖 (𝑃) as a pairing, see

Remark 9.8, we obtain

(𝑃 ⊕ 𝑃∗) × (𝑃 ⊕ 𝑃∗) → 𝑅, ((𝑝, 𝛼), (𝑝′, 𝛼′)) ↦→ 𝛼′ (𝑝) + 𝜖 · 𝛼(𝑝′).
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9.2.2 The Signature

Consider a non-singular symmetric bilinear pairing 𝑠 : 𝑉 × 𝑉 → R for a finite-
dimensional real vector space 𝑉 , or, equivalently, a non-singular symmetric form
of finitely generated free R-modules. Choose a basis for 𝑉 and let 𝐴 be the square
matrix describing 𝑠 with respect to this basis. Since 𝑠 is symmetric and non-singular,
𝐴 is symmetric and invertible. Hence 𝐴 can be diagonalized by an orthogonal matrix
𝑈 to a diagonal matrix whose entries on the diagonal are non-zero real numbers. Let
𝑛+ be the number of positive entries and 𝑛− be the number of negative entries on
the diagonal. These two numbers are independent of the choice of the basis and the
orthogonal matrix 𝑈. Namely 𝑛+ is the maximum of the dimensions of subvector
spaces 𝑊 ⊂ 𝑉 on which 𝑠 is positive-definite, i.e., 𝑠(𝑤, 𝑤) ≥ 0 for 𝑤 ∈ 𝑊 , and
analogous for 𝑛− . Obviously 𝑛+ + 𝑛− = dimR (𝑉).

Definition 9.10 (Signature). Define the signature of the non-singular symmetric
bilinear pairing 𝑠 : 𝑉 ×𝑉 → R for a finite-dimensional real vector space 𝑉 to be the
integer

sign(𝑠) := 𝑛+ − 𝑛− .

Define the signature of a non-singular symmetric form over Z to be the signature
of the associated non-singular symmetric form over R.

Lemma 9.11. Let 𝑠 : 𝑉 × 𝑉 → R be a non-singular symmetric bilinear pairing for
a finite-dimensional real vector space 𝑉 . Then sign(𝑠) = 0 if and only if there exists
a subvector space 𝐿 ⊂ 𝑉 such that dimR (𝑉) = 2 · dimR (𝐿) and 𝑠(𝑎, 𝑏) = 0 for
𝑎, 𝑏 ∈ 𝐿.

Proof. Suppose that sign(𝑠) = 0. Then one can find an orthogonal (with respect to
𝑠) basis {𝑏1, 𝑏2, . . . , 𝑏𝑛+ , 𝑐1, 𝑐2, . . . , 𝑐𝑛− } such that 𝑠(𝑏𝑖 , 𝑏𝑖) = 1 and 𝑠(𝑐 𝑗 , 𝑐 𝑗 ) = −1
holds. Since 0 = sign(𝑠) = 𝑛+ − 𝑛− , we can define 𝐿 to be the subvector space
generated by {𝑏𝑖 + 𝑐𝑖 | 𝑖 = 1, 2, . . . , 𝑛+}. One easily checks that 𝐿 has the desired
properties.

Suppose such an 𝐿 ⊂ 𝑉 exists. Choose subvector spaces 𝑉+ and 𝑉− of 𝑉 such
that 𝑠 is positive-definite on 𝑉+ and negative-definite on 𝑉− and that 𝑉+ and 𝑉−
are maximal with respect to this property. Then 𝑉+ ∩ 𝑉− = {0} and 𝑉 = 𝑉+ ⊕ 𝑉− .
Obviously 𝑉+ ∩ 𝐿 = 𝑉− ∩ 𝐿 = {0}. From

dimR (𝑉±) + dimR (𝐿) − dimR (𝑉± ∩ 𝐿) ≤ dimR (𝑉),

we conclude dimR (𝑉±) ≤ dimR (𝑉) − dimR (𝐿). Since 2 · dimR (𝐿) = dimR (𝑉) =
dimR (𝑉+) + dimR (𝑉−) holds, we get dimR (𝑉±) = dimR (𝐿). This implies

sign(𝑠) = dimR (𝑉+) − dimR (𝑉−) = dimR (𝐿) − dimR (𝐿) = 0.

⊓⊔
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If 𝑀 is an orientable connected closed manifold of dimension 𝑑, then 𝐻𝑑 (𝑀)
is infinite cyclic. An orientation on 𝑀 is equivalent to a choice of generator
[𝑀] ∈ 𝐻𝑑 (𝑀) called a fundamental class. This definition extends to a (not
necessarily connected) orientable closed manifold 𝑀 of dimension 𝑑 by defining
[𝑀] ∈ 𝐻𝑑 (𝑀) to be the image of {[𝐶] | 𝐶 ∈ 𝜋0 (𝑀)} under the canonical isomor-
phism

⊕
𝐶∈𝜋0 (𝑀 ) 𝐻dim(𝑀 ) (𝐶)

�−→ 𝐻dim(𝑀 ) (𝑀).

Example 9.12 (Intersection pairing). Let 𝑀 be a closed oriented manifold of even
dimension 2𝑛. Then we obtain a (−1)𝑛-symmetric form on the finitely generated
free R-module 𝐻𝑛 (𝑀;R)

𝑖 : 𝐻𝑛 (𝑀;R) × 𝐻𝑛 (𝑀;R) → R

by sending ( [𝑥], [𝑦]) for 𝑥, 𝑦 ∈ 𝐻𝑛 (𝑀;R) to ⟨𝑥 ∪ 𝑦, [𝑀]R⟩ where ⟨𝑢, 𝑣⟩ denotes
the Kronecker pairing and [𝑀]R is the image of the fundamental class [𝑀] under
the change of rings homomorphism 𝐻𝑛 (𝑀;Z) → 𝐻𝑛 (𝑀;R). It is non-singular by
Poincaré duality.

Next we define a fundamental invariant of a closed oriented manifold, namely, its
signature. This is the first kind of surgery obstruction we will encounter.

Definition 9.13 (Signature of a closed oriented manifold). Let 𝑀 be a closed
oriented manifold of dimension 𝑛. If 𝑛 is divisible by four, then the signature sign(𝑀)
of 𝑀 is defined to be the signature of its intersection pairing. If 𝑛 is not divisible by
four, define sign(𝑀) = 0.

One easily checks sign(𝑀) = ∑
𝐶∈𝜋0 (𝑀 ) sign(𝐶).

Exercise 9.14. Let 𝑀 be an oriented closed 4𝑘-dimensional manifold. Let 𝜒(𝑀) be
its Euler characteristic. Show sign(𝑀) ≡ 𝜒(𝑀) mod 2.

The signature can also be defined for oriented compact manifolds with possibly
non-empty boundary, see for instance [667, Definition 5.84 on page 135], and has
the following properties.

Theorem 9.15 (Properties of the signature of oriented compact manifolds).

(i) The signature is an oriented bordism invariant, i.e., if 𝑀 is a (4𝑘 + 1)-
dimensional oriented compact manifold with boundary 𝜕𝑀 , then

sign(𝜕𝑀) = 0;

(ii) Let 𝑀 and 𝑁 be oriented compact manifolds and 𝑓 : 𝜕𝑀 → 𝜕𝑁 be an orien-
tation reversing diffeomorphism. Then 𝑀 ∪ 𝑓 𝑁 inherits an orientation from 𝑀

and 𝑁 and
sign(𝑀 ∪ 𝑓 𝑁) = sign(𝑀) + sign(𝑁);

(iii) Let 𝑀 and 𝑁 be oriented compact manifolds. Then we get

sign(𝑀 × 𝑁, 𝜕 (𝑀 × 𝑁)) = sign(𝑀, 𝜕𝑀) · sign(𝑁, 𝜕𝑁);
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(iv) Let 𝑝 : 𝑀 → 𝑀 be a finite covering with 𝑑 sheets of oriented closed manifolds.
Then

sign(𝑀) = 𝑑 · sign(𝑀);

(v) If the oriented closed manifolds 𝑀 and 𝑁 are oriented homotopy equivalent,
then

sign(𝑀) = sign(𝑁);

(vi) If 𝑀 is an oriented closed manifold and 𝑀− is obtained from 𝑀 by reversing
the orientation, then

sign(𝑀−) = − sign(𝑀).

Proof. (i) Let 𝑖 : 𝜕𝑀 → 𝑀 be the inclusion. Then the following diagram commutes

𝐻2𝑘 (𝑀;R) 𝐻2𝑘 (𝑖) //

−∩[𝑀,𝜕𝑀 ]R �

��

𝐻2𝑘 (𝜕𝑀;R) 𝛿2𝑘
//

−∩𝜕4𝑘+1 ( [𝑀,𝜕𝑀 ]R ) �
��

𝐻2𝑘+1(𝑀, 𝜕𝑀;R)

−∩[𝑀,𝜕𝑀 ]R �

��
𝐻2𝑘+1 (𝑀, 𝜕𝑀;R) 𝜕2𝑘+1 // 𝐻2𝑘 (𝜕𝑀;R) 𝐻2𝑘 (𝑖) // 𝐻2𝑘 (𝑀;R).

This implies dimR (ker(𝐻2𝑘 (𝑖))) = dimR (im(𝐻2𝑘 (𝑖))). Since R is a field, we get
from the Kronecker pairing an isomorphism 𝐻2𝑘 (𝑀;R) � (𝐻2𝑘 (𝑀;R))∗ and anal-
ogously for 𝜕𝑀 . Under these identifications 𝐻2𝑘 (𝑖) becomes (𝐻2𝑘 (𝑖))∗. Hence
dimR (im(𝐻2𝑘 (𝑖))) = dimR (im(𝐻2𝑘 (𝑖))). From

dimR (𝐻2𝑘 (𝜕𝑀;R)) = dimR (ker(𝐻2𝑘 (𝑖))) + dimR (im(𝐻2𝑘 (𝑖)))

we conclude
dimR (𝐻2𝑘 (𝜕𝑀;R)) = 2 · dimR (im(𝐻2𝑘 (𝑖))).

We have for 𝑥, 𝑦 ∈ 𝐻2𝑘 (𝑀;R)

⟨𝐻2𝑘 (𝑖) (𝑥) ∪ 𝐻2𝑘 (𝑖) (𝑦), 𝜕4𝑘+1( [𝑀, 𝜕𝑀]R)⟩
= ⟨𝐻4𝑘 (𝑖) (𝑥 ∪ 𝑦), 𝜕4𝑘+1( [𝑀, 𝜕𝑀]R)⟩
= ⟨𝑥 ∪ 𝑦, 𝐻4𝑘 (𝑖) ◦ 𝜕4𝑘+1( [𝑀, 𝜕𝑀]R)⟩
= ⟨𝑥 ∪ 𝑦, 0⟩
= 0.

If we apply Lemma 9.11 to the non-singular symmetric bilinear pairing

𝐻2𝑘 (𝜕𝑀;R) ⊗R 𝐻2𝑘 (𝜕𝑀;R) ∪−→ 𝐻4𝑘 (𝜕𝑀;R)
⟨−,𝜕4𝑘+1 ( [𝑀,𝜕𝑀 ]R ) ⟩−−−−−−−−−−−−−−−−−→ R

with 𝐿 the image of 𝐻2𝑘 (𝑖) : 𝐻2𝑘 (𝑀;R) → 𝐻2𝑘 (𝜕𝑀;R), we see that the signature
of this pairing is zero.
(ii) This is due to Novikov. For a proof see for instance [53, Proposition 7.1 on page
588].
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(iii) See for instance [667, Lemma 5.85 (ii) on page 136].
(iv) For a smooth manifold 𝑀 this follows from Atiyah’s 𝐿2-index theorem [46,
(1.1)]. Topological closed manifolds are treated in [892, Theorem 8].
(v) The two intersection pairings are isomorphic and hence have the same signatures.
(vi) This follows from [𝑀−] = −[𝑀]. ⊓⊔

Exercise 9.16. Compute for 𝑛 ≥ 1 the signature of:

(i) the complex projective space CP𝑛;
(ii) the total space 𝑆𝑇𝑀 of the sphere tangent bundle of an oriented closed

𝑛-dimensional manifold 𝑀;
(iii) an oriented closed 𝑛-dimensional manifold 𝑀 admitting an orientation reversing

self-diffeomorphism.

9.2.3 Quadratic Forms

Next we introduce quadratic forms, which are refinements of symmetric forms.

Notation 9.17. For a finitely generated projective 𝑅-module 𝑃 define an involution
of 𝑅-modules

𝑇 = 𝑇 (𝑃) : hom𝑅 (𝑃, 𝑃∗) → hom𝑅 (𝑃, 𝑃∗), 𝑢 ↦→ 𝑢∗ ◦ 𝑒(𝑃).

Notation 9.18. Let 𝑃 be a finitely generated projective 𝑅-module. Define abelian
groups

𝑄 𝜖 (𝑃) := ker ((1 − 𝜖 · 𝑇) : hom𝑅 (𝑃, 𝑃∗) → hom𝑅 (𝑃, 𝑃∗)) ;
𝑄 𝜖 (𝑃) := coker ((1 − 𝜖 · 𝑇) : hom𝑅 (𝑃, 𝑃∗) → hom𝑅 (𝑃, 𝑃∗)) .

An 𝑅-homomorphism 𝑓 : 𝑃→ 𝑄 induces a homomorphism of abelian groups

𝑄 𝜖 ( 𝑓 ) : 𝑄 𝜖 (𝑄) → 𝑄 𝜖 (𝑃), 𝑢 ↦→ 𝑓 ∗ ◦ 𝑢 ◦ 𝑓 ;
𝑄 𝜖 ( 𝑓 ) : 𝑄 𝜖 (𝑄) → 𝑄 𝜖 (𝑃), [𝑢] ↦→ [ 𝑓 ∗ ◦ 𝑢 ◦ 𝑓 ] .

Let
(1 + 𝜖 · 𝑇) : 𝑄 𝜖 (𝑃) → 𝑄 𝜖 (𝑃)

be the homomorphism that sends the class [𝑢] represented by 𝑢 : 𝑃 → 𝑃∗ to the
element 𝑢 + 𝜖 · 𝑇 (𝑢).

Definition 9.19 (Non-singular 𝜖-quadratic form). Let 𝜖 ∈ {±1}. An 𝜖-quadratic
form (𝑃, 𝜓) is a finitely generated projective 𝑅-module 𝑃 together with an ele-
ment 𝜓 ∈ 𝑄 𝜖 (𝑃). It is called non-singular if the associated 𝜖-symmetric form
(𝑃, (1 + 𝜖 · 𝑇) (𝜓)) is non-singular, i.e. (1 + 𝜖 · 𝑇) (𝜓) : 𝑃→ 𝑃∗ is bijective.
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A morphism 𝑓 : (𝑃, 𝜓) → (𝑃′, 𝜓′) of two 𝜖-quadratic forms is an 𝑅-homomor-
phism 𝑓 : 𝑃 �−→ 𝑃′ such that the induced map 𝑄 𝜖 ( 𝑓 ) : 𝑄 𝜖 (𝑃′) → 𝑄 𝜖 (𝑃) sends 𝜓′
to 𝜓.

Given a non-singular 𝜖-symmetric form (𝑃, 𝜙), a quadratic refinement is a non-
singular 𝜖-quadratic form (𝑃, 𝜓) with 𝜙 = (1 + 𝜖 · 𝑇) (𝜓).

There is an obvious notion of a direct sum of two 𝜖-quadratic forms. The direct
sum of two non-singular 𝜖-quadratic forms is a non-singular 𝜖-quadratic form.

Consider the pairing

(9.20) 𝜌 : 𝑅 ×𝑄 (−1)𝑘 (𝑅) → 𝑄 (−1)𝑘 (𝑅), (𝑟, [𝑠]) ↦→ [𝑟𝑠𝑟] .

It is well defined, since for 𝑟, 𝑠, 𝑡 ∈ 𝑅 we get if we put 𝑡′ = 𝑟𝑡𝑟

𝑟
(
𝑠 + (𝑡 − (−1)𝑘 · 𝑡)

)
𝑟 = 𝑟𝑠𝑟 +

(
𝑡′ − (−1)𝑘 · 𝑡′

)
.

It is additive in the second variable, i.e., 𝜌(𝑟, [𝑠1] − [𝑠2]) = 𝜌(𝑟, [𝑠1]) − 𝜌(𝑟, [𝑠2]),
but it is not additive in the first variable and in particular 𝜌 does not give the structure
of a left 𝑅-module on𝑄 (−1)𝑘 (𝑅). Nevertheless, sometimes in the literature 𝜌(𝑟, [𝑠])
is denoted by 𝑟 [𝑠]𝑟.

Remark 9.21 (Writing a quadratic form as a triple (𝑃, 𝜆, 𝜇)). An 𝜖-quadratic
form (𝑃, 𝜓) is equivalent to a triple (𝑃, 𝜆, 𝜇) consisting of a pairing

𝜆 : 𝑃 × 𝑃→ 𝑅

satisfying

𝜆(𝑝, 𝑟1 · 𝑞1 + 𝑟2 · 𝑞2) = 𝑟1 · 𝜆(𝑝, 𝑞1) + 𝑟2 · 𝜆(𝑝, 𝑞2);
𝜆(𝑟1 · 𝑝1 + 𝑟2 · 𝑝2, 𝑞) = 𝜆(𝑝1, 𝑞) · 𝑟1 + 𝜆(𝑝2, 𝑞) · 𝑟2;

𝜆(𝑞, 𝑝) = 𝜖 · 𝜆(𝑝, 𝑞),

and a map
𝜇 : 𝑃→ 𝑄 𝜖 (𝑅) = 𝑅/{𝑟 − 𝜖 · 𝑟 | 𝑟 ∈ 𝑅}

satisfying

𝜇(𝑟 𝑝) = 𝜌(𝑟, 𝜇(𝑝));
𝜇(𝑝 + 𝑞) − 𝜇(𝑝) − 𝜇(𝑞) = pr(𝜆(𝑝, 𝑞));

𝜆(𝑝, 𝑝) = (1 + 𝜖 · 𝑇) (𝜇(𝑝)),

where the pairing 𝜌 was introduced in (9.20), pr : 𝑅 → 𝑄 𝜖 (𝑅) is the projection, and
(1 + 𝜖 · 𝑇) : 𝑄 𝜖 (𝑅) → 𝑅 the map sending the class of 𝑟 to 𝑟 + 𝜖 · 𝑟. Namely, put

𝜆(𝑝, 𝑞) =
(
(1 + 𝜖 · 𝑇) (𝜓) (𝑝)

)
(𝑞);

𝜇(𝑝) = pr(𝜓(𝑝) (𝑝)).
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These two descriptions of an 𝜖-quadratic form are equivalent, see [986, Theo-
rem 1].

Definition 9.22 (The standard hyperbolic 𝜖-quadratic form). Let 𝑃 be a finitely
generated projective 𝑅-module. The standard hyperbolic 𝜖-quadratic form 𝐻𝜖 (𝑃) is
given by the 𝑅-module 𝑃 ⊕ 𝑃∗ and the class in𝑄 𝜖 (𝑃 ⊕ 𝑃∗) of the 𝑅-homomorphism

𝜙 : (𝑃 ⊕ 𝑃∗)

(
0 1
0 0

)
−−−−−→ 𝑃∗ ⊕ 𝑃

id ⊕𝑒 (𝑃)
−−−−−−−→ 𝑃∗ ⊕ (𝑃∗)∗

𝛾
−→ (𝑃 ⊕ 𝑃∗)∗

where 𝛾 is the obvious 𝑅-isomorphism.

If we write the standard hyperbolic 𝜖-quadratic form 𝐻𝜖 (𝑃) as a pairing, see
Remark 9.21, we obtain

𝜆 : (𝑃 ⊕ 𝑃∗) × (𝑃 ⊕ 𝑃∗) → 𝑅, ((𝑝, 𝛼), (𝑝′, 𝛼′)) ↦→ 𝛼′ (𝑝) + 𝜖 · 𝛼(𝑝′);
𝜇 : 𝑃 ⊕ 𝑃∗ → 𝑄 𝜖 (𝑅), (𝑝, 𝛼) ↦→ pr(𝛼(𝑝)).

In particular, the 𝜖-symmetric form associated to the standard 𝜖-quadratic form
𝐻𝜖 (𝑃) is just the standard 𝜖-symmetric form 𝐻 𝜖 (𝑃).

Exercise 9.23. Let 𝜆 : 𝑃 × 𝑃 → Z be a non-singular symmetric Z-bilinear pairing
on the finitely generated free Z-module 𝑃. Show that it has, when considered as a
non-singular symmetric form, a quadratic refinement if and only if 𝜆(𝑥, 𝑥) is even
for all 𝑥 ∈ 𝑃.

Remark 9.24. Suppose that 1/2 ∈ 𝑅. Then the homomorphism

(1 + 𝜖 · 𝑇) : 𝑄 𝜖 (𝑃) → 𝑄 𝜖 (𝑃), [𝑢] ↦→ [𝑢 + 𝜖 · 𝑇 (𝑢)]

is bijective. The inverse sends 𝑣 to [𝑣/2]. Hence any 𝜖-symmetric form carries a
unique 𝜖-quadratic structure. Therefore there is no difference between the symmetric
and the quadratic setting if 2 is invertible in 𝑅.

9.3 Even-Dimensional 𝑳-groups

Next we define even-dimensional 𝐿-groups. Below 𝑅 is an associative ring with
involution.

Definition 9.25 (𝐿-groups in even dimensions). For an even integer 𝑛 = 2𝑘 define
the abelian group 𝐿𝑛 (𝑅), called the 𝑛-th quadratic 𝐿-group, of 𝑅 to be the abelian
group of equivalence classes [𝑃, 𝜓] of non-singular (−1)𝑘-quadratic forms (𝑃, 𝜓)
whose underlying 𝑅-module 𝑃 is a finitely generated free 𝑅-module, with respect
to the following equivalence relation: We call (𝑃, 𝜓) and (𝑃′, 𝜓′) equivalent or
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stably isomorphic if and only if there exist integers 𝑢, 𝑢′ ≥ 0 and an isomorphism of
non-singular (−1)𝑘-quadratic forms

(𝑃, 𝜓) ⊕ 𝐻(−1)𝑘 (𝑅)𝑢 � (𝑃′, 𝜓′) ⊕ 𝐻(−1)𝑘 (𝑅)𝑢
′
.

Addition is given by the direct sum of two (−1)𝑘-quadratic forms. The zero element
is represented by [𝐻(−1)𝑘 (𝑅)𝑢] for any integer 𝑢 ≥ 0. The inverse of [𝑃, 𝜓] is given
by [𝑃,−𝜓].

A morphism 𝑢 : 𝑅 → 𝑆 of rings with involution induces homomorphisms
𝑢∗ : 𝐿𝑛 (𝑅) → 𝐿𝑛 (𝑆) and 𝑢∗ : 𝐿𝑛 (𝑅) → 𝐿𝑛 (𝑆) for even 𝑛 ∈ Z by induction sat-
isfying (𝑢 ◦ 𝑣)∗ = 𝑢∗ ◦ 𝑣∗ and (id𝑅)∗ = id𝐿𝑘 (𝑅) for 𝑘 = 0, 2.

Next we will present a criterion for an 𝜖-quadratic form (𝑃, 𝜓) to represent
zero in 𝐿1−𝜖 (𝑅). Let (𝑃, 𝜓) be an 𝜖-quadratic form. A sublagrangian 𝐿 ⊂ 𝑃 is an
𝑅-submodule such that the inclusion 𝑖 : 𝐿 → 𝑃 is split injective, the image of𝜓 under
the map 𝑄 𝜖 (𝑖) : 𝑄 𝜖 (𝑃) → 𝑄 𝜖 (𝐿) is zero, and 𝐿 is contained in its annihilator 𝐿⊥,
that is by definition the kernel of

𝑃
(1+𝜖 ·𝑇 ) (𝜓)
−−−−−−−−−→ 𝑃∗

𝑖∗−→ 𝐿∗.

A sublagrangian 𝐿 ⊂ 𝑃 is called lagrangian if 𝐿 = 𝐿⊥. Equivalently, a lagrangian
𝐿 ⊂ 𝑃 is an 𝑅-submodule 𝐿 with inclusion 𝑖 : 𝐿 → 𝑃 such that the sequence

0→ 𝐿
𝑖−→ 𝑃

𝑖∗◦(1+𝜖 ·𝑇 ) (𝜓)
−−−−−−−−−−−−→ 𝐿∗ → 0.

is exact.

Lemma 9.26. Let (𝑃, 𝜓) be an 𝜖-quadratic form. Let 𝐿 ⊂ 𝑃 be a sublagrangian.
Then 𝐿 is a direct summand in 𝐿⊥ and 𝜓 induces the structure of a non-singular
𝜖-quadratic form (𝐿⊥/𝐿, 𝜓⊥/𝜓). Moreover, the inclusion 𝑖 : 𝐿 → 𝑃 extends to an
isomorphism of 𝜖-quadratic forms

𝐻𝜖 (𝐿) ⊕ (𝐿⊥/𝐿, 𝜓⊥/𝜓)
�−→ (𝑃, 𝜓).

In particular, a non-singular 𝜖-quadratic form (𝑃, 𝜓) is isomorphic to 𝐻𝜖 (𝑄) if and
only if it contains a lagrangian 𝐿 ⊂ 𝑃 which is isomorphic as an 𝑅-module to 𝑄.

Proof. See for instance [667, Lemma 8.95 on page 261]. ⊓⊔

Exercise 9.27. Show for a non-singular 𝜖-quadratic form (𝑃, 𝜓) that (𝑃, 𝜓)⊕(𝑃,−𝜓)
is isomorphic to 𝐻𝜖 (𝑃) and hence an inverse of [𝑃, 𝜓] in 𝐿1−𝜖 (𝑅) is given by
[𝑃,−𝜓].

Exercise 9.28. Show that the signature defines an isomorphism 𝐿0 (R)
�−→ Z.

Finally we state the computation of the even-dimensional 𝐿-groups of the ring
of integers Z. Consider an element (𝑃, 𝜓) in 𝐿0 (Z). By tensoring over Z with R
and only taking the symmetric structure into account, we obtain a non-singular
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symmetric R-bilinear pairing 𝜆 : R⊗Z 𝑃×R⊗Z 𝑃→ R. It turns out that its signature
is always divisible by eight. A proof the following classical result can be found for
instance in [667, Subsection 8.5.2], see also [728].

Theorem 9.29 (𝐿-groups of the ring of integers in dimension 4𝑛). The signature
defines for 𝑛 ∈ Z an isomorphism

1
8
· sign : 𝐿4𝑛 (Z)

�−→ Z, [𝑃, 𝜓] ↦→ 1
8
· sign(R ⊗Z 𝑃, 𝜆).

Consider a non-singular quadratic form (𝑃, 𝜓) over the field F2 of two elements.
Write (𝑃, 𝜓) as a triple (𝑃, 𝜆, 𝜇) as explained in Remark 9.21. Choose any symplectic
basis {𝑏1, 𝑏2, . . . , 𝑏2𝑚} for 𝑃, where symplectic means that 𝜆(𝑏𝑖 , 𝑏 𝑗 ) is 1 if 𝑖− 𝑗 = 𝑚
and 0 otherwise. Such a symplectic basis always exists. Define the Arf invariant of
(𝑃, 𝜓) by

Arf (𝑃, 𝜓) :=
𝑚∑︁
𝑖=1

𝜇(𝑏𝑖) · 𝜇(𝑏𝑖+𝑚) ∈ Z/2.(9.30)

It turns out that the Arf invariant of (𝑃, 𝜓) is 1 if and only if 𝜇 sends a (strict)
majority of the elements of 𝑃 to 1, see [169, Corollary III.1.9 on page 55]. (Because
of this property sometimes the Arf invariant is called the democratic invariant.) This
description shows that (9.30) is independent of the choice of symplectic basis.

Exercise 9.31. Let𝑉 be a two-dimensional F2-vector space. Classify all non-singular
quadratic forms on 𝑉 up to isomorphism and compute their Arf invariants.

The Arf invariant defines an isomorphism

Arf : 𝐿2𝑛 (F2)
�−→ Z/2,

essentially, since two non-singular quadratic forms over F2 on the same finite dimen-
sional F2-vector space are isomorphic if and only if they have the same Arf invariant,
see [169, Theorem III.1.12 on page 55]. The change of rings homomorphismZ→ F2
induces an isomorphism,

𝐿4𝑛+2 (Z)
�−→ 𝐿4𝑛+2 (F2).

This implies, see for instance [667, Subsection 8.5.3],

Theorem 9.32 (𝐿-groups of the ring of integers in dimension 4𝑛 + 2). The Arf
invariant defines for 𝑛 ∈ Z an isomorphism

Arf : 𝐿4𝑛+2 (Z)
�−→ Z/2, [𝑃, 𝜓] ↦→ Arf (F2 ⊗Z (𝑃, 𝜓)).

For more information about forms over the integers and the Arf invariant we refer
for instance to [169, 728]. Implicitly the computation of 𝐿𝑛 (Z) is already in [576].
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9.4 Intersection and Self-Intersection Pairings

The notions of an 𝜖-symmetric form as presented in Remark 9.8 and of an
𝜖-quadratic form as presented in Remark 9.21 are best motivated by considering
intersections and self-intersection pairings. When trying to solve a surgery problem
in even dimensions, one faces in the final step, namely, when dealing with the middle
dimension, the problem to decide whether we can change an immersion 𝑓 : 𝑆𝑘 → 𝑀

within its regular homotopy class to an embedding where𝑀 is a compact manifold of
dimension 𝑛 = 2𝑘 . This problem leads in a natural way to self-intersection pairings
and 𝜖-quadratic forms, as explained next.

9.4.1 Intersections of Immersions

Let 𝑘 ≥ 2 be a natural number, and let 𝑀 be a connected compact smooth manifold
of dimension 𝑛 = 2𝑘 . We fix base points 𝑠 ∈ 𝑆𝑘 and 𝑏 ∈ 𝑀 . We will consider
pointed immersions ( 𝑓 , 𝑤), i.e., an immersion 𝑓 : 𝑆𝑘 → 𝑀 together with a path 𝑤
from 𝑏 to 𝑓 (𝑠) in 𝑀 . A regular homotopy ℎ : 𝑀 × [0, 1] → 𝑁 from an immersion
𝑞0 : 𝑀 → 𝑁 to an immersion 𝑞1 : 𝑀 → 𝑁 is a (continuous, but not necessarily
smooth) homotopy ℎ : 𝑀 × [0, 1] → 𝑁 such that ℎ0 = 𝑞0, ℎ1 = 𝑞1, ℎ𝑡 : 𝑀 → 𝑁 is
a (smooth) immersion for each 𝑡 ∈ [0, 1], and the derivatives 𝑇ℎ𝑡 : 𝑇𝑀 → 𝑇𝑁 of ℎ𝑡
fit together to define a (continuous) homotopy of bundle monomorphisms

𝑇𝑀 × [0, 1] → 𝑇𝑁, (𝑣, 𝑡) ↦→ 𝑇ℎ𝑡 (𝑣)

between 𝑇𝑞0 and 𝑇𝑞1. A pointed regular homotopy from ( 𝑓0, 𝑤0) to ( 𝑓1, 𝑤1) is a
regular homotopy ℎ : 𝑆𝑘× [0, 1] → 𝑀 from ℎ0 = 𝑓0 to ℎ1 = 𝑓1 such that 𝑤0 ∗ℎ(𝑠,−)
and 𝑤1 are homotopic paths relative end points. Here ℎ(𝑠,−) is the path from 𝑓0 (𝑠)
to 𝑓1 (𝑠) given by restricting ℎ to {𝑠} × [0, 1]. Denote by 𝐼𝑘 (𝑀) the set of pointed
regular homotopy classes [ 𝑓 , 𝑤] of pointed immersions ( 𝑓 , 𝑤) from 𝑆𝑘 to 𝑀 . We
need the paths to define the structure of an abelian group on 𝐼𝑘 (𝑀). The sum of
[ 𝑓0, 𝑤0] and [ 𝑓1, 𝑤1] is given by the connected sum along the path 𝑤−0 ∗ 𝑤1 from
𝑓0 (𝑠) to 𝑓1 (𝑠). The zero element is given by the composite of the standard embedding
𝑆𝑘 → R𝑘+1 ⊂ R𝑘+1 × R𝑘−1 = R𝑛 with some embedding R𝑛 ⊂ 𝑀 and any path 𝑤
from 𝑏 to the image of 𝑠. The inverse of the class of ( 𝑓 , 𝑤) is the class of ( 𝑓 ◦ 𝑎, 𝑤)
for any base point preserving diffeomorphism 𝑎 : 𝑆𝑘 → 𝑆𝑘 of degree −1.

The fundamental group 𝜋 = 𝜋1 (𝑀, 𝑏) operates on 𝐼𝑘 (𝑀) by composing the path
𝑤 with a loop at 𝑏. Thus 𝐼𝑘 (𝑀) inherits the structure of a Z𝜋-module.

Next we want to define the intersection pairing

𝜆 : 𝐼𝑘 (𝑀) × 𝐼𝑘 (𝑀) → Z𝜋.(9.33)
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For this purpose we will have to fix an orientation of 𝑇𝑏𝑀 at 𝑏. Consider
𝛼0 = [ 𝑓0, 𝑤0] and 𝛼1 = [ 𝑓1, 𝑤1] in 𝐼𝑘 (𝑀). Choose representatives ( 𝑓0, 𝑤0) and
( 𝑓1, 𝑤1). We can arrange without changing the pointed regular homotopy classes
that 𝐷 = im( 𝑓0) ∩ im( 𝑓1) is finite, for any 𝑦 ∈ 𝐷 both the preimage 𝑓 −1

0 (𝑦) and the
preimage 𝑓 −1

1 (𝑦) consists of precisely one point, and, for any two points 𝑥0 and 𝑥1 in
𝑆𝑘 with 𝑓0 (𝑥0) = 𝑓1 (𝑥1), we have𝑇𝑥0 𝑓0 (𝑇𝑥0𝑆

𝑘)+𝑇𝑥1 𝑓1 (𝑇𝑥1𝑆
𝑘) = 𝑇 𝑓0 (𝑥0 )𝑀 . Consider

𝑑 ∈ 𝐷. Let 𝑥0 and 𝑥1 in 𝑆𝑘 be the points uniquely determined by 𝑓0 (𝑥0) = 𝑓1 (𝑥1) = 𝑑.
Let 𝑢𝑖 be a path in 𝑆𝑘 from 𝑠 to concatenation 𝑤1 ∗ 𝑓1 (𝑢1) ∗ 𝑓0 (𝑢0)− ∗𝑤−0 . Recall that
we have fixed an orientation of 𝑇𝑏𝑀 . The fiber transport along the path 𝑤0 ∗ 𝑓 (𝑢0)
yields an isomorphism 𝑇𝑏𝑀

�−→ 𝑇𝑑𝑀 that is unique up to isotopy. Hence 𝑇𝑑𝑀 inher-
its an orientation from the given orientation of 𝑇𝑏𝑀 . The standard orientation of 𝑆𝑘
determines an orientation on 𝑇𝑥0𝑆

𝑘 and 𝑇𝑥1𝑆
𝑘 . We have the isomorphism of oriented

vector spaces
𝑇𝑥0 𝑓0 ⊕ 𝑇𝑥1 𝑓1 : 𝑇𝑥0𝑆

𝑘 ⊕ 𝑇𝑥1𝑆
𝑘 �−→ 𝑇𝑑𝑀.

Define 𝜖 (𝑑) = 1 if this isomorphism respects the orientations and 𝜖 (𝑑) = −1
otherwise. The elements 𝑔(𝑑) ∈ 𝜋 and 𝜖 (𝑑) ∈ {±1} are independent of the choices
of 𝑢0 and 𝑢1, since 𝑆𝑘 is simply connected for 𝑘 ≥ 2. Define

𝜆(𝛼0, 𝛼1) :=
∑︁
𝑑∈𝐷

𝜖 (𝑑) · 𝑔(𝑑).

Lift 𝑏 ∈ 𝑀 to a base point �̃� ∈ 𝑀 . Let �̃�𝑖 : 𝑆𝑘 → 𝑀 be the unique lift of 𝑓𝑖
determined by 𝑤𝑖 and �̃� for 𝑖 = 0, 1. Let 𝜆Z ( �̃�0, �̃�1) be the Z-valued intersection
number of �̃�0 and �̃�1. This is the same as the algebraic intersection number of the
classes in the 𝑘-th homology with compact support defined by �̃�0 and �̃�1, which
obviously depends only on the homotopy classes of �̃�0 and �̃�1; the proof in [163,
Theorem 11.9 in Chapter VI on page 372] can be extended to our setting. Then

𝜆(𝛼0, 𝛼1) =
∑︁
𝑔∈𝜋

𝜆Z ( �̃�0, 𝑙𝑔−1 ◦ �̃�1) · 𝑔,(9.34)

where 𝑙𝑔−1 denotes left multiplication by 𝑔−1. This shows that 𝜆(𝛼0, 𝛼1) depends
only on the pointed regular homotopy classes of ( 𝑓0, 𝑤0) and ( 𝑓1, 𝑤1).

Below we use the 𝑤1 (𝑀)-twisted involution on Z𝜋 that sends
∑
𝑔∈𝜋 𝑎𝑔 · 𝑔 to∑

𝑔∈𝜋 𝑤1 (𝑀) (𝑔) · 𝑎𝑔 · 𝑔−1, where 𝑤1 (𝑀) : 𝜋 → {±1} is the first Stiefel-Whitney
class of 𝑀 . The elementary proof of the next lemma is left to the reader.

Lemma 9.35. For 𝛼, 𝛽, 𝛽1, 𝛽2 ∈ 𝐼𝑘 (𝑀) and 𝑢1, 𝑢2 ∈ Z𝜋 we have

𝜆(𝛼, 𝛽) = (−1)𝑘 · 𝜆(𝛽, 𝛼);
𝜆(𝛼, 𝑢1 · 𝛽1 + 𝑢2 · 𝛽2) = 𝑢1 · 𝜆(𝛼, 𝛽1) + 𝑢2 · 𝜆(𝛼, 𝛽2).

Remark 9.36 (Intersection pairing and (−1)𝑘-symmetric forms). Lemma 9.35
says that the pair (𝐼𝑘 (𝑀), 𝜆) satisfies all the requirements appearing in Remark 9.8
except that 𝐼𝑘 (𝑀) may not be finitely generated projective over Z𝜋.
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Remark 9.37 (The intersection pairing as necessary obstruction for finding an
embedding). Suppose that the normal bundle of the immersion 𝑓 : 𝑆𝑘 → 𝑀 has a
nowhere vanishing section. (In the typical situation that appears in surgery theory
it actually will be trivial.) Suppose that 𝑓 is regular homotopic to an embedding
𝑔. Then the normal bundle of 𝑔 has a nowhere vanishing section 𝜎. Let 𝑔′ be the
embedding obtained by moving 𝑔 a little bit in the direction of this normal vector field
𝜎. Choose a path 𝑤 𝑓 from 𝑓 (𝑠) to 𝑏. Then for appropriate paths 𝑤𝑔 and 𝑤𝑔′ we get
pointed embeddings (𝑔, 𝑤𝑔) and (𝑔′, 𝑤𝑔′ ) such that the pointed regular homotopy
classes of ( 𝑓 , 𝑤), (𝑔, 𝑤𝑔) and (𝑔′, 𝑤𝑔′ ) agree. Since 𝑔 and 𝑔′ have disjoint images,
we conclude

𝜆( [ 𝑓 , 𝑤], [ 𝑓 , 𝑤]) = 0.

Hence the vanishing of 𝜆( [ 𝑓 , 𝑤], [ 𝑓 , 𝑤]) is a necessary condition for finding an
embedding in the regular homotopy class of 𝑓 , provided that the normal bundle of
𝑓 has a nowhere vanishing section. It is not a sufficient condition. To get a sufficient
condition we have to consider self-intersections, which we will do next.

9.4.2 Self-Intersections of Immersions

Let 𝛼 ∈ 𝐼𝑘 (𝑀) be an element. Let ( 𝑓 , 𝑤) be a pointed immersion representing 𝛼.
Recall that we have fixed base points 𝑠 ∈ 𝑆𝑘 , 𝑏 ∈ 𝑀 , and an orientation of𝑇𝑏𝑀 . Since
we can find arbitrarily close to 𝑓 an immersion which is in general position, we can
assume without loss of generality that 𝑓 itself is in general position. This means that
there is a finite subset𝐷 of im( 𝑓 ) such that 𝑓 −1 (𝑦) consists of precisely two points for
𝑦 ∈ 𝐷 and of precisely one point for 𝑦 ∈ im( 𝑓 )−𝐷 and that for two points 𝑥0 and 𝑥1 in
𝑆𝑘 with 𝑥0 ≠ 𝑥1 and 𝑓 (𝑥0) = 𝑓 (𝑥1) we have𝑇𝑥0 𝑓 (𝑇𝑥0𝑆

𝑘) +𝑇𝑥1 𝑓 (𝑇𝑥1𝑆
𝑘) = 𝑇 𝑓0 (𝑥0 )𝑀 .

Now fix for any 𝑑 ∈ 𝐷 an ordering 𝑥0 (𝑑), 𝑥1 (𝑑) of 𝑓 −1 (𝑑). Analogously to the
construction above one defines 𝜖 (𝑥0 (𝑑), 𝑥1 (𝑑)) ∈ {±1} and 𝑔(𝑥0 (𝑑), 𝑥1 (𝑑)) ∈ 𝜋 =

𝜋1 (𝑀, 𝑏). Consider the element
∑
𝑑∈𝐷 𝜖 (𝑥0 (𝑑), 𝑥1 (𝑑)) · 𝑔(𝑥0 (𝑑), 𝑥1 (𝑑)) of Z𝜋. It

does not only depend on 𝑓 , but also on the choice of the ordering of 𝑓 −1 (𝑑) for
𝑑 ∈ 𝐷. One easily checks that the change of ordering of 𝑓 −1 (𝑑) has the following
effect for 𝑤 = 𝑤1 (𝑀) : 𝜋 → {±1}

𝑔(𝑥1 (𝑑), 𝑥0 (𝑑)) = 𝑔(𝑥0 (𝑑), 𝑥1 (𝑑))−1;
𝑤(𝑔(𝑥1 (𝑑), 𝑥0 (𝑑))) = 𝑤(𝑔(𝑥0 (𝑑), 𝑥1 (𝑑)));

𝜖 (𝑥1 (𝑑), 𝑥0 (𝑑)) = (−1)𝑘 · 𝑤(𝑔(𝑥0 (𝑑), 𝑥1 (𝑑))) · 𝜖 (𝑥0 (𝑑), 𝑥1 (𝑑));
𝜖 (𝑥1 (𝑑), 𝑥0 (𝑑)) · 𝑔(𝑥1 (𝑑), 𝑥0 (𝑑)) = (−1)𝑘 · 𝜖 (𝑥0 (𝑑), 𝑥1 (𝑑)) · 𝑔(𝑥0 (𝑑), 𝑥1 (𝑑)).

We have defined the abelian group 𝑄 (−1)𝑘 (Z𝜋, 𝑤) in Notation 9.18. Define the
self-intersection element for 𝛼 ∈ 𝐼𝑘 (𝑀)

𝜇(𝛼) :=

[∑︁
𝑑∈𝐷

𝜖 (𝑥0 (𝑑), 𝑥1 (𝑑)) · 𝑔(𝑥0 (𝑑), 𝑥1 (𝑑))
]
∈ 𝑄 (−1)𝑘 (Z𝜋, 𝑤).(9.38)
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The passage from Z𝜋 to 𝑄 (−1)𝑘 (Z𝜋, 𝑤) ensures that the definition is independent
of the choice of the order on 𝑓 −1 (𝑑) for 𝑑 ∈ 𝐷. It remains to show that it depends
only on the pointed regular homotopy class of ( 𝑓 , 𝑤). Let ℎ be a pointed regular
homotopy from ( 𝑓 , 𝑤) to (𝑔, 𝑣). We can arrange that ℎ is in general position. In
particular, each immersion ℎ𝑡 is in general position and comes with a set 𝐷𝑡 . The
collection of the 𝐷𝑡 -s yields a bordism 𝑊 from the finite set 𝐷0 to the finite set
𝐷1. Since 𝑊 is a compact one-dimensional manifold, it consists of circles and arcs
joining points in 𝐷0∪𝐷1 to points in 𝐷0∪𝐷1. Suppose that the point 𝑒 and the point
𝑒′ in 𝐷0 ∪𝐷1 are joined by an arc. Then one easily checks that their contributions to

𝜇( 𝑓 , 𝑤) − 𝜇(𝑔, 𝑤) :=

[ ∑︁
𝑑0∈𝐷0

𝜖 (𝑥0 (𝑑0), 𝑥1 (𝑑0)) · 𝑔(𝑥0 (𝑑0), 𝑥1 (𝑑0))

−
∑︁
𝑑1∈𝐷1

𝜖 (𝑥0 (𝑑1), 𝑥1 (𝑑1)) · 𝑔(𝑥0 (𝑑1), 𝑥1 (𝑑1))
]

cancel out. This implies 𝜇( 𝑓 , 𝑤) = 𝜇(𝑔, 𝑤).
Consider the pairing which is a special case of the pairing (9.20)

(9.39) 𝜌 : Z𝜋 ×𝑄 (−1)𝑘 (Z𝜋, 𝑤) → 𝑄 (−1)𝑘 (Z𝜋, 𝑤), (𝑢, [𝑣]) ↦→ [𝑢𝑣𝑢] .

Recall that it is additive in the second variable, i.e., 𝜌(𝑥, [𝑦1] − [𝑦2]) = 𝜌(𝑥, [𝑦1]) −
𝜌(𝑥, [𝑦2]), but it is not additive in the first variable, and in particular 𝜌 does not
give the structure of a left Z𝜋-module on𝑄 (−1)𝑘 (Z𝜋, 𝑤). Sometimes in the literature
𝜌(𝑥, [𝑦]) is denoted by 𝑥 [𝑦]𝑥, but this is a little bit misleading since it might lead to
the wrong impression that 𝑄 (−1)𝑘 (Z𝜋, 𝑤) is a left or right Z𝜋-module.

Lemma 9.40. Let 𝜇 : 𝐼𝑘 (𝑀) → 𝑄 (−1)𝑘 (Z𝜋, 𝑤) be the map given by the self-
intersection element, see (9.38), and let 𝜆 : 𝐼𝑘 (𝑀) × 𝐼𝑘 (𝑀) → Z𝜋 be the intersection
pairing, see (9.33). Then:

(i) Let (1 + (−1)𝑘 · 𝑇) : 𝑄 (−1)𝑘 (Z𝜋, 𝑤) → Z𝜋 be the homomorphism of abelian
groups that sends [𝑢] to 𝑢 + (−1)𝑘 · 𝑢. For 𝛼 ∈ 𝐼𝑘 (𝑀) denote by 𝜒(𝛼) ∈ Z the
Euler number of the normal bundle 𝜈( 𝑓 ) for any representative ( 𝑓 , 𝑤) of 𝛼 with
respect to the orientation of 𝜈( 𝑓 ) given by the standard orientation on 𝑆𝑘 and
the orientation on 𝑓 ∗𝑇𝑀 given by the fixed orientation on 𝑇𝑏𝑀 and 𝑤. Then:

𝜆(𝛼, 𝛼) = (1 + (−1)𝑘 · 𝑇) (𝜇(𝛼)) + 𝜒(𝛼) · 1;

(ii) We get for pr : Z𝜋 → 𝑄 (−1)𝑘 (Z𝜋, 𝑤) the canonical projection and 𝛼, 𝛽 ∈ 𝐼𝑘 (𝑀)

𝜇(𝛼 + 𝛽) − 𝜇(𝛼) − 𝜇(𝛽) = pr(𝜆(𝛼, 𝛽));

(iii) For 𝛼 ∈ 𝐼𝑘 (𝑀) and 𝑢 ∈ Z𝜋, we get, where 𝜌 is defined in (9.39),

𝜇 (𝑥 · 𝛼) = 𝜌(𝑥, 𝜇(𝛼)).
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Proof. (i) Represent 𝛼 ∈ 𝐼𝑘 (𝑀) by a pointed immersion ( 𝑓 , 𝑤) which is in general
position. Choose a section 𝜎 of 𝜈( 𝑓 ) which meets the zero section transversally.
Note that then the Euler number satisfies

𝜒( 𝑓 ) =
∑︁

𝑦∈𝑁 (𝜎)
𝜖 (𝑦)

where 𝑁 (𝜎) is the (finite) set of zero points of 𝜎 and 𝜖 (𝑦) is a sign that depends
on the local orientations. We can arrange that no zero of 𝜎 is the preimage of an
element in the set of double points 𝐷 𝑓 of 𝑓 . Now move 𝑓 a little bit in the direction
of this normal field 𝜎. We obtain a new immersion 𝑔 : 𝑆𝑘 → 𝑀 with a path 𝑣 from
𝑏 to 𝑔(𝑠) such that ( 𝑓 , 𝑤) and (𝑔, 𝑣) are pointed regularly homotopic.

We want to compute 𝜆(𝛼, 𝛼) using the representatives ( 𝑓 , 𝑤) and (𝑔, 𝑣). Note
that any point in 𝑑 ∈ 𝐷 𝑓 corresponds to two distinct points 𝑥0 (𝑑) and 𝑥1 (𝑑) in the
set 𝐷 = im( 𝑓 ) ∩ im(𝑔) and any element 𝑛 ∈ 𝑁 (𝜎) corresponds to one point 𝑥(𝑛)
in 𝐷. Moreover any point in 𝐷 occurs as 𝑥𝑖 (𝑑) or 𝑥(𝑛) in a unique way. Now the
contribution of 𝑑 to 𝜆( [ 𝑓 , 𝑤], [𝑔, 𝑣]) is 𝜖 (𝑑) · 𝑔(𝑑) + (−1)𝑘 · 𝜖 (𝑑) · 𝑔(𝑑) and the
contribution of 𝑛 ∈ 𝑁 (𝜎) is 𝜖 (𝑛) · 1. Now assertion (i) follows.
(ii) and (iii) The proof of these assertions are left to the reader. ⊓⊔

Remark 9.41 (Self-intersection pairing and (−1)𝑘-quadratic forms). Lemma 9.40
says that the triple (𝐼𝑘 (𝑀), 𝜆, 𝜇) satisfies all the requirements appearing in Re-
mark 9.21 except that 𝐼𝑘 (𝑀) may not be finitely generated projective over Z𝜋 and
we have to require 𝜒(𝛼) = 0, which will be satisfied in the cases of interest.

The following theorem of Wall is taken from [987, Theorem 5.2 on page 45].

Theorem 9.42 (Self-intersections and embeddings). Let 𝑀 be a connected com-
pact manifold of even dimension 𝑛 = 2𝑘 . Fix base points 𝑠 ∈ 𝑆𝑘 and 𝑏 ∈ 𝑀 and
an orientation of 𝑇𝑏𝑀 . Let ( 𝑓 , 𝑤) be a pointed immersion of 𝑆𝑘 in 𝑀 . Suppose that
𝑘 ≥ 3. Then ( 𝑓 , 𝑤) is pointed homotopic to a pointed immersion (𝑔, 𝑣) for which
𝑔 : 𝑆𝑘 → 𝑀 is an embedding if and only 𝜇( 𝑓 , 𝑤) = 0.

Proof. If 𝑓 is represented by an embedding, then 𝜇( 𝑓 , 𝑤) = 0 by definition. Suppose
that 𝜇( 𝑓 , 𝑤) = 0. We can assume without loss of generality that 𝑓 is in general
position. Since 𝜇( 𝑓 , 𝑤) = 0, we can find 𝑑 and 𝑒 in the set of double points 𝐷 𝑓 of
𝑓 and a numeration 𝑥0 (𝑑), 𝑥1 (𝑑) of 𝑓 −1 (𝑑) and 𝑥0 (𝑒), 𝑥1 (𝑒) of 𝑓 −1 (𝑒) satisfying

𝜖 (𝑥0 (𝑑), 𝑥1 (𝑑)) = −𝜖 (𝑥0 (𝑒), 𝑥1 (𝑒));
𝑔(𝑥0 (𝑑), 𝑥1 (𝑑)) = 𝑔(𝑥0 (𝑒), 𝑥1 (𝑒)).

Therefore we can find arcs 𝑢0 and 𝑢1 in 𝑆𝑘 such that 𝑢0 (0) = 𝑥0 (𝑑), 𝑢0 (1) = 𝑥0 (𝑒),
𝑢1 (0) = 𝑥1 (𝑑), and 𝑢1 (1) = 𝑥1 (𝑒) hold, the paths 𝑢0 and 𝑢1 are disjoint from one
another, 𝑓 (𝑢0 ((0, 1))) and 𝑓 (𝑢1 ((0, 1))) do not meet 𝐷 𝑓 , and 𝑓 (𝑢0) and 𝑓 (𝑢1)
are homotopic relative endpoints. We can change 𝑢0 and 𝑢1 without destroying the
properties above and find a smooth map 𝑈 : 𝐷2 → 𝑀 whose restriction to 𝑆1 is an
embedding (ignoring corners on the boundary) and is given on the upper hemisphere
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𝑆1
+ by 𝑢0 and on the lower hemisphere 𝑆1

− by 𝑢1 and which meets im( 𝑓 ) transversally.
There is a compact neighborhood 𝐾 of 𝑆1 such that 𝑈 |𝐾 is an embedding. Since
𝑘 ≥ 3 we can find arbitrarily close to 𝑈 an embedding which agrees with 𝑈 on 𝐾 .
Hence we can assume without loss of generality that 𝑈 itself is an embedding. The
Whitney trick, see [725, Theorem 6.6 on page 71], [1012], allows us to change 𝑓

within its pointed regular homotopy class to a new pointed immersion (𝑔, 𝑣) such that
𝐷𝑔 = 𝐷 𝑓 −{𝑑, 𝑒} and 𝜇(𝑔, 𝑣) = 0. By iterating this process we achieve 𝐷 𝑓 = ∅. ⊓⊔

Remark 9.43 (The dimension assumption dim(𝑀) ≥ 5). The condition
dim(𝑀) ≥ 5, which arises in high-dimensional manifold theory, ensures in the
proof of Theorem 9.42 that 𝑘 ≥ 3 and hence we can arrange𝑈 to be an embedding.
If 𝑘 = 2, one can achieve that 𝑈 is an immersion but not necessarily an embedding.
This is the technical reason why surgery in dimension 4 is much more complicated
than in dimensions ≥ 5.

Exercise 9.44. Let 𝑓 : 𝑆𝑘 → 𝑀 be an immersion into a compact 2𝑘-dimensional
manifold. Suppose that it is in general position and the set of double points consists
of precisely one element. Show that 𝑓 is not regular homotopic to an embedding.

Exercise 9.45. Construct an immersion 𝑓 : 𝑀 → 𝑁 of connected closed manifolds
which is homotopic but not regularly homotopic to an embedding.

9.5 The Surgery Obstruction in Even Dimensions

We give a brief introduction to the surgery obstruction in even dimension to motivate
the relevance of the 𝐿-groups for topology. We will use the sign conventions for chain
complexes as they appear in [667, Section 14.4].

9.5.1 Poincaré Duality Spaces

Consider a connected finite 𝐶𝑊-complex 𝑋 with fundamental group 𝜋 and a group
homomorphism 𝑤 : 𝜋 → {±1}. Below we use the 𝑤-twisted involution on Z𝜋.
Denote by 𝐶∗ (𝑋) the cellular Z𝜋-chain complex of the universal covering. It is a
finite freeZ𝜋-chain complex. The product 𝑋×𝑋 equipped with the diagonal 𝜋-action
is again a 𝜋-𝐶𝑊-complex. The diagonal map 𝐷 : 𝑋 → 𝑋 × 𝑋 sending �̃� to (�̃�, �̃�) is
𝜋-equivariant but not cellular. By the Equivariant Cellular Approximation Theorem,
see for instance [644, Theorem 2.1 on page 32], there is up to cellular 𝜋-homotopy
precisely one cellular 𝜋-map 𝐷 : 𝑋 → 𝑋 × 𝑋 which is 𝜋-homotopic to 𝐷. It induces
a Z𝜋-chain map unique up to Z𝜋-chain homotopy

𝐶∗ (𝐷) : 𝐶∗ (𝑋) → 𝐶∗ (𝑋 × 𝑋).(9.46)
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There is a natural isomorphism of Z𝜋-chain complexes

𝑖∗ : 𝐶∗ (𝑋) ⊗Z 𝐶∗ (𝑋)
�−→ 𝐶∗ (𝑋 × 𝑋).(9.47)

Definition 9.48 (Dual chain complex). Given an 𝑅-chain complex of left 𝑅-modules
𝐶∗ and 𝑛 ∈ Z, we define its dual chain complex 𝐶𝑛−∗ to be the chain complex of left
𝑅-modules whose 𝑝-th chain module is hom𝑅 (𝐶𝑛−𝑝 , 𝑅) and whose 𝑝-th differential
is given by

(−1)𝑛−𝑝+1 · hom𝑅 (𝑐𝑛−𝑝+1, id) : (𝐶𝑛−∗)𝑝 = hom𝑅 (𝐶𝑛−𝑝 , 𝑅)
→ (𝐶𝑛−∗)𝑝−1 = hom𝑅 (𝐶𝑛−𝑝+1, 𝑅).

Denote by Z𝑤 the Z𝜋-module whose underlying abelian group is Z and on which
𝑔 ∈ 𝜋 acts by 𝑤(𝑔) · id. Given two projective Z𝜋-chain complexes 𝐶∗ and 𝐷∗, we
obtain a natural Z-chain map unique up to Z-chain homotopy

𝑠 : Z𝑤 ⊗Z𝜋 (𝐶∗ ⊗Z 𝐷∗) → homZ𝜋 (𝐶−∗, 𝐷∗)(9.49)

by sending 1 ⊗ 𝑥 ⊗ 𝑦 ∈ Z ⊗ 𝐶𝑝 ⊗ 𝐷𝑞 to

𝑠(1⊗ 𝑥 ⊗ 𝑦) : homZ𝜋 (𝐶𝑝 ,Z𝜋) → 𝐷𝑞 , (𝜙 : 𝐶𝑝 → Z𝜋) ↦→ (−1) |𝑥 | · |𝑦 |+|𝑥 | ·𝜙(𝑥) · 𝑦.

The composite of the chain map (9.49) for 𝐶∗ = 𝐷∗ = 𝐶∗ (𝑋), the inverse of the
chain map (9.47) tensored with Z𝑤 ⊗Z𝜋 −, and the chain map (9.46) tensored with
Z𝑤 ⊗Z𝜋 − yield a Z-chain map

Z𝑤 ⊗Z𝜋 𝐶∗ (𝑋) → homZ𝜋 (𝐶−∗ (𝑋), 𝐶∗ (𝑋)).

Note that the 𝑛-th homology of homZ𝜋 (𝐶−∗ (𝑋), 𝐶∗ (𝑋)) is the set of Z𝜋-chain
homotopy classes [𝐶𝑛−∗ (𝑋), 𝐶∗ (𝑋)]Z𝜋 of Z𝜋-chain maps from 𝐶𝑛−∗ (𝑋) to 𝐶∗ (𝑋).
Define 𝐻𝑛 (𝑋;Z𝑤) := 𝐻𝑛 (Z𝑤 ⊗Z𝜋 𝐶∗ (𝑋)). Taking the 𝑛-th homology group yields
a well-defined Z-homomorphism

∩ : 𝐻𝑛 (𝑋;Z𝑤) → [𝐶𝑛−∗ (𝑋), 𝐶∗ (𝑋)]Z𝜋(9.50)

that sends a class 𝑥 ∈ 𝐻𝑛 (𝑋;Z𝑤) = 𝐻𝑛 (Z𝑤 ⊗Z𝜋 𝐶∗ (𝑋)) to the Z𝜋-chain homotopy
class of a Z𝜋-chain map denoted by − ∩ 𝑥 : 𝐶𝑛−∗ (𝑋) → 𝐶∗ (𝑋).

Definition 9.51 (Poincaré complex). A connected finite 𝑛-dimensional Poincaré
complex is a connected finite 𝐶𝑊-complex of dimension 𝑛 together with a group
homomorphism𝑤 = 𝑤1 (𝑋) : 𝜋1 (𝑋) → {±1}, called an orientation homomorphism,
if there exists an element [𝑋] ∈ 𝐻𝑛 (𝑋;Z𝑤), called a fundamental class, such that the
Z𝜋-chain map − ∩ [𝑋] : 𝐶𝑛−∗ (𝑋) → 𝐶∗ (𝑋) is a Z𝜋-chain homotopy equivalence.
We will call it the Poincaré Z𝜋-chain homotopy equivalence.
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Exercise 9.52. Show that the orientation homomorphism 𝑤 : 𝜋1 (𝑋) → {±1} is
uniquely determined by the homotopy type of the finite 𝑛-dimensional Poincaré
complex 𝑋 .

Obviously there are two possible choices for [𝑋], since it has to be a generator
of the infinite cyclic group 𝐻𝑛 (𝑋,Z𝑤) � 𝐻0 (𝑋;Z) � Z. A choice of [𝑋] is called a
𝑤-orientation on 𝑋 . We call 𝑋 𝑤-oriented if we have chosen a 𝑤-orientation.

A map 𝑓 : 𝑌1 → 𝑌2 of 𝑤-oriented connected Poincaré complexes has degree one
if𝑤1 (𝑌2)◦𝜋1 ( 𝑓 ) = 𝑤1 (𝑌2) and the map𝐻𝑛 (𝑌1,Z𝑤1 (𝑌1 ) ) → 𝐻𝑛 (𝑌2,Z𝑤1 (𝑌2 ) ) induced
by 𝑓 sends [𝑌1] to [𝑌2].

Theorem 9.53. Let 𝑀 be a connected closed manifold of dimension 𝑛. Then 𝑀

carries the structure of a connected finite 𝑛-dimensional Poincaré complex.

For a proof we refer for instance to [987, Theorem 2.1 on page 23].
Below a 𝑤-orientation of a connected closed manifold 𝑀 of dimension 𝑛 is a

choice of a generator [𝑀] of the infinite cyclic group 𝐻𝑛 (𝑀;Z𝑤1 (𝑀 ) ). We call
𝑀 𝑤-oriented if we have chosen a 𝑤-orientation. Note that 𝑤-oriented does not
necessarily mean that 𝑤1 (𝑀) is trivial. Following the standard conventions, we say
that 𝑀 is orientable if 𝑤1 (𝑀) is trivial, and we call 𝑀 oriented if 𝑤1 (𝑀) is trivial
and we have chosen a fundamental class [𝑀] ∈ 𝐻𝑛 (𝑀;Z).

Remark 9.54 (Poincaré duality as obstruction for being homotopy equivalent
to a closed manifold). Theorem 9.53 gives us the first obstruction for a topological
space 𝑋 to be homotopy equivalent to a connected closed 𝑛-dimensional manifold.
Namely, 𝑋 must be homotopy equivalent to a connected finite 𝑛-dimensional Poincaré
complex.

9.5.2 Normal Maps and the Surgery Step

Definition 9.55 (Normal map of degree one). Let 𝑋 be a 𝑤-oriented connected
finite 𝑛-dimensional Poincaré complex together with an𝑚-dimensional vector bundle
𝜉 : 𝐸 → 𝑋 . A normal 𝜉-map or briefly normal map (𝑀, 𝑖, 𝑓 , 𝑓 ) with (𝑋, 𝜉) as target
consists of

• a 𝑤-oriented connected closed manifold 𝑀 of dimension 𝑛;
• an embedding 𝑖 : 𝑀 → R𝑛+𝑚;
• a bundle map ( 𝑓 , 𝑓 ) : 𝜈(𝑖) → 𝜉,

where 𝜈(𝑖) denotes the normal bundle of the embedding 𝑖 : 𝑀 → R𝑚+𝑛. xs A normal
map of degree one is a normal map such that the degree of 𝑓 : 𝑀 → 𝑋 is one.

Remark 9.56. We are being somewhat sloppy here since we have ignored the prob-
lem that the choices of the fundamental classes and the bundle data have to be
consistent with one another. This is an issue that has been overlooked in many
places. It is explained in detail and fixed in [667, Section 7.4, Example 7.44 on
page 215 and Remark 7.45 on page 215]. However, to keep this exposition com-
prehensible, we ignore this issue and also will not treat the notion of an intrinsic
fundamental class of [667, Section 5.5].
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Given a normal map (𝑀, 𝑖, 𝑓 , 𝑓 ) with (𝑋, 𝜉) as target, we obtain for 𝑘 ≥ 1 a
normal map (𝑀, 𝑖, 𝑓 , 𝑓 ′) with (𝑋, 𝜉 ⊕R𝑘) as target as follows. Let 𝑖′ : 𝑀 → R𝑛+𝑚+𝑘

be the composite of the embedding 𝑖 : 𝑀 → R𝑛+𝑚 with the standard inclusion
R𝑛+𝑚 → R𝑛+𝑚+𝑘 . Then 𝜈(𝑖′) is the Whitney sum 𝜈(𝑖) ⊕ R𝑘 , where R𝑘 is the trivial
𝑘-dimensional bundle. Let 𝑓

′
: 𝜈(𝑖′) → 𝜉 ⊕ R𝑘 be the stabilization of 𝑓 . We call

(𝑀, 𝑖′, 𝑓 , 𝑓 ′) a stabilization of (𝑀, 𝑖, 𝑓 , 𝑓 ).
The next result is due to Whitney [1011, 1012].

Theorem 9.57 (Whitney’s Approximation Theorem). Let 𝑀 and 𝑁 be closed
manifolds of dimensions 𝑚 and 𝑛. Then any map 𝑓 : 𝑀 → 𝑁 is arbitrarily close
and in particular homotopic to an immersion, provided that 2𝑚 ≤ 𝑛, and arbitrarily
close and in particular homotopic to an embedding, provided that 2𝑚 < 𝑛.

Remark 9.58 (Existence of a normal map of degree one as obstruction for being
homotopy equivalent to a closed manifold). Given a connected finite 𝑛-dimensional
Poincaré complex 𝑋 , the existence of a normal map of degree one with (𝑋, 𝜉) as target
for some vector bundle 𝜉 over 𝑋 (for some appropriate choice of 𝑤-orientations)
is necessary for 𝑋 to be homotopy equivalent to a closed manifold. Namely, if
𝑓 : 𝑀 → 𝑋 is such a homotopy equivalence, choose a homotopy inverse 𝑔 : 𝑋 → 𝑀

and put 𝜉 = 𝑔∗𝜈(𝑖) for some embedding 𝑖 : 𝑀 ⊆ R𝑛+𝑚. Such an embedding always
exists for 𝑛 < 𝑚 by Theorem 9.57. Obviously 𝑓 can be covered by a bundle map
𝑓 : 𝜈(𝑀) → 𝜉 and 𝑓 has degree one (for some appropriate choice of 𝑤-orientations).

Note that an orientation of a compact manifold 𝑊 induces an orientation of its
boundary 𝜕𝑊 , see for instance [667, Remark 5.37 on page 119]. In the special case
𝑊 = 𝑀 × [0, 1] for closed 𝑀 , the induced orientations on 𝑀 = 𝑀 × {0} and
𝑀 = 𝑀 × {1} are inverse to one another.

Definition 9.59 (Normal bordism). Consider two normal maps of degree one
(𝑀𝑘 , 𝑖𝑘 , 𝑓𝑘 , 𝑓 𝑘) with the same target (𝑋, 𝜉) for 𝑘 = 0, 1. A normal bordism from
( 𝑓0, 𝑓0) to ( 𝑓1, 𝑓1) consists of

• a 𝑤-oriented connected compact manifold𝑊 with boundary 𝜕𝑊 ;
• an embedding 𝑗 : (𝑊, 𝜕𝑊) → (R𝑛+𝑚 × [0, 1],R𝑛+𝑚 × {0, 1});
• a map (𝐹, 𝜕𝐹) : (𝑊, 𝜕𝑊) → (𝑋 × [0, 1], 𝑋 × {0, 1}) of degree one;
• a bundle map 𝐹 : 𝜈( 𝑗) → 𝜉 covering 𝑓 ;
• an orientation preserving diffeomorphism 𝑢 : 𝜕𝑊 �−→ 𝑀0 ⨿ 𝑀1,

such that the obvious compatibility conditions are satisfied.
We call (𝑀0, 𝑖0, 𝑓0, 𝑓 0) and (𝑀1, 𝑖1, 𝑓1, 𝑓 1) normally bordant if after stabilization

there exists a normal bordism between them.

Note Definition 9.59 corresponds in [667] to the notion of a normal bordism with
cylindrical target, see [667, Definition 7.16 on page 203].

Exercise 9.60. Let (𝑀, 𝑖0, 𝑓 , 𝑓 0) be a normal map of degree one with target (𝑋, 𝜉).
Let 𝑖1 : 𝑀 → R𝑛+𝑘 be an embedding. Show that there exists a normal map of degree
one (𝑀, 𝑖1, 𝑓 , 𝑓 1) with target (𝑋, 𝜉) which is normally bordant to (𝑀, 𝑖0, 𝑓 , 𝑓 0).
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In the sequel we will often suppress the embedding 𝑖 : 𝑀 → R𝑛+𝑚 in the notation
and write 𝜈(𝑀) instead of 𝜈(𝑖).

9.5.3 The Surgery Step

So the question is whether we can modify a normal map of degree one with (𝑋, 𝜉)
as target (without changing the target) so that the underlying map 𝑓 is a homotopy
equivalence. There is a procedure in the world of 𝐶𝑊-complexes to turn a map into
a weak homotopy equivalence, namely, by attaching cells. If 𝑓 : 𝑌1 → 𝑌2 is already
𝑘-connected, we can attach (𝑘 + 1) cells to 𝑌1 to obtain an extension 𝑓 ′ : 𝑌 ′1 → 𝑌2 of
𝑓 which is (𝑘 + 1)-connected. In principle we want to do the same for a normal map
of degree one with target (𝑋, 𝜉). However, there are two fundamental difficulties.
First of all we have to keep the manifold structure on the source and cannot therefore
just attach cells. Moreover, by Poincaré duality any modification in dimension 𝑘 will
cause a dual modification in dimension 𝑛 − 𝑘 if 𝑛 is the dimension of 𝑋 so that one
encounters at any rate problems when 𝑛 happens to be 2𝑘 .

Consider a normal map ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 such that 𝑓 : 𝑀 → 𝑋 is a 𝑘-connected
map. Consider an element 𝜔 ∈ 𝜋𝑘+1 ( 𝑓 ) represented by a diagram

𝑆𝑘
𝑞 //

𝑗

��

𝑀

𝑓

��
𝐷𝑘+1

𝑄
// 𝑋.

We cannot attach a single cell to 𝑀 without destroying the manifold structure.
But one can glue two manifolds together along a common boundary such that the
result is a manifold. Suppose that the map 𝑞 : 𝑆𝑘 → 𝑀 extends to an embedding
𝑞 : 𝑆𝑘 × 𝐷𝑛−𝑘 → 𝑀 . (This assumption will be justified later.) Let int(im(𝑞)) be
the interior of the image of 𝑞. Then 𝑀 − int(im(𝑞)) is a manifold with boundary
im(𝑞 |𝑆𝑘×𝑆𝑛−𝑘−1 ). We can get rid of the boundary by attaching 𝐷𝑘+1 × 𝑆𝑛−𝑘−1 along
im(𝑞 |𝑆𝑘×𝑆𝑛−𝑘−1 ). Call the result

𝑀 ′ := 𝐷𝑘+1 × 𝑆𝑛−𝑘−1 ∪im(𝑞 |
𝑆𝑘×𝑆𝑛−𝑘−1 ) (𝑀 − int(im(𝑞))) .

Here and elsewhere we apply without further mention the technique of straightening
the angle in order to get a well-defined smooth structure, see [167, Definition 13.11
on page 145 and (13.12) on page 148] and [497, Chapter 8, Section 2]. Choose a
map 𝑄 : 𝐷𝑘+1 × 𝐷𝑛−𝑘 → 𝑋 which extends 𝑄 and 𝑓 ◦ 𝑞. The restriction of 𝑓 to
𝑀 − int(im(𝑞)) extends to a map 𝑓 ′ : 𝑀 ′ → 𝑋 using 𝑄 |𝐷𝑘+1×𝑆𝑛−𝑘 . Note that the
inclusion 𝑀 − int(im(𝑞)) → 𝑀 is (𝑛 − 𝑘 − 1)-connected, since 𝑆𝑘 × 𝑆𝑛−𝑘−1 →
𝑆𝑘 × 𝐷𝑛−𝑘 is (𝑛 − 𝑘 − 1)-connected. So the passage from 𝑀 to 𝑀 − int(im(𝑞))
will not affect 𝜋 𝑗 ( 𝑓 ) for 𝑗 < 𝑛 − 𝑘 − 1. All in all we see that 𝜋𝑙 ( 𝑓 ) = 𝜋𝑙 ( 𝑓 ′) for
𝑙 ≤ 𝑘 and that there is an epimorphism 𝜋𝑘+1 ( 𝑓 ) → 𝜋𝑘+1 ( 𝑓 ′) whose kernel contains
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𝜔, provided that 2(𝑘 + 1) ≤ 𝑛. The condition 2(𝑘 + 1) ≤ 𝑛 can be viewed as a
consequence of Poincaré duality. Roughly speaking, if we change something in a
manifold in dimension 𝑙, Poincaré duality forces a change in dimension (𝑛− 𝑙). This
phenomenon will cause surgery obstructions to appear.

Note that 𝑓 : 𝑀 → 𝑋 and 𝑓 ′ : 𝑀 ′ → 𝑋 are bordant. The relevant bordism is
given by 𝑊 = 𝐷𝑘+1 × 𝐷𝑛−𝑘 ∪𝑞 𝑀 × [0, 1], where we think of 𝑞 as an embedding
𝑆𝑘 × 𝐷𝑛−𝑘 → 𝑀 × {1}. In other words,𝑊 is obtained from 𝑀 × [0, 1] by attaching
a handle 𝐷𝑘+1 × 𝐷𝑛−𝑘 to 𝑀 × {1}. Then 𝑀 appears in 𝑊 as 𝑀 × {0} and 𝑀 ′ as
another part of the boundary of𝑊 . Define 𝐹 : 𝑊 → 𝑋 by 𝑓 × id[0,1] and 𝑄. Then 𝐹
restricted to 𝑀 and 𝑀 ′ is 𝑓 and 𝑓 ′.

Why can we assume that the map 𝑞 : 𝑆𝑘 → 𝑀 extends to an embedding
𝑞 : 𝑆𝑘 × 𝐷𝑛−𝑘 → 𝑀? This will be ensured by the bundle data in the case 2𝑘 + 1 < 𝑛
by the following argument.

Because of Theorem 9.57 we can arrange that 𝑞 is an embedding. The extension 𝑞
exists if and only if the normal bundle 𝜈(𝑞) of the embedding 𝑞 : 𝑆𝑘 → 𝑀 is trivial.
Since 𝐷𝑘+1 is contractible, every vector bundle over 𝐷𝑘+1 is trivial. Hence 𝑄∗𝜉 is
a trivial vector bundle over 𝐷𝑘+1. Recall that 𝑖 : 𝑀 → R𝑚+𝑛 is a fixed embedding
and 𝜈(𝑀) is defined to be the normal bundle 𝜈(𝑖) of 𝑖. Pullbacks of trivial vector
bundles are trivial again. This implies that 𝑞∗𝜈(𝑀) � 𝑞∗ 𝑓 ∗𝜉 � 𝑗∗𝑄∗𝜉 is a trivial
vector bundle over 𝑆𝑘 . Since 𝜈(𝑞) ⊕ 𝑞∗𝜈(𝑀) � 𝜈(𝑖 : 𝑆𝑘 → R𝑛+𝑚) is trivial, 𝜈(𝑞) is
a stably trivial (𝑛 − 𝑘)-dimensional vector bundle over 𝑆𝑘 . Since 2𝑘 + 1 ≤ 𝑛, this
implies that 𝜈(𝑞) itself is trivial.

So we see that the bundle data are needed to carry out the desired surgery step.
Note that the construction yields a map 𝑓 ′ : 𝑀 ′ → 𝑋 of degree one and a bundle
map 𝑓 ′ : 𝜈(𝑀 ′) → 𝜉 covering 𝑓 ′ so that we end up with a normal map of degree
one with target 𝑋 again. Hence we are able to repeat this surgery step over and over
again in dimensions 2𝑘 − 1 ≤ 𝑛. Actually, the bordism 𝑊 together with the map
𝐹 : 𝑊 → 𝑋 also come with a bundle map 𝐹 : 𝜈(𝑊) → 𝜉 covering 𝐹 and is therefore
a normal bordism in the sense of Definition 9.59. In particular, surgery does not
change the normal bordism class.

For the proof of the next lemma we refer for instance to [667, Theorem 7.41 on
page 214].

Lemma 9.61. Consider a normal map of degree one ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 covering
𝑓 : 𝑀 → 𝑋 , where 𝑀 is a 𝑤-oriented connected closed manifold of dimension 𝑛
and 𝑋 is a connected finite Poincaré complex of dimension 𝑛. Let 𝑘 be the natural
number given by 𝑛 = 2𝑘 or 𝑛 = 2𝑘 + 1.

Then we can always arrange by finitely many surgery steps that for the resulting
normal map of degree one ( 𝑓 ′, 𝑓 ′) : 𝜈(𝑀 ′) → 𝜉 its underlying map 𝑓 ′ : 𝑀 ′ → 𝑋 is
𝑘-connected.

Now assume that 𝑛 is even, let us say 𝑛 = 2𝑘 . As mentioned above, we can arrange
that 𝑓 is 𝑘-connected. If we can achieve that 𝑓 is (𝑘 +1)-connected, then by Poincaré
duality the map 𝑓 is a homotopy equivalence.
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But in this last step we encounter a problem which actually leads to the surgery
obstruction in the even-dimensional case. Namely, in the argument above we used at
one point that the map 𝑞 : 𝑆𝑘 → 𝑀 can be arranged to be an embedding by general
position if 2𝑘 + 1 ≤ 𝑛 and that certain normal bundle are trivial. In the situation
𝑛 = 2𝑘 we can arrange 𝑞 to be an immersion by Theorem 9.57 and simultaneously
ensure that the bundle data carry over to the desired normal bordism, essentially,
because of a systematic use of Theorem 9.63 below. However, the latter fixes the
regular homotopy class of the immersion 𝑞. Hence one open problem is to ensure that
we can change 𝑞 to an embedding within its regular homotopy class. We have already
introduced the main obstruction for that, the self-intersection element in (9.38). We
also encounter the problem that by Poincaré duality any change in the homology of
the middle dimension comes with a dual change and one has to ensure that these
two have the desired effect and do not disturb one another. Next we explain how
this leads to the so-called surgery obstruction in 𝐿2𝑘 (Z𝜋1 (𝑋)) with respect to the
𝑤1 (𝑋)-twisted involution on Z𝜋.

9.5.4 The Even-Dimensional Surgery Obstruction

For the rest of this subsection we fix a normal map ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 of degree
one covering 𝑓 : 𝑀 → 𝑋 , where 𝑀 is a 𝑤-oriented connected closed manifold of
dimension 𝑛 and 𝑋 is a 𝑤-oriented connected finite Poincaré complex of dimension
𝑛. Suppose that 𝑓 induces an isomorphism on the fundamental groups. Fix a base
point 𝑏 ∈ 𝑀 together with lifts �̃� ∈ 𝑀 of 𝑏 and �𝑓 (𝑏) ∈ 𝑋 of 𝑓 (𝑏). We identify
𝜋 = 𝜋1 (𝑀, 𝑏) = 𝜋(𝑋, 𝑓 (𝑏)) by 𝜋1 ( 𝑓 , 𝑏). The choices of �̃� and �𝑓 (𝑏) determine
𝜋-operations on 𝑀 and on 𝑋 and a lift �̃� : 𝑀 → 𝑋 which is 𝜋-equivariant.

Definition 9.62 (Surgery kernels). Let 𝐾𝑘 (𝑀) be the kernel of the Z𝜋-map
𝐻𝑘 ( �̃� ) : 𝐻𝑘 (𝑀) → 𝐻𝑘 (𝑋). Denote by 𝐾𝑘 (𝑀) the cokernel of the Z𝜋-map
𝐻𝑘 ( �̃� ) : 𝐻𝑘 (𝑋) → 𝐻𝑘 (𝑀) which is the Z𝜋-map induced by 𝐶∗ ( �̃� ) : 𝐶∗ (𝑋) →
𝐶∗ (𝑀). We call 𝐾𝑘 (𝑀) the surgery kernel.

Given two vector bundles 𝜉 : 𝐸 → 𝑀 and 𝜂 : 𝐹 → 𝑁 , we have so far only con-
sidered bundle maps ( 𝑓 , 𝑓 ) : 𝜉 → 𝜂 which are fiberwise isomorphisms. We need
to consider, at least for the next theorem, more generally bundle monomorphisms,
i.e., we will only require that the map is fiberwise injective. Consider two bun-
dle monomorphism ( 𝑓 0, 𝑓0), ( 𝑓 1, 𝑓1) : 𝜉 → 𝜂. Let 𝜉 × [0, 1] be the vector bundle
𝜉 × id : 𝐸 × [0, 1] → 𝑀 × [0, 1]. A homotopy of bundle monomorphisms (ℎ, ℎ)
from ( 𝑓 0, 𝑓0) to ( 𝑓 1, 𝑓1) is a bundle monomorphism (ℎ, ℎ) : 𝜉 × [0, 1] → 𝜂 whose
restriction to 𝑋 × { 𝑗} is ( 𝑓 𝑗 , 𝑓 𝑗 ) for 𝑗 = 0, 1. Denote by 𝜋0 (Mono(𝜉, 𝜂)) the set of
homotopy classes of bundle monomorphisms.

For a proof of the following result we refer to Haefliger-Poenaru [451], Hirsch
[496], and Smale [920]. Denote by 𝜋0 (Imm(𝑀, 𝑁)) the set of regular homotopy
classes of immersions from 𝑀 to 𝑁 .
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Theorem 9.63 (Immersions and Bundle Monomorphisms). Let 𝑀 be an
𝑚-dimensional and 𝑁 be an 𝑛-dimensional manifold.

(i) Suppose that 1 ≤ 𝑚 < 𝑛. Then taking the differential of an immersion yields a
bijection

𝑇 : 𝜋0 (Imm(𝑀, 𝑁)) �−→ 𝜋0 (Mono(𝑇𝑀,𝑇𝑁));

(ii) Suppose that 1 ≤ 𝑚 ≤ 𝑛 and that 𝑀 has a handlebody decomposition consisting
of 𝑞-handles for 𝑞 ≤ 𝑛 − 2. Then taking the differential of an immersion yields a
bijection

𝑇 : 𝜋0 (Imm(𝑀, 𝑁)) �−→ colim𝑎→∞ 𝜋0 (Mono(𝑇𝑀 ⊕ R𝑎, 𝑇𝑁 ⊕ R𝑎))

where the colimit is given by stabilization.

Lemma 9.64. (i) The cap product with [𝑀] induces isomorphisms

− ∩ [𝑀] : 𝐾𝑛−𝑘 (𝑀) �−→ 𝐾𝑘 (𝑀);

(ii) Suppose that 𝑓 is 𝑘-connected. Then there is the composite of natural
Z𝜋-isomorphisms

ℎ𝑘 : 𝜋𝑘+1( 𝑓 )
�−→ 𝜋𝑘+1( �̃� )

�−→ 𝐻𝑘+1 ( �̃� )
�−→ 𝐾𝑘 (𝑀);

(iii) Suppose that 𝑓 is 𝑘-connected and 𝑛 = 2𝑘 . Then there is a natural
Z𝜋-homomorphism

𝑡𝑘 : 𝜋𝑘+1 ( 𝑓 ) → 𝐼𝑘 (𝑀).

Proof. (i) The following diagram commutes and has isomorphisms as vertical arrows

𝐻𝑛−𝑘 (𝑀)

�−∩[𝑀 ]
��

𝐻𝑛−𝑘 (𝑋)
𝐻𝑛−𝑘 ( �̃� )oo

𝐻𝑘 (𝑀)
𝐻𝑘 ( �̃� )

// 𝐻𝑘 (𝑋).

−∩[𝑋]�

OO(9.65)

Hence the composite 𝐾𝑘 (𝑀) → 𝐻𝑘 (𝑀)
(−∩[𝑀 ] )−1

−−−−−−−−−→ 𝐻𝑛−𝑘 (𝑀) → 𝐾𝑛−𝑘 (𝑀) is
bijective.

(ii) The commutative square (9.65) above implies that 𝐻𝑙 ( �̃� ) : 𝐻𝑙 (𝑀) → 𝐻𝑙 (𝑋) is
split surjective for all 𝑙. We conclude from the long exact sequence of 𝐶∗ ( �̃� ) that the
boundary map

𝜕 : 𝐻𝑘+1( �̃� ) := 𝐻𝑘+1(cone(𝐶∗ ( �̃� ))) → 𝐻𝑘 (𝑀)
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induces an isomorphism

𝜕𝑘+1 : 𝐻𝑘+1 ( �̃� )
�−→ 𝐾𝑘 (𝑀).

Since 𝑓 and hence �̃� is 𝑘-connected, the Hurewicz homomorphism

𝜋𝑘+1 ( �̃� )
�−→ 𝐻𝑘+1( �̃� )

is bijective [1006, Corollary IV.7.10 on page 181]. The canonical map

𝜋𝑘+1 ( �̃� ) → 𝜋𝑘+1 ( 𝑓 )

is bijective. The composite of the maps above or their inverses yields a natural
isomorphism ℎ𝑘 : 𝜋𝑘+1 ( 𝑓 ) → 𝐾𝑘 (𝑀).

(iii) Note that an element in 𝜋𝑘+1( 𝑓 , 𝑏) is given by a commutative diagram

𝑆𝑘
𝑞 //

��

𝑀

��
𝐷𝑘+1

𝑄
// 𝑋

together with a path 𝑤 from 𝑏 to 𝑓 (𝑠) for a fixed base point 𝑠 ∈ 𝑆𝑘 . We leave the
details of the rest of the proof, which is based on Theorem 9.63 (ii), to the reader.
The necessary bundle monomorphisms come from the bundle data of ( 𝑓 , 𝑓 ), the
stable triviality of 𝑇𝑆𝑘 , and the fact that any vector bundle over 𝐷𝑘+1 is trivial. ⊓⊔

Suppose that 𝑛 = 2𝑘 . The Kronecker pairing ⟨ , ⟩ : 𝐻𝑘 (𝑀) × 𝐻𝑘 (𝑀) → Z𝜋 is
induced by the evaluation pairing homZ𝜋 (𝐶𝑝 (𝑀),Z𝜋) ×𝐶𝑝 (𝑀) → Z𝜋 which sends
(𝛽, 𝑥) to 𝛽(𝑥). It induces a pairing

⟨ , ⟩ : 𝐾𝑘 (𝑀) × 𝐾𝑘 (𝑀) → Z𝜋.

Together with the isomorphism

− ∩ [𝑀] : 𝐾𝑛−𝑘 (𝑀) �−→ 𝐾𝑘 (𝑀)

of Theorem 9.64 (i) it yields the intersection pairing

𝑠 : 𝐾𝑘 (𝑀) × 𝐾𝑘 (𝑀) → Z𝜋.(9.66)

We get from Lemma 9.64 (ii) and (iii) a Z𝜋-homomorphism

𝛼 : 𝐾𝑘 (𝑀) → 𝐼𝑘 (𝑀).(9.67)

The elementary proof of the next lemma is left to the reader.
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Lemma 9.68. The following diagram commutes

𝐾𝑘 (𝑀) × 𝐾𝑘 (𝑀)
𝑠 //

𝛼×𝛼
��

Z𝜋

id
��

𝐼𝑘 (𝑀) × 𝐼𝑘 (𝑀)
𝜆
// Z𝜋

where the upper pairing is defined in (9.66), the lower pairing in (9.33), and the left
vertical arrows in (9.67).

Exercise 9.69. Let 𝑓 : 𝑋 → 𝑌 be a map of connected finite Poincaré complexes of
dimension 𝑛 ≥ 4. Suppose that 𝑓 has degree one and that 𝑓 is (𝑘 + 1)-connected
where 𝑘 is given by 𝑛 = 2𝑘 if 𝑛 is even, and by 𝑛 = 2𝑘 + 1 if 𝑛 is odd. Show that
then 𝑓 is a homotopy equivalence.

Recall that an 𝑅-module 𝑉 is called stably finitely generated free if for some
non-negative integer 𝑙 the 𝑅-module 𝑉 ⊕ 𝑅𝑙 is a finitely generated free 𝑅-module.

Lemma 9.70. If 𝑓 : 𝑋 → 𝑌 is 𝑘-connected for 𝑛 = 2𝑘 or 𝑛 = 2𝑘 + 1, then 𝐾𝑘 (𝑀) is
stably finitely generated free.

Proof. See for instance [667, Lemma 8.55 (ii) on page 248]. ⊓⊔

Example 9.71 (Effect of trivial surgery). Consider the normal map
( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 covering the 𝑘-connected map of degree one 𝑓 : 𝑀 → 𝑋

for a 𝑤-oriented connected closed 𝑛-dimensional manifolds 𝑀 for 𝑛 = 2𝑘 . If we do
surgery on the zero element in 𝜋𝑘+1 ( 𝑓 ), then the effect on 𝑀 is that 𝑀 is replaced by
the connected sum 𝑀 ′ = 𝑀♯(𝑆𝑘 × 𝑆𝑘). The effect on 𝐾𝑘 (𝑀) is that it is replaced by
𝐾𝑘 (𝑀 ′) = 𝐾𝑘 (𝑀) ⊕ (Z𝜋 ⊕ Z𝜋). The intersection pairing on this new kernel is the
sum of the given intersection pairing on𝐾𝑘 (𝑀) together with the standard hyperbolic
symmetric form 𝐻 (−1)𝑘 (Z𝜋). Moreover, taking the self-intersections into account,
the non-singular (−1)𝑘-quadratic form on the new kernel is the direct sum of the one
of the old kernel and the standard hyperbolic (−1)𝑘-quadratic form 𝐻(−1)𝑘 (Z𝜋). In
particular, we can arrange by finitely many surgery steps on the trivial element in
𝜋𝑘+1 ( 𝑓 ) that 𝐾𝑘 (𝑀) is a finitely generated free Z𝜋-module.

Remark 9.72. Let ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 be a normal map of degree one covering
𝑓 : 𝑀 → 𝑋 , where 𝑀 is a 𝑤-oriented connected closed manifold of dimension 𝑛
and 𝑋 is a 𝑤-oriented connected finite Poincaré complex of dimension 𝑛. Suppose
that 𝑛 = 2𝑘 and 𝑓 is 𝑘-connected.

By Lemma 9.70 and Example 9.71, we can do finitely many trivial surgery steps
to achieve that the kernel 𝐾𝑘 (𝑀) is a finitely generated free Z𝜋-module. By the
intersection pairing 𝑠 of (9.66), we obtain a non-singular (−1)𝑘-symmetric form
(𝐾𝑘 (𝑀), 𝑠), see Remark 9.8.

So far we have not used the bundle data. They now come into play, when we want to
refine (𝐾𝑘 (𝑀), 𝑠) to a non-singular (−1)𝑘-quadratic form. Because of Remark 9.21
we have to specify a map 𝑡 : 𝐾𝑘 (𝑀) → 𝑄 (−1)𝑘 (Z𝜋). We will take the composite
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𝐾𝑘 (𝑀)
ℎ−1
𝑘−−−→ 𝜋𝑘+1( 𝑓 )

𝑡𝑘−→ 𝐼𝑘 (𝑀)
𝜇
−→ 𝑄 (−1)𝑘 (Z𝜋)

where 𝜇 has been defined (9.38) and the isomorphism ℎ𝑘 and the map 𝑡𝑘 have been
introduced in Lemma 9.64. This is indeed a quadratic refinement by Lemma 9.40
and Lemma 9.68.

Definition 9.73 (Even-dimensional surgery obstruction). Consider a normal map
of degree one ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 covering 𝑓 : 𝑀 → 𝑋 , where 𝑀 is a 𝑤-oriented
connected closed manifold of even dimension 𝑛 = 𝑘 and 𝑋 is a connected finite
Poincaré complex of dimension 𝑛 with fundamental group 𝜋. Perform surgery be-
low the middle dimension and trivial surgery in the middle dimension so that we
obtain a 𝑘-connected normal map of degree one ( 𝑓 ′, 𝑓 ′) : 𝜈(𝑀) → 𝜉 such that
𝐾𝑘 (𝑀 ′) is a finitely generated free Z𝜋-module. Define the surgery obstruction of
( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉

𝜎( 𝑓 , 𝑓 ) ∈ 𝐿2𝑘 (Z𝜋, 𝑤1 (𝑋))

to be the class of the non-singular (−1)𝑘-quadratic form (𝐾𝑘 (𝑀 ′), 𝑠, 𝑡) of
Remark 9.72.

We omit the proof that this element is well-defined, e.g., independent of the
previous surgery steps; details of the proof can be found in [667, Section 8.6.3]

Theorem 9.74 (Surgery obstruction in even dimensions). Consider a normal
map of degree one ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 covering 𝑓 : 𝑀 → 𝑋 , where 𝑀 is a
𝑤-oriented connected closed manifold of even dimension 𝑛 = 2𝑘 and 𝑋 is a
𝑤-oriented connected finite Poincaré complex of dimension 𝑛 with fundamental
group 𝜋. Then:

(i) Suppose 𝑘 ≥ 3. Then 𝜎( 𝑓 , 𝑓 ) = 0 in 𝐿𝑛 (Z𝜋, 𝑤1 (𝑋)) if and only if we can do
a finite number of surgery steps to obtain a normal map ( 𝑓 ′, 𝑓 ′) : 𝜈(𝑀 ′) → 𝜉

which covers a homotopy equivalence 𝑓 ′ : 𝑀 ′ → 𝑋;
(ii) The surgery obstruction 𝜎( 𝑓 , 𝑓 ) depends only on the normal bordism class of
( 𝑓 , 𝑓 ).

Proof. We only give the proof of assertion (i). More details can be found in [667, The-
orem 8.112 on page 270] or [987, Chapter 5]. By Lemma 9.61, Example 9.71, and the
definition of 𝐿2𝑘 (Z𝜋, 𝑤), we can arrange by finitely many surgery steps that the non-
singular (−1)𝑘-quadratic form (𝐾𝑘 (𝑀), 𝑠, 𝑡) is isomorphic to 𝐻(−1)𝑘 (Z𝜋𝑣). Thus
we can choose for some natural number 𝑣 a Z𝜋-basis {𝑏1, 𝑏2, . . . , 𝑏𝑣 , 𝑐1, 𝑐2, . . . , 𝑐𝑣}
for 𝐾𝑘 (𝑀) such that

𝑠(𝑏𝑖 , 𝑐𝑖) = 1 𝑖 ∈ {1, 2, . . . , 𝑣};
𝑠(𝑏𝑖 , 𝑐 𝑗 ) = 0 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑣}, 𝑖 ≠ 𝑗 ;
𝑠(𝑏𝑖 , 𝑏 𝑗 ) = 0 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑣};
𝑠(𝑐𝑖 , 𝑐 𝑗 ) = 0 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑣};
𝑡 (𝑏𝑖) = 0 𝑖 ∈ {1, 2, . . . , 𝑣}.



230 9 Algebraic 𝐿-Theory

Note that 𝑓 is a homotopy equivalence if and only if the number 𝑣 is zero. Hence it
suffices to explain how we can lower the number 𝑣 to (𝑣 − 1) by a surgery step on
an element in 𝜋𝑘+1( 𝑓 ). Of course our candidate is the element 𝜔 in 𝜋𝑘+1 ( 𝑓 ) which
corresponds under the isomorphism ℎ : 𝜋𝑘+1 ( 𝑓 ) → 𝐾𝑘 (𝑀), see Lemma 9.64 (ii), to
the element 𝑏𝑣 . By construction the composite

𝜋𝑘+1 ( 𝑓 )
𝑡𝑘−→ 𝐼𝑘 (𝑀)

𝜇
−→ 𝑄 (−1)𝑘 (Z𝜋, 𝑤)

of the maps defined in (9.38) and Lemma 9.64 (iii) sends 𝜔 to zero. Now Theo-
rem 9.42 ensures that we can perform surgery on 𝜔. Note that the assumption 𝑘 ≥ 3
and the quadratic structure on the kernel become relevant exactly at this point. Finally
it remains to check whether the effect on 𝐾𝑘 (𝑀) is the desired one, namely, that we
get rid of one of the hyperbolic summands 𝐻𝜖 (Z𝜋), or equivalently, 𝑣 is lowered to
𝑣 − 1.

We have explained earlier that doing surgery yields not only a new manifold 𝑀 ′,
but also a bordism from 𝑀 to 𝑀 ′. Namely, take 𝑊 = 𝑀 × [0, 1] ∪𝑆𝑘×𝐷𝑛−𝑘 𝐷𝑘+1 ×
𝐷𝑛−𝑘 , where we attach 𝐷𝑘+1 × 𝐷𝑛−𝑘 by an embedding 𝑆𝑘 × 𝐷𝑛−𝑘 → 𝑀 × {1},
and 𝑀 ′ := 𝜕𝑊 − 𝑀 using the identification 𝑀 = 𝑀 × {0}. The manifold 𝑊 comes
with a map 𝐹 : 𝑊 → 𝑋 × [0, 1] whose restriction to 𝑀 is the given map 𝑓 : 𝑀 =

𝑀 × {0} → 𝑋 = 𝑋 × {0} and whose restriction to 𝑀 ′ is a map 𝑓 ′ : 𝑀 ′ → 𝑋 × {1}.
The definition of the kernels also makes sense for pair of maps. We obtain an exact
braid

0
""

��

𝐾𝑘+1 (𝑊, 𝑀)
""

��

𝐾𝑘 (𝑀)
""

��

𝐾𝑘 (𝑊, 𝑀 ′)
  

��

0

0

??

��

𝐾𝑘+1 (𝑊, 𝜕𝑊)

??

��

𝐾𝑘 (𝑊)

??

��

0

??

0

??

==𝐾𝑘 (𝑀
′)

??

>> 0

??

which combines the various long exact sequences of pairs.
The (𝑘 +1)-handle 𝐷𝑘+1×𝐷𝑛−𝑘 defines an element 𝜙𝑘+1 in 𝐾𝑘+1(𝑊, 𝑀) and the

associated dual 𝑘-handle defines an element 𝜓𝑘 ∈ 𝐾𝑘 (𝑊, 𝑀 ′). These elements
constitute a Z𝜋-basis for 𝐾𝑘+1 (𝑊, 𝑀) � Z𝜋 and 𝐾𝑘 (𝑊, 𝑀 ′) � Z𝜋. The Z𝜋-
homomorphism 𝐾𝑘+1(𝑊, 𝑀) → 𝐾𝑘 (𝑀) maps 𝜙 to 𝑏𝑣 . The Z𝜋-homomorphism
𝐾𝑘 (𝑀) → 𝐾𝑘 (𝑊, 𝑀 ′) sends 𝑥 to 𝑠(𝑏𝑣 , 𝑥) · 𝜓𝑘 . Hence we can find elements 𝑏′1, 𝑏′2,
. . ., 𝑏′𝑣 and 𝑐′1, 𝑐′2, . . ., 𝑐′

𝑣−1 in 𝐾𝑘+1(𝑊, 𝜕𝑊) uniquely determined by the property
that 𝑏′

𝑖
is mapped to 𝑏𝑖 and 𝑐′

𝑖
to 𝑐𝑖 under the Z𝜋-homomorphism 𝐾𝑘+1 (𝑊, 𝜕𝑊) →

𝐾𝑘 (𝑀). Moreover, these elements form aZ𝜋-basis for𝐾𝑘+1 (𝑊, 𝜕𝑊), and the element
𝜙𝑘+1 is mapped to 𝑏′𝑣 under the Z𝜋-homomorphism 𝐾𝑘+1 (𝑊, 𝑀) → 𝐾𝑘+1 (𝑊, 𝜕𝑊).
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Define 𝑏′′
𝑖

and 𝑐′′
𝑖

for 𝑖 = 1, 2, . . . , (𝑣 − 1) to be the image of 𝑏′
𝑖

and 𝑐′
𝑖

under the
Z𝜋-homomorphism 𝐾𝑘+1 (𝑊, 𝜕𝑊) → 𝐾𝑘 (𝑀 ′). Then

{𝑏′′𝑖 | 𝑖 = 1, 2, . . . , (𝑣 − 1)}
∐
{𝑐′′𝑖 | 𝑖 = 1, 2, . . . , (𝑣 − 1)}

is a Z𝜋-basis for 𝐾𝑘 (𝑀 ′). One easily checks for the quadratic structure (𝑠′, 𝑡′) on
𝐾𝑘 (𝑀 ′)

𝑠′ (𝑏′′
𝑖
, 𝑐′′
𝑖
) = 𝑠(𝑏𝑖 , 𝑐𝑖) = 1 𝑖 ∈ {1, 2, . . . , (𝑣 − 1)};

𝑠′ (𝑏′′
𝑖
, 𝑐′′
𝑗
) = 𝑠(𝑏𝑖 , 𝑐 𝑗 ) = 0 𝑖, 𝑗 ∈ {1, 2, . . . , (𝑣 − 1)}, 𝑖 ≠ 𝑗 ;

𝑠′ (𝑏′′
𝑖
, 𝑏′′

𝑗
) = 𝑠(𝑏𝑖 , 𝑏 𝑗 ) = 0 𝑖, 𝑗 ∈ {1, 2, . . . , (𝑣 − 1)};

𝑠′ (𝑐′′
𝑖
, 𝑐′′
𝑗
) = 𝑠(𝑐𝑖 , 𝑐 𝑗 ) = 0 𝑖, 𝑗 ∈ {1, 2, . . . , (𝑣 − 1)};

𝑡′ (𝑏′′
𝑖
) = 𝑡 (𝑏𝑖) = 0 𝑖 ∈ {1, 2, . . . , (𝑣 − 1)}.

This finishes the proof of assertion (i) of Theorem 9.74. ⊓⊔
Exercise 9.75. Let𝑀 be a stably framed manifold of dimension (4𝑘+2), i.e., a closed
(4𝑘 + 2)-dimensional manifold together with a choice of a stable trivialization of
its tangent bundle. Assign to it an element 𝛼(𝑀) ∈ Z/2 such that 𝛼(𝑀) = 𝛼(𝑁)
depends only on the stably framed bordism class of 𝑀 . (The easy solution that 𝛼 is
constant is not what we have in mind.)

9.6 Formations

In this subsection we explain the algebraic objects, so-called formations, which
describe the surgery obstruction and which will be the typical elements in the
surgery obstruction group in odd dimensions. Throughout this section 𝑅 will be an
associative ring with involution and 𝜖 ∈ {±1}.
Definition 9.76 (Formation). An 𝜖-quadratic formation (𝑃, 𝜓; 𝐹, 𝐺) is a non-
singular 𝜖-quadratic form (𝑃, 𝜓) together with two lagrangians 𝐹 and 𝐺.

An isomorphism 𝑓 : (𝑃, 𝜓; 𝐹, 𝐺) → (𝑃′, 𝜓′; 𝐹,′ , 𝐺′) of 𝜖-quadratic formations
is an isomorphism 𝑓 : (𝑃, 𝜓) → (𝑃′, 𝜓′) of non-singular 𝜖-quadratic forms such
that 𝑓 (𝐹) = 𝐹′ and 𝑓 (𝐺) = 𝐺′ holds.

Definition 9.77 (Trivial formation). The trivial 𝜖-quadratic formation associated
to a finitely generated projective 𝑅-module 𝑃 is the formation (𝐻𝜖 (𝑃); 𝑃, 𝑃∗).
A formation (𝑃, 𝜓; 𝐹, 𝐺) is called trivial if it isomorphic to the trivial 𝜖-quadratic
formation associated to some finitely generated projective 𝑅-module. Two formations
are stably isomorphic if they become isomorphic after taking the direct sum with
trivial formations.

Remark 9.78 (Formations and automorphisms). We conclude from Lemma 9.26
that any 𝜖-quadratic formation is isomorphic to an 𝜖-quadratic formation of the
type (𝐻𝜖 (𝑃); 𝑃, 𝐹) for some lagrangian 𝐹 ⊂ 𝑃 ⊕ 𝑃∗. Given an automorphism
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𝑣 : 𝐻𝜖 (𝑃)
�−→ 𝐻𝜖 (𝑃) of the standard hyperbolic 𝜖-quadratic form 𝐻𝜖 (𝑃) for some

finitely generated projective 𝑅-module 𝑃, we get a formation by (𝐻𝜖 (𝑃); 𝑃, 𝑣(𝑃)).
Consider an 𝜖-quadratic formation (𝑃, 𝜓; 𝐹, 𝐺) such that 𝑃, 𝐹, and 𝐺 are finitely

generated free and suppose that 𝑅 has the property that 𝑅𝑛 and 𝑅𝑚 are 𝑅-isomorphic
if and only if 𝑛 = 𝑚. Then (𝑃, 𝜓; 𝐹, 𝐺) is stably isomorphic to (𝐻𝜖 (𝑄);𝑄, 𝑣(𝑄))
for some finitely generated free 𝑅-module 𝑄 and automorphism 𝑣 of 𝐻𝜖 (𝑄) by
the following argument. Because of Lemma 9.26 we can choose isomorphisms of
non-singular 𝜖-quadratic forms 𝑓 : 𝐻𝜖 (𝐹)

�−→ (𝑃, 𝜓) and 𝑔 : 𝐻𝜖 (𝐺)
�−→ (𝑃, 𝜓) such

that 𝑓 (𝐹) = 𝐹 and 𝑔(𝐺) = 𝐺. Since 𝐹 � 𝑅𝑎 and 𝐺 � 𝑅𝑏 by assumption and
𝑅2𝑎 � 𝐹 ⊕ 𝐹∗ � 𝑃 � 𝐺 ⊕ 𝐺∗ � 𝑅2𝑏, we conclude 𝑎 = 𝑏. Hence we can choose
an 𝑅-isomorphism 𝑢 : 𝐹 → 𝐺. Then we obtain an automorphism of non-singular
𝜖-quadratic forms by the composite

𝑣 : 𝐻𝜖 (𝐹)
𝐻𝜖 (𝑢)−−−−−→ 𝐻𝜖 (𝐺)

𝑔
−→ (𝑃, 𝜓)

𝑓 −1

−−−→ 𝐻𝜖 (𝐹)

and an isomorphism of 𝜖-quadratic formations

𝑓 : (𝐻𝜖 (𝐹); 𝐹, 𝑣(𝐹))
�−→ (𝑃, 𝜓; 𝐹, 𝐺).

Recall that 𝐾1 (𝑅) is defined in terms of automorphisms of finitely generated free
𝑅-modules. Hence it is plausible that the odd-dimensional 𝐿-groups will be defined
in terms of formations, which is essentially the same as in terms of automorphisms
of the standard hyperbolic form over a finitely generated free 𝑅-module.

Definition 9.79 (Boundary formation). Let (𝑃, 𝜓) be a (not necessarily non-
singular) (−𝜖)-quadratic form. Define its boundary 𝜕 (𝑃, 𝜓) to be the 𝜖-quadratic
formation (𝐻𝜖 (𝑃); 𝑃, Γ𝜓) where Γ𝜓 is the lagrangian given by the image of the
𝑅-homomorphism

𝑃→ 𝑃 ⊕ 𝑃∗, 𝑥 ↦→ (𝑥, (1 − 𝜖 · 𝑇) (𝜓) (𝑥)) .

One easily checks that Γ𝜓 appearing in Definition 9.79 is indeed a lagrangian. Two
lagrangians 𝐹, 𝐺 of a non-singular 𝜖-quadratic form (𝑃, 𝜓) are called complementary
if 𝐹 ∩ 𝐺 = {0} and 𝐹 + 𝐺 = 𝑃.

Lemma 9.80. Let (𝑃, 𝜓; 𝐹, 𝐺) be an 𝜖-quadratic formation. Then:

(i) (𝑃, 𝜓; 𝐹, 𝐺) is trivial if and only 𝐹 and 𝐺 are complementary to one another;
(ii) (𝑃, 𝜓; 𝐹, 𝐺) is isomorphic to a boundary if and only if there is a lagrangian

𝐿 ⊂ 𝑃 such that 𝐿 is a complement of both 𝐹 and 𝐺;
(iii) There is an 𝜖-quadratic formation (𝑃′, 𝜓′; 𝐹′, 𝐺′) such that (𝑃, 𝜓; 𝐹, 𝐺) ⊕
(𝑃′, 𝜓′; 𝐹′, 𝐺′) is a boundary;

(iv) An (−𝜖)-quadratic form (𝑄, 𝜇) is non-singular if and only if its boundary is
trivial.

Proof. See for instance [667, Lemma 9.13 on page 331]. ⊓⊔
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9.7 Odd-Dimensional 𝑳-groups

Now we can define the odd-dimensional 𝐿-groups.

Definition 9.81 (Odd-dimensional 𝐿-groups). Let 𝑅 be an associative ring with
involution. For an odd integer 𝑛 = 2𝑘 + 1 define the abelian group 𝐿𝑛 (𝑅), called
the 𝑛-th quadratic 𝐿-group, of 𝑅 to be the abelian group of equivalence classes
[𝑃, 𝜓; 𝐹, 𝐺] of (−1)𝑘-quadratic formations (𝑃, 𝜓; 𝐹, 𝐺) such that 𝑃, 𝐹, and 𝐺

are finitely generated free 𝑅-modules with respect to the following equivalence
relation. We call (𝑃, 𝜓; 𝐹, 𝐺) and (𝑃′, 𝜓′; 𝐹′, 𝐺′) equivalent if and only if there
exist (−(−1)𝑘)-quadratic forms (𝑄, 𝜇) and (𝑄′, 𝜇′) for finitely generated free
𝑅-modules 𝑄 and 𝑄′ and finitely generated free 𝑅-modules 𝑆 and 𝑆′ together with
an isomorphism of (−1)𝑘-quadratic formations

(𝑃, 𝜓; 𝐹, 𝐺) ⊕ 𝜕 (𝑄, 𝜇) ⊕ (𝐻𝜖 (𝑆); 𝑆, 𝑆∗)
� (𝑃′, 𝜓′; 𝐹′, 𝐺′) ⊕ 𝜕 (𝑄′, 𝜇′) ⊕ (𝐻𝜖 (𝑆′); 𝑆′, (𝑆′)∗).

Addition is given by the sum of two (−1)𝑘-quadratic formations. The zero element is
represented by 𝜕 (𝑄, 𝜇) ⊕ (𝐻(−1)𝑘 (𝑆); 𝑆, 𝑆∗) for any (−(−1)𝑘)-quadratic form (𝑄, 𝜇)
for any finitely generated free 𝑅-module𝑄 and any finitely generated free 𝑅-module
𝑆. The inverse of [𝑃, 𝜓; 𝐹, 𝐺] is represented by (𝑃,−𝜓; 𝐹′, 𝐺′) for any choice of
lagrangians 𝐹′ and 𝐺′ in 𝐻𝜖 (𝑃) such that 𝐹 and 𝐹′ are complementary and 𝐺 and
𝐺′ are complementary.

A morphism 𝑢 : 𝑅 → 𝑆 of rings with involution induces homomorphisms
𝑢∗ : 𝐿𝑘 (𝑅) → 𝐿𝑘 (𝑆) for 𝑘 = 1, 3 by induction satisfying (𝑢 ◦ 𝑣)∗ = 𝑢∗ ◦ 𝑣∗ and
(id𝑅)∗ = id𝐿𝑘 (𝑅) for 𝑘 = 1, 3. xs

Theorem 9.82 (Vanishing of the odd-dimensional 𝐿-groups of the ring of inte-
gers). We have 𝐿2𝑘+1 (Z) = 0 for all 𝑘 ∈ Z.

Proof. See for instance [667, Subsection 9.2.4]. ⊓⊔

Remark 9.83 (Four-periodicity of the 𝐿-groups). Obviously the 𝐿-groups are four-
periodic, i.e., 𝐿𝑛 (𝑅) = 𝐿𝑛+4𝑘 (𝑅) holds for all 𝑘, 𝑛 ∈ Z.

9.8 The Surgery Obstruction in Odd Dimensions

Next we very briefly treat the odd-dimensional surgery obstruction. Consider a
normal map of degree one ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 covering 𝑓 : 𝑀 → 𝑋 , where 𝑀 is a
𝑤-oriented closed manifold of dimension 𝑛 and 𝑋 is a 𝑤-oriented connected finite
Poincaré complex of dimension 𝑛 for odd 𝑛 = 2𝑘 + 1. Put 𝜋 = 𝜋1 (𝑋). To these data
one can assign the surgery obstruction of ( 𝑓 , 𝑓 )

𝜎( 𝑓 , 𝑓 ) ∈ 𝐿2𝑘+1 (Z𝜋, 𝑤).(9.84)
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Its construction and the proof of the following result can be found in [667, Sec-
tion 9.3] or [987, Chapter 6].

Theorem 9.85 (Surgery obstruction in odd dimensions). We get under the con-
ditions above:

(i) Suppose 𝑘 ≥ 2. Then 𝜎( 𝑓 , 𝑓 ) = 0 in 𝐿𝑛 (Z𝜋, 𝑤) if and only if we can do a finite
number of surgery steps to obtain a normal map ( 𝑓 ′, 𝑓 ′) : 𝜈(𝑀 ′) → 𝜉 covering
a homotopy equivalence 𝑓 ′ : 𝑀 ′ → 𝑋;

(ii) The surgery obstruction 𝜎( 𝑓 , 𝑓 ) depends only on the normal bordism class of
( 𝑓 , 𝑓 ).

Example 9.86 (The surgery obstruction in the simply connected case). Consider
a normal map of degree one ( 𝑓 , 𝑓 ) : 𝜈(𝑀) → 𝜉 covering 𝑓 : 𝑀 → 𝑋 , where 𝑀 is a
𝑤-oriented connected closed manifold of dimension 𝑛 and 𝑋 is a 𝑤-oriented con-
nected finite Poincaré complex of dimension 𝑛. Suppose that 𝑋 is simply connected.

If 𝑛 is odd, 𝐿𝑛 (Z) is trivial and hence 𝜎( 𝑓 , 𝑓 ) = 0. In particular, we can arrange
by finitely many surgery steps that the underlying map is a homotopy equivalence,
provided 𝑛 ≥ 5.

If 𝑛 is divisible by four, we obtain an isomorphism 𝐿𝑛 (Z)
�−→ Z by sending a

quadratic form to its signature divided by eight, see Theorem 9.29. It turns out that
under this isomorphism we get

𝜎( 𝑓 , 𝑓 ) = sign(𝑋) − sign(𝑀)
8

.

Note that in this case the surgery obstruction depends only on 𝑀 and 𝑋 , but not on
𝑓 and 𝑓 . This is not true in general.

If 𝑛 is even, but not divisible by four, then the Arf invariant yields an isomorphism
𝐿𝑛 (Z)

�−→ Z/2. It turns out that 𝜎( 𝑓 , 𝑓 ) depends not only on 𝑓 but also on the bundle
data 𝑓 . For instance, for different framings of 𝑇2 one obtains different invariants
𝛼(𝑇2) in Exercise 9.75.

More details can be found in [667, Subsection 8.7.6].

9.9 Surgery Obstructions for Manifolds with Boundary

Next we deal with manifolds with boundary.

Definition 9.87 (Poincaré pairs). The notion of a Poincaré complex can be extended
to pairs as follows. Let 𝑋 be a connected finite 𝑛-dimensional 𝐶𝑊-complex with
fundamental group 𝜋 together with a subcomplex 𝐴 ⊂ 𝑋 of dimension (𝑛−1). Denote
by 𝐴 ⊂ 𝑋 the preimage of 𝐴 under the universal covering 𝑋 → 𝑋 . We call (𝑋, 𝐴)
a finite 𝑛-dimensional Poincaré pair with respect to the orientation homomorphism
𝑤 : 𝜋1 (𝑋) → {±1} if there is a fundamental class [𝑋, 𝐴] ∈ 𝐻𝑛 (𝑋, 𝐴;Z𝑤) such that
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the Z𝜋-chain maps −∩ [𝑋, 𝐴] : 𝐶𝑛−∗ (𝑋, 𝐴) → 𝐶∗ (𝑋) and −∩ [𝑋, 𝐴] : 𝐶𝑛−∗ (𝑋) →
𝐶∗ (𝑋, 𝐴) are Z𝜋-chain homotopy equivalences.

We call (𝑋, 𝐴) simple if the Whitehead torsions of these Z𝜋-chain homotopy
equivalences vanish.

If 𝐴 = ∅, we speak of a simple Poincaré complex

If 𝑀 is a connected compact manifold of dimension 𝑛 with boundary 𝜕𝑀 , then
(𝑀, 𝜕𝑀) is a simple finite 𝑛-dimensional Poincaré pair.

We want to extend the notion of a normal map from closed manifolds to manifolds
with boundary. The underlying map 𝑓 is a map of pairs ( 𝑓 , 𝜕 𝑓 ) : (𝑀, 𝜕𝑀) →
(𝑋, 𝜕𝑋), where𝑀 is a𝑤-oriented compact manifold with boundary 𝜕𝑀 and (𝑋, 𝜕𝑋)
is a 𝑤-oriented finite Poincaré pair, the degree of 𝑓 is one and 𝜕 𝑓 : 𝜕𝑀 → 𝜕𝑋 is
required to be a homotopy equivalence. The bundle data are unchanged, they consist
of a vector bundle 𝜉 over 𝑋 and a bundle map 𝑓 : 𝜈(𝑀) → 𝜉 covering 𝑓 .

The notion of a normal bordism for manifolds with boundaries is rather compli-
cated, but also obvious. We will at least explain what happens for the underlying
spaces and maps. More details can be found in [667, Subsection 8.8.2].

Consider two normal maps in dimension 𝑛whose underlying maps are ( 𝑓𝑚, 𝜕 𝑓𝑚) :
(𝑀𝑚, 𝜕𝑀𝑚) → (𝑋𝑚, 𝜕𝑋𝑚) such that 𝜕 𝑓𝑚 is a homotopy equivalence. A normal
bordism between them is defined a follows. As in the closed case𝑊 is a 𝑤-oriented
compact (𝑛 + 1)-dimensional manifold with boundary 𝜕𝑊 , but now the boundary is
the union of three pieces

𝜕𝑊 = 𝜕0𝑊 ∪ 𝜕1𝑊 ∪ 𝜕2𝑊

where 𝜕𝑚𝑊 is a codimension zero submanifold of 𝜕𝑊 possibly with non-empty
boundary 𝜕𝜕𝑚𝑊 for 𝑚 = 0, 1, 2 satisfying

𝜕0𝑊 ∩ 𝜕1𝑊 = ∅;
𝜕2𝑊 ∩ 𝜕𝑚𝑊 = 𝜕𝜕𝑚𝑊 for 𝑚 = 0, 1;

𝜕𝜕2𝑊 = 𝜕𝜕0𝑊 ⨿ 𝜕𝜕1𝑊.

We have an (𝑛 + 1)-dimensional finite Poincaré pair (𝑌, 𝜕𝑌 ) with a decomposition
of 𝜕𝑌 into three 𝑛-dimensional finite 𝐶𝑊-subcomplexes

𝜕𝑌 = 𝜕0𝑌 ∪ 𝜕1𝑌 ∪ 𝜕2𝑌,

such that for appropriate (𝑛−1)-dimensional finite𝐶𝑊-subcomplexes 𝜕𝜕𝑚𝑌 ⊆ 𝜕𝑚𝑌
for 𝑚 = 0, 1, 2 we have

𝜕0𝑌 ∩ 𝜕1𝑌 = ∅;
𝜕2𝑌 ∩ 𝜕𝑚𝑌 = 𝜕𝜕𝑚𝑌 for 𝑚 = 0, 1;

𝜕𝜕2𝑌 = 𝜕𝜕0𝑌 ⨿ 𝜕𝜕1𝑌 .
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The map 𝐹 : 𝑊 → 𝑌 is required to induce maps 𝜕𝑚𝐹 : 𝜕𝑚𝑊 → 𝜕𝑚𝑌 for 𝑚 = 0, 1, 2
and 𝜕2𝐹 : 𝜕2𝑊 → 𝜕2𝑌 is required to be a homotopy equivalence. The various
identifications 𝑀𝑚

�−→ 𝜕𝑚𝑊 and 𝑋𝑚 → 𝜕𝑚𝑌 for 𝑚 = 0, 1 in the closed case are now
required to be identifications (𝑀𝑚, 𝜕𝑀𝑚)

�−→ (𝜕𝑚𝑊, 𝜕𝜕𝑚𝑊) and (𝑋𝑚, 𝜕𝑋𝑚)
�−→

(𝜕𝑚𝑌, 𝜕𝑌𝑚) for 𝑚 = 0, 1.
The definition and the main properties of the surgery obstruction carry over

from normal maps for closed manifolds to normal maps for compact manifolds with
boundary. The main reason is that we require 𝜕 𝑓 : 𝜕𝑀 → 𝜕𝑋 to be a homotopy
equivalence so that the surgery kernels “do not feel the boundary”. All arguments
such as making a map highly connected by surgery steps and intersection pairings
and self-intersection can be carried out in the interior of 𝑀 without affecting the
boundary. Thus we get the following, see [667, Theorem 8.189 on page 311 and
Theorem 9.113 on page 389].

Theorem 9.88. (Surgery Obstruction for Manifolds with Boundary). Let ( 𝑓 , 𝑓 )
be a normal map of degree one with underlying map ( 𝑓 , 𝜕 𝑓 ) : (𝑀, 𝜕𝑀) → (𝑋, 𝜕𝑋)
such that 𝜕 𝑓 is a homotopy equivalence. Put 𝑛 = dim(𝑀) and 𝜋 = 𝜋1 (𝑋). Then:

(i) We can associate to it its surgery obstruction

𝜎( 𝑓 , 𝑓 ) ∈ 𝐿𝑛 (Z𝜋, 𝑤);

(ii) The surgery obstruction depends only on the normal bordism class of ( 𝑓 , 𝑓 );
(iii) Suppose 𝑛 ≥ 5. Then 𝜎( 𝑓 , 𝑓 ) = 0 in 𝐿𝑛 (Z𝜋, 𝑤) if and only if we can do a

finite number of surgery steps on the interior of 𝑀 leaving the boundary fixed
to obtain a normal map ( 𝑓 ′, 𝑓 ′) which covers a homotopy equivalence of pairs
( 𝑓 ′, 𝜕 𝑓 ′) : (𝑀 ′, 𝜕𝑀 ′) → (𝑋, 𝜕𝑋) with 𝜕𝑀 ′ = 𝜕𝑀 and 𝜕 𝑓 ′ = 𝜕 𝑓 .

More details can be found in [667, Sections 8.8 and 9.5].

9.10 Decorations

Next we want to modify the 𝐿-groups and the surgery obstruction so that the surgery
obstruction is the obstruction to achieve a simple homotopy equivalence. This will
force us to study 𝐿-groups with decorations.

9.10.1 𝑳-groups with 𝑲1-Decorations

We begin with the 𝐿-groups. It is clear that this requires us to take equivalence
classes of bases into account. Suppose that we have specified a subgroup𝑈 ⊂ 𝐾1 (𝑅)
such that 𝑈 is closed under the involution on 𝐾1 (𝑅) coming from the involution of
𝑅 and contains the image of the change of rings homomorphism 𝐾1 (Z) → 𝐾1 (𝑅).
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Two bases 𝐵 and 𝐵′ for the same finitely generated free 𝑅-module 𝑉 are called
𝑈-equivalent if the change of basis matrix defines an element in𝐾1 (𝑅)which belongs
to𝑈. Note that the𝑈-equivalence class of a basis 𝐵 is unchanged if we permute the
order of elements of 𝐵. We call an 𝑅-module 𝑉 𝑈-based if 𝑉 is finitely generated
free and we have chosen a𝑈-equivalence class of bases.

Let 𝑉 be a stably finitely generated free 𝑅-module. A stable basis for 𝑉 is a basis
𝐵 for 𝑉 ⊕ 𝑅𝑢 for some integer 𝑢 ≥ 0. Denote for any integer 𝑣 the direct sum of the
basis 𝐵 and the standard basis 𝑆𝑎 for 𝑅𝑎 by 𝐵

∐
𝑆𝑎, which is a basis for 𝑉 ⊕ 𝑅𝑢+𝑎.

Let 𝐶 be a basis for 𝑉 ⊕ 𝑅𝑣 . We call the stable basis 𝐵 and 𝐶 stably 𝑈-equivalent
if and only if there is an integer 𝑤 ≥ 𝑢, 𝑣 such that 𝐵

∐
𝑆𝑤−𝑢 and 𝐶

∐
𝑆𝑤−𝑣 are

𝑈-equivalent basis. We call an 𝑅-module 𝑉 stably 𝑈-based if 𝑉 is stably finitely
generated free and we have specified a stable𝑈-equivalence class of stable basis for
𝑉 .

Let 𝑉 and 𝑊 be stably 𝑈-based 𝑅-modules. Let 𝑓 : 𝑉 ⊕ 𝑅𝑎 �−→ 𝑊 ⊕ 𝑅𝑏 be an
𝑅-isomorphism. Choose a non-negative integer 𝑐 together with basis for 𝑉 ⊕ 𝑅𝑎+𝑐
and 𝑊 ⊕ 𝑅𝑏+𝑐 which represent the given stable 𝑈-equivalence classes of basis for
𝑉 and𝑊 . Let 𝐴 be the matrix of 𝑓 ⊕ id𝑅𝑐 : 𝑉 ⊕ 𝑅𝑎+𝑐 �−→ 𝑊 ⊕ 𝑅𝑏+𝑐 with respect to
these bases. It defines an element [A] in 𝐾1 (𝑅). Define the𝑈-torsion

𝜏𝑈 ( 𝑓 ) ∈ 𝐾1 (𝑅)/𝑈(9.89)

by the class represented by [𝐴]. It is easy to prove that 𝜏𝑈 ( 𝑓 ) is independent of the
choices of 𝑐 and the basis and depends only on 𝑓 and the stable 𝑈-basis for 𝑉 and
𝑊 . Moreover, one easily checks

𝜏𝑈 (𝑔 ◦ 𝑓 ) = 𝜏𝑈 (𝑔) + 𝜏𝑈 ( 𝑓 );

𝜏𝑈
(
𝑓 0
𝑢 𝑣

)
= 𝜏𝑈 ( 𝑓 ) + 𝜏𝑈 (𝑣);

𝜏𝑈 (id𝑉 ) = 0,

for 𝑅-isomorphisms 𝑓 : 𝑉0
�−→ 𝑉1, 𝑔 : 𝑉1

�−→ 𝑉2, and 𝑣 : 𝑉3
�−→ 𝑉4 and an

𝑅-homomorphism 𝑢 : 𝑉0 → 𝑉4 of stably 𝑈-based 𝑅-modules 𝑉𝑖 . Let 𝐶∗ be a con-
tractible stably𝑈-based finite 𝑅-chain complex, i.e., a contractible 𝑅-chain complex
𝐶∗ of stably 𝑈-based 𝑅-modules which satisfies 𝐶𝑖 = 0 for |𝑖 | > 𝑁 for some integer
𝑁 . The definition of Whitehead torsion in (3.32) carries over to the definition of the
𝑈-torsion

𝜏𝑈 (𝐶∗) = [𝐴] ∈ 𝐾1 (𝑅)/𝑈.(9.90)

Analogously we can associate to an 𝑅-chain homotopy equivalence 𝑓 : 𝐶∗ → 𝐷∗ of
stably𝑈-based finite 𝑅-chain complexes its𝑈-torsion, cf. (3.33),

𝜏𝑈 ( 𝑓∗) := 𝜏(cone∗ ( 𝑓∗)) ∈ 𝐾1 (𝑅)/𝑈.(9.91)
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We will consider stably 𝑈-based 𝜖-quadratic forms (𝑃, 𝜓), i.e., non-singular
𝜖-quadratic forms, whose underlying 𝑅-module 𝑃 is a stably 𝑈-based 𝑅-module
such that the 𝑈-torsion of the isomorphism (1 + 𝜖 · 𝑇) (𝜓) : 𝑃 �−→ 𝑃∗ is zero in
𝐾1 (𝑅)/𝑈. An isomorphism 𝑓 : (𝑃, 𝜓) → (𝑃′, 𝜓′) of stably 𝑈-based 𝜖-quadratic
forms is 𝑈-simple if the 𝑈-torsion of 𝑓 : 𝑃 → 𝑃′ vanishes in 𝐾1 (𝑅)/𝑈. Note that
for a stably 𝑈-based 𝑅-module 𝑃 the 𝜖-quadratic form 𝐻𝜖 (𝑃) is a stably 𝑈-based
𝜖-quadratic form. The sum of two stably 𝑈-based 𝜖-quadratic forms is again a
stably𝑈-based 𝜖-quadratic form. It is worthwhile to mention the following𝑈-simple
version of Lemma 9.26.

Lemma 9.92. Let (𝑃, 𝜓) be a stably 𝑈-based 𝜖-quadratic form. Let 𝐿 ⊂ 𝑃 be a
lagrangian such that 𝐿 is a stably 𝑈-based 𝑅-module and the 𝑈-torsion of the
following 2-dimensional stably𝑈-based finite 𝑅-chain complex

0→ 𝐿
𝑖−→ 𝑃

𝑖∗◦(1+𝜖 ·𝑇 ) (𝜓)
−−−−−−−−−−−−→ 𝐿∗ → 0

vanishes in 𝐾1 (𝑅)/𝑈. Then the inclusion 𝑖 : 𝐿 → 𝑃 extends to a 𝑈-simple isomor-
phism of stably𝑈-based 𝜖-quadratic forms

𝐻𝜖 (𝐿)
�−→ (𝑃, 𝜓).

Next we give the simple version of the even-dimensional 𝐿-groups.

Definition 9.93 (Even-dimensional 𝑈-decorated quadratic 𝐿-groups). Let 𝑅 be
an associative ring with involution. For 𝜖 ∈ {±1} define 𝐿𝑈1−𝜖 (𝑅) to be the abelian
group of equivalence classes [𝑃, 𝜓] of stably𝑈-based non-singular 𝜖-quadratic forms
(𝑃, 𝜓) with respect to the following equivalence relation. We call (𝑃, 𝜓) and (𝑃′, 𝜓′)
equivalent if and only if there exist integers 𝑢, 𝑢′ ≥ 0 and a 𝑈-simple isomorphism
of stably𝑈-based non-singular 𝜖-quadratic forms

(𝑃, 𝜓) ⊕ 𝐻𝜖 (𝑅𝑢) � (𝑃′, 𝜓′) ⊕ 𝐻𝜖 (𝑅𝑢
′ ).

Addition is given by the sum of two 𝜖-quadratic forms. The zero element is rep-
resented by [𝐻𝜖 (𝑅𝑢)] for any integer 𝑢 ≥ 0. The inverse of [𝑃, 𝜓] is given by
[𝑃,−𝜓].

For an even integer 𝑛 define the abelian group 𝐿𝑈𝑛 (𝑅), called the 𝑛-th𝑈-decorated
quadratic 𝐿-group, of 𝑅 by

𝐿𝑈𝑛 (𝑅) :=
{
𝐿𝑈0 (𝑅) if 𝑛 ≡ 0 mod 4;
𝐿𝑈2 (𝑅) if 𝑛 ≡ 2 mod 4.

A stably 𝑈-based 𝜖-quadratic formation (𝑃, 𝜓; 𝐹, 𝐺) consists of an 𝜖-quadratic
formation (𝑃, 𝜓; 𝐹, 𝐺) such that (𝑃, 𝜓) is a stably 𝑈-based 𝜖-quadratic form, the
lagrangians 𝐹 and 𝐺 are stably 𝑈-based 𝑅-modules, and the 𝑈-torsion of the fol-
lowing two contractible stably𝑈-based finite 𝑅-chain complexes
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0→ 𝐹
𝑖−→ 𝑃

𝑖∗◦(1+𝜖 ·𝑇 ) (𝜓)
−−−−−−−−−−−−→ 𝐹∗ → 0

and
0→ 𝐺

𝑗
−→ 𝑃

𝑗∗◦(1+𝜖 ·𝑇 ) (𝜓)
−−−−−−−−−−−−→ 𝐺∗ → 0

vanish in 𝐾1 (𝑅)/𝑈 where 𝑖 : 𝐹 → 𝑃 and 𝑗 : 𝐺 → 𝑃 denote the inclusions. An
isomorphism 𝑓 : (𝑃, 𝜓; 𝐹, 𝐺) → (𝑃′, 𝜓′; 𝐹′, 𝐺′) of𝑈-based 𝜖-quadratic formations
is 𝑈-simple if the 𝑈-torsion of the induced 𝑅-isomorphisms 𝑃 �−→ 𝑃′, 𝐹 �−→ 𝐹′

and 𝐺
�−→ 𝐺′ vanishes in 𝐾1 (𝑅)/𝑈. Note that for a 𝑈-stably based 𝑅-module

𝑃 the trivial 𝜖-quadratic formation (𝐻𝜖 (𝑃); 𝑃, (𝑃)∗) has the structure of a stably
based 𝜖-quadratic formation. Given a stably 𝑈-based (−𝜖)-quadratic form (𝑄, 𝜓),
its boundary 𝜕 (𝑄, 𝜓) is a stably 𝑈-based 𝜖-quadratic formation. Obviously the sum
of two stably 𝑈-based 𝜖-quadratic formations is again a stably 𝑈-based 𝜖-quadratic
formation. Next we give the simple version of the odd-dimensional 𝐿-groups.

Definition 9.94 (Odd-dimensional 𝑈-decorated quadratic 𝐿-groups). Let 𝑅 be
an associative ring with involution. For 𝜖 ∈ {±1} define 𝐿𝑈2−𝜖 (𝑅) to be the abelian
group of equivalence classes [𝑃, 𝜓; 𝐹, 𝐺] of stably 𝑈-based 𝜖-quadratic formations
(𝑃, 𝜓; 𝐹, 𝐺) with respect to the following equivalence relation. We call two stably
𝑈-based 𝜖-quadratic formations (𝑃, 𝜓; 𝐹, 𝐺) and (𝑃′, 𝜓′; 𝐹′, 𝐺′) equivalent if and
only if there exist stably𝑈-based (−𝜖)-quadratic forms (𝑄, 𝜇) and (𝑄′, 𝜇′) and non-
negative integers 𝑢 and 𝑢′ together with a𝑈-simple isomorphism of stably𝑈-based
𝜖-quadratic formations

(𝑃, 𝜓; 𝐹, 𝐺) ⊕ 𝜕 (𝑄, 𝜇) ⊕ (𝐻𝜖 (𝑅𝑢); 𝑅𝑢, (𝑅𝑢)∗)
� (𝑃′, 𝜓′; 𝐹′, 𝐺′) ⊕ 𝜕 (𝑄′, 𝜇′) ⊕ (𝐻𝜖 (𝑅𝑢

′ ); 𝑅𝑢′ , (𝑅𝑢′ )∗).

Addition is given by the sum of two stably 𝑈-based 𝜖-quadratic forms. The zero
element is represented by 𝜕 (𝑄, 𝜇) ⊕ (𝐻𝜖 (𝑅𝑢); 𝑅𝑢, (𝑅𝑢)∗) for any stably 𝑈-based
(−𝜖)-quadratic form (𝑄, 𝜇) and non-negative integer 𝑢. The inverse of [𝑃, 𝜓; 𝐹, 𝐺]
is represented by (𝑃,−𝜓; 𝐹′, 𝐺′) for any choice of stably𝑈-based lagrangians 𝐹′ and
𝐺′ in𝐻𝜖 (𝑃) such that 𝐹 and 𝐹′ are complementary and𝐺 and𝐺′ are complementary
and the𝑈-torsion of the obvious isomorphism 𝐹⊕𝐹′ �−→ 𝑃 and𝐺⊕𝐺′ �−→ 𝑃 vanishes
in 𝐾1 (𝑅)/𝑈.

For an odd integer 𝑛 define the abelian group 𝐿𝑈𝑛 (𝑅) called the 𝑛-th𝑈-decorated
quadratic 𝐿-group of 𝑅

𝐿𝑈𝑛 (𝑅) :=
{
𝐿𝑈1 (𝑅) if 𝑛 ≡ 1 mod 4;
𝐿𝑈3 (𝑅) if 𝑛 ≡ 3 mod 4.

Notation 9.95. Consider the case of a group ring 𝑅𝜋 with the 𝑤-twisted involu-
tion. For a group 𝐺 denote by Wh𝑅𝑛 (𝐺) the 𝑛-th Whitehead group of 𝑅𝐺, which
is the (𝑛 − 1)-th homotopy group of the homotopy fiber of the assembly map
𝐵𝐺+ ∧ K(𝑅) → K(𝑅𝐺). Then we define 𝐿𝑠𝑛 (𝑅𝜋, 𝑤) by 𝐿𝑈𝑛 (𝑅𝜋) for 𝑈 the ker-
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nel of the map 𝐾1 (𝑅𝜋) → Wh𝑅1 (𝜋). Observe that 𝐿𝑠𝑛 (𝑅𝜋) depends on the pair
(𝑅, 𝜋). Sometimes one denotes 𝐿𝑠𝑛 (𝑅𝜋, 𝑤) also by 𝐿 ⟨2⟩𝑛 (𝑅𝜋, 𝑤).

If 𝑅 = Z𝜋 with the 𝑤-twisted involution, then𝑈 ⊆ 𝐾1 (Z𝜋) reduces to the abelian
group 𝑉 ⊆ 𝐾1 (Z𝐺) of elements of the shape (±𝑔) for 𝑔 ∈ 𝜋. So we get the simple
quadratic 𝐿-groups

𝐿𝑠𝑛 (Z𝜋, 𝑤) = 𝐿
⟨2⟩
𝑛 (Z𝜋, 𝑤) = 𝐿𝑉𝑛 (Z𝜋, 𝑤).

9.10.2 The Simple Surgery Obstruction

Let ( 𝑓 , 𝑓 ) be a normal map of degree one with ( 𝑓 , 𝜕 𝑓 ) : (𝑀, 𝜕𝑀) → (𝑋, 𝜕𝑋)
as underlying map such that (𝑋, 𝜕𝑋) is a simple finite Poincaré complex and 𝜕 𝑓
is a simple homotopy equivalence. Then the definition of the surgery obstruction
appearing in Theorem 9.88 (i) can be modified to the simple setting. Note that the
difference between the 𝐿-groups 𝐿ℎ𝑛 (Z𝜋, 𝑤) and the simple 𝐿-groups 𝐿𝑠𝑛 (Z𝜋, 𝑤) is
the additional structure of a𝑈-basis. The definition of the simple surgery obstruction

𝜎( 𝑓 , 𝑓 ) ∈ 𝐿𝑠𝑛 (Z𝜋, 𝑤)(9.96)

is the same as the one appearing in Theorem 9.88 (i) except that we must explain
how the various surgery kernels inherit a stable𝑈-basis.

The elementary proof of the following lemma is left to the reader. Note that for
any stably 𝑈-based 𝑅-module 𝑉 and element 𝑥 ∈ 𝐾1 (𝑅)/𝑈 we can find another
stable 𝑈-basis 𝐶 for 𝑉 such that the 𝑈-torsion 𝜏𝑈 (id : (𝑉, 𝐵) → (𝑉,𝐶)) is 𝑥. This
is not true in the unstable setting. For instance, there exists a ring 𝑅 with an element
𝑥 ∈ 𝐾1 (𝑅)/𝑈 for𝑈 the image of 𝐾1 (Z) → 𝐾1 (𝑅) such that 𝑥 cannot be represented
by a unit in 𝑅, in other words 𝑥 is not the𝑈-torsion of any 𝑅-automorphism of 𝑅.

Lemma 9.97. Let𝐶∗ be a contractible finite stably free 𝑅-chain complex and 𝑟 be an
integer. Suppose that each chain module 𝐶𝑖 with 𝑖 ≠ 𝑟 comes with a stable 𝑈-basis.
Then𝐶𝑟 inherits a preferred stable𝑈-basis which is uniquely defined by the property
that the𝑈-torsion of 𝐶∗ vanishes in 𝐾1 (𝑅)/𝑈.

We have the following version of Lemma 9.70

Lemma 9.98. If 𝑓 : 𝑋 → 𝑌 is 𝑘-connected for 𝑛 = 2𝑘 or 𝑛 = 2𝑘 + 1, then 𝐾𝑘 (𝑀) is
stably finitely generated free and inherits a preferred stable𝑈-basis.

Proof. See [667, Lemma 10.27 (i) on page 403]. ⊓⊔

Next we can give the simple version of the surgery obstruction theorem. For its
proof see for instance [667, Theorem 10.30 on page 404]. Note that simple normal
bordism class means that in the definition of normal nullbordisms the pairs (𝑌, 𝜕𝑌 ),
(𝜕0𝑌, 𝜕0𝑌 ∩𝜕1𝑌 ), and (𝜕1𝑌, 𝜕0𝑌 ∩𝜕1𝑌 ) are required to be simple finite Poincaré pairs
and the map 𝜕2𝐹 : 𝜕2𝑀 → 𝜕2𝑌 is required to be a simple homotopy equivalence.
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Theorem 9.99. (Simple surgery obstruction for manifolds with boundary) Let
( 𝑓 , 𝑓 ) be a normal map of degree one, whose underlying map is ( 𝑓 , 𝜕 𝑓 ) : (𝑀, 𝜕𝑀) →
(𝑋, 𝜕𝑋) such that (𝑋, 𝜕𝑋) is a simple finite Poincaré complex and 𝜕 𝑓 is a simple
homotopy equivalence. Put 𝑛 = dim(𝑀) and 𝜋 = 𝜋1 (𝑋). Then:

(i) The simple surgery obstruction depends only on the simple normal bordism class
of ( 𝑓 , 𝑓 );

(ii) Suppose 𝑛 ≥ 5. Then 𝜎( 𝑓 , 𝑓 ) = 0 in 𝐿𝑠𝑛 (Z𝜋, 𝑤) if and only if we can do a finite
number of surgery steps on the interior of 𝑀 leaving the boundary fixed to obtain
a normal map ( 𝑓 ′, 𝑓 ′) : 𝜈𝑀 ′ → 𝜉 which covers a simple homotopy equivalence
of pairs ( 𝑓 ′, 𝜕 𝑓 ′) : (𝑀 ′, 𝜕𝑀 ′) → (𝑋, 𝜕𝑋) with 𝜕𝑀 ′ = 𝜕𝑀 and 𝜕 𝑓 ′ = 𝜕 𝑓 .

Exercise 9.100. Let𝑊 be a compact manifold of dimension 𝑛whose boundary is the
disjoint union 𝑀 ⨿ 𝑁 . Let ( 𝑓 , 𝑓 ) be a normal map such that the underlying map of
pairs is of the shape 𝑓 : (𝑊, 𝜕𝑊) → (𝑋×[0, 1], 𝑋×{0, 1}) for some closed manifold
𝑋 and induces a simple homotopy equivalence 𝜕𝑊 → 𝑋 × {0, 1}. Show that 𝑀 and
𝑁 are diffeomorphic provided that the simple surgery obstruction 𝜎( 𝑓 , 𝑓 ) of (9.96)
vanishes and 𝑛 ≥ 6.

9.10.3 Decorated 𝑳-Groups

𝐿-groups are designed as obstruction groups for surgery problems. The decoration
reflects what kind of surgery problem one is interested in.

The 𝐿-group 𝐿𝑛 (𝑅) of Definitions 9.25 and 9.81 are also denoted by 𝐿 ⟨1⟩𝑛 (𝑅)
or by 𝐿ℎ𝑛 (𝑅). If one works with finitely generated projective modules instead of
finitely generated free 𝑅-modules in Definitions 9.25 and 9.81, one obtains projec-
tive quadratic 𝐿-groups 𝐿 𝑝𝑛 (𝑅), which are also denoted by 𝐿 ⟨0⟩𝑛 (𝑅). The negative
decorations 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅) for 𝑗 ∈ Z, 𝑗 ≤ −1 can be obtained using suitable categories of
modules parametrized over R𝑘 . There are forgetful maps 𝐿 ⟨ 𝑗+1⟩

𝑛 (𝑅) → 𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅) for

𝑗 ∈ Z, 𝑗 ≤ 0. The group 𝐿 ⟨−∞⟩𝑛 (𝑅) is defined as the colimit over these maps. For
details the reader can consult [833, 840].

Let us summarize the decorations for integral group rings. We have already
introduced 𝐿𝑠𝑛 (Z𝜋, 𝑤) = 𝐿

⟨2⟩
𝑛 (Z𝜋, 𝑤) in Notation 9.95. We get

𝐿ℎ𝑛 (Z𝜋, 𝑤) = 𝐿
⟨1⟩
𝑛 (Z𝜋, 𝑤) = 𝐿𝑛 (Z𝜋, 𝑤);

𝐿
𝑝
𝑛 (Z𝜋, 𝑤) = 𝐿

⟨0⟩
𝑛 (Z𝜋, 𝑤),

and have furthermore 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝜋) for 𝑗 ∈ Z, 𝑗 ≤ −1 and 𝐿 ⟨−∞⟩𝑛 (Z𝜋).
For the Farrell-Jones Conjecture we will have to take the decoration ⟨−∞⟩ where

for applications the decorations ℎ and 𝑠 will be relevant. So we have to understand
how one can compare them.
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9.10.4 The Rothenberg Sequence

Next we explain how decorated 𝐿-groups can be computed from one another for a
ring with involution. We have the long exact Rothenberg sequence [837, Proposi-
tion 1.10.1 on page 104], [840, 17.2] for 𝑗 ∈ {0,−1,−2, . . .} ⨿ {−∞} and 𝑛 ∈ Z

(9.101) · · · → 𝐿
⟨ 𝑗+1⟩
𝑛 (𝑅) → 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅) → 𝐻𝑛 (Z/2;𝐾 𝑗 (𝑅))

→ 𝐿
⟨ 𝑗+1⟩
𝑛−1 (𝑅) → 𝐿

⟨ 𝑗 ⟩
𝑛−1 (𝑅) → · · · .

Here 𝐻𝑛 (Z/2;𝐾 𝑗 (𝑅)) is the Tate-cohomology of the group Z/2 with coefficients in
the Z[Z/2]-module 𝐾 𝑗 (𝑅). The involution on 𝐾 𝑗 (𝑅) comes from the involution on
𝑅.

For a group ring 𝑅𝜋 with the 𝑤-twisted involution and elements 𝑗 in
{1, 0,−1, . . .} ⨿ {−∞} and 𝑛 in Z, we get the long exact sequence

(9.102) · · · → 𝐿
⟨ 𝑗+1⟩
𝑛 (𝑅𝜋, 𝑤) → 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅𝜋, 𝑤) → 𝐻𝑛 (Z/2; Wh𝑅𝑗 (𝜋))

→ 𝐿
⟨ 𝑗+1⟩
𝑛−1 (𝑅𝜋, 𝑤) → 𝐿

⟨ 𝑗 ⟩
𝑛−1 (𝑅𝜋, 𝑤) → · · · .

Over the integral group ring WhZ1 (𝜋) agrees with Wh(𝜋) and WhZ𝑗 (𝜋) agrees
with 𝐾 𝑗 (Z𝜋) for 𝑗 ≤ 0. Hence (9.102) reduces for 𝑅 = Z𝐺 and 𝑗 ≤ 0 to

(9.103) · · · → 𝐿
⟨ 𝑗+1⟩
𝑛 (Z𝜋, 𝑤) → 𝐿

⟨ 𝑗 ⟩
𝑛 (Z𝜋, 𝑤) → 𝐻𝑛 (Z/2;𝐾 𝑗 (Z𝜋))

→ 𝐿
⟨ 𝑗+1⟩
𝑛−1 (Z𝜋, 𝑤) → 𝐿

⟨ 𝑗 ⟩
𝑛−1 (Z𝜋, 𝑤) → · · · .

In particular, we get the long exact sequences

(9.104) . . .→ 𝐿
⟨ℎ⟩
𝑛 (Z𝜋, 𝑤) → 𝐿

⟨𝑝⟩
𝑛 (Z𝜋, 𝑤) → 𝐻𝑛 (Z/2;𝐾0 (Z𝜋))

→ 𝐿
⟨ℎ⟩
𝑛−1 (Z𝜋, 𝑤) → 𝐿

⟨𝑝⟩
𝑛−1 (Z𝜋, 𝑤) → · · · .

Moreover, we have the long exact sequence

(9.105) · · · → 𝐿
⟨𝑠⟩
𝑛 (Z𝜋, 𝑤) → 𝐿

⟨ℎ⟩
𝑛 (Z𝜋, 𝑤) → 𝐻𝑛 (Z/2; Wh(𝜋))

→ 𝐿
⟨𝑠⟩
𝑛−1 (𝑅) → 𝐿

⟨ℎ⟩
𝑛−1 (𝑅) → · · · .

Theorem 9.106 (Independence of decorations). Let 𝐺 be a group such that
Wh(𝐺), 𝐾0 (Z𝐺), and 𝐾𝑛 (Z𝐺) for all 𝑛 ∈ Z, 𝑛 ≤ −1 vanish. Then for every
𝑗 ∈ Z, 𝑗 ≤ −1 and every 𝑛 ∈ Z the forgetful maps induce isomorphisms

𝐿𝑠𝑛 (Z𝐺)
�−→ 𝐿ℎ𝑛 (Z𝐺)

�−→ 𝐿
𝑝
𝑛 (Z𝐺)

�−→ 𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝐺)

�−→ 𝐿
⟨−∞⟩
𝑛 (Z𝐺).

Proof. This follows from the various Rothenberg sequences. ⊓⊔
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Exercise 9.107. Show that for every group 𝐺, every 𝑗 ∈ Z, 𝑗 ≤ −1, and every 𝑛 ∈ Z
the forgetful maps induces isomorphisms after inverting 2

𝐿𝑠 (Z𝐺) [1/2] �−→ 𝐿ℎ (Z𝐺) [1/2] �−→ 𝐿 𝑝 (Z𝐺) [1/2]
�−→ 𝐿 ⟨ 𝑗 ⟩ (Z𝐺) [1/2] �−→ 𝐿 ⟨−∞⟩ (Z𝐺) [1/2] .

9.10.5 The Shaneson Splitting

The Bass-Heller-Swan decomposition in 𝐾-theory, see Theorem 6.16, has the fol-
lowing analog for the algebraic 𝐿-groups.

Theorem 9.108 (Shaneson splitting). For every group𝐺, every ring with involution
𝑅, every 𝑗 ∈ Z, 𝑗 ≤ 2, and 𝑛 ∈ Z, there is a natural isomorphism

𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅𝐺) ⊕ 𝐿 ⟨ 𝑗−1⟩

𝑛−1 (𝑅𝐺)
�−→ 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅[𝐺 × Z])

and we have the natural isomorphism

𝐿
⟨−∞⟩
𝑛 (𝑅𝐺) ⊕ 𝐿 ⟨−∞⟩

𝑛−1 (𝑅𝐺)
�−→ 𝐿

⟨−∞⟩
𝑛 (𝑅[𝐺 × Z]).(9.109)

The map appearing in the theorem above comes from the map 𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅𝐺) →

𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅[𝐺 × Z]) induced by the inclusion 𝐺 → 𝐺 × Z and a map 𝐿 ⟨ 𝑗−1⟩

𝑛−1 (𝑅𝐺) →
𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅[𝐺×Z]) which is essentially given by the cartesian product with 𝑆1. The latter

explains the raise from (𝑛−1) to 𝑛. But why does the decoration raise from ( 𝑗 −1) to
𝑗? The reason is the product formula for Whitehead torsion, see Theorem 3.37 (iv).
It predicts for any (not necessarily simple) homotopy equivalence 𝑓 : 𝑋 → 𝑌 of
finite 𝐶𝑊-complexes that the homotopy equivalence 𝑓 × id𝑆1 : 𝑋 × 𝑆1 → 𝑌 × 𝑆1 is
a simple homotopy equivalence. There is also a product formula for the finiteness
obstruction which predicts for a finitely dominated (not necessarily up to homotopy
finite) 𝐶𝑊-complex 𝑋 that 𝑋 × 𝑆1 is homotopy equivalent to a finite 𝐶𝑊-complex.
The original proof of the Shaneson splitting for the case 𝑗 = 2 and 𝑅 = Z i.e., for
the isomorphism

𝐿𝑠𝑛 (Z𝐺) ⊕ 𝐿ℎ𝑛−1 (Z𝐺)
�−→ 𝐿𝑠𝑛 (Z[𝐺 × Z])

can be found in [913]. The proof for arbitrary 𝑗 and 𝑅 is given in [840, 17.2]. Note
that for 𝑗 = 1 we obtain an isomorphism

𝐿ℎ𝑛 (𝑅𝐺) ⊕ 𝐿
𝑝

𝑛−1 (𝑅𝐺)
�−→ 𝐿ℎ𝑛 (𝑅[𝐺 × Z])(9.110)

Remark 9.111 (UNil-groups). Even though in the Shaneson splitting (9.109) above
there are no terms analogous to the Nil-terms in the Bass-Heller-Swan decomposition
in 𝐾-theory, see Theorem 6.16, such Nil-phenomena do also occur in 𝐿-theory, as
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soon as one considers amalgamated free products. The corresponding groups are
the UNil-groups. They are (not necessarily finitely generated) 2-primary abelian
groups see [204]. For more information about the UNil-groups we refer for instance
to [63, 201, 202, 254, 255, 258, 352, 841]. How the Farrell-Jones Conjecture predicts
exact Mayer-Vietoris sequences for amalgamated free products after inverting 2 is
explained in Section 15.7.

Exercise 9.112. Compute 𝐿 ⟨ 𝑗 ⟩𝑛 (Z[Z]).

9.11 The Farrell-Jones Conjecture for Algebraic 𝑳-Theory for
Torsionfree Groups

The Farrell-Jones Conjecture for algebraic 𝐿-theory, which will later be formulated
in full generality in Chapter 13, reduces for a torsionfree group to the following
conjecture. Given a ring with involution 𝑅, there exists an 𝐿-spectrum associated to
𝑅 with decoration ⟨−∞⟩

L⟨−∞⟩ (𝑅)(9.113)

with the property that 𝜋𝑛 (L⟨−∞⟩ (𝑅)) = 𝐿
⟨−∞⟩
𝑛 (𝑅) holds for 𝑛 ∈ Z.

Conjecture 9.114 (Farrell-Jones Conjecture for 𝐿-theory for torsionfree groups).
Let 𝐺 be a torsionfree group. Let 𝑅 be any ring with involution.

Then the assembly map

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) → 𝐿
⟨−∞⟩
𝑛 (𝑅𝐺)

is an isomorphism for all 𝑛 ∈ Z.

We get for every 𝑗 ∈ {1, 0,−1, . . .} ⨿ {−∞}

𝐻𝑛 (𝐵Z; L⟨ 𝑗 ⟩ (𝑅)) � 𝐻𝑛 ({•}; L⟨ 𝑗 ⟩ (𝑅)) ⊕ 𝐻𝑛−1 ({•}; L⟨ 𝑗 ⟩ (𝑅))

� 𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅) ⊕ 𝐿 ⟨ 𝑗 ⟩𝑛−1 (𝑅).

In view of the Shaneson splitting of Theorem 9.108 it is now obvious why we have
passed to the decoration 𝑗 = −∞ in Conjecture 9.114.

Exercise 9.115. Let 𝐹𝑔 be the closed orientable surface of genus 𝑔. Compute
𝐿
⟨ 𝑗 ⟩
𝑛 (Z[𝜋1 (𝐹𝑔)]) for all 𝑗 ∈ Z, 𝑗 ≤ 2, and 𝑛 ∈ Z using the fact that Conjecture 9.114

holds for 𝐺 = 𝜋1 (𝐹𝑔).



9.12 The Surgery Exact Sequence 245

Lemma 9.116. Let 𝑋 be a 𝐶𝑊-complex.

(i) If 𝑋 is finite and we localize at the prime 2, we obtain a natural isomorphism

𝐻𝑛 (𝑋; L⟨−∞⟩ (Z)) (2) �
∏
𝑗∈Z

(
𝐻𝑛+4 𝑗 (𝑋;Z(2) ) × 𝐻𝑛+4 𝑗−2 (𝑋;Z/2)

)
;

(ii) If we invert 2, we obtain a natural isomorphism

𝐻𝑛 (𝑋; L⟨−∞⟩ (Z)) [1/2] � 𝐾𝑂𝑛 (𝑋) [1/2] .

Proof. (i) The 𝐿-theory spectrum L⟨−∞⟩ (Z) (2) localized at (2) is an infinite product
of Eilenberg-MacLane spectra by [946, Theorem A].
(ii) This follows from the more general case discussed in Subsection 15.14.4, which
is based on [614, 615]. ⊓⊔

9.12 The Surgery Exact Sequence

In this section we introduce the Surgery Exact Sequence. It is the realization of the
Surgery Program, which we have explained in Remark 3.53. The Surgery Exact Se-
quence is the main theoretical tool in solving the classification problem of manifolds
of dimensions greater than or equal to five.

9.12.1 The Structure Set

Definition 9.117 (Simple structure set). Let 𝑋 be a closed manifold of dimension
𝑛. We call two simple homotopy equivalences 𝑓𝑖 : 𝑀𝑖 → 𝑋 from closed manifolds
𝑀𝑖 of dimension 𝑛 to 𝑋 for 𝑖 = 0, 1 equivalent if there exists a diffeomorphism
𝑔 : 𝑀0 → 𝑀1 such that 𝑓1 ◦ 𝑔 is homotopic to 𝑓0. The simple structure set S𝑠𝑛 (𝑋) of
𝑋 is the set of equivalence classes of simple homotopy equivalences 𝑀 → 𝑋 from
closed manifolds of dimension 𝑛 to 𝑋 . This set has a preferred base point, namely,
the class of the identity id : 𝑋 → 𝑋 .

The simple structure setS𝑠𝑛 (𝑋) is the basic object in the study of manifolds which
are diffeomorphic to 𝑋 . Note that a simple homotopy equivalence 𝑓 : 𝑀 → 𝑋 is
homotopic to a diffeomorphism if and only if it represents the base point in S𝑠𝑛 (𝑋).
A manifold 𝑀 is diffeomorphic to 𝑋 if and only if for some simple homotopy equiv-
alence 𝑓 : 𝑀 → 𝑋 the class of [ 𝑓 ] agrees with the preferred base point. Some care
is necessary since it may be possible that a given simple homotopy equivalence
𝑓 : 𝑀 → 𝑋 is not homotopic to a diffeomorphism, although 𝑀 and 𝑋 are diffeo-
morphic. Hence it does not suffice to compute S𝑠𝑛 (𝑋), one also has to understand
the operation of the group of homotopy classes of simple self-equivalences of 𝑋 on
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S𝑠𝑛 (𝑋). This can be rather complicated in general. But it will be no problem in the
case 𝑋 = 𝑆𝑛 because any self-homotopy equivalence 𝑆𝑛 → 𝑆𝑛 is homotopic to a
self-diffeomorphism.

There is also a version of the structure set which does not take Whitehead torsion
into account.

Definition 9.118 (Structure set). Let 𝑋 be a closed manifold of dimension 𝑛. We call
two homotopy equivalences 𝑓𝑖 : 𝑀𝑖 → 𝑋 from closed manifolds 𝑀𝑖 of dimension 𝑛
to 𝑋 for 𝑖 = 0, 1 equivalent if there is a manifold triad (𝑊 ; 𝜕0𝑊, 𝜕1𝑊) with 𝜕0𝑊 ∩
𝜕1𝑊 = ∅ and a homotopy equivalence of triads (𝐹; 𝜕0𝐹, 𝜕1𝐹) : (𝑊 ; 𝜕0𝑊, 𝜕1𝑊) →
(𝑋 × [0, 1]; 𝑋 × {0}, 𝑋 × {1}) together with diffeomorphisms 𝑔0 : 𝑀0 → 𝜕0𝑊 and
𝑔1 : 𝑀1 → 𝜕1𝑊 satisfying 𝜕𝑖𝐹 ◦ 𝑔𝑖 = 𝑓𝑖 for 𝑖 = 0, 1. The structure set Sℎ𝑛 (𝑋) of 𝑋
is the set of equivalence classes of homotopy equivalences 𝑀 → 𝑋 from a closed
manifold 𝑀 of dimension 𝑛 to 𝑋 . This set has a preferred base point, namely, the
class of the identity id : 𝑋 → 𝑋 .

Remark 9.119 (The simple structure set and 𝑠-cobordisms). If we require in
Definition 9.118 the homotopy equivalences 𝐹, 𝑓0, and 𝑓1 to be simple homotopy
equivalences, we get the simple structure setS𝑠𝑛 (𝑋) of Definition 9.117, provided that
𝑛 ≥ 5. We have to show that the two equivalence relations are the same. This follows
from the 𝑠-Cobordism Theorem 3.47. Namely, 𝑊 appearing in Definition 9.118
is an ℎ-cobordism and is even an 𝑠-cobordism if we require 𝐹, 𝑓0, and 𝑓1 to be
simple homotopy equivalences, see Theorem 3.37. Hence there is a diffeomorphism
Φ : 𝜕0𝑊 × [0, 1] → 𝑊 inducing the obvious identification 𝜕0𝑊 × {0} → 𝜕0𝑊 and
some diffeomorphism 𝜙1 : (𝜕0𝑊) = (𝜕0𝑊 ×{1}) → 𝜕1𝑊 . Then 𝜙 : 𝑀0 → 𝑀1 given
by 𝑔−1

1 ◦ 𝜙1 ◦ 𝑔0 is a diffeomorphism such that 𝑓1 ◦ 𝜙 is homotopic to 𝑓0. The other
implication is obvious.

9.12.2 Realizability of Surgery Obstructions

In this section we explain that any element in the 𝐿-group 𝐿𝑛 (Z𝜋, 𝑤) for 𝑛 ≥ 5
can be realized as the surgery obstruction of a normal map ( 𝑓 , 𝑓 ) covering a map
( 𝑓 , 𝜕 𝑓 ) : (𝑀, 𝜕𝑀) → (𝑋, 𝜕𝑋) of compact manifolds if we require that 𝑋 has non-
empty boundary 𝜕𝑋 and that 𝜕 𝑓 is a (simple) homotopy equivalence.

Theorem 9.120 (Realizability of the surgery obstruction). Suppose 𝑛 ≥ 5. Con-
sider a 𝑤-oriented connected compact manifold 𝑋 with non-empty boundary 𝜕𝑋 . Let
𝜋 be its fundamental group and let 𝑤 : 𝜋 → {±1} be its orientation homomorphism.
Consider an element 𝑥 ∈ 𝐿𝑛 (Z𝜋, 𝑤).

Then we can find a normal map of degree one ( 𝑓 , 𝑓 ) covering a map of triads

𝑓 = ( 𝑓 ; 𝜕0 𝑓 , 𝜕1 𝑓 ) : (𝑀; 𝜕0𝑀, 𝜕1𝑀) → (𝑋 × [0, 1]; 𝑋 × {0} ∪ 𝜕𝑋 × [0, 1], 𝑋 × {1})

with the following properties:
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(i) 𝜕0 𝑓 is a diffeomorphism and 𝑓 |𝜕0𝑀 is a stabilization of 𝑇 (𝜕 𝑓0);
(ii) 𝜕1 𝑓 is a homotopy equivalence;

(iii) The surgery obstruction 𝜎( 𝑓 , 𝑓 ) in 𝐿𝑛 (Z𝜋, 𝑤), see (9.84), is the given element
𝑥.

The analogous statement holds for 𝑥 ∈ 𝐿𝑠𝑛 (Z𝜋, 𝑤) if we require 𝜕1 𝑓 to be a simple
homotopy equivalence and we consider the simple surgery obstruction, see (9.96).

Proof. See [667, Theorem 8.195 on page 317 and Theorem 9.115 on page 390]. ⊓⊔

Remark 9.121 (Surgery obstructions of closed manifolds). It is not true that for
any 𝑤-oriented closed manifold 𝑁 of dimension 𝑛 with fundamental group 𝜋 and
orientation homomorphism 𝑤 : 𝜋 → {±1} and any element 𝑥 ∈ 𝐿𝑛 (Z𝜋, 𝑤) there is
a normal map ( 𝑓 , 𝑓 ) covering a map of 𝑤-oriented closed manifolds 𝑓 : 𝑀 → 𝑁 of
degree one such that 𝜎( 𝑓 , 𝑓 ) = 𝑥. Note that in Theorem 9.120 the target manifold
𝑋 × [0, 1] is not closed. The same remark holds for 𝐿𝑠𝑛 (Z𝜋, 𝑤). These questions are
discussed in in [454, 459, 720, 721], see also [667, Remark 8.199 on page 321 and
Remark 9.117 on page 392].

9.12.3 The Surgery Exact Sequence

Now we can establish one of the main tools in the classification of manifolds, the
Surgery Exact Sequence. We have already extended the notion of a normal map for
closed manifolds to manifolds with boundary and explained the notion of a normal
bordism for normal maps of pairs in Section 9.9. In this Subsection 9.12.3, we will
consider only normal maps with the same target (𝑋, 𝜕𝑋), whose underlying maps are
diffeomorphisms on the boundary. We call two of them with the same target normally
bordant if there is a normal bordism between them in the sense of Definition 9.59,
whose underlying map induces a diffeomorphism 𝜕1𝑊 → 𝜕𝑋 × [0, 1].

Definition 9.122. Let (𝑋, 𝜕𝑋) be a 𝑤-oriented compact manifold of dimension 𝑛
with boundary 𝜕𝑋 . Define the set of normal maps to (𝑋, 𝜕𝑋)

N𝑛 (𝑋, 𝜕𝑋)

to be the set of normal bordism classes of normal maps of degree one ( 𝑓 , 𝑓 ) with
underlying map ( 𝑓 , 𝜕 𝑓 ) : (𝑀, 𝜕𝑀) → (𝑋, 𝜕𝑋) for which 𝜕 𝑓 : 𝜕𝑀 → 𝜕𝑋 is a
diffeomorphism.

Let 𝑋 be a closed 𝑤-oriented connected manifold of dimension 𝑛 ≥ 5. Denote by
𝜋 its fundamental group and by 𝑤 : 𝜋 → {±1} its orientation homomorphism. Let
N𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1}) andN𝑛 (𝑋) be the set of normal maps of degree one as
introduced in Definition 9.122. Let S𝑠𝑛 (𝑋) be the structure set of Definition 9.117.
Denote by 𝐿𝑠𝑛 (Z𝜋, 𝑤) the simple surgery obstruction group, see Notation 9.95.
Denote by
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𝜎𝑠𝑛+1 : N𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1}) → 𝐿𝑠𝑛+1 (Z𝜋, 𝑤);(9.123)
𝜎𝑠𝑛 : N𝑛 (𝑋) → 𝐿𝑠𝑛 (Z𝜋, 𝑤),(9.124)

the maps that assign to the normal bordism class of a normal map of degree one its
simple surgery obstruction, see (9.96). This is well-defined by Theorem 9.88 (ii).
Let

𝜂𝑠𝑛 : S𝑠𝑛 (𝑋) → N𝑛 (𝑋)(9.125)

be the map that sends the class [ 𝑓 ] ∈ S𝑠𝑛 (𝑋) represented by a simple homotopy
equivalence 𝑓 : 𝑀 → 𝑋 to the normal bordism class of the following normal
map of degree one. Choose a homotopy inverse 𝑓 −1 : 𝑋 → 𝑀 and a homotopy
ℎ : id𝑀 ≃ 𝑓 −1 ◦ 𝑓 . Put 𝜉 = ( 𝑓 −1)∗𝑇𝑀 . Up to isotopy of bundle maps there is
precisely one bundle map (ℎ, ℎ) : 𝑇𝑀 × [0, 1] → 𝑇𝑀 covering ℎ : 𝑀 × [0, 1] → 𝑀

whose restriction to 𝑇𝑀 × {0} is the identity map 𝑇𝑀 × {0} → 𝑇𝑀 . The restriction
of ℎ to 𝑋 × {1} induces a bundle map 𝑓 : 𝑇𝑀 → 𝜉 covering 𝑓 : 𝑀 → 𝑋 . Put
𝜂( [ 𝑓 ]) := [( 𝑓 , 𝑓 )]. One easily checks that the normal bordism class of ( 𝑓 , 𝑓 )
depends only on [ 𝑓 ] ∈ S𝑠𝑛 (𝑋) and hence that 𝜂 is well-defined.

Next we define an action of the abelian group 𝐿𝑠
𝑛+1 (Z𝜋, 𝑤) on the structure set

S𝑠𝑛 (𝑋)

𝜌𝑠𝑛 : 𝐿𝑠𝑛+1 (Z𝜋, 𝑤) × S
𝑠
𝑛 (𝑋) → S𝑠𝑛 (𝑋).(9.126)

Fix 𝑥 ∈ 𝐿𝑠
𝑛+1 (Z𝜋, 𝑤) and [ 𝑓 ] ∈ S𝑠𝑛 (𝑋) represented by a simple homotopy equiv-

alence 𝑓 : 𝑀 → 𝑋 . By Theorem 9.120 we can find a normal map (𝐹, 𝐹) covering
a map of triads (𝐹; 𝜕0𝐹, 𝜕1𝐹) : (𝑊 ; 𝜕0𝑊, 𝜕1𝑊) → (𝑀 × [0, 1];𝑀 × {0}, 𝑀 × {1})
such that 𝜕0𝐹 is a diffeomorphism, 𝜕1𝐹 is a simple homotopy equivalence, and
𝜎(𝐹, 𝐹) = 𝑥. Then define 𝜌𝑠𝑛 (𝑥, [ 𝑓 ]) by the class [ 𝑓 ◦ 𝜕1𝐹 : 𝜕1𝑊 → 𝑋]. We
have to show that this is independent of the choice of (𝐹, 𝐹). Let (𝐹′, 𝐹′) be
a second choice. We can glue 𝑊 ′ and 𝑊− together along the diffeomorphism
(𝜕0𝐹)−1 ◦ 𝜕0𝐹

′ : 𝜕0𝑊
′ → 𝜕0𝑊 and obtain a normal bordism from (𝐹 |𝜕1𝑊 , 𝜕1𝐹)

to (𝐹′ |𝜕1𝑊 ′ , 𝜕1𝐹
′). The simple obstruction of this normal bordism is

𝜎(𝐹′, 𝐹′) − 𝜎(𝐹, 𝐹) = 𝑥 − 𝑥 = 0.

Because of Theorem 9.99 (ii) we can perform surgery relative boundary on this
normal bordism to arrange that the reference map from it to 𝑋 × [0, 1] is a simple
homotopy equivalence. In view of Remark 9.119 this shows that 𝑓 ◦𝜕1𝐹 and 𝑓 ◦𝜕1𝐹

′

define the same element inS𝑠𝑛 (𝑋). One easily checks that this defines a group action,
since the surgery obstruction is additive under stacking normal bordisms together.
The next result is the main result of this chapter and follows from the definitions and
Theorem 9.99 (ii).

Theorem 9.127 (The Surgery Exact Sequence). Let 𝑋 be a closed 𝑤-oriented
connected manifold of dimension 𝑛 ≥ 5. Then, in the notation above, the so-called
Surgery Exact Sequence
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N𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1})
𝜎𝑠
𝑛+1−−−−→ 𝐿𝑠𝑛+1 (Z𝜋, 𝑤)

𝜕𝑠
𝑛+1−−−→ S𝑠𝑛 (𝑋)
𝜂𝑠𝑛−−→ N𝑛 (𝑋)

𝜎𝑠𝑛−−→ 𝐿𝑠𝑛 (Z𝜋, 𝑤)

is exact for 𝑛 ≥ 5 in the following sense. An element 𝑧 ∈ N𝑛 (𝑋) lies in the image of 𝜂𝑠𝑛
if and only if 𝜎𝑠𝑛 (𝑧) = 0. Two elements 𝑦1, 𝑦2 ∈ S𝑠𝑛 (𝑋) have the same image under 𝜂𝑠𝑛
if and only if there exists an element 𝑥 ∈ 𝐿𝑠

𝑛+1 (Z𝜋, 𝑤) with 𝜌𝑠𝑛 (𝑥, 𝑦1) = 𝑦2. For two
elements 𝑥1, 𝑥2 in 𝐿𝑠

𝑛+1 (Z𝜋) we have 𝜌𝑠𝑛 (𝑥1, [id : 𝑋 → 𝑋]) = 𝜌𝑠𝑛 (𝑥2, [id : 𝑋 → 𝑋])
if and only if there is a 𝑢 ∈ N𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1}) with 𝜎𝑠

𝑛+1 (𝑢) = 𝑥1 − 𝑥2.
There is an analogous Surgery Exact Sequence

N ℎ
𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1})

𝜎ℎ
𝑛+1−−−−→ 𝐿ℎ𝑛+1 (Z𝜋, 𝑤)

𝜕ℎ
𝑛+1−−−→ Sℎ (𝑋)
𝜂ℎ𝑛−−→ N𝑛 (𝑋)

𝜎ℎ𝑛−−→ 𝐿ℎ𝑛 (Z𝜋, 𝑤),

where Sℎ (𝑋) is the structure set of Definition 9.118 and 𝐿ℎ𝑛 (Z𝜋, 𝑤) := 𝐿𝑛 (Z𝜋, 𝑤)
has been introduced in Definitions 9.25 and 9.81.

Remark 9.128 (Extending the Surgery Exact Sequence to the left). The Surgery
Exact Sequence of Theorem 9.127 can be extended to infinity to the left. In the range
far enough to the left it is a sequence of abelian groups.

9.13 Surgery Theory in the PL and in the Topological Category

One can also develop surgery theory in the PL (=piecewise linear) category or
in the topological category [579]. This requires us to carry over the notions of
vector bundles and tangent bundles to these categories. There are analogs of the
sets of normal invariants NPL

𝑛 (𝑋) and NTOP
𝑛 (𝑋) and the structure sets SPL,ℎ

𝑛 (𝑋),
SPL,𝑠
𝑛 (𝑋),STOP,ℎ

𝑛 (𝑋), andSTOP,𝑠
𝑛 (𝑋). There are analogs PL and TOP of the group

O = colim𝑛→∞ O𝑛. The topological group TOP is the limit of the groups TOP(𝑘)
that are the groups of homeomorphisms of R𝑘 fixing the origin:

TOP = colim𝑘→∞ TOP(𝑘).

The definition of PL is more elaborate and therefore omitted. Let G = colim𝑛→∞G(𝑛)
where G(𝑛) is the monoid of self-homotopy equivalences of 𝑆𝑛. There are classifying
spaces BPL (resp. BTOP), which classify stable isomorphism classes of PL (resp.
TOP) R𝑘 bundles and which are infinite loop spaces with multiplication correspond-
ing to the Whitney sum of bundles. The space BG is the classifying space for spherical
fibrations. There are also canonical maps BPL → BG (resp. BTOP → BG) which
classify the passage to strong fiber homotopy equivalence classes of stable spherical
fibrations. The homotopy fibers of these maps are denoted G/PL (resp. G/TOP) and
have infinite loop space structures so that the canonical maps G/PL → BPL and
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G/TOP → BTOP are maps of infinite loop spaces. Define G/O as the homotopy
fiber of the map BO→ BG.

Theorem 9.129 (The set of normal maps and G/O, G/PL, and G/TOP). Let 𝑋 be
a connected compact 𝑛-dimensional manifold with (possibly empty) boundary 𝜕𝑋 .
(In the sequel, if 𝜕𝑋 = ∅, by 𝑋/𝜕𝑋 we mean the space 𝑋 itself.)

Then there exists a canonical group structure on the set [𝑋/𝜕𝑋,G/O],
[𝑋/𝜕𝑋,G/PL], or [𝑋/𝜕𝑋,G/TOP] respectively, and a transitive free operation
of this group on N𝑛 (𝑋, 𝜕𝑋), NPL

𝑛 (𝑋, 𝜕𝑋), or NTOP
𝑛 (𝑋, 𝜕𝑋) respectively. In par-

ticular, we get bijections

[𝑋/𝜕𝑋,G/O] �−→ N𝑛 (𝑋, 𝜕𝑋);
[𝑋/𝜕𝑋,G/PL] �−→ NPL

𝑛 (𝑋, 𝜕𝑋);

[𝑋/𝜕𝑋,G/TOP] �−→ NTOP
𝑛 (𝑋, 𝜕𝑋),

respectively.

There are analogs of the Surgery Exact Sequence, see Theorem 9.127, for the PL
category and the topological category.

Theorem 9.130 (The Surgery Exact Sequence for the PL and the topological
category). Let 𝑋 be a closed 𝑤-oriented connected PL manifold of dimension
𝑛 ≥ 5. Then there is a Surgery Exact Sequence

NPL
𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1})

𝜎𝑠
𝑛+1−−−−→ 𝐿𝑠𝑛+1 (Z𝜋, 𝑤)

𝜕𝑠
𝑛+1−−−→ SPL,𝑠

𝑛 (𝑋)
𝜂𝑠𝑛−−→ NPL

𝑛 (𝑋)
𝜎𝑠𝑛−−→ 𝐿𝑠𝑛 (Z𝜋, 𝑤)

which is exact for 𝑛 ≥ 5 in the sense of Theorem 9.127. There is an analogous
Surgery Exact Sequence

NPL
𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1})

𝜎ℎ
𝑛+1−−−−→ 𝐿ℎ𝑛+1 (Z𝜋, 𝑤)

𝜕ℎ
𝑛+1−−−→ SPL,ℎ

𝑛 (𝑋)
𝜂ℎ𝑛−−→ NPL

𝑛 (𝑋)
𝜎ℎ𝑛−−→ 𝐿ℎ𝑛 (Z𝜋, 𝑤).

The analogous sequences exists in the topological category. Namely, for a closed
𝑤-oriented connected topological manifold 𝑋 of dimension 𝑛 ≥ 5, there is a Surgery
Exact Sequence

NTOP
𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1})

𝜎𝑠
𝑛+1−−−−→ 𝐿𝑠𝑛+1 (Z𝜋, 𝑤)

𝜕𝑠
𝑛+1−−−→ STOP,𝑠

𝑛 (𝑋)
𝜂𝑠𝑛−−→ NTOP

𝑛 (𝑋)
𝜎𝑠𝑛−−→ 𝐿𝑠𝑛 (Z𝜋, 𝑤)

which is exact for 𝑛 ≥ 5 in the sense of Theorem 9.127, and an analogous Surgery
Exact Sequence
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NTOP
𝑛+1 (𝑋 × [0, 1], 𝑋 × {0, 1})

𝜎ℎ
𝑛+1−−−−→ 𝐿ℎ𝑛+1 (Z𝜋, 𝑤)

𝜕ℎ
𝑛+1−−−→ STOP,ℎ

𝑛 (𝑋)
𝜂ℎ𝑛−−→ NTOP

𝑛 (𝑋)
𝜎ℎ𝑛−−→ 𝐿ℎ𝑛 (Z𝜋, 𝑤).

Note that the surgery obstruction groups are the same in the smooth category,
PL category, and topological category. Only the set of normal invariants and the
structure sets are different. The set of normal invariants in the smooth category, PL
category, or topological category do not depend on the decoration ℎ and 𝑠, whereas
the structure sets and the surgery obstruction groups depend on the decorations ℎ
and 𝑠. In particular, the structure set depends on both the choice of category and
choice of decoration.

As in the smooth setting, the Surgery Exact Sequence above can be extended to
infinity to the left.

Some interesting constructions can be carried out in the topological category,
which do not have smooth counterparts.

Remark 9.131 (The total surgery obstruction). Given a finite Poincaré complex
𝑋 of dimension ≥ 5, a single obstruction, the so-called total surgery obstruction,
is constructed in [839, §17], see also [596]. It vanishes if and only if 𝑋 is homo-
topy equivalent to a closed topological manifold. It combines the two stages of the
classical obstructions, namely, the problem whether the Spivak normal fibration has
a reduction to a TOP-bundle (which is equivalent to the condition that NTOP (𝑋)
is non-empty) and whether the surgery obstruction of the associated normal map is
trivial.

Remark 9.132 (Group structures on the Surgery Exact Sequence). An algebraic
Surgery Exact Sequence is constructed in [839, § 14, § 18] and identified with the
geometric Surgery Exact Sequence above in the topological category. Moreover,
in the topological situation one can find abelian group structures on STOP,𝑠

𝑛 (𝑋),
STOP,ℎ
𝑛 (𝑋) and NTOP

𝑛 (𝑋) such that the surgery sequence becomes a sequence of
abelian groups. The main point is to find the right infinite loop space structure on
G/TOP.

There cannot be a group structure in the smooth category for Sℎ𝑛 (𝑋) and N𝑛 (𝑋)
such that Sℎ𝑛 (𝑋)

𝜂
−→ N𝑛 (𝑋)

𝜎−→ 𝐿ℎ𝑛 (Z𝜋, 𝑤) is a sequence of groups (and analogous
for the simple version), see [263]. Note that the composite, see Theorem 9.129,

[𝑋,G/O] � N𝑛 (𝑋)
𝜎𝑠𝑛−−→ 𝐿𝑠𝑛 (Z𝜋, 𝑤)

is a map whose source and target come with canonical group structures but it is
not a homomorphism of abelian groups in general, see [987, page 114]. The same
problem arises with the decoration ℎ. More information about this topic can be found
for instance in [667, Sections 11.8 and 17.6].

Remark 9.133 (The homotopy type of G/TOP and TOP/PL). The computation of
the homotopy type of the space G/TOP (and also of G/PL) due to Sullivan [933] is
explained in detail in [697, Chapter 4]. One obtains homotopy equivalences
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G/TOP
[
1
2

]
≃ 𝐵𝑂

[
1
2

]
;

G/TOP(2) ≃
∏
𝑗≥1

𝐾 (Z(2) , 4 𝑗) ×
∏
𝑗≥1

𝐾 (Z/2, 4 𝑗 − 2),

where 𝐾 (𝐴, 𝑖) denotes the Eilenberg-MacLane space of type (𝐴, 𝑖), i.e., a 𝐶𝑊-
complex such that 𝜋𝑛 (𝐾 (𝐴, 𝑖)) is trivial for 𝑛 ≠ 𝑖 and is isomorphic to 𝐴 if 𝑛 = 𝑖, the
subscript (2) stands for localizing at (2), i.e., all primes except 2 are inverted, and[ 1

2
]

stands for localization of 2, i.e. 2 is inverted. In particular, we get for a space 𝑋
isomorphisms

[𝑋,G/TOP]
[
1
2

]
� 𝐾𝑂

0 (𝑋)
[
1
2

]
;

[𝑋,G/TOP] (2) �
∏
𝑗≥1

𝐻4 𝑗 (𝑋;Z(2) ) ×
∏
𝑗≥1

𝐻4 𝑗−2 (𝑀;Z/2),

where 𝐾𝑂∗ is K-theory of real vector bundles, see Subsection 10.2.2.

The various groups G, TOP, and PL, and their (homotopy-theoretic) quotients
G/PL, PL/O, and G/PL fit into a braid by inspecting long exact sequences of fibrations.
This braid can be interpreted geometrically in terms of 𝐿-groups, bordism groups,
and homotopy groups of exotic spheres in dimensions ≥ 5, see for instance [667,
Chapter 12].

Kirby and Siebenmann [579, Theorem 5.5 in Essay V on page 251], see also [883],
have proved

Theorem 9.134. The space TOP/PL is an Eilenberg MacLane space of type (Z/2, 3).

More information about the homotopy type of G/O, G/PL, and G/TOP can be
found for instance in [667, Chapter 17].

9.14 The Novikov Conjecture

In this section we introduce the Novikov Conjecture in its original form in terms
of higher signatures and make a first link to surgery theory. It follows from both
the Baum-Connes Conjecture and the Farrell-Jones Conjecture and has been an
important interface between topology and non-commutative geometry.

9.14.1 The Original Formulation of the Novikov Conjecture

Let 𝐺 be a (discrete) group. Let 𝑢 : 𝑀 → 𝐵𝐺 be a map from an oriented closed
smooth manifold 𝑀 to 𝐵𝐺. Let
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L(𝑀) ∈
⊕

𝑘∈Z,𝑘≥0
𝐻4𝑘 (𝑀;Q)(9.135)

be the 𝐿-class of 𝑀 . Its 𝑘-th entry L(𝑀)𝑘 ∈ 𝐻4𝑘 (𝑀;Q) is a certain homogeneous
polynomial of degree 𝑘 in the rational Pontrjagin classes 𝑝𝑖 (𝑀;Q) ∈ 𝐻4𝑖 (𝑀;Q) for
𝑖 = 1, 2, . . . , 𝑘 such that the coefficient 𝑠𝑘 of the monomial 𝑝𝑘 (𝑀;Q) is different
from zero. It is defined in terms of multiplicative sequences, see for instance [729,
§ 19]. We mention at least the first values

L(𝑀)1 =
1
3
· 𝑝1 (𝑀;Q);

L(𝑀)2 =
1

45
·
(
7 · 𝑝2 (𝑀;Q) − 𝑝1 (𝑀;Q)2

)
;

L(𝑀)3 =
1

945
·
(
62 · 𝑝3 (𝑀;Q) − 13 · 𝑝1 (𝑀;Q) ∪ 𝑝2 (𝑀;Q) + 2 · 𝑝1 (𝑀;Q)3

)
.

The 𝐿-classL(𝑀) is determined by all the rational Pontrjagin classes and vice versa.
Recall that the 𝑘-th rational Pontrjagin class 𝑝𝑘 (𝑀,Q) ∈ 𝐻4𝑘 (𝑀;Q) is defined as
the image of 𝑘-th Pontrjagin class 𝑝𝑘 (𝑀) under the obvious change of coefficients
map 𝐻4𝑘 (𝑀;Z) → 𝐻4𝑘 (𝑀;Q). The 𝐿-class depends on the tangent bundle and thus
on the differentiable structure of 𝑀 . For 𝑥 ∈ ∏

𝑘≥0 𝐻
𝑘 (𝐵𝐺;Q) define the higher

signature of 𝑀 associated to 𝑥 and 𝑢 to be

sign𝑥 (𝑀, 𝑢) := ⟨L(𝑀) ∪ 𝑢∗𝑥, [𝑀]Q⟩ ∈ Q(9.136)

where [𝑀]Q denotes the image of the fundamental class [𝑀] of an oriented closed
𝑑-dimensional manifold 𝑀 under the change of coefficients map 𝐻𝑑 (𝑀;Z) →
𝐻𝑑 (𝑀;Q). We say that sign𝑥 for 𝑥 ∈ 𝐻∗ (𝐵𝐺;Q) is homotopy invariant if for two
oriented closed smooth manifolds 𝑀 and 𝑁 with reference maps 𝑢 : 𝑀 → 𝐵𝐺 and
𝑣 : 𝑁 → 𝐵𝐺 we have

sign𝑥 (𝑀, 𝑢) = sign𝑥 (𝑁, 𝑣),

whenever there is an orientation preserving homotopy equivalence 𝑓 : 𝑀 → 𝑁 such
that 𝑣 ◦ 𝑓 and 𝑢 are homotopic.

Conjecture 9.137 (Novikov Conjecture). The group 𝐺 satisfies the Novikov Con-
jecture if sign𝑥 is homotopy invariant for all elements 𝑥 of

∏
𝑘∈Z,𝑘≥0 𝐻

𝑘 (𝐵𝐺;Q).

This conjecture appears for the first time in the paper by Novikov [765, § 11]. A
survey about its history can be found in [383].

9.14.2 Invariance Properties of the 𝑳-Class

One motivation for the Novikov Conjecture comes from the Signature Theorem due
to Hirzebruch [498, 499]. Recall that for dim(𝑀) = 4𝑛 the signature sign(𝑀) of
𝑀 is the signature of the non-singular bilinear symmetric pairing on the middle
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cohomology 𝐻2𝑛 (𝑀;R) given by the intersection pairing (𝑎, 𝑏) ↦→ ⟨𝑎 ∪ 𝑏, [𝑀]R⟩.
Obviously sign(𝑀) depends only on the oriented homotopy type of 𝑀 .ö

Theorem 9.138 (Signature Theorem). Let 𝑀 be an oriented closed manifold of
dimension 𝑛. Then the higher signature sign1 (𝑀, 𝑢) = ⟨L(𝑀), [𝑀]Q⟩ associated to
1 ∈ 𝐻0 (𝑀) and some map 𝑢 : 𝑀 → 𝐵𝐺 coincides with the signature sign(𝑀) of 𝑀
if dim(𝑀) = 4𝑛, and is zero if dim(𝑀) is not divisible by four.

The Signature Theorem 9.138 leads to the question whether the Pontrjagin classes
or the 𝐿-classes are homotopy invariants or homeomorphism invariants. They are
obviously invariants of the diffeomorphism type. However, the Pontrjagin classes
𝑝𝑘 (𝑀) ∈ 𝐻4𝑘 (𝑀;Z) for 𝑘 ≥ 2 are not homeomorphism invariants, see for in-
stance [587, Theorem 4.8 on page 31]. On the other hand, there is the following deep
result due to Novikov [762, 763, 764].

Theorem 9.139 (Topological invariance of rational Pontrjagin classes). The ra-
tional Pontrjagin classes 𝑝𝑘 (𝑀,Q) ∈ 𝐻4𝑘 (𝑀;Q) are topological invariants, i.e.,
for a homeomorphism 𝑓 : 𝑀 → 𝑁 of closed smooth manifolds we have

𝐻4𝑘 ( 𝑓 ;Q) (𝑝𝑘 (𝑁;Q)) = 𝑝𝑘 (𝑀;Q)

for all 𝑘 ≥ 0 and in particular 𝐻∗ ( 𝑓 ;Q) (L(𝑁)) = L(𝑀).

Example 9.140 (The 𝐿-class is not a homotopy invariant). The rational Pontrjagin
classes and the 𝐿-class are not homotopy invariants, as the following example shows.
There exists for 𝑘 ≥ 1 and large enough 𝑗 ≥ 0 a ( 𝑗 + 1)-dimensional vector bundle
𝜉 : 𝐸 → 𝑆4𝑘 with Riemannian metric whose 𝑘-th Pontrjagin class 𝑝𝑘 (𝜉) is not zero
and which is trivial as a fibration. The total space 𝑆𝐸 of the associated sphere bundle
is a closed (4𝑘 + 𝑗)-dimensional manifold which is homotopy equivalent to 𝑆4𝑘 × 𝑆 𝑗
and satisfies

𝑝𝑘 (𝑆𝐸) = −𝑝𝑘 (𝜉) ≠ 0;
L(𝑆𝐸)𝑘 = 𝑠𝑘 · 𝑝𝑘 (𝑆𝐸) ≠ 0,

where 𝑠𝑘 ≠ 0 is the coefficient of 𝑝𝑘 in the polynomial defining the 𝐿-class. But
𝑝𝑘 (𝑆4𝑘 × 𝑆 𝑗 ) and L(𝑆4𝑘 × 𝑆 𝑗 )𝑘 vanish since the tangent bundle of 𝑆4𝑘 × 𝑆 𝑗 is stably
trivial. In particular, 𝑆𝐸 and 𝑆4𝑘 × 𝑆 𝑗 are simply connected homotopy equivalent
closed manifolds which are not homeomorphic. This example is taken from [841,
Proposition 2.9] and attributed to Dold and Milnor there. See also [841, Proposi-
tion 2.10] or [729, Section 20].

Remark 9.141 (The homological version of the Novikov Conjecture). One may
understand the Novikov Conjecture as an attempt to figure out how much of the
𝐿-class is a homotopy invariant of 𝑀 . If one considers the oriented homotopy
type and the simply connected case, it is just the expression ⟨L(𝑀), [𝑀]Q⟩ or,
equivalently, the top component of L(𝑀). In the Novikov Conjecture one asks the
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same question, but now taking the fundamental group into account by remember-
ing the classifying map 𝑢𝑀 : 𝑀 → 𝐵𝜋1 (𝑀), or, more generally, a reference map
𝑢 : 𝑀 → 𝐵𝐺. The Novikov Conjecture can also be rephrased by saying that for
any group 𝐺 and any pair (𝑀, 𝑢) consisting of an oriented closed manifold 𝑀 of
dimension 𝑛 together with a reference map 𝑢 : 𝑀 → 𝐵𝐺 the term

𝑢∗ (L(𝑀) ∩ [𝑀]Q) ∈
⊕
𝑘∈Z

𝐻𝑛+4𝑘 (𝐵𝐺;Q)

depends only on the oriented homotopy type of the pair (𝑀, 𝑢). This follows from
the elementary computation for 𝑥 ∈ 𝐻∗ (𝐵𝐺;Q)

⟨L(𝑀) ∪ 𝑢∗𝑥, [𝑀]Q⟩ = ⟨𝑢∗𝑥,L(𝑀) ∩ [𝑀]Q⟩ = ⟨𝑥, 𝑢∗ (L(𝑀) ∩ [𝑀]Q)⟩

and the fact that the Kronecker pairing ⟨−,−⟩ for rational coefficients is non-singular.
Note that − ∩ [𝑀]Q : 𝐻𝑛−𝑖 (𝑀;Q) → 𝐻𝑖 (𝑀;Q) is an isomorphism for all 𝑖 ≥ 0 by
Poincaré duality. Hence L(𝑀) ∩ [𝑀]Q carries the same information as L(𝑀).

Exercise 9.142. Let 𝑓 : 𝑀 → 𝑁 be an orientation preserving homotopy equivalence
of oriented closed manifolds which are aspherical. Assume that the Novikov Con-
jecture 9.137 holds for 𝐺 = 𝜋1 (𝑀). Show that then L(𝑀) = 𝑓 ∗L(𝑁) must be
true.

9.14.3 The Novikov Conjecture and Surgery Theory

Remark 9.143 (The Novikov Conjecture and assembly map). There exists an
assembly map

(9.144) asmb𝐺𝑛 :
⊕
𝑘∈Z

𝐻𝑛+4𝑘 (𝐵𝐺;Q) → 𝐿ℎ𝑛 (Z𝐺) ⊗Z Q,

which fits into the following commutative diagram

STOP,ℎ
𝑛 (𝑀)

𝜂ℎ𝑛 //

𝑠

$$

NTOP
𝑛 (𝑀)

𝜎𝑠𝑛 //

𝑏

��

𝐿ℎ𝑛 (Z𝜋1 (𝑀))

𝑢∗
��

[𝑀,G/TOP]

𝑐

��

𝐿ℎ𝑛 (Z𝐺)

𝑖

��⊕
𝑘∈Z 𝐻𝑛+4𝑘 (𝐵𝐺;Q)

asmb𝐺𝑛 // 𝐿ℎ𝑛 (Z𝐺) ⊗Z Q.
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The map 𝑖 is the obvious map and 𝑢∗ is the homomorphism coming from
𝜋1 (𝑢) : 𝜋1 (𝑀) → 𝜋1 (𝐵𝐺) = 𝐺. The bijection 𝑏 is taken from Theorem 9.129.
The map 𝑐 comes from the rational version of the homotopy equivalences de-
scribing G/TOP appearing in Remark 9.133, and Poincaré duality. The composite
𝑐 ◦ 𝑏 sends the class of a normal map ( 𝑓 , 𝑓 ) with underlying map 𝑓 : 𝑁 → 𝑀

of degree one to (𝑢 ◦ 𝑓 )∗ (L(𝑁) ∩ [𝑁]Q) − 𝑢∗ (L(𝑀) ∩ [𝑀]Q). This fact is
for instance explained in [627, page 728]. The map 𝑠 is defined analogously, it
sends the class [ 𝑓 ] of a homotopy equivalence 𝑓 : 𝑁 → 𝑀 to the difference
(𝑢 ◦ 𝑓 )𝑢∗ (L(𝑁) ∩ [𝑁]Q) − 𝑢∗ (L(𝑀) ∩ [𝑀]Q), where we choose [𝑁] such that
the map 𝑓 has degree one. We conclude from Remark 9.141 that the Novikov Con-
jecture 9.137 is equivalent to the statement that 𝑠 is trivial. The upper row is part of
the Surgery Exact Sequence of Theorem 9.130. This implies that the composite

STOP,ℎ
𝑛 (𝑀) 𝑠−→

⊕
𝑘∈Z

𝐻𝑛+4𝑘 (𝐵𝐺;Q)
asmb𝐺𝑛−−−−−→ 𝐿ℎ𝑛 (Z𝐺) ⊗Z Q

is trivial.
Thus we can conclude that the group 𝐺 satisfies the Novikov Conjecture 9.137

if the map asmb𝐺𝑛 :
⊕

𝑘∈Z 𝐻𝑛+4𝑘 (𝐵𝐺;Q) → 𝐿ℎ𝑛 (Z𝐺) ⊗Z Q is injective. See also
Kaminker-Miller [541] or [587, Proposition 15.4 on page 112]. Note that the last
map involves only 𝐺. This conclusion shows that the 𝐿-theoretic Novikov Conjec-
ture 13.64 implies the Novikov Conjecture 9.137 using the fact under the Chern
character the assembly map (9.144) can be identified with the assembly map appear-
ing in the 𝐿-theoretic Novikov Conjecture 13.64 for 𝐺.

Moreover, the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the
ring Z implies the 𝐿-theoretic Novikov Conjecture 13.64, see Theorem 13.65 (xi).

Remark 9.145 (The converse of the Novikov Conjecture). A kind of converse
to the Novikov Conjecture 9.137 is the following result. Let 𝑁 be an oriented
connected closed smooth manifold of dimension 𝑛 ≥ 5. Let 𝑢 : 𝑁 → 𝐵𝐺 be a
map inducing an isomorphism on the fundamental groups. Consider any element
𝑙 ∈ ∏

𝑖≥0 𝐻
4𝑖 (𝑁;Q) such that 𝑢∗ (𝑙 ∩ [𝑁]Q) = 0 holds in 𝐻∗ (𝐵𝐺;Q). Then there

exists a non-negative integer 𝐾 such that for any multiple 𝑘 of 𝐾 there is a homotopy
equivalence 𝑓 : 𝑀 → 𝑁 of oriented closed smooth manifolds satisfying

𝑓 ∗ (L(𝑁) + 𝑘 · 𝑙) = L(𝑀).

A proof can be found for instance in [278, Theorem 6.5]. This shows that the top
dimension part of the 𝐿-class L(𝑀) is essentially the only homotopy invariant
rational characteristic class for simply connected closed 4𝑘-dimensional manifolds.

More information about the Novikov Conjecture can be found for instance in [384,
385, 587, 865, 1029]. An algebraic geometric and an equivariant version of the
Novikov Conjecture is introduced in [863] and [870].
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9.15 Topologically Rigidity and the Borel Conjecture

In this section we deal with the Borel Conjecture and how it follows from the
Farrell-Jones Conjecture in dimensions ≥ 5.

9.15.1 Aspherical Spaces

Definition 9.146 (Aspherical). A space 𝑋 is called aspherical if it is path connected
and all its higher homotopy groups vanish, i.e., 𝜋𝑛 (𝑋) is trivial for 𝑛 ≥ 2.

Remark 9.147 (Homotopy classification of aspherical 𝐶𝑊-complexes). A 𝐶𝑊-
complex is aspherical if and only if it is connected and its universal covering is
contractible. Given two aspherical 𝐶𝑊-complexes 𝑋 and 𝑌 , the map from the set of
homotopy classes of maps 𝑋 → 𝑌 to the set of group homomorphisms 𝜋1 (𝑋) →
𝜋1 (𝑌 ) modulo inner automorphisms of 𝜋1 (𝑌 ) given by the map induced on the
fundamental groups is a bijection. In particular, two aspherical 𝐶𝑊-complexes are
homotopy equivalent if and only if they have isomorphic fundamental groups and
every isomorphism between their fundamental groups comes from a homotopy
equivalence.

Remark 9.148 (Classifying space of a group). An aspherical 𝐶𝑊-complex 𝑋 with
fundamental group 𝜋 is the same as an Eilenberg-MacLane space 𝐾 (𝜋, 1) of type
(𝜋, 1) and the same as the classifying space 𝐵𝜋 for the group 𝜋.

Exercise 9.149. Let 𝐹 → 𝐸 → 𝐵 be a fibration. Suppose that 𝐹 and 𝐵 are aspherical.
Show that then 𝐸 is aspherical.

Exercise 9.150. Let 𝑋 be an aspherical 𝐶𝑊-complex of finite dimension. Show that
𝜋1 (𝑋) is torsionfree.

Example 9.151 (Examples of aspherical manifolds).

(i) A connected closed 1-dimensional manifold is homeomorphic to 𝑆1 and hence
aspherical;

(ii) Let 𝑀 be a connected closed 2-dimensional manifold. Then 𝑀 is either aspher-
ical or homeomorphic to 𝑆2 or RP2;

(iii) A connected closed 3-manifold 𝑀 is called prime if for any decomposition as a
connected sum 𝑀 � 𝑀0♯𝑀1 one of the summands 𝑀0 or 𝑀1 is homeomorphic
to 𝑆3. It is called irreducible if any embedded sphere 𝑆2 bounds a disk 𝐷3. Every
irreducible closed 3-manifold is prime. A prime closed 3-manifold is either
irreducible or an 𝑆2-bundle over 𝑆1. The following statements are equivalent for
a closed 3-manifold 𝑀:

• 𝑀 is aspherical;
• 𝑀 is irreducible and its fundamental group is infinite and contains no element

of order 2;
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• The fundamental group 𝜋1 (𝑀) cannot be written in a non-trivial way as a free
product of two groups, is infinite, different from Z, and contains no element
of order 2;
• The universal covering of 𝑀 is homeomorphic to R3.

(iv) Let 𝐿 be a Lie group with finitely many path components. Let 𝐾 ⊆ 𝐿 be a
maximal compact subgroup. Let 𝐺 ⊆ 𝐿 be a discrete torsionfree subgroup.
Then 𝑀 = 𝐺\𝐿/𝐾 is an aspherical closed manifold with fundamental group 𝐺,
since its universal covering 𝐿/𝐾 is diffeomorphic to R𝑛 for appropriate 𝑛;

(v) Every closed Riemannian (smooth) manifold with non-positive sectional curva-
ture has a universal covering which is diffeomorphic to R𝑛 and is in particular
aspherical.

Exercise 9.152. Classify all simply connected aspherical closed manifolds.

Exercise 9.153. Suppose that 𝑀 is a connected sum 𝑀1♯𝑀2 of two closed manifolds
𝑀1 and 𝑀2 of dimension 𝑛 ≥ 3, which are not homotopy equivalent to a sphere.
Show that 𝑀 is not aspherical.

There exist exotic aspherical manifolds, as the following results illustrate.
The following theorem is due to Davis-Januszkiewicz [291, Theorem 5a.4].

Theorem 9.154 (Non-PL-example). For every 𝑛 ≥ 4 there exists an aspherical
closed topological 𝑛-manifold that is not homotopy equivalent to a PL-manifold

The following result is proved by Davis-Fowler-Lafont [290] using the work of
Manolescu [706, 705].

Theorem 9.155 (Non-triangulable aspherical closed manifolds). There exists for
each 𝑛 ≥ 6 an 𝑛-dimensional aspherical closed topological manifold that cannot be
triangulated. One can arrange that the fundamental group is hyperbolic.

The proof of the following theorem can be found in [288], [291, Theorem 5b.1].

Theorem 9.156 (Exotic universal covering of aspherical closed manifolds). For
each 𝑛 ≥ 4 there exists an aspherical closed 𝑛-dimensional manifold such that its
universal covering is not homeomorphic to R𝑛.

By the Hadamard-Cartan Theorem, see [414, 3.87 on page 134], the manifold
appearing in Theorem 9.156 above cannot be homeomorphic to a smooth manifold
with Riemannian metric with non-positive sectional curvature.

The following theorem is proved in [291, Theorem 5c.1 and Remark on page
386].

Theorem 9.157 (Exotic aspherical closed manifolds with hyperbolic fundamen-
tal group). For every 𝑛 ≥ 5, there exists an aspherical closed smooth 𝑛-dimensional
manifold 𝑀 that is homeomorphic to a strictly negatively curved polyhedron and
has in particular a hyperbolic fundamental group such that the universal covering
is homeomorphic to R𝑛, but 𝑀 is not homeomorphic to a smooth manifold with
Riemannian metric with negative sectional curvature.
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The next results are due to Belegradek [120, Corollary 5.1], Mess [715], Os-
ajda [783, Corollary 3.5], and Weinberger, see [286, Section 13].

Theorem 9.158 (Aspherical closed manifolds with exotic fundamental groups).

(i) For every 𝑛 ≥ 4, there is an aspherical closed topological manifold of dimension
𝑛 whose fundamental group contains an infinite divisible abelian group;

(ii) For every 𝑛 ≥ 4, there is an aspherical closed PL manifold of dimension 𝑛
whose fundamental group has an unsolvable word problem and whose simplicial
volume in the sense of Gromov [438] is non-zero;

(iii) For every 𝑛 ≥ 4, there is an aspherical closed manifold of dimension 𝑛 whose
fundamental group contains coarsely embedded expanders.

Theorem 9.159 (Closed aspherical manifolds whose fundamental groups con-
tain coarsely embedded expanders). There exist closed aspherical manifolds of
dimension 4 and higher whose fundamental groups contain coarsely embedded ex-
panders.

More information about fundamental groups of aspherical closed manifolds with
unusual properties can be found for instance in [888].

The question of when the isometry group of the universal covering of an aspherical
closed manifold is non-discrete is studied by Farb-Weinberger [347].

Remark 9.160 (𝑆1-actions on aspherical closed manifolds). If 𝑆1 acts on an as-
pherical closed manifold, then the orbit circle is a non-trivial element in the center
by a result of Borel, see for instance [249, Lemma 5.1 on page 242]. Conner-
Raymond [249, page 229] conjecture that the converse is true, namely, if the fun-
damental group of an aspherical closed manifold has nontrivial center, then the
manifold has a circle action, such that the orbit circle is a nontrivial central element
of the fundamental group. A counterexample in dimensions ≥ 6 was constructed by
Cappell-Weinberger-Yan [208].

It is an open question whether the conjecture of Conner-Raymond above is true
if one allows the passage to a finite covering.

Remark 9.161. Another interesting open question is whether the center of the fun-
damental group of an aspherical closed manifold is finitely generated.

For more information about aspherical closed manifolds we refer for instance
to [660].

9.15.2 Formulation and Relevance of the Borel Conjecture

Definition 9.162 (Topologically rigid). We call a closed topological manifold 𝑁

topologically rigid if any homotopy equivalence 𝑀 → 𝑁 with a closed topological
manifold 𝑀 as source is homotopic to a homeomorphism.
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Conjecture 9.163 (Borel Conjecture (for a group 𝐺 in dimension 𝑛)). The Borel
Conjecture for a group 𝐺 in dimension 𝑛 predicts, for two aspherical closed topolo-
gical manifolds 𝑀 and 𝑁 of dimensions 𝑛 with 𝜋1 (𝑀) � 𝜋1 (𝑁) � 𝐺, that 𝑀 and
𝑁 are homeomorphic and any homotopy equivalence 𝑀 → 𝑁 is homotopic to a
homeomorphism.

The Borel Conjecture says that every aspherical closed topological manifold is
topologically rigid.

Remark 9.164 (The Borel Conjecture in low dimensions). The Borel Conjecture
is true in dimension ≤ 2. It is true in dimension 3 if Thurston’s Geometrization
Conjecture is true. This follows from results of Waldhausen, see Hempel [477,
Lemma 10.1 and Corollary 13.7], and Turaev, see [957], as explained for instance
in [588, Section 5]. A proof of Thurston’s Geometrization Conjecture is given
in [580, 751] following ideas of Perelman. Some information in dimension 4 can be
found in Davis [279].

Remark 9.165 (Topological rigidity for non-aspherical manifolds). Topological
rigidity phenomena also hold for some non-aspherical closed manifolds. For instance
the sphere 𝑆𝑛 is topologically rigid by the Poincaré Conjecture. The Poincaré Con-
jecture is known to be true in all dimensions. This follows in high dimensions from
the ℎ-cobordism theorem, in dimension four from the work of Freedman [401, 402],
in dimension three from the work of Perelman as explained in [580, 750], and in
dimension two from the classification of surfaces.

Many more examples of classes of manifolds which are topologically rigid are
given and analyzed in Kreck-Lück [588]. For instance, the connected sum of closed
manifolds of dimension ≥ 5 which are topologically rigid and whose fundamen-
tal groups do not contain elements of order two is again topologically rigid. The
product 𝑆𝑘 × 𝑆𝑛 is topologically rigid if and only if 𝑘 and 𝑛 are odd. An in-
tegral homology sphere of dimension 𝑛 ≥ 5 is topologically rigid if and only
if the inclusion Z → Z[𝜋1 (𝑀)] induces an isomorphism of simple 𝐿-groups
𝐿𝑠
𝑛+1 (Z) → 𝐿𝑠

𝑛+1
(
Z[𝜋1 (𝑀)]

)
. Every 3-manifold with torsionfree fundamental group

is topologically rigid.

Exercise 9.166. Give an example of a closed orientable 3-manifold with finite fun-
damental group that is not topologically rigid.

Exercise 9.167. Give an example of two topologically rigid orientable closed smooth
manifolds whose cartesian product is not topologically rigid.

Remark 9.168 (The smooth Borel Conjecture holds in dimension 𝑛 if and only
if 𝑛 ≤ 3). The Borel Conjecture 9.163 is false in the smooth category, i.e., if
one replaces topological manifold by smooth manifold and homeomorphism by
diffeomorphism. The torus 𝑇𝑛 for 𝑛 ≥ 5 is an example, see [987, 15A]. The smooth
Borel Conjecture is also false in dimension 4, see Davis-Hayden-Huang-Ruberman-
Sunukjian [287]. So the smooth Borel Conjecture is true in dimension 𝑛 if and only
if 𝑛 ≤ 3 since in dimension ≤ 3 there is no difference between the smooth and the
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topological category, see Moise [747, 748], and the Borel Conjecture 9.163 holds in
dimension ≤ 3, see Remark 9.164.

Other counterexamples involving negatively curved manifolds are constructed by
Farrell-Jones [362, Theorem 0.1].

Remark 9.169 (The Borel Conjecture versus Mostow rigidity). The examples of
Farrell-Jones [362, Theorem 0.1] give actually more. Namely, they yield for given
𝜖 > 0 a closed Riemannian manifold 𝑀0 whose sectional curvature lies in the
interval [1 − 𝜖,−1 + 𝜖] and a closed hyperbolic manifold 𝑀1 such that 𝑀0 and 𝑀1
are homeomorphic but not diffeomorphic. The idea of the construction is essentially
to take the connected sum of 𝑀1 with exotic spheres. Note that by definition 𝑀0
would be hyperbolic if we could take 𝜖 = 0. Hence this example is remarkable in
view of Mostow rigidity, which predicts for two closed hyperbolic manifolds 𝑁0 and
𝑁1 that they are isometrically diffeomorphic if and only if 𝜋1 (𝑁0) � 𝜋1 (𝑁1) and
any homotopy equivalence 𝑁0 → 𝑁1 is homotopic to an isometric diffeomorphism.

One may view the Borel Conjecture as the topological version of Mostow rigidity.
The conclusion in the Borel Conjecture is weaker, one gets only homeomorphisms
and not isometric diffeomorphisms, but the assumption is also weaker, since there
are many more aspherical closed topological manifolds than hyperbolic closed man-
ifolds.

Remark 9.170 (The work of Farrell-Jones). Farrell-Jones have made deep con-
tributions to the Borel Conjecture. They have proved it in dimension ≥ 5 for non-
positively curved closed Riemannian manifolds, for compact complete affine flat
manifolds, and for aspherical closed manifolds whose fundamental group is iso-
morphic to the fundamental group of a complete non-positively curved Riemannian
manifold that is A-regular. Relevant references are [363, 364, 367, 369, 370].

The Borel Conjecture for higher-dimensional graph manifolds is studied by
Frigerio-Lafont-Sisto [407].

More information about the Borel Conjecture can be found in [667, Chapter 19]
and [999].

9.15.3 The Farrell-Jones and the Borel Conjecture

Theorem 9.171 (The Farrell-Jones and the Borel Conjecture). Let𝐺 be a finitely
presented torsionfree group. Suppose that it satisfies the versions of the 𝐾-theoretic
Farrell-Jones Conjecture stated in 3.110 and 4.20 and the version of the 𝐿-theoretic
Farrell-Jones Conjecture stated in 9.114 for the ring 𝑅 = Z.

Then every aspherical closed manifold of dimension ≥ 5 with 𝐺 as fundamental
group is topologically rigid, in other words, the Borel Conjecture 9.163 holds for 𝐺
in dimensions ≥ 5.

For its proof we need the following lemma.
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Lemma 9.172. Let 𝑀 be a closed topological manifold with Wh(𝜋1 (𝑀)) = 0. Then
𝑀 is topologically rigid if and only if the simple topological structure setSTOP,𝑠 (𝑀)
consists of precisely on element, namely the class of id𝑀 .

Proof. Suppose that 𝑀 is topologically rigid. Consider any element in 𝜂 ∈
STOP,𝑠 (𝑀). Choose a simple homotopy equivalence 𝑓 : 𝑁 → 𝑀 representing
𝜂. Since 𝑀 is topologically rigid, 𝑓 is homotopic to a homeomorphism ℎ : 𝑁 → 𝑀 .
Hence id𝑀 ◦ℎ ≃ 𝑓 . This implies that 𝜂 is represented by id𝑀 .

Suppose that STOP,𝑠 (𝑀) consists only of one class, the one represented by id𝑀 .
Consider any homotopy equivalence 𝑓 : 𝑁 → 𝑀 . Since Wh(𝜋1 (𝑀)) = 0 holds by
assumption, 𝑓 is a simple homotopy equivalence and thus represents an element in
STOP,𝑠 (𝑀). Since it represents the same class as id𝑀 by assumption, there exists a
homeomorphism ℎ : 𝑁 → 𝑀 such that ℎ = id𝑀 ◦ℎ is homotopic to 𝑓 . ⊓⊔

Lemma 9.173. Let 𝑀 be a closed topological manifold of dimension 𝑛 ≥ 5. Let
𝑤 : 𝜋 := 𝜋1 (𝑀) → {±1} be given by its first Stiefel-Whitney class. Suppose
Wh(𝜋1 (𝑀)) = 0. Assume that the homomorphism of abelian groups
𝜎𝑠
𝑛+1 : NTOP

𝑛+1 (𝑀 × [0, 1], 𝑀 × {0, 1}) → 𝐿𝑠
𝑛+1 (Z𝜋, 𝑤) of (9.123) is surjective

and that the preimage of 0 under the map 𝜎𝑠𝑛 : NTOP
𝑛 (𝑋) → 𝐿𝑠𝑛 (Z𝜋, 𝑤) of (9.124)

consists of one point.
Then 𝑀 is topologically rigid.

Proof. This follows from the simple topological Surgery Exact Sequence of Theo-
rem 9.130 and Lemma 9.172. ⊓⊔

Now we can give a sketch of the proof of Theorem 9.171.

Sketch of the proof of Theorem 9.171. We deal for simplicity with the orientable
case, i.e., 𝑤1 = 0, only. Let L⟨−∞⟩ (Z) be the 𝐿-theory spectrum appearing in the ver-
sion of the 𝐿-theoretic Farrell-Jones Conjecture 9.114. Since it holds by assumption,
the so-called assembly map

asmb⟨−∞⟩
𝑘

: 𝐻𝑘 (𝐵𝜋; L⟨−∞⟩ (Z)) → 𝐿
⟨−∞⟩
𝑘
(Z𝜋)

is bijective for all 𝑘 . Let L⟨−∞⟩ (Z)⟨1⟩ be the 1-connected cover of L⟨−∞⟩ (Z). This
spectrum comes with a map of spectra i : L⟨−∞⟩ (Z)⟨1⟩ → L⟨−∞⟩ (Z) such that 𝜋𝑘 (i)
is bijective for 𝑘 ≥ 1 and 𝜋𝑘 (L⟨−∞⟩ (Z)⟨1⟩) = 0 for 𝑘 ≤ 0. For 𝑘 ≥ 1 there is a
connective version of the assembly map asmb𝑘 above

asmb⟨−∞⟩
𝑘
⟨1⟩ : 𝐻𝑘

(
𝐵𝜋; L⟨−∞⟩ (Z)⟨1⟩

)
→ 𝐿

⟨−∞⟩
𝑘
(Z𝜋)

such that asmb⟨−∞⟩
𝑘
⟨1⟩ = asmb⟨−∞⟩

𝑘
◦𝐻𝑘 (id𝐵𝜋 ; i) holds. A comparison argument of

the Atiyah-Hirzebruch spectral sequence shows that the bijectivity of asmb⟨−∞⟩
𝑘

for
𝑘 = 𝑛, 𝑛 + 1 implies that asmb⟨−∞⟩

𝑛+1 ⟨1⟩ is bijective and in particular surjective and
that asmb⟨−∞⟩𝑛 ⟨1⟩ is injective if 𝑛 is the dimension of the aspherical closed manifold
under consideration. Because by assumption Conjectures 3.110 and 4.20 hold for
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𝜋, we conclude from Theorem 9.106 that the simple versions of the 1-connective
assembly maps

asmb𝑠𝑘 ⟨1⟩ : 𝐻𝑘
(
𝐵𝜋; L𝑠 (Z)⟨1⟩

)
→ 𝐿𝑠𝑘 (Z𝜋)

agree with the maps asmb⟨−∞⟩
𝑘
⟨1⟩. One can identify the map asmb𝑠

𝑛+1⟨1⟩ with the
map 𝜎𝑠

𝑛+1 : NTOP
𝑛+1 (𝑀 × [0, 1], 𝑀 × {0, 1}) → 𝐿𝑠

𝑛+1 (Z𝜋) of (9.123) and the map
asmb𝑠𝑛⟨1⟩ with the map𝜎𝑠𝑛 : NPL

𝑛 (𝑋) → 𝐿𝑠𝑛 (Z𝜋) of (9.124), see [839, Theorem 18.5
on page 198], [834], [596] using Remark 18.18, Remark 18.19, and Example 18.23.

Now Theorem 9.171 follows from Lemma 9.173. ⊓⊔

Remark 9.174 (Dimension 4). The conclusion of Theorem 9.171 also holds in
dimension 4, provided that the fundamental group is good in the sense of Freedman,
see [401, 402]. Groups of subexponential growth are good, see [404, 594]. Every
elementary amenable group is good, see [118, Example 19.6 on page 280]. In [118,
page 282] it is mentioned that it is likely that amenable groups are good. All groups
are good if and only if Z ∗ Z is good, see [118, Proposition 19.7 on page 281]. No
satisfactory characterization of the class of good groups seems to be known. Our
personal belief is that a group is good if and only if it is amenable.

Remark 9.175 (The Novikov Conjecture implies a stable version of the Borel
Conjecture). For a group𝐺 that satisfies the Novikov Conjecture 9.137, the following
stable version of the Borel Conjecture holds: For any homotopy equivalence 𝑓 : 𝑀 →
𝑁 of aspherical closed manifolds of dimension ≥ 5 whose fundamental groups
are isomorphic to 𝐺, the map 𝑓 × idR3 : 𝑀 × R3 → 𝑁 × R3 is homotopic to a
homeomorphism. See [521, Proposition 2.8], where the proof is attributed to Shmuel
Weinberger, see also [356, Proof of Corollary B on page 207].

Remark 9.176 (Homology-ANR-manifolds). If one works in the category of ho-
mology ANR-manifolds, one does not have to pass to the 1-connective cover,
see [174, Main Theorem].

9.16 Homotopy Spheres

An oriented closed smooth manifold is called a homotopy sphere if it is homotopy
equivalent to the standard sphere. By the Poincaré Conjecture a homotopy sphere is
always homeomorphic to a standard sphere and actually topologically rigid. However,
it may not be diffeomorphic to a standard sphere, and in this case it is called an exotic
sphere.

The classification of homotopy spheres due to Kervaire-Milnor [576] marks the
beginning of surgery theory. In order to understand the surgery machinery and in
particular the long Surgery Exact Sequence, we recommend to the reader to study
the classification of homotopy spheres, which boils down to computing S𝑠𝑛 (𝑆𝑛).
Moreover, there are some beautiful constructions of exotic spheres and results about
the curvature properties of Riemannian metrics on an exotic sphere. We refer for
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instance to the following survey articles [526], [611], [628], and [648, Chapter 6],
and to [667, Chapter 12].

9.17 Poincaré Duality Groups

The following definition is due to Johnson-Wall [528].

Definition 9.177 (Poincaré duality group). A group 𝐺 is called a Poincaré duality
group of dimension 𝑛 if the following conditions holds:

(i) The group 𝐺 is of type FP, i.e., the trivial Z𝐺-module Z possesses a finite-
dimensional projective Z𝐺-resolution by finitely generated projective Z𝐺-
modules;

(ii) We get an isomorphism of abelian groups

𝐻𝑖 (𝐺;Z𝐺) �
{
{0} for 𝑖 ≠ 𝑛;
Z for 𝑖 = 𝑛.

Recall that a 𝐶𝑊-complex 𝑋 is called finitely dominated if there exists a finite
𝐶𝑊-complex 𝑌 and maps 𝑖 : 𝑋 → 𝑌 and 𝑟 : 𝑌 → 𝑋 with 𝑟 ◦ 𝑖 ≃ id𝑋.

A metric space 𝑋 is called an absolute neighborhood retract or briefly ANR if,
for every embedding 𝑖 : 𝑋 → 𝑌 as a closed subspace into a metric space 𝑌 , there
is an open neighbourhood 𝑈 of im(𝑖) together with a retraction 𝑟 : 𝑈 → im(𝑖),
or, equivalently, for every metric space 𝑍 , every closed subset 𝑌 ⊆ 𝑍 , and every
(continuous) map 𝑓 : 𝑌 → 𝑋 , there exists an open neighborhood 𝑈 of 𝑌 in 𝑍

together with an extension 𝐹 : 𝑈 → 𝑋 of 𝑓 to𝑈. Every ANR is locally contractible,
see [505, Theorem 7.1 in Chapter III on page 96]. A metrizable space of finite
dimension is an ANR if and only if it is locally contractible, see [505, Theorem 7.1
in Chapter V on page 168]. Being an ANR is a local property, see [505, Theorem 8.1
in Chapter III on page 98]. Every finite𝐶𝑊-complex and every topological manifold
is an ANR. Another good source about ANR-s is the book by Borsuk [154].

A compact 𝑛-dimensional homology ANR-manifold 𝑋 is a compact absolute
neighborhood retract such that it has a countable basis for its topology, has finite
topological dimension, see Definition 22.35, and for every 𝑥 ∈ 𝑋 the abelian group
𝐻𝑖 (𝑋, 𝑋−{𝑥}) is trivial for 𝑖 ≠ 𝑛 and infinite cyclic for 𝑖 = 𝑛. A closed 𝑛-dimensional
topological manifold is an example of a compact 𝑛-dimensional homology ANR-
manifold, see [275, Corollary 1A in V.26 page 191].

Exercise 9.178. Show that the product of two Poincaré duality groups is again a
Poincaré duality group.

Theorem 9.179 (Homology ANR-manifolds and finite Poincaré complexes). Let
𝑀 be a closed topological manifold, or more generally, a compact homology ANR-
manifold of dimension 𝑛. Then 𝑀 is homotopy equivalent to a finite 𝑛-dimensional
Poincaré complex.
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Proof. A closed topological manifold, and more generally a compact ANR, has
the homotopy type of a finite 𝐶𝑊-complex, see [579, Theorem 2.2], [1004]. The
usual proof of Poincaré duality for closed manifolds carries over to homology ANR-
manifolds. ⊓⊔

Theorem 9.180 (Poincaré duality groups). Let 𝐺 be a group and 𝑛 ≥ 1 be an
integer. Then:

(i) The following assertions are equivalent:

(a) 𝐺 is finitely presented and a Poincaré duality group of dimension 𝑛;
(b) There exists a finitely dominated 𝑛-dimensional aspherical Poincaré com-

plex with 𝐺 as fundamental group;

(ii) Suppose that 𝐾0 (Z𝐺) = 0. Then the following assertions are equivalent:

(a) 𝐺 is finitely presented and a Poincaré duality group of dimension 𝑛;
(b) There exists a finite 𝑛-dimensional aspherical Poincaré complex with 𝐺 as

fundamental group;

(iii) A group 𝐺 is a Poincaré duality group of dimension 1 if and only if 𝐺 � Z;
(iv) A group 𝐺 is a Poincaré duality group of dimension 2 if and only if 𝐺 is

isomorphic to the fundamental group of an aspherical closed surface.

Proof. (i) Every finitely dominated𝐶𝑊-complex has a finitely presented fundamental
group, since every finite 𝐶𝑊-complex has a finitely presented fundamental group
and a group that is a retract of a finitely presented group is again finitely presented,
see [983, Lemma 1.3]. If there exists a 𝐶𝑊-model for 𝐵𝐺 of dimension 𝑛, then the
cohomological dimension of𝐺 satisfies cd(𝐺) ≤ 𝑛 and the converse is true, provided
that 𝑛 ≥ 3, see [171, Theorem 7.1 in Chapter VIII.7 on page 205], [330], [983],
and [984]. This implies that the implication (ib) =⇒ (ia) holds for all 𝑛 ≥ 1 and
that the implication (ia) =⇒ (ib) holds for 𝑛 ≥ 3. For more details we refer to [528,
Theorem 1]. The remaining part, to show the implication (ia) =⇒ (ib) for 𝑛 = 1, 2,
follows from assertions (iii) and (iv).
(ii) This follows in dimension 𝑛 ≥ 3 from assertion (i) and Wall’s results about the
finiteness obstruction, which decides whether a finitely dominated 𝐶𝑊-complex is
homotopy equivalent to a finite 𝐶𝑊-complex, and takes values in 𝐾0 (Z𝜋), see [382,
740, 983, 984] or Section 2.5. The implication (iib) =⇒ (iia) holds for all 𝑛 ≥ 1.
The remaining part, to show the implication (iia) =⇒ (iib) holds, follows from
assertions (iii) and (iv).
(iii) Since 𝑆1 = 𝐵Z is a 1-dimensional closed manifold, Z is a finite Poincare duality
group of dimension 1 by Theorem 9.179. We conclude from the (easy) implication
(ib) =⇒ (ia) appearing in assertion (i) that Z is a Poincaré duality group of
dimension 1. Suppose that 𝐺 is a Poincaré duality group of dimension 1. Since the
cohomological dimension of 𝐺 is 1, it has to be a free group, see [925, 941]. Since
the homology group of a group of type FP is finitely generated, 𝐺 is isomorphic to a
finitely generated free group 𝐹𝑟 of rank 𝑟. Since 𝐻1 (𝐵𝐹𝑟 ) � Z𝑟 and 𝐻0 (𝐵𝐹𝑟 ) � Z,
Poincaré duality can only hold for 𝑟 = 1, i.e., 𝐺 is Z.
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(iv) This is proved in [328, Theorem 2]. See also [138, 139, 326, 329]. ⊓⊔

Conjecture 9.181 (Manifold structures on aspherical Poincaré complexes). Ev-
ery finitely dominated aspherical Poincaré complex is homotopy equivalent to a
closed topological manifold.

Remark 9.182 (Existence and uniqueness part of the Borel Conjecture). Conjec-
ture 9.181 can be viewed as the existence part of the Borel Conjecture 9.163, namely,
the question whether an aspherical finite Poincaré complex carries up to homotopy
the structure of a closed topological manifold. The Borel Conjecture 9.163 as stated
above is the uniqueness part.

Conjecture 9.183 (Poincaré duality groups). A finitely presented group is an
𝑛-dimensional Poincaré duality group if and only if it is the fundamental group
of an aspherical closed 𝑛-dimensional topological manifold.

The disjoint disk property says that for any 𝜖 > 0 and maps 𝑓 , 𝑔 : 𝐷2 → 𝑀 there
are maps 𝑓 ′, 𝑔′ : 𝐷2 → 𝑀 so that the distance between 𝑓 and 𝑓 ′ and the distance
between 𝑔 and 𝑔′ are bounded by 𝜖 and 𝑓 ′ (𝐷2) ∩ 𝑔′ (𝐷2) = ∅.

Theorem 9.184 (Poincaré duality groups and aspherical compact homology
ANR-manifolds). Suppose that the torsionfree group 𝐺 is a finitely presented
Poincaré duality group of dimension 𝑛 ≥ 6 and satisfies the versions of the
𝐾-theoretic Farrell-Jones Conjecture stated in 3.110 and 4.20 and the version of
the 𝐿-theoretic Farrell-Jones Conjecture stated in 9.114 for the ring 𝑅 = Z. Let
𝑋 be some aspherical finite Poincaré complex with 𝜋1 (𝑋) � 𝐺. (It exists because
of Theorem 9.180 (ii).) Suppose that the Spivak normal fibration of 𝑋 admits a
TOP-reduction.

Then 𝐵𝐺 is homotopy equivalent to an aspherical compact homology ANR-
manifold satisfying the disjoint disk property.

Proof. See [839, Remark 25.13 on page 297], [174, Main Theorem on page 439 and
Section 8] and [175, Theorem A and Theorem B]. ⊓⊔

Remark 9.185. Note that in Theorem 9.184 the condition appears that for some
aspherical finite Poincaré complex 𝑋 with 𝜋1 (𝑋) � 𝐺 the Spivak normal fibration
of 𝑋 admits a TOP-reduction. This condition does not appear in earlier versions. The
reason is that there seems to be a mistake in [174], as explained in the Erratum [176].
The problem was pointed out by Hebestreit-Land-Weiss-Winges, see [476]. The
problem is that the proof that any compact homology ANR-manifold has a TOP-
reduction of its Spivak normal fibration is not correct. In the applications of [174]
to results appearing in this book one has either to assume that the TOP-reduction
exists or to prove its existence. This is the reason why this extra assumption in
Theorem 9.184 appears.

As pointed out in [176], Theorem 9.188 and 9.192 remain true without adding any
further hypothesis. This is also true for Theorem 9.194 by the following argument.
Let 𝑋1 and 𝑋2 be connected finite Poincare complexes. Let 𝑝1 : 𝐸1 → 𝑋1 and
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𝑝2 : 𝐸2 → 𝑋2 be spherical fibrations representing their Spivak normal fibration.
Then the fibration 𝑝1 ∗ 𝑝2 : 𝐸1 ∗ 𝐸2 → 𝑋1 × 𝑋2 is a representative of the Spivak
normal fibration of 𝑋1 × 𝑋2, where the fiber over (𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2 is the join
𝑝−1

1 (𝑥1) ∗ 𝑝−1
2 (𝑥2) of the fibers of 𝑝1 over 𝑥1 and 𝑝2 over 𝑥2. Now suppose that

𝑝1 ∗ 𝑝2 has a TOP reduction after possibly stabilization. Then 𝑖∗ (𝑝1 ∗ 𝑝2) also has
a TOP-reduction for the inclusion 𝑖 : 𝑋1 → 𝑋1 × 𝑋2 sending 𝑥1 to (𝑥1, 𝑥2) for some
fixed 𝑥2 ∈ 𝑋2. But 𝑖∗ (𝑝1 ∗ 𝑝2) is a stabilization of 𝑝1. Hence the Spivak normal
fibration of 𝑋1 has a TOP-reduction. Analogously one sees that the Spivak normal
fibration of 𝑋2 has a TOP-reduction.

Remark 9.186 (Compact homology ANR-manifolds versus closed topological
manifolds). In the following all manifolds have dimension ≥ 6. One would prefer
that in the conclusion of Theorem 9.184 one could replace “compact homology ANR-
manifold” by “closed topological manifold”. The problem is that in the geometric
Surgery Exact Sequence one has to work with the 1-connective cover L⟨1⟩ of the
𝐿-theory spectrum L, whereas in the assembly map appearing in the Farrell-Jones
setting one uses the 𝐿-theory spectrum L. The 𝐿-theory spectrum L is 4-periodic,
i.e., 𝜋𝑛 (L) � 𝜋𝑛+4 (L) for 𝑛 ∈ Z. The 1-connective cover L⟨1⟩ comes with a map of
spectra f : L⟨1⟩ → L such that 𝜋𝑛 (f) is an isomorphism for 𝑛 ≥ 1 and 𝜋𝑛 (L⟨1⟩) = 0
for 𝑛 ≤ 0. Since 𝜋0 (L) � Z, one misses a part involving 𝐿0 (Z) of the so-called
total surgery obstruction due to Ranicki, i.e., the obstruction for a finite Poincaré
complex to be homotopy equivalent to a closed topological manifold. If one deals
with the periodic 𝐿-theory spectrum L, one picks up only the obstruction for a finite
Poincaré complex to be homotopy equivalent to a compact homology ANR-manifold,
the so-called four-periodic total surgery obstruction. The difference of these two
obstructions is related to the resolution obstruction of Quinn, which takes values in
𝐿0 (Z). Any element of 𝐿0 (Z) can be realized by an appropriate compact homology
ANR-manifold as its resolution obstruction. There are compact homology ANR-
manifolds that are not homotopy equivalent to closed manifolds. But no example
of an aspherical compact homology ANR-manifold that is not homotopy equivalent
to a closed topological manifold is known. For an aspherical compact homology
ANR-manifold 𝑀 , the total surgery obstruction and the resolution obstruction carry
the same information. So we could replace in the conclusion of Theorem 9.184
“compact homology ANR-manifold” by “closed topological manifold” if and only if
every aspherical compact homology ANR-manifold with the disjoint disk property
admits a resolution.

We refer for instance to [174, 381, 826, 827, 839] for more information about this
topic.

Question 9.187 (Vanishing of the resolution obstruction in the aspherical case).
Is every aspherical compact homology ANR-manifold homotopy equivalent to a

closed manifold?
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9.18 Boundaries of Hyperbolic Groups

If 𝐺 is the fundamental group of an 𝑛-dimensional closed Riemannian (smooth)
manifold with negative sectional curvature, then 𝐺 is a hyperbolic group in the
sense of Gromov, see for instance [159], [165], [424], and [440]. Moreover, such
a group is torsionfree and its boundary 𝜕𝐺 is homeomorphic to a sphere. This
leads to the natural question whether a torsionfree hyperbolic group with a sphere
as boundary occurs as the fundamental group of an aspherical closed manifold,
see Gromov [441, page 192]. In high dimensions this question is answered by the
following two theorems taken from Bartels-Lück-Weinberger [90]. For the notion of
and information about the boundary of a hyperbolic group and its main properties
we refer for instance to [545].

Theorem 9.188 (Hyperbolic groups with spheres as boundary). Let 𝐺 be a
torsionfree hyperbolic group and let 𝑛 be an integer ≥ 6. Then:

(i) The following statements are equivalent:

(a) The boundary 𝜕𝐺 is homeomorphic to 𝑆𝑛−1;
(b) There is an aspherical closed topological manifold 𝑀 such that𝐺 � 𝜋1 (𝑀),

its universal covering 𝑀 is homeomorphic to R𝑛 and the compactification of
𝑀 by 𝜕𝐺 is homeomorphic to 𝐷𝑛;

(ii) The aspherical closed topological manifold 𝑀 appearing in the assertion above
is unique up to homeomorphism.

Theorem 9.189 (Hyperbolic groups with Čech-homology spheres as boundary).
Let 𝐺 be a torsionfree hyperbolic group and let 𝑛 be an integer ≥ 6. Then

(i) The following statements are equivalent:

(a) The boundary 𝜕𝐺 has the integral Čech cohomology of 𝑆𝑛−1;
(b) 𝐺 is a Poincaré duality group of dimension 𝑛;
(c) There exists a compact homology ANR-manifold 𝑀 homotopy equivalent to

𝐵𝐺. In particular, 𝑀 is aspherical and 𝜋1 (𝑀) � 𝐺;

(ii) If the statements in assertion (i) hold, then the compact homology ANR-manifold
𝑀 appearing there is unique up to 𝑠-cobordism of compact ANR-homology
manifolds.

One of the main ingredients in the proof of the two theorems above is the fact that
both the𝐾-theoretic and the 𝐿-theoretic Farrell-Jones Conjecture hold for hyperbolic
groups, see [78] and [87].
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9.19 The Stable Cannon Conjecture

Tremendous progress in the theory of 3-manifolds has been made during the last
decade. A proof of Thurston’s Geometrization Conjecture is given in [580], [751]
following ideas of Perelman. The Virtually Fibering Conjecture was settled by the
work of Agol, Liu, Przytycki-Wise, and Wise [20, 21, 633, 816, 817, 1016, 1017].

However, the following famous conjecture, taken from [197, Conjecture 5.1], is
still open at the time of writing.

Conjecture 9.190 (Cannon Conjecture). Let 𝐺 be a hyperbolic group. Suppose
that its boundary is homeomorphic to 𝑆2.

Then𝐺 acts properly cocompactly and isometrically on the 3-dimensional hyper-
bolic space.

In the torsionfree case it boils down to

Conjecture 9.191 (Cannon Conjecture in the torsionfree case). Let 𝐺 be a tor-
sionfree hyperbolic group. Suppose that its boundary is homeomorphic to 𝑆2.

Then 𝐺 is the fundamental group of a closed hyperbolic 3-manifold.

More information about Conjecture 9.190 and its status can be found for instance
in [377, Section 2] and [151].

The following theorem is taken from [377, Theorem 2]. It is a stable version of
the Conjecture 9.191 above. Its proof is based on high-dimensional surgery theory
and the theory of homology ANR-manifolds.

Theorem 9.192 (Stable Cannon Conjecture). Let𝐺 be a hyperbolic 3-dimensional
Poincaré duality group. Let 𝑁 be any smooth, PL, or topological manifold respec-
tively, that is closed and whose dimension is ≥ 2.

Then there is a closed smooth, PL, or topological manifold 𝑀 and a normal map
of degree one

𝑇𝑀 ⊕ R𝑎

��

𝑓
// 𝜉 × 𝑇𝑁

��
𝑀

𝑓 // 𝐵𝐺 × 𝑁
satisfying

(i) The map 𝑓 is a simple homotopy equivalence;
(ii) Let 𝑀 → 𝑀 be the 𝐺-covering associated to the composite of the isomorphism

𝜋1 ( 𝑓 ) : 𝜋1 (𝑀)
�−→ 𝐺 × 𝜋1 (𝑁) with the projection 𝐺 × 𝜋1 (𝑁) → 𝐺. Suppose

additionally that 𝑁 is aspherical, dim(𝑁) ≥ 3, and 𝜋1 (𝑁) satisfies the Full
Farrell-Jones Conjecture 13.30. (Its status is discussed in Theorem 16.1.)
Then 𝑀 is homeomorphic to R3 × 𝑁 . Moreover, there is a compact topological
manifold 𝑀 whose interior is homeomorphic to 𝑀 and for which there exists a
homeomorphism of pairs (𝑀, 𝜕𝑀) → (𝐷3 × 𝑁, 𝑆2 × 𝑁).
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If we could choose 𝑁 = {•} in Theorem 9.192, it would imply Conjecture 9.191.

Exercise 9.193. Show that the manifold 𝑀 appearing in Theorem 9.192 is unique
up to homeomorphism if 𝑁 is aspherical and 𝜋1 (𝑁) satisfies the Full Farrell-Jones
Conjecture 13.30.

9.20 Product Decompositions

In this section we show that, roughly speaking, an aspherical closed topological
manifold 𝑀 is a product 𝑀1 × 𝑀2 if and only if its fundamental group is a product
𝜋1 (𝑀) = 𝐺1 × 𝐺2 and that such a decomposition is unique up to homeomorphism.

Theorem 9.194 (Product decompositions of aspherical closed manifolds). Let
𝑀 be an aspherical closed topological manifold of dimension 𝑛 with fundamental
group 𝐺 = 𝜋1 (𝑀). Suppose we have a product decomposition

𝑝1 × 𝑝2 : 𝐺 �−→ 𝐺1 × 𝐺2.

Suppose that 𝐺, 𝐺1, and 𝐺2 satisfy the versions of the 𝐾-theoretic Farrell-Jones
Conjecture stated in 3.110 and 4.20 and the version of the 𝐿-theoretic Farrell-Jones
Conjecture stated in 9.114 for the ring 𝑅 = Z.

Then𝐺,𝐺1 and𝐺2 are Poincaré duality groups whose cohomological dimensions
satisfy

𝑛 = cd(𝐺) = cd(𝐺1) + cd(𝐺2).

Suppose in the following:

• the cohomological dimension cd(𝐺𝑖) is different from 3, 4, and 5 for 𝑖 = 1, 2;
• 𝑛 ≠ 4 or (𝑛 = 4 and 𝐺 is good in the sense of Freedman).

Then:

(i) There are aspherical closed topological manifolds 𝑀1 and 𝑀2 together with
isomorphisms

𝑣𝑖 : 𝜋1 (𝑀𝑖)
�−→ 𝐺𝑖

and maps
𝑓𝑖 : 𝑀 → 𝑀𝑖

for 𝑖 = 1, 2 such that

𝑓 = 𝑓1 × 𝑓2 : 𝑀 → 𝑀1 × 𝑀2

is a homeomorphism and 𝑣𝑖 ◦ 𝜋1 ( 𝑓𝑖) = 𝑝𝑖 (up to inner automorphisms) for
𝑖 = 1, 2;
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(ii) Suppose we have another such choice of aspherical closed topological manifolds
𝑀 ′1 and 𝑀 ′2 together with isomorphisms

𝑣′𝑖 : 𝜋1 (𝑀 ′𝑖 )
�−→ 𝐺𝑖

and maps
𝑓 ′𝑖 : 𝑀 → 𝑀 ′𝑖

for 𝑖 = 1, 2 such that the map 𝑓 ′ = 𝑓 ′1 × 𝑓 ′2 is a homotopy equivalence and
𝑣′
𝑖
◦ 𝜋1 ( 𝑓 ′𝑖 ) = 𝑝𝑖 (up to inner automorphisms) for 𝑖 = 1, 2. Then there are for

𝑖 = 1, 2 homeomorphisms ℎ𝑖 : 𝑀𝑖 → 𝑀 ′
𝑖

such that ℎ𝑖◦ 𝑓𝑖 ≃ 𝑓 ′𝑖 and 𝑣𝑖◦𝜋1 (ℎ𝑖) = 𝑣′𝑖
holds for 𝑖 = 1, 2.

Proof. The case 𝑛 ≠ 3 is proved in [660, Theorem 6.1]. The case 𝑛 = 3 is done as
follows. We conclude from [477, Theorem 11.1 on page 100] that 𝐺1 � Z � 𝜋1 (𝑆1)
and 𝐺2 is the fundamental group 𝜋1 (𝐹) of a closed surface or the other way around.
Now use the fact that the Borel Conjecture is true in dimensions ≤ 3. ⊓⊔

9.21 Automorphisms of Manifolds

We record the following two results that deduce information about the homotopy
groups of the automorphism group of an aspherical closed manifold from the Farrell-
Jones Conjecture and the material from Chapter 7 about pseudoisotopy spaces.

Theorem 9.195 (Homotopy Groups of Top(𝑀) rationally for closed aspherical
𝑀). Let 𝑀 be a aspherical closed topological manifold with fundamental group 𝜋.
Suppose that 𝑀 is smoothable, the 𝐿-theory assembly map

𝐻𝑛 (𝐵𝜋; L⟨−∞⟩ (Z)) → 𝐿
⟨−∞⟩
𝑛 (Z𝜋)

is an isomorphism for 𝑛 ∈ Z and suppose the 𝐾-theory assembly map

𝐻𝑛 (𝐵𝜋; K(Z)) → 𝐾𝑛 (Z𝜋)

is an isomorphism for 𝑛 ≤ 1 and a rational isomorphism for 𝑛 ≥ 2.
Then for 1 ≤ 𝑖 ≤ (dim𝑀 − 7)/3 one has

𝜋𝑖 (Top(𝑀)) ⊗Z Q =

{
center(𝜋) ⊗Z Q if 𝑖 = 1;
0 if 𝑖 > 1.

In the differentiable case one additionally needs to study involutions on the higher
𝐾-theory groups.

Theorem 9.196 (Homotopy Groups of Diff (𝑀) rationally for closed aspherical
𝑀). Let 𝑀 be an aspherical orientable closed smooth manifold with fundamental
group 𝜋.
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Then under the same assumptions as in Theorem 9.195 we have for 1 ≤ 𝑖 ≤
(dim𝑀 − 7)/3

𝜋𝑖 (Diff (𝑀)) ⊗Z Q =


center(𝜋) ⊗Z Q if 𝑖 = 1;⊕∞

𝑗=1 𝐻(𝑖+1)−4 𝑗 (𝑀;Q) if 𝑖 > 1 and dim𝑀 odd;
0 if 𝑖 > 1 and dim𝑀 even.

For a proof see for instance [354], [364, Section 2], and [353, Lecture 5]. For a
survey on automorphisms of manifolds we refer to [1003].

Remark 9.197 (Homotopy Groups of 𝐺 (𝑀) for closed aspherical 𝑀). Let 𝑀 be
an aspherical closed topological manifold with fundamental group 𝜋. Let 𝐺 (𝑀) be
the monoid of self-homotopy equivalences of 𝑀 . Choose id𝑀 as its base point. Then
there are isomorphisms

𝛼0 : 𝜋0 (𝐺 (𝑀))
�−→ Out(𝜋);

𝛼1 : 𝜋1 (𝐺 (𝑀))
�−→ center(𝜋);

𝜋𝑛 (𝐺 (𝑀)) � {0} for 𝑛 ≥ 2,

where 𝛼0 comes from taking the map induced on the fundamental group, see
Remark 9.147, and 𝛼1 comes from the evaluation map 𝐺 (𝑀) → 𝑀, 𝑓 ↦→ 𝑓 (𝑥)
for a base point 𝑥 ∈ 𝑀 , see [432, Theorem III.2]. Define maps 𝛽𝑛 for 𝑛 = 0, 1 to be
the composites

𝛽0 : 𝜋0 (Top(𝑀)) → 𝜋0 (𝐺 (𝑀))
𝛼0−−→ Out(𝜋);(9.198)

𝛽1 : 𝜋1 (Top(𝑀)) → 𝜋1 (𝐺 (𝑀))
𝛼−→ center(𝜋).(9.199)

The maps 𝛽0 and 𝛽1 are rationally bijective if the assumptions appearing in Theo-
rem 9.195 are satisfied.

Exercise 9.200. Show that for a topologically rigid aspherical closed manifold 𝑀
the map 𝛽0 : 𝜋0 (Top(𝑀)) → Out(𝜋) of (9.198) is surjective.

Remark 9.201. Let 𝑀 be an aspherical closed topological manifold such that the
assumptions appearing in Theorem 9.195 are satisfied. Then we also get some
information about the (co)homology of BTop(𝑀)◦, where Top(𝑀)◦ denotes the
component of the identity of Top(𝑀). We get from 𝛽1 defined in (9.199) and
Theorem 9.195 a map

BTop(𝑀)◦ → 𝐾 (center(𝜋), 2)

of simply connected spaces inducing isomorphism on the rationalized homotopy
groups in dimensions ≤ (dim𝑀 − 7)/3 + 1. This implies that we get isomorphisms

𝐻𝑛 (BTop(𝑀)◦;Q) �−→ 𝐻𝑛 (𝐾 (center(𝜋), 2);Q);
𝐻𝑛 (𝐾 (center(𝜋), 2);Q) �−→ 𝐻𝑛 (BTop(𝑀)◦;Q),
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for 𝑛 ≤ (dim𝑀 − 7)/3 + 1.

Remark 9.202. Let 𝑀 be an aspherical closed topological manifold with fundamen-
tal group 𝜋 such that the assumptions appearing in Theorem 9.195 are satisfied.

Then the following assertions are equivalent by Theorem 9.195 and Remark 9.201:

(i) The abelian group center(𝜋) of 𝜋 is finitely generated;
(ii) The Q-module Q ⊗Z center(𝜋) is finitely generated;

(iii) The Q-module 𝐻2 (BTop(𝑀)◦;Q) is finitely generated;
(iv) The Q-module Q ⊗Z 𝜋1 (Top(𝑀)) is finitely generated;
(v) The Q-module Q ⊗Z 𝜋1 (Top(𝑀)) is finitely generated and the Q-module

Q ⊗Z 𝜋𝑖 (Top(𝑀)) ⊗Z Q is trivial for 2 ≤ 𝑖 ≤ (dim𝑀 − 7)/3 + 1;
(vi) The Q-module 𝐻𝑖 (BTop(𝑀)◦;Q) is finitely generated for 1 ≤ 𝑖 ≤
(dim𝑀 − 7)/3 + 1;

Recall the open question whether center(𝜋1 (𝑀)) is finitely generated for a closed
aspherical manifold 𝑀 .

In this context we mention the result of Budney-Gabai [177, Theorem 1.3] that,
for 𝑛 ≥ 4 and an 𝑛-dimensional hyperbolic closed manifold, both 𝜋𝑛−4 (Top0 (𝑀))
and 𝜋𝑛−4 (Diff0 (𝑀)) are not finitely generated. Recall that 𝜋1 (𝑀) satisfies the
Farrell-Jones Conjecture, center(𝜋1 (𝑀)) is trivial, and 𝜋𝑖 (Top(𝑀)) ⊗Z Q and
𝐻𝑖 (BTop(𝑀)◦;Q) vanishes for 1 ≤ 𝑖 ≤ (dim𝑀 − 7)/3 + 1.

Integral computations of the homotopy groups of automorphisms are much harder.
We mention at least the following result taken from [344, Theorem 1.3].

Theorem 9.203 (Homotopy groups of Top(𝑀) for closed aspherical 𝑀 with hy-
perbolic fundamental group). Let𝑀 be a smoothable aspherical closed topological
manifold whose fundamental group 𝜋 is hyperbolic.

Then there is a Z/2-action on WhTOP (𝐵𝜋) such that we obtain for every 𝑛
satisfying 1 ≤ 𝑛 ≤ min{(dim𝑀 − 7)/2, (dim𝑀 − 4)/3} isomorphisms

𝜋𝑛 (TOP(𝑀)) � 𝜋𝑛+2

(
𝐸Z/2+ ∧Z/2

(∨
𝐶

WhTOP (𝐵𝐶)
) )

and an exact sequence

1→ 𝜋2

(
𝐸Z/2+ ∧Z/2

( ∨
(𝐶 )

WhTOP (𝐵𝐶)
) )
→ 𝜋0 (TOP(𝑀)) → Out(𝜋) → 1

where (𝐶) ranges over the conjugacy classes (𝐶) of maximal infinite cyclic subgroups
𝐶 of 𝜋.

It is conceivable that one can replace the range (dim𝑀 − 7)/3 appearing
in Theorem 9.195, Theorem 9.196, and Remark 9.202 with the range
min{(dim𝑀 − 7)/2, (dim𝑀 − 4)/3} appearing in Theorem 9.203.

The methods described in this book about automorphism groups of closed man-
ifolds apply only to aspherical closed manifolds. It is of course also essential to
study automorphism groups of disks. The techniques used to analyze them are quite



274 9 Algebraic 𝐿-Theory

different. There has been tremendous progress on this topic during recent years. We
refer to the survey article by Randal-Williams [832], where also further references
in the literature about this topic are given.

Moreover, there has recently been tremendous progress on the moduli spaces of
manifolds, which gives information about the cohomology of the classifying space
𝐵Diff (𝑀) of closed smooth manifolds 𝑀 such as the connected sum of several
copies of a product of spheres. We refer to the survey article by Galatius and Randal-
Williams [413], where also further references in the literature about this topic are
given.

9.22 Survey on Computations of 𝑳-Theory of Group Rings of
Finite Groups

Theorem 9.204 (Algebraic 𝐿-theory of Z𝐺 for finite groups). Let 𝐺 be a finite
group. Then:

(i) The groups 𝐿 ⟨ 𝑗 ⟩𝑛 (Z) are independent of the decoration 𝑗 and given by Z, {0},
Z/2, {0} for 𝑛 ≡ 0, 1, 2, 3 mod (4);

(ii) For every 𝑛 ∈ Z, the groups 𝐿 ⟨𝑠⟩𝑛 (Z𝐺), 𝐿 ⟨ℎ⟩𝑛 (Z𝐺), 𝐿 ⟨𝑝⟩𝑛 (Z𝐺), 𝐿 ⟨−∞⟩𝑛 (Z𝐺), and
𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝐺) for every 𝑗 ≤ 1 are finitely generated as abelian groups and contain

no 𝑝-torsion for odd primes 𝑝. Moreover, they all are finite for odd 𝑛;
(iii) Let 𝑟 (𝐺) be the number of isomorphisms classes of irreducible real

𝐺-representations. Let 𝑟C (𝐺) be the number of isomorphisms classes of irre-
ducible real𝐺-representations𝑉 that are of complex type. For every decoration
⟨ 𝑗⟩ we have

𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝐺) [1/2] � 𝐿 ⟨ 𝑗 ⟩𝑛 (Q𝐺) [1/2] � 𝐿 ⟨ 𝑗 ⟩𝑛 (R𝐺) [1/2]

�


Z[1/2]𝑟 (𝐺) 𝑛 ≡ 0 (4);
Z[1/2]𝑟C (𝐺) 𝑛 ≡ 2 (4);
0 𝑛 ≡ 1, 3 (4);

(iv) If 𝐺 has odd order and 𝑛 is odd, then 𝐿𝜀𝑛 (Z𝐺) = 0 for 𝜀 = 𝑝, ℎ, 𝑠 and
𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝐺) � Z/2𝑟 for 𝑗 ∈ {−1,−2, . . . , } ⨿ {−∞}, where 𝑟 is the number

appearing in Theorem 4.22 (iii);
(v) If 𝐺 is a cyclic group of odd order, then the kernel of the split epimorphism

𝐿𝑠𝑛 (Z𝐺) → 𝐿𝑠𝑛 (Z) is torsionfree. In particular, tors(𝐿𝑠𝑛 (Z𝐺)) is Z/2 if 𝑛 ≡
2 mod 4 and trivial otherwise.

Proof. (i) See for instance [667, Theorem 16.11 (i) on page 768].
(ii) See [987, Theorem 13.A.4 (i) on page 177], [465] for the decoration 𝑠. Now
the claim follows for all decorations from the Rothenberg sequences, see Subsec-
tion 9.10.4, since the relevant 𝐾-groups of Z𝐺 are all finitely generated abelian
groups.
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(iii) See [839, Proposition 22.34 on page 253].
(iv) See [59], [465, Theorem 10.1] for 𝜖 ∈ {𝑠, 𝑝, ℎ}. Note that 𝐾𝑛 (Z𝐺) = 0 for
𝑛 ≤ −2 and 𝐾−1 (Z𝐺) = Z𝑟 by Theorem 4.22. The involution on 𝐾−1 (Z𝐺) = Z𝑟 is
given by − id. Hence 𝐻0 (𝑍/2, 𝐾−1 (𝑍𝐺)) = 0 and 𝐻1 (𝑍/2, 𝐾−1 (𝑍𝐺)) = (𝑍/2)𝑟 .
Since 𝐿 𝑝𝑛 (𝑍𝐺) = 0 for odd 𝑛 and 𝐿 𝑝𝑛 (𝑍𝐺) is known to be torsionfree for even 𝑛, the
claim follows from the Rothenberg sequence (9.101). See also [458, Section 3].
(v) See [987, Theorem 13.A.4 (ii) on page 177], [465, Section 10]. ⊓⊔

9.23 Notes

The next problem is meanwhile solved and triggered surgery theory for non-simply
connected manifolds. It is a kind of generalization of the Space Form Problem asking
which finite groups occur as fundamental groups of closed Riemannian manifolds
with constant positive sectional curvature.

Problem 9.205 (Spherical Space Form Problem). Which finite groups can act
freely (topologically or smoothly) on a standard sphere, or, equivalently, occur as
fundamental groups of closed manifolds whose universal covering is (homeomorphic
or diffeomorphic to) a standard sphere.

More information about this interesting problem and its solution can be found
in [284] and [694].

For a survey of the classification of fake spaces such as fake products of spheres,
fake projective spaces, fake lens spaces, and fake tori, and the literature about them,
we refer to [667, Chapter 18].

Our definition of the 𝐿-groups follows the original approach due to Wall. A much
more satisfactory and elegant approach via chain complexes is due to Mishchenko and
Ranicki and is of fundamental importance for many applications and generalizations,
see for instance [667, 734, 735, 736, 835, 836, 837, 839].

We mention that a different approach to surgery has been developed by Kreck. A
survey about his approach is given in [586]. Its advantage is that one does not have
to get a complete homotopy classification first. The price to pay is that the 𝐿-groups
are much more complicated, they are not necessarily abelian groups any more. This
approach is in particular successful when the manifolds under consideration are
already highly connected. See for instance [589, 590, 930].

More information about surgery theory can be found for instance in [169, 199,
200, 226, 667, 648, 843, 987].

We will relate the algebraic 𝐿-theory of𝐶∗-algebras to their topological 𝐾-theory
in Theorem 10.78. In particular, we get for all 𝑛 ∈ Z natural isomorphisms

𝐿𝑛 (𝐶∗𝑟 (𝐺,R)) [1/2] � 𝐾TOP
𝑛 (𝐶∗𝑟 (𝐺;R)) [1/2];

𝐿𝑛 (𝐶∗𝑟 (𝐺,C)) [1/2] � 𝐾TOP
𝑛 (𝐶∗𝑟 (𝐺;C)) [1/2] .
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We mention already here Conjecture 15.89, which deals with the passage for
𝐿-theory from Q𝐺 to R𝐺 to 𝐶∗𝑟 (𝐺;R). Its connection to the Baum-Connes Con-
jecture and the Farrell-Jones Conjecture is analyzed in Lemma 15.90. For more
information about the algebraic 𝐿-theory of 𝐶∗-algebras we refer to [615].

There is also a version of the Borel Conjecture for manifolds with boundary,
which is implied by the Farrell-Jones Conjecture, see for instance [383, page 17 and
page 31].

Another survey article about topological rigidity is [555].
There is an equivariant version of the Borel Conjecture where one replaces 𝐸𝐺

with the classifying space for proper 𝐺-actions 𝐸𝐺, see Definition 11.18. One may
ask whether there is a compact closed 𝐺-manifold which is a model for 𝐸𝐺 and
whether, for two compact proper topological 𝐺-manifolds 𝑀 and 𝑁 that both are
models for 𝐸𝐺, any 𝐺-homotopy equivalence between them is 𝐺-homotopic to a
𝐺-homeomorphism. This version is not true in general and investigated for instance
in [251, 252, 253, 257, 277, 665, 999].

The vanishing of 𝜅-classes for aspherical closed manifolds is analyzed in [475]
using the Farrell-Jones Conjecture.



Chapter 10
Topological 𝑲-Theory

10.1 Introduction

In this chapter we deal with the topological 𝐾-theory of reduced group 𝐶∗-algebras,
which is the target of the Baum-Connes Conjecture, in contrast to the algebraic
𝐾- and 𝐿-theory of group rings, which is the target of the Farrell-Jones Conjecture.
We begin by reviewing the topological𝐾-theory of spaces and its equivariant version
for proper actions of possibly infinite discrete groups. Then we pass to its gener-
alization to 𝐶∗-algebras. We discuss the Baum-Connes Conjecture for torsionfree
groups 10.44 and present two applications, namely, to the Trace Conjecture about
the integrality of the trace map and to the Kadison Conjecture about idempotents
in reduced group 𝐶∗-algebras of torsionfree groups. Then we briefly state the main
properties of Kasparov’s KK-theory and its equivariant version (without explaining
its construction). This will later be needed in Chapter 14 to explain the analytic
Baum-Connes assembly map and state the Baum-Connes Conjecture for arbitrary
groups and with coefficients in a 𝐺-𝐶∗-algebra.

10.2 Topological 𝑲-Theory of Spaces

10.2.1 Complex Topological 𝑲-Theory of Spaces

The complex topological 𝐾-theory of spaces, sometimes also called the complex
topological 𝐾-cohomology of spaces, is a generalized cohomology theory, i.e., it
assigns to a pair of 𝐶𝑊-complexes (𝑋, 𝐴) a Z-graded abelian group 𝐾∗ (𝑋, 𝐴) and a
homomorphism of degree one 𝛿∗ : 𝐾∗ (𝐴) → 𝐾∗+1 (𝑋, 𝐴) and to a map 𝑓 : (𝑋, 𝐴) →
(𝑌, 𝐵) of such pairs a homomorphism 𝐾∗ ( 𝑓 ) : 𝐾∗ (𝑌, 𝐵) → 𝐾∗ (𝑋, 𝐴) of Z-graded
abelian groups such that the Eilenberg-Steenrod axioms of a cohomology theory are
satisfied, i.e., one has naturality, homotopy invariance, the long exact sequence of
a pair, and excision. Moreover, the disjoint union axiom holds, see Definition 12.1.
In contrast to singular cohomology the dimension axiom is not satisfied, actually
𝐾𝑛 ({•}) is Z if 𝑛 is even and is trivial if 𝑛 is odd. A very important feature is
that topological complex 𝐾-theory satisfies Bott periodicity, i.e., there is a natural
isomorphism of degree two compatible with the boundary map in the long exact
sequence of pairs

𝛽∗ (𝑋, 𝐴) : 𝐾∗ (𝑋, 𝐴) �−→ 𝐾∗+2 (𝑋, 𝐴).

Topological complex 𝐾-theory comes with a multiplicative structure.

277
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It can be constructed by the so-called complex topological 𝐾-theory spectrum
KTOP

C that is the following Ω-spectrum. (Spectra will be defined in Section 12.4.)
The 𝑛-th space is Z × 𝐵𝑈 for even 𝑛 and Ω(Z × 𝐵𝑈) for odd 𝑛. The 𝑛-th structure
map is given by the identity id : Ω(Z × 𝐵𝑈) → Ω(Z × 𝐵𝑈) for odd 𝑛 and by an
explicit homotopy equivalence due to Bott Z × 𝐵𝑈 ≃−→ Ω2 (Z × 𝐵𝑈) for even 𝑛. As
usual, associated to this spectrum is also a generalized homology theory 𝐾∗ (𝑋, 𝐴),
called the topological complex 𝐾-homology of spaces, such that 𝐾𝑛 ({•}) is Z if
𝑛 is even and is trivial if 𝑛 is odd. A proof of a universal coefficient theorem for
complex 𝐾-theory can be found in [27] and [1023, (3.1)], the homological version
then follows from [12, Note 9 and 15].

Rationally one can compute complex topological 𝐾-theory by Chern characters.
(Equivariant versions will be explained in Section 12.7.) Namely, we get for any pair
of 𝐶𝑊-complexes (𝑋, 𝐴) a natural Q-isomorphism⊕

𝑝∈Z, 𝑝≡𝑛(2)
𝐻𝑝 (𝑋, 𝐴;Q) �−→ 𝐾𝑛 (𝑋, 𝐴) ⊗Z Q,(10.1)

and for any pair of finite 𝐶𝑊-complexes (𝑋, 𝐴) a natural Q-isomorphism

𝐾𝑛 (𝑋, 𝐴) ⊗Z Q
�−→

∏
𝑝∈Z, 𝑝≡𝑛(2)

𝐻 𝑝 (𝑋, 𝐴;Q).(10.2)

The condition that (𝑋, 𝐴) is finite is needed in (10.2). The cohomological Chern
character (10.2) is compatible with the multiplicative structures.

For integral computations one has to use the Atiyah-Hirzebruch spectral sequence,
which does not collapse in general.

Exercise 10.3. Let 𝑋 be a finite 𝐶𝑊-complex. Show for its Euler characteristic

𝜒(𝑋) = rkZ (𝐾0 (𝑋)) − rkZ (𝐾1 (𝑋)) = rkZ (𝐾0 (𝑋)) − rkZ (𝐾1 (𝑋)).

The groups 𝐾∗ (𝐵𝐺) can be computed explicitly for all finite groups 𝐺 using the

Completion Theorem due to Atiyah-Segal [43, 51], see for instance [656, Theo-
rem 0.3]. Namely, if for a prime 𝑝 we denote by 𝑟 (𝑝) the number of conjugacy
classes (𝑔) of elements 𝑔 ∈ 𝐺 whose order |𝑔 | is 𝑝𝑑 for some integer 𝑑 ≥ 1, and by
Z �̂� the 𝑝-adic integers, then there are isomorphisms of abelian groups

𝐾0 (𝐵𝐺) � Z ×
∏
𝑝 prime

(Z �̂�)𝑟 (𝑝) ;(10.4)

𝐾1 (𝐵𝐺) � 0.(10.5)



10.2 Topological 𝐾-Theory of Spaces 279

One can also figure out the multiplicative structure on 𝐾0 (𝐵𝐺) in (10.4). This shows
how accessible topological 𝐾-theory is. For instance, one does not know the group
cohomology 𝐻∗ (𝐵𝐺) of all finite groups 𝐺.

If 𝑋 is a finite 𝐶𝑊-complex, 𝐾∗ (𝑋) can be described in terms of vector bundles.
For instance, 𝐾0 (𝑋) is the Grothendieck group associated to the abelian monoid of
isomorphism classes of (finite-dimensional complex) vector bundles over 𝑋 under
the Whitney sum. Naturality comes from the pullback construction, the multiplicative
structure from the tensor product of vector bundles.

There are a Thom isomorphism and a Künneth Theorem for finite 𝐶𝑊-complexes
for topological complex 𝐾-cohomology, see [48, Corollary 2.7.12 on page 111 and
Corollary 2.7.15 on page 113].

Using exterior powers one can construct the so-called Adams operations on
topological complex 𝐾-cohomology. They were a key ingredient in the work of
Adams on the Hopf invariant one problem, see [3, 14], and on linear independent
vector fields on spheres, see [4, 5, 6]. Atiyah [44] introduced the groups 𝐽 (𝑋) where
vector bundles are considered up to fiber homotopy equivalence. They were studied
by Adams [8, 9, 10, 11].

Complex topological 𝐾-theory is one of the first generalized cohomology the-
ories. There are other generalized (co)homology theories such as bordism, see for
instance [982], complex bordism, see for instance [844], Morava 𝐾-theory, see for
instance [1021], elliptic cohomology, see for instance [692, 947], and topological
modular forms tmf, see for instance [501, 502, 692], which have been of great interest
in algebraic topology over the last decades.

The connection between topological 𝐾-theory and spaces of Fredholm operators
was explained by Jänich [519]. Namely, there exists a natural bijection of abelian
groups for finite 𝐶𝑊-complexes 𝑋

[𝑋, Fred] � 𝐾0 (𝑋)(10.6)

where Fred is the space of Fredholm operators, i.e., bounded operators with finite-
dimensional kernel and cokernel. This shows that there is a relation between to-
pological 𝐾-theory and index theory. For instance, we get from (10.6) applied to
𝑋 = {•} an isomorphism 𝜋0 (Fred) = 𝐾0 ({•}) � Z that sends a Fredholm opera-
tor to its classical index which is the difference of the dimension of its kernel and
the dimension of its cokernel. The bijection of (10.6) assigns to a map 𝑋 → Fred
which can be interpreted as a family of Fredholm operators parametrized by 𝑋 , its
family index which is essentially the difference of the class of the vector bundle over
𝑋 whose fiber over 𝑥 is the kernel of the Fredholm operator associated to 𝑥 ∈ 𝑋
and the vector bundle over 𝑋 whose fiber over 𝑥 is the cokernel of the Fredholm
operator associated to 𝑥 ∈ 𝑋 . Good introductions to index theory are the seminal
papers [50, 52, 53, 55, 56]. Other references about index theory are [142, 853, 1022].
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10.2.2 Real Topological 𝑲-Theory of Spaces

There is also the real topological 𝐾-theory of spaces, sometimes also called
the real topological 𝐾𝑂-cohomology of spaces, 𝐾𝑂∗ (𝑋, 𝐴) and real topological
𝐾-homology 𝐾𝑂∗ (𝑋, 𝐴), where one considers real vector bundles instead of com-
plex vector bundles and 𝐵𝑂 instead of 𝐵𝑈. One uses a specific homotopy equivalence
Z × 𝐵𝑂 ≃−→ Ω8 (Z × 𝐵𝑂) to construct the so-called real 𝐾-theory spectrum KTOP

R .
A much more sophisticated and structured symmetric spectrum representing real
𝐾-theory in terms of Fredholm operators was constructed by Joachim [523, 524]
and Mitchener [744] based on ideas of Atiyah-Singer [54].

The main difference between the real and the complex version is that 𝐾𝑂∗ is
8-periodic and 𝐾𝑂𝑛 ({•}) = 𝐾𝑂−𝑛 ({•}) is given by Z,Z/2,Z/2, 0,Z, 0, 0, 0 for
𝑛 = 0, 1, 2, 3, 4, 5, 6, 7. There are natural transformations 𝑖∗ : 𝐾𝑂∗ (𝑋) → 𝐾∗ (𝑋)
and 𝑟∗ : 𝐾∗ (𝑋) → 𝐾𝑂∗ (𝑋) that corresponds to assigning to a real vector bundle
its complexification and to a complex vector bundle its restriction to a real vector
bundle. They satisfy 𝑟 ◦ 𝑖 = 2 · id. They also exist on K-homology. It is sometimes
useful to consider the real topological K-theory instead of the complex version,
since one loses information when passing to the complex topological version. On
the other hand computations for the real topological 𝐾-theory are harder than for the
complex topological 𝐾-theory, since the real version is 8-periodic and its value at
{•} contains 2-torsion, whereas the complex version is 2-periodic and its evaluation
at {•} is much simpler than for the real version.

Rationally we get again a Chern character, namely, for any pair of𝐶𝑊-complexes
(𝑋, 𝐴) a natural Q-isomorphism⊕

𝑝∈Z, 𝑝≡𝑛(4)
𝐻𝑝 (𝑋, 𝐴;Q) �−→ 𝐾𝑂𝑛 (𝑋, 𝐴) ⊗Z Q,(10.7)

and for any pair of finite 𝐶𝑊-complexes (𝑋, 𝐴) a natural Q-isomorphism

𝐾𝑂𝑛 (𝑋, 𝐴) ⊗Z Q
�−→

∏
𝑝∈Z, 𝑝≡𝑛(4)

𝐻 𝑝 (𝑋, 𝐴;Q).(10.8)

There is a natural transformation of homology theories called 𝐾𝑂-orientation of
Spin bordism due to Atiyah-Bott-Shapiro [49], which can be interpreted by sending
a Spin manifold to the index class of the associated Dirac operator

𝐷 : ΩSpin
𝑛 (𝑋) → 𝐾𝑂𝑛 (𝑋).(10.9)

It plays an important role for the question when a closed spin manifold admits a
Riemannian metric of positive sectional curvature, see Subsection 14.8.4.

A relation of 𝐾𝑂-theory to surgery theory has already been explained in
Remark 9.133.
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Another variant of topological 𝐾-theory denoted by 𝐾𝑅∗ (𝑋, 𝐴) was defined by
Atiyah [45]. Twisted topological 𝐾-theory has been studied intensively, see in-
stance [41, 42, 400, 552].

More information about the topological 𝐾-theory of spaces can be found for
instance in [7, 40, 47, 48, 508, 509, 551, 620].

10.2.3 Equivariant Topological 𝑲-Theory of Spaces

Equivariant topological 𝐾-theory has been considered for compact topological
groups acting on compact spaces, see for instance [48, 905]. For our purposes it
will be important to treat the more general case of a proper action of a not neces-
sarily compact group. It suffices for us to consider discrete groups 𝐺 and proper
𝐺-𝐶𝑊-complexes, or, equivalently, 𝐶𝑊-complexes with a 𝐺-action such that all
isotropy groups are finite and for every open cell 𝑒 of 𝑋 with 𝑔 · 𝑒 ∩ 𝑒 ≠ ∅ we
have 𝑔𝑥 = 𝑥 for all 𝑥 ∈ 𝑒. This is difficult enough, but not as hard as the much
less understood case of a topological group acting properly on a locally compact
Hausdorff space.

If 𝐺 is a discrete group, 𝐺-cohomology theories 𝐾∗
𝐺

and 𝐾𝑂∗
𝐺

are constructed
by Lück-Oliver [670] for pairs of proper 𝐺-𝐶𝑊-complexes (𝑋, 𝐴) using classify-
ing spaces for 𝐺-vector bundles. More precisely, for every pair of proper 𝐺-𝐶𝑊-
complexes (𝑋, 𝐴) one obtains Z-graded abelian groups 𝐾∗

𝐺
(𝑋, 𝐴) and 𝐾𝑂∗

𝐺
(𝑋, 𝐴)

such that one has naturality, 𝐺-homotopy invariance, a long exact sequence of pairs,
excision, and the disjoint union axiom holds, see Definition 12.1. The complex
version 𝐾∗

𝐺
is 2-periodic, the real version is 8-periodic.

Let 𝐻 ⊆ 𝐺 be a finite subgroup. Then

𝐾𝑛𝐺 (𝐺/𝐻) =
{

RepC (𝐻) if 𝑛 is even;
{0} if 𝑛 is odd.

(10.10)

There is a decomposition of the real group ring R𝐻 as a direct product∏𝑟
𝑖=0 𝑀𝑛𝑖 ,𝑛𝑖 (𝐷𝑖) of matrix algebras over skew-fields 𝐷𝑖 where 𝐷𝑖 is R, C, or H.

Then one obtains a decomposition for each 𝑛 ∈ Z

𝐾𝑂−𝑛𝐺 (𝐺/𝐻) =
𝑟∏
𝑖=1

𝐾𝑂−𝑛𝐺 (𝐺/𝐻)𝑖(10.11)

where

𝐾𝑂−𝑛𝐺 (𝐺/𝐻)𝑖 =

𝐾𝑂𝑛 ({•}) if 𝐷𝑖 = R;
𝐾𝑛 ({•}) if 𝐷𝑖 = C;
𝐾𝑂𝑛+4 ({•}) if 𝐷𝑖 = H.
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There is a natural external multiplicative structure, i.e., there is a natural pairing

𝐾𝑚𝐺 (𝑋, 𝐴) ⊗Z 𝐾
𝑛
𝐻 (𝑋, 𝐵) → 𝐾𝑚+𝑛𝐺×𝐻 ((𝑋, 𝐴) × (𝑌, 𝐵))(10.12)

for discrete groups𝐺 and 𝐻 and a pair (𝑋, 𝐴) of proper𝐺-𝐶𝑊-complexes and a pair
(𝑌, 𝐵) of proper𝐻-𝐶𝑊-complexes. There exists a natural restriction homomorphism
for any inclusion 𝑖 : 𝐻 → 𝐺 of discrete groups

𝑖∗ : 𝐾∗𝐺 (𝑋, 𝐴) → 𝐾∗𝐻 (𝑖∗ (𝑋, 𝐴)),(10.13)

where (𝑋, 𝐴) is a pair of proper 𝐺-𝐶𝑊-complexes and 𝑖∗ (𝑋, 𝐴) is its restriction to
𝐻. Applying this to the diagonal map𝐺 → 𝐺×𝐺 and the external product and using
the diagonal embedding 𝑋 → 𝑋 × 𝑋 , one obtains a natural internal multiplicative
structure, i.e., natural pairings

𝐾𝑚𝐺 (𝑋, 𝐴) ⊗Z 𝐾
𝑛
𝐺 (𝑋, 𝐵) → 𝐾𝑚+𝑛𝐺 (𝑋, 𝐴 ∪ 𝐵)(10.14)

for a discrete group 𝐺 and a proper 𝐺-𝐶𝑊-complex 𝑋 with 𝐺-𝐶𝑊-subcom-
plexes 𝐴 and 𝐵. In particular, 𝐾∗

𝐺
(𝑋) becomes a Z-graded algebra for any proper

𝐺-𝐶𝑊-complex 𝑋 . Given a group homomorphism 𝛼 : 𝐻 → 𝐺, there is an induction
homomorphism

ind𝛼 : 𝐾∗𝐻 (𝑋, 𝐴) → 𝐾∗𝐺 (ind𝛼 (𝑋, 𝐴)),(10.15)

where (𝑋, 𝐴) is a proper 𝐻-𝐶𝑊-complex and ind𝛼 (𝑋, 𝐴) is the proper 𝐺-𝐶𝑊-
complex 𝐺 ×𝛼 (𝑋, 𝐴). If ker(𝛼) acts freely on (𝑋, 𝐴), the map ind𝛼 is bijective.

All the constructions and results above are carried out in [670], and the corre-
sponding statements also hold for the real version 𝐾𝑂∗

𝐺
. If𝐺 is finite, they all reduce

to the classical constructions and results.
One can give a description for pairs (𝑋, 𝐴) of finite proper 𝐺-𝐶𝑊-complexes for

a discrete group 𝐺 in terms of 𝐺-vector bundles such that for instance 𝐾0
𝐺
(𝑋) and

𝐾𝑂0
𝐺
(𝑋) respectively agree with the Grothendieck groups of isomorphism classes

of 𝐺-equivariant complex and real respectively vector bundles over the finite proper
𝐺-𝐶𝑊-complex 𝑋 . This follows from [671, Theorem 3.2 and Theorem 3.15]
and [670, Proposition 1.5]. (A𝐶∗-theoretic analog of this result is discussed in [115,
Section 6].) However, the interpretation of 𝐾0

𝐺
(𝑋) in terms of vector bundles does

not hold if 𝐺 is a Lie group, as explained in [671, Section 5]. A description in terms
of infinite-dimensional𝐺-vector bundles is discussed by Phillips [806]. The question
of what the Grothendieck group of isomorphism classes of 𝐺-vector bundles over a
classifying space 𝐵𝐺 of a compact Lie group 𝐺 looks like and how it is related to
𝐾0 (𝐵𝐺) is treated in [518]. (Note that this is a non-trivial question already for finite
groups, since 𝐵𝐺 does not have a finite-dimensional𝐶𝑊-model for non-trivial finite
groups.)

Let 𝐺 be a discrete group. For any cyclic group 𝐶 ⊆ 𝐺 of order 𝑛 < ∞ we
denote by Z[𝜁𝐶 ] ⊆ Q(𝜁𝐶 ) the cyclotomic ring and field generated by the 𝑛-th roots
of unity. We regard them as quotient rings of the group rings Z[hom(𝐶,C∗)] ⊆
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Q[hom(𝐶,C∗)]. In other words, we fix an identification of the 𝑛-th roots of unity in
Q(𝜁𝐶 ) with the irreducible characters of 𝐶. Let C(𝐺) be a set of conjugacy class
representatives for the cyclic subgroups 𝐶 ⊆ 𝐺 of finite order. Denote by 𝐶𝐺𝐶
the centralizer and by 𝑁𝐺𝐶 the normalizer of 𝐶 in 𝐺. Then for any pair of finite
proper 𝐺-complexes (𝑋, 𝐴), there is the following version of an equivariant Chern
character, namely, a natural isomorphism of rings

𝐾∗𝐺 (𝑋; 𝐴) ⊗Z Q
�−→

∏
𝐶∈C(𝐺)

(
𝐻∗ ((𝑋, 𝐴)𝐶/𝐶𝐺𝐶;Q(𝜁𝐶 ))

)𝑁𝐺𝐶/𝐶𝐺𝐶(10.16)

where 𝑁𝐺𝐶/𝐶𝐺𝐶 acts via the conjugation action on Q(𝜁𝐶 ) and on 𝑋𝐶/𝐶𝐺𝐶 in
terms of the given 𝐺-action on 𝑋 .

Equivariant Chern characters can be used to compute 𝐾∗ (𝐵𝐺) ⊗Z Q for infi-
nite groups possessing a finite 𝐺-𝐶𝑊-model for its classifying space for proper
𝐺-actions, i.e., for instance for hyperbolic groups 𝐺 or compact lattices 𝐺 in con-
nected Lie groups, see [656] and also [15, 16]. More information about 𝐾∗ (𝐵𝐺) for
infinite groups can be found in [525, Theorem 0.1], and about cohomological Chern
characters in [653].

Exercise 10.17. Let𝐺 be an abelian group. Let 𝑋 be a finite proper𝐺-𝐶𝑊-complex.
Show that there is a Q-isomorphism

𝐾∗𝐺 (𝑋) ⊗Z Q �
∏

𝐶∈C(𝐺)
𝐻∗ (𝑋𝐶/𝐺;Q)𝜑 ( |𝐶 | )

for the Euler Phi-function 𝜑.

We will construct in Section 10.6 the equivariant 𝐾-homology 𝐾𝐺∗ that is a
𝐺-homology theory defined for pairs of proper𝐺-𝐶𝑊-complexes for discrete groups
𝐺 and satisfies the disjoint union axiom.

An equivariant Universal Coefficient Theorem for equivariant complex 𝐾-theory
for discrete groups 𝐺 and finite proper 𝐺-𝐶𝑊-complexes 𝑋 is given in [525, Theo-
rem 0.3], namely, there are short exact sequences, natural in 𝑋 ,

0→ ExtZ (𝐾𝐺∗−1 (𝑋),Z) → 𝐾∗𝐺 (𝑋) → homZ (𝐾𝐺∗ (𝑋),Z) → 0;(10.18)
0→ ExtZ (𝐾∗+1

𝐺 (𝑋),Z) → 𝐾𝐺∗ (𝑋) → homZ (𝐾∗𝐺 (𝑋),Z) → 0.(10.19)

It reduces for a finite group 𝐺 to the one of Bökstedt [146], as explained in [525,
Remark 5.21],

An external Künneth Theorem for complex 𝐾-theory relating 𝐾∗
𝐺×𝐻 (𝑋 × 𝑌 ) to

𝐾∗
𝐺
(𝑋) and 𝐾∗

𝐻
(𝑌 ) is given in [730] for compact Lie groups 𝐺 and 𝐻 and finite

𝐺-𝐶𝑊-complexes 𝑋 and 𝑌 , namely, there is a short exact sequence
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(10.20) 0→
⊕
𝑖+ 𝑗=𝑛

𝐾 𝑖𝐺 (𝑋) ⊗Z 𝐾
𝑗

𝐻
(𝑌 ) → 𝐾𝑛𝐺×𝐻 (𝑋 × 𝑌 )

→
⊕

𝑖+ 𝑗=𝑛+1
TorZ (𝐾 𝑖𝐺 (𝑋), 𝐾

𝑗

𝐻
(𝑌 )) → 0.

The situation is much more complicated and much less understood if one wants
to relate 𝐾∗

𝐺
(𝑋 × 𝑌 ) to 𝐾∗

𝐺
(𝑋) and 𝐾∗

𝐺
(𝑌 ) for a finite group 𝐺 and finite 𝐺-𝐶𝑊-

complexes 𝑋 and 𝑌 , see [500, 864]. This complication is not surprising, since it is
related to the difficult question of computing 𝐾∗

𝐺
(𝑋 × 𝑌 ) for the diagonal 𝐺-action

on 𝑋 × 𝑌 from 𝐾∗
𝐺×𝐺 (𝑋 × 𝑌 ) for a finite group 𝐺 and finite 𝐺-𝐶𝑊-complexes 𝑋

and 𝑌 .

Exercise 10.21. Let 𝐺 and 𝐻 be discrete groups. Let (𝑋, 𝐴) be a pair of finite
proper𝐺-𝐶𝑊-complexes, and let (𝑌, 𝐵) be a pair of finite proper 𝐻-𝐶𝑊-complexes.
Suppose that either 𝐾 𝑖

𝐺
(𝑋) is torsionfree for 𝑖 ∈ Z or that 𝐾 𝑗

𝐻
(𝑌 ) is torsionfree for

all 𝑗 ∈ Z.
Then the external multiplicative structure induces for every 𝑛 ∈ Z an isomorphism⊕

𝑖+ 𝑗=𝑛
𝐾 𝑖𝐺 (𝑋, 𝐴) ⊗Z 𝐾

𝑗

𝐻
(𝑌, 𝐵) �−→ 𝐾𝑛𝐺×𝐻 ((𝑋, 𝐴) × (𝑌, 𝐵)).

Consider a discrete group 𝐺 and a complex 𝐺-vector bundle 𝑝 : 𝐸 → 𝑋 with
Hermitian metric over a finite proper 𝐺-𝐶𝑊-complex. Let 𝑝𝐷𝐸 : 𝐷𝐸 → 𝑋 be
the disk bundle and 𝑝𝑆𝐸 : 𝑆𝐸 → 𝑋 be the sphere bundle associated to 𝑝 whose
fiber over 𝑥 ∈ 𝑋 is the disk and sphere in 𝑝−1 (𝑥). Then there exists a Thom class
𝜆𝐸 ∈ 𝐾0

𝐺
(𝐷𝐸, 𝑆𝐸) and the composite

𝑇𝐸 : 𝐾∗𝐺 (𝑋)
𝐾∗
𝐺
(𝑝𝐷𝐸 )

−−−−−−−−→ 𝐾∗𝐺 (𝐷𝐸)
−∪𝜆𝐸−−−−→ 𝐾∗𝐺 (𝐷𝐸, 𝑆𝐸)(10.22)

is an isomorphism of Z-graded abelian groups called the Thom isomorphism,
see [671, Theorem 3.14].

Exercise 10.23. For a discrete group 𝐺 and a complex 𝐺-vector bundle 𝑝 : 𝐸 → 𝑋

over a finite proper 𝐺-𝐶𝑊-complex define its Euler class 𝑒(𝑝) ∈ 𝐾𝐺0 (𝑋) to

be the image of the Thom class under the composite 𝐾0
𝐺
(𝐷𝐸, 𝑆𝐸)

𝐾0
𝐺
( 𝑗 )

−−−−−→

𝐾0
𝐺
(𝐷𝐸)

𝐾0
𝐺
(𝑝𝐷𝐸 )−1

−−−−−−−−−−→ 𝐾0
𝐺
(𝑋) for 𝑗 : 𝐷𝐸 → (𝐷𝐸, 𝑆𝐸) the inclusion. Show that

there exists a long exact Gysin sequence

(10.24) · · · 𝛿
𝑛−1

−−−−→ 𝐾𝑛𝐺 (𝑋)
−∪𝑒 (𝑝)
−−−−−−→ 𝐾𝑛𝐺 (𝑋)

𝐾𝑛
𝐺
(𝑝𝑆𝐸 )

−−−−−−−−→ 𝐾𝑛𝐺 (𝑆𝐸)
𝛿𝑛−−→ 𝐾𝑛+1

𝐺 (𝑋)
−∪𝑒 (𝑝)
−−−−−−→ 𝐾𝑛+1

𝐺 (𝑋)
𝐾𝑛+1
𝐺
(𝑝𝑆𝐸 )

−−−−−−−−−→ · · · .
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A Completion Theorem for complex and real topological K-theory allowing fam-
ilies of subgroups is proved in [670, Theorem 6.5] for a discrete group𝐺 and a finite
proper 𝐺-𝐶𝑊-complex 𝑋 in terms of isomorphisms of pro-systems, see also [671,
Theorem 4.3]. Let 𝑝 : 𝐸𝐺 → 𝐵𝐺 be the universal covering of 𝐵𝐺, or, equivalently,
the universal principal 𝐺-bundle. Up to 𝐺-homotopy 𝐸𝐺 is uniquely characterized
by the property that it is a free 𝐺-𝐶𝑊-complex which is (after forgetting the group
action) contractible. A consequence of the Completion Theorem is that the inverse
system {

𝐾∗
(
(𝐸𝐺×𝐺𝑋) (𝑛)

)}
𝑛≥0

satisfies the Mittag-Leffler condition and we obtain isomorphisms

𝐾∗
𝐺
(𝑋 )̂𝐼 � 𝐾∗ (𝐸𝐺×𝐺𝑋) � invlim𝑛→∞ 𝐾∗

(
(𝐸𝐺×𝐺𝑋) (𝑛)

)
.(10.25)

Here 𝐾∗
𝐺
(𝑋 )̂𝐼 is the completion of 𝐾∗

𝐺
(𝑋) with respect to the so-called aug-

mentation ideal 𝐼 that is the kernel of the dimension map 𝐾0
𝐺
(𝐸𝐺) → Z for 𝐸𝐺

the classifying space for proper 𝐺-actions, and we have to assume that there is a
finite-dimensional model for 𝐸𝐺. If 𝐺 is finite and we take 𝑋 = {•}, this reduces to
the classical Atiyah-Segal Completion Theorem predicting an isomorphism

𝐾𝑛 (𝐵𝐺) =
{

RepC (𝐺 )̂𝐼 𝑛 even;
0 𝑛 odd,

where 𝐼 is the augmentation ideal, i.e., kernel of the map given by taking complex
dimension RepC (𝐺) → Z. There is also a version for the real topological 𝐾-theory.

A Cocompletion Theorem for the topological complex 𝐾-homology for discrete
groups and finite proper𝐺-𝐶𝑊-complexes is proved in [525, Theorem 0.2]. It assigns
to a finite proper 𝐺-𝐶𝑊-complex 𝑋 a short exact sequence

(10.26) 0→ colim𝑛≥1 Ext1Z (𝐾
∗+1
𝐺 (𝑋)/𝐼

𝑛 · 𝐾∗+1
𝐺 (𝑋),Z) → 𝐾∗ (𝐸𝐺 ×𝐺 𝑋)

→ colim𝑛≥1 homZ (𝐾∗𝐺 (𝑋)/𝐼
𝑛 · 𝐾∗𝐺 (𝑋),Z) → 0.

The Completion and Cocompletion Theorems are not only interesting in their own
right, they are needed in the computation of the topological 𝐾-theory of certain
group 𝐶∗-algebras, see for instance [282, 283, 619, 988].

Another important tool for equivariant 𝐾-theory over compact Lie groups is the
Localization Theorem for equivariant topological complex 𝐾-theory of Segal [905,
Proposition 4.1]. Given a prime ideal P of RepC (𝐺) = 𝐾0

𝐺
({•}), there is a topo-

logically cyclic group 𝑆 associated to P, its so-called support. If 𝑋 is a finite
𝐺-𝐶𝑊-complex, let 𝑋 (𝑆) be the 𝐺-𝐶𝑊-subcomplex 𝐺 · 𝑋𝑆 . Then after localization
at P the inclusion 𝑋 (𝑆) → 𝑋 induces an isomorphism

𝐾∗𝐺 (𝑋) (P)
�−→ 𝐾∗𝐺 (𝑋

(𝑆) ) (P) .(10.27)

Localization for equivariant cohomology theories for compact Lie groups is treated
in general in [952, Chapter 7] and [953, III.3 and III.4].
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Equivariant topological 𝐾-theory was designed for and is a key ingredient
when one considers indices of equivariant operators. See for instance [50, 52, 53]
where also applications such as Lefschetz Theorems, Riemann-Roch Theorems, and
𝐺-Signature Theorems are treated for compact Lie groups.

The 𝐾𝐺-degree of 𝐺-maps between spheres of unitary 𝐺-representations for a
compact Lie group 𝐺 is an important tool, see [953, II.5].

A discussion about equivariant 𝐾-theory and orbifold 𝐾-theory can be found
in [18, Chapter 3].

A geometric description of equivariant 𝐾-homology for proper actions in term
cycles built by proper cocompact 𝐺-Spin𝑐-manifolds and smooth complex 𝐺-vector
bundles over them is given in [115], extending the non-equivariant versions of [110,
114].

10.3 Topological 𝑲-Theory of 𝑪∗-Algebras

10.3.1 Basics about 𝑪∗-Algebras

For this section let 𝐹 be R or C. For 𝜆 ∈ 𝐹, denote by 𝜆 the complex conjugate of 𝜆.
A Banach algebra over 𝐹 is an associative 𝐹-algebra 𝐴 = (𝐴,+, ·) together

with a norm | | | | for the underlying 𝐹-vector space such that the underlying
𝐹-vector space is complete with respect to the given norm and we have the in-
equality | |𝑎 · 𝑏 | | ≤ | |𝑎 | | · | |𝑏 | | for all elements 𝑎, 𝑏 ∈ 𝐴.

A Banach ∗-algebra is a Banach algebra together with an involution ∗ : 𝐴 →
𝐴, 𝑎 ↦→ 𝑎∗ satisfying (𝑎∗)∗ = 𝑎, (𝑎 ·𝑏)∗ = 𝑏∗ ·𝑎∗, (𝜆 ·𝑎+ 𝜇 ·𝑏)∗ = 𝜆 ·𝑎∗+ 𝜇 ·𝑏∗, and
| |𝑎∗ | | = | |𝑎 | | for 𝑎, 𝑏 ∈ 𝐴 and 𝜆, 𝜇 ∈ 𝐹. If𝐺 is a discrete group, 𝐿1 (𝐺, 𝐹) carries the
structure of a Banach ∗-algebra coming from the convolution product, the 𝐿1-norm,
and the involution sending

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔 to

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔−1.

A 𝐶∗-algebra is a Banach ∗-algebra 𝐴 that additionally satisfies the 𝐶∗-identity
| |𝑎∗𝑎 | | = | |𝑎 | |2 for all 𝑎 ∈ 𝐴. A homomorphism of 𝐶∗-algebras 𝑓 : 𝐴 → 𝐵 is a
homomorphism of 𝐹-algebras in the algebraic sense that respects the involutions. A
consequence of the 𝐶∗-identity is that a homomorphism of 𝐶∗-algebras 𝑓 : 𝐴 → 𝐵

automatically satisfies | | 𝑓 (𝑎) | | ≤ | |𝑎 | | for all 𝑎 ∈ 𝐴 and is in particular continuous.
Moreover, any injective homomorphism of 𝐶∗-algebras 𝑓 : 𝐴→ 𝐵 is automatically
isometric, i.e., satisfies | | 𝑓 (𝑎) | | = | |𝑎 | | for all 𝑎 ∈ 𝐴, and two 𝐶∗-algebras which
are isomorphic as 𝐹-algebras with involutions in the purely algebraic sense are
automatically isomorphic as 𝐶∗-algebras. Two homomorphisms 𝑓 , 𝑔 : 𝐴 → 𝐵 are
homotopic if there is a path {𝛾𝑡 | 𝑡 ∈ [0, 1]} of homomorphisms of 𝐶∗-algebras
𝛾𝑡 : 𝐴 → 𝐵 such that 𝛾0 = 𝑓 and 𝛾1 = 𝑔 and for every 𝑎 the evaluation map
[0, 1] → 𝐵, 𝑡 ↦→ 𝛾𝑡 (𝑎) is continuous with respect to the𝐶∗-norm on 𝐵. Equivalently,
there is a homomorphism of 𝐶∗-algebras 𝛾 : 𝐴 → 𝐶 ( [0, 1], 𝐵) to the 𝐶∗-algebra
of continuous functions from [0, 1] to 𝐵 under the supremum norm such that its
composite with the evaluation maps at 𝑡 = 0 and 𝑡 = 1 from 𝐶 ( [0, 1], 𝐵) to 𝐵 are 𝑓
and 𝑔.
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If 𝐻 is a Hilbert 𝐹-space, then the algebra of bounded operators B(𝐻) with
the involution given by taking adjoint operators and the operator norm is a
𝐶∗-algebra. Any subalgebra 𝐴 ⊆ B(𝐻) which is closed in the norm topology
and closed under taking adjoints inherits the structure of a 𝐶∗-algebra, and any
𝐶∗-algebra is isomorphic as a 𝐶∗-algebra to such an 𝐴.

We are not requiring a multiplicative unit. If the Banach algebra or 𝐶∗-algebra 𝐴
has a multiplicative unit, we call 𝐴 a unital Banach algebra or unital 𝐶∗-algebra.

Given a 𝐶∗-algebra 𝐴, an ideal in 𝐴 is a two-sided ideal of the underlying
𝐹-algebra that is closed in the norm topology. It is automatically closed under
the involution and hence inherits the structure of a 𝐶∗-algebra. The quotient 𝐴/𝐼
inherits the structure of a𝐶∗-algebra by the obvious 𝐹-algebra structure and the norm
| |𝑎 + 𝐼 | |𝐴/𝐼 := inf{| |𝑎 + 𝑖 | |𝐴 | 𝑖 ∈ 𝐼}. Kernels of 𝐶∗-homomorphisms 𝑓 : 𝐴→ 𝐵 are
ideals 𝐴 and each ideal in 𝐴 is the kernel of some homomorphism of 𝐶∗-algebras
with 𝐴 as source, namely, of the projection 𝐴→ 𝐴/𝐼.

Fix an infinite-dimensional separable 𝐹 Hilbert space 𝐻. Let B be the unital
𝐶∗-algebra of bounded operators 𝐻 → 𝐻. An element 𝑇 ∈ B(𝐻) is compact if
for any bounded subset 𝐵 ⊆ 𝐻 the closure of 𝑇 (𝐵) is a compact subset of 𝐻. The
compact operators form an idealK in B. The Calkin algebra is the unital𝐶∗-algebra
B/K

Let 𝑋 be a locally compact Hausdorff space. Denote by 𝐶0 (𝑋, 𝐹) the 𝐶∗-algebra
of continuous functions 𝑓 : 𝑋 → 𝐹 that vanish at infinity, i.e., for every 𝜖 > 0 there
exists a compact subset 𝐶 ⊆ 𝑋 such that | 𝑓 (𝑥) | ≤ 𝜖 holds for all 𝑥 ∈ 𝑋 \ 𝐶. If 𝐹 is
clear from the context, we often abbreviate 𝐶0 (𝑋) = 𝐶0 (𝑋, 𝐹). Define an involution
∗ : 𝐶0 (𝑋, 𝐹) → 𝐶0 (𝑋, 𝐹) by sending 𝑓 to the function mapping 𝑥 ∈ 𝑋 to 𝑓 (𝑥).
Equip 𝐶0 (𝑋, 𝐹) with the supremum norm. Then 𝐶0 (𝑋, 𝐹) is a 𝐶∗-algebra. If 𝑋 is
compact, the constant function on 𝑋 with value 1 is a unit. Moreover, 𝐶0 (𝑋, 𝐹) is
unital if and only if 𝑋 is compact.

Example 10.28 (One-point and Stone-Čech compactification). If 𝑋 is a locally
compact Hausdorff space, then we can assign to it two compactifications, the
one-point compactification 𝑋+ and the Stone-Čech compactification 𝛽𝑋 , see [754,
page 183 and Section 5.3]. Then 𝐶0 (𝑋+, 𝐹) agrees with 𝐶0 (𝑋, 𝐹)+ and 𝐶 (𝛽𝑋, 𝐹)
agrees with 𝐶𝑏 (𝑋, 𝐹), the 𝐶∗-algebra of bounded continuous functions 𝑋 → 𝐹.
(Actually 𝐶𝑏 (𝑋, 𝐹) is the so-called multiplier algebra of 𝐶0 (𝑋, 𝐹).) See for in-
stance [991, Example 2.1.2 on page 28 and Example 2.2.4 on page 32].

Let 𝐿2 (𝐺, 𝐹) be the Hilbert 𝐹-space whose orthonormal basis is 𝐺. If 𝐹 is clear
from the context, we often abbreviate 𝐿2 (𝐺) = 𝐿2 (𝐺, 𝐹). Let B(𝐿2 (𝐺, 𝐹)) denote
the bounded linear operators on the Hilbert 𝐹-space 𝐿2 (𝐺, 𝐹). The reduced group
𝐶∗-algebra 𝐶∗𝑟 (𝐺, 𝐹) is the closure in the norm topology of the image of the regular
representation 𝐹𝐺 → B(𝐿2 (𝐺, 𝐹)) that sends an element 𝑢 ∈ 𝐹𝐺 to the (left)
𝐺-equivariant bounded operator 𝐿2 (𝐺, 𝐹) → 𝐿2 (𝐺, 𝐹) given by right multiplica-
tion by 𝑢. Let 𝐿1 (𝐺, 𝐹) be the Banach ∗-algebra of formal sums

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔 with

coefficients in 𝐹 such that
∑
𝑔∈𝐺 |𝜆𝑔 | < ∞. If 𝐹 is clear from the context, we often
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abbreviate 𝐿1 (𝐺) = 𝐿1 (𝐺, 𝐹). There are natural inclusions

𝐹𝐺 ⊆ 𝐿1 (𝐺, 𝐹) ⊆ 𝐶∗𝑟 (𝐺, 𝐹) ⊆ B(𝐿2 (𝐺, 𝐹))𝐺 ⊆ B(𝐿2 (𝐺, 𝐹)).

Exercise 10.29. Show for a discrete group 𝐺 that 𝐿1 (𝐺, 𝐹) is a 𝐶∗-algebra if and
only if 𝐺 is trivial or (𝐺 has order 2 and 𝐹 = R).

For a group 𝐺 let 𝐶∗𝑚 (𝐺, 𝐹) be its maximal group 𝐶∗-algebra, that is, the norm
closure of the image of the so-called universal representation 𝐹𝐺 → B(𝐻𝑢),
compare [802, 7.1.5 on page 229]. The maximal group 𝐶∗-algebra has the ad-
vantage that every homomorphism of groups 𝜙 : 𝐺 → 𝐻 induces a homomorphism
𝐶∗𝑚 (𝐺, 𝐹) → 𝐶∗𝑚 (𝐻, 𝐹) of 𝐶∗-algebras. This is not true for the reduced group
𝐶∗-algebra 𝐶∗𝑟 (𝐺, 𝐹). Here is a counterexample. Since 𝐶∗𝑟 (𝐺, 𝐹) is a simple algebra
if 𝐺 is a non-abelian free group [813], there is no unital algebra homomorphism
𝐶∗𝑟 (𝐺, 𝐹) → 𝐶∗𝑟 ({1}, 𝐹) = 𝐹. There is a canonical homomorphism of 𝐶∗-algebras
𝐶∗𝑚 (𝐺, 𝐹) → 𝐶∗𝑟 (𝐺, 𝐹), which is an isomorphism of 𝐶∗-algebra if and only if 𝐺 is
amenable, see [802, Theorem 7.3.9 on page 243].

If 𝐹 is clear from the context, we often abbreviate 𝐶∗𝑟 (𝐺) = 𝐶∗𝑟 (𝐺, 𝐹) and
𝐶∗𝑚 (𝐺) = 𝐶∗𝑚 (𝐺, 𝐹).

Given a discrete group 𝐺, a 𝐺-𝐶∗-algebra 𝐴 is a 𝐶∗-algebra together with a
𝐺-action 𝜌 : 𝐺 → aut(𝐴) by 𝐶∗-automorphisms. One can associate to a 𝐺-𝐶∗-
algebra 𝐴 two new 𝐶∗-algebras, its reduced crossed product of 𝐶∗-algebras 𝐴 ⋊𝑟 𝐺
and its maximal crossed product of𝐶∗-algebras 𝐴⋊𝑚𝐺, see [802, 7.6.5 on page 257
and 7.7.4 on page 262]. There is a canonical homomorphism from the maximal
crossed product to the reduced crossed product, which is an isomorphism if 𝐺 is
amenable, see [802, Theorem 7.7.7. on page 263]. If we take 𝐴 = 𝐹 with the trivial
𝐺-action, then 𝐹 ⋊𝑟 𝐺 and 𝐹 ⋊𝑚 𝐺 are just 𝐶∗𝑟 (𝐺, 𝐹) and 𝐶∗𝑚 (𝐺, 𝐹).

Let {𝐴𝑖 | 𝑖 ∈ 𝐼} be a directed system of 𝐶∗-algebras. Then its colimit, often
also called the inductive limit, or direct limit, is a𝐶∗-algebra denoted by colim𝑖∈𝐼 𝐴𝑖 ,
together with homomorphisms of𝐶∗-algebras 𝜓 𝑗 : 𝐴𝑖 → colim𝑖∈𝐼 𝐴𝑖 for every 𝑗 ∈ 𝐼
such that 𝜓 𝑗 ◦ 𝜙𝑖, 𝑗 = 𝜓𝑖 holds for 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 and the following universal
property is satisfied: For every 𝐶∗-algebra 𝐵 and every system of homomorphisms
of 𝐶∗-algebras {𝜇𝑖 : 𝐴𝑖 → 𝐵 | 𝑖 ∈ 𝐼} such that 𝜇 𝑗 ◦ 𝜙𝑖, 𝑗 = 𝜇𝑖 holds for 𝑖, 𝑗 ∈ 𝐼 with
𝑖 ≤ 𝑗 , there is precisely one homomorphism of 𝐶∗-algebras 𝜇 : colim𝑖∈𝐼 𝐴𝑖 → 𝐵

satisfying 𝜇 ◦ 𝜓𝑖 = 𝜇𝑖 for every 𝑖 ∈ 𝐼. The colimit exists and is unique up to
isomorphism of 𝐶∗-algebras.

An extensive discussions about tensor products 𝐴⊗̂𝐵 of𝐶∗-algebras can be found
in [991, Appendix T]. There are various ways for two 𝐶∗-algebras 𝐴 and 𝐵 to
complete their algebraic tensor product 𝐴 ⊗𝐹 𝐵 to a new 𝐶∗-algebra 𝐴⊗̂𝐵. One is
the spatial norm, which turns out to be the minimal norm and leads to the spatial
tensor product, sometimes also called the minimal tensor product. A second is
the maximal norm, which leads to the maximal tensor product. Any 𝐶∗-norm on
the algebraic tensor product lies between the minimal and the maximal norm. The
favorite situation is the case where 𝐴 is a so-called nuclear 𝐶∗-algebra, i.e., the
minimal and the maximal norm on the algebraic tensor product 𝐴 ⊗𝐹 𝐵 agree for
any 𝐶∗-algebra 𝐵. Then for any 𝐶∗-algebra 𝐵 there exists only one 𝐶∗-norm on the
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algebraic tensor product 𝐴⊗𝐹𝐵 and hence there is a unique tensor product𝐶∗-algebra
𝐴⊗̂𝐵. Commutative𝐶∗-algebras and finite-dimensional𝐶∗-algebras are nuclear. The
class of nuclear 𝐶∗-algebras is closed under taking colimits over directed systems
and extensions. In particular, the 𝐶∗-algebra of compact operators K is nuclear.
Ideals in and quotients of nuclear 𝐶∗-algebras are again nuclear. The reduced group
𝐶∗-algebra of 𝐺 is nuclear if and only if 𝐺 is amenable.

Given a 𝐶∗-algebra 𝐴, define M𝑛 (𝐴) = 𝐴⊗̂M𝑛 (𝐹), which is well-defined since
M𝑛 (𝐹) = B(𝐹𝑛) is nuclear. Actually, the underlying 𝐹-algebra of M𝑛 (𝐴) is the
algebraic tensor product 𝐴 ⊗𝐹 M𝑛 (𝐹) itself, one does not have to complete.

The 𝐶∗-algebra K of compact operators on an infinite-dimensional separable
Hilbert 𝐹-space is the colimit of the directed system M1 (𝐹) → M2 (𝐹) → M3 (𝐹) →
· · · where the structure maps are given by taking the block sum with the (1, 1)-zero
matrix (0). Given a 𝐶∗-algebra 𝐴, the tensor product 𝐴⊗̂K is the colimit of the
directed system M1 (𝐴) → M2 (𝐴) → M3 (𝐴) → · · · .

A 𝐶∗-algebra is called separable if its underlying topological space is separable,
i.e., contains a dense countable subset.

A𝐶∗-algebra 𝐴 is called stable if 𝐴 is isomorphic as a𝐶∗-algebra to 𝐴⊗̂K. Since
K⊗̂K is isomorphic to K, the tensor product 𝐴⊗̂K is a stable 𝐶∗-algebra for every
𝐶∗-algebra 𝐴.

More information about 𝐶∗-algebras can be found for instance in [38, 141, 250,
276, 310, 388, 539, 540, 802].

10.3.2 Basic Properties of the Topological 𝑲-Theory of 𝑪∗-Algebras

Topological𝐾-theory assigns to any (not necessarily unital)𝐶∗-algebra 𝐴 aZ-graded
abelian group 𝐾∗ (𝐴) such that the following properties hold:

(i) Functoriality
A homomorphism 𝑓 : 𝐴 → 𝐵 of 𝐶∗-algebras induces a map of Z-graded
abelian groups 𝐾∗ ( 𝑓 ) : 𝐾∗ (𝐴) → 𝐾∗ (𝐵). If 𝑔 : 𝐵 → 𝐶 is another homo-
morphism of 𝐶∗-algebras, we have 𝐾∗ (𝑔 ◦ 𝑓 ) = 𝐾∗ (𝑔) ◦ 𝐾∗ ( 𝑓 ). Moreover
𝐾∗ (id𝐴) = id𝐾∗ (𝐴) ;

(ii) Homotopy invariance
Homotopic homomorphisms of𝐶∗-algebras induce the same map on the topo-
logical 𝐾-theory;

(iii) Finite direct products
If 𝐴 and 𝐵 are 𝐶∗-algebras, their direct product 𝐴 × 𝐵 inherits the structure of
a 𝐶∗-algebra by | | (𝑎, 𝑏) | | = max{| |𝑎 | |, | |𝑏 | |}. The projections to the factors are
homomorphisms of𝐶∗-algebras and induce a natural isomorphism ofZ-graded
abelian groups

𝐾∗ (𝐴 × 𝐵)
�−→ 𝐾∗ (𝐴) × 𝐾∗ (𝐵);
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(iv) Compatibility with colimits over directed systems
Let {𝐴𝑖 | 𝑖 ∈ 𝐼} be a directed system of 𝐶∗-algebras. Then the canonical map
of Z-graded abelian groups is an isomorphism

colim𝑖∈𝐼 𝐾∗ (𝐴𝑖)
�−→ 𝐾∗

(
colim𝑖→𝐼 𝐴𝑖

)
;

(v) Morita equivalence
There are canonical isomorphisms 𝐾∗ (𝐴) → 𝐾∗ (M𝑛 (𝐴));

(vi) Stabilization
The canonical inclusion 𝐹 = M1 (𝐹) → K yields an inclusion 𝑖𝐴 : 𝐴→ 𝐴⊗̂K.
The induced map of Z-graded abelian groups 𝐾∗ (𝑖𝐴) : 𝐾∗ (𝐴) → 𝐾∗ (𝐴⊗̂K) is
an isomorphism;

(vii) Long exact sequence of an ideal
Let 𝐼 be a (two-sided closed) ideal in the 𝐶∗-algebra 𝐴. Denote by 𝑖 : 𝐼 → 𝐴

the inclusion and by 𝑝 : 𝐴→ 𝐴/𝐼 the projection. Then there exists a long exact
sequence, natural in (𝐴, 𝐼) and infinite to both sides,

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝐼)
𝐾𝑛 (𝑖)−−−−→ 𝐾𝑛 (𝐴)

𝐾𝑛 (𝑝)−−−−−→ 𝐾𝑛 (𝐴/𝐼)
𝜕𝑛−−→ 𝐾𝑛−1 (𝐼)

𝐾𝑛−1 (𝑖)−−−−−−→ 𝐾𝑛−1 (𝐴)
𝐾𝑛−1 (𝑝)−−−−−−−→ 𝐾𝑛−1 (𝐴/𝐼)

𝜕𝑛−1−−−→ · · · ;

(viii) Bott periodicity
For any 𝐶∗-algebra 𝐴 over 𝐹 there exists an isomorphism of degree 𝑏(𝐹)

𝛽∗ (𝐴) : 𝐾∗ (𝐴)
�−→ 𝐾∗+𝑏 (𝐹 ) (𝐴),

which is natural in 𝐴, and compatible with the boundary operator 𝜕∗ of the
long exact sequence of an ideal, where 𝑏(𝐹) = 2 if 𝐹 = C and 𝑏(𝐹) = 8 if
𝐹 = R;

(ix) Commutative 𝐶∗-algebras
Let 𝑋 be a finite 𝐶𝑊-complex (or more generally, compact Hausdorff space).
Then there are isomorphisms of Z-graded abelian groups, natural in 𝑋 ,

𝐾∗ (𝑋) �−→ 𝐾∗ (𝐶 (𝑋,C));
𝐾𝑂∗ (𝑋) �−→ 𝐾∗ (𝐶 (𝑋,R)),

from the topological complex or real𝐾-theory of 𝑋 to the topological𝐾-theory
of the unital 𝐶∗-algebra 𝐶 (𝑋, 𝐹) of continuous functions 𝑋 → 𝐹.

Of course the last property about commutative 𝐶∗-algebras is closely related to
the material in Section 2.4 about Swan’s Theorem 2.27.

Notation 10.30 (𝐾 and 𝐾𝑂). If one considers a real 𝐶∗-algebra, one often writes
𝐾𝑂∗ (𝐴) instead of 𝐾∗ (𝐴) to indicate that the 𝐶∗-algebra under consideration lives
over R.
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The 0-th topological 𝐾-group 𝐾0 (𝐴) of a𝐶∗-algebra 𝐴 agrees with the projective
class group 𝐾0 (𝐴) of the underlying ring (possibly without unit) in the sense of
Definition 3.90. In contrast to 𝐾0 (𝐴) the topology of 𝐴 enters in the definition of
𝐾1 (𝐴) as explained next.

If 𝐴 is a𝐶∗-algebra (with or without unit), then we define the unital𝐶∗-algebra 𝐴+
as follows. The underlying unital 𝐹-algebra is 𝐴⊕𝐹 with the addition (𝑎, 𝜆)+(𝑏, 𝜇) =
(𝑎 + 𝑏, 𝜆 + 𝜇), multiplication (𝑎, 𝜆) · (𝑏, 𝜇) = (𝑎 · 𝑏 + 𝜆 · 𝑏 + 𝜇 · 𝑎, 𝜆 · 𝜇), and unit
(0, 1). The involutions sends (𝑎, 𝜆) to (𝑎∗, 𝜆). The𝐶∗-norm is explained for instance
in [802, 1.1.3 on page 1] or [991, Proposition 2.1.7 on page 30]. Let 𝑝 : 𝐴+ → 𝐹

be the canonical projection sending (𝑎, 𝜆) to 𝜆. It induces maps M𝑛 (𝐴+) → M𝑛 (𝐹)
and GL𝑛 (𝐴+) → GL𝑛 (𝐹), denoted again by 𝑝. Define

GL+𝑛 (𝐴) := {𝐵 ∈ GL𝑛 (𝐴+) | 𝑝(𝐵) = 1}.(10.31)

This becomes a topological group by the subspace topology with respect to the
inclusion GL+𝑛 (𝐴) ⊆ M𝑛 (𝐴+). There is an obvious directed system of topological
groups

GL+1 (𝐴) ⊆ GL+2 (𝐴) ⊆ GL+3 (𝐴) ⊆ · · ·

coming from embedding M𝑛 (𝐴+) into M𝑛+1 (𝐴+) by taking the block sum with the
(1, 1)-identity matrix (1). Its colimit is a topological group denoted by GL+ (𝐴). Let
GL+ (𝐴)0 be the path component of the unit element in GL+ (𝐴). Then we get

𝐾1 (𝐴) = GL+ (𝐴)/GL+ (𝐴)0 = 𝜋0 (GL+ (𝐴)).(10.32)

More generally, we have

𝐾𝑛 (𝐴) = 𝜋𝑛−1 (GL+ (𝐴)) for 𝑛 ≥ 1.(10.33)

If 𝐴 is unital, then one defines the topological group GL(𝐴) = colim𝑛→∞GL𝑛 (𝐴)
and obtains a canonical isomorphism

𝐾𝑛 (𝐴) � 𝜋𝑛−1 (GL(𝐴)) for 𝑛 ≥ 1.(10.34)

Exercise 10.35. Compute for 𝐹 = C the topological 𝐾-theory of K.

Remark 10.36 (Six term sequence of an ideal). Let 𝐹 = C in this Remark 10.36.
Since 𝐾∗ is two-periodic, one often thinks about it as a Z/2-graded theory. The long
exact sequence of an extension 0→ 𝐼

𝑖−→ 𝐴
𝑝
−→ 𝐴/𝐼 → 0 becomes the six-term exact

sequence of an ideal

𝐾1 (𝐼)
𝐾1 (𝑖) // 𝐾1 (𝐴)

𝐾1 (𝑝)// 𝐾1 (𝐴/𝐼)

𝜕1
��

𝐾0 (𝐴/𝐼)

𝜕0

OO

𝐾0 (𝐴)
𝐾0 (𝑝)
oo 𝐾0 (𝐼)

𝐾0 (𝑖)
oo
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Remark 10.37 (Topological 𝐾-theory in terms of unitary groups). Let 𝐹 = C
in this Remark 10.37. Let 𝑈𝑛 (𝐴) be the group of unitary (𝑛, 𝑛)-matrices over
𝐴, i.e., (𝑛, 𝑛)-matrices 𝑈 that are invertible and satisfy 𝑈−1 = 𝑈∗, where 𝑈∗
is defined by transposing and applying to each entry the involution on 𝐴. De-
fine 𝑈+𝑛 (𝐴) := {𝑈 ∈ 𝑈𝑛 (𝐴+) | 𝑝(𝑈) = 1}. Put 𝑈 (𝐴) = colim𝑛→∞𝑈𝑛 (𝐴) and
𝑈+ (𝐴) := colim𝑛→∞𝑈+𝑛 (𝐴). Then then we have isomorphisms of groups, see [991,
Proposition 4.2.6 on page 77],

𝐾1 (𝐴) = GL+ (𝐴)/GL+ (𝐴)0 � GL(𝐴+)/GL(𝐴+)0
� 𝑈+ (𝐴)/𝑈+ (𝐴)0 � 𝑈 (𝐴+)/𝑈 (𝐴+)0.

Example 10.38 (On the boundary map and indices). Let 𝐹 = C in this Exam-
ple 10.38. Let 𝐴 be a unital 𝐶∗-algebra, 𝐼 ⊆ 𝐴 be an ideal, and 𝑝 : 𝐴→ 𝐴/𝐼 be the
projection. Let 𝑢 be a unitary element in 𝐴/𝐼. Let 𝑎 ∈ 𝐴 be any element in 𝐴 with
𝑝(𝑎) = 𝑢 and | |𝑎 | | = 1. Consider the (2, 2)-matrices over 𝐴

𝑃 :=
(

𝑎𝑎∗ 𝑎(1𝑎∗𝑎)1/2
𝑎∗ (1 − 𝑎𝑎∗)1/2 1 − 𝑎∗𝑎

)
;

𝑄 :=
(
1 0
0 0

)
,

where (1 − 𝑎𝑎∗)1/2 is uniquely determined by the properties that it is positive, i.e.,
of the form 𝑏∗𝑏 for some 𝑏 ∈ 𝐴, and satisfies (1 − 𝑎𝑎∗)1/2 · (1 − 𝑎𝑎∗)1/2 = 1 − 𝑎𝑎∗,
and analogously for (1 − 𝑎∗𝑎)1/2. Then 𝑃 is a projection, i.e., 𝑃2 = 𝑃 and 𝑃∗ = 𝑃,
and 𝑄 is a projection. Moreover, 𝑃 −𝑄 lies in M2 (𝐼). Define matrices in M2 (𝐼+) by

𝑃+ :=
(
(𝑎𝑎∗ − 1, 1) (𝑎(1𝑎∗𝑎)1/2, 0)

(𝑎∗ (1 − 𝑎𝑎∗)1/2, 0) (1 − 𝑎∗𝑎, 0)

)
;

𝑄 :=
(
(0, 1) (0, 0)
(0, 0) (0, 0)

)
.

One easily checks 𝑃2
+ = 𝑃+ and 𝑄2

+ = 𝑄+ and 𝑃+ − 𝑄+ ∈ 𝐼. Hence 𝑃+ and 𝑄+
determine elements [𝑃+], [𝑄+] ∈ 𝐾0 (𝐼+) such that the difference [𝑃+] − [𝑄+] is
mapped under the canonical projection𝐾0 (𝐼+) → 𝐾0 (C) to zero. Hence [𝑃+]− [𝑄+]
defines an element in 𝐾0 (𝐼). It turns out that the image 𝜕1 ( [𝑢]) of the class [𝑢] ∈
𝐾1 (𝐴) under the boundary homomorphism 𝜕1 : 𝐾1 (𝐴/𝐼) → 𝐾0 (𝐼) is the class
[𝑃+] − [𝑄+], see [491, Proposition 4.8.10 (a) on page 109].

If we can additionally arrange that 𝑎 is a partial isometry, i.e., 𝑎∗𝑎 is a projection,
then 1 − 𝑎∗𝑎 and 1 − 𝑎𝑎∗ lie in 𝐼 and are projections, and we obtain an element
[1 − 𝑎∗𝑎] − [1 − 𝑎𝑎∗] in 𝐾0 (𝐼) which agrees with 𝜕1 ( [𝑢]), see [491, Proposi-
tion 4.8.10 (b) on page 109].

Now we apply this to 𝐴 = B = B(𝐻) and 𝐼 = K = K(𝐻) for an infinite-
dimensional separable Hilbert space 𝐻. Let 𝑎 ∈ B be a Fredholm operator such that
𝑎 is a partial isometry. Then 1 − 𝑎∗𝑎 is the orthogonal projection onto the kernel of



10.3 Topological 𝐾-Theory of 𝐶∗-Algebras 293

𝑎 and 1− 𝑎𝑎∗ is the orthogonal projection onto the cokernel of 𝑎. Hence the element
[1−𝑎∗𝑎]− [1−𝑎𝑎∗] ∈ 𝐾0 (K) becomes under the standard identification𝐾0 (K) � Z
the difference of the dimension of the kernel of 𝑎 and the dimension of the cokernel
of 𝑎, which is by definition the classical index of the Fredholm operator 𝑎. This
shows that 𝜕1 : 𝐾1 (B/K) → 𝐾0 (K) � Z sends the class of [𝑎] to the classical
index of 𝑎. Since 𝐾𝑛 (B) = 0 holds for 𝑛 ∈ Z, see [991, 6.5 on page 123], the map
𝜕1 : 𝐾1 (B/K)

�−→ 𝐾0 (K) � Z is actually an isomorphisms and 𝐾0 (B/K) = {0}.
It will often occur in many more general and important situations that 𝜕1 can be

viewed as an index map.

Example 10.39 (Suspensions and cones). The suspension of a 𝐶∗-algebra 𝐴 is the
𝐶∗-algebra Σ𝐴 of continuous functions 𝑓 : [0, 1] → 𝐴 with 𝑓 (0) = 𝑓 (1) = 1
equipped with the obvious algebra structure and involution and the supremum norm
inherited from 𝐴. Denote by Σ𝑛 (𝐴) the 𝑛-fold suspension. It can be identified with
the tensor product of𝐶∗-algebras 𝐴⊗̂𝐶0 (R𝑛). The cone is defined analogously as the
𝐶∗-algebra cone(𝐴) of continuous functions 𝑓 : [0, 1] → 𝐴 with 𝑓 (0) = 0. It can be
identified with the tensor product of 𝐶∗-algebras 𝐴⊗̂𝐶0 ((0, 1]). There is an obvious
exact sequence of 𝐶∗-algebras 0 → Σ𝐴 → cone(𝐴) → 𝐴 → 0. Moreover, the
𝐶∗-algebra cone(𝐴) is contractible, i.e., the zero and the identity endomorphism are
homotopic. The desired homotopy is given by the formula 𝑓𝑡 (𝑠) := 𝑓 (𝑡𝑠), see [991,
Proposition 6.4.7 on page 123]. Hence 𝐾∗ (cone(𝐴)) is trivial and the boundary
operator in the associated long exact sequence induces isomorphisms

𝜕𝑛 : 𝐾𝑛 (𝐴)
�−→ 𝐾𝑛−1 (Σ𝐴).

For complex 𝐶∗-algebras 𝐴 and 𝐵 for which 𝐴 lies in the so-called bootstrap
category N , a Künneth Theorem, i.e., an exact sequence 0 → 𝐾∗ (𝐴) ⊗ 𝐾∗ (𝐵) →
𝐾∗ (𝐴⊗̂𝐵) → TorZ (𝐾∗ (𝐴), 𝐾∗ (𝐵)) → 0, is established in [903]. The case of real
𝐶∗-algebras is treated in [147].

Remark 10.40 (Topological 𝐾-theory and the classification of𝐶∗-algebras). One
prominent feature is that for certain classes of 𝐶∗-algebras their isomorphism type
is determined by their topological 𝐾-theory, sometimes taking the order structure
on 𝐾0 (𝐴) coming from the positive cone of those elements that are represented by
finitely generated projective modules into account. If one considers the topological
𝐾-theory of spaces, such nice classification results are not available.

One example is the class of AF-algebras, i.e., 𝐶∗- algebras that occur as a colimit
of a sequence of finite-dimensional 𝐶∗-algebras, due to Elliot, see [333], [856,
Chapter 7], [991, 12.1]. The index 𝑛 of the Cuntz𝐶∗-algebra O𝑛 is determined by the
topological 𝐾-theory since 𝐾0 (O𝑛) � Z/𝑛 and 𝐾1 (O𝑛) = 0, see [266], [991, 12.2].
A very important result about the classification of so-called Kirchberg 𝐶∗-algebras
in terms of their topological 𝐾-theory is due to Kirchberg, see for instance [855,
Chapter 8].

Remark 10.41 (Topological 𝐾-theory and generalized index theory). One impor-
tant motivation to study the topological 𝐾-theory of 𝐶∗-algebras is index theory and
its generalizations. A first introduction to how one can assign to a Fredholm operator
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over a 𝐶∗-algebra 𝐴 an element in 𝐾0 (𝐴) is given in [991, Chapter 17], following
Mingo [733]. There are many other index theorems taking values in the topological
𝐾-theory of 𝐶∗-algebras. Often they are generalizations of the classical family index
theorem for families of operators parametrized over a closed manifold 𝑀 , which take
values in 𝐾∗ (𝑀) = 𝐾∗ (𝐶 (𝑀)).

One can attach to geometric or topological situations new 𝐶∗-algebras and con-
sider their topological 𝐾-theory and indices of appropriate operators, where it is no
longer possible to work with topological spaces. Examples are foliations and coarse
geometry. There are also plenty other generalizations of the classical index theorems
using topological 𝐾-theory of 𝐶∗-algebras. For information about these topics we
refer for instance to [250, 270, 491, 738].

More information about the topological 𝐾-theory of𝐶∗-algebras can be found for
instance in [140, 250, 270, 491, 856, 991].

10.4 The Baum-Connes Conjecture for Torsionfree Groups

Let 𝐺 be a group. Then there exist for all 𝑛 ∈ Z assembly maps

asmb𝐺,C (𝐵𝐺)𝑛 : 𝐾𝑛 (𝐵𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺,C));(10.42)
asmb𝐺,R (𝐵𝐺)𝑛 : 𝐾𝑂𝑛 (𝐵𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)).(10.43)

Conjecture 10.44 (Baum-Connes Conjecture for torsionfree groups). The as-
sembly maps appearing in (10.42) and (10.43) are isomorphisms for all 𝑛 ∈ Z,
provided that 𝐺 is torsionfree.

It is crucial for the Baum-Connes Conjecture to work with the reduced group
𝐶∗-algebra, it is definitely not true for the maximal group 𝐶∗ algebra in general.
Moreover, Conjecture 10.44 in general fails for groups with torsion. The general
version, which makes sense for all groups, will be discussed in Chapter 14.

Exercise 10.45. Show for a finite group 𝐺 that the following statements are equiva-
lent:

(i) 𝐾0 (𝐵𝐺) and 𝐾0 (𝐶∗𝑟 (𝐺)) are rationally isomorphic;
(ii) 𝐾𝑂0 (𝐵𝐺) and 𝐾𝑂0 (𝐶∗𝑟 (𝐺)) are rationally isomorphic;

(iii) 𝐺 is trivial.

One benefit of Conjecture 10.44 is that the right side is of great interest because
of index theory but hard to compute, whereas the left side is accessible by standard
methods from algebraic topology.

Example 10.46 (Three-dimensional Heisenberg group). Let Hei(R) be the three-
dimensional Heisenberg group. It is the subgroup of GL3 (R) consisting of upper
triangular matrices whose diagonal entries are all equal to 1. The three-dimensional
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discrete Heisenberg group Hei is the intersection of Hei(R) with GL3 (Z). Obviously
Hei is a torsionfree discrete subgroup of the contractible Lie group Hei(R). Hence
Hei \Hei(R) is a model for 𝐵Hei, which is an orientable closed 3-manifold.

Define elements in Hei

𝑢 := ©«
1 1 0
0 1 0
0 0 1

ª®¬ ; 𝑣 := ©«
1 0 1
0 1 0
0 0 1

ª®¬ ; 𝑤 := ©«
1 0 0
0 1 1
0 0 1

ª®¬ .
Then we get the presentation

Hei = ⟨𝑢, 𝑣, 𝑤 | [𝑢, 𝑤] = 𝑣, [𝑢, 𝑣] = 1, [𝑤, 𝑣] = 1⟩.

Therefore we have a central extension 1→ Z
𝑖−→ Hei

𝑝
−→ Z2 → 1, where 𝑖 sends the

generator of Z to 𝑣 and 𝑝 sends 𝑣 to (0, 0), 𝑢 to (1, 0) and 𝑤 to (0, 1). Hence the map
𝐻1 (𝐵Hei) → 𝐻1 (𝐵Z2) is an isomorphism. Using Poincaré duality we conclude

𝐻𝑛 (𝐵Hei) =
{
Z if 𝑛 = 0, 3;
Z2 if 𝑛 = 1, 2.

We conclude from the Chern character (10.1) for every 𝑛 ∈ Z.

𝐾𝑛 (𝐵Hei) ⊗Z Q � Q3.

Next we consider the Atiyah-Hirzebruch spectral sequence converging to𝐾𝑝+𝑞 (𝐵Hei)
whose 𝐸2-term is 𝐸2

𝑝,𝑞 = 𝐻𝑝 (𝐵Hei;𝐾𝑞 ({•})). Its 𝐸2-page looks as follows

...
...

...
...

...
...

Z Z2 Z2 Z 0 0 · · ·

0 0 0 0 0 · · ·

Z Z2 Z2 Z 0 0 · · ·

0 0 0 0 0 · · ·

...
...

...
...

...
...
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Each entry is a finitely generated free Z-module and we have for every 𝑛 ∈ Z∑︁
𝑝+𝑞=𝑛

dimQ (𝐸2
𝑝,𝑞) ⊗Z Q = 3 = 𝐾𝑛 (𝐵Hei) ⊗Z Q.

This implies that all differentials must vanish and we get for every 𝑛 ∈ Z

𝐾𝑛 (𝐵Hei) � Z3.

Conjecture 10.44 is known to be true for Hei and hence we conclude for every 𝑛 ∈ Z

𝐾𝑛 (𝐶∗𝑟 (Hei)) � Z3.

Exercise 10.47. Let𝐺 be the semidirect product Z⋊Z, where the generator of Z acts
on Z by − id. Compute 𝐾∗ (𝐶∗𝑟 (𝐺)) using the fact that Conjecture 10.44 is known to
be true for 𝐺.

Next we discuss some consequences of the Baum-Connes Conjecture for torsion-
free groups 10.44.

10.4.1 The Trace Conjecture in the Torsionfree Case

The assembly map appearing in the Baum-Connes Conjecture has an interpretation
in terms of index theory. Namely, an element 𝜂 ∈ 𝐾0 (𝐵𝐺) can be represented by a
pair (𝑀, 𝑃∗) consisting of a cocompact free proper smooth 𝐺-manifold 𝑀 with a
𝐺-invariant Riemannian metric together with an elliptic𝐺-complex 𝑃∗ of differential
operators of order 1 on 𝑀 , see [110]. To such a pair one can assign an index
ind𝐶∗𝑟 (𝐺) (𝑀, 𝑃∗) in 𝐾0 (𝐶∗𝑟 (𝐺)), see [738], that is the image of 𝜂 under the assembly
map 𝐾0 (𝐵𝐺) → 𝐾0 (𝐶∗𝑟 (𝐺)) appearing in Conjecture 10.44. With this interpretation
the surjectivity of the assembly map for a torsionfree group says that any element in
𝐾0 (𝐶∗𝑟 (𝐺)) can be realized as an index. This allows us to apply index theorems to
get interesting information. It is of the same significance as the interpretation of the
𝐿-theoretic assembly map as the map 𝜎 appearing in the Surgery Exact Sequence
discussed in the proof of Theorem 9.171.

Here is a prototype of such an argument. The standard trace

tr𝐶∗𝑟 (𝐺) : 𝐶
∗
𝑟 (𝐺) → C(10.48)

sends an element 𝑓 ∈ 𝐶∗𝑟 (𝐺) ⊆ B(𝑙2 (𝐺)) to ⟨ 𝑓 (1), 1⟩𝑙2 (𝐺) . Applying the trace to
idempotent matrices yields a homomorphism

tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R.

Let pr : 𝐵𝐺 → {•} be the projection. For a group𝐺 the following diagram commutes
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𝐾0 (𝐵𝐺)

𝐾0 (pr)
��

asmb𝐺,C (𝐵𝐺)∗ // 𝐾0 (𝐶∗𝑟 (𝐺))
tr𝐶∗𝑟 (𝐺) // R

𝐾0 ({•}) � // 𝐾0 (C) trC
� // Z

𝑖

OO(10.49)

where 𝑖 : Z → R is the inclusion. This non-trivial statement follows from Atiyah’s
𝐿2-index theorem [46]. Atiyah’s theorem says that the 𝐿2-index tr𝐶∗𝑟 (𝐺) ◦ asmb∗ (𝜂)
of an element 𝜂 ∈ 𝐾0 (𝐵𝐺), which is represented by a pair (𝑀, 𝑃∗), agrees with the
ordinary index of (𝐺\𝑀;𝐺\𝑃∗), which is given by trC ◦𝐾0 (pr) (𝜂) ∈ Z.

The following conjecture is taken from [108, page 21].
Conjecture 10.50 (Trace Conjecture for torsionfree groups). For a torsionfree
group 𝐺 the image of

tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R

consists of the integers.
The commutativity of diagram (10.49) shows

Lemma 10.51. If the Baum-Connes assembly map𝐾0 (𝐵𝐺) → 𝐾0 (𝐶∗𝑟 (𝐺)) of (10.42)
is surjective, then the Trace Conjecture for Torsionfree Groups 10.50 holds for 𝐺.

A Modified Trace Conjecture for not necessarily torsionfree groups is discussed
in Subsection 14.8.3.

10.4.2 The Kadison Conjecture

Conjecture 10.52 (Kadison Conjecture). If𝐺 is a torsionfree group, then the only
idempotent elements in 𝐶∗𝑟 (𝐺) are 0 and 1.

Lemma 10.53. The Trace Conjecture for Torsionfree Groups 10.50 implies the Kadi-
son Conjecture 10.52.

Proof. Assume that 𝑝 ∈ 𝐶∗𝑟 (𝐺) is an idempotent different from 0 or 1. From 𝑝 one
can construct a non-trivial projection 𝑞 ∈ 𝐶∗𝑟 (𝐺), i.e. 𝑞2 = 𝑞, 𝑞∗ = 𝑞, with im(𝑝) =
im(𝑞) and hence with 0 < 𝑞 < 1. Since the standard trace tr𝐶∗𝑟 (𝐺) is faithful, we
conclude tr𝐶∗𝑟 (𝐺) (𝑞) ∈ R with 0 < tr𝐶∗𝑟 (𝐺) (𝑞) < 1. Since tr𝐶∗𝑟 (𝐺) (𝑞) is by definition
the image of the element [im(𝑞)] ∈ 𝐾0 (𝐶∗𝑟 (𝐺)) under tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R,
we get a contradiction to the assumption im(tr𝐶∗𝑟 (𝐺) ) ⊆ Z. ⊓⊔
Remark 10.54 (The Kadison Conjecture 10.52 and Kaplansky’s Idempotent
Conjecture 2.73). Obviously the Kadison Conjecture 10.52 implies Kaplansky’s
Idempotent Conjecture 2.73 in the case that 𝑅 can be embedded in C. Because
of Remark 2.84 the Kadison Conjecture 10.52 implies Kaplansky’s Idempotent
Conjecture 2.73 if 𝑅 is any field of characteristic zero. The Bost Conjecture 14.23
implies that there are no non-trivial idempotents in 𝐿1 (𝐺) and hence the Kaplansky’s
Idempotent Conjecture 2.73 for fields of characteristic zero, see [131, Corollary 1.6].
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10.4.3 The Zero-in-the-Spectrum Conjecture

The following conjecture is due to Gromov [439, page 120].

Conjecture 10.55 (Zero-in-the-Spectrum Conjecture). Suppose that 𝑀 is the
universal covering of an aspherical closed Riemannian manifold 𝑀 (equipped with
the lifted Riemannian metric). Then zero is in the spectrum of the minimal closure

(Δ𝑝)min : 𝐿2Ω𝑝 (𝑀) ⊃ dom(Δ𝑝)min → 𝐿2Ω𝑝 (𝑀)

for some 𝑝 ∈ {0, 1, . . . , dim𝑀}, where Δ𝑝 denotes the Laplacian acting on smooth
𝑝-forms on 𝑀 .

Theorem 10.56 (The strong Novikov Conjecture implies the Zero-in-the-Spec-
trum Conjecture). Suppose that 𝑀 is an aspherical closed Riemannian manifold
with fundamental group 𝐺, then the injectivity of the assembly map

𝐾∗ (𝐵𝐺) ⊗Z Q→ 𝐾∗ (𝐶∗𝑟 (𝐺)) ⊗Z Q

implies the Zero-in-the-Spectrum Conjecture 10.55 for 𝑀 .

Proof. We give a sketch of the proof. More details can be found in [638, Corollary 4].
We only explain that the assumption that in every dimension zero is not in the
spectrum of the Laplacian on 𝑀 yields a contradiction in the case that 𝑛 = dim(𝑀)
is even. Namely, this assumption implies that the𝐶∗𝑟 (𝐺)-valued index of the signature
operator twisted with the flat bundle 𝑀×𝐺𝐶∗𝑟 (𝐺) → 𝑀 in 𝐾0 (𝐶∗𝑟 (𝐺)) is zero where
𝐺 = 𝜋1 (𝑀). This index is the image of the class [𝑆] defined by the signature operator
in 𝐾0 (𝐵𝐺) under the assembly map 𝐾0 (𝐵𝐺) → 𝐾0 (𝐶∗𝑟 (𝐺)). Since by assumption
the assembly map is rationally injective, this implies [𝑆] = 0 in 𝐾0 (𝐵𝐺) ⊗Z Q. Note
that 𝑀 is aspherical by assumption and hence 𝑀 = 𝐵𝐺. The homological Chern
character defines an isomorphism

𝐾0 (𝐵𝐺) ⊗Z Q = 𝐾0 (𝑀) ⊗Z Q
�−→

⊕
𝑝≥0

𝐻2𝑝 (𝑀;Q)

that sends [𝑆] to the Poincaré dual L(𝑀) ∩ [𝑀]Q of the Hirzebruch 𝐿-class
L(𝑀) ∈

⊕
𝑝≥0 𝐻

2𝑝 (𝑀;Q). This implies that L(𝑀) ∩ [𝑀]Q = 0 and hence
L(𝑀) = 0. This contradicts the fact that the component of L(𝑀) in 𝐻0 (𝑀;Q) is
1. ⊓⊔

More information about the Zero-in-the-Spectrum Conjecture 10.55 can be found
for instance in [638] and [650, Section 12].
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10.5 Kasparov’s KK-Theory

Kasparov introduced the bivariant 𝐾𝐾-theory that assigns to two separable
𝐶∗-algebras 𝐴 and 𝐵 a Z-graded abelian group 𝐾𝐾∗ (𝐴, 𝐵). We give a very brief
summary of it. In the sequel all 𝐶∗-algebras are assumed to be separable and the
ground ring 𝐹 is C or R.

10.5.1 Basic Properties of KK-theory for 𝑪∗-Algebras

(i) Bi-functoriality
A homomorphism 𝑓 : 𝐴 → 𝐵 of 𝐶∗-algebras induces homomorphisms of
Z-graded abelian groups

𝐾𝐾∗ ( 𝑓 , id𝐷) : 𝐾𝐾∗ (𝐵, 𝐷) → 𝐾𝐾∗ (𝐴, 𝐷);
𝐾𝐾∗ (id𝐷 , 𝑓 ) : 𝐾𝐾∗ (𝐷, 𝐴) → 𝐾𝐾∗ (𝐷, 𝐵).

If 𝑔 : 𝐵→ 𝐶 is another homomorphism of 𝐶∗-algebras, we have

𝐾𝐾∗ (𝑔 ◦ 𝑓 , id𝐷) = 𝐾𝐾∗ ( 𝑓 , id𝐷) ◦ 𝐾∗ (𝑔, id𝐷);
𝐾𝐾∗ (id𝐷 , 𝑔 ◦ 𝑓 ) = 𝐾𝐾∗ (id𝐷 , 𝑔) ◦ 𝐾∗ (id𝐷 , 𝑓 ).

Moreover 𝐾∗ (id𝐴, id𝐵) = id𝐾𝐾∗ (𝐴,𝐵) . In particular, 𝐾𝐾∗ (−, 𝐷) is a contravari-
ant and 𝐾𝐾∗ (𝐷,−) is a covariant functor from the category of 𝐶∗-algebras to
the category of Z-graded abelian groups;

(ii) Homotopy invariance
If 𝑓 , 𝑔 : 𝐴 → 𝐵 are homotopic homomorphisms of 𝐶∗-algebras, then
𝐾𝐾∗ ( 𝑓 , id𝐷) = 𝐾𝐾∗ (𝑔, id𝐷) and 𝐾𝐾∗ (id𝐷 , 𝑓 ) = 𝐾𝐾∗ (id𝐷 , 𝑔);

(iii) Finite direct products
If 𝐴 and 𝐵 are𝐶∗-algebras, there are natural isomorphisms of Z-graded abelian
groups

𝐾𝐾∗ (𝐴 × 𝐵,𝐶)
�−→ 𝐾𝐾∗ (𝐴,𝐶) × 𝐾𝐾∗ (𝐵,𝐶);

𝐾𝐾∗ (𝐶, 𝐴 × 𝐵)
�−→ 𝐾𝐾∗ (𝐶, 𝐴) × 𝐾𝐾∗ (𝐶, 𝐵);

(iv) Countable direct sums in the first variable
If 𝐴 =

⊕∞
𝑖=0 𝐴𝑖 is a countable direct sum of𝐶∗-algebras, then there is a natural

isomorphism

𝐾𝐾𝑛

( ∞⊕
𝑖=0

𝐴𝑖 , 𝐵

)
�−→
∞∏
𝑖=0

𝐾𝑛 (𝐴𝑖 , 𝐵);

(v) Morita equivalence
For any integers 𝑚, 𝑛 ≥ 1 there are natural isomorphisms of Z-graded abelian
groups 𝐾𝐾∗ (𝐴, 𝐵)

�−→ 𝐾𝐾∗ (M𝑚 (𝐴),M𝑛 (𝐵));
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(vi) Stabilization
There are natural isomorphisms of Z-graded abelian groups

𝐾𝐾∗ (𝐴, 𝐵)
�−→ 𝐾𝐾∗ (𝐴⊗̂K, 𝐵);

𝐾𝐾∗ (𝐴, 𝐵)
�−→ 𝐾𝐾∗ (𝐴, 𝐵⊗̂K);

(vii) Long exact sequence of an ideal
Let 0→ 𝐼

𝑖−→ 𝐴
𝑝
−→ 𝐴/𝐼 → 0 be an extension of (separable) 𝐶∗-algebras.

If it is semisplit in the sense of [140, Definition 19.5.1. on page 195], (which
is automatically true if 𝐴 is nuclear,) then there exists a long exact sequence,
natural in (𝐴, 𝐼) and infinite to both sides,

· · · 𝛿𝑛−1−−−−→ 𝐾𝐾𝑛 (𝐴/𝐼, 𝐵)
𝐾𝐾𝑛 (𝑝,id𝐵 )−−−−−−−−−−→ 𝐾𝐾𝑛 (𝐴, 𝐵)

𝐾𝐾𝑛 (𝑖,id𝐵 )−−−−−−−−−→ 𝐾𝐾𝑛 (𝐼, 𝐵)
𝛿𝑛−−→ 𝐾𝐾𝑛+1 (𝐴/𝐼, 𝐵)

𝐾𝐾𝑛+1 (𝑝,id𝐵 )−−−−−−−−−−−→ 𝐾𝐾𝑛+1 (𝐴, 𝐵)
𝐾𝐾𝑛+1 (𝑖,id𝐵 )−−−−−−−−−−−→ 𝐾𝐾𝑛+1 (𝐼, 𝐵, )

𝛿𝑛+1−−−→ · · · .

If the extension is semisplit or if 𝐵 is nuclear, then there exists a long exact
sequence, natural in (𝐴, 𝐼) and infinite to both sides,

· · · 𝜕𝑛+1−−−→ 𝐾𝐾𝑛 (𝐵, 𝐼)
𝐾𝐾𝑛 (id𝐵 ,𝑖)−−−−−−−−−→ 𝐾𝐾𝑛 (𝐵, 𝐴)

𝐾𝐾𝑛 (id𝐵 , 𝑝)−−−−−−−−−−→ 𝐾𝐾𝑛 (𝐵, 𝐴/𝐼)
𝜕𝑛−−→ 𝐾𝐾𝑛−1 (𝐵, 𝐼)

𝐾𝐾𝑛−1 (id𝐵 ,𝑖)−−−−−−−−−−−→ 𝐾𝐾𝑛−1 (𝐵, 𝐴)
𝐾𝐾𝑛−1 (id𝐵 , 𝑝)−−−−−−−−−−−→ 𝐾𝐾𝑛−1 (𝐵, 𝐴/𝐼)

𝜕𝑛−1−−−→ · · · ;

(viii) Bott periodicity
There exists an isomorphism of degree 𝑏(𝐹)

𝛽∗ (𝐴) : 𝐾𝐾∗ (𝐴, 𝐵)
�−→ 𝐾𝐾∗+𝑏 (𝐹 ) (𝐴, 𝐵),

which is natural in 𝐴 and 𝐵, where 𝑏(C) = 2 and 𝑏(R) = 8;
(ix) Connection to topological 𝐾-theory

There are natural isomorphisms of Z-graded abelian groups

𝐾∗ (𝐴)
�−→ 𝐾𝐾∗ (𝐹, 𝐴) if 𝐹 = C;

𝐾𝑂∗ (𝐴)
�−→ 𝐾𝐾∗ (𝐹, 𝐴) if 𝐹 = R;

(x) Homomorphisms of 𝐶∗-algebras
A homomorphism 𝑓 : 𝐴 → 𝐵 of 𝐶∗-algebras defines an element [ 𝑓 ] in
𝐾𝐾∗ (𝐴, 𝐵).
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Remark 10.57 (Some failures). The second variable is in general not compatible
with countable direct sums and in particular not with colimits over directed sets.
However, in the special case 𝐴 = C, this is the case, since then 𝐾𝐾∗ (C, 𝐵) is just the
topological 𝐾-theory of 𝐵.

Conditions about the existence of a long exact sequence of an ideal such as
semisplit or 𝐵 being nuclear are needed.

10.5.2 The Kasparov’s Intersection Product

One of the basic features of 𝐾𝐾-theory is Kasparov’s intersection product, which is
a bilinear pairing of Z-graded abelian groups

⊗̂𝐵 : 𝐾𝐾∗ (𝐴, 𝐵) ⊗ 𝐾𝐾∗ (𝐵,𝐶) → 𝐾𝐾∗ (𝐴,𝐶).(10.58)

It has the following properties

(i) Naturality
It is natural in 𝐴, 𝐵, and 𝐶;

(ii) Associativity
It is associative;

(iii) Composition of homomorphisms
If 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 are homomorphisms of 𝐶∗-algebras, then we get
for the associated elements [ 𝑓 ] ∈ 𝐾𝐾0 (𝐴, 𝐵), [𝑔] ∈ 𝐾𝐾0 (𝐵,𝐶) and [𝑔 ◦ 𝑓 ] ∈
𝐾𝐾0 (𝐴,𝐶)

[𝑔 ◦ 𝑓 ] = [ 𝑓 ]⊗̂𝐵 [𝑔];

(iv) Units
There is a unit 1𝐴 := [id𝐴] in 𝐾𝐾0 (𝐴, 𝐴) for the intersection product.

Remark 10.59 (𝐾𝐾-equivalence). We consider in this Remark 10.59 only 𝐹 = C,
the case 𝐹 = R is analogous.

One of the basic features of the product is that an element 𝑥 in 𝐾𝐾0 (𝐴, 𝐵) induces
a homomorphism

−⊗̂𝐵𝑥 : 𝐾𝑛 (𝐴) = 𝐾𝐾𝑛 (𝐹, 𝐴) → 𝐾𝑛 (𝐵) = 𝐾𝐾𝑛 (𝐹, 𝐵).

Of course −⊗̂𝐵 [ 𝑓 ] agrees with 𝐾𝑛 ( 𝑓 ) if 𝑓 : 𝐴 → 𝐵 is a homomorphism of
𝐶∗-algebras. An element 𝑥 ∈ 𝐾𝐾0 (𝐴, 𝐵) is called a 𝐾𝐾-equivalence if there ex-
ists an element 𝑦 ∈ 𝐾𝐾0 (𝐵, 𝐴) satisfying 𝑥⊗̂𝐵𝑦 = 1𝐴 and 𝑦⊗̂𝐴𝑥 = 1𝐵. The basic
feature of a 𝐾𝐾-equivalence is that

−⊗̂𝐵𝑥 : 𝐾𝑛 (𝐴) = 𝐾𝐾𝑛 (𝐹, 𝐴) → 𝐾𝑛 (𝐵) = 𝐾𝐾𝑛 (𝐹, 𝐵)

is automatically an isomorphism, the inverse is −⊗̂𝐵𝑦.
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Remark 10.60 (K-homology of 𝐶∗-algebras). We consider in this Remark 10.60
only 𝐹 = C, the case 𝐹 = R is analogous.

One can define the topological K-homology of a 𝐶∗-algebra 𝐾∗ (𝐴) by 𝐾𝑛 (𝐴) :=
𝐾𝐾−𝑛 (𝐴, 𝐹). It is in some sense dual to the topological 𝐾-theory 𝐾∗ (𝐴). Moreover,
the intersection product yields the index pairing

𝐾𝑛 (𝐴) ⊗Z 𝐾𝑛 (𝐴) → 𝐾𝐾0 (𝐹, 𝐹) = Z, (𝑥, 𝑦) ↦→ ⟨𝑥, 𝑦⟩ := 𝑥⊗̂𝐴𝑦.

If we take 𝑛 = 0 and 𝐴 = 𝐶 (𝑀) for a smooth closed Riemannian manifold 𝑀 , then
an appropriate elliptic operator 𝑃 over 𝑀 defines an element in [𝑃] in 𝐾0 (𝐶 (𝑀)) =
𝐾0 (𝑀), a vector bundle 𝜉 over 𝑀 defines an element in 𝐾0 (𝐶 (𝑀)) = 𝐾0 (𝑀), and
the pairing ⟨[𝜉], [𝑃]⟩ is the classical index of the elliptic operator obtained from 𝑃

by twisting with 𝜉.

There are Universal Coefficient Theorems and Künneth Theorems for 𝐾𝐾-theory,
see for instance [147, 148, 868, 903]. The Pimsner-Voiculescu sequences associ-
ated to an automorphisms of a 𝐶∗-algebra are explained for 𝐾𝐾-theory in [140,
Theorem 19.6.1 on page 198].

More information about 𝐾𝐾-theory, for instance about its construction in terms
of Kasparov modules or quasi-homomorphisms, other bivariant theories such as Ext
for extensions of 𝐶∗-algebras, 𝑘𝑘-theory, 𝐸-theory, and their relation to 𝐾𝐾-theory,
generalizations of these theories to more general operator algebras than𝐶∗-algebras,
universal properties of these theories, applications to index theory, and the relevant
literature can be found for instance in [140, 270, 481, 483, 491, 520], or in the papers
of Kasparov [560, 561, 562, 563].

10.6 Equivariant Topological 𝑲-Theory and KK-Theory

In the sequel groups are assumed to be discrete. In the sequel all 𝐶∗-algebras are
assumed to be separable and the ground ring 𝐹 is C or R. Given a group 𝐺,
there exists an equivariant version of 𝐾𝐾-theory. It assigns to two 𝐺-𝐶∗-algebras
𝐴 and 𝐵 a Z-graded abelian group 𝐾𝐾𝐺∗ (𝐴, 𝐵) and has essentially the same basic
properties as non-equivariant 𝐾𝐾-theory. Namely, it is a bi-functor, contravariant
in the first and covariant in the second variable, is 𝐺-homotopy invariant, satisfies
Morita equivalence and stabilization, is split exact, i.e., has long exact sequences for
appropriate ideals, satisfies Bott periodicity, is compatible with finite direct products
in both variables and countable direct sums in the first variable, and a homomorphism
of 𝐺-𝐶∗-algebras 𝑓 : 𝐴→ 𝐵 defines an element [ 𝑓 ] ∈ 𝐾𝐾𝐺0 (𝐴, 𝐵). There is also an
equivariant version of Kasparov’s intersection product

⊗̂𝐵 : 𝐾𝐾𝐺𝑗 (𝐴, 𝐵) ⊗ 𝐾𝐾𝐺𝑖 (𝐵,𝐶) → 𝐾𝐾𝐺𝑖+ 𝑗 (𝐴,𝐶),

which has all the expected properties as in the non-equivariant case.
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In particular, we get on 𝐾𝐾𝐺0 (𝐹, 𝐹) an interesting structure of a commutative ring
with unit, sometimes called the representation ring of 𝐺. If 𝐺 is finite, 𝐾𝐾𝐺0 (𝐹, 𝐹)
is indeed isomorphic as a ring to Rep𝐹 (𝐺).

There exist certain additional structures in the equivariant setting. Given a homo-
morphism 𝛼 : 𝐻 → 𝐺, there are natural restriction homomorphisms

𝛼∗ : 𝐾𝐾𝐺∗ (𝐴, 𝐵) → 𝐾𝐾𝐻 (𝛼∗𝐴, 𝛼∗𝐵),(10.61)

where 𝛼∗𝐴 and 𝛼∗𝐵 are the𝐻-𝐶∗-algebras obtained from the𝐺-𝐶∗-algebras 𝐴 and 𝐵
by restring the𝐺-action to an 𝐻-action using 𝛼. It is compatible with the equivariant
Kasparov product.

Let 𝑖 : 𝐻 → 𝐺 be the inclusion of groups. Given an 𝐻-𝐶∗-algebra 𝐴, we define
its induction 𝑖∗𝐴, to be the 𝐺-𝐶∗-algebra of bounded functions 𝑓 : 𝐺 → 𝐴 which
satisfy 𝑓 (𝑔ℎ) = ℎ−1 · 𝑓 (𝑔) and vanish at infinity, i.e., for every 𝜖 > 0 there exists a
finite subset 𝑆 ⊆ 𝐺/𝐻 such that for every 𝑔 ∈ 𝐺 with 𝑔𝐻 ∉ 𝑆 we have | | 𝑓 (𝑔) | | ≤ 𝜖 .
The norm is the supremum norm. Given 𝑔 ∈ 𝐺 and such a function 𝑓 , define 𝑔 · 𝑓
to be the function sending 𝑔′ ∈ 𝐺 to 𝑓 (𝑔−1𝑔′).

Note that the left 𝐹𝐺-module 𝐹𝐺 ⊗𝐹𝐻 𝐴, which is the algebraic induction of 𝐴
viewed as 𝐹𝐻-module, embeds as a dense 𝐹𝐺-submodule into 𝑖∗𝐴 by sending 𝑔 ⊗ 𝑎
to the function that maps 𝑔ℎ to ℎ−1𝑎 for ℎ ∈ 𝐻 and 𝑔′ ∈ 𝐺 with 𝑔′𝐻 ≠ 𝑔𝐻 to zero.
In other words, we can think of 𝐹𝐺 ⊗𝐹𝐻 𝐴 as the set of elements 𝑓 ∈ 𝑖∗𝐴 such that
{𝑔𝐻 ∈ 𝐺/𝐻 | 𝑓 (𝑔) ≠ 0} is finite. In contrast to modules over group rings, induction
𝑖∗ and restriction 𝑖∗ do not form an adjoint pair (𝑖∗, 𝑖∗) for equivariant 𝐶∗-algebras,
as the following exercise illustrates.

Exercise 10.62. Let 𝑖 : {1} → 𝐺 be the inclusion of the trivial group into an infinite
discrete group 𝐺. Show that hom𝐺 (𝑖∗𝐹, 𝐹) and hom{1} (𝐹, 𝑖∗𝐹) are not isomorphic,
where 𝐹 = R,C denotes both the obvious {1}-𝐶∗-algebra and the obvious 𝐺-𝐶∗-
algebra with trivial 𝐺-action.

If 𝑋 is a proper 𝐻-𝐶𝑊-complex, then 𝐺 ×𝐻 𝑋 is a proper 𝐺-𝐶𝑊-complex,
and we obtain an isomorphism of 𝐺-𝐶∗-algebras 𝑖∗𝐶0 (𝑋)

�−→ 𝐶0 (𝐺 ×𝐻 𝑋) that
sends 𝑓 ∈ 𝑖∗𝐶0 (𝑋) to the function 𝐺 ×𝐻 𝑋 → 𝐹, (𝑔, 𝑥) ↦→ 𝑓 (𝑔) (𝑥). Given an
𝐻-𝐶∗-algebra 𝐴 and an 𝐻-𝐶∗-algebra 𝐵, there is a natural induction homomorphism

𝑖∗ : 𝐾𝐾𝐻∗ (𝐴, 𝐵) → 𝐾𝐾𝐺 (𝑖∗𝐴, 𝑖∗𝐵).(10.63)

It is compatible with the equivariant Kasparov’s intersection product respecting the
units. If 𝑗 : 𝐺 → 𝐾 is an inclusion, we get ( 𝑗 ◦ 𝑖)∗ = 𝑗∗ ◦ 𝑖∗.

There are descent homomorphisms

𝑗𝐺𝑟 : 𝐾𝐾𝐺∗ (𝐴, 𝐵) → 𝐾𝐾∗ (𝐴 ⋊𝑟 𝐺, 𝐵 ⋊𝑟 𝐺);(10.64)
𝑗𝐺𝑟 : 𝐾𝐾𝐺∗ (𝐴,C) → 𝐾𝐾∗ (𝐴 ⋊𝑟 𝐺,C);(10.65)
𝑗𝐺𝑚 : 𝐾𝐾𝐺∗ (𝐴, 𝐵) → 𝐾𝐾∗ (𝐴 ⋊𝑚 𝐺, 𝐵 ⋊𝑚 𝐺).(10.66)
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The dual of the Green-Julg Theorem says that (10.65) is an isomorphism. The descent
homomorphisms are natural and compatible with Kasparov’s intersection products
respecting the units.

In the sequel we assume 𝐹 = C. Define the equivariant complex 𝐾-homology of
a pair of proper 𝐺-𝐶𝑊-complexes (𝑋, 𝐴) with coefficients in the complex 𝐺-𝐶∗-
algebra 𝐵 by

𝐾𝐺𝑛 (𝑋, 𝐴; 𝐵) := colim𝐶⊆𝑋 𝐾𝐾
𝐺
𝑛 (𝐶0 (𝐶,𝐶 ∩ 𝐴); 𝐵),(10.67)

where the colimit is taken over the directed system of cocompact proper 𝐺-𝐶𝑊-
subcomplexes 𝐶 ⊆ 𝑋 , directed by inclusion, and 𝐶0 (𝐶,𝐶 ∩ 𝐴) is the 𝐺-𝐶∗-algebra
of continuous functions𝐶 → C that vanish on𝐶∩𝐴 and at infinity. This group is often
denoted by 𝑅𝐾𝑛 (𝑋, 𝐴; 𝐵) in the literature and called equivariant 𝐾-homology with
compact support, but from a topologist’s point of view it is better to call it equivariant
𝐾-homology in view of its description in terms of spectra, see Section 12.4. If
𝐵 is C with the trivial 𝐺-action, we just write 𝐾𝐺∗ (𝑋, 𝐴) for 𝐾𝐺∗ (𝑋, 𝐴;C), and
this is precisely the Z-graded abelian group that we have mentioned already in
Subsection 10.2.3 and will be constructed in terms of spectra in Section 12.4.

Next we explain the equivariant Chern character for equivariant complex
𝐾-homology. Denote for a proper 𝐺-𝐶𝑊-complex 𝑋 by F (𝑋) the set of all sub-
groups 𝐻 ⊂ 𝐺 for which 𝑋𝐻 ≠ ∅, and by

Λ𝐺 (𝑋) := Z
[

1
F (𝑋)

]
(10.68)

the ring Z ⊂ Λ𝐺 (𝑋) ⊂ Λ𝐺 obtained from Z by inverting the orders of all subgroups
𝐻 ∈ F (𝑋). Denote by 𝐽𝐺 (𝑋) the set of conjugacy classes (𝐶) of finite cyclic
subgroups 𝐶 ⊂ 𝐺 for which 𝑋𝐶 is non-empty. Let 𝐶 ⊂ 𝐺 be a finite cyclic
subgroup. Let 𝐶𝐺𝐶 be the centralizer and 𝑁𝐺𝐶 be the normalizer of 𝐶 ⊂ 𝐺. Then
the quotient 𝑁𝐺𝐶/𝐶𝐺𝐶 = 𝑁𝐺𝐶/𝐶 ·𝐶𝐺𝐶 is a finite group. For a specific idempotent
𝜃𝐶 ∈ Λ𝐶 ⊗Z RepQ (𝐶) defined in [651, Section 3] the cokernel of⊕

𝐷⊂𝐶,𝐷≠𝐶

ind𝐶𝐷 :
⊕

𝐷⊂𝐶,𝐷≠𝐶

Z
[

1
|𝐶 |

]
⊗Z RepC (𝐷) → Z

[
1
|𝐶 |

]
⊗Z RepC (𝐶)

is isomorphic to the image of the idempotent endomorphism

𝜃𝐶 : Z
[

1
|𝐶 |

]
⊗Z RepC (𝐶) → Z

[
1
|𝐶 |

]
⊗Z RepC (𝐶).

The element 𝜃𝐶 ∈ Λ𝐶 ⊗Z RepQ (𝐶) is uniquely determined by the property that its
character sends a generator of 𝐶 to 1 and all other elements in 𝐶 to 0.

The next theorem is taken from [651, Theorem 0.7].
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Theorem 10.69 (Equivariant Chern character for equivariant complex 𝐾-ho-
mology). Let 𝑋 be a proper 𝐺-𝐶𝑊-complex. Put Λ = Λ𝐺 (𝑋) and 𝐽 = 𝐽𝐺 (𝑋). Let
im(𝜃𝐶 ) ⊆ Λ ⊗Z RepC (𝐶) be the image of 𝜃𝐶 : Λ ⊗Z RepC (𝐶) → Λ ⊗Z RepC (𝐶).

Then there is for 𝑛 ∈ Z a natural isomorphism

ch𝐺𝑝 (𝑋) :
⊕
(𝐶 ) ∈𝐽

Λ ⊗Z 𝐾𝑛 (𝐶𝐺𝐶\𝑋𝐶 ) ⊗Λ[𝑁𝐺𝐶/𝐶𝐺𝐶 ] im(𝜃𝐶 )
�−→ Λ ⊗Z 𝐾𝐺𝑛 (𝑋).

Note that the isomorphism appearing in Theorem 10.69 exists already over Λ,
one does not have to pass to Q or C. This will be important when we deal with the
Modified Trace Conjecture in Subsection 14.8.3.

Example 10.70. In the special case where 𝐺 is finite, 𝑋 is the one-point-space {∗}
and 𝑛 = 0, the equivariant Chern character appearing in Theorem 10.69 reduces to
an isomorphism⊕

(𝐶 ) ∈𝐽𝐺
Z

[
1
|𝐺 |

]
⊗
Z
[

1
|𝐺 |

]
[𝑁𝐺𝐶/𝐶𝐺𝐶 ]

im(𝜃𝐶 )
�−→ Z

[
1
|𝐺 |

]
⊗Z RepC (𝐺)

where 𝐽𝐺 is the set of conjugacy classes (𝐶) of cyclic subgroups 𝐶 ⊂ 𝐺. This is a
strong version of the well-known theorem of Artin that the map induced by induction⊕

(𝐶 ) ∈𝐽𝐺
Q ⊗Z RepC (𝐶) → Q ⊗Z RepC (𝐺)

is surjective for any finite group 𝐺.

Exercise 10.71. Let 𝑝 be an odd prime and let𝑉 be an orthogonalZ/𝑝-representation
of dimension 𝑑 such that𝑉Z/𝑝 ≠ {0}. Denote by 𝑆𝑉 theZ/𝑝-𝐶𝑊-complex consisting
of elements 𝑣 ∈ 𝑉 of norm 1. Show

Z[1/𝑝] ⊗Z 𝐾Z/𝑝
𝑛 (𝑆𝑉) �Z[1/𝑝]


Z[1/𝑝] 𝑝 if 𝑑 is even;
Z[1/𝑝]2𝑝 if 𝑑 is odd and 𝑛 is even;
0 if 𝑑 is odd and 𝑛 is odd.

Analogously to the complex case one defines the equivariant real 𝐾-homology
𝐾𝑂𝐺∗ (𝑋, 𝐴; 𝐵) of a pair of proper 𝐺-𝐶𝑊-complexes (𝑋, 𝐴) with coefficients in the
real 𝐺-𝐶∗-algebra 𝐵. We will abbreviate 𝐾𝑂𝐺∗ (𝑋, 𝐴) := 𝐾𝑂𝐺𝑛 (𝑋, 𝐴;R) where R
carries the trivial𝐺-action, This is precisely the Z-graded abelian group that we will
be constructed in terms of spectra in Section 12.4.

For discussions of universal coefficient theorems for equivariant 𝐾-theory
see [698, 867, 868].

Further information about equivariant 𝐾𝐾-theory can be found for instance
in [140, Section 20], [564], and [950].
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10.7 Comparing Algebraic and Topological 𝑲-theory of
𝑪∗-Algebras

Let 𝐴 be a 𝐶∗-algebra. Then 𝐾𝑛 (𝐴) denotes in most cases topological 𝐾-theory, but
it can also mean the algebraic 𝐾-theory of 𝐴 considered just as a ring. To avoid this
ambiguity, we will use in this Section 10.7 the superscripts TOP and ALG to make
clear what we mean.

There is for any 𝐶∗-algebra over R or C a canonical map of spectra

t(𝐴) : KALG (𝐴) → KTOP (𝐴)(10.72)

from the non-connective algebraic 𝐾-theory spectrum of 𝐴 just considered as a
ring to the topological 𝐾-theory spectrum associated to the 𝐶∗-algebra 𝐴, see [862,
Theorem 4 on page 851]. It induces homomorphisms of abelian groups for all 𝑛 ∈ Z

𝑡𝑛 (𝐴) = 𝐾𝑛 (t(𝐴)) : 𝐾ALG
𝑛 (𝐴) → 𝐾TOP

𝑛 (𝐴).(10.73)

It is always an isomorphism for 𝑛 = 0, but in general far from being a bijection, as
illustrated by the following exercise.

Exercise 10.74. Let 𝑋 be a finite 𝐶𝑊-complex of dimension ≥ 1. Prove that the
comparison map 𝐾ALG

1 (𝐶 (𝑋, 𝐹)) → 𝐾TOP
1 (𝐶 (𝑋, 𝐹)) is never injective.

The situation is different if 𝐴 is stable or if one uses coefficients inZ/𝑘 . Namely, the
following result is proved in [936, Theorem 10.9] over C and 𝑛 ≥ 1, but holds in the
more general form below by [862, Theorem 19 on page 863], see also Higson [482].

Theorem 10.75 (Karoubi’s Conjecture). Karoubi’s Conjecture is true, i.e., for any
stable 𝐶∗-algebra 𝐴 over R or C the canonical map t of (10.72) is weak homotopy
equivalence i.e., the maps 𝑡𝑛 of (10.73) are bijective for 𝑛 ∈ Z.

Given an integer 𝑘 ≥ 2, we have introduced 𝐾ALG
𝑛 (𝐴;Z/𝑘) in Section 6.4.

The analogous construction works for topological 𝐾-theory and there is the ana-
log of (10.73), a natural homomorphism

𝑡𝑛 (𝐴;Z/𝑘) : 𝐾ALG
𝑛 (𝐴;Z/𝑘) → 𝐾TOP

𝑛 (𝐴;Z/𝑘).(10.76)

We mention the following conjecture of Rosenberg [858, Conjecture 4.1] or [862,
Conjecture 26 on page 869].

Conjecture 10.77 (Comparing algebraic and topological 𝐾-theory with coeffi-
cients for 𝐶∗-algebras). If 𝐴 is a real or complex 𝐶∗-algebra and 𝑘 ≥ 2 an integer,
then the comparison map

𝐾ALG
𝑛 (𝐴;Z/𝑘) → 𝐾TOP

𝑛 (𝐴;Z/𝑘)

is bijective for 𝑛 ≥ 0.
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The map 𝐾ALG
𝑛 (𝐴;Z/𝑘) → 𝐾TOP

𝑛 (𝐴;Z/𝑘) appearing in Conjecture 10.77 is
known to be bijective for 𝑛 = 1 and to be surjective for 𝑛 ≥ 1 by [550, Theorem 2.5].
Conjecture 10.77 is true if 𝐴 is stable by Theorem 10.75, or if 𝐴 is commutative,
see [392],[815], [858, Theorem 4.2], and [862, Theorem 27 on page 870].

A discussion about 𝐾𝑖-regularity and the homotopy invariance of 𝐾ALG
𝑛 (𝐴) for

𝑛 ≤ −1 is discussed for 𝐶∗-algebras in [862, Section 3.3.4 on page 865ff].
More information about the relation between algebraic and topological 𝐾-theory

can be found in [260].

10.8 Comparing Algebraic 𝑳-Theory and Topological 𝑲-theory
of 𝑪∗-Algebras

Whereas the algebraic and the topological𝐾-theory of a𝐶∗-algebra are very different
in general, the topological 𝐾-theory of a𝐶∗ algebra is closely related to the 𝐿-theory
of the 𝐶∗-algebra just considered as a ring with involution. This is illustrated by the
following result.

Theorem 10.78 (𝐿-theory and topological 𝐾-theory of 𝐶∗-algebras).

(i) A generalized signature defines for any unital 𝐶∗-algebra over R or C a natural
isomorphism

𝐿
𝑝

0 (𝐴)
�−→ 𝐾0 (𝐴);

(ii) Let 𝐴 be a unital 𝐶∗-algebra over C. Then there is for all 𝑛 ∈ Z a natural
isomorphism

𝐾𝑛 (𝐴)
�−→ 𝐿

𝑝
𝑛 (𝐴);

(iii) Let 𝐴 be a unital 𝐶∗-algebra over R. Then there is a natural homomorphism

𝐾1 (𝐴)
�−→ 𝐿ℎ1 (𝐴)

which is surjective and whose kernel has at most order two;
(iv) For any unital 𝐶∗-algebra over R or C there are natural isomorphisms

𝐾𝑛 (𝐴) [1/2]
�−→ 𝐿

𝑝
𝑛 (𝐴) [1/2]

�−→ 𝐿ℎ𝑛 (𝐴) [1/2];

(v) Let 𝐴 be a real 𝐶∗-algebra. There are natural isomorphisms

(a) 𝐿 𝑝1 (𝐴) � coker(𝐾0 (𝐴)
·𝜂
−−→ 𝐾1 (𝐴));

(b) 𝐿 𝑝2 (𝐴) � ker(𝐾6 (𝐴)
·𝜂
−−→ 𝐾7 (𝐴));

(c) 𝐿 𝑝3 (𝐴) � 𝐾7 (𝐴),

where 𝜂 is the non-trivial element in 𝐾1 (R) � Z/2.

Proof. (i) See [861, Theorem 1.6].
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(ii) See [722, Theorem 0.2], [737], [861, Theorem 1.8].

(iii) See [861, Theorem 1.9].
(iv) See [861, Theorem 1.11], where this result is described as a consequence of
Karoubi [548, 549].
(v) See [615, Theorem B]. ⊓⊔

10.9 Topological 𝑲-Theory for Finite Groups

Note thatC𝐺 = 𝑙1 (𝐺) = 𝐶∗𝑟 (𝐺) = 𝐶∗max (𝐺) holds for a finite group, and analogously
for the real versions.

Theorem 10.79 (Topological 𝐾-theory of the𝐶∗-algebra of finite groups). Let𝐺
be a finite group.

(i) We have

𝐾𝑛 (𝐶∗𝑟 (𝐺)) �
{

RepC (𝐺) � Z𝑟C (𝐺) for 𝑛 even;
0 for 𝑛 odd,

where 𝑟C (𝐺) is the number of irreducible complex 𝐺-representations;
(ii) There is an isomorphism of topological 𝐾-groups

𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)) � 𝐾𝑂𝑛 (R)𝑟R (𝐺;R) × 𝐾𝑂𝑛 (C)𝑟R (𝐺;C) × 𝐾𝑂𝑛+4 (H)𝑟R (𝐺;H)

where 𝑟R (𝐺;R), 𝑟R (𝐺;C), or 𝑟R (𝐺;H) is the number of irreducible real
𝐺-representations of real, complex, or quaternionic type.
Moreover, 𝐾𝑂𝑛 (C) = 𝐾𝑛 (C) is 2-periodic with values Z, 0 for 𝑛 = 0, 1,
𝐾𝑂𝑛 (R) = 𝐾 (R) is 8-periodic with values Z, Z/2, Z/2, 0, Z, 0, 0, 0 for
𝑛 = 0, 1, . . . , 7 and 𝐾𝑂𝑛 (H) = 𝐾𝑂𝑛+4 (R) for 𝑛 ∈ Z.

Proof. One gets isomorphisms of 𝐶∗-algebras

𝐶∗𝑟 (𝐺) �
𝑟C (𝐺)∏
𝑗=1

M𝑛𝑖 (C)

and

𝐶∗𝑟 (𝐺,R) �
𝑟R (𝐺;R)∏
𝑖=1

M𝑚𝑖 (R) ×
𝑟R (𝐺;C)∏
𝑖=1

M𝑛𝑖 (C) ×
𝑟R (𝐺;H)∏
𝑖=1

M𝑝𝑖 (H)

from [908, Theorem 7 on page 19, Corollary 2 on page 96, page 102, page 106].
Now the claim follows from Morita invariance and the well-known values for 𝐾𝑛 (R),
𝐾𝑛 (C), and 𝐾𝑛 (H), see for instance [943, page 216]. ⊓⊔
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10.10 Notes

Bivariant algebraic 𝐾-theory is investigated in [262, 419]. More information about
index theory and non-commutative geometry can be found for instance in [250, 431].





Chapter 11
Classifying Spaces for Families

11.1 Introduction

This chapter is devoted to classifying spaces for families of subgroups. They are
a key input in the general formulations of the Baum-Connes Conjecture and the
Farrell-Jones Conjecture.

If one wants to understand these conjectures, one only needs to know the following
facts.

• A family of subgroups F is a set of subgroups of 𝐺, closed under conjugation and
passing to subgroups;
• A 𝐺-𝐶𝑊-model for the classifying space 𝐸F (𝐺) is a 𝐺-𝐶𝑊-complex whose

isotropy groups belong to F and whose 𝐻-fixed point set is weakly contractible
for every 𝐻 ∈ F ;
• Such a 𝐺-𝐶𝑊-model always exists, and two such 𝐺-𝐶𝑊-models are 𝐺-homotopy

equivalent;
• For every 𝐺-𝐶𝑊-complex 𝑋 whose isotropy groups belong to F , there is up to
𝐺-homotopy precisely one 𝐺-map from 𝑋 to 𝐸F (𝐺).

If one is interested in concrete computations, it is very useful to know situations
where one can find small 𝐺-𝐶𝑊-models for specific 𝐺 and F .

We give much more information about classifying spaces for families, since
they are interesting in their own right and are important tools for investigating
groups. After we have explained the basic 𝐺-homotopy theoretic aspects, we pass
to the classifying space 𝐸𝐺 = 𝐸COM (𝐺) for proper actions, which is the same
as the classifying space for the family COM of compact subgroups. If 𝐺 is dis-
crete, 𝐸𝐺 reduces to 𝐸FIN (𝐺), where FIN is the family of finite subgroups.
There are many prominent groups for which there are nice geometric models for
𝐸𝐺. The 𝐺-𝐶𝑊-complex 𝐸𝐺 is relevant for the Baum-Connes Conjecture. For the
Farrell-Jones Conjecture we also have to deal with 𝐸𝐺 = 𝐸VCY (𝐺) for the family
VCY of virtually cyclic subgroups, which is much harder to analyze. We system-
atically address the question whether there are finite or finite-dimensional 𝐺-𝐶𝑊-
models and what the minimal dimension of such 𝐺-𝐶𝑊-models for 𝐸F (𝐺) are for
F = FIN ,VCY.

311
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11.2 Definition and Basic Properties of 𝑮-𝑪𝑾-Complexes

Remark 11.1 (Compactly generated spaces). In the sequel we will work in the
category of compactly generated spaces. This convenient category is explained in
detail in [687, Appendix A], [927] and [1006, I.4]. A reader may ignore this technical
point without harm, but we nevertheless give a short explanation.

A topological space 𝑋 is called compactly generated if 𝑋 is a Hausdorff space
and a subset 𝐴 ⊆ 𝑋 is closed if and only if 𝐴∩𝐾 is closed for every compact subset
𝐾 ⊆ 𝑋 . Given a topological Hausdorff space 𝑋 , let 𝑘 (𝑋) be the compactly generated
Hausdorff space with the same underlying set as 𝑋 and the topology for which a
subset 𝐴 ⊆ 𝑋 is closed if and only if for every compact subset 𝐾 ⊆ 𝑋 the intersection
𝐴 ∩ 𝐾 is closed in the given topology on 𝑋 . The identity induces a continuous map
𝑘 (𝑋) → 𝑋 which is a homeomorphism if and only if 𝑋 is compactly generated.
The spaces 𝑋 and 𝑘 (𝑋) have the same compact subsets. Locally compact Hausdorff
spaces and every Hausdorff space which satisfies the first axiom of countability are
compactly generated. In particular, metrizable spaces are compactly generated.

Working in the category of compactly generated spaces means that one only con-
siders compactly generated spaces and whenever a topological construction such
as the cartesian product or the mapping space leads out of this category, one
retopologizes the result as described above to get a compactly generated space.
The advantage is for example that in the category of compactly generated spaces
the exponential map map(𝑋 ×𝑌, 𝑍) → map(𝑋,map(𝑌, 𝑍)) is always a homeomor-
phism, for an identification 𝑝 : 𝑋 → 𝑌 the map 𝑝 × id𝑍 : 𝑋 × 𝑍 → 𝑌 × 𝑍 is always
an identification, and, for a filtration by closed subspaces 𝑋1 ⊂ 𝑋2 ⊆ . . . ⊆ 𝑋 such
that 𝑋 is the colimit colim𝑛→∞ 𝑋𝑛, we always get 𝑋 × 𝑌 = colim𝑛→∞ (𝑋𝑛 × 𝑌 ).

One may also work in the category of compactly generated weak Hausdorff
spaces, see for instance Strickland [932].

In the sequel 𝐺 is a topologically group (which is compactly generated). Sub-
groups are understood to be closed.
Definition 11.2 (𝐺-𝐶𝑊-complex). A 𝐺-𝐶𝑊-complex 𝑋 is a 𝐺-space together with
a 𝐺-invariant filtration

∅ = 𝑋−1 ⊆ 𝑋0 ⊂ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 ⊆ · · · ⊆
⋃
𝑛≥0

𝑋𝑛 = 𝑋

such that 𝑋 carries the colimit topology with respect to this filtration (i.e., a set
𝐶 ⊆ 𝑋 is closed if and only if𝐶∩𝑋𝑛 is closed in 𝑋𝑛 for all 𝑛 ≥ 0) and 𝑋𝑛 is obtained
from 𝑋𝑛−1 for each 𝑛 ≥ 0 by attaching equivariant 𝑛-dimensional cells, i.e., there
exists a 𝐺-pushout

∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝑆𝑛−1

∐
𝑖∈𝐼𝑛 𝑞

𝑛
𝑖 //

��

𝑋𝑛−1

��∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝐷𝑛

∐
𝑖∈𝐼𝑛 𝑄

𝑛
𝑖 // 𝑋𝑛.
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The space 𝑋𝑛 is called the 𝑛-skeleton of 𝑋 . Note that only the filtration by skele-
tons belongs to the 𝐺-𝐶𝑊-structure but not the 𝐺-pushouts, only their existence is
required. An equivariant open 𝑛-dimensional cell is a 𝐺-component of 𝑋𝑛 \ 𝑋𝑛−1,
i.e., the preimage under the projection 𝑋𝑛 \ 𝑋𝑛−1 → 𝐺\(𝑋𝑛 \ 𝑋𝑛−1) of a path
component of 𝐺\(𝑋𝑛 \ 𝑋𝑛−1). The closure of an equivariant open 𝑛-dimensional
cell is called an equivariant closed 𝑛-dimensional cell. If one has chosen the
𝐺-pushouts in Definition 11.2, then the equivariant open 𝑛-dimensional cells are
the 𝐺-subspaces𝑄𝑖 (𝐺/𝐻𝑖 × (𝐷𝑛 \ 𝑆𝑛−1)) and the equivariant closed 𝑛-dimensional
cells are the 𝐺-subspaces 𝑄𝑖 (𝐺/𝐻𝑖 × 𝐷𝑛).

It is obvious what a pair of 𝐺-𝐶𝑊-complexes is.

Remark 11.3 (𝐺-𝐶𝑊-complexes and 𝐶𝑊-complexes with 𝐺-action). Suppose
that 𝐺 is discrete. A 𝐺-𝐶𝑊-complex 𝑋 is the same as a 𝐶𝑊-complex 𝑋 with
𝐺-action such that, for each open cell 𝑒 ⊆ 𝑋 and each 𝑔 ∈ 𝐺 with 𝑔𝑒 ∩ 𝑒 ≠ ∅, we
have 𝑔𝑥 = 𝑥 for every 𝑥 ∈ 𝑒.

The definition of a𝐺-𝐶𝑊-complex appearing in Definition 11.2 has the advantage
that it also makes sense for topological groups.

Example 11.4 (Simplicial actions). Let 𝑋 be a simplicial complex on which the
group 𝐺 acts by simplicial automorphisms. Then 𝐺 acts also on the barycentric
subdivision 𝑋 ′ by simplicial automorphisms. The filtration of the barycentric sub-
division 𝑋 ′ by the simplicial 𝑛-skeletons yields the structure of a 𝐺-𝐶𝑊-complex,
which is not necessarily true for 𝑋 . This becomes clear if one considers the standard
2-simplex with the obvious actions of the symmetric group 𝑆3 given by permuting
the three vertices.

A map 𝑓 : 𝑋 → 𝑌 between 𝐺-𝐶𝑊-complexes is called cellular if 𝑓 (𝑋𝑛) ⊆ 𝑌𝑛
holds for all 𝑛 ≥ 0.

For a subgroup 𝐻 ⊆ 𝐺 denote by 𝑁𝐺𝐻 = {𝑔 ∈ 𝐺 | 𝑔𝐻𝑔−1 = 𝐻} its normalizer
and by𝑊𝐺𝐻 = 𝑁𝐺𝐻/𝐻 its Weyl group.

Lemma 11.5.

(i) Let 𝑋 be a 𝐺-𝐶𝑊-complex and let 𝑌 be an 𝐻-𝐶𝑊-complex. Then 𝑋 × 𝑌 with
the product 𝐺 × 𝐻-action is a 𝐺 × 𝐻-𝐶𝑊-complex;

(ii) Let 𝑋 be a 𝐺-𝐶𝑊-complex and let 𝐻 ⊆ 𝐺 be a subgroup. Suppose that 𝐺 is
discrete or that 𝐻 is open and closed in 𝐺. Then 𝑋 viewed as an 𝐻-space by
restriction inherits the structure of an 𝐻-𝐶𝑊-complex;

(iii) Consider a 𝐺-pushout

𝑋0
𝑖1 //

𝑖2

��

𝑋1

𝑗1

��
𝑥2

𝑗2
// 𝑋.

Suppose that 𝑋𝑖 for 𝑖 = 0, 1, 2 is a 𝐺-𝐶𝑊-complex and that 𝑖1 is cellular and 𝑖2
is the inclusion of a pair of 𝐺-𝐶𝑊-complexes. Then 𝑋 inherits the structure of
a 𝐺-𝐶𝑊-complex;
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(iv) Let 𝑋 be a 𝐺-𝐶𝑊-complex and let 𝐻 ⊆ 𝐺 be a subgroup. Then 𝑋𝐻 viewed
as an 𝑊𝐺𝐻-space inherits the structure of a 𝑊𝐺𝐻-𝐶𝑊-complex provided that
𝐺 is discrete, or that 𝐾 ⊆ 𝐺 is open and closed, or that 𝐺 is a Lie group and
𝐻 ⊆ 𝐺 is compact;

(v) Let 𝑋 be a 𝐺-𝐶𝑊-complex and let 𝐻 ⊆ 𝐺 be a normal subgroup. Then 𝑋/𝐻
viewed as an 𝐺/𝐻-space inherits the structure of a 𝐺/𝐻-𝐶𝑊-complex.

Proof. (11.5) The skeletal filtration on 𝑋 × 𝑌 is given by

(𝑋 × 𝑌 )𝑛 =
⋃
𝑝+𝑞=𝑛

𝑋𝑝 × 𝑌𝑞 .

Then 𝑋×𝑌 is the colimit colim𝑛→∞ (𝑋×𝑌 )𝑛, as we work in the category of compactly
generated spaces.
(ii) Use the same filtration on 𝑋 viewed as an 𝐻-space as for the 𝐺-𝐶𝑊-complex 𝑋 .
(iii) Define the filtration on 𝑋𝐻 given by

𝑋𝑛 = 𝑗1
(
(𝑋1)𝑛

)
∪ 𝑗2

(
(𝑋2)𝑛

)
.

(iv) The 𝐺-action on 𝑋 induces a 𝑁𝐺𝐻-action on 𝑋𝐻 , which in turn passes to a
𝑊𝐺𝐻-action on 𝑋𝐻 . Take the 𝑛-skeleton of 𝑋𝐻 to be (𝑋𝑛)𝐻 . Use the fact that for
every 𝐾 ⊆ 𝐺 the space (𝐺/𝐾)𝐻 is a disjoint union of𝑊𝐺𝐻-orbits, which is obvious
if 𝐺 is discrete, or if 𝐾 ⊆ 𝐺 is open and closed, and follows for a Lie group 𝐺 and
compact 𝐾 ⊆ 𝐺 for instance from [644, Theorem 1.33 on page 23].
(v) The 𝑛-skeleton of 𝑋/𝐻 is the image of 𝑋𝑛 under the canonical projection
𝑋 → 𝑋/𝐻. ⊓⊔

Exercise 11.6. Let 𝑝 : 𝑋 → 𝑋 be the universal covering of the connected 𝐶𝑊-
complex 𝑋 with fundamental group 𝜋. Show that the 𝜋-space 𝑋 inherits the structure
of a 𝜋-𝐶𝑊-complex.

Exercise 11.7. Let 𝑝 be a prime number and let 𝑋 be a compact Z/𝑝-𝐶𝑊-complex.
Show that 𝑋 and 𝑋Z/𝑝 are compact 𝐶𝑊-complexes and their Euler characteristics
satisfy

𝜒(𝑋) ≡ 𝜒(𝑋Z/𝑝) mod 𝑝.

Definition 11.8 (Type of a 𝐺-𝐶𝑊-complex). A 𝐺-𝐶𝑊-complex is called finite if it
is built by finitely many equivariant cells.

A 𝐺-𝐶𝑊-complex is called of finite type if each 𝑛-skeleton is a finite 𝐺-𝐶𝑊-
complex.

A𝐺-𝐶𝑊-complex is called of dimension≤ 𝑛 if 𝑋 = 𝑋𝑛. It is called 𝑛-dimensional
or of dimension 𝑛 if 𝑋 = 𝑋𝑛 and 𝑋 ≠ 𝑋𝑛−1 holds. It is called finite-dimensional if it
is of dimension ≤ 𝑛 for some integer 𝑛.

Remark 11.9 (Slice Theorem). A Slice Theorem for 𝐺-𝐶𝑊-complexes is proved
in [687, Theorem 7.1]. It says, roughly, that for a 𝐺-𝐶𝑊-complex 𝑋 we can find
for any 𝑥 ∈ 𝑋 an arbitrary small 𝐺𝑥-subspace 𝑆𝑥 and an arbitrary small open
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𝐺-invariant neighborhood 𝑈 of 𝑥 such that the closure of 𝑆𝑥 is contained in 𝑈, the
inclusion {𝑥} → 𝑆𝑥 is a 𝐺𝑥-homotopy equivalence and the canonical 𝐺-map

𝐺 ×𝐺𝑥 𝑆𝑥 → 𝑈, (𝑔, 𝑠) ↦→ 𝑔 · 𝑠

is a 𝐺-homeomorphism.

11.3 Proper 𝑮-Spaces

Definition 11.10 (Proper 𝐺-space). A 𝐺-space 𝑋 is called proper if for each pair
of points 𝑥 and 𝑦 in 𝑋 there are open neighbourhoods 𝑉𝑥 of 𝑥 and𝑊𝑦 of 𝑦 in 𝑋 such
that the closure of the subset {𝑔 ∈ 𝐺 | 𝑔𝑉𝑥 ∩𝑊𝑦 ≠ ∅} of 𝐺 is compact.

Lemma 11.11. A 𝐺-𝐶𝑊-complex 𝑋 is proper if and only if all its isotropy groups
are compact.

Proof. This is shown in [644, Theorem 1.23 on page 18]. ⊓⊔

In particular, a free 𝐺-𝐶𝑊-complex is always proper. However, not every free
𝐺-space is proper.

Exercise 11.12. Find a free compact Z-space that is not proper.

Remark 11.13 (Lie Groups acting properly and smoothly on manifolds). Let 𝐺
be a Lie group. If 𝑀 is a proper smooth 𝐺-manifold, then an equivariant smooth
triangulation induces a 𝐺-𝐶𝑊-structure on 𝑀 . For the proof and for equivariant
smooth triangulations we refer to [513, Theorem I and II].

Exercise 11.14. Let 𝑝 be an odd prime. Show that there is no smooth freeZ/𝑝-action
on an even-dimensional sphere.

11.4 Maps between 𝑮-𝑪𝑾-Complexes

Theorem 11.15 (Equivariant Cellular Approximation Theorem). Let (𝑋, 𝐴) be
a pair of 𝐺-𝐶𝑊-complexes and let 𝑌 be a 𝐺-𝐶𝑊-complex. Let 𝑓 : 𝑋 → 𝑌 be a
𝐺-map such that 𝑓 |𝐴 : 𝐴→ 𝑍 is cellular.

Then there exists a cellular 𝐺-map 𝑓 ′ : 𝑋 → 𝑌 such that 𝑓 |𝐴 = 𝑓 ′ |𝐴 and 𝑓 and
𝑓 ′ are 𝐺-homotopic relative 𝐴.

Proof. Since 𝑋 = colim𝑛→∞ 𝑋𝑛 by definition, it suffices to construct inductively for
𝑛 = −1, 0, 1, 2, . . . 𝐺-maps

ℎ𝑛 : 𝑋𝑛 × [0, 1] ∪ 𝑋 × {0} → 𝑌
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such that ℎ𝑛 (𝑥, 0) = 𝑓 (𝑥) for every 𝑥 ∈ 𝑋𝑛 and ℎ𝑛 (𝑥, 𝑡) = ℎ𝑛−1 (𝑥, 𝑡) for every
𝑥 ∈ 𝑋𝑛−1 and 𝑡 ∈ [0, 1] hold and the map 𝑓 ′𝑛 : 𝑋 → 𝑌 sending 𝑥 ∈ 𝑋𝑛 to ℎ𝑛 (𝑥, 1) is
cellular. The induction beginning 𝑛 = −1 is trivial, define ℎ−1 : 𝐴×[0, 1]∪𝑋×{0} →
𝑌 by sending (𝑥, 𝑡) to 𝑓 (𝑥). The induction step from (𝑛 − 1) to 𝑛 is done as follows.
Choose a 𝐺-pushout

∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝑆𝑛−1

∐
𝑖∈𝐼𝑛 𝑞𝑖 //

��

𝑋𝑛−1 ∪ 𝐴

��∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝐷𝑛

∐
𝑖∈𝐼𝑛 𝑄𝑖 // 𝑋𝑛 ∪ 𝐴.

It yields the 𝐺-pushout

∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 ×

(
𝑆𝑛−1 × [0, 1] ∪ 𝐷𝑛 × {0}

) ∐
𝑖∈𝐼𝑛 𝑞

′
𝑖 //

��

𝑋𝑛−1 × [0, 1] ∪ 𝑋 × {0}

��∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝐷𝑛 × [0, 1]

∐
𝑖∈𝐼𝑛 𝑄

′
𝑖 // 𝑋𝑛 × [0, 1] ∪ 𝑋 × {0}.

Because of the 𝐺-pushout property it suffices to explain for every 𝑖 ∈ 𝐼𝑛 how to
extend the composite

𝜙𝑖 : 𝐺/𝐻𝑖 ×
(
𝑆𝑛−1 × [0, 1] ∪ 𝐷𝑛 × {0}

) 𝑞′
𝑖−→ 𝑋𝑛−1 × [0, 1] ∪ 𝑋 × {0}

ℎ𝑛−1−−−→ 𝑌

to a 𝐺-map
Φ𝑖 : 𝐺/𝐻𝑖 × 𝐷𝑛 × [0, 1] → 𝑌

satisfying Φ𝑖
(
𝐺/𝐻𝑖 × 𝐷𝑛 × {1}

)
⊆ 𝑌𝑛. This is the same as the non-equivariant

problem to extend the map

𝜙′𝑖 : 𝑆
𝑛−1 × [0, 1] ∪ 𝐷𝑛 × {0} → 𝑌𝐻

obtained from 𝜙𝑖 by restriction to {𝑒𝐻𝑖} ×
(
𝑆𝑛−1 × [0, 1] ∪ 𝐷𝑛 × {0}

)
to a map

Φ′𝑖 : 𝐷
𝑛 × [0, 1] → 𝑌𝐻

such that Φ′
𝑖

(
𝐷𝑛 × {1}

)
⊆ 𝑌𝑛, since we can define Φ𝑖 (𝑔𝐻, 𝑥, 𝑡) := 𝑔 · Φ′

𝑖
(𝑥, 𝑡). It is

not hard to check that this non-equivariant problem can be solved if the inclusion
𝑌𝐻
𝑚−1 → 𝑌𝐻𝑚 is 𝑚-connected for every 𝑚 ≥ 0. Since we have the pushout of spaces

∐
𝑖∈𝐼𝑚 𝐺/𝐻𝐻𝑖 × 𝑆𝑚−1

∐
𝑖∈𝐼𝑚 𝑞

𝑚
𝑖 //

��

𝑌𝑚−1

��∐
𝑖∈𝐼𝑛 𝐺/𝐻𝐻𝑖 × 𝐷𝑚

∐
𝑖∈𝐼𝑛 𝑄

𝑚
𝑖 // 𝑌𝑚
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the inclusion𝐺/𝐻𝐻
𝑖
× 𝑆𝑚−1 → 𝐺/𝐻𝐻

𝑖
×𝐷𝑚 is 𝑚-connected and𝐺/𝐻𝐻

𝑖
× 𝑆𝑚−1 is a

deformation retract of an open neighborhood in 𝐺/𝐻𝐻
𝑖
× 𝐷𝑚, this follows from the

Blakers-Massey Excision Theorem, see [954, Proposition 6.4.2 on page 133]. ⊓⊔

A map 𝑓 : 𝑋 → 𝑌 of spaces is called a weak homotopy equivalence if 𝑓 induces
a bijection 𝜋0 ( 𝑓 ) : 𝜋0 (𝑋) → 𝜋0 (𝑌 ) and for every 𝑥 ∈ 𝑋 and 𝑛 ≥ 1 an isomorphism
𝜋𝑛 ( 𝑓 , 𝑥) : 𝜋𝑛 (𝑋, 𝑥) → 𝜋𝑛 (𝑌, 𝑓 (𝑥)). A 𝐺-map 𝑓 : 𝑋 → 𝑌 of 𝐺-spaces is called a
weak 𝐺-homotopy equivalence if 𝑓 𝐻 : 𝑋𝐻 → 𝑌𝐻 is a weak equivalence of spaces
for all subgroups 𝐻 ⊆ 𝐺.

Theorem 11.16 (Equivariant Whitehead Theorem).

(i) Let 𝑓 : 𝑌 → 𝑍 be a 𝐺-map between 𝐺-spaces. Then 𝑓 is a weak 𝐺-homotopy
equivalence if for every 𝐺-𝐶𝑊-complex 𝑋 the map induced by 𝑓 between the
𝐺-homotopy classes of 𝐺-maps

𝑓∗ : [𝑋,𝑌 ]𝐺 → [𝑋, 𝑍]𝐺 , [ℎ] ↦→ [ 𝑓 ◦ ℎ]

is bijective;
(ii) Let 𝑓 : 𝑌 → 𝑍 be a 𝐺-map between 𝐺-𝐶𝑊-complexes. Then the following

assertions are equivalent:

(a) 𝑓 is a 𝐺-homotopy equivalence;
(b) 𝑓 is a weak 𝐺-homotopy equivalence;
(c) For every 𝐻 ⊆ 𝐺 that occurs as an isotropy group of some point in 𝑋 or 𝑌 ,

the map 𝑓 𝐻 : 𝑋𝐻 → 𝑌𝐻 is a weak homotopy equivalence of spaces.

Proof. See [953, II.2.6], [644, Theorem 2.4 on page 36]. ⊓⊔

Exercise 11.17. Let 𝑌 be a 𝐺-space. A 𝐺-𝐶𝑊-approximation of 𝑌 is a 𝐺-𝐶𝑊-
complex 𝑋 together with a weak 𝐺-homotopy equivalence 𝑓 : 𝑋 → 𝑌 . Show that
two 𝐺-𝐶𝑊-approximations of 𝑌 are 𝐺-homotopy equivalent.

11.5 Definition and Basic Properties of Classifying Spaces for
Families

Recall that we have defined the notion of a family of subgroups of a group 𝐺 in
Definition 2.62, namely, it is a set of subgroups of𝐺 that is closed under conjugation
with elements of 𝐺 and under passing to subgroups, and we listed some examples
in Notation 2.63, for instance the family TR consisting of the trivial subgroup, the
family FIN of finite subgroups, the family VCY of virtually cyclic subgroups,
and the familyALL of all subgroups. Actually one could replace the condition that
F is closed under taking subgroups by the weaker condition that the intersection of
finitely many elements of F belongs to F . Then the set of compact open subgroups
is a family, too.
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Definition 11.18 (Classifying 𝐺-𝐶𝑊-complex for a family of subgroups). Let F
be a family of subgroups of 𝐺. A model 𝐸F (𝐺) for the classifying 𝐺-𝐶𝑊-complex
for the family F of subgroups of 𝐺, sometimes also called the classifying space for
the family F of subgroups of 𝐺, is a 𝐺-𝐶𝑊-complex 𝐸F (𝐺) that has the following
properties:

(i) All isotropy groups of 𝐸F (𝐺) belong to F ;
(ii) For any 𝐺-𝐶𝑊-complex 𝑌 whose isotropy groups belong to F , there is up to

𝐺-homotopy precisely one 𝐺-map 𝑌 → 𝑋 .

We abbreviate 𝐸𝐺 := 𝐸COM (𝐺) and call it the universal 𝐺-𝐶𝑊-complex for
proper 𝐺-actions.

If 𝐺 is discrete, we have 𝐸𝐺 := 𝐸FIN (𝐺).
In other words, 𝐸F (𝐺) is a terminal object in the 𝐺-homotopy category of

𝐺-𝐶𝑊-complexes whose isotropy groups belong to F . In particular, two models
for 𝐸F (𝐺) are 𝐺-homotopy equivalent and for two families F0 ⊆ F1 there is up to
𝐺-homotopy precisely one 𝐺-map 𝐸F0 (𝐺) → 𝐸F1 (𝐺).

Theorem 11.19 (Homotopy characterization of 𝐸F (𝐺)). Let F be a family of
subgroups.

(i) There exists a model for 𝐸F (𝐺) for any family F ;
(ii) A 𝐺-𝐶𝑊-complex 𝑋 is a model for 𝐸F (𝐺) if and only if all its isotropy groups

belong to F and for each 𝐻 ∈ F the 𝐻-fixed point set 𝑋𝐻 is weakly contractible,
i.e., 𝑋𝐻 is non-empty and path connected and 𝜋𝑛 (𝑋𝐻 , 𝑦) vanishes for all 𝑛 ≥ 1
and one (and hence all) basepoints 𝑦 ∈ 𝑋𝐻 .

Proof. (i) A model can be obtained by attaching equivariant cells 𝐺/𝐻 × 𝐷𝑛 for all
𝐻 ∈ F to make the 𝐻-fixed point sets weakly contractible. See for instance [644,
Proposition 2.3 on page 35]. There are also functorial constructions for discrete 𝐺
generalizing the bar construction, see [280, Section 3 and Section 7].

(ii) Suppose that the 𝐺-𝐶𝑊-complex 𝑋 is a model for 𝐸F (𝐺). Let 𝑌 be any 𝐶𝑊-
complex and let 𝐻 ∈ F . Then there is up to 𝐺-homotopy precisely one 𝐺-map
𝐺/𝐻 ×𝑌 → 𝑋 . Hence there is up to homotopy precisely one map 𝑌 → 𝑋𝐻 . This is
equivalent to the condition that 𝑋𝐻 is weakly contractible.

Suppose that 𝑋𝐻 is weakly contractible for every 𝐻 ∈ F . Let (𝑌, 𝐵) be a
𝐺-𝐶𝑊-pair such that the isotropy group of any point in 𝑌 \ 𝐵 belongs to F , and let
𝑓−1 : 𝐵 → 𝑋 be any 𝐺-map. We next show the existence of a 𝐺-map 𝑓 : 𝑌 → 𝑋

extending 𝑓−1. Obviously this implies that 𝑋 is a model for 𝐸F (𝐺). Since 𝑌 is the
colimit over the skeletons 𝑌𝑛 for 𝑛 ≥ −1 and 𝑌−1 = 𝐵, it suffices to prove for 𝑛 ≥ 0
that, for a given 𝐺-map 𝑓𝑛−1 : 𝑌𝑛−1 → 𝑋 , there exists a 𝐺-map 𝑓𝑛 : 𝑌𝑛 → 𝑋 with
𝑓𝑛 |𝑌𝑛−1 = 𝑓𝑛−1. Recall that by definition there exists a 𝐺-pushout
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𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝑆𝑛−1

∐
𝑖∈𝐼𝑛 𝑞

𝑛
𝑖 //

��

𝑌𝑛−1

��∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝐷𝑛

∐
𝑖∈𝐼𝑛 𝑄

𝑛
𝑖 // 𝑌𝑛

such that each 𝐻𝑖 belong to F . Because of the universal property of a 𝐺-pushout
it remains to show that for every 𝐻 ∈ F and every 𝐺-map 𝑢 : 𝐺/𝐻 × 𝑆𝑛−1 → 𝑋

can be extended to a 𝐺-map 𝑣 : 𝐺/𝐻 × 𝐷𝑛 → 𝑋 . This is equivalent to showing that
every map 𝑢′ : 𝑆𝑛−1 → 𝑋𝐻 can be extended to a map 𝑣′ : 𝐷𝑛 → 𝑋𝐻 . This follows
from the assumption that 𝑋𝐻 is weakly contractible. ⊓⊔

A model for 𝐸ALL (𝐺) is 𝐺/𝐺. A model for 𝐸TR (𝐺) is the same as a model for
𝐸𝐺, i.e, the total space of the universal 𝐺-principal bundle 𝐸𝐺 → 𝐵𝐺 = 𝐺\𝐸𝐺. In
Section 11.6 we will give many interesting geometric models for classifying spaces
𝐸𝐺 = 𝐸FIN (𝐺).

Exercise 11.20. Show for a discrete group 𝐺 that there exists a zero-dimensional
model for 𝐸F (𝐺) if and only if 𝐺 ∈ F . Is there a non-trivial connected Lie group 𝐿
with a 0-dimensional model for 𝐸𝐿?

11.6 Models for the Classifying Space for Proper Actions

In this section we present some interesting geometric models for the classifying
space for proper actions 𝐸𝐺 for some discrete groups. These models will often be
small in the sense that they are finite, of finite type, or finite-dimensional. We will
restrict ourselves to discrete groups 𝐺 in this section. More information, also for
non-discrete groups, can be found for instance in [109, 655].

11.6.1 Simplicial Model

Let 𝑃∞ (𝐺) be the geometric realization of the abstract simplicial complex whose
𝑘-simplices consist of subsets of 𝐺 of cardinality (𝑘 + 1). There is an obvious
simplicial 𝐺-action of 𝐺 on 𝑃∞ (𝐺) coming from the group structure. We get for
instance from [1, Example 2.6].

Theorem 11.21 (Simplicial model). 𝑃∞ (𝐺) is a model for 𝐸𝐺.
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11.6.2 Operator Theoretic Model

Let 𝑃𝐶0 (𝐺) be the metric space of functions 𝑓 : 𝐺 → {𝑟 ∈ R | 𝑟 ≥ 0} such that
𝑓 is not identically zero and has finite support, where the metric comes from the
supremum norm. The group𝐺 acts isometrically on𝑃𝐶0 (𝐺) by (𝑔· 𝑓 ) (𝑥) := 𝑓 (𝑔−1𝑥)
for 𝑓 ∈ 𝑃𝐶0 (𝐺) and 𝑔, 𝑥 ∈ 𝐺. Obviously 𝑃𝐶0 (𝐺) is a subspace of the Banach space
𝐶0 (𝐺).

Let 𝑋𝐺 be the metric space

𝑋𝐺 =

{
𝑓 : 𝐺 → [0, 1]

���� 𝑓 has finite support,
∑︁
𝑔∈𝐺

𝑓 (𝑔) = 1
}

with the metric coming from the supremum norm. The group 𝐺 acts isometrically
on 𝑋𝐺 by (𝑔 · 𝑓 ) (𝑥) := 𝑓 (𝑔−1𝑥) for 𝑓 ∈ 𝑋𝐺 and 𝑔, 𝑥 ∈ 𝐺.
Theorem 11.22 (Operator theoretic model). Both 𝑃𝐶0 (𝐺) and 𝑋𝐺 are
𝐺-homotopy equivalent to a 𝐺-𝐶𝑊-model for 𝐸𝐺.
Proof. See [1, Theorem 2.4] and [109, Section 2]. ⊓⊔
Remark 11.23 (Comparing 𝑃∞ (𝐺) and 𝑋𝐺). The simplicial𝐺-complex 𝑃∞ (𝐺) of
Theorem 11.21 and the𝐺-space 𝑋𝐺 of Theorem 11.22 have the same underlying sets
but in general they have different topologies. The identity map induces a (continuous)
𝐺-map 𝑃∞ (𝐺) → 𝑋𝐺 which is a 𝐺-homotopy equivalence, but in general not a
𝐺-homeomorphism, see also [963, A.2].

11.6.3 Discrete Subgroups of Almost Connected Lie Groups

The next result is a special case of a much more general result due to Abels
[1, Corollary 4.14]. Recall that a topological group 𝐿 is called almost connected
if 𝜋0 (𝐿) is finite.
Theorem 11.24 (Discrete subgroups of almost connected Lie groups). Let 𝐿 be
an almost connected Lie group. Let 𝐺 ⊆ 𝐿 be a discrete subgroup.

Then 𝐿 contains a maximal compact subgroup 𝐾 , which is unique up to conjuga-
tion, and the 𝐺-space 𝐿/𝐾 is a model for 𝐸𝐺.

11.6.4 Actions on Simply Connected Non-Positively Curved Manifolds

Theorem 11.25 (Actions on simply connected non-positively curved manifolds).
Suppose that 𝐺 acts properly and isometrically on the simply connected complete

Riemannian manifold 𝑀 with non-positive sectional curvature. Then 𝑀 is a model
for 𝐸𝐺.
Proof. See [1, Theorem 4.15]. ⊓⊔
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11.6.5 Actions on Trees and Graphs of Groups

A tree is a 1-dimensional 𝐶𝑊-complex that is contractible.

Theorem 11.26 (Actions on trees). Suppose that 𝐺 acts on a tree 𝑇 such that for
each element 𝑔 ∈ 𝐺 and each open cell 𝑒 with 𝑔 · 𝑒 ∩ 𝑒 ≠ ∅ we have 𝑔𝑥 = 𝑥 for any
𝑥 ∈ 𝑒. Assume that the isotropy group of each 𝑥 ∈ 𝑇 is finite.

Then 𝑇 is a model for 𝐸𝐺.

Proof. Obviously𝑇 is a𝐺-𝐶𝑊-complex, see Remark 11.3. Let 𝐻 ⊆ 𝐺 be finite. If 𝑒0
is a zero-cell in 𝑇 , then 𝐻 · 𝑒0 is finite. In the sequel we equip 𝑇 with the obvious path
length metric, for which each edge has length 1. Let 𝑇 ′ be the union of all geodesics
with extremities in 𝐻 · 𝑒. This is an 𝐻-invariant subtree of 𝑇 of finite diameter. One
shows now inductively over the diameter of 𝑇 ′ that 𝑇 ′ has a vertex that is fixed under
the 𝐻-action, see [911, page 20] or [308, Proposition 4.7 on page 17]. Hence 𝑇𝐻
is non-empty. If 𝑒 and 𝑓 are vertices in 𝑇𝐻 , the geodesic in 𝑇 from 𝑒 to 𝑓 must be
𝐻-invariant. Hence 𝑇𝐻 is a connected 𝐶𝑊-subcomplex of the tree 𝑇 and hence is
itself a tree. This shows that 𝑇𝐻 is contractible. Now apply Theorem 11.19 (ii). ⊓⊔

11.6.6 Actions on CAT(0)-Spaces

For the notion of a CAT(0)-space we refer for instance to [165, Definition 1.1 in
Chapter II.1 on page 158].

Theorem 11.27 (Actions on CAT(0)-spaces). Let 𝑋 be a proper 𝐺-𝐶𝑊-complex.
Suppose that 𝑋 has the structure of a complete CAT(0)-space on which 𝐺 acts by
isometries. Then 𝑋 is a model for 𝐸𝐺.

Proof. By [165, Corollary 2.8 in Chapter II.2 on page 179] the 𝐾-fixed point set of 𝑋
is a non-empty convex subset of 𝑋 and hence contractible for any compact subgroup
𝐾 ⊂ 𝐺. ⊓⊔

This result contains as special cases Theorem 11.25 and Theorem 11.26, since
simply connected complete Riemannian manifolds with non-positive sectional cur-
vature and trees are complete CAT(0)-spaces.

11.6.7 The Rips Complex of a Hyperbolic Group

A metric space 𝑋 = (𝑋, 𝑑) is called 𝛿-hyperbolic for a given real number 𝛿 ≥ 0 if
for any four points 𝑥, 𝑦, 𝑧, 𝑡 the following inequality holds

𝑑 (𝑥, 𝑦) + 𝑑 (𝑧, 𝑡) ≤ max{𝑑 (𝑥, 𝑧) + 𝑑 (𝑦, 𝑡), 𝑑 (𝑥, 𝑡) + 𝑑 (𝑦, 𝑧)} + 2𝛿.(11.28)
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A group 𝐺 with a finite set 𝑆 of generators is called 𝛿-hyperbolic if the metric
space (𝐺, 𝑑𝑆) given by 𝐺 and the word-metric 𝑑𝑆 with respect to the finite set of
generators 𝑆 is 𝛿-hyperbolic.

The Rips complex 𝑃𝑑 (𝐺, 𝑆) of a group 𝐺 with a finite set 𝑆 of generators for
a natural number 𝑑 is the geometric realization of the abstract simplicial complex
whose set of 𝑘-simplices consists of subsets 𝑆′ of 𝑆 of cardinality (𝑘 + 1) such
that 𝑑𝑆 (𝑔, 𝑔′) ≤ 𝑑 holds for all 𝑔, 𝑔 ∈ 𝑆′. The obvious 𝐺-action by simplicial
automorphisms on 𝑃𝑑 (𝐺, 𝑆) induces a 𝐺-action by simplicial automorphisms on
the barycentric subdivision 𝑃𝑑 (𝐺, 𝑆)′, see Example 11.4.

Theorem 11.29 (Rips complex). Let 𝐺 be a group with a finite set 𝑆 of generators.
Suppose that (𝐺, 𝑆) is 𝛿-hyperbolic for the real number 𝛿 ≥ 0. Let 𝑑 be a natural
number with 𝑑 ≥ 16𝛿 + 8. Then the barycentric subdivision of the Rips complex
𝑃𝑑 (𝐺, 𝑆)′ is a finite 𝐺-𝐶𝑊-model for 𝐸𝐺.

Proof. See [713], [714]. ⊓⊔

A metric space is called hyperbolic if it is 𝛿-hyperbolic for some real number
𝛿 ≥ 0. A finitely generated group 𝐺 is called hyperbolic if for one (and hence all)
finite set 𝑆 of generators the metric space (𝐺, 𝑑𝑆) is a hyperbolic metric space. Since
for metric spaces the property hyperbolic is invariant under quasiisometry and for
two finite sets 𝑆1 and 𝑆2 of generators of 𝐺 the metric spaces (𝐺, 𝑑𝑆1 ) and (𝐺, 𝑑𝑆2 )
are quasiisometric, the choice of 𝑆 does not matter. Theorem 11.29 implies that for
a hyperbolic group there is a finite 𝐺-𝐶𝑊-model for 𝐸𝐺.

The notion of a hyperbolic group is due to Gromov and has intensively been
studied, see for example [165, 424, 440]. The prototype is the fundamental group of
a closed hyperbolic manifold.

11.6.8 Arithmetic Groups

An arithmetic group 𝐴 in a semisimple connected linearQ-algebraic group possesses
a finite 𝐴-𝐶𝑊-model for 𝐸𝐴. Namely, let 𝐺 (R) be the R-points of a semisimple
Q-group 𝐺 (Q), and let 𝐾 ⊆ 𝐺 (R) be a maximal compact subgroup. If 𝐴 ⊆ 𝐺 (Q) is
an arithmetic group, then𝐺 (R)/𝐾 with the left 𝐴-action is a model for 𝐸𝐴, as already
explained in Theorem 11.24. The 𝐴-space 𝐺 (R)/𝐾 is not necessarily cocompact.
The Borel-Serre completion of 𝐺 (R)/𝐾 , see [153], [909], is a finite 𝐴-𝐶𝑊-model
for 𝐸𝐺, as pointed out in [19, Remark 5.8], where a private communication with
Borel and Prasad is mentioned.
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11.6.9 Mapping Class Groups

Let Γ𝑠𝑔,𝑟 be the mapping class group of an orientable compact surface 𝐹𝑠𝑔,𝑟 of genus 𝑔
with 𝑠 punctures and 𝑟 boundary components. This is the group of isotopy classes of
orientation preserving self-diffeomorphisms 𝐹𝑠𝑔,𝑟 → 𝐹𝑠𝑔,𝑟 that preserve the punctures
individually and restrict to the identity on the boundary. We require that the isotopies
leave the boundary pointwise fixed. We will always assume that 2𝑔 + 𝑠 + 𝑟 > 2, or,
equivalently, that the Euler characteristic of the punctured surface 𝐹𝑠𝑔,𝑟 is negative.
It is well-known that the associated Teichmüller space T 𝑠𝑔,𝑟 is a contractible space on
which Γ𝑠𝑔,𝑟 acts properly.

Theorem 11.30 (Mapping class group). The Teichmüler space T 𝑠𝑔,𝑟 is a model for
𝐸Γ𝑠𝑔,𝑟

Proof. This follows from [574]. ⊓⊔

Remark 11.31 (Finite model for 𝐸Γ𝑠𝑔,𝑟 ). There exist a finite Γ𝑠𝑔,𝑟 -𝐶𝑊-model for
𝐸Γ𝑠𝑔,𝑟 , see [741].

11.6.10 Outer Automorphism Groups of Finitely Generated Free Groups

Let 𝐹𝑛 be the free group of rank 𝑛. Denote by Out(𝐹𝑛) the group of outer auto-
morphisms of 𝐹𝑛, i.e., the quotient of the group of all automorphisms of 𝐹𝑛 by the
normal subgroup of inner automorphisms. Culler and Vogtmann [265, 970] have
constructed a space 𝑋𝑛, called the outer space, on which Out(𝐹𝑛) acts with finite
isotropy groups. It is analogous to the Teichmüller space of a surface with the ac-
tion of the mapping class group of the surface. Fix a graph 𝑅𝑛 with one vertex 𝑣
and 𝑛-edges and identify 𝐹𝑛 with 𝜋1 (𝑅𝑛, 𝑣). A marked metric graph (𝑔, Γ) consists
of a graph Γ with all vertices of valence at least three, a homotopy equivalence
𝑔 : 𝑅𝑛 → Γ, called a marking, and an assignment of a positive length to each edge
of Γ. This turns Γ into a metric space with the path metric. We call two marked
metric graphs (𝑔, Γ) and (𝑔′, Γ′) equivalent of there is a homothety ℎ : Γ → Γ′

such that 𝑔 ◦ ℎ and ℎ′ are homotopic. Homothety means that there is a constant
𝜆 > 0 with 𝑑 (ℎ(𝑥), ℎ(𝑦)) = 𝜆 · 𝑑 (𝑥, 𝑦) for all 𝑥, 𝑦. Elements in the outer space
𝑋𝑛 are equivalence classes of marked graphs. The main result in [265] is that 𝑋 is
contractible. Actually, for each finite subgroup 𝐻 ⊆ Out(𝐹𝑛) the 𝐻-fixed point set
𝑋𝐻𝑛 is contractible [593, Proposition 3.3 and Theorem 8.1], [1005, Theorem 5.1].

The space 𝑋𝑛 contains a spine 𝐾𝑛, which is an Out(𝐹𝑛)-equivariant deformation
retraction. This space 𝐾𝑛 is a simplicial complex of dimension (2𝑛−3) on which the
Out(𝐹𝑛)-action is by simplicial automorphisms and cocompact. Actually the group
of simplicial automorphisms of 𝐾𝑛 is Out(𝐹𝑛), see [166]. Hence the barycentric
subdivision 𝐾 ′𝑛 is a finite (2𝑛 − 3)-dimensional model of 𝐸 Out(𝐹𝑛).
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11.6.11 Special Linear Groups of (2,2)-Matrices

In order to illustrate some of the general statements above, we consider the special
example SL2 (Z).

Let H2 be the 2-dimensional hyperbolic space. We will use either the upper
half-plane model or the Poincaré disk model. The group SL2 (R) acts by isometric
diffeomorphisms on the upper half-plane by Moebius transformations, i.e., a matrix(
𝑎 𝑏

𝑐 𝑑

)
acts by sending a complex number 𝑧 with positive imaginary part to 𝑎𝑧+𝑏

𝑐𝑧+𝑑 .

This action is proper and transitive. The isotropy group of 𝑧 = 𝑖 is SO(2). Since H2

is a simply connected Riemannian manifold whose sectional curvature is constant
−1, the SL2 (Z)-space H2 is a model for 𝐸 SL2 (Z) by Theorem 11.25.

One easily checks that SL2 (R) is a connected Lie group and SO(2) ⊆ SL2 (R) is a
maximal compact subgroup. Since the SL2 (R)-action on H2 is transitive and SO(2)
is the isotropy group at 𝑖 ∈ H2, we see that the SL2 (R)-manifolds SL2 (R)/SO(2)
and H2 are SL2 (R)-diffeomorphic.

As SL2 (Z) is a discrete subgroup of SL2 (R), the space H2 = SL2 (R)/SO(2) with
the obvious SL2 (Z)-action is a model for 𝐸 SL2 (Z) by Theorem 11.24.

The group SL2 (Z) is isomorphic to the amalgamated free product Z/4 ∗Z/2 Z/6.
This implies that SL2 (Z) acts cell preserving with finite stabilizers on a tree𝑇 , which
has alternately two and three edges emanating from each vertex, see [911, Theorem 7
in I.4.1 on page 32 and Example 4.2 (c) in I.4.2 on page 35]. This tree is a model for
𝐸 SL2 (Z) by Theorem 11.26.

The two models given by H2 and 𝑇 must be SL2 (Z)-homotopy equivalent. They
can explicitly be related by the following construction.

Divide the Poincaré disk or the half plane model H2 into fundamental domains for
the SL2 (Z)-action. Each fundamental domain is a geodesic triangle with one vertex
at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior.
Then the union of the edges whose end points lie in the interior of the Poincaré
disk is a tree 𝑇 with SL2 (Z)-action. This is the tree model above. The tree is an
SL2 (Z)-equivariant deformation retraction of H2. A retraction is given by moving a
point 𝑝 in H2 along a geodesic starting at the vertex at infinity that belongs to the
triangle containing 𝑝, through 𝑝 to the first intersection point of this geodesic with
𝑇 , see for instance [911, Example 4.2 (c) in I.4.2 on page 35].

11.6.12 Groups with Appropriate Maximal Finite Subgroups

Let𝐺 be a discrete group. LetMFIN be the subset of FIN consisting of elements
in FIN that are maximal with respect to inclusion in FIN . Consider the following
assertions concerning 𝐺:

(M) Every non-trivial finite subgroup of 𝐺 is contained in a unique maximal
finite subgroup;

(NM) 𝑀 ∈ MFIN , 𝑀 ≠ {1} =⇒ 𝑁𝐺𝑀 = 𝑀;
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For such a group there is a nice model for 𝐸𝐺 with as few non-free cells as
possible. Let {𝑀𝑖 | 𝑖 ∈ 𝐼} be a complete set of representatives for the conjugacy
classes of maximal finite subgroups of 𝐺, i.e, each 𝑀𝑖 is a maximal finite subgroup
of 𝐺 and any maximal finite subgroup of 𝐺 is conjugate to 𝑀𝑖 for precisely one
element 𝑖 ∈ 𝐼. By attaching free 𝐺-cells, we get an inclusion of 𝐺-𝐶𝑊-complexes
𝑗1 :

∐
𝑖∈𝐼 𝐺 ×𝑀𝑖 𝐸𝑀𝑖 → 𝐸𝐺 where 𝐸𝐺 is the same as 𝐸TR (𝐺), i.e., a contractible

free 𝐺-𝐶𝑊-complex.

Theorem 11.32 (Passage from 𝐸𝐺 to 𝐸𝐺). Suppose that𝐺 satisfies (M) and (NM).
Let 𝑋 be the 𝐺-𝐶𝑊-complex defined by the 𝐺-pushout∐

𝑖∈𝐼 𝐺 ×𝑀𝑖 𝐸𝑀𝑖
𝑗1 //

𝑢1

��

𝐸𝐺

𝑓1

��∐
𝑖∈𝐼 𝐺/𝑀𝑖 𝑘1

// 𝑋

where 𝑢1 is the obvious 𝐺-map obtained by collapsing each 𝐸𝑀𝑖 to a point.
Then 𝑋 is a model for 𝐸𝐺.

Proof. We have to explain why 𝐸𝐺 is a model for the classifying space for proper
actions of 𝐺. Obviously it is a 𝐺-𝐶𝑊-complex. Its isotropy groups are all finite. We
have to show for 𝐻 ⊆ 𝐺 finite that 𝑋𝐻 weakly contractible. We begin with the case
𝐻 ≠ {1}. Because of conditions (M) and (NM) there is precisely one index 𝑖0 ∈ 𝐼
such that 𝐻 is subconjugate to 𝑀𝑖0 and is not subconjugate to 𝑀𝑖 for 𝑖 ≠ 𝑖0 and we
get (∐

𝑖∈𝐼
𝐺/𝑀𝑖

)𝐻
=

(
𝐺/𝑀𝑖0

)𝐻
= {•}.

Hence 𝑋𝐻 = {•}. It remains to treat 𝐻 = {1}. Since 𝑢1 is a non-equivariant
homotopy equivalence and 𝑗1 is a cofibration, 𝑓1 is a non-equivariant homotopy
equivalence and hence 𝐸𝐺 is contractible (after forgetting the group action). ⊓⊔

Example 11.33. Here are some examples of groups 𝐺 that satisfy conditions (M)
and (NM):

• Extensions 1→ Z𝑛 → 𝐺 → 𝐹 → 1 for finite 𝐹 such that the conjugation action
of 𝐹 on Z𝑛 is free outside 0 ∈ Z𝑛.
The conditions (M) and (NM) are satisfied by [683, Lemma 6.3];
• Fuchsian groups

The conditions (M) and (NM) are satisfied by [683, Lemma 4.5]. In [683] the larger
class of cocompact planar groups (sometimes also called cocompact NEC-groups)
is treated;
• One-relator groups

Let 𝐺 be a one-relator group. Let 𝐺 = ⟨(𝑞𝑖)𝑖∈𝐼 | 𝑟⟩ be a presentation with one
relation. We only have to consider the case where 𝐺 contains torsion. Let 𝐹 be
the free group with basis {𝑞𝑖 | 𝑖 ∈ 𝐼}. Then 𝑟 is an element in 𝐹. There exists
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an element 𝑠 ∈ 𝐹 and an integer 𝑚 ≥ 2 such that 𝑟 = 𝑠𝑚, the cyclic subgroup 𝐶
generated by the class 𝑠 ∈ 𝐺 represented by 𝑠 has order𝑚, any finite subgroup of𝐺
is subconjugate to 𝐶, and for any 𝑔 ∈ 𝐺 the implication 𝑔−1𝐶𝑔 ∩𝐶 ≠ 1⇒ 𝑔 ∈ 𝐶
holds. These claims follows from [693, Propositions 5.17, 5.18, and 5.19 in II.5
on pages 107 and 108]. Hence 𝐺 satisfies conditions (M) and (NM).

Remark 11.34 (Passing to larger families). Theorem 11.32 is a special case of a
general recipe to construct for two familiesF ⊆ G an efficient model for 𝐸G (𝐺) from
𝐸F (𝐺) in [688, Section 2]. These models are important for concrete calculations of
the left-hand side appearing in the Baum-Conjecture or the Farrell-Jones Conjecture,
see Chapter 17.

11.6.13 One-Relator Groups

Let 𝐺 be a one-relator group. Let 𝐺 = ⟨(𝑞𝑖)𝑖∈𝐼 | 𝑟⟩ be a presentation with one
relation. There is up to conjugacy one maximal finite subgroup𝐶, which turns out to
be cyclic. Let 𝑝 : ∗𝑖∈𝐼 Z→ 𝐺 be the epimorphism from the free group generated by
the set 𝐼 to𝐺 that sends the generator 𝑖 ∈ 𝐼 to 𝑞𝑖 . Let𝑌 → ∨

𝑖∈𝐼 𝑆
1 be the𝐺-covering

associated to the epimorphism 𝑝. There is a 1-dimensional unitary 𝐶-representation
𝑉 and a 𝐶-map 𝑓 : 𝑆𝑉 → res𝐶

𝐺
𝑌 such that the induced action on the unit sphere

𝑆𝑉 is free and the following is true: If we equip 𝑆𝑉 with the 𝐶-𝐶𝑊-structure with
precisely one equivariant 0-cell and precisely one equivariant 1-cell and 𝐷𝑉 with
the 𝐶-𝐶𝑊-complex structures coming from the fact that 𝐷𝑉 is the cone over 𝑆𝑉 ,
then the𝐶-map 𝑓 can be chosen to be cellular and we obtain a𝐺-𝐶𝑊-model for 𝐸𝐺
by the 𝐺-pushout

𝐺 ×𝐶 𝑆𝑉
𝑓 //

��

𝑌

��
𝐺 ×𝐶 𝐷𝑉 // 𝐸𝐺

where 𝑓 sends (𝑔, 𝑥) to 𝑔 𝑓 (𝑥). Thus we get a 2-dimensional 𝐺-𝐶𝑊-model for 𝐸𝐺
such that 𝐸𝐺 is obtained from 𝐺/𝐶 for a maximal finite cyclic subgroup 𝐶 ⊆ 𝐺 by
attaching free cells of dimensions ≤ 2. The 𝐶𝑊-𝐶𝑊-complex structure on 𝐸𝐺 has
precisely one 0-cell 𝐺/𝐶 × 𝐷0, one 0-cell 𝐺 × 𝐷0, (2 · |𝐼 | many 1-cells 𝐺 × 𝐷1 and
|𝐼 | many 2-cells 𝐺 × 𝐷2. All these claims follow from [171, Exercise 2 (c) II. 5 on
page 44].

If 𝐺 is torsionfree, the 2-dimensional complex associated to a presentation with
one relation is a model for 𝐵𝐺, see [693, Chapter III §§9-11].

Exercise 11.35. Let 𝐺 be a one-relator group. Let 𝑀 ⊆ 𝐺 be a maximal cyclic
subgroup. Show that the inclusion induces for 𝑛 ≥ 3 an isomorphism 𝐻𝑛 (𝐵𝑀)

�−→
𝐻𝑛 (𝐵𝐺).
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Exercise 11.36. Let 𝐺 be a finitely generated group. Suppose that for every integer
𝑑 there is a 𝑘 ≥ 𝑑 with 𝐻𝑘 (𝐵𝐺;Q) ≠ 0. Show that 𝐺 cannot be a hyperbolic group,
an arithmetic group, a mapping class group, Out(𝐹𝑛), or a one-relator group.

11.7 Models for the Classifying Space for the Family of Virtually
Cyclic Subgroups

In general the 𝐺-𝐶𝑊-models for 𝐸𝐺 are not as nice and small as the ones for 𝐸𝐺.
We illustrate this in the case𝐺 = Z𝑛 for 𝑛 ≥ 2. Then aZ𝑛-𝐶𝑊-model for 𝐸Z𝑛 = 𝐸Z𝑛
is R𝑛 with the standard translation action of Z𝑛.

An explicit Z𝑛-𝐶𝑊-model for 𝐸Z𝑛 can be constructed as follows. Choose an
enumeration {𝐶𝑖 | 𝑖 ∈ Z} of the infinite cyclic subgroups of Z𝑛. Consider the space
R𝑛 × R. For each 𝑖 ∈ Z we identify in R𝑛 × {𝑖} the subspace given by the R-span of
𝐶𝑖 ⊆ Z𝑛 ⊆ R𝑛 to a point. Then we obtain a Z𝑛-𝐶𝑊-complex 𝑋 . Since the 𝐶𝑖-fixed
point set of 𝑋 consists of precisely one point, the underlying topological space 𝑋
is contractible, and all isotropy groups of the Z𝑛-action are infinite cyclic or trivial,
𝑋 is a Z𝑛-𝐶𝑊-model for 𝐸Z𝑛. Note that the dimension of 𝑋 is (𝑛 + 1). One can
actually show that any Z𝑛-𝐶𝑊-model for 𝐸Z𝑛 has dimension greater than or equal
to (𝑛 + 1), see [688, Example 5.21].

11.7.1 Groups with Appropriate Maximal Virtually Cyclic Subgroups

Let𝐺 be a discrete group. LetMVCY be the subset ofVCY consisting of elements
inVCY that are maximal with respect to inclusion inVCY. Consider the following
assertions concerning 𝐺:

(M) Every infinite virtually cyclic subgroup of 𝐺 is contained in a unique
maximal virtually cyclic subgroup;

(NM) 𝑉 ∈ MVCY, |𝑉 | = ∞ =⇒ 𝑁𝐺𝑉 = 𝑉 .

For such a group there is a nice model for 𝐸𝐺 with as few cells of type 𝐺/𝑉
with infinite virtually cyclic 𝑉 as possible. Let {𝑉𝑖 | 𝑖 ∈ 𝐼} be a complete set
of representatives for the conjugacy classes of maximal infinite virtually cyclic
subgroups of 𝐺. By attaching 𝐺-cells of the type 𝐺/𝐻 for finite subgroups 𝐻 ⊆ 𝐺,
we get an inclusion of 𝐺-𝐶𝑊-complexes 𝑗1 :

∐
𝑖∈𝐼 𝐺 ×𝑉𝑖 𝐸𝑉𝑖 → 𝐸𝐺.

The next result is proved in [688, Corollary 2.11].
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Theorem 11.37 (Passage from 𝐸𝐺 to 𝐸𝐺). Suppose that𝐺 satisfies (M) and (NM).
Let 𝑋 be the 𝐺-𝐶𝑊-complex defined by the 𝐺-pushout∐

𝑖∈𝐼 𝐺 ×𝑉𝑖 𝐸𝑉𝑖
𝑗1 //

𝑢1

��

𝐸𝐺

𝑓1

��∐
𝑖∈𝐼 𝐺/𝑉𝑖 𝑘1

// 𝑋

where 𝑢1 is the obvious 𝐺-map obtained by collapsing each 𝐸𝑉𝑖 to a point.
Then 𝑋 is a model for 𝐸𝐺.

A useful criterion for a group 𝐺 to satisfy both (M) and (NM) can be found
in [688, Theorem 3.1]. It implies that any hyperbolic group satisfies both (M) and
(NM), see [688, Example 3.6]. On the other hand the Klein bottle group Z ⋊ Z does
not satisfy (M), see [688, Example 3.7]. This is one of the few instances where 𝐸𝐺
behaves more nicely than 𝐸𝐺, since the class of groups for which both (M) and
(NM) hold is much richer than the class for which both (M) and (NM) hold.

Theorem 11.37 will be very helpful for computing the left-hand side appearing
in the Farrell-Jones Conjecture, see Section 17.5.

11.8 Finiteness Conditions

It has been very fruitful in group theory to investigate the question whether one
can find small models for 𝐵𝐺, for instance a finite 𝐶𝑊-model, a 𝐶𝑊-model of
finite type, or a finite-dimensional 𝐶𝑊-model, or equivalently, small 𝐺-𝐶𝑊-models
for 𝐸𝐺. The same question can be asked for 𝐸𝐺 and 𝐸𝐺. For torsionfree groups
there is no difference between 𝐸𝐺 and 𝐸𝐺, but for groups with torsion the space
𝐸𝐺 seems to carry much more information than 𝐸𝐺. In this section we collect
some information about finiteness conditions on 𝐸𝐺, 𝐸𝐺, and 𝐸𝐺. Having small
models is also important for computations of the left-hand sides appearing in the
Baum-Connes Conjecture and the Farrell-Jones Conjecture, see Chapter 17.

Throughout this section 𝐺 will be a discrete group.

11.8.1 Review of Finiteness Conditions on 𝑩𝑮

As an illustration we review what is known about finiteness properties of 𝐺-𝐶𝑊-
models for 𝐸𝐺 for a discrete group 𝐺. This is equivalent to the same question about
𝐵𝐺.
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We introduce the following notation. Let 𝑅 be a commutative associative ring
with unit. The trivial 𝑅𝐺-module is 𝑅 viewed as an 𝑅𝐺-module by the trivial
𝐺-action. The cohomological dimension cd𝑅 (𝑀) of a 𝑅𝐺-module 𝑀 is ∞ if there
is no finite-dimensional projective 𝑅𝐺-resolution of 𝑀 and is equal to the integer 𝑛
if there exists a projective resolution of 𝑀 of dimension ≤ 𝑛 but not of dimension
≤ 𝑛 − 1. Note that 𝑀 possesses a projective 𝑅𝐺-resolution of dimension ≤ 𝑛 if
and only if for any 𝑅𝐺-module 𝑁 we have Ext𝑖

𝑅𝐺
(𝑀, 𝑁) = 0 for 𝑖 ≥ 𝑛 + 1. The

cohomological dimension over 𝑅 of a group 𝐺, which is denoted by cd𝑅 (𝐺), is
the cohomological dimension of trivial 𝑅𝐺-module 𝑅. If 𝑅 = Z, we abbreviate
cd(𝐺) := cdZ (𝐺).

An 𝑅𝐺-module 𝑀 is of type FP𝑛 if it admits a projective 𝑅𝐺-resolution 𝑃∗ such
that 𝑃𝑖 is finitely generated for 𝑖 ≤ 𝑛, and of type FP∞ if it admits a projective
𝑅𝐺-resolution 𝑃∗ such that 𝑃𝑖 is finitely generated for all 𝑖. A group𝐺 is of type FP𝑛
or FP∞ respectively if the trivial Z𝐺-module Z is of type 𝐹𝑃𝑛 or 𝐹𝑃∞ respectively.

Here is a summary of well-known statements about finiteness conditions on 𝐵𝐺.

Theorem 11.38 (Finiteness conditions for 𝐵𝐺). Let 𝐺 be a discrete group.

(i) If there exists a finite-dimensional model for 𝐵𝐺, then 𝐺 is torsionfree;
(ii) (a) There exists a 𝐶𝑊-model for 𝐵𝐺 with finite 1-skeleton if and only if 𝐺 is

finitely generated;
(b) There exists a 𝐶𝑊-model for 𝐵𝐺 with finite 2-skeleton if and only if 𝐺 is

finitely presented;
(c) For 𝑛 ≥ 3 there exists a 𝐶𝑊-model for 𝐵𝐺 with finite 𝑛-skeleton if and only

if 𝐺 is finitely presented and of type FP𝑛;
(d) There exists a 𝐶𝑊-model for 𝐵𝐺 of finite type, i.e., all skeleta are finite if

and only if 𝐺 is finitely presented and of type FP∞;
(e) There exists groups 𝐺 that are of type FP2 and not finitely presented;

(iii) There is a finite𝐶𝑊-model for 𝐵𝐺 if and only if𝐺 is finitely presented and there
is a finite free Z𝐺-resolution 𝐹∗ for the trivial Z𝐺-module Z;

(iv) The following assertions are equivalent:

(a) The cohomological dimension over Z of 𝐺 is ≤ 1;
(b) There is a model for 𝐵𝐺 of dimension ≤ 1;
(c) 𝐺 is free;

(v) The following assertions are equivalent for 𝑑 ≥ 3:

(a) There exists a 𝐶𝑊-model for 𝐵𝐺 of dimension 𝑑;
(b) The cohomological dimension over Z of 𝐺 is 𝑑;

(vi) For Thompson’s group 𝐹 there is a 𝐶𝑊-model of finite type for 𝐵𝐺 but no
finite-dimensional model for 𝐵𝐺.

Proof. (i) Suppose we can choose a finite-dimensional model for 𝐵𝐺. Let𝐶 ⊆ 𝐺 be
a finite cyclic subgroup. Then𝐶\𝐵𝐺 = 𝐶\𝐸𝐺 is a finite-dimensional model for 𝐵𝐶.
Hence there is an integer 𝑑 such that we have 𝐻𝑖 (𝐵𝐶) = 0 for 𝑖 ≥ 𝑑. This implies
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that 𝐶 is trivial [171, (2.1) in II.3 on page 35]. Hence 𝐺 is torsionfree.
(ii) See [135] and [171, Theorem 7.1 in VIII.7 on page 205].
(iii) See [171, Theorem 7.1 in VIII.7 on page 205].
(iv) See [925] and [941].
(v) See [171, Theorem 7.1 in VIII.7 on page 205].
(vi) See [172]. ⊓⊔

11.8.2 Cohomological Criteria for Finiteness Properties in Terms of Bredon
Cohomology

We have seen that we can read off finiteness properties of 𝐵𝐺 or 𝐸𝐺 from the group
cohomology of𝐺. If one wants to investigate the same question for 𝐸F (𝐺) analogous
statements are true if one considers modules over the F -restricted orbit category
OrF (𝐺) in the sense of Definition 2.64. This is explained in [655, Subsection 5.2].
For instance, if 𝑑 ≥ 3 is a natural number, then there is a𝐺-𝐶𝑊-model of dimension
≤ 𝑑 for 𝐸F (𝐺) if and only if the trivial ZOrF (𝐺)-module Z has a projective
ZOrF (𝐺)-resolution of dimension ≤ 𝑑, see [655, Theorem 5.2 (i)]. The role of the
cohomology of a group is now played by the Bredon cohomology of 𝐸F (𝐺). We
will deal with Bredon cohomology in Example 12.2.

Other papers related to the topic of connecting geometric dimension or other
finiteness properties for classifying spaces for families to algebraic analogues
are [161, 395, 397, 766, 768].

11.8.3 Finite Models for the Classifying Space for Proper Actions

The specific constructions of Sections 11.6 show that there is a finite 𝐺-𝐶𝑊-model
for the classifying space for proper actions 𝐸𝐺 if𝐺 is a cocompact discrete subgroups
of an almost connected Lie group, a hyperbolic group, an arithmetic group, the outer
automorphism group of a finitely generated free groups, a mapping class group, or a
finitely generated one-relator group. This is also the case for an elementary amenable
group of type FP∞, see [591, Theorem 1.1].

If 1→ 𝐾 → 𝐺 → 𝑄 → 1 is an extension of groups and there are finite models
for 𝐸𝐾 and 𝐸𝑄, one may ask whether there is a finite model for 𝐸𝐺. Some sufficient
conditions for this question are given in [647, Theorem 3.2 and Theorem 3.3], for
instance that 𝐾 is hyperbolic or virtually poly-cyclic. However, even in the case that
𝑄 is finite and 𝐾 is torsionfree with a finite model for 𝐵𝐾 , it can happen that there
is no finite model for 𝐸𝐺, see [623, Example 3 on page 149 in Section 7].
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11.8.4 Models of Finite Type for the Classifying Space for Proper Actions

The following result is proved in [647, Theorem 4.2].

Theorem 11.39 (Models for 𝐸𝐺 of finite type).
The following statements are equivalent for the group 𝐺.

(i) There is a 𝐺-𝐶𝑊-model for 𝐸𝐺 of finite type;
(ii) There are only finitely many conjugacy classes of finite subgroups of 𝐺 and for

any finite subgroup 𝐻 ⊂ 𝐺 there is a 𝐶𝑊-model for 𝐵𝑊𝐺𝐻 of finite type where
𝑊𝐺𝐻 := 𝑁𝐺𝐻/𝐻;

(iii) There are only finitely many conjugacy classes of finite subgroups of 𝐺 and for
any finite subgroup 𝐻 ⊂ 𝐺 the Weyl group 𝑊𝐺𝐻 is finitely presented and is of
type 𝐹𝑃∞.

The comments about extensions in Subsection 11.8.3 for finite models carry over
to models of finite type.

11.8.5 Finite-Dimensional Models for the Classifying Space for Proper Actions

The following result follows from Dunwoody [319, Theorem 1.1].

Theorem 11.40 (A criterion for 1-dimensional models for 𝐸𝐺). Let 𝐺 be a
discrete group. Then there exists a 1-dimensional model for 𝐸𝐺 if and only if the
cohomological dimension of 𝐺 over Q is less or equal to one.

If 𝐺 is finitely generated, then there is a 1-dimensional model for 𝐸𝐺 if and only
if 𝐺 contains a finitely generated free subgroup of finite index [554, Theorem 1].
If 𝐺 is torsionfree, we rediscover the results due to Swan and Stallings stated in
Theorem 11.38 (iv) from Theorem 11.40.

If 𝐺 is virtually torsionfree, one defines its virtual cohomological dimension
vcd(𝐺) by the cohomological dimension cd(𝐻) of any torsionfree subgroup 𝐻 ⊆ 𝐺
of finite index. Since for any other torsionfree subgroup 𝐾 ⊆ 𝐺 of finite index we
have cd(𝐻) = cd(𝐾), this notion is well-defined.

Definition 11.41 (Homotopy dimension). Given a 𝐺-space 𝑋 , the homotopy
dimension hdim𝐺 (𝑋) ∈ {0, 1, . . .} ⨿ {∞} of 𝑋 is defined to be the infimum over the
dimensions of all 𝐺-𝐶𝑊-complexes 𝑌 that are 𝐺-homotopy equivalent to 𝑋 .

Notation 11.42. Put for a group 𝐺

gd(𝐺) := hdim𝐺 (𝐸𝐺);

gd(𝐺) := hdim𝐺 (𝐸𝐺).
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Lemma 11.43. Suppose that 𝐺 is virtually torsionfree. Then

vcd(𝐺) ≤ gd(𝐺).

Proof. Choose a torsionfree subgroup 𝐻 ⊆ 𝐺 of finite index. Then the restriction of
𝐸𝐺 to 𝐻 is a model for 𝐸𝐻. This implies cd(𝐻) ≤ dim(𝐸𝐺) and hence vcd(𝐺) ≤
gd(𝐺). ⊓⊔

The next result is taken from [655, Theorem 5.24]

Theorem 11.44 (Dimension of 𝐸𝐺 for a discrete subgroup 𝐺 of an almost con-
nected Lie group). Let 𝐿 be a Lie group with finitely many path components. Then
𝐿 contains a maximal compact subgroup 𝐾 , which is unique up to conjugation. Let
𝐺 ⊆ 𝐿 be a discrete subgroup of 𝐿. Then 𝐿/𝐾 with the left 𝐺-action is a model for
𝐸𝐺.

Suppose additionally that 𝐺 is virtually torsionfree. Then we have

vcd(𝐺) ≤ dim(𝐿/𝐾)

and equality holds if and only if 𝐺\𝐿 is compact.

The next result follows from [394, Theorem 1 and inequalities (1) and (2) on
page 7] where also the notion of the Hirsch length for elementary amenable groups
due to Hillman [495] is recalled. In the special case that there is a finite sequence
𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ · · · ⊇ 𝐺𝑛−1 ⊇ 𝐺𝑛 = {1} of subgroups such that 𝐺𝑖+1 is
normal in 𝐺𝑖 and 𝐺𝑖/𝐺𝑖+1 is finitely generated abelian for 𝑖 = 0, 1, . . . , (𝑛 − 1), the
Hirsch length ℎ(𝐺) is

∑𝑛−1
𝑖=0 rkZ (𝐺𝑖/𝐺𝑖+1).

Theorem 11.45 (Dimension of 𝐸𝐺 for countable elementary amenable groups
of finite Hirsch length). If 𝐺 is an elementary amenable group, then its Hirsch
length satisfies

ℎ(𝐺) ≤ gd(𝐺).

If 𝐺 is a countable elementary amenable group, then

gd(𝐺) ≤ max{3, ℎ(𝐺) + 1}.

If 𝐹 is a virtually poly-cyclic group𝐺, then𝐺 is virtually torsionfree, and vcd(𝐺)
is finite and satisfies vcd(𝐺) = ℎ(𝐺) = gd(𝐺), see [655, Example 5.26].

If𝐻 ⊆ 𝐺 is a subgroup of finite index [𝐺 : 𝐻] and there is a𝐻-𝐶𝑊-model for 𝐸𝐻
of dimension ≤ 𝑑, then there is a 𝐺-𝐶𝑊-model for 𝐸𝐺 of dimension ≤ 𝑑 · [𝐺 : 𝐻],
see [647, Theorem 2.4]. In particular gd(𝐺)) ≤ [𝐺 : 𝐻] · gd(𝐻).

Theorem 11.46 (Dimension of 𝐸𝐺 and extension). Let 1 → 𝐾 → 𝐺 → 𝑄 → 1
be an exact sequence of groups. Suppose that there exists a positive integer 𝑑 that is
an upper bound on the orders of finite subgroups of 𝑄. Then

gd(𝐺) ≤ 𝑑 · gd(𝐾) + gd(𝑄).
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Remark 11.47 (gd(𝐺) for locally finite groups). For a locally finite group of car-
dinality ℵ𝑛 the inequality gd(𝐺) ≤ 𝑛 + 1 is proved in [309, Theorem 2.6] and [688,
Theorem 5.31]. The equality gd(𝐺) = 𝑛 + 1 is explained in [688, Example 5.32].

Exercise 11.48. Let 𝐹 be a non-trivial finite group. Put 𝐻 =
⊕

Z 𝐹. Let 𝐻⋊Z be the
semidirect product with respect to the shift automorphism of 𝐻. Show gd(𝐻) = 1
and gd(𝐻 ⋊ Z) = 2.

11.8.6 Brown’s Problem about Virtual Cohomological Dimension and the
Dimension of the Classifying Space for Proper Actions

The following problem, whether the converse of Lemma 11.43 is true, is stated by
Brown [170, page 32].

Problem 11.49 (Brown’s problem about vcd(𝐺) = dim(𝐸𝐺)). For which virtually
torsionfree groups 𝐺 does the equality

vcd(𝐺) = gd(𝐺)

hold?

The length 𝑙 (𝐻) ∈ {0, 1, . . .} of a finite group 𝐻 is the supremum over all 𝑙 for
which there is a nested sequence 𝐻0 ⊂ 𝐻1 ⊂ · · · ⊂ 𝐻𝑙 of subgroups 𝐻𝑖 of 𝐻 with
𝐻𝑖 ≠ 𝐻𝑖+1. The following result is proved in [647, Theorem 6.4] and was motivated
by Brown’s Problem 11.49.

Theorem 11.50 (Estimate on dim(𝐸𝐺) in terms of vcd(𝐺)). Let 𝐺 be a group
with virtual cohomological dimension vcd(𝐺) ≤ 𝑑. Let 𝑙 ≥ 0 be an integer such that
the length 𝑙 (𝐻) of any finite subgroup 𝐻 ⊂ 𝐺 is bounded by 𝑙.

Then there is a 𝐺-𝐶𝑊-model for 𝐸𝐺 such that for any finite subgroup 𝐻 ⊂ 𝐺

dim(𝐸𝐺𝐻 ) = max{3, 𝑑} + 𝑙 − 𝑙 (𝐻)

holds. In particular gd(𝐺) ≤ max{3, 𝑑} + 𝑙.

However, we obtain the following from Leary-Petroysan [624, Corollary 1.2], see
also Leary-Nucinkis [623, Example 12 on page 153 in Section 7].

Theorem 11.51 (Brown’s Problem 11.49 has a negative answer in general).
Given a natural number 𝑚, there exists a group 𝐺 such that there is a finite model
for 𝐸𝐺 and we have vcd(𝐺) = 2𝑚 and gd(𝐺) ≥ 3𝑚.

Moreover, Leary-Petroysan [624, page 732] show that the estimate in Theo-
rem 11.50 cannot be improved, even if one considers only finite models for 𝐸𝐺.
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11.8.7 Finite-Dimensional Models for the Classifying Space for the Family of
Virtually Cyclic Subgroups

The following problem has triggered a lot of activity.

Problem 11.52 (Relating the dimension of 𝐸𝐺 and 𝐸𝐺). For which countable
groups 𝐺 do the inequalities

gd(𝐺) − 1 ≤ gd(𝐺) ≤ gd(𝐺) + 1

hold?

The inequality appearing in Problem 11.52 holds for countable elementary
amenable groups, see [299, Corollary 4.4]. There are groups of type FP∞ for which
the difference gd(𝐺) − gd(𝐺) is arbitrary large, see [299, Example 6.5].

All possible cases of the inequality appearing in Problem 11.52 can occur, in
particular there are examples of finitely presented groups 𝐺 with gd(𝐺) < gd(𝐺),
see Remark 11.56.

The next result is proved in [299, Theorem A].

Theorem 11.53 (Dimension of 𝐸𝐺 for elementary amenable groups of finite
Hirsch length). If 𝐺 is an elementary amenable group of cardinality ℵ𝑛 such that
the Hirsch length ℎ(𝐺) of 𝐺 is finite, then

gd(𝐺) ≤ ℎ(𝐺) + 𝑛 + 2.

Theorem 11.54 (The dimension of 𝐸𝐺).

(i) We have for any group 𝐺

gd(𝐺) ≤ 1 + gd(𝐺);

(ii) We have
gd(𝐺 × 𝐻) ≤ gd(𝐺) + gd(𝐻),

and
gd(𝐺 × 𝐻) ≤ gd(𝐺) + gd(𝐻) + 3,

and these inequalities cannot be improved in general;
(iii) If 𝐺 satisfies condition (M) and (NM), then

gd(𝐺)
{
= gd(𝐺) if gd(𝐺) ≥ 2;
≤ 2 if gd(𝐺) ≤ 1;
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(iv) If 𝐻 ⊆ 𝐺 is a subgroup of finite index [𝐺 : 𝐻] then

gd(𝐺) ≤ [𝐺 : 𝐻] · gd(𝐻).

Proof. (i) See [688, Corollary 5.4 (1)].
(ii) This is obvious for gd(𝐺 × 𝐻) and proved for gd(𝐺 × 𝐻) in [688, Corollary 5.6
and Remark 5.7].
(iii) See [688, Theorem 5.8 (2)].
(iv) This is proved in [647, Theorem 2.4]. ⊓⊔

Exercise 11.55. If 𝐺 is the fundamental group of a hyperbolic closed Riemannian
manifold 𝑀 , then

cd(𝐺) = dim(𝑁) = gd(𝐺) = gd(𝐺).

Remark 11.56 (Virtually-poly-cyclic-groups). In [688, Theorem 5.13] a complete
computation of gd(𝐺) is presented for virtually poly-Z groups. The answer is much
more complicated than the one for gd(𝐺), which is equal to both vcd(𝐺) and
the Hirsch length ℎ(𝐺), see [655, Example 5.26]. This leads to some interesting
examples in [688, Subsection 5.4]. For instance, one can construct, for 𝑘 = −1, 0, 1,
automorphisms 𝑓𝑘 : Hei → Hei of the three-dimensional Heisenberg group Hei
such that

gd(Hei⋊ 𝑓𝑘Z) = 4 + 𝑘.

Note that gd(Hei⋊ 𝑓Z) = cd(Hei⋊ 𝑓Z) = 4 holds for every automorphism 𝑓 : Hei→
Hei.

The following result is taken from [658, Theorem 1.1].

Theorem 11.57 (Dimensions of 𝐸𝐺 and 𝐸𝐺 for groups acting on CAT(0)-
spaces). Let 𝐺 be a discrete group that acts properly and isometrically on a
complete proper CAT(0)-space 𝑋 . Let dim(𝑋) be the topological dimension of 𝑋 ,
see Definition 22.35.

(i) We have
gd(𝐺) ≤ dim(𝑋);

(ii) Suppose that𝐺 acts by semisimple isometries. (This is the case if we additionally
assume that the 𝐺-action is cocompact.)
Then

gd(𝐺) ≤ dim(𝑋) + 1.

Remark 11.58 (gd(𝐺) for locally virtually cyclic groups). For a locally virtually
cyclic group of cardinality ℵ𝑛 the inequality gd(𝐺) ≤ 𝑛+ 1 is a special case of [688,
Theorem 5.31].

The next result is taken from [296, Theorem A].
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Theorem 11.59 (Finite-dimensional models for 𝐸𝐺 for discrete subgroups of
GL𝑛 (R)). Every discrete subgroup 𝐺 of GL𝑛 (R) admits a finite-dimensional model
for 𝐸𝐺. More precisely, if 𝑚 is the dimension of the Zariski closure of 𝐺 in GL𝑛 (R),
then

gd(𝐺) ≤ 𝑚 + 1.

For information about gd(𝐺) we refer for (relatively) hyperbolic groups to [532,
606], for mapping class groups of finite type surfaces to [535, 767], for mapping
class groups of punctured spheres to [36], for systolic groups to [784], for braid
groups to [393], for normally poly-free groups to [522], for orientable 3-manifold
groups to [527], and for Out(𝐹𝑛) to [450].

11.8.8 Low Dimensions

Besides Theorem 11.40 we have the following result proved in [688, Theorem 5.33].

Theorem 11.60 (Low-dimensional models for 𝐸𝐺 and 𝐸𝐺).

(i) Let 𝐺 be a countable group that is locally virtually cyclic. Then

gd(𝐺) =


0 if 𝐺 is finite;
1 if 𝐺 is infinite and either locally finite

or virtually cyclic;
2 otherwise,

and

gd(𝐺) =
{

0 if 𝐺 is virtually cyclic;
1 otherwise;

(ii) Let 𝐺 be a countable group satisfying gd(𝐺) ≤ 1. Then

gd(𝐺) =


0 if 𝐺 is virtually cyclic;
1 if 𝐺 is locally virtually cyclic but

not virtually cyclic;
2 otherwise.

Exercise 11.61. Let 𝐺 be a countable group. Show that 𝐺 is infinite locally finite if
and only if gd(𝐺) = gd(𝐺) = 1 holds.
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11.8.9 Finite Models for the Classifying Space for the Family of Virtually
Cyclic Subgroups

If 𝐺 is virtually cyclic, a model for 𝐸𝐺 is {•} = 𝐺/𝐺, which is in particular
finite. There is no group known such that 𝐸𝐺 has a finite 𝐺-𝐶𝑊-model and 𝐺
is not virtually cyclic. This leads to the following conjecture of Juan-Pineda and
Leary [532, Conjecture 1].

Conjecture 11.62 (Finite Models for 𝐸𝐺). If a group 𝐺 has a finite 𝐺-𝐶𝑊-model
for 𝐸𝐺, then 𝐺 is virtually cyclic.

Conjecture 11.62 is known to be true in many cases, since the existence of a
finite 𝐺-𝐶𝑊-model for 𝐸𝐺 implies that there is a finite 𝐺-𝐶𝑊-model for 𝐸𝐺,
see [688, Corollary 5.4 (2)], and that there are only finitely many conjugacy classes
of infinite virtually cyclic groups of 𝐺. Conjecture 11.62 holds for instance for
hyperbolic groups, see [532, Corollary 12], elementary amenable groups, see [582,
Corollary 5.8], and linear groups, see [971].

11.9 On the Homotopy Type of the Quotient Space of the
Classifying Space for Proper Actions

One may think that there are more homotopy classes of 𝐶𝑊-complexes than iso-
morphisms classes of groups. Namely, we can assign to any group 𝐺 its classifying
space 𝐵𝐺 and for two groups 𝐺 and 𝐻 the spaces 𝐵𝐻 and 𝐵𝐺 are homotopy equiv-
alent if and only if 𝐺 and 𝐻 are isomorphic, and there are 𝐶𝑊-complexes that are
not homotopy equivalent to 𝐵𝐺 for any group 𝐺. However, here is a result due to
Leary-Nucinkis [622, Theorem 1], which is in some sense the converse.

Theorem 11.63 (Every 𝐶𝑊-complex occurs up to homotopy as a quotient of a
classifying space for proper group actions). Let 𝑋 be a 𝐶𝑊-complex. Then there
exists a group 𝐺 such that 𝐺\𝐸𝐺 is homotopy equivalent to 𝑋 . Moreover one can
arrange that 𝐺 contains a torsionfree subgroup of index two.

Exercise 11.64. Let 𝑋 be a𝐶𝑊-complex. Show that there exists a Z/2-𝐶𝑊-complex
𝑌 such that 𝑌 is aspherical and 𝑋 is homotopy equivalent to the Z/2-quotient space
of 𝑌 .

Remark 11.65 (Metric Kan-Thurston Theorem). Leary proves a metric Kan-
Thurston Theorem in [621, Theorem A]. It yields the following variant of The-
orem 11.63, see [621, Theorem 8.3]. Given a group 𝐺 and proper simplicial
𝐺-complex 𝑋 with connected 𝐺\𝑋 , there exists a group 𝐺, a cubical CAT(0)-
complex 𝐸 with simplicial 𝐺-action, an epimorphism of groups 𝑝 : 𝐺 → 𝐺, and a
map 𝑓 : 𝐸 → 𝑋 such that 𝐸 is a model for 𝐸𝐺, the map 𝑓 is 𝑝 : 𝐺 → 𝐺-equivariant,
and for any equivariant homology theory in the sense of Definition 12.9 the pair
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(𝑝, 𝑓 ) induces for all 𝑛 ∈ Z isomorphisms H𝐺
𝑛 (𝐸) → H𝐺

𝑛 (𝑋). An application to
Isomorphism Conjectures is discussed in [621, Section 10].

The understanding of𝐺\𝐸𝐺 and𝐺\𝐸𝐺 will be important for the computation of
the left-hand side appearing in the Baum-Conjecture or the Farrell-Jones Conjecture,
see Chapter 17.

In contrast to the trivial family TR where 𝐸𝐺 and 𝐵𝐺 = 𝐺\𝐸𝐺 carry the same
information, this is not true for 𝐸𝐺 and 𝐺\𝐸𝐺. For instance, 𝐺\𝐸𝐺 is contractible
if 𝐺 is the infinite dihedral group 𝐷∞ � Z⋊Z/2 � Z/2 ∗Z/2, which can be seen by
direct inspection, or if 𝐺 = SL3 (Z), see [921, Corollary on page 8].

11.10 Notes

The notion of a classifying space for a family was introduced by tom Dieck [951].
Classifying spaces for families play a role in computations of equivariant ho-

mology and cohomology for compact Lie groups such as equivariant bordism as
explained in [952, Chapter 7] and [953, Chapter III].

Classifying spaces for topological groups and appropriate families of subgroups
play a key role in the construction of classifying equivariant principal bundles
in [687] or the construction of the topological 𝐾-cohomology for arbitrary proper
equivariant 𝐶𝑊-complexes in [670].

More information about classifying spaces for families can be found for instance
in [1, 65, 109, 256, 297, 298, 299, 396, 592, 655, 668, 688, 819, 953, 971, 972].



Chapter 12
Equivariant Homology Theory

12.1 Introduction

This section is devoted to equivariant homology theories. They are a key input
in the general formulations of the Baum-Connes Conjecture and the Farrell-Jones
Conjecture. If one only wants to understand these conjectures, one only needs to
browse through the Definition 12.1 of a𝐺-homology theory, nothing more is needed
from this chapter. Since 𝐺-homology theories are of general importance, we have
added more material to this section. It will also be useful for concrete computations
of 𝐾- and 𝐿-groups of group rings and group𝐶∗-algebras based on the Farrell-Jones
Conjecture and the Baum-Connes Conjecture.

For a fixed group 𝐺, the notion of a 𝐺-homology theoryH𝐺
∗ is the obvious gen-

eralization of the notion of a (generalized) homology theory in the non-equivariant
sense. An important insight is to pass to an equivariant homology theory H ?

∗ , see
Definition 12.9. Roughly speaking, it assigns to every group𝐺 a𝐺-homology theory
H𝐺
∗ and links for any group homomorphisms 𝛼 : 𝐻 → 𝐺 the theoriesH𝐻

∗ andH𝐺
∗

by a so-called induction structure. This global point of view is the key for many
applications and computations. Most of the interesting theories arise as equivariant
homology theories.

Whenever one has a covariant functor from the category of small connected
groupoids GROUPOIDS to the category of spectra SPECTRA, one obtains an
associated equivariant homology theory, see Section 12.4. Thus one can construct
our main examples for equivariant homology theories, which are based on 𝐾- and
𝐿-groups of group rings and group 𝐶∗-algebras, by extending these notions from
groups to groupoids, see Section 12.5.

We will provide tools for computations, namely, the equivariant Atiyah-Hirzebruch
spectral sequence, see Subsection 12.6.1, the 𝑝-chain spectral sequence, see Subsec-
tion 12.6.2, and the equivariant Chern character, see Section 12.7. We will present
some concrete examples of such computations in Sections 12.8 and 12.9.

12.2 Basics about 𝑮-Homology Theories

In this section we describe the axioms of a (proper) 𝐺-homology theory and give
some basic examples. The main examples for us will be the sources of the assembly
maps appearing in the Baum-Connes Conjecture and the Farrell-Jones Conjecture.

Fix a discrete group 𝐺 and an associative commutative ring Λ with unit.

339
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Definition 12.1 (𝐺-homology theory). A 𝐺-homology theory H𝐺
∗ with values in

Λ-modules is a collection of covariant functorsH𝐺
𝑛 from the category of𝐺-𝐶𝑊-pairs

to the category of Λ-modules indexed by 𝑛 ∈ Z together with natural transformations

𝜕𝐺𝑛 (𝑋, 𝐴) : H𝐺
𝑛 (𝑋, 𝐴) → H𝐺

𝑛−1 (𝐴) := H𝐺
𝑛−1 (𝐴, ∅)

for 𝑛 ∈ Z such that the following axioms are satisfied:

• 𝐺-homotopy invariance
If 𝑓0 and 𝑓1 are 𝐺-homotopic 𝐺-maps of 𝐺-𝐶𝑊-pairs (𝑋, 𝐴) → (𝑌, 𝐵), then
H𝐺
𝑛 ( 𝑓0) = H𝐺

𝑛 ( 𝑓1) for 𝑛 ∈ Z;
• Long exact sequence of a pair

Given a pair (𝑋, 𝐴) of 𝐺-𝐶𝑊-complexes, there is a long exact sequence

. . .
H𝐺
𝑛+1 ( 𝑗 )−−−−−−→ H𝐺

𝑛+1 (𝑋, 𝐴)
𝜕𝐺
𝑛+1−−−→ H𝐺

𝑛 (𝐴)
H𝐺𝑛 (𝑖)−−−−−→ H𝐺

𝑛 (𝑋)
H𝐺𝑛 ( 𝑗 )−−−−−→ H𝐺

𝑛 (𝑋, 𝐴)
𝜕𝐺𝑛−−→ . . .

where 𝑖 : 𝐴→ 𝑋 and 𝑗 : 𝑋 → (𝑋, 𝐴) are the inclusions;
• Excision

Let (𝑋, 𝐴) be a 𝐺-𝐶𝑊-pair, and let 𝑓 : 𝐴 → 𝐵 be a cellular 𝐺-map of 𝐺-𝐶𝑊-
complexes. Equip (𝑋 ∪ 𝑓 𝐵, 𝐵) with the induced structure of a 𝐺-𝐶𝑊-pair. Then
the canonical map (𝐹, 𝑓 ) : (𝑋, 𝐴) → (𝑋 ∪ 𝑓 𝐵, 𝐵) induces an isomorphism

H𝐺
𝑛 (𝐹, 𝑓 ) : H𝐺

𝑛 (𝑋, 𝐴)
�−→ H𝐺

𝑛 (𝑋 ∪ 𝑓 𝐵, 𝐵)

for all 𝑛 ∈ Z;
• Disjoint union axiom

Let {𝑋𝑖 | 𝑖 ∈ 𝐼} be a collection of𝐺-𝐶𝑊-complexes. Denote by 𝑗𝑖 : 𝑋𝑖 →
∐
𝑖∈𝐼 𝑋𝑖

the canonical inclusion. Then the map⊕
𝑖∈𝐼
H𝐺
𝑛 ( 𝑗𝑖) :

⊕
𝑖∈𝐼
H𝐺
𝑛 (𝑋𝑖)

�−→ H𝐺
𝑛

(∐
𝑖∈𝐼

𝑋𝑖

)
is bijective for all 𝑛 ∈ Z;

If H𝐺
∗ is defined or considered only for proper 𝐺-𝐶𝑊-pairs (𝑋, 𝐴), we call it a

proper 𝐺-homology theoryH𝐺
∗ with values in Λ-modules.

Example 12.2 (Bredon Homology). The most basic 𝐺-homology theory is Bredon
homology, which was originally introduced in [162]. Recall that Or(𝐺) denotes the
orbit category of 𝐺. Let 𝑋 be a 𝐺-𝐶𝑊-complex. It defines a contravariant functor
from the orbit category Or(𝐺) to the category of 𝐶𝑊-complexes by sending 𝐺/𝐻
to map𝐺 (𝐺/𝐻, 𝑋) = 𝑋𝐻 . Composing it with the functor “cellular chain complex”
yields a contravariant functor
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𝐶
Or(𝐺)
∗ (𝑋) : Or(𝐺) → Z-CHCOM

to the category of Z-chain complexes. Let Λ be a commutative ring and let

𝑀 : Or(𝐺) → Λ-MOD

be a covariant functor to the abelian category ofΛ-modulesΛ-MOD. If𝑁 : Or(𝐺) →
Z-MOD is a contravariant functor, one can form the tensor product over the orbit
category 𝑁 ⊗ΛOr(𝐺) 𝑀 , see for instance [644, 9.12 on page 166]. It is the quotient
of the Λ-module ⊕

𝐺/𝐻∈ob(Or(𝐺) )
𝑁 (𝐺/𝐻) ⊗Z 𝑀 (𝐺/𝐻)

by the Λ-submodule generated by

{𝑥 𝑓 ⊗ 𝑦 − 𝑥 ⊗ 𝑓 𝑦 | 𝑓 : 𝐺/𝐻 → 𝐺/𝐾, 𝑥 ∈ 𝑁 (𝐺/𝐾), 𝑦 ∈ 𝑀 (𝐺/𝐻)}

where 𝑥 𝑓 stands for 𝑁 ( 𝑓 ) (𝑥) and 𝑓 𝑦 for 𝑀 ( 𝑓 ) (𝑦). Since this is natural, we obtain a
Λ-chain complex𝐶Or(𝐺)

∗ (𝑋) ⊗ZOr(𝐺)𝑀 . The homology of𝐶Or(𝐺)
∗ (𝑋) ⊗ZOr(𝐺)𝑀

is the Bredon homology of 𝑋 with coefficients in 𝑀

𝐻𝐺𝑛 (𝑋;𝑀) := 𝐻𝑛 (𝐶Or(𝐺)
∗ (𝑋) ⊗ZOr(𝐺) 𝑀).(12.3)

This extends in the obvious way to 𝐺-𝐶𝑊-pairs. Thus we get a 𝐺-homology theory
𝐻𝐺∗ with values in Λ-modules.

The description of 𝐶Or(𝐺)
∗ (𝑋) ⊗ZOr(𝐺) 𝑀 in terms of the orbit category is

conceptually the right one, since it is intrinsically defined and the basic properties
are easily checked following closely the non-equivariant case. For computation, the
following explicit description is useful.

Fix 𝐺-pushouts

∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝑆𝑛−1

∐
𝑖∈𝐼𝑛 𝑞

𝑛
𝑖 //

��

𝑋𝑛−1

��∐
𝑖∈𝐼𝑛 𝐺/𝐻𝑖 × 𝐷𝑛

∐
𝑖∈𝐼𝑛 𝑄

𝑛
𝑖 // 𝑋𝑛

as they appear in Definition 11.2. Then the 𝑛-th Λ-chain module of the Λ-chain
complex 𝐶Or(𝐺)

∗ (𝑋) ⊗ZOr(𝐺) 𝑀 can be identified with

𝐶
Or(𝐺)
𝑛 (𝑋) ⊗ZOr(𝐺) 𝑀 =

⊕
𝑖∈𝐼𝑛

𝑀 (𝐺/𝐻𝑖).

In order to define the 𝑛-th differential

𝑐𝑛 :
⊕
𝑖∈𝐼𝑛

𝑀 (𝐺/𝐻𝑖) →
⊕
𝑗∈𝐼𝑛−1

𝑀 (𝐺/𝐻 𝑗 ),
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we specify for each pair (𝑖, 𝑗) ∈ 𝐼𝑛 × 𝐼𝑛−1 a Λ-homomorphism 𝛼𝑖, 𝑗 : 𝑀 (𝐺/𝐻𝑖) →
𝑀 (𝐺/𝐻 𝑗 ) such that for fixed 𝑖 ∈ 𝐼𝑛 there are only finitely many 𝑗 ∈ 𝐼𝑛−1 satisfying
𝛼𝑖, 𝑗 ≠ 0.

We begin with the case 𝑛 = 1. For 𝑖 ∈ 𝐼1, let 𝑗 (𝑖,+) and 𝑗 (𝑖,−) be the indices in
𝐼0 for which 𝑞0

𝑖
(𝐺/𝐻𝑖 × {±1}) ⊆ 𝐺/𝐻 𝑗 (𝑖,±) holds. Let 𝑓 (𝑖,±) : 𝐺/𝐻𝑖 → 𝐺/𝐻 𝑗 (𝑖,±)

be the map induced by 𝑞0
𝑖
. Define for 𝑖 ∈ 𝐼1 and 𝑗 ∈ 𝐼0

𝛼𝑖, 𝑗 =


𝑀 ( 𝑓 (𝑖,+)) − 𝑀 ( 𝑓 (𝑖,−)) if 𝑗 = 𝑗 (𝑖,+) and 𝑗 = 𝑗 (𝑖,−);
𝑀 ( 𝑓 (𝑖,+)) if 𝑗 = 𝑗 (𝑖,+) and 𝑗 ≠ 𝑗 (𝑖,−);
−𝑀 ( 𝑓 (𝑖,−)) if 𝑗 ≠ 𝑗 (𝑖,+) and 𝑗 = 𝑗 (𝑖,−);
0 if 𝑗 ≠ 𝑗 (𝑖,+) and 𝑗 ≠ 𝑗 (𝑖,−).

Next we deal with the case 𝑛 ≥ 2. Let 𝑋𝑛−1, 𝑗 be the quotient of 𝑋𝑛−1 where we
collapse the (𝑛 − 2)-skeleton and all the equivariant (𝑛 − 1)-cells except the one for
the index 𝑗 to a point. The pushout above, but now for (𝑛 − 1) instead of 𝑛, yields a
𝐺-homeomorphism

𝑄𝑛−1
𝑗

:
∨
𝐺/𝐻𝑖

𝑆𝑛−1 =

(
𝐺/𝐻 𝑗 × 𝐷𝑛−1

)
/
(
𝐺/𝐻 𝑗 × 𝑆𝑛−2

)
�−→ 𝑋𝑛−1, 𝑗

where
∨
𝐺/𝐻𝑖 𝑆

𝑛−1 is the one-point union or wedge of as many copies of 𝑆𝑛−1 as
there are elements in 𝐺/𝐻𝑖 . If 𝑝𝑔𝐻 𝑗 :

∨
𝐺/𝐻𝑖 𝑆

𝑛−1 → 𝑆𝑛−1 is the projection onto
the summand belonging to 𝑔𝐻 𝑗 ∈ 𝐺/𝐻 𝑗 , 𝑘 : 𝑆𝑛−1 → 𝐺/𝐻𝑖 × 𝑆𝑛−1 is the obvious
inclusion to the summand belonging to 𝑒𝐻𝑖 , and pr 𝑗 : 𝑋𝑛−1 → 𝑋𝑛−1, 𝑗 the obvious
projection, then we obtain a self-map of 𝑆𝑛−1 by the following composite

𝑆𝑛−1 𝑘−→ 𝐺/𝐻𝑖 × 𝑆𝑛−1 𝑞𝑛
𝑖−−→ 𝑋𝑛−1

pr 𝑗−−→ 𝑋𝑛−1, 𝑗

𝑄𝑛−1
𝑗

−1

−−−−−−→
∨
𝐺/𝐻 𝑗

𝑆𝑛−1
𝑝𝑔𝐻𝑗−−−−→ 𝑆𝑛−1.

Define 𝑑𝑖, 𝑗 ,𝑔𝐻 𝑗 ∈ Z to be the mapping degree of the map above. For 𝑔𝐻 𝑗 ∈ 𝐺/𝐻𝐻𝑖𝑗
we obtain a 𝐺-map

𝑟𝑔𝐻 𝑗 : 𝐺/𝐻𝑖 → 𝐺/𝐻 𝑗 , 𝑔′𝐻𝑖 ↦→ 𝑔′𝑔𝐻 𝑗 .

Define
𝛼𝑖, 𝑗 : 𝑀 (𝐺/𝐻𝑖) → 𝑀 (𝐺/𝐻 𝑗 )

to be the sum of the maps
∑
𝑔𝐻 𝑗 ∈𝐺/𝐻

𝐻𝑖
𝑗

𝑑𝑖, 𝑗 ,𝑔𝐻 𝑗 · 𝑀 (𝑟𝑔𝐻 𝑗 ). Since because of the

compactness of 𝑆𝑛−1 there are for fixed 𝑖 ∈ 𝐼𝑛−1 only finitely many pairs ( 𝑗 , 𝑔𝐻 𝑗 )
for 𝑗 ∈ 𝐼𝑛−1 and 𝑔𝐻 𝑗 ∈ 𝐺/𝐻 𝑗 with 𝑑𝑖, 𝑗 ,𝑔𝐻 𝑗 ≠ 0, the definition of 𝛼𝑖, 𝑗 makes sense
and we can indeed define 𝑐𝑛 by sending {𝑥𝑖 | 𝑖 ∈ 𝐼𝑛} to {∑𝑖∈𝐼𝑛 𝛼𝑖, 𝑗 (𝑥𝑖) | 𝑗 ∈ 𝐼𝑛−1}.
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Obviously Bredon homology reduces for 𝐺 = {1} to the cellular homology of a
𝐶𝑊-complex with coefficients in the abelian group𝑀 . It is the obvious generalization
of this concept to the equivariant setting if one keeps in mind that in the equivariant
situation the building blocks are equivariant cells given by 𝐺-spaces 𝐺/𝐻𝑖 × 𝐷𝑛.

Exercise 12.4. Let Z/2 act on 𝑆2 := {(𝑥0, 𝑥1, 𝑥2) | 𝑥𝑖 ∈ R, 𝑥2
0 + 𝑥

2
1 + 𝑥

2
2 = 1} by the

involution that sends (𝑥0, 𝑥1, 𝑥2) to (𝑥0, 𝑥1,−𝑥2). Consider the covariant functor

𝑅C : Or(Z/2) → Z-MOD

that sends (Z/2)/𝐻 to the complex representation ring 𝑅C (𝐻), any endomorphism
in Or(Z/2) to the identity and the morphism pr : (Z/2)/{1} → (Z/2)/(Z/2) to
the homomorphism 𝑅C ({1}) → 𝑅C (Z/2) given by induction with the inclusion
{1} → Z/2.

Show that 𝑆2 becomes a Z/2-𝐶𝑊-complex if we take {(1, 0, 0)} as 0-skeleton,
{(𝑥0, 𝑥1, 0) | 𝑥2

0 + 𝑥
2
1 = 1} as 1-skeleton, and 𝑆2 itself as 2-skeleton, and compute the

abelian groups 𝐻Z/2
∗ (𝑆2; 𝑅C).

Lemma 12.5. LetH𝐺
∗ be a 𝐺-homology theory. Let 𝑋 be a 𝐺-𝐶𝑊-complex, and let

{𝑋𝑖 | 𝑖 ∈ 𝐼} be a directed system of 𝐺-𝐶𝑊-subcomplexes directed by inclusion such
that 𝑋 =

⋃
𝑖∈𝐼 𝑋𝑖 . Then for all 𝑛 ∈ Z the natural map

colim𝑖∈𝐼 H𝐺
𝑛 (𝑋𝑖)

�−→ H𝐺
𝑛 (𝑋)

is bijective.

Proof. The non-equivariant case is treated [943, Proposition 7.53 on page 121] for
𝐼 = N. The proof extends directly to the equivariant case, provided that 𝐼 = N. The
proof of the general case is left to the reader. ⊓⊔

Let H𝐺
∗ and K𝐺∗ be 𝐺-homology theories. A natural transformation of

𝐺-homology theories 𝑇∗ : H𝐺
∗ → K𝐺∗ is a sequence of natural transformations

𝑇𝑛 : H𝐺
𝑛 → K𝐺𝑛 of functors from the category of 𝐺-𝐶𝑊-pairs to the category of

Λ-modules which are compatible with the boundary homomorphisms.

Lemma 12.6. Let 𝑇∗ : H𝐺
∗ → K𝐺∗ be a natural transformation of 𝐺-homology

theories. Suppose that 𝑇𝑛 (𝐺/𝐻) is bijective for every homogeneous space 𝐺/𝐻 and
𝑛 ∈ Z.

Then 𝑇𝑛 (𝑋, 𝐴) is bijective for every 𝐺-𝐶𝑊-pair (𝑋, 𝐴) and 𝑛 ∈ Z.

Note that one needs in Lemma 12.6 the existence of the natural transformation
𝑇∗. Namely, there exists two (non-equivariant) homology theories H∗ and K∗ such
that H({•}) � K𝑛 ({•}) holds for 𝑛 ∈ Z but there exists a 𝐶𝑊-complex 𝑋 and
𝑚 ∈ Z such thatH𝑚 (𝑋) and K𝑚 (𝑋) are not isomorphic. An example is topological
𝐾-homology theory 𝐾∗ and the homology theoryH∗ =

⊕
𝑛∈Z 𝐻∗+2𝑛 for 𝐻∗ singular

homology.

Exercise 12.7. Give the proof of Lemma 12.6.
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12.3 Basics about Equivariant Homology Theories

In this section we describe the axioms of a (proper) equivariant homology theory and
give some basic examples. The point is that an equivariant homology theory assigns
to every group 𝐺 a 𝐺-homology theory and links them by an induction structure.
It will play a key role in computations, various proofs, and the construction of the
equivariant Chern character.

Let 𝛼 : 𝐻 → 𝐺 be a group homomorphism. Given an 𝐻-space 𝑋 , define the
induction of 𝑋 with 𝛼 to be the 𝐺-space

ind𝛼 𝑋 = 𝐺 ×𝛼 𝑋,(12.8)

i.e., the quotient of𝐺×𝑋 by the right 𝐻-action (𝑔, 𝑥) · ℎ := (𝑔𝛼(ℎ), ℎ−1𝑥) for ℎ ∈ 𝐻
and (𝑔, 𝑥) ∈ 𝐺 × 𝑋 . The 𝐺-actions comes from 𝑔′ · (𝑔, 𝑥) = (𝑔′𝑔, 𝑥). If 𝛼 : 𝐻 → 𝐺

is an inclusion, we also write ind𝐺𝐻 instead of ind𝛼.

Definition 12.9 (Equivariant homology theory). A (proper) equivariant homology
theory with values in Λ-modulesH ?

∗ assigns to each group𝐺 a (proper)𝐺-homology
theoryH𝐺

∗ with values in Λ-modules (in the sense of Definition 12.1) together with
the following so-called induction structure:

Given a group homomorphism 𝛼 : 𝐻 → 𝐺 and a (proper) 𝐻-𝐶𝑊-pair (𝑋, 𝐴),
there are for every 𝑛 ∈ Z natural homomorphisms

ind𝛼 : H𝐻
𝑛 (𝑋, 𝐴) → H𝐺

𝑛 (ind𝛼 (𝑋, 𝐴))(12.10)

satisfying:

• Compatibility with the boundary homomorphisms
𝜕𝐺𝑛 ◦ ind𝛼 = ind𝛼 ◦ 𝜕𝐻𝑛 ;
• Functoriality

Let 𝛽 : 𝐺 → 𝐾 be another group homomorphism. Then we have for 𝑛 ∈ Z

ind𝛽◦𝛼 = H𝐾
𝑛 ( 𝑓1) ◦ ind𝛽 ◦ ind𝛼 : H𝐻

𝑛 (𝑋, 𝐴) → H𝐾
𝑛 (ind𝛽◦𝛼 (𝑋, 𝐴))

where 𝑓1 : ind𝛽 ind𝛼 (𝑋, 𝐴)
�−→ ind𝛽◦𝛼 (𝑋, 𝐴), (𝑘, 𝑔, 𝑥) ↦→ (𝑘𝛽(𝑔), 𝑥) is the natu-

ral 𝐾-homeomorphism;
• Compatibility with conjugation

For 𝑛 ∈ Z, 𝑔 ∈ 𝐺, and a (proper) 𝐺-𝐶𝑊-pair (𝑋, 𝐴) the homomorphism
ind𝑐 (𝑔) : 𝐺→𝐺 : H𝐺

𝑛 (𝑋, 𝐴) → H𝐺
𝑛 (ind𝑐 (𝑔) : 𝐺→𝐺 (𝑋, 𝐴)) agrees with H𝐺

𝑛 ( 𝑓2)
for the 𝐺-homeomorphism 𝑓2 : (𝑋, 𝐴) → ind𝑐 (𝑔) : 𝐺→𝐺 (𝑋, 𝐴) that sends 𝑥 to
(1, 𝑔−1𝑥) in 𝐺 ×𝑐 (𝑔) (𝑋, 𝐴);
• Bijectivity

If ker(𝛼) acts freely on 𝑋 \ 𝐴, then ind𝛼 : H𝐻
𝑛 (𝑋, 𝐴) → H𝐺

𝑛 (ind𝛼 (𝑋, 𝐴)) is
bijective for all 𝑛 ∈ Z.
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Exercise 12.11. LetH ?
∗ be an equivariant homology theory. Show for any group 𝐺,

any 𝑔 ∈ 𝐺, and any 𝑛 ∈ Z that induction with 𝑐(𝑔) : 𝐺 → 𝐺 induces the identity on
H𝐺
𝑛 ({•}).

Lemma 12.12. LetH ?
∗ be a (proper) equivariant homology theory. Consider (finite)

subgroups 𝐻, 𝐾 ⊂ 𝐺 and an element 𝑔 ∈ 𝐺 with 𝑔𝐻𝑔−1 ⊂ 𝐾 . Let 𝑅𝑔−1 : 𝐺/𝐻 →
𝐺/𝐾 be the𝐺-map sending 𝑔′𝐻 to 𝑔′𝑔−1𝐾 and 𝑐(𝑔) : 𝐻 → 𝐾 be the homomorphism
sending ℎ to 𝑔ℎ𝑔−1. Let pr : (ind𝑐 (𝑔) : 𝐻→𝐾 {•}) → {•} be the projection. Then the
following diagram commutes

H𝐻
𝑛 ({•})

H𝐾𝑛 (pr)◦ind𝑐 (𝑔) //

ind𝐺
𝐻

�

��

H𝐾
𝑛 ({•})

ind𝐺
𝐾

�

��
H𝐺
𝑛 (𝐺/𝐻)

H𝐺𝑛 (𝑅𝑔−1 )
// H𝐺

𝑛 (𝐺/𝐾).

Proof. Let 𝑓1 : ind𝑐 (𝑔) : 𝐺→𝐺 ind𝐺𝐻 {•} → ind𝐺𝐾 ind𝑐 (𝑔) : 𝐻→𝐾 {•} be the bijective
𝐺-map sending (𝑔1, 𝑔2, {•}) in 𝐺 ×𝑐 (𝑔) 𝐺 ×𝐻 {•} to (𝑔1𝑔𝑔2𝑔

−1, 1, {•}) in 𝐺 ×𝐾
𝐾 ×𝑐 (𝑔) {•}. The condition that induction is compatible with composition of group
homomorphisms means precisely that the composite

H𝐻
𝑛 ({•})

ind𝐺
𝐻−−−→ H𝐺

𝑛 (ind𝐺𝐻 {•})
ind𝑐 (𝑔) : 𝐺→𝐺−−−−−−−−−−→ H𝐺

𝑛 (ind𝑐 (𝑔) : 𝐺→𝐺 ind𝐺𝐻 {•})
H𝐺𝑛 ( 𝑓1 )−−−−−−→ H𝐺

𝑛 (ind𝐺𝐾 ind𝑐 (𝑔) : 𝐻→𝐾 {•})

agrees with the composite

H𝐻
𝑛 ({•})

ind𝑐 (𝑔) : 𝐻→𝐾−−−−−−−−−−→ H𝐾
𝑛 (ind𝑐 (𝑔) : 𝐻→𝐾 {•})

ind𝐺
𝐾−−−→ H𝐺

𝑛 (ind𝐺𝐾 ind𝑐 (𝑔) : 𝐻→𝐾 {•}).

Naturality of induction implies H𝐺
𝑛 (ind𝐺𝐾 pr) ◦ ind𝐺𝐾 = ind𝐺𝐾 ◦H𝐾

𝑛 (pr). Hence the
following diagram commutes

H𝐻
𝑛 ({•})

H𝐾𝑛 (pr)◦ind𝑐 (𝑔)𝐻→𝐾 //

ind𝐺
𝐻

�

��

H𝐾
𝑛 ({•})

ind𝐺
𝐾

�

��
H𝐺
𝑛 (𝐺/𝐻)

H𝐺𝑛 (ind𝐺
𝐾

pr)◦H𝐺𝑛 ( 𝑓1 )◦ind𝑐 (𝑔) : 𝐺→𝐺 // H𝐺
𝑛 (𝐺/𝐾).

By the axioms ind𝑐 (𝑔) : 𝐺→𝐺 : H𝐺
𝑛 (𝐺/𝐻) → H𝐺

𝑛 (ind𝑐 (𝑔) : 𝐺→𝐺 𝐺/𝐻) agrees with
H𝐺
𝑛 ( 𝑓2) for the map 𝑓2 : 𝐺/𝐻 → ind𝑐 (𝑔) : 𝐺→𝐺 𝐺/𝐻 that sends 𝑔′𝐻 to (𝑔′𝑔−1, 1𝐻)

in 𝐺 ×𝑐 (𝑔) 𝐺/𝐻. Since the composite (ind𝐺𝐾 pr) ◦ 𝑓1 ◦ 𝑓2 is just 𝑅𝑔−1 , Lemma 12.12
follows. ⊓⊔
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Example 12.13 (Borel homology). Let K∗ be a homology theory for (non-equivar-
iant)𝐶𝑊-pairs with values in Λ-modules. Examples are singular homology, oriented
bordism theory, or topological 𝐾-homology. Then we obtain two equivariant homol-
ogy theories with values inΛ-modules in the sense of Definition 12.9 by the following
constructions

H𝐺
𝑛 (𝑋, 𝐴) = K𝑛 (𝐺\𝑋, 𝐺\𝐴);
H𝐺
𝑛 (𝑋, 𝐴) = K𝑛 (𝐸𝐺 ×𝐺 (𝑋, 𝐴)).

The second one is called the equivariant Borel homology associated to K∗.
In both casesH𝐺

∗ inherits the structure of a 𝐺-homology theory from the homol-
ogy structure on K∗. Induction for a group homomorphism 𝛼 : 𝐻 → 𝐺 is induced
by the following two maps 𝑎 and 𝑏. Let 𝑎 : 𝐻\𝑋 �−→ 𝐺\(𝐺 ×𝛼 𝑋) be the homeomor-
phism sending 𝐻𝑥 to 𝐺 (1, 𝑥). Define 𝑏 : 𝐸𝐻 ×𝐻 𝑋 → 𝐸𝐺 ×𝐺 𝐺 ×𝛼 𝑋 by sending
(𝑒, 𝑥) to (𝐸𝛼(𝑒), 1, 𝑥) for 𝑒 ∈ 𝐸𝐻, 𝑥 ∈ 𝑋 , and 𝐸𝛼 : 𝐸𝐻 → 𝐸𝐺 the 𝛼-equivariant
map induced by 𝛼. Induction for a group homomorphism 𝛼 : 𝐻 → 𝐺 is induced
by these maps 𝑎 and 𝑏. If the kernel ker(𝛼) acts freely on 𝑋 , then the map 𝑏 is a
homotopy equivalence and hence in both cases ind𝛼 is bijective.

Example 12.14 (Equivariant bordism). For a proper 𝐺-𝐶𝑊-pair (𝑋, 𝐴), one can
define the 𝐺-bordism group N𝐺𝑛 (𝑋, 𝐴) as the abelian group of 𝐺-bordism classes
of 𝐺-maps 𝑓 : (𝑀, 𝜕𝑀) → (𝑋, 𝐴) whose sources are smooth manifolds with co-
compact proper smooth 𝐺-actions. Cocompact means that the quotient space 𝐺\𝑀
is compact. The definition is analogous to the one in the non-equivariant case. This
is also true for the proof that this defines a proper 𝐺-homology theory. There is
an obvious induction structure coming from induction of equivariant spaces which
is, however, only defined if the kernel of 𝛼 acts freely on 𝑋 . It is well-defined
because of the following fact. If 𝛼 : 𝐻 → 𝐺 is a group homomorphism, 𝑀 is an
smooth 𝐻-manifold with cocompact proper smooth 𝐻-action, and ker(𝛼) acts freely,
then ind𝛼 𝑀 is a smooth 𝐺-manifold with cocompact proper smooth 𝐺-action. The
boundary of ind𝛼 𝑀 is ind𝛼 𝜕𝑀 .

Example 12.15 (Equivariant topological 𝐾-theory). We have explained the notion
of equivariant topological 𝐾-theory 𝐾?

∗ in (10.67), where the induction structure, at
least for injective group homomorphisms, comes from (10.63). If 𝑅C (𝐻) denotes
the complex representation ring of the finite subgroup 𝐻 ⊆ 𝐺, then

𝐾𝐺𝑛 (𝐺/𝐻) � 𝐾𝐻𝑛 ({•}) �
{
𝑅C (𝐻) 𝑛 even;
{0} 𝑛 odd.

There is a also a real version of it.

Exercise 12.16. Compute 𝐾𝐷∞∗ (𝐸𝐷∞).
In the sequel we put

𝐵𝐺 := 𝐺\𝐸𝐺.(12.17)
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Lemma 12.18. Let H ?
∗ be an equivariant proper homology theory. Let 𝐺 be any

group. Let Z ⊆ Λ ⊆ Q be a ring such that the order of any finite subgroup of 𝐺 is
invertible in Λ.

(i) The mapH {1}𝑛 (𝐵𝐺) ⊗Z Λ→H {1}𝑛 (𝐵𝐺) ⊗Z Λ is an isomorphism for all 𝑛 ∈ Z;
(ii) The map

H𝐺
𝑛 (𝐸𝐺) ⊗Z Λ→H {1}𝑛 (𝐵𝐺) ⊗Z Λ

is split surjective, whereas the map

H𝐺
𝑛 (𝐸𝐺) ⊗Z Λ→H𝐺

𝑛 (𝐸𝐺) ⊗Z Λ

is split injective.

Proof. (i) By the Atiyah-Hirzebruch spectral sequence it suffices to prove the bi-
jectivity of the Λ-map 𝐻𝑝 (𝐵𝐺;H {1}𝑛 ({•})) ⊗Z Λ→ 𝐻𝑝 (𝐵𝐺;H {1}𝑛 ({•})) ⊗Z Λ for
𝑝, 𝑞 ∈ Z with 𝑝 ≥ 0. The 𝐺-map 𝐸𝐺 → 𝐸𝐺 induces a homology equivalence of
projective Λ𝐺-chain complexes𝐶∗ (𝐸𝐺) ⊗ZΛ→ 𝐶∗ (𝐸𝐺) ⊗ZΛ, which is therefore a
Λ𝐺-chain homotopy equivalence. Hence it induces a Λ-chain homotopy equivalence
𝐶∗ (𝐵𝐺) ⊗Z Λ→ 𝐶∗ (𝐵𝐺) ⊗Z Λ.
(ii) Since the following diagram commutes

H𝐺
𝑛 (𝐸𝐺) //

�ind𝐺→{1}
��

H𝐺
𝑛 (𝐸𝐺)

ind𝐺→{1}
��

H {1}𝑛 (𝐵𝐺) // H {1}𝑛 (𝐵𝐺)

and has a bijection as left vertical arrow, the claim follows from assertion (i). ⊓⊔

Example 12.19. Note that Lemma 12.18 (ii) is not true if one just considers a
𝐺-homology theory H𝐺

∗ . Here is a counterexample. Let 𝐺 be a finite group. Let
𝑀 be the covariant ZOr(𝐺)-module which sends 𝐺 to Z, 𝐺/𝐻 for 𝐻 ≠ {1} to
{0}, and every 𝐺-map 𝑓 : 𝐺 → 𝐺 to the identity on Z. Then the Bredon homology
𝐻𝐺𝑛 (𝐸𝐺;𝑀) is𝐻𝑛 (𝐵𝐺) and the Bredon homology𝐻𝐺𝑛 (𝐸𝐺;𝑀) = 𝐻𝐺𝑛 (𝐺/𝐺;𝑀) =
𝑀 (𝐺/𝐺) vanishes.

12.4 Constructing Equivariant Homology Theories Using
Spectra

We briefly fix some conventions concerning spectra. Let SPACES+ be the category
of pointed compactly generated spaces. Here the objects are compactly generated
spaces 𝑋 , see Remark 11.1, with base points for which the inclusion of the base
point is a cofibration. Morphisms are pointed maps. If 𝑋 is a space, denote by 𝑋+
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the pointed space obtained from 𝑋 by adding a disjoint base point. For two pointed
spaces 𝑋 = (𝑋, 𝑥) and𝑌 = (𝑌, 𝑦), define their smash product to be the pointed space

𝑋 ∧ 𝑌 = 𝑋 × 𝑌/({𝑥} × 𝑌 ∪ 𝑋 × {𝑦}),(12.20)

and the reduced cone to be the pointed space

cone(𝑋) := 𝑋 × [0, 1]/(𝑋 × {1} ∪ {𝑥} × [0, 1]).(12.21)

A spectrum E = {(𝐸 (𝑛), 𝜎(𝑛)) | 𝑛 ∈ Z} is a sequence of pointed spaces {𝐸 (𝑛) |
𝑛 ∈ Z} together with pointed maps called structure maps 𝜎(𝑛) : 𝐸 (𝑛) ∧ 𝑆1 −→
𝐸 (𝑛 + 1). A map of spectra f : E→ E′ is a sequence of maps 𝑓 (𝑛) : 𝐸 (𝑛) → 𝐸 ′ (𝑛)
that are compatible with the structure maps 𝜎(𝑛), i.e., we have 𝑓 (𝑛 + 1) ◦ 𝜎(𝑛) =
𝜎′ (𝑛) ◦ ( 𝑓 (𝑛) ∧ id𝑆1 ) for all 𝑛 ∈ Z. Maps of spectra are sometimes called functions
in the literature, they should not be confused with the notion of a map of spectra in
the stable category, see [13, III.2.]. The category of spectra and maps will be denoted
SPECTRA. Recall that the homotopy groups of a spectrum are defined by

𝜋𝑖 (E) := colim𝑘→∞ 𝜋𝑖+𝑘 (𝐸 (𝑘)),(12.22)

where the 𝑖th structure map of the system 𝜋𝑖+𝑘 (𝐸 (𝑘)) is given by the composite

𝜋𝑖+𝑘 (𝐸 (𝑘))
𝑆−→ 𝜋𝑖+𝑘+1 (𝐸 (𝑘) ∧ 𝑆1)

𝜎 (𝑘 )∗−−−−−→ 𝜋𝑖+𝑘+1 (𝐸 (𝑘 + 1))

of the suspension homomorphism 𝑆 and the homomorphism induced by the structure
map. A weak equivalence of spectra is a map f : E → F of spectra inducing an
isomorphism on all homotopy groups. A spectrum E is called an Ω-spectrum if the
adjoint 𝐸𝑛 → Ω𝐸𝑛+1 of each structure map is a weak homotopy equivalence.

Given a spectrum E and a pointed space 𝑋 , we can define their smash product
𝑋 ∧ E by (𝑋 ∧ E) (𝑛) := 𝑋 ∧ 𝐸 (𝑛) with the obvious structure maps. It is a classical
result that a spectrum E defines a homology theory by setting

𝐻𝑛 (𝑋, 𝐴; E) = 𝜋𝑛
(
(𝑋+ ∪𝐴+ cone(𝐴+)) ∧ E

)
.

We want to extend this to 𝐺-homology theories. This requires the consideration of
spaces and spectra over the orbit category. Our presentation follows [280], where
more details can be found.

In the sequel C is a small category. Our main example will be the orbit category
Or(𝐺).

Definition 12.23. A covariant (contravariant) C-space 𝑋 is a covariant (contravari-
ant) functor

𝑋 : C → SPACES.

A map between C-spaces is a natural transformation of such functors. Analogously
a pointed C-space is a functor from C to SPACES+ and a C-spectrum a functor to
SPECTRA.
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Example 12.24. Let𝑌 be a left𝐺-space. Define the associated contravariantOr(𝐺)-
space map𝐺 (−, 𝑌 ) by

map𝐺 (−, 𝑌 ) : Or(𝐺) → SPACES, 𝐺/𝐻 ↦→ map𝐺 (𝐺/𝐻,𝑌 ) = 𝑌𝐻 .

If 𝑌 has a 𝐺-invariant base point, then map𝐺 (−, 𝑌 ) takes values in pointed spaces.

Let 𝑋 be a contravariant and 𝑌 be a covariant C-space. Define their balanced
product to be the space

𝑋 ×C 𝑌 :=
∐

𝑐∈ob(C)
𝑋 (𝑐) × 𝑌 (𝑐)/∼(12.25)

where ∼ is the equivalence relation generated by (𝑥𝜙, 𝑦) ∼ (𝑥, 𝜙𝑦) for all morphisms
𝜙 : 𝑐 → 𝑑 in C and points 𝑥 ∈ 𝑋 (𝑑) and 𝑦 ∈ 𝑌 (𝑐). Here 𝑥𝜙 stands for 𝑋 (𝜙) (𝑥) and
𝜙𝑦 for 𝑌 (𝜙) (𝑦). If 𝑋 and 𝑌 are pointed, then one defines analogously their balanced
smash product to be the pointed space

𝑋 ∧C 𝑌 :=
∨

𝑐∈ob(C)
𝑋 (𝑐) ∧ 𝑌 (𝑐)/∼ .(12.26)

In [280] the notation 𝑋⊗C𝑌 was used for this space. Performing the same construction
levelwise, one defines the balanced smash product 𝑋∧CE of a contravariant pointed
C-space and a covariant C-spectrum E.

The proof of the next result is analogous to the non-equivariant case. Details can
be found in [280, Lemma 4.4], where also cohomology theories are treated.

Theorem 12.27 (Constructing 𝐺-Homology Theories). Let E be a covariant
Or(𝐺)-spectrum. It defines a 𝐺-homology theory 𝐻𝐺∗ (−; E) by

𝐻𝐺𝑛 (𝑋, 𝐴; E) := 𝜋𝑛
(
map𝐺

(
−, (𝑋+ ∪𝐴+ cone(𝐴+))

)
∧Or(𝐺) E

)
.

In particular we have

𝐻𝐺𝑛 (𝐺/𝐻; E) = 𝜋𝑛 (E(𝐺/𝐻)).

A version of the Brown representability theorem is proved for 𝐺-cohomology
theories and Or(𝐺)-spectra in [64], see also [295, Corollary 1.60 on page 36].

Example 12.28 (Bredon homology in terms of spectra). Consider a covariant func-
tor 𝑀 : Or(𝐺) → Z-MOD. Composing it with the functor sending a Z-module 𝑁
to its Eilenberg-MacLane spectrum H𝑁 , which is a spectrum such that 𝜋0 (H𝑁 ) � 𝑁
and 𝜋𝑛 (H𝑁 ) = {0} for 𝑛 ≠ 0, yields a covariant functor

H𝑀 : Or(𝐺) → SPECTRA.

Then the 𝐺-homology theory 𝐻𝐺∗ (−; H𝑀 ) associated to H𝑀 in Theorem 12.27
agrees with the Bredon homology 𝐻𝐺∗ (−;𝑀) defined in Example 12.2.
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Recall that we seek an equivariant homology theory and not only a 𝐺-homology
theory. If the Or(𝐺)-spectrum in Theorem 12.27 is obtained from a GROUPOIDS-
spectrum in a way we will now describe, then automatically we obtain the desired
induction structure.

Let GROUPOIDS be the category of small connected groupoids with covariant
functors as morphisms. Recall that a groupoid is a category in which all morphisms
are isomorphisms and that it is called connected if for any two objects there exists
an isomorphism between them. A covariant functor 𝑓 : G0 → G1 of groupoids is
called injective if for any two objects 𝑥, 𝑦 in G0 the induced map morG0 (𝑥, 𝑦) →
morG1 ( 𝑓 (𝑥), 𝑓 (𝑦)) is injective. (We are not requiring that the induced map on the set
of objects is injective.) Let GROUPOIDSinj be the subcategory of GROUPOIDS
with the same objects and injective functors as morphisms. For a 𝐺-set 𝑆 we denote
by G𝐺 (𝑆) its associated transport groupoid. Its objects are the elements of 𝑆. The set
of morphisms from 𝑠0 to 𝑠1 consists of those elements 𝑔 ∈ 𝐺 that satisfy 𝑔𝑠0 = 𝑠1.
Composition in G𝐺 (𝑆) comes from the multiplication in 𝐺. It is connected if and
only if 𝐺 acts transitively on 𝑆. Thus we obtain for a group 𝐺 a covariant functor

G𝐺 : Or(𝐺) → GROUPOIDSinj, 𝐺/𝐻 ↦→ G𝐺 (𝐺/𝐻).(12.29)

A functor of small categories 𝐹 : C → D is called an equivalence if there exists
a functor 𝐺 : D → C such that both 𝐹 ◦ 𝐺 and 𝐺 ◦ 𝐹 are naturally equivalent to
the identity functor. This is equivalent to the condition that 𝐹 induces a bijection
on the set of isomorphisms classes of objects and for any objects 𝑥, 𝑦 ∈ C the map
morC (𝑥, 𝑦) → morD (𝐹 (𝑥), 𝐹 (𝑦)) induced by 𝐹 is bijective.

Theorem 12.30 (Constructing equivariant homology theories using spectra).
Consider a covariant GROUPOIDS-spectrum

E : GROUPOIDS→ SPECTRA.

Suppose that E respects equivalences, i.e., it sends an equivalence of groupoids to a
weak equivalence of spectra. Then E defines an equivariant homology theory

𝐻?
∗ (−; E)

whose underlying 𝐺-homology theory for a group 𝐺 is the 𝐺-homology theory
associated to the covariant Or(𝐺)-spectrum E ◦ G𝐺 : Or(𝐺) → SPECTRA in the
previous Theorem 12.27, i.e.,

𝐻𝐺∗ (𝑋, 𝐴; E) = 𝐻𝐺∗ (𝑋, 𝐴; E ◦ G𝐺).

In particular we have

𝐻𝐺𝑛 (𝐺/𝐻; E) � 𝐻𝐻𝑛 ({•}; E) � 𝜋𝑛 (E(𝐼 (𝐻))),

where 𝐼 (𝐻) denotes 𝐻 considered as a groupoid with one object. The whole con-
struction is natural in E.
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Proof. We have to specify the induction structure for a homomorphism 𝛼 : 𝐻 → 𝐺.
We only sketch the construction in the special case 𝐴 = ∅.

The functor induced by 𝛼 on the orbit categories is denoted in the same way

𝛼 : Or(𝐻) → Or(𝐺), 𝐻/𝐿 ↦→ ind𝛼 (𝐻/𝐿) = 𝐺/𝛼(𝐿).

There is an obvious natural transformation of covariant functors Or(𝐻) →
GROUPOIDS

𝑇 : G𝐻 → G𝐺 ◦ 𝛼.

Its evaluation at 𝐻/𝐿 is the functor G𝐻 (𝐻/𝐿) → G𝐺 (𝐺/𝛼(𝐿)) that sends an object
ℎ𝐿 to the object 𝛼(ℎ)𝛼(𝐿) and a morphism given by ℎ ∈ 𝐻 to the morphism given
by 𝛼(ℎ) ∈ 𝐺. The desired homomorphism

ind𝛼 : 𝐻𝐻𝑛 (𝑋; E ◦ G𝐻 ) → 𝐻𝐺𝑛 (ind𝛼 𝑋; E ◦ G𝐺)

is induced by the following map of spectra

map𝐻 (−, 𝑋+) ∧Or(𝐻 ) E ◦ G𝐻
id∧E(𝑇 )
−−−−−−−→ map𝐻 (−, 𝑋+) ∧Or(𝐻 ) E ◦ G𝐺 ◦ 𝛼

�←− (𝛼∗map𝐻 (−, 𝑋+)) ∧Or(𝐺) E ◦ G𝐺 �←− map𝐺 (−, ind𝛼 𝑋+) ∧Or(𝐺) E ◦ G𝐺 .

Here 𝛼∗map𝐻 (−, 𝑋+) is the pointed Or(𝐺)-space that is obtained from the pointed
Or(𝐻)-space map𝐻 (−, 𝑋+) by induction, i.e., by taking the balanced product over
Or(𝐻) with the (discrete) Or(𝐻)-Or(𝐺) biset morOr(𝐺) (??, 𝛼(?)), see [280, Defi-
nition 1.8]. Note that E◦G𝐺 ◦𝛼 is the same as the restriction of the Or(𝐺)-spectrum
E ◦ G𝐺 along 𝛼, which is often denoted by 𝛼∗ (E ◦ G𝐺) in the literature, see [280,
Definition 1.8]. The second map is given by the adjunction homeomorphism of
induction 𝛼∗ and restriction 𝛼∗, see [280, Lemma 1.9]. The third map is the homeo-
morphism of Or(𝐺)-spaces that is the adjoint of the obvious map of Or(𝐻)-spaces
map𝐻 (−, 𝑋+) → 𝛼∗map𝐺 (−, ind𝛼 𝑋+) whose evaluation at 𝐻/𝐿 is given by ind𝛼.

It remains to show ind𝛼 is a weak equivalence, provided that ker(𝛼) acts freely
on 𝑋 . Because the second and third maps appearing in the definition above are
homeomorphisms, this boils down to proving that id∧E(𝑇) is a weak equivalence,
provided that ker(𝛼) acts freely on 𝑋 . This follows from the fact that 𝑇 (𝐻/𝐿) is an
equivalence of groupoids and hence E(𝑇) (𝐺/𝐿) is a weak equivalence of spectra
for all subgroups 𝐿 ⊆ 𝐺 appearing as isotropy group in 𝑋 , since for such 𝐿 the
restriction of 𝛼 to 𝐿 induces a bijection 𝐿 → 𝛼(𝐿). ⊓⊔

Remark 12.31. In some cases the functor E to SPECTRA is only defined on
GROUPOIDSinj. Then one still gets an equivariant homology theory with the excep-
tion that for the induction structure one has to require that the group homomorphisms
𝛼 : 𝐻 → 𝐺 are injective. This does exclude the projection 𝐺 → {1}.

Example 12.32 (Bredon homology). Let 𝑀 be a covariant functor from
GROUPOIDS to Z-MOD. Then Bredon homology yields an equivariant homol-
ogy theory if we define its value at 𝐺 as the Bredon homology with coefficients in
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the covariant functor 𝑀𝐺 : Or(𝐺) → Z-MOD sending to 𝐺/𝐻 to 𝑀 (G𝐺 (𝐺/𝐻)).
This is the same as the equivariant homology theory we obtain from applying
Theorem 12.30 to the functor GROUPOIDS → SPECTRA that sends a groupoid
G to the Eilenberg-MacLane spectrum associated with 𝑀 (G).

Example 12.33 (Borel homology in terms of spectra). Let E be a spectrum. Let
𝐻 (−; E) be the (non-equivariant) homology theory associated to E. Given a groupoid
G, denote by 𝐸G its classifying space. IfG has only one object and the automorphism
group of this object is 𝐺, then 𝐸G is a model for 𝐸𝐺. We obtain two covariant
functors

𝑐E : GROUPOIDS→ SPECTRA, G ↦→ E;
𝑏E : GROUPOIDS→ SPECTRA, G ↦→ 𝐸G+ ∧ E.

Thus we obtain two equivariant homology theories 𝐻∗∗ (−; 𝑐E) and 𝐻∗∗ (−; 𝑏E) from
Theorem 12.30. These coincide with the ones associated to K∗ = 𝐻 (−; E) in
Example 12.13. Namely, we get for any group 𝐺 and any 𝐺-𝐶𝑊-complex 𝑋 natural
isomorphisms

𝐻𝐺𝑛 (𝑋; 𝑐E) � 𝐻𝑛 (𝐺\𝑋; E);(12.34)
𝐻𝐺𝑛 (𝑋; 𝑏E) � 𝐻𝑛 (𝐸𝐺 ×𝐺 𝑋; E).(12.35)

Exercise 12.36. Let E and F be covariant functors fromGROUPOIDS toSPECTRA.
Let t : E→ F be a natural transformation such that for everyG ∈ ob(GROUPOIDS)
the map t(G) : E(G) → F(G) is a weak equivalence of spectra.

Show that the induced transformation of equivariant homology theories
𝐻?
∗ (−; t) : 𝐻?

∗ (−; E) → 𝐻?
∗ (−; F) is a natural equivalence.

12.5 Equivariant Homology Theories Associated to 𝑲- and
𝑳-Theory

In this section we explain our main examples for covariant functors from
GROUPOIDS or GROUPOIDSinj to SPECTRA, at least for rings as coefficients.
Later we will also consider additive categories and, more generally, right exact
∞-categories.

Let RINGS be the category of associative rings with unit. Let RINGSinv be
the category of rings with involution. Let 𝐶∗-ALGEBRAS be the category of
𝐶∗-algebras. There are classical functors for 𝑗 ∈ −∞ ⨿ { 𝑗 ∈ Z | 𝑗 ≤ 1}

K : RINGS→ SPECTRA;(12.37)
L⟨ 𝑗 ⟩ : RINGSinv → SPECTRA;(12.38)

KTOP : 𝐶∗-ALGEBRAS→ SPECTRA.(12.39)
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The construction of such a non-connective algebraic 𝐾-theory functor (12.37) goes
back to Gersten [422] and Wagoner [973]. The spectrum for quadratic algebraic
𝐿-theory (12.38) is constructed by Ranicki in [839]. In a more geometric formula-
tion it goes back to Quinn [822]. In the topological 𝐾-theory case a construction
for (12.39) using Bott periodicity for 𝐶∗-algebras can easily be derived from the
Kuiper-Mingo Theorem, see [904, Section 2.2]. The homotopy groups of these spec-
tra give the algebraic 𝐾-groups of Quillen (in high dimensions) and of Bass (in
negative dimensions), the decorated quadratic 𝐿-theory groups, and the topological
𝐾-groups of 𝐶∗-algebras.

We emphasize that in all three cases we need the non-connective versions of the
spectra, i.e., the homotopy groups in negative dimensions are non-trivial in general,
in order to ensure later that the formulations of the various Isomorphism Conjectures
do have a chance to be true.

Now let us fix a coefficient ring 𝑅 (with involution). Then sending a group
𝐺 to the group ring 𝑅𝐺 yields functors 𝑅(−) : GROUPS → RINGS, respec-
tively 𝑅(−) : GROUPS → RINGSinv, where GROUPS denotes the category of
groups. Let GROUPSinj be the category of groups with injective group homo-
morphisms as morphisms. Taking the reduced group 𝐶∗-algebra defines a functor
𝐶∗𝑟 : GROUPSinj → 𝐶∗-ALGEBRAS. The composite of these functors with the
functors (12.37), (12.38), and (12.39) above yields functors

K𝑅(−) : GROUPS→ SPECTRA;(12.40)
L⟨ 𝑗 ⟩𝑅(−) : GROUPS→ SPECTRA;(12.41)

KTOP𝐶∗𝑟 (−, 𝐹) : GROUPSinj → SPECTRA,(12.42)

where 𝐹 = R or C. They satisfy

𝜋𝑛 (K𝑅(𝐺)) = 𝐾𝑛 (𝑅𝐺);
𝜋𝑛 (L⟨ 𝑗 ⟩𝑅(𝐺)) = 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅𝐺);

𝜋𝑛 (KTOP𝐶∗𝑟 (𝐺, 𝐹)) = 𝐾𝑛 (𝐶∗𝑟 (𝐺, 𝐹)),

for every group𝐺 and every 𝑛 ∈ Z. The next result essentially says that these functors
can be extended to groupoids.

Theorem 12.43 (𝐾- and 𝐿-Theory Spectra over Groupoids). Let 𝑅 be a ring (with
involution). There exist covariant functors

K𝑅 : GROUPOIDS→ SPECTRA;(12.44)
L⟨ 𝑗 ⟩
𝑅

: GROUPOIDS→ SPECTRA;(12.45)

KTOP
𝐹 : GROUPOIDSinj → SPECTRA,(12.46)

with the following properties:

(i) If 𝐹 : G0 → G1 is an equivalence of (small) groupoids, then the induced maps
K𝑅 (𝐹), L⟨ 𝑗 ⟩

𝑅
(𝐹), and KTOP (𝐹) are weak equivalences of spectra;
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(ii) Let 𝐼 : GROUPS→ GROUPOIDS be the functor sending𝐺 to𝐺 considered as
a groupoid, i.e., to G𝐺 (𝐺/𝐺). This functor restricts to a functor GROUPSinj →
GROUPOIDSinj.
There are natural transformations from K𝑅(−) to K𝑅 ◦ 𝐼, from L⟨ 𝑗 ⟩𝑅(−) to
L⟨ 𝑗 ⟩
𝑅
◦ 𝐼, and from K𝐶∗𝑟 (−) to KTOP ◦ 𝐼 such that the evaluation of each of these

natural transformations at a given group is an equivalence of spectra;
(iii) For every group 𝐺 and all 𝑛 ∈ Z we have

𝜋𝑛 (K𝑅 ◦ 𝐼 (𝐺)) � 𝐾𝑛 (𝑅𝐺);
𝜋𝑛 (L⟨ 𝑗 ⟩𝑅 ◦ 𝐼 (𝐺)) � 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅𝐺);

𝜋𝑛 (KTOP
𝐹 ◦ 𝐼 (𝐺)) � 𝐾𝑛 (𝐶∗𝑟 (𝐺, 𝐹)).

Proof. We only sketch the strategy of the proof. More details can be found in [280,
Section 2].

Let G be a groupoid. Similar to the group ring 𝑅𝐺 one can define an 𝑅-linear
category 𝑅G by taking the free 𝑅-modules over the morphism sets ofG. Composition
of morphisms is extended 𝑅-linearly. By formally adding finite direct sums one
obtains an additive category 𝑅G⊕ . Pedersen-Weibel [800], see also [209] and [684],
define a non-connective algebraic𝐾-theory functor which digests additive categories
and can hence be applied to 𝑅G⊕ . For the comparison result one uses that for
every ring 𝑅 (in particular for 𝑅𝐺) the Pedersen-Weibel functor applied to 𝑅⊕
(a small model for the category of finitely generated free 𝑅-modules) yields the non-
connective𝐾-theory of the ring 𝑅 and that it sends equivalences of additive categories
to equivalences of spectra. In the 𝐿-theory case 𝑅G⊕ inherits an involution and one
applies the construction of Ranicki [839, Example 13.6 on page 139] to obtain the
𝐿 ⟨1⟩ = 𝐿ℎ-version. The versions for 𝑗 ≤ 1 can be obtained by a construction that
is analogous to the Pedersen-Weibel construction for 𝐾-theory, compare Carlsson-
Pedersen [214, Section 4], or by iterating the Shaneson splitting and then finally
passing to a homotopy colimit, compare on the group level with [840, Section 17]. In
the𝐶∗-case one obtains from G a𝐶∗-category𝐶∗𝑟 (G) and assigns to it its topological
𝐾-theory spectrum. There is a construction of the topological 𝐾-theory spectrum of
a𝐶∗-category in Davis-Lück [280, Section 2]. However, the construction given there
depends on two statements, which appeared in [387, Proposition 1 and Proposition
3], and those statements are incorrect, as already pointed out by Thomason in [948].
The construction in [280, Section 2] can easily be fixed but instead we recommend
the reader to look at the more recent construction of Joachim [524]. ⊓⊔

Exercise 12.47. Compute 𝐻𝐷∞𝑛 (𝐸𝐷∞; K𝑅) for 𝑛 ≤ 0 and 𝑅 = Z,C.
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12.6 Two Spectral Sequences

In this section we state two spectral sequences, which are useful for computations of
equivariant homology theories.

12.6.1 The Equivariant Atiyah-Hirzebruch Spectral Sequence

Theorem 12.48 (The equivariant Atiyah-Hirzebruch spectral sequence). Let 𝐺
be a group andH𝐺

∗ be a 𝐺-homology theory with values in Λ-modules in the sense
of Definition 12.1. Let 𝑋 be a 𝐺-𝐶𝑊-complex.

Then there is a spectral (homology) sequence of Λ-modules

(𝐸𝑟𝑝,𝑞 , 𝑑𝑟𝑝,𝑞 : 𝐸𝑟𝑝,𝑞 → 𝐸𝑟𝑝−𝑟 ,𝑞+𝑟−1)

whose 𝐸2-term is given by the Bredon homology of Example 12.2

𝐸2
𝑝,𝑞 = 𝐻𝐺𝑝 (𝑋;H𝐺

𝑞 (−))

for the coefficient system given by the covariant functor

Or(𝐺) → Λ-MOD, 𝐺/𝐻 ↦→ H𝐺
𝑞 (𝐺/𝐻).

The 𝐸∞-term is given by
𝐸∞𝑝,𝑞 = colim𝑟→∞ 𝐸

𝑟
𝑝,𝑞 .

This spectral sequence converges to H𝐺
𝑝+𝑞 (𝑋), i.e., there is an ascending filtration

𝐹𝑝,𝑚−𝑝H𝐺
𝑝+𝑞 (𝑋) ofH𝐺

𝑝+𝑞 (𝑋) such that

𝐹𝑝,𝑞H𝐺
𝑝+𝑞 (𝑋)/𝐹𝑝−1,𝑞+1H𝐺

𝑝+𝑞 (𝑋) � 𝐸∞𝑝,𝑞 .

The construction of the equivariant Atiyah-Hirzebruch spectral sequence is based
on the filtration of 𝑋 by its skeletons. More details, actually in the more general
context of spaces over a category, and a version for cohomology can be found
in [280, Theorem 4.7].

Exercise 12.49. Let 𝑋 be a proper 𝐺-𝐶𝑊-complex such that 𝑋/𝐺 with the induced
𝐶𝑊-structure has no odd-dimensional cells. Show that 𝐾𝐺𝑛 (𝑋) = 0 for odd 𝑛 ∈ Z,
where 𝐾𝐺∗ denotes the equivariant topological complex 𝐾-homology. Show that
𝐾𝐺𝑛 (𝑋) for even 𝑛 ∈ Z is a finitely generated free abelian group if we additionally
assume that 𝑋/𝐺 is finite.
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12.6.2 The 𝒑-Chain Spectral Sequence

Let𝐺 be a group. Recall that for a subgroup𝐻 ⊆ 𝐺 we denote by 𝑁𝐺𝐻 its normalizer
and define the Weyl group𝑊𝐺𝐻 := 𝑁𝐺𝐻/𝐻. We obtain a bijection

𝑊𝐺𝐻
�−→ aut𝐺 (𝐺/𝐻), 𝑔𝐻 ↦→

(
𝑅𝑔−1 : 𝐺/𝐻 → 𝐺/𝐻

)
where 𝑅𝑔−1 maps 𝑔′𝐻 to 𝑔′𝑔−1𝐻. Hence for any two subgroups 𝐻, 𝐾 ⊆ 𝐺 the set
map𝐺 (𝐺/𝐻,𝐺/𝐾) inherits the structure of a𝑊𝐺𝐾-𝑊𝐺𝐻-biset.

A 𝑝-chain is a sequence of conjugacy classes of finite subgroups

(𝐻0) < · · · < (𝐻𝑝)

where (𝐻𝑖−1) < (𝐻𝑖) means that 𝐻𝑖−1 is subconjugate, but not conjugate to (𝐻𝑖).
For 𝑝 ≥ 1 define a𝑊𝐺𝐻𝑝-𝑊𝐺𝐻0-set associated to such a 𝑝-chain by

𝑆((𝐻0) < · · · < (𝐻𝑝))
:= map𝐺 (𝐺/𝐻𝑝−1, 𝐺/𝐻𝑝) ×𝑊𝐺𝐻𝑝−1 · · · ×𝑊𝐺𝐻1 map𝐺 (𝐺/𝐻0, 𝐺/𝐻1).

For 𝑝 = 0 put 𝑆(𝐻0) = 𝑊𝐺𝐻0.
Let 𝑋 be a 𝐺-𝐶𝑊-complex. Then 𝑋𝐻 = map𝐺 (𝐺/𝐻, 𝑋) inherits a right 𝑊𝐺𝐻-

action. In particular, we get for a 𝑝-chain (𝐻0) < · · · < (𝐻𝑝) a right 𝑊𝐺𝐻0-space
𝑋 (𝐺/𝐻𝑝) ×𝑊𝐺𝐻𝑝 𝑆((𝐻0) < · · · < (𝐻𝑝)).

Theorem 12.50 (The 𝑝-chain spectral sequence). Let 𝐺 be a group and E be a
covariant Or(𝐺)-spectrum. Let 𝑋 be a proper 𝐺-𝐶𝑊-complex.

Then there is a spectral sequence of Λ-modules, called the 𝑝-chain spectral
sequence, which converges to 𝐻𝐺𝑝+𝑞 (𝑋; E) and whose 𝐸1-term is

𝐸1
𝑝,𝑞 =

⊕
(𝐻0 )<· · ·< (𝐻𝑝 )

𝜋𝑞

( (
𝐸𝑊𝐺𝐻0 × (𝑋𝐻𝑝 ×𝑊𝐺𝐻𝑝 𝑆((𝐻0) < · · · < (𝐻𝑝)))

)
+

∧𝑊𝐺𝐻0 E(𝐺/𝐻0)
)

where (𝐻0) < · · · < (𝐻𝑝) runs through all 𝑝-chains consisting of finite subgroups
𝐻𝑖 ⊆ 𝐺 with 𝑋𝐻𝑝 ≠ ∅.

The 𝑝-chain spectral sequence is established in [281, Theorem 2.5 (a) and Exam-
ple 2.14], actually more generally for spaces over a category. There is also a more
complicated version where one drops the condition that 𝑋 is proper. Since then the
book-keeping gets more involved and in most applications 𝑋 is proper, we only deal
with the proper case here.

Note that the complexity of the equivariant Atiyah-Hirzebruch spectral sequence
grows with the natural number 𝑛 for which one wants to compute H𝐺

𝑛 (𝑋). The
complexity of the 𝑝-chain spectral sequence grows with the maximum over all natural
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numbers 𝑝 for which there is a 𝑝-chain (𝐻0) < · · · < (𝐻𝑝) of finite subgroups such
that 𝑋𝐻𝑝 is non-empty.
Example 12.51 (Free 𝐺-𝐶𝑊-complex). Consider the situation of Theorem 12.50
and assume additionally that 𝑋 is a free 𝐺-𝐶𝑊-complex. Then 𝐸1

𝑝,𝑞 = 0 for 𝑝 ≥ 1
and hence the 𝑝-chain spectral sequence predicts

𝐻𝐺𝑞 (𝑋; E) = 𝜋𝑞
(
(𝐸𝐺 × 𝑋)+ ∧𝐺 E(𝐺)

)
.

But this is obviously true, since the right-hand side of the last equation is by definition
𝐻𝐺𝑞 (𝐸𝐺 × 𝑋; E) and the projection 𝐸𝐺 × 𝑋 → 𝑋 is a 𝐺-homotopy equivalence and
induces an isomorphism 𝐻𝐺𝑞 (𝐸𝐺 × 𝑋; E) �−→ 𝐻𝐺𝑞 (𝑋; E).
Example 12.52 (𝐺 is finite cyclic of prime order). Let 𝐺 be a finite cyclic group
of prime order. Then 𝐺 has only two subgroups, namely, 𝐺 and {1}. Let E be
a covariant Or(𝐺)-spectrum and 𝑋 be a 𝐺-𝐶𝑊-complex. The 𝑝-chain spectral
sequence of Theorem 12.50 satisfies 𝐸1

𝑝,𝑞 = 0 for 𝑝 ≥ 2 and hence reduces to a long
exact sequence

· · · → 𝐸1
1,𝑛

𝑑1
1,𝑛−−−→ 𝐸1

0,𝑛 → 𝐻𝐺𝑛 (𝑋; E) → 𝐸1
1,𝑛−1

𝑑1
1,𝑛−1−−−−−→ 𝐸1

0,𝑛−1 → · · · .

We get

𝐸1
0,𝑛 = 𝜋𝑛

(
(𝐸𝐺 × 𝑋)+ ∧𝐺 E(𝐺)

)
⊕ 𝜋𝑛

(
𝑋𝐺+ ∧ E(𝐺/𝐺)

)
;

𝐸1
1,𝑛 = 𝜋𝑛

(
(𝐸𝐺 × 𝑋𝐺)+ ∧𝐺 E(𝐺)

)
,

and the differential 𝑑1
1,𝑛 is given by the homomorphism

𝜋𝑛
(
(𝐸𝐺 × 𝑋𝐺)+ ∧𝐺 E(𝐺)

)
→ 𝜋𝑛

(
(𝐸𝐺 × 𝑋)+ ∧𝐺 E(𝐺)

)
that is induced by the inclusion 𝑋𝐺 → 𝑋 , and the homomorphism (up to a sign)

𝜋𝑛
(
(𝐸𝐺 × 𝑋𝐺)+ ∧𝐺 E(𝐺)

)
→ 𝜋𝑛

(
𝑋𝐺+ ∧ E(𝐺/𝐺)

)
coming from the projection 𝐸𝐺 × 𝑋𝐺 → 𝑋𝐺 .

Now suppose additionally that E is the constant functor Or(𝐺) → SPECTRA
with value the spectrum F. LetH∗ be the (non-equivariant) homology theory associ-
ated to F. Then 𝐻𝐺𝑛 (𝑋; E) = H𝑛 (𝑋/𝐺) and the long exact sequence above reduces
to the long exact sequence

(12.53) . . .→H𝑛 (𝐸𝐺 ×𝐺 𝑋𝐺)
𝑑1

1,𝑛−−−→ H𝑛 (𝐸𝐺 ×𝐺 𝑋) ⊕ H𝑛 (𝑋𝐺)
𝑒𝑛−−→ H𝑛 (𝑋/𝐺)

→ H𝑛−1 (𝐸𝐺 ×𝐺 𝑋𝐺)
𝑑1

1,𝑛−1−−−−−→ H𝑛−1 (𝐸𝐺 ×𝐺 𝑋) ⊕ H𝑛−1 (𝑋𝐺)
𝑒𝑛−1−−−→ . . .

where the maps 𝑑1
𝑛,1 and 𝑒𝑛 are up to sign induced by the obvious map on space

level.
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Exercise 12.54. Give a direct construction of the long exact sequence (12.53).

12.7 Equivariant Chern Characters

If we rationalize and have a Mackey structure on the coefficient system of an equi-
variant homology theory, then we can give a more direct and concrete computation
via equivariant Chern characters which avoids all the difficulties concerning spectral
sequences.

12.7.1 Mackey Functors

Let Λ be an associative commutative ring with unit. Let FGINJ be the category of
finite groups with injective group homomorphisms as morphisms. Let

𝑀 : FGINJ→ Λ-MOD

be a bifunctor, i.e., a pair (𝑀∗, 𝑀∗) consisting of a covariant functor 𝑀∗ and a
contravariant functor 𝑀∗ from FGINJ to Λ-MOD which agree on objects. We
will often denote for an injective group homomorphism 𝑓 : 𝐻 → 𝐺 the map
𝑀∗ ( 𝑓 ) : 𝑀 (𝐻) → 𝑀 (𝐺) by ind 𝑓 and the map 𝑀∗ ( 𝑓 ) : 𝑀 (𝐺) → 𝑀 (𝐻) by res 𝑓
and write ind𝐺𝐻 = ind 𝑓 and res𝐻

𝐺
= res 𝑓 if 𝑓 is an inclusion of groups. We call such

a bifunctor 𝑀 a Mackey functor with values in Λ-modules if it satisfies:

(i) For an inner automorphism 𝑐(𝑔) : 𝐺 → 𝐺 we have 𝑀∗ (𝑐(𝑔)) = id : 𝑀 (𝐺) →
𝑀 (𝐺);

(ii) For an isomorphism of groups 𝑓 : 𝐺 �−→ 𝐻 the composites res 𝑓 ◦ ind 𝑓 and
ind 𝑓 ◦ res 𝑓 are the identity;

(iii) Double coset formula
We have for two subgroups 𝐻, 𝐾 ⊂ 𝐺

res𝐾𝐺 ◦ ind𝐺𝐻 =
∑︁

𝐾𝑔𝐻∈𝐾\𝐺/𝐻
ind𝑐 (𝑔) : 𝐻∩𝑔−1𝐾𝑔→𝐾 ◦ res𝐻∩𝑔

−1𝐾𝑔
𝐻

where 𝑐(𝑔) is conjugation with 𝑔, i.e., 𝑐(𝑔) (ℎ) = 𝑔ℎ𝑔−1.

Important examples of Mackey functors are Rep𝐹 (𝐻), 𝐾𝑞 (𝑅𝐻), 𝐿
⟨ 𝑗 ⟩
𝑞 (𝑅𝐻), and

𝐾TOP
𝑞 (𝐶𝑟∗ (𝐻, 𝐹)), where 𝑅 is an associative ring with unit and 𝐹 = R,C.

Definition 12.55 (Extension to a Mackey functor). LetH ?
∗ be a proper equivariant

homology theory with values in Λ-modules. It defines a covariant functor

H ?
𝑞 ({•}) : FGINJ→ Λ-MOD, 𝐻 ↦→ H𝐺

𝑞 ({•}).
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It sends an injective homomorphism 𝑖 : 𝐻 → 𝐺 to the composite H𝐻
𝑛 ({•})

ind𝑖−−−→

H𝐺
𝑛 (𝐺×𝐻 {•})

H𝐺𝑛 (pr)
−−−−−−→ H𝐺

𝑛 ({•}) where pr : 𝐺×𝐻 {•} → {•} is the projection. We
say that the coefficients of H ?

∗ extend to a Mackey functor if there exists a Mackey
functor (𝑀∗, 𝑀∗) such that 𝑀∗ is the functorH ?

𝑞 ({•}) above.

Example 12.56. The functors of (12.40), (12.41), and (12.42), which send a group
to the algebraic 𝐾- or 𝐿-theory of 𝑅𝐺 or to the topological 𝐾-theory of 𝐶∗𝑟 (𝐺, 𝐹),
define Mackey functors with the obvious definition of induction and restriction.

12.7.2 The Equivariant Chern Character

We can associate to a proper equivariant homology theory with values in Λ-modules
H ?
∗ another Bredon type equivariant homology theory with values in Λ-modules
BH ?

∗ as follows. For a group 𝐺 we define

BH𝐺
𝑛 (𝑋) :=

⊕
𝑝+𝑞=𝑛

𝐻𝐺𝑝 (𝑋;H𝐺
𝑞 (−))

where 𝐻𝐺𝑝 (𝑋;H𝐺
𝑞 (−)) is the Bredon homology of 𝑋 with coefficients in the covari-

ant functor Or(𝐺) → Λ-MOD sending 𝐺/𝐻 to H𝐺
𝑞 (𝐺/𝐻). Next we show that

the collection of the 𝐺-homology theories BH𝐺
∗ (𝑋, 𝐴) inherits the structure of a

proper equivariant homology theory. We have to specify the induction structure.
Let 𝛼 : 𝐻 → 𝐺 be a group homomorphism and (𝑋, 𝐴) be a proper 𝐻-𝐶𝑊-pair.

Induction with 𝛼 yields a functor denoted in the same way

𝛼 : OrFIN (𝐻) → OrFIN (𝐺), 𝐻/𝐾 ↦→ ind𝛼 (𝐻/𝐾) = 𝐺/𝛼(𝐾).

There is a natural isomorphism of OrFIN (𝐺)-chain complexes

ind𝛼 𝐶
OrFIN (𝐻 )
∗ (𝑋, 𝐴) �−→ 𝐶

OrFIN (𝐺)
∗ (ind𝛼 (𝑋, 𝐴))

and a natural adjunction isomorphism, see [649, (2.5)](
ind𝛼 𝐶

OrFIN (𝐻 )
∗ (𝑋, 𝐴)

)
⊗ZOrFIN (𝐺) H

𝐺
𝑞 (−)

�−→ 𝐶
OrFIN (𝐻 )
∗ (𝑋, 𝐴) ⊗ZOrFIN (𝐻 )

(
res𝛼H𝐺

𝑞 (−)
)
.

The induction structure onH ?
∗ yields a morphism of 𝑅OrFIN (𝐻)-modules

H𝐻
𝑞 (𝐻/?) → res𝛼H𝐺

𝑞 (−).



360 12 Equivariant Homology Theory

These maps or their inverses can be composed to a Λ-chain map

𝐶
OrFIN (𝐻 )
∗ (𝑋, 𝐴) ⊗ZOrFIN (𝐻 ) H

𝐻
𝑞 (𝐻/?)
�−→ 𝐶∗ (ind𝛼 (𝑋, 𝐴)) ⊗ZOr(𝐺,FIN) H𝐺

𝑞 (−).

Since 𝑋 is proper and hence the Bredon homology can be defined over OrFIN (𝐻)
instead of Or(𝐺), it induces a natural map

ind𝛼 : 𝐻𝑝 (𝑋, 𝐴;H𝐻
𝑞 (−))

�−→ 𝐻𝐺𝑝 (ind𝛼 (𝑋, 𝐴);H𝐺
𝑞 (−)).

Thus we obtain the required induction structure.
Define for a finite group 𝐻

(12.57) 𝑆𝐻

(
H𝐻
𝑞 ({•})

)
:= coker

(⊕
𝐾⊂𝐻
𝐾≠𝐻

ind𝐻𝐾 :
⊕
𝐾⊂𝐻
𝐾≠𝐻

H𝐾
𝑞 ({•}) → H𝐻

𝑞 ({•})
)
.

Note that 𝑆𝐻
(
H𝐻
𝑞 ({•}

)
carries a natural leftΛ[𝑁𝐺𝐻/𝐻·𝐶𝐺𝐻]-module structure

where 𝑁𝐺𝐻/𝐻 · 𝐶𝐺𝐻 is the quotient of 𝑁𝐺𝐻 by the normal subgroup 𝐻 · 𝐶𝐺𝐻 :=
{ℎ ·𝑔 | ℎ ∈ 𝐻, 𝑔 ∈ 𝐶𝐺𝐻}. The obvious left-action of𝑊𝐺𝐻 = 𝑁𝐺𝐻/𝐻-action on 𝑋𝐻
yields a left 𝑁𝐺𝐻/𝐻 ·𝐶𝐺𝐻-action on 𝐶𝐺𝐻\𝑋𝐻 and hence a right 𝑁𝐺𝐻/𝐻 ·𝐶𝐺𝐻-
action by 𝑦 · 𝑘 := 𝑘−1 · 𝑦 for 𝑦 ∈ 𝑋𝐻 and 𝑘 ∈ 𝑁𝐺𝐻/𝐻 · 𝐶𝐺𝐻.

The proof of the following result can be found in [649, Theorem 0.2 and 0.3].

Theorem 12.58 (The equivariant Chern character). Let Λ be a commutative
ring with Q ⊂ Λ. Let H ?

∗ be a proper equivariant homology theory with values in
Λ-modules in the sense of Definition 12.9. Suppose that its coefficients extend to a
Mackey functor.

(i) There is an isomorphism of proper equivariant homology theories

ch?
∗ : BH ?

∗
�−→ H ?

∗ ;

(ii) Let (FIN) be the set of conjugacy classes (𝐻) of finite subgroups 𝐻 of 𝐺.
Then there is for any group 𝐺 and any proper 𝐺-𝐶𝑊-pair (𝑋, 𝐴) a natural
isomorphism⊕

𝑝+𝑞=𝑛

⊕
(𝐻 ) ∈ (FIN)

𝐻𝑝 (𝐶𝐺𝐻\(𝑋𝐻 , 𝐴𝐻 );Λ) ⊗Λ[𝑁𝐺𝐻/𝐻 ·𝐶𝐺𝐻 ] 𝑆𝐻
(
H𝐻
𝑞 ({•})

)
�−→ BH𝐺

𝑛 (𝑋, 𝐴).

Theorem 12.58 reduces the computation of H𝐺
𝑛 (𝑋, 𝐴) to the computation of

the singular or cellular homology Λ-modules 𝐻𝑝 (𝐶𝐺𝐻\(𝑋𝐻 , 𝐴𝐻 );Λ) of the 𝐶𝑊-
pairs 𝐶𝐺𝐻\(𝑋𝐻 , 𝐴𝐻 ) including the obvious right 𝑁𝐺𝐻/𝐻 ·𝐶𝐺𝐻-operation and of
the left Λ[𝑁𝐺𝐻/𝐻 · 𝐶𝐺𝐻]-modules 𝑆𝐻

(
H𝐻
𝑞 ({•})

)
which only involve the values
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H𝐺
𝑞 (𝐺/𝐻) = H𝐻

𝑞 ({•}). Note that 𝑁𝐺𝐻/𝐻 · 𝐶𝐺𝐻 is a finite group for any finite
subgroup 𝐻 ⊆ 𝐺.

Exercise 12.59. Let Λ be a commutative ring with Q ⊂ Λ. Let H ?
∗ be a proper

equivariant homology theory with values in Λ-modules. Suppose that its coefficients
extend to a Mackey functor. Consider a group 𝐺 and a proper 𝐺-𝐶𝑊-complex 𝑋 .
Show that all differentials of the equivariant Atiyah-Hirzebruch spectral sequence
converging toH𝐺

𝑝+𝑞 (𝑋) vanish.

Exercise 12.60. Let H ?
∗ be a proper equivariant homology theory with values in

Q-modules in the sense of Definition 12.9. Suppose that its coefficients extend to
a Mackey functor. Let 𝐺 be a group. Consider two families of subgroups F and
G with F ⊆ G ⊆ FIN . Let 𝜄F⊆G : 𝐸F (𝐺) → 𝐸G (𝐺) be the up to 𝐺-homotopy
unique𝐺-map. Show that for every 𝑛 the induced mapH𝐺

𝑛 (𝜄F⊆G) : H𝐺
𝑛 (𝐸F (𝐺)) →

H𝐺
𝑛 (𝐸G (𝐺)) is injective.

Remark 12.61 (Rationalizing an equivariant homology theory). Let H ?
∗ be an

equivariant homology theory with values in Z-modules. Suppose that its coefficients
extend to a Mackey functor. Then we obtain an equivariant homology theoryQ⊗ZH ?

∗
with values inQ-modules whose coefficients extend to a Mackey functor, sinceQ⊗Z−
is a flat functor and commutes with direct sums over arbitrary index sets. We can
apply Theorem 12.58 to Q ⊗Z H ?

∗ and thus obtain a rational computation ofH ?
∗ .

12.8 Some Rational Computations

12.8.1 Green Functors

Let 𝜙 : Λ → Λ′ be a homomorphism of associative commutative rings with unit.
Let 𝑀 be a Mackey functor with values in Λ-modules, and let 𝑁 and 𝑃 be Mackey
functors with values in Λ′-modules. A pairing with respect to 𝜙 is a family of maps

𝑚(𝐺) : 𝑀 (𝐺) × 𝑁 (𝐺) → 𝑃(𝐺), (𝑥, 𝑦) ↦→ 𝑚(𝐺) (𝑥, 𝑦) =: 𝑥 · 𝑦

where 𝐺 runs through the finite groups and we require the following properties for
all injective group homomorphisms 𝑓 : 𝐻 → 𝐺 of finite groups:

(𝑥1 + 𝑥2) · 𝑦 = 𝑥1 · 𝑦 + 𝑥2 · 𝑦 for 𝑥1, 𝑥2 ∈ 𝑀 (𝐻), 𝑦 ∈ 𝑁 (𝐻);
𝑥 · (𝑦1 + 𝑦2) = 𝑥 · 𝑦1 + 𝑥 · 𝑦2 for 𝑥 ∈ 𝑀 (𝐻), 𝑦1, 𝑦2 ∈ 𝑁 (𝐻);
(𝜆𝑥) · 𝑦 = 𝜙(𝜆) (𝑥 · 𝑦) for 𝜆 ∈ Λ, 𝑥 ∈ 𝑀 (𝐻), 𝑦 ∈ 𝑁 (𝐻);
𝑥 · 𝜆′𝑦 = 𝜆′ (𝑥 · 𝑦) for 𝜆′ ∈ Λ′, 𝑥 ∈ 𝑀 (𝐻), 𝑦 ∈ 𝑁 (𝐻);

res 𝑓 (𝑥 · 𝑦) = res 𝑓 (𝑥) · res 𝑓 (𝑦) for 𝑥 ∈ 𝑀 (𝐺), 𝑦 ∈ 𝑁 (𝐺);
ind 𝑓 (𝑥) · 𝑦 = ind 𝑓

(
𝑥 · res 𝑓 (𝑦)

)
for 𝑥 ∈ 𝑀 (𝐻), 𝑦 ∈ 𝑁 (𝐺);

𝑥 · ind 𝑓 (𝑦) = ind 𝑓
(
res 𝑓 (𝑥) · 𝑦

)
for 𝑥 ∈ 𝑀 (𝐺), 𝑦 ∈ 𝑁 (𝐻).
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A Green functor with values in Λ-modules is a Mackey functor 𝑈 with values
in Λ-modules together with a pairing with respect to 𝜙 = id : Λ→ Λ and elements
1𝐺 ∈ 𝑈 (𝐺) for each finite group 𝐺 such that for each finite group 𝐺 the pairing
𝑈 (𝐺) × 𝑈 (𝐺) → 𝑈 (𝐺) induces the structure of an Λ-algebra on 𝑈 (𝐺) with unit
1𝐺 and for any morphism 𝑓 : 𝐻 → 𝐺 in FGINJ the map 𝑈∗ ( 𝑓 ) : 𝑈 (𝐺) → 𝑈 (𝐻)
is a homomorphism of Λ-algebras with unit. Let 𝑈 be a Green functor with values
in Λ-modules and 𝑀 be a Mackey functor with values in Λ′-modules. A (left)
𝑈-module structure on 𝑀 with respect to the ring homomorphism 𝜙 : Λ → Λ′ is a
pairing such that any of the maps 𝑈 (𝐺) × 𝑀 (𝐺) → 𝑀 (𝐺) induces the structure of
a (left) module over the Λ-algebra𝑈 (𝐺) on the Λ-module 𝜙∗𝑀 (𝐺) that is obtained
from the Λ′-module 𝑀 (𝐺) by 𝜆𝑥 := 𝜙(𝜆)𝑥 for 𝑟 ∈ Λ and 𝑥 ∈ 𝑀 (𝐺).

The importance of the notion of a Green functor is due to the following elementary
lemma which allows to deduce induction theorems for all Mackey functors that are
modules over a given Green functor from the corresponding statement for the given
Green functor.
Lemma 12.62. Let 𝜙 : Λ → Λ′ be a homomorphism of associative commutative
rings with unit. Let 𝑈 be a Green functor with values in Λ-modules and let 𝑀 be
a Mackey functor with values in Λ′-modules such that 𝑀 comes with a 𝑈-module
structure with respect to 𝜙. LetS be a set of subgroups of the finite group𝐺. Suppose
that the map ⊕

𝐻∈S
ind𝐺𝐻 :

⊕
𝐻∈S

𝑈 (𝐻) → 𝑈 (𝐺)

is surjective. Then the map⊕
𝐻∈S

ind𝐺𝐻 :
⊕
𝐻∈S

𝑀 (𝐻) → 𝑀 (𝐺)

is surjective.
Proof. By hypothesis there are elements 𝑢𝐻 ∈ 𝑈 (𝐻) for 𝐻 ∈ S satisfying 1𝐺 =∑
𝐻∈S ind𝐺𝐻 𝑢𝐻 in𝑈 (𝐺). This implies for 𝑥 ∈ 𝑀 (𝐺),

𝑥 = 1𝐺 · 𝑥 =
( ∑︁
𝐻∈S

ind𝐺𝐻 𝑢𝐻
)
· 𝑥 =

∑︁
𝐻∈S

ind𝐺𝐻
(
𝑢𝐻 · res𝐻𝐺 𝑥

)
.

⊓⊔
Example 12.63 (Burnside ring). The Burnside ring 𝐴(𝐺) of a (not necessarily
finite) group𝐺 is the commutative associative ring with unit 𝐴(𝐺) which is obtained
by the additive Grothendieck construction applied to the commutative associative
semiring with unit given by the 𝐺-isomorphism classes [𝑆] of 𝐺-sets 𝑆 of finite
cardinality, i.e., |𝑆 | < ∞, under disjoint union and cartesian product and the unit
element given by [𝐺/𝐺]. For more information about the Burnside ring for not
necessarily finite groups we refer to [652].

The Burnside ring defines a Mackey functor 𝐴(?) by induction and restriction.
The ring structure and the Mackey structure fit together to the structure of a Green
functor 𝐴(?) with values in Z-modules.
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Exercise 12.64. Let 𝑀 be a Mackey functor with values inΛ-modules for an associa-
tive commutative ringΛwith unit. Let 𝜙 : Z→ Λ be the unique ring homomorphism.
Show that 𝑀 inherits the structure of a module over the Green functor given by the
Burnside ring with respect to 𝜙.

Definition 12.65 (Swan ring). Let 𝐺 be a (not necessarily finite) group. Let Λ be
an associative commutative ring with unit. Denote by Sw𝑝 (𝐺;Λ) the following
abelian group. Generators are the isomorphism classes [𝑀] of Λ𝐺-modules 𝑀
whose underlying Λ-module is finitely generated projective. For every short exact
sequence 0→ 𝑀0 → 𝑀1 → 𝑀2 → 0 of such Λ𝐺-modules, we require the relation
[𝑀0] − [𝑀1] + [𝑀2] in Sw𝑝 (𝐺;Λ). The tensor product over Λ with the diagonal
𝐺-action induces the structure of an associative commutative ring with unit [Λ],
where [Λ] is the class of Λ equipped with the trivial 𝐺-action. We call Sw𝑝 (𝐺;Λ)
the Swan ring. If Λ = Z, we abbreviate Sw𝑝 (𝐺) := Sw𝑝 (𝐺;Z).

If we replace finitely generated projective by finitely generated in the definition
above, we denote the associated abelian group by Sw(𝐺;Λ) and abbreviate Sw(𝐺) :=
Sw(𝐺;Z).

Lemma 12.66. The canonical map 𝑒 : Sw𝑝 (𝐺) → Sw(𝐺) is an isomorphism of
abelian groups.

Proof. We only describe the definition of the inverse map 𝑒−1 : Sw(𝐺) → 𝑆𝑤𝑝 (𝐺),
more details can be found in [799, Lemma 2.2]. Consider a Z𝐺-module 𝑀 such that
the underlying abelian group is finitely generated. Since tors(𝑀) is a finite 𝐺-set,
we can find an exact sequence of Z𝐺-modules 0→ 𝐹1 → 𝐹0 → tors(𝑀) → 0 such
that the underlying abelian groups of 𝐹0 and 𝐹1 are finitely generated free. One may
take for 𝐹0 the finitely generated free abelian group with the finite 𝐺-set tors(𝑀)
as Z-basis. The Z𝐺-module 𝑀/tors(𝑀) has as underlying abelian group a finitely
generated free abelian group. We define 𝑒−1 ( [𝑀]) = [𝐹0]−[𝐹1]+[𝑀/tors(𝑀)]. ⊓⊔

Example 12.67 (Swan ring). Let 𝑅 be an associative ring with unit. Let 𝑀 be a
Z𝐺-module whose underlying Z-module is finitely generated free. It defines an exact
functor 𝑅𝐺-MOD→ 𝑅𝐺-MOD by taking the tensor product𝑀⊗Z−with the diag-
onal 𝐺-action. It sends finitely generated free 𝑅𝐺-modules to finitely generated free
𝑅𝐺-modules by the following observations. We have the sheering 𝑅𝐺-isomorphism

(12.68) sh : 𝑀 ⊗2 Z𝐺
�−→ 𝑀 ⊗𝑑 Z𝐺, 𝑚 ⊗ 𝑔 ↦→ 𝑔𝑚 ⊗ 𝑔

where 𝑀 ⊗2 𝑅𝐺 and 𝑀 ⊗𝑑 𝑅𝐺 are the 𝑅𝐺-modules whose underlying 𝑅-module is
𝑀 ⊗𝑅 𝑅𝐺 and on which 𝑔 ∈ 𝐺 acts by 𝑔 · (𝑚⊗𝑥) = 𝑚⊗𝑔𝑥 and 𝑔 · (𝑚⊗𝑥) = 𝑔𝑚⊗𝑔𝑥.
Obviously 𝑀 ⊗2 𝑅𝐺 is a finitely generated free 𝑅𝐺-module since 𝑀 is finitely
generated free as an abelian group. If 𝑃 is a finitely generated projective 𝑅𝐺-module,
then 𝑀 ⊗Z 𝑃 is a finitely generated projective 𝑅𝐺-module provided that 𝑟 ∈ 𝑅 acts
by 𝑟 · (𝑚 ⊗ 𝑝) = 𝑚 ⊗ 𝑟 𝑝 and 𝑔 ∈ 𝐺 acts by 𝑔 · (𝑚 ⊗ 𝑝) := 𝑔𝑚 ⊗ 𝑔𝑝. We obtain a
pairing

(12.69) Sw𝑝 (𝐺) ⊗ 𝐾𝑛 (𝑅𝐺) → 𝐾𝑛 (𝑅𝐺).
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Using induction and restriction Sw𝑝 (?) defines a Green functor with values in
Z-modules. There is a natural homomorphism of Green functors with values in
Z-modules

𝐴(𝐺) → Sw𝑝 (𝐺)

sending the class of a finite𝐺-set 𝑆 to the Z-module with 𝑆 as basis equipped with the
𝐺-action coming from the 𝐺-action on 𝑆. Thanks to the pairing above, the Mackey
functor given by 𝐾𝑛 (𝑅?) becomes a module over the Green functor given by Sw𝑝 (?).

Example 12.70 (Rational representation ring). An important example of a Green
functor with values inQ-modules is the rationalized representation ring of rational re-
presentationsQ⊗Z𝑅Q (?). It assigns to a finite group𝐺 theQ-moduleQ⊗ZRepQ (𝐺),
where RepQ (𝐺) denotes the rational representation ring of 𝐺. Note that RepQ (𝐺)
is the same as the projective class group 𝐾0 (Q𝐺) and also the same as Sw𝑝 (𝐺;Q).
The Mackey structure comes from induction and restriction of representations. The
pairing Q ⊗Z RepQ (𝐺) × Q ⊗Z RepQ (𝐺) → Q ⊗Z RepQ (𝐺) comes from the tensor
product 𝑃 ⊗Q 𝑄 of two Q𝐺-modules 𝑃 and 𝑄 equipped with the diagonal 𝐺-action.
The unit element is the class of Q equipped with the trivial 𝐺-action.

Recall that classQ (𝐺) denotes the Q-vector space of functions 𝐺 → Q that
are invariant under Q-conjugation, i.e., we have 𝑓 (𝑔1) = 𝑓 (𝑔2) for two elements
𝑔1, 𝑔2 ∈ 𝐺 if the cyclic subgroups ⟨𝑔1⟩ and ⟨𝑔2⟩ generated by 𝑔1 and 𝑔2 are conjugate
in 𝐺. Elementwise multiplication defines the structure of a Q-algebra on classQ (𝐺)
with the function that is constant 1 as unit element. Taking the character of a rational
representation yields an isomorphism of Q-algebras [912, Theorem 29 on page 102]

𝜒𝐺 : Q ⊗Z RepQ (𝐺)
�−→ classQ (𝐺).(12.71)

We define a Mackey structure on classQ (?) as follows. Let 𝑓 : 𝐻 → 𝐺 be an injective
group homomorphism. For a character 𝜒 ∈ classQ (𝐻) define its induction with 𝑓 to
be the character ind 𝑓 (𝜒) ∈ classQ (𝐺) given by

ind 𝑓 (𝜒) (𝑔) =
1
|𝐻 | ·

∑︁
𝑙∈𝐺,ℎ∈𝐻
𝑓 (ℎ)=𝑙−1𝑔𝑙

𝜒(ℎ).

For a character 𝜒 ∈ classQ (𝐺) define its restriction with 𝑓 to be the character
res 𝑓 (𝜒) ∈ classQ (𝐻) given by

res 𝑓 (𝜒) (ℎ) := 𝜒( 𝑓 (ℎ)).

One easily checks that this yields the structure of a Green functor on classQ (?) and
that the family of isomorphisms 𝜒𝐺 defined in (12.71) yields an isomorphism of
Green functors from Q ⊗Z RepQ (?) to classQ (?).
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12.8.2 Induction Lemmas

As already explained by Lemma 12.62, Green functors play a prominent role for
induction theorems. In order to formulate two further versions, we have to introduce
the following idempotents.

Let 𝐺 be a finite group. There is a ring homomorphism

(12.72) card : 𝐴(𝐺) →
∏
𝐻

Z, [𝑆] ↦→ (|𝑆𝐻 |) (𝐻 )

where the product is indexed over the conjugacy classes of subgroups of 𝐺 and |𝑆𝐻 |
is the cardinality of the 𝐻-fixed point set. The ring homomorphism card is injective
and has a finite cokernel. In particular, it induces an isomorphism of Q-algebras

cardQ : Q ⊗Z 𝐴(𝐺)
�−→

∏
(𝐻 )

Q.

Now let 𝑒𝐺 ∈
∏
(𝐻 ) Q be the idempotent whose value at (𝐺) is 1 and whose

value at (𝐻) for 𝐻 ≠ 𝐺 is 0. We then define the idempotent

Θ𝐺 := card−1
Q (𝑒𝐺) ∈ Q ⊗Z 𝐴(𝐺).(12.73)

For a finite cyclic group 𝐶, define the idempotent

𝜃𝐶 ∈ Q ⊗Z RepQ (𝐶)(12.74)

to be the element whose image under the isomorphism of (12.71) is the class function
that sends an element of 𝐶 to 1 if it is a generator, and to 0 otherwise. The image of
Θ𝐶 under the map Q ⊗Z 𝐴(𝐶) → Q ⊗Z RepQ (𝐶) that sends a finite 𝐶-set 𝑆 to the
associated permutation module Q[𝑆] is 𝜃𝐶 .

Lemma 12.75. Let 𝜙 : Q→ Λ be a homomorphism of associative commutative rings
with unit. Let 𝑀 be a Mackey functor with values in Λ-modules which is a module
over the Green functor Q ⊗Z RepQ (𝐻) with respect to 𝜙. Then

(i) For a finite group 𝐻 the map⊕
𝐶⊂𝐻
𝐶 cyclic

ind𝐻𝐶 :
⊕
𝐶⊂𝐻
𝐶 cyclic

𝑀 (𝐶) → 𝑀 (𝐻)

is surjective;
(ii) Let 𝐶 be a finite cyclic group. Let

𝜃𝐶 : 𝑀 (𝐶) → 𝑀 (𝐶)
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be the map induced by the Q⊗ZRepQ (𝐶)-module structure and multiplication by
the idempotent 𝜃𝐶 of (12.74). Then the inclusion of the image of 𝜃𝐶 : 𝑀 (𝐶) →
𝑀 (𝐶) into 𝑀 (𝐶) composed with the projection onto the cokernel of⊕

𝐷⊂𝐶
𝐷≠𝐶

ind𝐶𝐷 :
⊕
𝐷⊂𝐶
𝐷≠𝐶

𝑀 (𝐷) → 𝑀 (𝐶)

is an isomorphism.

Proof. Let 𝐶 ⊂ 𝐻 be a cyclic subgroup of the finite group 𝐻. Then we get for ℎ ∈ 𝐻

1
[𝐻 : 𝐶] · ind𝐻𝐶 𝜃𝐶 (ℎ) =

1
[𝐻 : 𝐶] ·

1
|𝐶 | ·

∑︁
𝑙∈𝐻

𝑙−1ℎ𝑙∈𝐶

𝜃𝐶 (𝑙−1ℎ𝑙) = 1
|𝐻 | ·

∑︁
𝑙∈𝐻

⟨𝑙−1ℎ𝑙⟩=𝐶

1.

This implies in Q ⊗Z RepQ (𝐻) � classQ (𝐻)

1𝐻 =
∑︁
𝐶⊂𝐻
𝐶 cyclic

1
[𝐻 : 𝐶] · ind𝐻𝐶 𝜃𝐶(12.76)

since for any 𝑙 ∈ 𝐻 and ℎ ∈ 𝐻 there is precisely one cyclic subgroup 𝐶 ⊂ 𝐻 with
𝐶 = ⟨𝑙−1ℎ𝑙⟩. Now assertion (i) follows from the following calculation for 𝑥 ∈ 𝑀 (𝐻)

𝑥 = 1𝐻 · 𝑥 =
( ∑︁
𝐶⊂𝐻
𝐶 cyclic

1
[𝐻 : 𝐶] · ind𝐻𝐶 𝜃𝐶

)
· 𝑥 =

∑︁
𝐶⊂𝐻
𝐶 cyclic

1
[𝐻 : 𝐶] · ind𝐻𝐶 (𝜃𝐶 · res𝐶𝐻 𝑥).

It remains to prove assertion (ii). Obviously 𝜃𝐶 is an idempotent for any cyclic group
𝐶. We get for 𝑥 ∈ 𝑀 (𝐶) from (12.76)

(1𝐶 − 𝜃𝐶 ) · 𝑥 =
( ∑︁
𝐷⊂𝐶
𝐷≠𝐶

1
[𝐶 : 𝐷] · ind𝐶𝐷 𝜃𝐷

)
· 𝑥 =

∑︁
𝐷⊂𝐶
𝐷≠𝐶

1
[𝐶 : 𝐷] · ind𝐶𝐷 (𝜃𝐷 · res𝐷𝐶 𝑥)

and for 𝐷 ⊂ 𝐶, 𝐷 ≠ 𝐶 and 𝑦 ∈ 𝑀 (𝐷)

𝜃𝐶 · ind𝐶𝐷 𝑦 = ind𝐶𝐷 (res𝐷𝐶 𝜃𝐶 · 𝑦) = ind𝐶𝐷 (0 · 𝑦) = 0.

This finishes the proof of Lemma 12.75. ⊓⊔

The proof of the next result is similar to that of Lemma 12.75. Details can be
found in [674, Lemma 7.2 and Lemma 7.4]. Key ingredients are Lemma 12.62,
Example 12.67, and the result of Swan [937, Corollary 4.2 on page 560] which
implies together with [799, page 890] that for every finite group 𝐻 the cokernel of
the map
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𝐶⊆𝐻,
𝐶 cyclic

ind𝐻𝐶 :
⊕
𝐶⊆𝐻
𝐶 cyclic

Sw𝑝 (𝐶) → Sw𝑝 (𝐻)

is annihilated by |𝐻 |2.

Lemma 12.77. Let 𝑅 be an associative ring with unit. Then

(i) For a finite group 𝐻 and 𝑛 ∈ Z the map⊕
𝐶⊂𝐻
𝐶 cyclic

ind𝐻𝐶 :
⊕
𝐶⊂𝐻
𝐶 cyclic

Q ⊗Z 𝐾𝑛 (𝑅𝐶) → Q ⊗Z 𝐾𝑛 (𝑅𝐻)

is surjective;
(ii) Let 𝐶 be a finite cyclic group. Let

Θ𝐶 : Q ⊗Z 𝐾𝑛 (𝑅𝐶) → Q ⊗Z 𝐾𝑛 (𝑅𝐶)

be the map induced by the Q ⊗Z 𝐴(𝐶)-module structure and multiplication by
the idempotent Θ𝐶 of (12.73).
Then the inclusion of the image of Θ𝐶 : Q ⊗Z 𝐾𝑛 (𝑅𝐶) → Q ⊗Z 𝐾𝑛 (𝑅𝐶) into
Q ⊗Z 𝐾𝑛 (𝑅𝐶) with the projection onto the cokernel of⊕

𝐷⊂𝐶
𝐷≠𝐶

ind𝐶𝐷 :
⊕
𝐷⊂𝐶
𝐷≠𝐶

Q ⊗Z 𝐾𝑛 (𝑅𝐷) → Q ⊗Z 𝐾𝑛 (𝑅𝐶)

is an isomorphism.

Remark 12.78 (𝐿-theory analog of Lemma 12.77). The 𝐿-theory analog of
Lemma 12.77 is also true, one has to use instead of Swan [937, Corollary 4.2
on page 560] the corresponding 𝐿-theory analog of Dress [315, Theorem 2(a)].

For more information about Mackey and Green functors and induction theorems
we refer for instance to [952, Section 6], [315], and [76].

12.8.3 Rational Computation of the Source of the Assembly Maps

Theorem 12.79 (Rational computation of the source of the assembly maps ap-
pearing in the Farrell-Jones and Baum-Connes Conjecture). Let 𝑅 be an asso-
ciative ring with unit and let 𝐹 be R or C. Let 𝐺 be a group. Denote by (F CY) the
set of conjugacy classes (𝐶) of finite cyclic subgroups 𝐶 of 𝐺.

Then the rational Chern character of Theorem 12.58 induces isomorphisms⊕
𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈ (FCY)

𝐻𝑝 (𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗Z 𝐾𝑞 (𝑅𝐶)

)
�−→ Q ⊗Z 𝐻𝐺𝑛 (𝐸𝐺; K𝑅),
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𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈ (FCY)

𝐻𝑝 (𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗Z 𝐿 ⟨−∞⟩𝑞 (𝑅𝐶)

)
�−→ Q ⊗Z 𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩

𝑅
),

and⊕
𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈ (FCY)

𝐻𝑝 (𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗Z 𝐾𝑞 (𝐶∗𝑟 (𝐶, 𝐹))

)
�−→ Q ⊗Z 𝐻𝐺𝑛 (𝐸𝐺; KTOP

𝐹 ).

Proof. This follows from Example 12.56, Theorem 12.58, Lemma 12.77, and
Remark 12.78. ⊓⊔

Remark 12.80. Explicit computations of the class

𝑆𝑞 (𝐶; 𝑅) ∈ 𝐾0 (Q[aut(𝐶)]) = 𝑅Q (aut(𝐶))

of the Q[aut(𝐶)]-module Θ𝐶 ·
(
Q ⊗Z 𝐾𝑞 (𝑅𝐶)

)
for a finite cyclic group 𝐶, 𝑞 ∈ Z,

and 𝑅 = Z or 𝑅 a field of characteristic zero can be found in Patronas [793].
Let 𝐶 be a non-trivial finite cyclic group. For a prime 𝑝 denote by Gal𝑝 (𝐶) the

Galois group of the cyclotomic extension Q �̂� (𝜇 |𝐶 | ) of the 𝑝-adic rationals Q �̂� . We
can identify Gal𝑝 (𝐶) in a canonical way with a subgroup of aut(𝐶). Let 𝐼 be the
subgroup of aut(𝐶) generated by the automorphism of 𝐶 sending 𝑥 to 𝑥−1. Let Q be
the Q[aut(𝐶)]-module given by Q equipped with the trivial aut(𝐶)-action.

Then we get for 𝑅 = Z

𝑆𝑞 (𝐶;Z) =



−[Q] +∑
𝑝 | |𝐶 | [Q[aut(𝐶)/Gal𝑝 (𝐶)]] if 𝑞 = −1;

[Q[aut(𝐶)/𝐼]] − [Q] if 𝑞 = 1;
[Q[aut(𝐶)/𝐼]] if 𝑞 ≥ 5, 𝑞 ≡ 1 mod 4;
[Q[aut(𝐶)]] − [Q[aut(𝐶)/𝐼]] if 𝑞 ≥ 3, 𝑞 ≡ 3 mod 4;
{0} otherwise,

where 𝑝 runs through all prime numbers dividing the order |𝐶 | in the case 𝑞 = −1.
Let 𝐹 be a field of characteristic zero. Denote by Gal𝐹 (𝐶) the Galois group of

the cyclotomic extension 𝐹 [𝜇 |𝐶 | ] of 𝐹. Then there is an isomorphism of Q[aut(𝐶)]-
modules

Θ𝐶 ·
(
Q ⊗Z 𝐾𝑞 (𝐹𝐶)

) �−→ Q[aut(𝐶)/Gal𝐹 (𝐶)]

where Gal𝐹 (𝐶) is identified in a canonical way with a subgroup of aut(𝐶).

Exercise 12.81. Let 𝐶 be a non-trivial finite cyclic group. Let 𝜑 denote Euler’s
𝜑-function. Show:

(i) The dimension of the Q-module Θ𝐶 ·
(
Q ⊗Z 𝐾𝑞 (Z𝐶)

)
is



12.9 Some Integral Computations 369

𝜑( |𝐶 |)/2 − 1 |𝐶 | ≥ 3 and 𝑞 = 1;
𝜑( |𝐶 |)/2 |𝐶 | ≥ 3, 𝑞 ≥ 3, and 𝑞 ≡ 1 mod 2;
1 |𝐶 | = 2, 𝑞 ≥ 5, and 𝑞 ≡ 1 mod 4;
𝑠( |𝐶 |) 𝑞 = −1;
0 otherwise,

for 𝑠(𝑛) :=
∑𝑠
𝑖=1 𝜑(𝑛/𝑝

𝑒𝑖
𝑖
)/ 𝑓𝑝𝑖 where 𝑛 =

∏𝑠
𝑖=1 𝑝

𝑒𝑖
𝑖

is the prime factorization
of the positive integer 𝑛 and 𝑓𝑝𝑖 is the smallest positive integer such that 𝑝 𝑓𝑝𝑖

𝑖
≡

1 mod 𝑛/𝑝𝑒𝑖 holds;
(ii) The Q-module Θ𝐶 ·

(
Q ⊗Z 𝐾1 (Z𝐶)

)
vanishes if and only if |𝐶 | ∈ {1, 2, 3, 4, 6};

(iii) The Q-module Q ⊗Q[aut(𝐶 ) ] Θ𝐶 ·
(
Q ⊗Z 𝐾𝑚 (Z𝐶)

)
vanishes if 𝑚 ≠ −1.

The computations simplify even more if we consider the case 𝑅 = C, as the
following example, which is taken from [649, Example 8.11], shows.

Example 12.82 (Complex coefficients). Let con(𝐺) be the set of conjugacy classes
(𝑔) of elements 𝑔 ∈ 𝐺. If we tensor with C instead of Q and take 𝑅 = 𝐹 = C, then
the isomorphisms appearing in Theorem 12.79 reduce to the isomorphisms⊕

𝑝+𝑞=𝑛

⊕
(𝑔) ∈con(𝐺)

𝐻𝑝 (𝐶𝐺 ⟨𝑔⟩;C) ⊗Z 𝐾𝑞 (C)
�−→ C ⊗Z 𝐻𝐺𝑛 (𝐸𝐺; KC);⊕

𝑝+𝑞=𝑛

⊕
(𝑔) ∈con(𝐺)

𝐻𝑝 (𝐶𝐺 ⟨𝑔⟩;C) ⊗Z 𝐿 ⟨−∞⟩𝑞 (C) �−→ C ⊗Z 𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩C );⊕
𝑝+𝑞=𝑛

⊕
(𝑔) ∈con(𝐺)

𝐻𝑝 (𝐶𝐺 ⟨𝑔⟩;C) ⊗Z 𝐾TOP
𝑞 (C) �−→ C ⊗Z 𝐻𝐺𝑛 (𝐸𝐺; KTOP

C ),

where we use in the definition of 𝐿𝑞 (C) the involutions coming from complex
conjugation. The targets of the maps above are isomorphic to C ⊗Z 𝐾𝑛 (C𝐺), C ⊗Z
𝐿
⟨−∞⟩
𝑛 (C𝐺), and C ⊗Z 𝐾𝑛 (𝐶∗𝑟 (𝐺,C) if the Farrell-Jones Conjecture and the Baum-

Connes Conjecture hold for𝐺, where we use in the definition of 𝐿𝑞 (C) � 𝐿 ⟨−∞⟩𝑞 (C)
the involution on C𝐺 given by

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔 ↦→

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔−1.

12.9 Some Integral Computations

Integral computations are of course harder than rational computations. We have
already provided basic tools such as the equivariant Atiyah-Hirzebruch spectral
sequence and the 𝑝-chain spectral sequence in Section 12.6.

Often we are considering an equivariant homology theory and want to compute
H𝐺
𝑛 (𝐸𝐺) or H𝐺

𝑛 (𝐸𝐺). Sometimes one gets easy and useful computations if one
has good models for 𝐸𝐺 and 𝐸𝐺. We illustrate this in the following favorite case.
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Let 𝐺 be a discrete group. Let MFIN be the subset of FIN consisting of
elements in FIN that are maximal with respect to inclusion in FIN . Throughout
this subsection we suppose that 𝐺 satisfies the conditions (M) and (NM) introduced
in Subsection 11.6.12, where also examples of such groups 𝐺 are given, see Exam-
ple 11.33. Let {𝑀𝑖 | 𝑖 ∈ 𝐼} be a complete set of representatives for the conjugacy
classes of maximal finite subgroups of 𝐺. Consider an equivariant homology theory
H ?
∗ . Recall that we put 𝐵𝐺 = 𝐺\𝐸𝐺.
Then we obtain from Theorem 11.32 long exact sequences

(12.83) · · · →
⊕
𝑖∈𝐼
H {1}𝑛 (𝐵𝑀𝑖) → H {1}𝑛 (𝐵𝐺) ⊕

⊕
𝑖∈𝐼
H𝑀𝑖
𝑛 ({•}) → H𝐺

𝑛 (𝐸𝐺)⊕
𝑖∈𝐼
H {1}
𝑛−1 (𝐵𝑀𝑖) → H

{1}
𝑛−1 (𝐵𝐺) ⊕

⊕
𝑖∈𝐼
H𝑀𝑖
𝑛−1 ({•}) → · · · ;

(12.84) · · · →
⊕
𝑖∈𝐼
H {1}𝑛 (𝐵𝑀𝑖) → H {1}𝑛 (𝐵𝐺) ⊕

⊕
𝑖∈𝐼
H {1}𝑛 ({•}) → H {1}𝑛 (𝐵𝐺)⊕

𝑖∈𝐼
H {1}
𝑛−1 (𝐵𝑀𝑖) → H

{1}
𝑛−1 (𝐵𝐺) ⊕

⊕
𝑖∈𝐼
H {1}
𝑛−1 ({•}) → · · · .

We have the maps H {1}𝑛 ({•}) → H𝑀𝑖
𝑛 ({•}) induced by the inclusion {1} → 𝑀𝑖

andH𝑀𝑖
𝑛 ({•}) → H {1}𝑛 ({•}) induced by the projection 𝑀𝑖 → {1}. The composite

is the identity. Define

(12.85) H̃𝑀𝑖
𝑛 ({•}) := ker

(
H𝑀𝑖
𝑛 ({•}) → H

{1}
𝑛 ({•})

)
.

Obviously we have an isomorphism

H𝑀𝑖
𝑛 ({•}) � H

{1}
𝑛 ({•}) ⊕ H̃𝑀𝑖

𝑛 ({•}).

One can splice the two long exact sequences (12.83) and (12.84) together to the
long exact sequence

(12.86) · · · → H {1}
𝑛+1 (𝐵𝐺) →

⊕
𝑖∈𝐼
H̃𝑀𝑖
𝑛 ({•}) → H𝐺

𝑛 (𝐸𝐺) →

→ H {1}𝑛 (𝐵𝐺) →
⊕
𝑖∈𝐼
H̃𝑀𝑖
𝑛−1 ({•}) → · · · .

The long exact sequence (12.86) splits after applying − ⊗Z Λ, more precisely,
H𝐺
𝑛 (𝐸𝐺) ⊗Z Λ→H {1}𝑛 (𝐵𝐺) ⊗Z Λ is split surjective, see Lemma 12.18 (ii).

Example 12.87 (Equivariant topological 𝐾-theory of 𝐸𝐺 for 𝐺 = Z2 ⋊ Z/4).
Consider the automorphism 𝜙 : Z2 → Z2, (𝑥, 𝑦) ↦→ (−𝑦, 𝑥). It has order four. We
want to show for the semidirect product 𝐺 = Z2 ⋊𝛼 Z/4
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𝐾𝐺𝑛 (𝐸𝐺) �
{
Z9 if 𝑛 is even;
0 if 𝑛 is odd.

In this case we have the presentation

Z2 ⋊ Z4 = ⟨𝑢, 𝑣, 𝑡 | 𝑡4 = 1, 𝑢𝑣 = 𝑣𝑢, 𝑡𝑢𝑡−1 = 𝑣, 𝑡𝑣𝑡−1 = 𝑢−1⟩.

The maximal finite subgroups are up to conjugacy given by

𝑀0 = ⟨𝑡⟩;
𝑀1 = ⟨𝑢𝑡⟩;
𝑀2 = ⟨𝑢𝑡2⟩.

We have 𝑀0 � 𝑀1 � Z4 and 𝑀2 � Z2. We obtain

𝐾
Z/𝑚
𝑛 ({•}) �

{
Z𝑚−1 if 𝑛 is even;
0 if 𝑛 is odd.

Obviously 𝐵𝐺 is the same as Z/4\𝑇2 for the obvious Z/4-action on the two-
dimensional torus 𝑇2 = Z2\𝐸𝐺 = Z2\𝐸Z2. This implies, because we are in dimen-
sion two, that 𝐵𝐺 has a model which is a compact 2-dimensional manifold. The
rational cohomology 𝐻∗ (𝐵𝐺) agrees with 𝐻∗ (𝑇2;Q)Z/4. Since Z/4 is a subgroup
of SL2 (Z), its action on 𝑇2 is orientation preserving. This implies that Z/4 acts
trivially on 𝐻 𝑝 (𝑇2;Q) for 𝑝 = 0, 2. Since Z/4 acts freely on Z2 = 𝐻1 (𝑇2;Z) outside
{0}, we obtain 𝐻1 (𝑇2;Q)Z/4 � homZ (𝐻1 (𝑇2;Z)Z/4,Q) � {0}. We conclude that
𝐵𝐺 = Z/4\𝑇2 has the rational cohomology of 𝑆2 and hence is homeomorphic to 𝑆2.
This implies that 𝐾0 (𝐵𝐺) � Z2 and 𝐾1 (𝐵𝐺) = 0.

The group 𝐺 satisfies conditions (M) and (NM) by a direct check or because of
Example 11.33, since the Z/4 action on Z2 given by 𝛼 is free outside 0. Now the
claim follows from the long exact sequence (12.86) applied in the caseH ?

∗ = 𝐾
?
∗ .

Since𝐺 satisfies the Baum-Connes Conjecture, we have𝐾𝑛 (𝐶∗𝑟 (𝐺)) � 𝐾𝐺𝑛 (𝐸𝐺).

Exercise 12.88. Determine all finite subgroups 𝐹 ⊆ SL2 (Z) and compute for any of
these 𝐾𝐺𝑛 (𝐸𝐺) for 𝑛 ∈ Z and 𝐺 = Z2 ⋊ 𝐹.

The long exact sequence (12.86) is a key ingredient in many computations of
𝐾𝑛 (𝑅𝐺), 𝐿 ⟨−∞⟩𝑛 (𝑅𝐺), and 𝐾𝑛 (𝐶∗𝑟 (𝐺)), provided that 𝐺 satisfies the Farrell-Jones
Conjecture and the Baum-Connes Conjecture, see Theorem 17.25.

Already for group homology the long exact sequence (12.86) contains valuable
information, as we explain next.

Example 12.89 (Group homology). Suppose that𝐺 satisfies (M) and (NM). LetH∗
be Borel homology, i.e.,H𝐺 (𝑋) := 𝐻𝑛 (𝐸𝐺 ×𝐺 𝑋) for 𝐻𝑛 singular homology with
coefficients inZ, see Example 12.13. Then (12.86) reduces to the long exact sequence
where 𝐻𝑛 (𝐺) := 𝐻𝑛 (𝐵𝐺) is the group homology and 𝐻𝑛 (𝐺) := ker(𝐻𝑛 (𝐺) →
𝐻𝑛 ({1})
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· · · → 𝐻𝑛+1 (𝐵𝐺) →
⊕
𝑖∈𝐼

𝐻𝑛 (𝑀𝑖) → 𝐻𝑛 (𝐺)

→ 𝐻𝑛 (𝐵𝐺) →
⊕
𝑖∈𝐼

𝐻𝑛−1 (𝑀𝑖) → · · · .

In particular, we get for 𝑛 ≥ dim(𝐵𝐺) + 2 an isomorphism⊕
𝑖∈𝐼

𝐻𝑛 (𝑀𝑖)
�−→ 𝐻𝑛 (𝐺).

Example 12.90 (The group homology of certain extensions 1 → Z𝑛 → 𝐺 →
𝐹 → 1 for finite 𝐹). Consider an extension 1 → Z𝑛 → 𝐺 → 𝐹 → 1 for finite 𝐹
such that the conjugation action of 𝐹 onZ𝑛 is free outside 0 ∈ Z𝑛. Then the conditions
(M) and (NM) are satisfied by Example 11.33 and there is an 𝑛-dimensional model
for 𝐸𝐺 whose underlying space is R𝑛.

Even in the case where 𝐹 is a finite cyclic group, the computation of the homology
of 𝐺 is not at all easy. It is carried out in [282, Theorem 2.1], provided that |𝐹 | is
a prime. More information in the case where there are no restrictions on |𝐹 | can be
found in [618].

Based on the material of this section, we will compute the group homology of
one-relators groups in Lemma 17.30 (iii) and Lemma 17.36.

12.10 Equivariant Homology Theory over a Group and Twisting
with Coefficients

Next we present a slight variation of the notion of an equivariant homology theory
introduced in Section 12.3. We have to treat this variation since we later want to
study coefficients over a fixed group Γ, which we will then pullback via group
homomorphisms with Γ as target. For instance, we may be interested in the algebraic
𝐾-theory of a twisted group ring 𝑅𝛼𝐺 for some homomorphism 𝛼 : 𝐺 → aut(𝑅).
More generally, we will later consider additive 𝐺-categories as coefficients.

Fix a group Γ. A group (𝐺, 𝜉) over Γ is a group 𝐺 together with a group
homomorphism 𝜉 : 𝐺 → Γ. A map 𝛼 : (𝐺1, 𝜉1) → (𝐺2, 𝜉2) of groups over Γ is a
group homomorphisms 𝛼 : 𝐺1 → 𝐺2 satisfying 𝜉2 ◦𝛼 = 𝜉1. Let Λ be an associative
commutative ring with unit.
Definition 12.91 (Equivariant homology theory over a group Γ). An equivariant
homology theory H ?↓Γ

∗ with values in Λ-modules over a group Γ assigns to every
group (𝐺, 𝜉) over Γ a 𝐺-homology theory H𝐺,𝜉

∗ with values in Λ-modules and
comes with the following so-called induction structure: given a homomorphism
𝛼 : (𝐻, 𝜇) → (𝐺, 𝜉) of groups over Γ and an 𝐻-𝐶𝑊-pair (𝑋, 𝐴), there are for each
𝑛 ∈ Z natural homomorphisms

ind𝛼 : H𝐻,𝜇
𝑛 (𝑋, 𝐴) → H𝐺,𝜉

𝑛 (𝛼∗ (𝑋, 𝐴))(12.92)
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satisfying

• Compatibility with the boundary homomorphisms
𝜕
𝐺,𝜉
𝑛 ◦ ind𝛼 = ind𝛼 ◦𝜕𝐻,𝜇𝑛 ;

• Functoriality
Let 𝛽 : (𝐺, 𝜉) → (𝐾, 𝜈) be another morphism of groups over Γ. Then we have for
𝑛 ∈ Z

ind𝛽◦𝛼 = H𝐾,𝜈
𝑛 ( 𝑓1) ◦ ind𝛽 ◦ ind𝛼 : H𝐻,𝜇𝐻𝑛 (𝑋, 𝐴) → H𝐾,𝜈

𝑛 ((𝛽 ◦ 𝛼)∗ (𝑋, 𝐴))

where 𝑓1 : 𝛽∗𝛼∗ (𝑋, 𝐴)
�−→ (𝛽 ◦ 𝛼)∗ (𝑋, 𝐴), (𝑘, 𝑔, 𝑥) ↦→ (𝑘𝛽(𝑔), 𝑥) is the natural

𝐾-homeomorphism;
• Compatibility with conjugation

Let (𝐺, 𝜉) be a group over Γ. Fix 𝑔 ∈ 𝐺 such that 𝜉◦𝑐(𝑔) = 𝜉. Then the conjugation
homomorphisms 𝑐(𝑔) : 𝐺 → 𝐺 defines a morphism 𝑐(𝑔) : (𝐺, 𝜉) → (𝐺, 𝜉) of
groups over Γ. Let 𝑓2 : (𝑋, 𝐴) → 𝑐(𝑔)∗ (𝑋, 𝐴) be the 𝐺-homeomorphism that
sends 𝑥 to (1, 𝑔−1𝑥) in 𝐺 ×𝑐 (𝑔) (𝑋, 𝐴).
Then for every 𝑛 ∈ Z and every 𝐺-𝐶𝑊-pair (𝑋, 𝐴) the homomorphism
ind𝑐 (𝑔) : H𝐺,𝜉

𝑛 (𝑋, 𝐴) → H𝐺,𝜉
𝑛 (𝑐(𝑔)∗ (𝑋, 𝐴)) agrees withH𝐺

𝑛 ( 𝑓2);
• Bijectivity

If ker(𝛼) acts freely on 𝑋 \ 𝐴, then ind𝛼 : H𝐻,𝜇
𝑛 (𝑋, 𝐴) → H𝐺,𝜉

𝑛 (ind𝛼 (𝑋, 𝐴)) is
bijective for all 𝑛 ∈ Z.

Definition 12.91 reduces to Definition 12.9 if one puts Γ = {1}.
The analog of Lemma 12.12 in this setting is obvious and easily checked.
The proof of Theorem 12.30 in this setting is explained in [71, Lemma 7.1].

Theorem 12.93 (Constructing equivariant homology theories over a group using
spectra). Let Γ be a group. Denote by GROUPOIDS ↓ 𝐼 (Γ) the category of small
connected groupoids over 𝐼 (Γ) which is Γ considered as a groupoid with one object.
Consider a covariant functor

E : GROUPOIDS ↓ 𝐼 (Γ) → SPECTRA

that sends equivalences of groupoids to weak equivalences of spectra.
Then we can associate to it an equivariant homology theory H ?↓Γ

∗ (−; E) with
values in Z-modules over Γ such that for every group (𝐺, 𝜇) over Γ and subgroup
𝐻 ⊆ 𝐺 we have a natural identification

H𝐻,𝜉 |𝐻
𝑛 ({•}; E) = H𝐺,𝜉

𝑛 (𝐺/𝐻,E) = 𝜋𝑛 (E(𝐻, 𝜉 |𝐻 )).

There are obvious twisted analogs of the functors mentioned in Section 12.5,
see (13.10) together with Remark 13.12 and (13.18) together with Remark 13.20,
and also [71, Theorem 6.1].
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Remark 12.94. Equivariant Chern characters have only been constructed for equi-
variant homology theories but not for the more general notion of an equivariant
homology theory over a group Γ. It is conceivable that they exist, provided that the
coefficients of the homology theory H ?

∗ over Γ extend to a Mackey functor over
Γ, where we leave it to the reader to figure out what the latter condition means.
For this claim there are many details to be checked and we have not done this. It
also seems to be plausible that the equivariant homology theories over a group Γ

given by the algebraic 𝐾 and 𝐿-theory for a ring (with involution) coming with a
homomorphism Γ→ aut(𝑅) have the property that the coefficients of the homology
theories H ?

∗ (−; K𝑅) and H ?
∗ (−; L⟨−∞⟩

𝑅
) over Γ extend to a Mackey functor over Γ

and hence that there exists equivariant Chern characters for them.

Remark 12.95. Note that the proof of Lemma 12.18 (ii) does not extend to an
equivariant homology theory over a non-trivial group Γ because we cannot pass
to the quotient by 𝐺 anymore. However, if the coefficients of the homology theory
H ?
∗ over Γ extend to a Mackey functor over Γ and we have an equivariant Chern

character, then it is still true that the map H𝐺,𝜉
𝑛 (𝐸𝐺) → H𝐺,𝜉

𝑛 (𝐸𝐺) is rationally
injective for every 𝑛 ∈ Z and every group 𝜉 : 𝐺 → Γ over Γ. So this would yield the
rational injectivity of the maps

𝐻
𝐺,𝜉
𝑛 (𝐸𝐺; K𝑅) → 𝐻

𝐺,𝜉
𝑛 (𝐸𝐺; K𝑅);

𝐻
𝐺,𝜉
𝑛 (𝐸𝐺; L⟨−∞⟩

𝑅
) → 𝐻

𝐺,𝜉
𝑛 (𝐸𝐺; L⟨−∞⟩

𝑅
),

for every 𝑛 ∈ Z and every 𝜉 : 𝐺 → Γ. The reader should note that we have proved
this only in the case Γ = {1}, see Lemma 12.18 (ii).

Exercise 12.96. Let Γ be a group. Let 𝑅 be a ring with a homomorphism 𝛼 : Γ →
aut(𝑅). Let 𝜉 : 𝐺 → Γ be a group over Γ such that 𝐺 is finite.

Show that the map 𝐻𝐺,𝜉𝑛 (𝐸𝐺; K𝑅) → 𝐻
𝐺,𝜉
𝑛 (𝐸𝐺; K𝑅) = 𝐾𝑛 (𝑅𝛼◦𝜉𝐺) is ratio-

nally injective for every 𝑛 ∈ Z.

12.11 Notes

Equivariant stable cohomotopy has been introduced in [652] for arbitrary groups
𝐺 and proper finite 𝐺-𝐶𝑊-complexes and extended to proper 𝐺-𝐶𝑊-complexes
in [295, Example 3.43 on page 107]. A version of the Segal Conjecture in this
setting is proved in [664]. A systematic study of the equivariant homotopy category
for proper 𝐺-𝐶𝑊-complexes can be found in [295]. There it is explained in [295,
Remark 3.44 on page 107] that the classical notion of an 𝑅𝑂 (𝐺)-grading is taken
over by a kind of 𝐾0

𝐺
(𝐸𝐺)-grading.

If one is dealing with equivariant topological 𝐾-theory, then there exists a Chern
character where one does not have to fully rationalize, it suffices to invert the orders of
all the isotropy groups of the proper 𝐺-𝐶𝑊-complex under consideration, see [651]
or Theorem 10.69.
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There are also equivariant cohomology theories and a cohomological version
of the equivariant Chern character, see [653]. It can be used to extend the Atiyah-
Segal Completion Theorem for finite groups to infinite groups and proper 𝐺-𝐶𝑊-
complexes, see [670, 671]. It also leads to rational computations of 𝐾∗ (𝐵𝐺) for not
necessarily finite groups, see [525, 656].

An equivariant Chern character for equivariant topological 𝐾-theory after com-
plexification has been introduced in [107].





Chapter 13
The Farrell-Jones Conjecture

13.1 Introduction

In this chapter we discuss the Farrell-Jones Conjecture for 𝐾- and 𝐿-theory for
arbitrary groups and rings. It predicts that certain assembly maps

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅) → 𝐾𝑛 (𝑅𝐺);
𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩

𝑅
) → 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺),

are bijective for all 𝑛 ∈ Z. The targets are the algebraic 𝐾- or 𝐿-groups of the group
ring 𝑅𝐺, which one wants to understand. The source is an expression that depends
only on the values of these 𝐾- and 𝐿-groups on virtually cyclic subgroups of 𝐺
and is therefore much more accessible. The version above is often the one which is
relevant in concrete applications, but nevertheless we will consider generalizations,
for instance to twisted group rings and twisted involutions. The both most general and
most important version will be the Full Farrell-Jones Conjecture 13.30. It implies
all other variants of the Farrell-Jones Conjecture which appear in this book, see
Section 13.11. It has very nice inheritance properties, see Section 13.7, which are in
general not shared by the other variants.

A status report of the Full Farrell-Jones Conjecture 13.30 will be given in Theo-
rem 16.1. It is known for a large class of groups.

The main point about the Full Farrell-Jones Conjecture 13.30 is that it implies
a great variety of other prominent conjectures such as the ones due to Bass, Borel,
Kaplansky, and Novikov, and leads to very deep and interesting results about mani-
folds and groups, as we will record and explain in Section 13.12. Often these appli-
cations are much more appealing and easier to comprehend than the rather technical
Full Farrell-Jones Conjecture 13.30. The author’s favorite is the Borel Conjecture,
which predicts that two aspherical closed topological manifolds are homeomorphic if
and only if their fundamental groups are isomorphic and any homotopy equivalence
between them is homotopic to a homeomorphism.

Section 13.10 deals with the question whether one can reduce the family of
virtually cyclic subgroups to a smaller family of subgroups, for instance to all finite
subgroups or just to the family consisting of the trivial subgroup. Section 13.13
presents a short discussion of 𝐺-theory.

We have tried to keep this chapter independent of the other chapters as much as
possible, so that one may start reading directly here.

377
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13.2 The Farrell-Jones Conjecture with Coefficients in Rings

Let 𝐺 be a (discrete) group. Recall that a 𝐺-homology theory H𝐺
∗ with values in

Λ-modules for some commutative associative ring Λ assigns to every 𝐺-𝐶𝑊-pair
(𝑋, 𝐴) and integer 𝑛 ∈ Z aΛ-moduleH𝐺

𝑛 (𝑋, 𝐴) such that the obvious generalization
to 𝐺-𝐶𝑊-pairs of the axioms of a (non-equivariant generalized) homology theory
for 𝐶𝑊-complexes holds, i.e., 𝐺-homotopy invariance, the long exact sequence of a
𝐺-𝐶𝑊-pair, excision, and the disjoint union axiom are satisfied. The precise defini-
tion of a𝐺-homology theory can be found in Definition 12.1 and of a𝐺-𝐶𝑊-complex
in Definition 11.2, see also Remark 11.3.

Recall that we have defined the notion of a family of subgroups of a group 𝐺 in
Definition 2.62, namely, to be a set of subgroups of𝐺 that is closed under conjugation
with elements of 𝐺 and passing to subgroups. Denote by 𝐸F (𝐺) a model for the
classifying space for the family F of subgroups of 𝐺, i.e., a 𝐺-𝐶𝑊-complex 𝐸F (𝐺)
whose isotropy groups belong to F and for which for each 𝐻 ∈ F the 𝐻-fixed point
set 𝐸F (𝐺)𝐻 is weakly contractible. Such a model always exists and is unique up
to 𝐺-homotopy, see Definition 11.18 and Theorem 11.19. Recall that 𝐸𝐺 and 𝐸𝐺
are abbreviations for 𝐸FIN (𝐺) and 𝐸VCY (𝐺), where FIN is the family of finite
subgroups andVCY is the family of virtually cyclic subgroups, i.e., subgroups that
are either finite or contain Z as a subgroup of finite index.

13.2.1 The 𝑲-Theoretic Farrell-Jones Conjecture with Coefficients in Rings

Given a ring 𝑅, there is a specific 𝐺-homology theory 𝐻𝐺𝑛 (−; K𝑅) with values in
Z-modules with the property that 𝐻𝐺𝑛 (𝐺/𝐻; K𝑅) � 𝐾𝑛 (𝑅𝐻) holds for all 𝑛 ∈ Z and
subgroups𝐻 ⊆ 𝐺, where𝐾𝑛 (𝑅𝐻) is the 𝑛th algebraic𝐾-group of the group ring 𝑅𝐻.
Its construction can be used in the sequel as a black box. We have already specified
some details, namely, it is given by the equivariant homology theory 𝐻?

∗ (−; K𝑅)
evaluated at 𝐺 that is associated to the covariant functor K𝑅 : GROUPOIDS →
SPECTRA of (12.44) in Theorem 12.30.

Conjecture 13.1 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in the
ring 𝑅). Given a group 𝐺 and a ring 𝑅, we say that 𝐺 satisfies the 𝐾-theoretic
Farrell-Jones Conjecture with coefficients in the ring 𝑅 if the assembly map induced
by the projection pr : 𝐸VCY (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅) = 𝐾𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z.

In many of the proofs the coefficients rings do not play a role, and therefore it is
reasonable to consider the following stronger variant that is now a statement about
the group 𝐺 itself.



13.2 The Farrell-Jones Conjecture with Coefficients in Rings 379

Conjecture 13.2 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in
rings). We say that the group 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjec-
ture with coefficients in rings if the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in 𝑅 holds for every ring 𝑅.

Exercise 13.3. Show that Conjecture 13.2 does not hold for 𝐺 = Z if one replaces
VCY by FIN in Conjecture 13.1.

Conjecture 13.2 also makes sense for twisted group rings 𝑅𝛼𝐺, see Remark 13.12.

13.2.2 The 𝑳-Theoretic Farrell-Jones Conjecture with Coefficients in Rings

The situation for 𝐿-theory is similar. Namely, given a ring with involution 𝑅, there
is a specific 𝐺-homology theory 𝐻𝐺𝑛 (−; L⟨−∞⟩

𝑅
) with values in Z-modules with the

property that 𝐻𝐺𝑛 (𝐺/𝐻; L⟨−∞⟩
𝑅
) � 𝐿 ⟨−∞⟩𝑛 (𝑅𝐻) holds for all 𝑛 ∈ Z and subgroups

𝐻 ⊆ 𝐺, where 𝐿 ⟨−∞⟩𝑛 (𝑅𝐻) is the 𝑛th quadratic 𝐿-group of the group ring with
involution 𝑅𝐻 with decoration ⟨−∞⟩. Its construction can be used in the sequel as a
black box. We have already given some details, namely, it is given by the equivariant
homology theory 𝐻?

∗ (−; L⟨−∞⟩
𝑅
) evaluated at 𝐺 that is associated to the covariant

functor L⟨−∞⟩
𝑅

: GROUPOIDS→ SPECTRA of (12.45) in Theorem 12.30.

Conjecture 13.4 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in the
ring with involution 𝑅). Given a group𝐺 and ring with involution 𝑅, we say that𝐺
satisfies the 𝐿-theoretic Farrell-Jones Conjecture with coefficients in the ring with
involution 𝑅 if the assembly map induced by the projection 𝐸VCY (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩
𝑅
) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩

𝑅
) = 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z.

Exercise 13.5. Show that Conjecture 13.4 holds for 𝐺 = Z if one replacesVCY by
FIN .

If we invert 2, it is expected that one can replaceVCY by FIN in general.

Conjecture 13.6 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in the
ring with involution 𝑅 after inverting 2). Given a group𝐺 and ring with involution
𝑅, we say that 𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture with coefficients
in the ring with involution 𝑅 after inverting 2 if the assembly map induced by the
projection 𝐸FIN (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩
𝑅
) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩

𝑅
) = 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z after inverting 2.
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Conjecture 13.7 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in rings
with involution). A group𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture with
coefficients in rings with involution if the 𝐿-theoretic Farrell-Jones Conjecture 13.4
with coefficients in the ring with involution 𝑅 holds for every ring with involution
𝑅.

Conjecture 13.8 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in rings
with involution after inverting 2). We say that a group 𝐺 satisfies the 𝐿-theoretic
Farrell-Jones Conjecture with coefficients in rings with involution after inverting 2
if the 𝐿-theoretic Farrell-Jones Conjecture 13.6 with coefficients in the ring with
involution 𝑅 after inverting 2 holds for every ring with involution 𝑅.

Remark 13.9 (The decoration ⟨−∞⟩ is necessary). One can define for any decora-
tion 𝑗 ∈ {𝑛 ∈ Z | 𝑛 ≤ 1} ⨿ {−∞} an assembly map

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨ 𝑗 ⟩
𝑅
) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨ 𝑗 ⟩

𝑅
) = 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅𝐺).

But in general one can only hope that it is bijective if one chooses 𝑗 = −∞. Coun-
terexamples for 𝐺 = Z2 × Z/29 for 𝑅 = Z and 𝑗 = ℎ, 𝑠 are constructed in [371].

If we invert 2, the decorations do not play a role because of the Rothenberg
sequences, see Subsection 9.10.4.

Conjectures 13.7 and 13.8 also make sense for twisted group rings 𝑅𝛼𝐺, see
Remark 13.20.

13.3 The Farrell-Jones Conjecture with Coefficients in Additive
Categories

There are situations where one wants to consider twisted group rings 𝑅𝛼𝐺, some-
times also denoted by 𝑅𝛼 [𝐺], for some group homomorphism 𝛼 : 𝐺 → aut(𝑅) to
the group of ring automorphisms of 𝑅. Elements in 𝑅𝛼𝐺 are given by formal finite
sums

∑
𝑔∈𝐺 𝑟𝑔 · 𝑔, and addition and multiplication is given by(∑︁

𝑔∈𝐺
𝑟𝑔 · 𝑔

)
+

(∑︁
𝑔∈𝐺

𝑠𝑔 · 𝑔
)

:=
∑︁
𝑔∈𝐺
(𝑟𝑔 + 𝑠𝑔) · 𝑔;(∑︁

𝑔∈𝐺
𝑟𝑔 · 𝑔

)
·
(∑︁
𝑔∈𝐺

𝑠𝑔 · 𝑔
)

:=
∑︁
𝑔∈𝐺

( ∑︁
ℎ,𝑘∈𝐺,
𝑔=ℎ𝑘

𝑟ℎ · 𝛼(ℎ) (𝑠𝑘)
)
· 𝑔.

So the decisive relation for the multiplication is (𝑟 · ℎ) · (𝑠 · 𝑘) = (𝑟 · 𝛼(ℎ) (𝑠)) · ℎ𝑘 .
Or even, more generally, one may want to consider crossed product rings, see for
instance [77, Section 4].
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In 𝐿-theory, we consider a ring with involution 𝑅 and we wants to twist the
involution on 𝑅𝐺 by an orientation homomorphism 𝑤 : 𝐺 → center(𝑅) satisfying
𝑤(𝑔) = 𝑤(𝑔) resulting in the 𝑤-twisted involution on 𝑅𝐺 given by∑︁

𝑔∈𝐺
𝑟𝑔 · 𝑔 :=

∑︁
𝑔∈𝐺

𝑤(𝑔) · 𝑟𝑔 · 𝑔−1.

The situation becomes even more involved if we want to consider crossed product
rings with involution. The details are explained in [77, Section 4].

It turns out that one can nicely treat these generalizations of group rings and
involutions by looking at additive 𝐺-categories (with involution).

There is another crucial reason why it is useful to look at coefficients in additive
𝐺-categories (with involution). These versions of the Farrell-Jones Conjecture with
coefficients in additive 𝐺-categories (with involution) have much better inheritance
properties than the one with coefficients in rings (with involution), as we will explain
below in Section 13.7. For instance, they pass to subgroups.

The details are given for additive 𝐺-categories and 𝐾-theory in [92]. The case of
additive 𝐺-categories with involution is treated for 𝐾-theory, taking the involution
into account, and for 𝐿-theory in [77]. Since we can use this general approach
essentially as a black box, we give only a brief summary here, following the notation
of [77].

13.3.1 The 𝑲-Theoretic Farrell-Jones Conjecture with Coefficients in Additive
𝑮-Categories

LetA be an additive 𝐺-category in the sense of [77, Definition 2.1], i.e., an additive
category with 𝐺-action by functors of additive categories. Note that we use left
actions here, whereas in [77] right actions are considered. Let GROUPOIDS ↓ 𝐺
be the category of connected groupoids over 𝐼 (𝐺). Recall that for a group 𝐺 we
denote by 𝐼 (𝐺) the groupoid with one object and 𝐺 as its automorphism group. We
obtain from [77, Section 5] a contravariant functor to the category ADDCAT of
small additive categories

GROUPOIDS ↓ 𝐺 → ADDCAT , pr : G → 𝐼 (𝐺) ↦→
∫
G
A ◦ pr .

Composing it with the functor sending an additive category to its non-connective
𝐾-theory spectrum, see for instance [209, 684, 800], yields a functor

KA : GROUPOIDS ↓ 𝐺 → SPECTRA.(13.10)

By Theorem 12.93 we obtain an equivariant homology theory over 𝐺 in the sense
of Definition 12.91. In particular, its evaluation at 𝐺 yields a 𝐺-homology theory
𝐻𝐺∗ (−; KA).
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Conjecture 13.11 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in ad-
ditive 𝐺-categories). We say that 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjec-
ture with coefficients in additive 𝐺-categories if for every additive 𝐺-category A
and every 𝑛 ∈ Z the assembly map induced by the projection pr : 𝐸VCY (𝐺) → 𝐺/𝐺

𝐻
𝑔
𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛

(
KA (𝐼 (𝐺))

)
is bijective.

Remark 13.12 (The setting with additive 𝐺-categories as coefficients encom-
passes the setting with rings as coefficients). Let 𝛼 : 𝐺 → aut(𝑅) be a group
homomorphism. We have already introduced the twisted group ring 𝑅𝛼 [𝐺] above.
There is a covariant Or(𝐺)-spectrum K𝑅,𝛼 such that we have 𝜋𝑛 (K𝑅,𝛼 (𝐺/𝐻)) =
𝐾𝑛 (𝑅𝛼 |𝐻 [𝐻]) for any subgroup 𝐻 ⊆ 𝐺 and integer 𝑛 ∈ Z. Thus we obtain a
𝐺-homology theory 𝐻𝐺𝑛 (−; K𝑅,𝛼) for which 𝐻𝐺𝑛 (𝐺/𝐻; K𝑅,𝛼) � 𝐾𝑛 (𝑅𝛼 |𝐻 [𝐻])
holds for all subgroups 𝐻 ⊆ 𝐺 and 𝑛 ∈ Z. For a suitable choice of an addi-
tive 𝐺-category A, the 𝐺-homology theory 𝐻𝐺𝑛 (−; KA) can be identified with the
𝐺-homology theory 𝐻𝐺𝑛 (−; K𝑅,𝛼) In particular, the assembly map

𝐻𝐺𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
appearing in Conjecture 13.11 agrees with the assembly map

𝐻𝐺𝑛 (pr; K𝑅,𝛼) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅,𝛼) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅,𝛼) = 𝐾𝑛 (𝑅𝛼𝐺).

If 𝛼 is trivial, this is precisely the assembly map appearing in Conjecture 13.1. More
details, even for crossed product rings, can be found in [77, Section 4 and 6].

In particular, we get that the 𝐾-theoretic Farrell-Jones Conjecture 13.2 with
coefficients in rings holds for 𝐺 if the 𝐾-theoretic Farrell-Jones Conjecture 13.11
with coefficients in additive 𝐺-categories holds for 𝐺.

In most cases we deal with untwisted group rings. The next example shall illustrate
that for twisted group rings all the structural results remain true but computations
become different, since one has to take the 𝐺-action on the 𝐾-theory of 𝑅 into
account.

Example 13.13. Let 𝐺 be a torsionfree group satisfying Conjecture 13.11. Let 𝑅 be
a regular ring coming with a group homomorphism 𝛼 : 𝐺 → aut(𝑅). Let 𝑅𝛼 [𝐺] be
the twisted group ring. Equip 𝐾0 (𝑅) with the𝐺-action by Z-automorphisms coming
from 𝛼. Then the homomorphism 𝐾0 (𝑅) → 𝐾0 (𝑅𝛼 [𝐺]) coming from the inclusion
𝑅 → 𝑅𝛼 [𝐺] induces an isomorphism

(13.14) Z ⊗Z𝐺 𝐾0 (𝑅)
�−→ 𝐾0 (𝑅𝛼 [𝐺]).

This is proved as follows. We conclude from Remark 13.12 and Theorem 13.51
that the assembly map

𝐻𝐺𝑛 (𝐸𝐺; K𝑅,𝛼) → 𝐻𝑛 (𝐺/𝐺; K𝑅,𝛼

)
= 𝐾𝑛 (𝑅𝛼 [𝐺])
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is bijective for all 𝑛 ∈ Z. Since 𝐾𝑞 (𝑅) vanishes for 𝑞 ≤ −1 by Theorem 4.7 the
equivariant Atiyah-Hirzebruch spectral sequence, see Theorem 12.48, implies that
we get an isomorphism

𝐻𝐺0 (𝐸𝐺; K0 (𝑅))
�−→ 𝐻𝐺0 (𝐸𝐺; K𝑅,𝛼).

The source of the latter isomorphism can be identified with Z ⊗Z𝐺 𝐾0 (𝑅).

Exercise 13.15. Give an example a torsionfree group 𝐺 and of a regular ring 𝑅

coming with a group homomorphism 𝛼 : 𝐺 → aut(𝑅) such that the canonical map
𝐾0 (𝑅) → Z ⊗Z𝐺 𝐾0 (𝑅) is not injective.

Exercise 13.16. Let 𝑅 be a ring. Define a category 𝑅⊕ as follows. For each integer
𝑚 ∈ Z with 𝑚 ≥ 0 we have one object [𝑚]. For 𝑚, 𝑛 ≥ 1 the set of morphisms
from [𝑚] to [𝑛] is the set 𝑀𝑚,𝑛 (𝑅) of (𝑚, 𝑛)-matrices with entries in 𝑅. The set of
morphisms from [0] to [𝑚] and from [𝑚] to [0] consist of precisely one element.
Composition is given by matrix multiplication.

Show that 𝑅⊕ can be equipped with the structure of a small additive category and
that it is equivalent as an additive category to the category of finitely generated free
𝑅-modules.

Remark 13.17 (Involutions and 𝐾-theory). LetA be an additive 𝐺-category with
involution in the sense of [77, Definition 4.22], i.e., an additive category with invo-
lution coming with 𝐺-action by functors of additive categories with involution.

Then the involution induces involutions on the source and target of the𝐾-theoretic
assembly map

𝐻𝐺𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
of Conjecture 13.11 and the assembly map is compatible with them.

13.3.2 The 𝑳-Theoretic Farrell-Jones Conjecture with Coefficients in Additive
𝑮-Categories with Involution

LetA be an additive𝐺-category with involution in the sense of [77, Definition 4.22].
We obtain from [77, Section 7] a contravariant functor to the category ADDCAT inv
of small additive categories with involution

GROUPOIDS ↓ 𝐺 → ADDCAT inv, pr : G → 𝐼 (𝐺) ↦→
∫
G
A ◦ pr .

Composing it with the functor sending an additive category with involutionA to its
𝐿-theory spectrum L⟨−∞⟩ (A) yields a functor

L⟨−∞⟩A : GROUPOIDS ↓ 𝐺 → SPECTRA(13.18)
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where for the construction of the spectrum 𝐿-theory L⟨−∞⟩ (A) associated to an
additive category with involution A we refer to Ranicki [839, Chapter 13]. By
Theorem 12.93 we obtain an equivariant homology theory over 𝐺 in the sense
of Definition 12.91. In particular, its evaluation at 𝐺 yields a 𝐺-homology theory
𝐻𝐺𝑛 (−; L⟨−∞⟩A ).

Conjecture 13.19 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in ad-
ditive𝐺-categories with involution). We say that𝐺 satisfies the 𝐿-theoretic Farrell-
Jones Conjecture with coefficients in additive 𝐺-categories with involution if for
every additive 𝐺-category with involution A and every 𝑛 ∈ Z the assembly map
given by the projection 𝐸VCY (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩A )

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is bijective.

Remark 13.20 (The setting of additive 𝐺-categories with involution as coeffi-
cients encompasses the setting with rings with involution as coefficients). Let
𝑅 be a ring with involution. Consider a group homomorphism 𝛼 : 𝐺 → aut(𝑅)
satisfying 𝛼(𝑔) (𝑟) = 𝛼(𝑔) (𝑟), and a group homomorphism 𝑤 : 𝐺 → center(𝑅)
satisfying 𝑤(𝑔) = 𝑤(𝑔). Then we have already introduced the twisted group ring
𝑅𝛼 (𝐺) above. It inherits an involution by∑︁

𝑔∈𝐺
𝑟𝑔 · 𝑔 :=

∑︁
𝑔∈𝐺

𝑤(𝑔) · 𝛼(𝑔−1) (𝑟𝑔) · 𝑔−1,

and we denote this ring with involution by 𝑅𝛼,𝑤𝐺. For a suitable choice of an
additive 𝐺-category with involution A, the assembly map

𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩A ) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A )

appearing in Conjecture 13.19 reduces to the assembly map

𝐻𝐺𝑛 (pr; L⟨−∞⟩
𝑅,𝛼,𝑤

) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩
𝑅,𝛼,𝑤

) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩
𝑅,𝛼,𝑤

)

where for any subgroup 𝐻 ⊆ 𝐺 and integer 𝑛 ∈ Z we have L⟨−∞⟩
𝑅,𝛼,𝑤

(𝐼 (𝐻)) =

𝐿
⟨−∞⟩
𝑛 (𝑅𝛼 |𝐻𝐻, 𝑤 |𝐻 ). If 𝛼 and 𝑤 are trivial, this is precisely the assembly map

appearing in Conjecture 13.4. More details, even for crossed product rings, can be
found in [77, Theorem 0.4, Section 4 and 8].

In particular, we get that the 𝐿-theoretic Farrell-Jones Conjecture 13.7 with co-
efficients in rings with involution holds for 𝐺 if the 𝐿-theoretic Farrell-Jones Con-
jecture 13.19 with coefficients in additive 𝐺-categories with involution holds for
𝐺.
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Exercise 13.21. Let 𝐹 : A → B be a functor of additive categories. Show that it is
an equivalence of additive categories if and only if for every two objects 𝐴 and 𝐵
in A the induced map morA (𝐴0, 𝐴1) → morB (𝐹 (𝐴0), 𝐹 (𝐴1)) sending 𝑓 to 𝐹 ( 𝑓 )
is bijective and for each object 𝐵 in B there exists an object 𝐴 in A such that 𝐹 (𝐴)
and 𝐵 are isomorphic in B.

Remark 13.22 (Eilenberg swindle for 𝐿-theory). There is an obvious version of
Theorem 6.37 (iii) for the algebraic 𝐿-theory L⟨−∞⟩ (A) of an additive category A
with involution.

13.4 The 𝑲-Theoretic Farrell-Jones Conjecture with Coefficients
in Higher Categories

Let C be a right exact 𝐺-∞-category in the sense of Definition 8.35. We obtain
from (8.38) a covariant functor

KC : GROUPOIDS ↓ 𝐼 (𝐺) → Sp

and from Theorem 8.36 (i) an equivariant homology theory 𝐻?↓𝐺
∗ (−; KC) over 𝐺 in

the sense of Definition 12.91. In particular, its evaluation at 𝐺 yields a 𝐺-homology
theory 𝐻𝐺∗ (−; KC).

Conjecture 13.23 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in
higher𝐺-categories). We say that𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjec-
ture with coefficients in higher 𝐺-categories if for every right exact 𝐺-∞-category
C and every 𝑛 ∈ Z the assembly map given by the projection

𝐻𝐺𝑛 (pr; KC) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KC) → 𝐻𝐺𝑛 (𝐺/𝐺; KC) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
is bijective.

Remark 13.24 (For 𝐾-theory the setting of higher𝐺-categories encompasses all
other settings for 𝐾-theory.). The assembly map

𝐻𝐺𝑛 (pr; KC) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KC) → 𝐻𝐺𝑛 (𝐺/𝐺; KC) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
appearing in the 𝐾-theoretic Farrell-Jones Conjecture 13.23 with coefficients in
higher 𝐺-categories reduces to the assembly map

𝐻𝐺𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
appearing in Conjecture 13.11 if we take for C the higher 𝐺-category Kb (A)), see
Theorem 8.36

Moreover, the 𝐾-theoretic Farrell-Jones Conjecture 13.23 with coefficients in
higher 𝐺-categories implies the Farrell-Jones Conjecture 15.61 for 𝐴-theory (with
coefficients) by Subsection 8.5.4.
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Recall from Remark 13.12 that Conjecture 13.11 and hence also Conjecture 13.23
imply the 𝐾-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings.

A version of the Farrell-Jones Conjecture for ring spectra as coefficients appears
in Subsection 8.5.5.

Remark 13.25 (𝐿-theory version of Conjecture 13.23). It has not been worked
out in detail how to construct the assembly map for the 𝐿-theory version of the
𝐾-theoretic Farrell-Jones Conjecture 13.23 with coefficients in higher 𝐺-categories
with Poincaré structure, or how to prove the conjecture for the same class of groups
as has been done for the other versions. Such a version should of course imply the
𝐿-theoretic Farrell-Jones Conjecture 13.19 with coefficients in additive𝐺-categories
with involution. Christoph Winges is at the time of writing working on such a
generalization to the setting of higher categories.

13.5 Finite Wreath Products

The versions of the Farrell-Jones Conjecture discussed above do not carry over
to overgroups of finite index. To handle this difficulty, we consider finite wreath
products.

Let 𝐺 and 𝐹 be groups. Their wreath product 𝐺 ≀ 𝐹 is defined as the semidirect
product (∏𝐹 𝐺) ⋊ 𝐹 where 𝐹 acts on

∏
𝐹 𝐺 by permuting the factors. For our

purpose the following elementary lemma is crucial.

Lemma 13.26.

(i) There is an embedding (𝐻 ≀ 𝐹1) ≀ 𝐹2 → 𝐻 ≀ (𝐹1 ≀ 𝐹2);
(ii) If 𝐹1 and 𝐹2 are finite, then 𝐹1 ≀ 𝐹2 is finite;

(iii) Let 𝐺 be an overgroup of 𝐻 of finite index. Then there is subgroup 𝑁 ⊆ 𝐻 of 𝐻
that satisfies [𝐺 : 𝑁] < ∞ and is normal in 𝐺, and a finite group 𝐹 such that 𝐺
embeds into 𝑁 ≀ 𝐹.

Proof. (i) See [595, Lemma 1.21].
(ii) This is obvious.
(iii) Let 𝑆 denote a system of representatives of the cosets 𝐺/𝐻. Since 𝐺/𝐻 is by
assumption finite, 𝑁 :=

⋂
𝑠∈𝑆 𝑠𝐻𝑠

−1 is a finite index normal subgroup of 𝐺 and is
contained in 𝐻. Now 𝐺 can be embedded in 𝑁 ≀ 𝐺/𝑁 , see [311, Section 2.6]. ⊓⊔

Conjecture 13.27 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in ad-
ditive 𝐺-categories with finite wreath products). We say that 𝐺 satisfies the
𝐾-theoretic Farrell-Jones Conjecture with coefficients in additive𝐺-categories with
finite wreath products if for any finite group 𝐹 the group𝐺 ≀𝐹 satisfies the𝐾-theoretic
Farrell-Jones Conjecture 13.11 with coefficients in additive 𝐺 ≀ 𝐹-categories.
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Conjecture 13.28 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in ad-
ditive 𝐺-categories with involution with finite wreath products). We say that
𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture with coefficients in additive
𝐺-categories with involution with finite wreath products if for any finite group 𝐹 the
group𝐺 ≀𝐹 satisfies the 𝐿-theoretic Farrell-Jones Conjecture 13.19 with coefficients
in additive 𝐺 ≀ 𝐹-categories with involution.

Conjecture 13.29 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in
higher 𝐺-categories with finite wreath products). We say that 𝐺 satisfies the
𝐾-theoretic Farrell-Jones Conjecture with coefficients in higher 𝐺-categories with
finite wreath products if for any finite group 𝐹 the group𝐺 ≀𝐹 satisfies the𝐾-theoretic
Farrell-Jones Conjecture 13.23 with coefficients in higher 𝐺 ≀ 𝐹-categories.

13.6 The Full Farrell-Jones Conjecture

Next we can formulate the version of the Farrell-Jones Conjecture which is the most
general one, implies all other ones, and has the best inheritance properties.

Conjecture 13.30 (Full Farrell-Jones Conjecture). We say that a group satisfies
the Full Farrell-Jones Conjecture if 𝐺 satisfies the following three conjectures:

• the 𝐾-theoretic Farrell-Jones Conjecture 13.27 with coefficients in additive
𝐺-categories with finite wreath products;
• the 𝐿-theoretic Farrell-Jones Conjecture 13.28 with coefficients in additive
𝐺-categories with involution with finite wreath products;
• the 𝐾-theoretic Farrell-Jones Conjecture 13.29 with coefficients in higher
𝐺-categories with finite wreath products.

Despite the fact that Conjecture 13.29 implies Conjecture 13.27, see
Remark 13.24, we list Conjecture 13.27 above in Conjecture 13.30 for the reader’s
convenience. Recall that the version with rings as coefficients follow from the ver-
sions with additive categories as coefficients, see Remarks 13.12 and 13.20.

13.7 Inheritance Properties of the Farrell-Jones Conjecture

In this section we discuss the inheritance properties of the various versions of the
Farrell-Jones Conjectures above. Both the 𝐾-theoretic Farrell-Jones Conjecture 13.2
with coefficients in rings and the 𝐿-theoretic Farrell-Jones Conjecture 13.7 with coef-
ficients in rings with involution do not have good inheritance properties. The reason
why we have introduced the other variants is that they do have some remarkable
inheritance properties.
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Definition 13.31 (Farrell-Jones groups). Let FJ be the class of groups that satisfy
the Full Farrell-Jones Conjecture 13.30. We call a (discrete) group𝐺 a Farrell-Jones
group if 𝐺 belongs to FJ .

Theorem 13.32 (Inheritance properties of the Full Farrell-Jones Conjecture).

(i) Passing to subgroups
Let 𝐻 ⊆ 𝐺 be an inclusion of groups and 𝐺 ∈ FJ , then 𝐻 ∈ FJ ;

(ii) Passing to overgroups of finite index
Let𝐺 be an overgroup of 𝐻 with finite index [𝐺 : 𝐻]. If 𝐻 belongs to FJ , then
𝐺 belongs to FJ ;

(iii) Passing to finite wreath products
If 𝐺 belongs to FJ , then 𝐺 ≀ 𝐹 belongs to FJ for any finite group 𝐹;

(iv) Passing to finite direct products
If the groups 𝐺0 and 𝐺1 belong to FJ , then 𝐺0 × 𝐺1 belongs to FJ ,

(v) Group extensions
Let 1→ 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups. Suppose that the groups
𝐾 and 𝑄 belong to FJ and that for any infinite cyclic subgroup 𝐶 ⊆ 𝑄 the
group 𝑝−1 (𝐶) belongs to FJ .
Then 𝐺 belongs to FJ ;

(vi) Colimits over directed systems
Let {𝐺𝑖 | 𝑖 ∈ 𝐼} be a direct system of groups indexed by the directed set 𝐼 (with
arbitrary structure maps). Suppose that for each 𝑖 ∈ 𝐼 the group 𝐺𝑖 belongs to
FJ .
Then the colimit colim𝑖∈𝐼 𝐺𝑖 belongs to FJ ;

(vii) Passing to free products
Consider a collection of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} such that 𝐺𝑖 belongs to FJ for
each 𝑖 ∈ 𝐼. Then ∗𝑖∈𝐼𝐺𝑖 belongs to FJ .

Proof. (i) We begin with the case of additive 𝐺-categories as coefficients.
Assertion (i) is proved in [92, Theorem 4.5] for Conjecture 13.11, and in [77,

Theorem 0.10] for Conjecture 13.19. Now assertion (i) follows for the version of Full
Farrell-Jones Conjecture 13.30 for additive 𝐺-categories as coefficients since 𝐻 ≀ 𝐹
is a subgroup of 𝐺 ≀ 𝐹 for every subgroup 𝐻 ⊆ 𝐺.

The proof of assertion (i) for the version with higher 𝐺-categories as coefficients
is analogous and can be found in [185, Theorem 1.6 (1)].
(ii) This follows from Lemma 13.26 and assertion (i).
(iii) This follows from Lemma 13.26 and assertion (i).
(iv) We begin with the case of additive 𝐺-categories as coefficients.

The versions of the Farrell-Jones Conjecture 13.11 and 13.19 are true for vir-
tually finitely generated abelian groups by [72, Theorem 3.1]. Hence they hold in
particular for the product of two virtually cyclic subgroups. By inspecting the proof
of [595, Lemma 3.15], we see that the assertion (iv) holds for the Farrell-Jones
Conjectures 13.11 and 13.19.
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Next we prove assertion (iv) for the version of Full Farrell-Jones Conjecture 13.30
with additive 𝐺-categories as coefficients. Suppose it holds for 𝐺1 and 𝐺2. Let 𝐹
be any finite subgroup. We have to show that versions of the Farrell-Jones Conjec-
ture 13.11 and 13.19 holds for (𝐺1 × 𝐺2) ≀ 𝐹. By assumption they both hold for
𝐺1 ≀ 𝐹 and 𝐺2 ≀ 𝐹. Since (𝐺1 ×𝐺2) ≀ 𝐹 is a subgroup of (𝐺1 ≀ 𝐹) × (𝐺2 ≀ 𝐹) by [595,
Lemma 1.197] and Conjecture 13.11 and 13.19 pass to subgroups by the argument
given in assertion (i), assertion (iv) holds for the Full Farrell-Jones Conjecture 13.30
with additive 𝐺-categories as coefficients.

The proof of assertions (iv) for the version of the Full Farrell-Jones Conjec-
ture 13.30 for higher 𝐺-categories is analogous and can be found in [185, Theo-
rem 1.7 (11)].
(v) We begin with the case of additive 𝐺-categories as coefficients.

The following version of assertion (v) is proved in [77, Theorem 0.9] for Conjec-
ture 13.19.

Property (E)
Let 1→ 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups. If for any virtually cyclic
subgroup 𝑉 ⊆ 𝑄 the group 𝑝−1 (𝑉) and the group 𝑄 satisfy Conjecture 13.19,
then 𝐺 satisfies Conjecture 13.19.

The proof of property (E) for Conjecture 13.11 is analogous. Finally we conclude
from [595, Lemma 3.16] and assertion (iv) that property (E) also holds for the Full
Farrell-Jones Conjecture 13.30 for additive 𝐺-categories.

Because of assertion (ii), we can replace in property (𝐸) the assumption that 𝑉
is virtually cyclic by the assumption that 𝑉 is trivial or infinite cyclic. This finishes
the proof of assertion (v) for additive 𝐺-categories as coefficients.

The proof of assertion (v) for the version of the Full Farrell-Jones Conjecture 13.30
for higher 𝐺-categories is analogous and can be found in [185, Theorem 1.7 (13)].
(vi) We begin with the case of additive 𝐺-categories as coefficients.

Assertion (vi) is proved in [77, Theorem 0.8] for Conjecture 13.19, the proof for
Conjecture 13.11 is completely analogous. Now assertion (vi) follows for the version
of Full Farrell-Jones Conjecture 13.30 with additive 𝐺-categories, since there is an
obvious isomorphism for a finite group 𝐹, see [595, Lemma 1.20],

colim𝑖→∞ (𝐺𝑖 ≀ 𝐹)
�−→

(
colim𝑖→∞𝐺𝑖

)
≀ 𝐹.

The proof of assertion (vi) for the version of the Full Farrell-Jones Conjecture 13.30
for higher 𝐺-categories is analogous and can be found in [185, Theorem 1.6 (12)].
(vii) Because of assertion (vi) it suffices to consider the case where 𝐼 is finite. An
obvious induction argument over the cardinality of the finite set 𝐼 reduces the claim
to the case 𝐼 = {1, 2}.

Let𝐺1 and𝐺2 be groups. Let pr : 𝐺1∗𝐺2 → 𝐺1×𝐺2 be the canonical projection.
Let 𝐶 ⊆ 𝐺1 × 𝐺2 be a cyclic subgroup. Then there exists a free group 𝐹 and a
finite group 𝐻 such that pr−1 (𝐶) is a subgroup of 𝐹 ≀ 𝐻, see [595, Lemma 3.21].
(In the statement of [595, Lemma 3.21] the assumption countable appears but the
proof goes through in the general case without modification.) A finitely generated
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free group satisfies the Full Farrell-Jones Conjecture 13.30 by [89, Remark 6.4]
and [185, Theorem 1.6 (3)], since it is a hyperbolic group. Hence 𝐹 satisfies the Full
Farrell-Jones Conjecture 13.30 by assertion (vi). We conclude from assertion (iii)
that 𝐹 ≀ 𝐻 satisfies the Full Farrell-Jones Conjecture 13.30. Hence pr−1 (𝐶) satisfies
the Full Farrell-Jones Conjecture 13.30 for every cyclic subgroup 𝐶 ⊆ 𝐺1 × 𝐺2 by
assertion (i). The product𝐺1×𝐺2 satisfies the Full Farrell-Jones Conjecture 13.30 by
assertion (iv). Now assertion (v) implies that 𝐺1 ∗𝐺2 satisfies the Full Farrell-Jones
Conjecture 13.30. ⊓⊔
Exercise 13.33. Consider an epimorphism of groups 𝐺 → 𝑄 whose kernel is finite.
Suppose that 𝑄 satisfies the Full Farrell-Jones Conjecture 13.30.

Show that 𝐺 satisfies the Full Farrell-Jones Conjecture 13.30.

Exercise 13.34. Suppose that the Full Farrell-Jones Conjecture 13.30 holds for all
groups that occur as fundamental groups of connected orientable closed 4-manifolds.

Show that then the Full Farrell-Jones Conjecture 13.30 holds for all groups.

13.8 Splitting the Assembly Map from FIN to VCY

In the sequel we denote for two families F ⊆ G by

(13.35) 𝜄F⊆G : 𝐸F (𝐺) → 𝐸G (𝐺)

the up to 𝐺-homotopy unique 𝐺-map. Note that 𝜄F⊆ALL : 𝐸F (𝐺) → 𝐸ALL (𝐺) =
𝐺/𝐺 is the projection.

Theorem 13.36 (Splitting the 𝐾-theoretic assembly map from FIN toVCY).
Let 𝐺 be a group.

(i) Let A be an additive 𝐺-category. Let 𝑛 be any integer.
Then

𝐻𝐺𝑛
(
𝜄FIN⊆VCY ; KA

)
: 𝐻𝐺𝑛

(
𝐸FIN (𝐺); KA

)
→ 𝐻𝐺𝑛

(
𝐸VCY (𝐺); KA

)
is split injective. In particular, we have an isomorphism

𝐻𝐺𝑛
(
𝐸VCY (𝐺); KA

) �−→ 𝐻𝐺𝑛
(
𝐸FIN (𝐺); KA

)
⊕ 𝐻𝐺𝑛

(
𝜄FIN⊆VCY ; KA

)
;

(ii) Let C be a right exact 𝐺-∞-category. Let 𝑛 be any integer.
Then

𝐻𝐺𝑛
(
𝜄FIN⊆VCY ; KC

)
: 𝐻𝐺𝑛

(
𝐸FIN (𝐺); KC

)
→ 𝐻𝐺𝑛

(
𝐸VCY (𝐺); KC

)
is split injective.

Proof. (i) See [94, Theorem 1.3].
(ii) This follows from [183, Corollary 1.13] and [180, Theorem 1.1.5]. ⊓⊔
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For 𝐿-theory one has at least the following version that is mentioned after The-
orem 1.3 in [94] for rings. The argument carries over to additive 𝐺-categories with
involution.

Theorem 13.37 (Splitting the 𝐿-theoretic assembly map from FIN to VCY).
Let A be an additive 𝐺-category with involution such that there exists an integer
𝑁with the property that 𝜋𝑛

(
KA (𝐼 (𝑉))

)
= 0 for all virtually cyclic subgroups 𝑉 of

𝐺 and all 𝑛 ≤ 𝑁 .
Then

𝐻𝐺𝑛
(
𝜄FIN⊆VCY ; L⟨−∞⟩A

)
: 𝐻𝐺𝑛

(
𝐸FIN (𝐺); L⟨−∞⟩A

)
→ 𝐻𝐺𝑛

(
𝐸VCY (𝐺); L⟨−∞⟩A

)
is split injective.

It is not clear whether the condition about 𝜋𝑛
(
KA (𝐼 (𝑉))

)
appearing in Theo-

rem 13.37, which is needed for the proposed proof, is necessary. If we consider
group rings 𝑅𝐺, this condition is automatically satisfied if one of the following
conditions holds:

• The ring 𝑅 is regular and the order of every finite subgroup of 𝐺 is invertible in 𝑅;
• The ring 𝑅 is the ring of integers in an algebraic number field;
• The ring 𝑅 is Artinian.

13.9 Rationally Splitting the Assembly Map from TR to FIN

Lemma 13.38. Let 𝐺 be a group and let 𝑅 be a ring (with involution).
Then the relative assembly maps

𝐻𝑛 (𝜄TR⊆FIN ; K𝑅) : 𝐻𝑛 (𝐸TR (𝐺); K𝑅) → 𝐻𝑛 (𝐸FIN (𝐺); K𝑅);
𝐻𝑛 (𝜄TR⊆FIN ; L⟨−∞

𝑅
) : 𝐻𝑛 (𝐸TR (𝐺); L⟨−∞

𝑅
) → 𝐻𝑛 (𝐸FIN (𝐺); L⟨−∞

𝑅
);

𝐾𝐺𝑛 (𝜄TR⊆FIN) : 𝐾𝐺𝑛 (𝐸TR (𝐺)) → 𝐾𝐺𝑛 (𝐸FIN (𝐺));
𝐾𝑂𝐺𝑛 (𝜄TR⊆FIN) : 𝐾𝑂𝐺𝑛 (𝐸TR (𝐺)) → 𝐾𝑂𝐺𝑛 (𝐸FIN (𝐺)),

are split injective after applying − ⊗Z Q for 𝑛 ∈ Z.

Proof. This follows Lemma 12.18 (ii). ⊓⊔

Remark 13.39. Note that Lemma 13.38 is only stated in the case when we consider
the untwisted coefficients rings 𝑅. It is conceivable that it also holds in the case where
we allow a twisting 𝛼 : 𝐺 → aut(𝑅), but the details of a proof of this statement have
not been worked out in detail and are definitely more complicated than the untwisted
case, see Remark 12.95.

The proof of Lemma 13.38 carries over to additive categories and right-exact
∞-categories as coefficients provided that the 𝐺-actions on these are trivial.
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Example 13.40 (The 𝐿-theory assembly map for the trivial family is not injective
in general). Consider the group Z/3. Then

𝐻1 (𝐵Z/3; L(Z)) → 𝐿1 (Z[Z/3])

is not injective. Namely, the target is known to be trivial, but the source is non-trivial.
This can be seen by inspecting the Atiyah-Hirzebruch spectral sequence converging
to 𝐻𝑝+𝑞 (𝐵Z/3; L(Z)) with 𝐸2-term

𝐻𝑝 (𝐵Z/3, 𝐿𝑞 (Z)) =

Z/3 𝑝 ≥ 1, 𝑝 odd, 𝑞 ≡ 0 mod 4;
𝐿𝑞 (Z) 𝑝 = 0;
0 otherwise.

Note that Wh(Z/3), 𝐾0 (Z[Z/3]), and 𝐾𝑛 (Z[Z/3]) for 𝑛 ≤ −1 vanish by Theo-
rem 3.115, Theorem 3.116 (iva), Theorem 4.22 (i) and (v), and Example 2.107 so
that the decorations for the 𝐿-groups do not play a role by Theorem 9.106.

Example 13.41 (The𝐾-theory assembly map for the trivial family is not injective
in general). An easy calculation using the Atyiah-Hirzebruch spectral sequence
shows that the𝐾-theoretic assembly map𝐻𝑛 (𝜄TR⊆FIN ; K𝑅) : 𝐻𝑛 (𝐸TR (𝐺); K𝑅) →
𝐻𝑛 (𝐸FIN (𝐺); K𝑅) is not injective if 𝑛 = 2, 𝐺 = Z/2 × Z/2 and 𝑅 = F𝑝 for an odd
prime 𝑝, see [961]. No such example is known to the author for 𝑅 = Z.

13.10 Reducing the Family of Subgroups for the Farrell-Jones
Conjecture

Next we explain that one can sometimes reduce the family of virtually cyclic sub-
groupsVCY to a smaller family.

A virtually cyclic group 𝑉 is called of type I if it admits an epimorphism to the
infinite cyclic group, and of type II if it admits an epimorphism onto the infinite
dihedral group. The elementary proof of the following result can be found in [685,
Lemma 1.1].

Lemma 13.42. Let 𝑉 be an infinite virtually cyclic group.
(i) 𝑉 is either of type I or of type II;

(ii) The following assertions are equivalent:

(a) 𝑉 is of type I;
(b) 𝐻1 (𝑉) is infinite;
(c) 𝐻1 (𝑉)/tors(𝑉) is infinite cyclic;
(d) The center of 𝑉 is infinite;

(iii) There exists a unique maximal normal finite subgroup 𝐾𝑉 ⊆ 𝑉 , i.e., 𝐾𝑉 is a
finite normal subgroup and every normal finite subgroup of 𝑉 is contained in
𝐾𝑉 ;
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(iv) Let 𝑄𝑉 := 𝑉/𝐾𝑉 . Then we obtain a canonical exact sequence

1→ 𝐾𝑉
𝑖𝑉−−→ 𝑉

𝑝𝑉−−→ 𝑄𝑉 → 1.

Moreover,𝑄𝑉 is infinite cyclic if and only if 𝑉 is of type I and𝑄𝑉 is isomorphic
to the infinite dihedral group if and only if 𝑉 is of type II;

(v) Let 𝑓 : 𝑉 → 𝑄 be any epimorphism onto the infinite cyclic group or onto the
infinite dihedral group. Then the kernel of 𝑓 agrees with 𝐾𝑉 ;

Exercise 13.43. Let 𝜙 : 𝑉 → 𝑊 be a homomorphism of infinite virtually cyclic
groups with infinite image. Then 𝜙 maps 𝐾𝑉 to 𝐾𝑊 and we obtain the following
canonical commutative diagram with exact rows

1 // 𝐾𝑉
𝑖𝑉 //

𝜙𝐾

��

𝑉
𝑝𝑉 //

𝜙

��

𝑄𝑉 //

𝜙𝑄

��

1

1 // 𝐾𝑊
𝑖𝑊 // 𝑊

𝑝𝑊 // 𝑄𝑊 // 1

with injective 𝜙𝑄.

Exercise 13.44. Show that a group 𝐺 is infinite virtually cyclic if and only if it
admits a proper cocompact isometric action on R.

In the sequel we denote by VCY𝐼 the family of subgroups that are either finite
or infinite virtually cyclic of type I.

Definition 13.45 (Hyperelementary group). Let 𝑝 be a prime. A (possibly infinite)
group 𝐺 is called 𝑝-hyperelementary if it can be written as an extension 1→ 𝐶 →
𝐺 → 𝑃→ 1 for a cyclic group 𝐶 and a finite group 𝑃 whose order is a power of 𝑝.

We call 𝐺 hyperelementary if 𝐺 is 𝑝-hyperelementary for some prime 𝑝.

If 𝐺 is finite, this reduces to the usual definition. Note that for a finite
𝑝-hyperelementary group 𝐺 one can arrange that the order of the finite cyclic
group 𝐶 appearing in the extension 1 → 𝐶 → 𝐺 → 𝑃 → 1 for a finite 𝑝-group
𝑃 is prime to 𝑝. Subgroups and quotient groups of 𝑝-hyperelementary groups are
𝑝-hyperelementary again. For a group 𝐺 and a prime 𝑝 let HE𝑝 and HE respec-
tively be the class of (possibly infinite) subgroups that are 𝑝-hyperelementary or
hyperelementary respectively.

The following result is taken from [72, Theorem 8.2].

Theorem 13.46 (Hyperelementary induction). Let 𝐺 be a group and letA be an
additive 𝐺-category (with involution). Then both relative assembly maps

𝐻𝑛 (𝜄HE,VCY ; KA) : 𝐻𝐺𝑛
(
𝐸HE (𝐺); KA

)
→ 𝐻𝐺𝑛

(
𝐸VCY (𝐺); KA

)
and

𝐻𝑛 (𝜄HE,VCY ; L⟨−∞⟩A ) : 𝐻𝐺𝑛
(
𝐸HE (𝐺); L⟨−∞⟩A

)
→ 𝐻𝐺𝑛

(
𝐸VCY (𝐺); L⟨−∞⟩A

)
induced by the up to 𝐺-homotopy unique 𝐺-map 𝜄HE,VCY ; 𝐸HE (𝐺) → 𝐸VCY (𝐺)
are bijective for all 𝑛 ∈ Z.
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13.10.1 Reducing the Family of Subgroups for the Farrell-Jones Conjecture
for 𝑲-Theory

Theorem 13.47 (Passage fromVCY𝐼 toVCY for 𝐾-theory). Let 𝐺 be a group.

(i) Let A be an additive 𝐺-category. Then the relative assembly map

𝐻𝐺𝑛
(
𝜄VCY𝐼⊆VCY ; KA

)
: 𝐻𝐺𝑛

(
𝐸VCY𝐼 (𝐺); KA

)
→ 𝐻𝑛

(
𝐸VCY (𝐺); KA

)
is bijective for all 𝑛 ∈ Z;

(ii) Let C be a right exact 𝐺-∞-category. Then the relative assembly map

𝐻𝐺𝑛
(
𝜄VCY𝐼⊆VCY ; KC

)
: 𝐻𝐺𝑛

(
𝐸VCY𝐼 (𝐺); KC

)
→ 𝐻𝑛

(
𝐸VCY (𝐺); KC

)
is bijective for all 𝑛 ∈ Z;

Proof. (i) See [285, Remark 1.6].
(ii) The argument for assertion (i) goes through, since the 𝐾-theoretic Farrell-
Jones Conjecture 13.23 with coefficients in higher 𝐺-categories holds for finitely
F -amenable groups, actually for finitely homotopy F -amenable groups, see [185,
Theorem 5.1]. ⊓⊔

Theorem 13.48 (Passage from HE𝐼 to VCY for 𝐾-theory and additive
𝐺-categories as coefficients). Let 𝐺 be a group and A be an additive 𝐺-category.
LetHE𝐼 be the family of subgroups of 𝐺 given by the intersectionVCY𝐼 ∩HE.

Then the relative assembly map

𝐻𝐺𝑛
(
𝜄HE𝐼⊆VCY ; KA

)
: 𝐻𝐺𝑛

(
𝐸HE𝐼 (𝐺); KA

)
→ 𝐻𝑛

(
𝐸VCY (𝐺); KA

)
is bijective for all 𝑛 ∈ Z.

Proof. This follows from Theorem 13.46, Theorem 13.47 (ii), Theorem 15.9 (ii), and
Lemma 15.14. ⊓⊔

Theorem 13.48 implies that we get equivalent conjectures if we replace in Con-
jectures 13.1, 13.2, and 13.11 the familyVCY by the smaller familyHE𝐼 .

Exercise 13.49. Fix a prime 𝑝. Show that an infinite subgroup 𝐻 ⊂ 𝐺 belongs to
HE𝑝 ∩ VCY𝐼 if and only if 𝐻 is isomorphic to 𝑃 ⋊𝜙 Z for some finite 𝑝-group 𝑃
and an automorphism 𝜙 : 𝑃→ 𝑃 whose order is a power of 𝑝.

Exercise 13.50. Let 𝑝 be a prime. Let 𝐺 be an infinite virtually cyclic group of type
I that is 𝑝-hyperelementary. Let 𝑅 be a regular ring.

Show that the map induced by the projection pr : 𝐸FIN (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅) = 𝐾𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z after applying − ⊗Z Z[1/𝑝].
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Theorem 13.51 (Reduction to the family FIN for algebraic 𝐾-theory with reg-
ular rings as coefficients). Let 𝐺 be a group and let 𝑅 be a regular ring coming
with a homomorphism 𝐺 → aut(𝑅). Let P(𝐺, 𝑅) be the set of primes which are not
invertible in 𝑅 and for which 𝐺 contains an element of order 𝑝.

Then for all 𝑚 ∈ Z the assembly map

𝐻𝐺𝑚 (𝐸FIN (𝐺); K𝑅) → 𝐻𝐺𝑚 (𝐸VCY (𝐺); K𝑅)

is an P(𝐺, 𝑅)-isomorphism, i.e., it becomes an isomorphism after inverting all
primes in P(𝐺, 𝑅).

Proof. See [666, Theorem 1.2]. Actually, additive categories with coefficients are
treated in [666, Theorem 9.1]. ⊓⊔

Exercise 13.52. Let 𝐺 be a group and let 𝑅 be a regular ring. Suppose that Q ⊆ 𝑅
or that 𝐺 is torsionfree.

Then for all 𝑚 ∈ Z the assembly map

𝐻𝐺𝑚 (𝐸FIN (𝐺); K𝑅) → 𝐻𝐺𝑚 (𝐸VCY (𝐺); K𝑅)

is an isomorphism.

One can reduce the families by extending the classical induction theorems for
finite groups due to Dress to our setting. This is carried out in detail in [76]. There
only rings as coefficients are treated but the proofs carry over to the setting of additive
𝐺-categories. For instance, for 𝐾-theory one has to extend the relevant pairing of
the Swan group for group rings to additive categories. We leave the details to the
reader and just record some results. Recall that FCY is the family of finite cyclic
subgroups.

Theorem 13.53 (Reductions to families contained in FIN for algebraic
𝐾-theory with rings as coefficients). Let 𝐺 be a group and 𝑅 be a ring.

(i) Then the relative assembly map

𝐻𝐺𝑛
(
𝜄(HE∩FIN)⊆FIN ; K𝑅

)
: 𝐻𝐺𝑛

(
𝐸HE∩FIN (𝐺); K𝑅

) �−→ 𝐻𝑛
(
𝐸FIN (𝐺); K𝑅

)
is bijective for all 𝑛 ∈ Z;

(ii) Let 𝑝 be a prime. Then the relative assembly map

𝐻𝐺𝑛
(
𝜄(HE𝑝∩FIN)⊆FIN ; K𝑅

)
: 𝐻𝐺𝑛

(
𝐸HE𝑝∩FIN (𝐺); K𝑅

)
→ 𝐻𝑛

(
𝐸FIN (𝐺); K𝑅

)
is bijective for all 𝑛 ∈ Z after applying Z(𝑝) ⊗Z −;

(iii) The relative assembly map

𝐻𝐺𝑛
(
𝜄FCY⊆FIN ; K𝑅

)
: 𝐻𝐺𝑛

(
𝐸FCY (𝐺); K𝑅

)
→ 𝐻𝑛

(
𝐸FIN (𝐺); K𝑅

)
is bijective for all 𝑛 ∈ Z after applying Q ⊗Z −.
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Proof. By the Transitivity Principle, see Theorem 15.13, it suffices to prove the asser-
tions only in the special case where 𝐺 is finite and in particular 𝐻𝑛

(
𝐸FIN (𝐺); K𝑅

)
reduces to 𝐾𝑛 (𝑅𝐺). Then the claim follows from [76, Theorem 2.9 and Lemma 4.1].

⊓⊔

Note that in Theorem 13.53 we consider only rings with trivial 𝐺-action. It is
conceivable that it carries over to twisted group rings and, more generally, to additive
𝐺-categories, but we have not checked the details of a proof of this claim.

Next we state and prove the following results, which will be needed for the proof
of Theorem 13.65 (v).

Lemma 13.54. Consider a ring 𝑅, a group 𝐺, and 𝑚 ∈ Z. Suppose that, for every
finite group 𝐻 and every group automorphism 𝜙 : 𝐻 �−→ 𝐻 with the property that the
semidirect product 𝐻⋊ΦZ is isomorphic to a subgroup of𝐺, and every 𝑛 ∈ Z, 𝑛 ≥ 0,
the assembly map

𝐻
𝐻⋊𝜙Z
𝑚 (𝐸Z; K𝑅[Z𝑛 ]) → 𝐻

𝐻⋊𝜙Z
𝑚 ({•}; K𝑅[Z𝑛 ]) = 𝐾𝑚 ((𝑅[Z𝑛]) [𝐻 ⋊𝜙 Z])

is an isomorphism where we consider the Z-𝐶𝑊-complex 𝐸Z as a 𝐻 ⋊𝜙 Z-𝐶𝑊-
complex by restriction with the projection 𝐻 ⋊𝜙 Z→ Z.

Then the canonical map

𝐻𝐺𝑖 (𝐸FIN (𝐺),K𝑅)
�−→ 𝐻𝐺𝑖 (𝐸VCY (𝐺),K𝑅)

is bijective for 𝑖 ≤ 𝑚.

Proof. Theorem 13.47 implies that for 𝑖 ∈ Z the map

𝐻𝐺𝑖 (𝐸VCY𝐼 (𝐻 ⋊𝜙 Z),K𝑅) → 𝐻𝐺𝑖 (𝐸VCY (𝐻 ⋊𝜙 Z),K𝑅)

is bijective. Hence it suffices to show that, for 𝑖 ∈ Z with 𝑖 ≤ 𝑚, the canonical map

𝐻𝐺𝑖 (𝐸FIN (𝐺),K𝑅)
�−→ 𝐻𝐺𝑖 (𝐸VCY𝐼 (𝐺),K𝑅)

is bijective. Thanks to the Transitivity Principle appearing in Theorem 15.12, this
has only to be done in the special case where 𝐺 is a virtually cyclic group of type 𝐼.

Consider any finite group 𝐻 and any group automorphism 𝜙 : 𝐻 �−→ 𝐻. Since 𝐸Z
with the 𝐻 ⋊𝜙 Z action coming from restriction with the projection 𝐻 ⋊𝜙 Z→ Z is
a model for 𝐸FIN (𝐻 ×𝜙 Z) and {•} is a model for 𝐸VCY𝐼 (𝐻 ×𝜙 Z), it remains to
show that the assembly map

𝐻
𝐻⋊𝜙Z
𝑖

(𝐸Z; K𝑅) → 𝐻
𝐻⋊𝜙Z
𝑖

({•}; K𝑅) = 𝐾𝑖 (𝑅[𝐻 ⋊𝜙 Z])

is bijective for 𝑖 ≤ 𝑚. This will be achieved by proving inductively for 𝑛 = 0, 1, 2, . . .
that this map is bijective for 𝑚 − 𝑛 ≤ 𝑖 ≤ 𝑚 provided that 𝐻𝐻⋊𝜙Z

𝑚 (𝐸Z; K𝑅[Z𝑛 ]) →
𝐻
𝐻⋊𝜙Z
𝑚 ({•}; K𝑅[Z𝑛 ]) is bijective.
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The induction beginning 𝑛 = 0 is trivial. The induction step from (𝑛 − 1) to 𝑛 is
done as follows. The Bass-Heller-Swan decomposition for the ring 𝑅[Z𝑛−1] can be
implemented on the spectrum level, see for instance [684, Theorem 4.2], and yields
because of the identity (𝑅[Z𝑛−1]) [Z] = 𝑅[Z𝑛] for every 𝐻 ⋊𝜙 Z-𝐶𝑊-complex 𝑋
and every 𝑖 ∈ Z an isomorphism, natural in 𝑋 ,

𝐻
𝐻⋊𝜙Z
𝑚 (𝑋; K𝑅[Z𝑛−1 ]) ⊕ 𝐻

𝐻⋊𝜙Z
𝑚−1 (𝑋; K𝑅[Z𝑛−1 ]) ⊕ 𝐻

𝐻⋊𝜙Z
𝑚 (𝑋; NK𝑅[Z𝑛−1 ])

⊕ 𝐻𝐻⋊𝜙Z
𝑚 (𝑋; NK𝑅[Z𝑛−1 ])

�−→ 𝐻
𝐻⋊𝜙Z
𝑚 (𝑋; K𝑅[Z𝑛 ]).

Since a direct sum of isomorphisms is again an isomorphism and we can apply the
latter isomorphism to 𝑋 = 𝐸Z and 𝑋 = {•}, the map

𝐻
𝐻⋊𝜙Z
𝑘

(𝐸Z; K𝑅[Z𝑛−1 ]) → 𝐻
𝐻⋊𝜙Z
𝑘

(𝐸{•}; K𝑅[Z𝑛−1 ])

is bijective for 𝑘 = 𝑚 − 1, 𝑚. Now the induction hypothesis implies that

𝐻
𝐻⋊𝜙Z
𝑖

(𝐸Z; K𝑅) → 𝐻
𝐻⋊𝜙Z
𝑖

({•}; K𝑅)

is bijective for 𝑚 − 𝑛 ≤ 𝑖 ≤ 𝑚. This finishes the proof of Lemma 4.14. ⊓⊔

Consider a ring 𝑅 together with a ring automorphism Ψ : 𝑅 �−→ 𝑅. We can think
of Ψ as a group homomorphism Ψ : Z → aut(𝑅). For a subgroup 𝐿 ⊆ Z, let
K(𝑅𝜓 |𝐿 [𝐿]) be the non-connective algebraic 𝐾-theory spectrum of the Ψ|𝐿-twisted
group ring of 𝐿with coefficient in 𝑅 for the group homomorphismΨ|𝐿 : 𝐿 → aut(𝑅).
We obtain a covariant Or(Z)-spectrum K𝑅,Ψ by sending Z/𝐿 to K(𝑅Ψ |𝐿 [𝐿]). Note
that for two subgroups 𝐿, 𝐿′ ⊆ Z the set morOr(Z) (Z/𝐿,Z/𝐿′) is empty if 𝐿 ⊈ 𝐿′,
and consists of precisely one element, the canonical projection Z/𝐿 → Z/𝐿′ if
𝐿 ⊆ 𝐿′. In the case 𝐿 ⊆ 𝐿′ the functor K𝑅,Ψ sends this morphism to the map of
spectra induced by the inclusion of rings 𝑅Ψ |𝐿 [𝐿] → 𝑅Ψ |𝐿′ [𝐿′].

Lemma 13.55. Let 𝑅 be a regular ring and Ψ : 𝑅 → 𝑅 be a ring automorphism.
Then the map

𝐻Z
𝑚 (𝐸Z; K𝑅,Ψ) → 𝐻Z

𝑚 ({•}; K𝑅,Ψ) = 𝐾𝑚 (𝑅Ψ [Z])

is an isomorphisms for all 𝑚 ∈ Z.

Proof. This is a special case of Theorem 13.51 but we describe as an illustration a
more elementary proof.

There is a twisted Bass-Heller-Swan decomposition for non-negative 𝐾-theory,
see [686, Theorem 0.1], which reduces to the desired isomorphism if the twisted
Nil terms 𝑁𝐾𝑚 (𝑅,Ψ) vanish for 𝑚 ∈ Z. By inspecting the definition of the non-
connective𝐾-theory spectrum of [684] one sees that it suffices to show the bijectivity

𝐻Z
𝑚 (𝐸Z; K𝑅[Z𝑛 ],Ψ[Z𝑛 ]) → 𝐻Z

𝑚 ({•}; K𝑅[Z𝑛 ],Ψ[Z𝑛 ]) = 𝐾𝑚 ((𝑅[Z𝑛])Ψ[Z𝑛 ] [Z])
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for all 𝑛, 𝑚 ∈ Z with 𝑚 ≥ 1 and 𝑛 ≥ 0. Since 𝑅 is regular, Theorem 3.80 (ii) shows
that 𝑅[Z𝑛] is regular for every 𝑛 ≥ 0. Hence it suffices to prove Lemma 13.55 only
for 𝑚 ≥ 1. This has already be done by Waldhausen [974, Theorem 4 on page 138
and the Remark on page 216]. One may also refer to [436, Remark on page 362].

One may also refer for the proof of Lemma 13.55 to [85, Theorem 7.8 and
Theorem 10.1], where more generally additive categories are treated. ⊓⊔

Regard a group𝐻 together with an automorphism 𝜙 : 𝐻 → 𝐻. Let 𝑝 : 𝐻 ⋊Z Z→ Z
be the projection. Then we get from the adjunction between 𝑝∗ and 𝑝∗, see [280,
Lemma 1.9], for every Z-𝐶𝑊-complex 𝑋 and all 𝑚, 𝑛 ∈ Z, 𝑛 ≥ 0 an isomorphism,
natural in 𝑋

(13.56) 𝐻
𝐻⋊𝜙Z
𝑚 (𝑝∗𝑋; K𝑅[Z𝑛 ])

�−→ 𝐻Z
𝑚 (𝑋; 𝑝∗K𝑅[Z𝑛 ]).

From the definitions we get

𝑝∗K𝑅[Z𝑛 ] (Z/𝐿) = K𝑅[Z𝑛 ] ((𝐻 ⋊𝜙 Z)/𝑝−1 (𝐿)) = K(𝑅[Z𝑛] [𝐻 ⋊𝜙 |𝐿 𝐿])

for any object Z/𝐿 in Or(Z). Let Φ : 𝑅𝐻 → 𝑅𝐻 be the ring automorphism induced
by 𝜙. It yields a ring automorphism Φ[Z𝑛] : 𝑅𝐻 [Z𝑛] → 𝑅𝐻 [Z𝑛]. We have defined
a covariant Or(Z)-spectrum K𝑅𝐻 [Z𝑛 ],Φ[Z𝑛 ] before Lemma 13.55, just take Ψ =

Φ[Z𝑛]. There is a weak equivalence of covariant Or(Z)-spectra

K𝑅𝐻 [Z𝑛 ],Φ[Z𝑛 ]
�−→ 𝑝∗K𝑅[Z𝑛 ]

coming from the identification 𝑅[𝐻] [Z𝑛]Φ |𝐿 [Z𝑛 ] [𝐿] = 𝑅[Z𝑛] [𝐻 ⋊𝜙 |𝐿 𝐿]. This
implies using [280, Theorem 3.11] that the next lemma is true.

Lemma 13.57. We get for every Z-𝐶𝑊-complex 𝑋 and all 𝑚, 𝑛 ∈ Z, 𝑛 ≥ 0 an
isomorphism, natural in 𝑋

𝐻Z
𝑚 (𝑋; K𝑅𝐻 [Z𝑛 ],Φ[Z𝑛 ])

�−→ 𝐻
𝐻×𝜙Z
𝑚 (𝑝∗𝑋; K𝑅[Z𝑛 ]).

Lemma 13.58. Let 𝐻 be a finite group and let 𝜙 : 𝐻 �−→ 𝐻 be an automorphism. Let
𝑅 be an Artinian ring. Then the map

𝐻
𝐻⋊𝜙Z
0 (𝐸Z; K𝑅[Z𝑛 ]) → 𝐻

𝐻⋊𝜙Z
0 ({•}; K𝑅[Z𝑛 ]) = 𝐾0 ((𝑅[Z𝑛]) [𝐻 ⋊𝜙 Z])

is an isomorphisms for all 𝑛 ∈ Z, 𝑛 ≥ 0.

Proof. We conclude from Lemma 13.57 that it remains to show that the map

𝐻Z
0 (𝐸Z; K𝑅𝐻 [Z𝑛 ],Φ[Z𝑛 ]) → 𝐻Z

0 ({•}; K𝑅𝐻 [Z𝑛 ],Φ[Z𝑛 ]) = 𝐾0 (𝑅𝐻 [Z𝑛]Φ[Z𝑛 ] [Z])

is bijective for all 𝑛 ≥ 1.
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Denote by 𝐽 ⊆ 𝑅𝐻 the Jacobson radical of 𝑅𝐻. Since 𝑅𝐻 is Artinian, 𝐽 is
nilpotent, i.e., there exists a natural number𝑚with 𝐽𝑚 = {0}, see [610, Theorem 4.12
on page 56]. The ring 𝑅𝐻/𝐽 is a semisimple Artinian ring, see [610, Definition 20.1
on page 311 and (20.3) on page 312], and in particular regular.

The ring automorphismΦ : 𝑅𝐻 → 𝑅𝐻 induced by 𝜙 obviously satisfiesΦ(𝐽) = 𝐽
and hence induces a ring automorphism Φ : 𝑅𝐻/𝐽 → 𝑅𝐻/𝐽. Hence we get a
commutative diagram induced by the projection 𝑅𝐻 → 𝑅𝐻/𝐽.

(13.59) 𝐻Z
0 (𝐸Z; K𝑅𝐻 [Z𝑛 ],Φ[Z𝑛 ]) //

��

𝐾0 (𝑅𝐻 [Z𝑛]Φ[Z𝑛 ] [Z])

��
𝐻Z

0 (𝐸Z; K(𝑅𝐻/𝐽 ) [Z𝑛 ],Φ[Z𝑛 ]) // 𝐾0 ((𝑅𝐻/𝐽) [Z𝑛]Φ[Z𝑛 ] [Z]).

We have the short exact sequence of abelian groups 0→ 𝐽 → 𝑅𝐻 → 𝑅𝐻/𝐽 → 0.
It induces a short exact sequence of abelian groups

0→ 𝐽 [Z𝑛]Φ[Z𝑛 ] |𝐽 [Z𝑛 ] [Z] → 𝑅𝐻 [Z𝑛]Φ[Z𝑛 ] [Z] → (𝑅𝐻/𝐽) [Z𝑛]Φ[Z𝑛 ] [Z] → 0.

Hence we can identify the ring (𝑅𝐻/𝐽) [Z𝑛]
Φ[Z𝑛 ] [Z] with the quotient of the ring

𝑅𝐻 [Z𝑛]Φ[Z𝑛 ] [Z] by the ideal 𝐽 [Z𝑛]Φ[Z𝑛 ] |𝐽 [Z𝑛 ] [Z]. Recall that an ideal 𝐼 in a ring
is nilpotent if and only if there is a natural number 𝑙 such that for any collection of
𝑙 elements 𝑖1, 𝑖2, . . . 𝑖𝑙 in 𝐼 the product 𝑖1𝑖2 · · · 𝑖𝑙 vanishes. Since 𝐽 is nilpotent, we
conclude that the ideal 𝐽 [Z𝑛] ⋊Φ[Z𝑛 ] |𝐽 [Z𝑛 ] [Z] is nilpotent. Hence the right vertical
arrow in the diagram (13.59) is bijective by Lemma 2.125.

Next we show that the left vertical arrow in the diagram (13.59) is bijective. Since
𝐸Z is a free Z-𝐶𝑊-complex, we conclude from the equivariant Atiyah-Hirzebruch
spectral sequence described in Theorem 12.48 that it suffices to show for every 𝑖 that
the map 𝐾𝑖 (𝑅𝐻 [Z𝑛]) → 𝐾𝑖 ((𝑅𝐻/𝐽) [Z𝑛]) is bijective for all 𝑖 ≤ 0.

Since 𝐽 is a nilpotent two-sided ideal of 𝑅𝐻, 𝐽 [Z𝑛] is a nilpotent two-sided
ideal of 𝑅𝐻 [Z𝑛]. We can identify (𝑅𝐻/𝐽) [Z𝑛] with (𝑅𝐻 [Z𝑛])/(𝐽 [Z𝑛]). Hence
𝐾0 (𝑅𝐻 [Z𝑛]) → 𝐾0 ((𝑅𝐻/𝐽) [Z𝑛]) is bijective by Lemma 2.125. We conclude
𝐾𝑖 (𝑅𝐻 [Z𝑛]) = 0 for 𝑖 ≤ −1 from Theorem 4.16 (ii). Since 𝑅𝐻/𝐽 is regular and
hence 𝑅𝐻/𝐽 [Z𝑛] is regular by Theorem 3.80 (ii), we conclude from Theorem 4.7
that 𝐾𝑖 ((𝑅𝐻/𝐽) [Z𝑛]) = 0 for 𝑖 ≤ −1. Hence the left vertical arrow in the dia-
gram (13.59) is bijective. The lower vertical arrow in the diagram (13.59) is bijective
because of Lemma 13.55 applied to the automorphism Φ[Z𝑛]. We conclude that the
upper vertical arrow in the diagram (13.59) is bijective. This finishes the proof of
Lemma 13.58 ⊓⊔



400 13 The Farrell-Jones Conjecture

13.10.2 Reducing the Family of Subgroups for the Farrell-Jones Conjecture
for 𝑳-Theory

Theorem 13.60 (Passage from FIN to VCY𝐼 for 𝐿-theory). Let 𝐺 be a group
and let A be an additive 𝐺-category with involution. Let 𝑛 be any integer. Then

𝐻𝐺𝑛
(
𝜄FIN⊆VCY𝐼 ; L⟨−∞⟩A

)
: 𝐻𝐺𝑛

(
𝐸FIN (𝐺); L⟨−∞⟩A

)
→ 𝐻𝐺𝑛

(
𝐸VCY𝐼 (𝐺); L⟨−∞⟩A

)
is bijective.

Proof. The argument given in [654, Lemma 4.2] goes through since it is based on
the Wang sequence for a semidirect product 𝐺 ⋊ Z, which can be generalized for
additive 𝐺-categories with involutions as coefficients. ⊓⊔

The last result is very useful when 𝐺 does not contain virtually cyclic subgroups
of type II since then one can replace in Conjectures 13.4, 13.7 and 13.19 the family
VCY by the family FIN . (This is not true for Conjecture 13.28 since 𝐺 ≀ 𝐹 for
a finite group 𝐹 may contain a virtually cyclic subgroup of type II even in the case
when 𝐺 does not contain a virtually cyclic subgroup of type II.)

Exercise 13.61. Consider the group extension 1 → 𝐹 → 𝐺
𝑓
−→ Z𝑑 → 1 for a

finite group 𝐹. Show that there exists a spectral sequence converging to 𝐿 ⟨−∞⟩𝑝+𝑞 (Z𝐺)
whose 𝐸2-term is given by 𝐻𝑝 (𝐶∗ (𝐸Z𝑑) ⊗Z[Z𝑑 ] 𝐿

⟨−∞⟩
𝑞 (Z𝐹)), where the Z𝑑-action

on 𝐿 ⟨−∞⟩𝑞 (Z𝐹) is induced by the conjugation action of 𝐺 on 𝐹.

Let 𝑝 be a prime. A finite group 𝐺 is called 𝑝-elementary if it is isomorphic to
𝐶 × 𝑃 for a cyclic group 𝐶 and a 𝑝-group 𝑃 such that the order |𝐶 | is prime to 𝑝.
Let E𝑝 be the class of finite subgroups that are 𝑝-elementary.

Theorem 13.62 (Bijectivity of the 𝐿-theoretic assembly map from FIN to
VCY after inverting 2). Let 𝐺 be a group and let 𝑅 be a ring with involution.

(i) The relative assembly map

𝐻𝐺𝑛
(
𝜄FIN⊆VCY ; L⟨−∞⟩

𝑅

)
: 𝐻𝐺𝑛

(
𝐸FIN (𝐺); L⟨−∞⟩

𝑅

)
→ 𝐻𝐺𝑛

(
𝐸VCY (𝐺); L⟨−∞⟩

𝑅

)
is bijective for all 𝑛 ∈ Z after applying Z[1/2] ⊗Z −;

(ii) Put
F =

⋃
𝑝 prime, 𝑝≠2

E𝑝

Then the relative assembly map

𝐻𝐺𝑛
(
𝜄F⊆FIN ; L⟨−∞⟩

𝑅

)
: 𝐻𝐺𝑛

(
𝐸F (𝐺); L⟨−∞⟩

𝑅

)
→ 𝐻𝑛

(
𝐸FIN (𝐺); L⟨−∞⟩

𝑅

)
is bijective for all 𝑛 ∈ Z
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Proof. (i) See [673, Proposition 74 on page 747].
(ii) This is a variation of the proof of assertion (ii) of Theorem 13.53 taking [76,
Section 15] into account. ⊓⊔

Theorem 13.62 shows that Conjecture 13.4 implies Conjecture 13.6 and hence
Conjecture 13.7 implies Conjecture 13.8.

Note that in Theorem 13.62 we consider only rings with involution with trivial
𝐺-action. It is conceivable that it carries over twisted group rings, but we have not
checked the details of a proof of this claim. It is unclear whether it carries over
to additive categories with involutions since UNil-terms have not been defined and
investigated for additive categories.

13.11 The Full Farrell-Jones Conjecture Implies All Its Variants

Recall that the Full Farrell-Jones Conjecture 13.30 implies the 𝐾-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution, see Remarks 13.12
and 13.20. In this section we give the proofs that Conjectures 13.2 and 13.7 imply
all the variants we have stated before at various places for rings as coefficients. So
the Full Farrell-Jones Conjecture is the “master” conjecture that implies all variants
stated in this book for rings as coefficients.

For the reader’s convenience we recall all these variants below before we show
how they follow from Full Farrell-Jones Conjecture 13.30.

13.11.1 List of Variants of the Farrell-Jones Conjecture

We begin with the 𝐾-theoretic variants.

Conjecture 2.60 (Farrell-Jones Conjecture for 𝐾0 (𝑅) for torsionfree 𝐺 and
regular 𝑅). Let 𝐺 be a torsionfree group and let 𝑅 be a regular ring. Then the map
induced by the inclusion of the trivial group into 𝐺

𝐾0 (𝑅)
�−→ 𝐾0 (𝑅𝐺)

is bijective.
In particular, we get for any principal ideal domain 𝑅 and torsionfree 𝐺

𝐾0 (𝑅𝐺) = 0.
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Conjecture 2.67 (Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for regular 𝑅 with Q ⊆
𝑅). Let 𝑅 be a regular ring with Q ⊆ 𝑅 and 𝐺 be a group.

Then the homomorphism

𝐼FIN (𝐺, 𝐹) : colim𝐻∈SubFIN (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺)

coming from the various inclusions of finite subgroups of 𝐺 into 𝐺 is a bijection.

Here is a stronger version of Conjecture 2.67.

Conjecture 2.69. (Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for regular 𝑅). Let 𝑅 be
a regular ring and let 𝐺 be a group. Let P(𝐺, 𝑅) be the set of primes which are not
invertible in 𝑅 and for which 𝐺 contains an element of order 𝑝.

Then the homomorphism

𝐼FIN (𝐺, 𝐹) : colim𝐻∈SubFIN (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺)

coming from the various inclusions of finite subgroups of 𝐺 into 𝐺 is a P(𝐺, 𝑅)-
isomorphism, i.e., an isomorphism after inverting all primes in P(𝐺, 𝑅).
Conjecture 2.72 (Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for an Artinian ring 𝑅).
Let 𝐺 be a group and 𝑅 be an Artinian ring. Then the canonical map

𝐼FIN (𝐺, 𝑅) : colim𝐻∈SubFIN (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺)

is an isomorphism.

Conjecture 2.103 (The rational 𝐾0 (Z𝐺)-to-𝐾0 (Q𝐺)-Conjecture). The change of
ring maps

Q ⊗Z 𝐾0 (Z𝐺) → Q ⊗Z 𝐾0 (Q𝐺)

is trivial.

Conjecture 3.109 (Farrell-Jones Conjecture for𝐾0 (𝑅𝐺) and𝐾1 (𝑅𝐺) for regular
𝑅 and torsionfree 𝐺). Let 𝐺 be a torsionfree group, and let 𝑅 be a regular ring.
Then the maps defined in (3.26) and (3.27)

𝐴0 : 𝐾0 (𝑅)
�−→ 𝐾0 (𝑅𝐺);

𝐴1 : 𝐺/[𝐺,𝐺] ⊗Z 𝐾0 (𝑅) ⊕ 𝐾1 (𝑅)
�−→ 𝐾1 (𝑅𝐺),

are both isomorphisms. In particular, the groups Wh𝑅0 (𝐺) and Wh𝑅1 (𝐺), see Defi-
nition 3.28, vanish.

Conjecture 3.110 (Farrell-Jones Conjecture for 𝐾0 (Z𝐺) and Wh(𝐺) for torsion-
free 𝐺). Let 𝐺 be a torsionfree group. Then 𝐾0 (Z𝐺) and Wh(𝐺) vanish.

Conjecture 4.18 (The Farrell-Jones Conjecture for negative 𝐾-theory and reg-
ular coefficient rings). Let 𝑅 be a regular ring and 𝐺 be a group such that for every
finite subgroup 𝐻 ⊆ 𝐺 the element |𝐻 | · 1𝑅 of 𝑅 is invertible in 𝑅. Then

𝐾𝑛 (𝑅𝐺) = 0 for 𝑛 ≤ −1.
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Conjecture 4.20 (The Farrell-Jones Conjecture for negative 𝐾-theory of the
ring of integers in an algebraic number field). Let 𝑅 be the ring of integers in an
algebraic number field. Then, for every group 𝐺, we have

𝐾𝑛 (𝑅𝐺) = 0 for 𝑛 ≤ −2,

and the map
colim𝐻∈SubFIN (𝐺) 𝐾−1 (𝑅𝐻)

� // 𝐾−1 (𝑅𝐺)

is an isomorphism.

Conjecture 4.21 (The Farrell-Jones Conjecture for negative 𝐾-theory and
Artinian rings as coefficient rings). Let 𝐺 be a group and let 𝑅 be an Artinian
ring. Then

𝐾𝑛 (𝑅𝐺) = 0 for 𝑛 ≤ −1.

Conjecture 5.22 (Farrell-Jones Conjecture for Wh2 (𝐺) for torsionfree 𝐺). Let
𝐺 be a torsionfree group. Then Wh2 (𝐺) vanishes.

Conjecture 6.53 (Farrell-Jones Conjecture for 𝐾-theory for torsionfree groups
and regular rings). Let 𝐺 be a torsionfree group. Let 𝑅 be a regular ring. Then the
assembly map

𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺)

is an isomorphism for 𝑛 ∈ Z.

Conjecture 6.59 (Nil-groups for regular rings and torsionfree groups). Let 𝐺 be
a torsionfree group and let 𝑅 be a regular ring. Then

𝑁𝐾𝑛 (𝑅𝐺) = 0 for all 𝑛 ∈ Z.

Conjecture 6.74 (Farrell-Jones Conjecture for homotopy 𝐾-theory for torsion-
free groups). Let 𝐺 be a torsionfree group. Then the assembly map

𝐻𝑛 (𝐵𝐺; KH(𝑅)) → 𝐾𝐻𝑛 (𝑅𝐺)

is an isomorphism for every 𝑛 ∈ Z and every ring 𝑅.

Conjecture 6.76 (Comparison of algebraic K-theory and homotopy 𝐾-theory
for torsionfree groups). Let 𝑅 be a regular ring and let 𝐺 be a torsionfree group.
Then the canonical map

𝐾𝑛 (𝑅𝐺) → 𝐾𝐻𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z.

Conjecture 13.1 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in the
ring 𝑅). Given a group 𝐺 and a ring 𝑅, we say that 𝐺 satisfies the 𝐾-theoretic
Farrell-Jones Conjecture with coefficients in the ring 𝑅 if the assembly map induced
by the projection pr : 𝐸VCY (𝐺) → 𝐺/𝐺
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𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅) = 𝐾𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z.

Conjecture 13.2 (𝐾-theoretic Farrell-Jones Conjecture with coefficients in
rings). We say that the group 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjec-
ture with coefficients in rings if the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in 𝑅 holds for every ring 𝑅.

Next we list the 𝐿-theoretic variants.

Conjecture 9.114 (Farrell-Jones Conjecture for 𝐿-theory for torsionfree groups).
Let 𝐺 be a torsionfree group. Let 𝑅 be any ring with involution.

Then the assembly map

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) → 𝐿
⟨−∞⟩
𝑛 (𝑅𝐺)

is an isomorphism for all 𝑛 ∈ Z.

Conjecture 13.4 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in the
ring with involution 𝑅). Given a group 𝐺 and ring with involution 𝑅, we say that 𝐺
satisfies the 𝐿-theoretic Farrell-Jones Conjecture with coefficients in the ring with
involution 𝑅 if the assembly map given by the projection 𝐸VCY (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩
𝑅
) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩

𝑅
) = 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z.

Conjecture 13.6 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in the
ring with involution 𝑅 after inverting 2). Given a group𝐺 and ring with involution
𝑅, we say that 𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture with coefficients
in the ring with involution 𝑅 after inverting 2 if the assembly map given by the
projection 𝐸FIN (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩
𝑅
) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩

𝑅
) = 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z after inverting 2.

Conjecture 13.7 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in rings
with involution). A group 𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture with
coefficients in rings with involution if the 𝐿-theoretic Farrell-Jones Conjecture 13.4
with coefficients in the ring with involution 𝑅 holds for every ring with involution
𝑅.

Conjecture 13.8 (𝐿-theoretic Farrell-Jones Conjecture with coefficients in rings
with involution after inverting 2). We say that a group 𝐺 satisfies the 𝐿-theoretic
Farrell-Jones Conjecture with coefficients in rings with involution after inverting 2
if the 𝐿-theoretic Farrell-Jones Conjecture 13.6 with coefficients in the ring with
involution 𝑅 after inverting 2 holds for every ring with involution 𝑅.
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Finally we mention the following Novikov type conjectures.

Conjecture 13.63 (𝐾-theoretic Novikov Conjecture). A group 𝐺 satisfies the
𝐾-theoretic Novikov Conjecture if the assembly map

𝐻𝑛 (𝐵𝐺; K(Z)) = 𝐻𝐺𝑛 (𝐸𝐺; K(Z)) → 𝐻𝐺𝑛 (𝐺/𝐺; K(Z)) = 𝐾𝑛 (Z𝐺)

is rationally injective for all 𝑛 ∈ Z.

Conjecture 13.64 (𝐿-theoretic Novikov Conjecture). A group 𝐺 satisfies the
𝐿-theoretic Novikov Conjecture if the assembly map

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) = 𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩ (Z))

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩ (Z)) = 𝐿
⟨−∞⟩
𝑛 (Z𝐺)

is rationally injective for all 𝑛 ∈ Z.

13.11.2 Proof of the Variants of the Farrell-Jones Conjecture

Theorem 13.65 (The Full Farrell-Jones Conjecture implies all other variants).

(i) The Full Farrell-Jones Conjecture 13.30 implies the 𝐾-theoretic Farrell-Jones
Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution;

(ii) The 𝐾-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings im-
plies Conjecture 6.53, whereas the 𝐿-theoretic Farrell-Jones Conjecture 13.7
with coefficients in rings with involutions implies Conjecture 13.8 and Conjec-
ture 9.114;

(iii) Conjecture 6.53 implies Conjectures 2.60, 3.109, and 3.110;
(iv) The𝐾-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings implies

Conjectures 2.67, 2.69, 2.103, and 4.18;
(v) The𝐾-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings implies

Conjectures 2.72 and 4.21;
(vi) The𝐾-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings implies

Conjecture 4.20;
(vii) Conjecture 6.53 implies Conjecture 5.22;

(viii) Conjecture 6.53 implies Conjecture 6.59;
(ix) The𝐾-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings implies

Conjectures 6.74 and 6.76;
(x) The 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring Z

implies the 𝐾-theoretic Novikov Conjecture 13.63;
(xi) The 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the ring Z

implies the 𝐿-theoretic Novikov Conjecture 13.64;
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(xii) The Full Farrell-Jones Conjecture 13.30 implies all other variants of the
Farrell-Jones Conjecture.

Proof. (i) See Remarks 13.12 and 13.20.
(ii) Conjecture 13.4 implies Conjecture 13.6 by Theorem 13.62 (i). Hence Conjec-
ture 13.7 implies Conjecture 13.8.

Next we show why Conjecture 13.2 implies Conjecture 6.53 and why Con-
jecture 13.7 implies Conjecture 9.114. Every torsionfree virtually cyclic group is
isomorphic to Z by Lemma 13.42. By the Transitivity Principle 15.13 applied to
TR ⊆ VCY it suffices to show that the assembly maps

𝐻Z
𝑛 (𝐸Z; K𝑅) → 𝐾𝑛 (𝑅Z);

𝐻Z
𝑛 (𝐸Z; L⟨−∞⟩

𝑅
) → 𝐿

⟨−∞⟩
𝑛 (𝑅Z),

are bijective for 𝑛 ∈ Z. This follows for 𝐾-theory from the Bass-Heller-Swan decom-
position, see Theorem 6.16, and for 𝐿-theory from the Shaneson splitting, see (9.109).
(iii) Since 𝑅 is regular, the negative 𝐾-groups of 𝑅 vanish by Theorem 4.7. Hence the
Atiyah-Hirzebruch spectral sequence, which has 𝐸2-term 𝐸2

𝑝,𝑞 = 𝐻𝑝 (𝐵𝐺;𝐾𝑞 (𝑅))
and converges to 𝐻𝑝+𝑞 (𝐵𝐺; K(𝑅)), is a first quadrant spectral sequence. The edge
homomorphism 𝐻0 (𝐵𝐺;𝐾0 (𝑅))

�−→ 𝐻0 (𝐵𝐺; K(𝑅)) at (0, 0) is bijective. There
is an obvious identification 𝐻0 (𝐵𝐺;𝐾0 (𝑅)) � 𝐾0 (𝑅). Under this identification
the edge homomorphism composed with the assembly map appearing in Con-
jecture 6.53 turns out to be the change of rings map 𝐾0 (𝑅) → 𝐾0 (𝑅𝐺). Hence
we conclude from Conjecture 6.53 that 𝐾0 (𝑅) → 𝐾0 (𝑅𝐺) is bijective as pre-
dicted by Conjecture 2.60. Inspecting the Atiyah-Hirzebruch spectral yields an ex-
act sequence 0 → 𝐻0 (𝐵𝐺;𝐾1 (𝑅)) → 𝐻1 (𝐵𝐺; K(𝑅)) → 𝐻1 (𝐵𝐺;𝐾0 (𝑅)) → 0.
Under the obvious identification 𝐻0 (𝐵𝐺;𝐾1 (𝑅)) = 𝐾1 (𝑅) the composite of
𝐻0 (𝐵𝐺;𝐾1 (𝑅)) → 𝐻1 (𝐵𝐺; K(𝑅)) with the assembly map appearing in Con-
jecture 6.53 turns out to be the change of rings map 𝐾1 (𝑅) → 𝐾1 (𝑅𝐺). Since
𝐻1 (𝐵𝐺;𝐾0 (𝑅)) = 𝐺/[𝐺,𝐺] ⊗ 𝐾0 (𝑅), we obtain an exact sequence

0→ 𝐾1 (𝑅) → 𝐾1 (𝑅𝐺) → 𝐺/[𝐺,𝐺] ⊗ 𝐾0 (𝑅) → 0.

Next one checks that the composite of the map 𝐾1 (𝑅𝐺) → 𝐺/[𝐺,𝐺] ⊗ 𝐾0 (𝑅)
appearing in the sequence above with the map 𝐴1 appearing in Conjecture 3.109 is the
obvious projection. This implies Conjecture 3.109, and hence also Conjecture 3.110.
(iv) See [88, Theorem 1.5], [673, Proposition 87 on page 754] and [673, paragraph
before Conjecture 79 on page 750] for the proof for Conjectures 2.67, 2.103, and 4.18.
The proof of Conjecture 2.69 is analogous if one uses Theorem 13.51.
(v) We conclude from Lemma 13.54 and Lemma 13.58 that the assembly map
𝐻𝐺𝑛 (𝐸FIN (𝐺),K𝑅) → 𝐾𝑛 (𝑅𝐺) is an isomorphism for 𝑛 ≤ 0. We have𝐾𝑖 (𝑅𝐻) = 0
for every finite group𝐻 and every 𝑖 ≤ −1 by Theorem 4.16 (ii). We conclude from the
equivariant Atiyah-Hirzebruch spectral sequence described in Theorem 12.48 that
𝐻𝐺𝑛 (𝐸FIN (𝐺),K𝑅) = 0 holds for 𝑛 ≤ −1 and that 𝐻𝐻⋊𝜙Z

0 (𝐸FIN (𝐻 ×𝜙 Z),K𝑅)
is the 0-th Bredon homology of 𝐸FIN (𝐻 ×𝜙 Z) with coefficients in the covariant
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functor Or(𝐺) → Z-MOD sending 𝐺/𝐾 to 𝐾𝑛 (𝑅𝐾). This 0-th Bredon homology
can be identified with colim𝐺/𝐻∈OrFIN (𝐺) 𝐾0 (𝑅𝐻). Under this identification the
bijective assembly map 𝐻𝐺𝑛 (𝐸FIN (𝐺),K𝑅) → 𝐾𝑛 (𝑅𝐺) becomes the canonical
map colim𝐺/𝐻∈OrFIN (𝐺) 𝐾0 (𝑅𝐻) → 𝐾0 (𝑅𝐺).
(vi) See [673, page 749]. The proof goes through if we replace Z by the ring 𝑅 of
integers in an algebraic number field since the results appearing in [368] for Z have
been extended to 𝑅 by Juan-Pineda [530].
(vii) We conclude from [634] that the second Whitehead group can be identified
with the cokernel of the assembly map

𝐻2 (pr; K𝑅) : 𝐻𝐺2 (𝐸𝐺; K𝑅) = 𝐻2 (𝐵𝐺; K(Z)) → 𝐻𝐺2 (𝐸𝐺; K𝑅) = 𝐾2 (Z𝐺).

(viii) We conclude from Theorem 3.80 that 𝑅[𝑡] is regular. We have the obvious
commutative diagram

𝐻𝑛 (𝐵𝐺; K(𝑅[𝑡])) � //

�

��

𝐾𝑛 (𝑅[𝑡]𝐺) = 𝐾𝑛 (𝑅𝐺 [𝑡])

��
𝐻𝑛 (𝐵𝐺; K(𝑅))

�
// 𝐾𝑛 (𝑅𝐺)

whose horizontal arrows are bijective by the assumption that Conjecture 13.2 holds
and whose left vertical arrow is bijective since 𝐾𝑛 (𝑅[𝑡]) → 𝐾𝑛 (𝑅) is bijective for
all 𝑛 ∈ Z by Theorem 6.16 (ii). Hence the right vertical arrow is bijective, which
implies by definition 𝑁𝐾𝑛 (𝑅𝐺) = 0.
(ix) This follows from [75, Theorem 8.4 and Remark 8.6].
(x) This follows from Theorem 13.36 and Lemma 13.38.
(xi) The 𝐿-theoretic Novikov Conjecture 13.64 follows from the 𝐿-theoretic Farrell-
Jones Conjecture 13.4 because of Theorem 13.37 and Lemma 13.38.
(xii) The Full Farrell-Jones Conjecture 13.30 implies Conjectures 13.2 and 13.7, see
Remarks 13.12 and 13.20. Now the claim follows from all the other assertions which
we have already proved. ⊓⊔

13.12 Summary of the Applications of the Farrell-Jones
Conjecture

We have discussed at various places applications and consequences of the various
versions of the Farrell-Jones Conjecture. In Theorem 13.65 we have explained that
the Full Farrell-Jones Conjecture 13.30 implies all of these variants of the Farrell-
Jones Conjecture and hence all these applications and consequences. For the reader’s
convenience we list now all these applications and where they are treated in this book
or in the literature.
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• Wall’s Finiteness Obstruction
Wall’s finiteness obstruction of a connected finitely dominated 𝐶𝑊-complex 𝑋

takes values in 𝐾0 (Z[𝜋1 (𝑋)]) and vanishes if and only if 𝑋 is homotopy equivalent
to a finite 𝐶𝑊-complex, see Section 2.5. For torsionfree 𝜋1 (𝑋) Conjecture 2.60
predicts that 𝐾0 (Z[𝜋1 (𝑋)]) vanishes and hence 𝑋 is always homotopy equivalent
to a finite 𝐶𝑊-complex, see Remark 2.61.
• Kaplansky’s Idempotent Conjecture

Kaplansky’s Idempotent Conjecture 2.73 predicts for an integral domain 𝑅 and a
torsionfree group 𝐺 that all idempotents of 𝑅𝐺 are trivial. See Section 2.9.
• The Bass Conjectures

The Bass Conjecture 2.92 for fields of characteristic zero as coefficients says for a
field 𝐹 of characteristic zero and a group 𝐺 that the Hattori-Stallings homomor-
phism of (2.88) induces an isomorphism

HS𝐹𝐺 : 𝐾0 (𝐹𝐺) ⊗Z 𝐹 → class𝐹 (𝐺) 𝑓 .

This essentially generalizes character theory for finite-dimensional representations
over finite groups to finitely generated projective modules over infinite groups.
The Bass Conjecture 2.99 for integral domains as coefficients predicts for a com-
mutative integral domain 𝑅, a group𝐺, and 𝑔 ∈ 𝐺 that for every finitely generated
projective 𝑅𝐺-module the value of its Hattori-Stallings rank HS𝑅𝐺 (𝑃) at (𝑔) is
trivial provided that either the order |𝑔 | is infinite or that the order |𝑔 | is finite and
not invertible in 𝑅.
For more information about the Bass Conjectures, we refer to Section 2.10.
• Whitehead torsion

One can assign to a homotopy equivalence 𝑓 : 𝑋 → 𝑌 of connected finite 𝐶𝑊-
complexes its Whitehead torsion 𝜏( 𝑓 ), which takes values in the Whitehead group
Wh(𝜋1 (𝑌 )), see Sections 3.3. It vanishes if and only 𝑓 is a simple homotopy
equivalence, see Section 3.4
An ℎ-cobordism of dimension ≥ 6 is trivial if and only if its Whitehead torsion
vanishes, see Theorem 3.47.
If the group𝐺 is torsionfree, then Conjecture 3.110 predicts that Wh(𝐺) vanishes.
Hence Conjecture 3.110 implies that a homotopy equivalence of connected fi-
nite 𝐶𝑊-complexes is simple if 𝜋1 (𝑌 ) is torsionfree, and that every connected
ℎ-cobordism 𝑊 of dimension ≥ 6 with torsionfree 𝜋1 (𝑊) is trivial, see Re-
mark 3.112.
• Bounded ℎ-cobordisms

There are so-called bounded ℎ-cobordisms, controlled over R𝑘 , for 𝑘 ≥ 1. They
are trivial (for dimension ≥ 6) if and only if certain elements in negative 𝐾-groups
𝐾1−𝑘 (Z𝐺) vanish, see Section 4.3. Conjecture 4.18 predicts for a torsionfree group
𝐺 the vanishing of 𝐾𝑛 (Z𝐺) for 𝑛 ≤ 0.
• Pseudoisotopy and the second Whitehead group

There is a certain obstruction for pseudoisotopies to be trivial, which takes values
in Wh2 (𝐺), see Section 5.6. Conjecture 5.22 predicts for a torsionfree group 𝐺
the vanishing of Wh2 (𝐺).
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• Whitehead spaces and pseudoisotopy spaces
One can assign to a compact manifold 𝑀 its pseudoisotopy spaces P(𝑀) and
PDIFF (𝑀), Whitehead spaces WhPL (𝑋) and WhDIFF (𝑋), and its 𝐴-theory 𝐴(𝑋)
in the sense of Waldhausen, see Section 7.2 and 7.3. There also exist non-connective
versions. There are various relations between these spaces. The homotopy groups
of 𝐴(𝑀) are related to the 𝐾-groups 𝐾𝑛 (Z[𝜋1 (𝑀)]).
Conjecture 6.53 predicts for a torsionfree group 𝐺 and a regular ring 𝑅 that the
assembly map

𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺)

is an isomorphism for 𝑛 ∈ Z. It implies for an aspherical closed manifold 𝑀 for
all 𝑛 ≥ 0, see Theorem 7.27 and Theorem 7.32,

𝜋𝑛 (WhPL (𝑀)) ⊗Z Q � 0;
𝜋𝑛 (P(𝑀)) ⊗Z Q � 0;

𝜋𝑛 (WhDIFF (𝑀)) ⊗Z Q �
∞⊕
𝑘=1

𝐻𝑛−4𝑘−1 (𝑀;Q);

𝜋𝑛 (PDIFF (𝑀)) ⊗Z Q �
∞⊕
𝑘=1

𝐻𝑛−4𝑘+1 (𝑀;Q).

• Automorphisms of manifolds
If Conjecture 6.53 and Conjecture 9.114 hold for the torsionfree group 𝐺 and
the ring 𝑅 = Z, then some rational computations of the homotopy groups of the
automorphism group of an aspherical closed manifold 𝑀 with 𝐺 = 𝜋1 (𝑀) can be
found in Theorems 9.195 and 9.196.
• Novikov Conjecture

The Novikov Conjecture 9.137 for a group 𝐺 predicts the homotopy invariants of
the higher signatures

sign𝑥 (𝑀, 𝑢) := ⟨L(𝑀) ∪ 𝑢∗𝑥, [𝑀]Q⟩ ∈ Q(13.66)

of a closed oriented manifold 𝑀 coming with a reference map 𝑓 : 𝑀 → 𝐵𝐺 for
an element 𝑥 ∈ ∏

𝑘≥0 𝐻
𝑘 (𝐵𝐺;Q), see Subsection 9.14.1.

For the proof that the 𝐿-theoretic Novikov Conjecture 13.64 for 𝐺 implies the
Novikov Conjecture 9.137 for 𝐺, we refer to [587, Lemma 23.2 on page 192]
and [841, Proposition 6 on page 300]. Or just take a look at Remark 9.143 and use
the fact that under the Chern character the assembly map

asmb𝐺𝑛 :
⊕
𝑘∈Z

𝐻𝑛+4𝑘 (𝐵𝐺;Q) → 𝐿ℎ𝑛 (Z𝐺) ⊗Z Q,

appearing in Remark 9.143 can be identified with the assembly map appearing in
the 𝐿-theoretic Novikov Conjecture 13.64 for 𝐺.
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• Borel Conjecture
The Borel Conjecture 9.163 predicts that any aspherical closed topological ma-
nifold 𝑀 is topologically rigid, i.e, if 𝑁 is another aspherical closed topological
manifold with 𝜋1 (𝑀) � 𝜋1 (𝑁), then 𝑀 and 𝑁 are homeomorphic and any homo-
topy equivalence 𝑀 → 𝑁 is homotopic to a homeomorphism.
Let𝐺 be a finitely presented torsionfree group. Suppose that it satisfies the versions
of the𝐾-theoretic Farrell-Jones Conjecture stated in 3.110 and 4.20 and the version
of the 𝐿-theoretic Farrell-Jones Conjecture stated in 9.114 for the ring 𝑅 = Z.
Then Theorem 9.171 shows that every aspherical closed topological manifold of
dimension ≥ 5 with 𝐺 as fundamental group is topologically rigid.
• Poincaré duality groups

Conjecture 9.183 predicts that a finitely presented group is an 𝑛-dimensional
Poincaré duality group if and only if it is the fundamental group of an aspherical
closed 𝑛-dimensional topological manifold.
Suppose that the torsionfree group𝐺 is a finitely presented Poincaré duality group
of dimension 𝑛 ≥ 6 and satisfies the versions of the 𝐾-theoretic Farrell-Jones
Conjecture stated in 3.110 and 4.20 and the version of the 𝐿-theoretic Farrell-
Jones Conjecture stated in 9.114 for the ring 𝑅 = Z. Let 𝑋 be a Poincaré complex
of dimension ≥ 6 with 𝜋1 (𝑋) � 𝐺. Suppose that its Spivak normal fibration has a
TOP-reduction.
Then 𝑋 is homotopy equivalent to a compact homology ANR-manifold satisfying
the disjoint disk property, see Theorem 9.184.
• Boundaries of hyperbolic groups

As a consequence of the Farrell-Jones Conjecture, we get Theorem 9.188, which
says for a torsionfree hyperbolic group 𝐺 and 𝑛 ≥ 6 that the following statements
are equivalent:

– The boundary 𝜕𝐺 is homeomorphic to 𝑆𝑛−1;
– There is an aspherical closed topological manifold 𝑀 such that 𝐺 � 𝜋1 (𝑀), its

universal covering 𝑀 is homeomorphic to R𝑛, and the compactification of 𝑀 by
𝜕𝐺 is homeomorphic to 𝐷𝑛.

Moreover the aspherical closed topological manifold 𝑀 appearing above is unique
up to homeomorphism.
• Stable Cannon Conjecture

Let 𝐺 be a torsionfree hyperbolic group. Suppose that its boundary is homeomor-
phic to 𝑆2. The Cannon Conjecture 9.191 predicts that𝐺 is the fundamental group
of a closed hyperbolic 3-manifold.
The Cannon Conjecture 9.191 is open at the time of writing, but a stable version
of the Cannon Conjecture is known to be true, see Theorem 9.192. It says that for
any closed manifold 𝑁 of dimension ≥ 2 the product 𝐵𝐺 × 𝑁 is simple homotopy
equivalent to a closed manifold 𝑀 which is uniquely determined by this property
up to homeomorphism.
If one could take 𝑁 = {•} above, the Cannon Conjecture 9.191 would follow.
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• Product decompositions of aspherical closed manifolds
Theorem 9.194 deals with the question when for an aspherical closed topological
manifold 𝑀 a given algebraic decomposition 𝜋1 (𝑀) = 𝐺1 × 𝐺2 comes from the
topological decomposition 𝑀 = 𝑀1 ×𝑀2. Theorem 9.194 is a consequence of the
𝐾-theoretic Farrell-Jones Conjecture stated in 3.110 and 4.20 and the version of
the 𝐿-theoretic Farrell-Jones Conjecture stated in 9.114 for the ring 𝑅 = Z.
• Classification of manifolds homotopy equivalent to certain torus bundles over lens

spaces.
The 𝐾-theoretic Farrell-Jones Conjecture 13.1 and the 𝐿-theoretic Farrell-Jones
Conjecture 13.4 play a key role in the paper [283], where a classification of mani-
folds homotopy equivalent to certain torus bundles over lens spaces is presented.
See also [988].
• Fibering manifolds

The 𝐾-theoretic Farrell-Jones Conjecture 13.1 and the 𝐿-theoretic Farrell-Jones
Conjecture 13.4 play a key role in the paper [375], which considers the question
of when, for an aspherical closed manifold 𝐵 and a map 𝑝 : 𝑀 → 𝐵 from some
closed connected manifold 𝑀 , the map 𝑝 is homotopic to Manifold Approximate
Fibration.
• The Atiyah Conjecture

Conjecture 2.67 is related to the Atiyah Conjecture, which makes predictions about
the possibly values of the 𝐿2-Betti numbers of coverings of closed Riemannian
manifolds, see Remark 2.71.
• Homotopy invariance of 𝜏 (2) (𝑀)

Suppose that the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the
ring 𝑅 with involution is rationally true for 𝑅 = Z, i.e., the rationalized assembly
map

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) ⊗Z Q→ 𝐿
⟨−∞⟩
𝑛 (Z𝐺) ⊗Z Q

is an isomorphism for 𝑛 ∈ Z.
Then the Hirzebruch-type invariant 𝜏 (2) (𝑀) is a homotopy invariant, see
Remark 14.60.
• Homotopy invariance of the (twisted) 𝐿2-torsion

The 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring 𝑅 = Z
implies the homotopy invariance of 𝐿2-torsion and of the 𝐿2-torsion function,
see [662, Theorem 7.5 (4)]. The twisted 𝐿2-torsion function is related to the
Thurston norm for appropriate 3-manifolds in [405].
• Vanishing of 𝜅-classes for aspherical closed manifolds

The vanishing of 𝜅-classes for aspherical closed manifolds is analyzed in [475]
using as one input the Full Farrell-Jones Conjecture 13.30.
• Classification of 4-manifolds

Sometimes the Farrell-Jones Conjecture is needed as input in the (stable) classifi-
cation of certain 4-manifolds, see for instance [455, 456, 569].
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• Group actions on manifolds
Applications of the Farrell-Jones Conjecture to manifolds with group actions are
given for instance in [198, 251, 252, 257, 277, 665].

13.13 𝑮-Theory

Instead of considering finitely generated projective modules, one may apply the
standard 𝐾-theory machinery to the category of finitely generated modules. This
leads to the definition of the groups 𝐺𝑛 (𝑅) for 𝑛 ≥ 0. One can also define them
for negative 𝑛 using [900]. We have described 𝐺0 (𝑅) and 𝐺1 (𝑅) already in Defini-
tions 2.1 and 3.1. One may ask whether versions of the Farrell-Jones Conjectures for
𝐺-theory instead of 𝐾-theory might be true. The answer is negative, as the following
discussion explains.

For a finite group 𝐻 the ring C𝐻 is semisimple. Hence any finitely generated
C𝐻-module is automatically projective and 𝐾0 (C𝐻) = 𝐺0 (C𝐻). Recall that a group
𝐺 is called virtually poly-cyclic if there exists a subgroup of finite index 𝐻 ⊆ 𝐺
together with a filtration {1} = 𝐻0 ⊆ 𝐻1 ⊆ 𝐻2 ⊆ · · · ⊆ 𝐻𝑟 = 𝐻 such that 𝐻𝑖−1 is
normal in 𝐻𝑖 and the quotient 𝐻𝑖/𝐻𝑖−1 is cyclic. More generally for all 𝑛 ∈ Z the
forgetful map

𝑓 : 𝐾𝑛 (C𝐺) → 𝐺𝑛 (C𝐺)

is an isomorphism if 𝐺 is virtually poly-cyclic, since then C𝐺 is regular by [880,
Theorem 8.2.2 and Theorem 8.2.20] and the forgetful map 𝑓 is an isomorphism for
regular rings, compare [860, Corollary 53.26 on page 293]. In particular, this applies
to virtually cyclic groups and so the left-hand side of the Farrell-Jones assembly
map does not see the difference between 𝐾- and 𝐺-theory if we work with complex
coefficients. We obtain a commutative diagram

colim𝐻∈SubFIN (𝐺) 𝐾0 (C𝐻)

�

��

// 𝐾0 (C𝐺)

𝑓

��
colim𝐻∈SubFIN (𝐺) 𝐺0 (C𝐻) // 𝐺0 (C𝐺)

where, as indicated, the left-hand vertical map is an isomorphism. Conjecture 2.67,
which follows from the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients
in the ring C, predicts that the upper horizontal arrow is an isomorphism. A
𝐺-theoretic analog of Conjecture 2.67 would say that the lower horizontal map
is an isomorphism. There are however cases where the upper horizontal arrow is
known to be an isomorphism, but the forgetful map 𝑓 on the right is not injective or
not surjective, and hence the lower vertical arrow cannot be injective or surjective.
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If 𝐺 contains a non-abelian free subgroup, then the class [C𝐺] ∈ 𝐺0 (C𝐺)
vanishes [650, Theorem 9.66 on page 364] and hence the map 𝑓 : 𝐾0 (C𝐺) →
𝐺0 (C𝐺) has an infinite kernel since [C𝐺] generates an infinite cyclic subgroup in
𝐾0 (C𝐺). Note that Conjecture 13.1 is known for non-abelian free groups.

Conjecture 13.1 is also known for 𝐴 =
⊕

𝑛∈Z Z/2 and hence𝐾0 (C𝐴) is countable,
whereas𝐺0 (C𝐴) is not countable [650, Example 10.13 on page 375]. Hence the map
𝑓 cannot be surjective.

At the time of writing we do not know the answer to the following questions:

Question 13.67 (Amenability and the passage from 𝐾0 (C𝐺) to 𝐺0 (C𝐺)). If 𝐺
is an amenable group for which there is an upper bound on the orders of its finite
subgroups, then is the forgetful map 𝑓 : 𝐾0 (C𝐺) → 𝐺0 (C𝐺) an isomorphism?

Question 13.68 (Amenability and the vanishing of 𝐺0 (C𝐺)). If the group 𝐺 is
not amenable, then is 𝐺0 (C𝐺) equal to {0}?

To our knowledge the answer to Question 13.68 is not even known in the special
case 𝐺 = Z ∗ Z.

For more information about 𝐺0 (C𝐺), we refer for instance to [650, Subsec-
tion 9.5.3].

Exercise 13.69. Let 𝐻 ⊆ 𝐺 be a subgroup of 𝐺 possessing an epimorphism
𝑓 : 𝐻 → Z. Show that the class of C[𝐺/𝐻] in 𝐺0 (C𝐺) is trivial.

13.14 Notes

The original formulation of the Farrell-Jones Conjecture with rings as coefficients
appears in [366, 1.6 on page 257]. Our formulation differs from the original one, but
is equivalent, see Remark 15.44.

Proofs of some of the inheritance properties above are also given in [464, 878].
The inheritance properties of the Farrell-Jones Conjecture under actions of trees

is discussed in [75], see also Section 6.9 and Section 15.7. The situation is much
more complicated than for the Baum-Connes Conjecture 14.11 with coefficients,
where the optimal result holds, see Theorem 14.31 (v) and Remark 14.35.

In the sequel we consider classes C of groups that are closed under taking sub-
groups and passing to isomorphic groups. Examples are the classes of virtually
cyclic or of finite groups. Given a group 𝐺, let C(𝐺) be the family of subgroups
of 𝐺 that belong to C. The relevant family of subgroups appearing in Conjec-
tures 13.1, 13.2, 13.4, 13.7, 13.11, 13.19, 13.27, 13.28, and 13.30 is always given by
C(𝐺), where C is the class of virtually cyclic subgroups. We have proved various the-
orems where C could be chosen to be smaller, for instance to be the class of virtually
cyclic groups of type I or of hyperelementary groups, see Theorems 13.46, 13.47,
and 13.48. One may ask whether there is always a class Cmin for which such a conjec-
ture holds for all groups𝐺 and which is minimal. Of course for the class of all groups
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such a conjecture will hold for trivial reasons. In the worst case Cmin may just be the
class of all groups. A candidate for Cmin may be the intersection of all the classes C
of groups for which the conjecture is true for all groups, but we do not know whether
this intersection satisfies the conjecture for all groups, see also Section 15.15 and
in particular Lemma 15.103. At least we know that the intersection of two classes
of groups C0 and C1 for which one of the Conjectures 13.11, 13.19, 13.27, 13.28,
and 13.30 holds for all groups, satisfies this conjecture for all groups as well. We
also know for two classes of subgroups C ⊆ D that D satisfies one of the Conjec-
tures 13.11, 13.19, 13.27, 13.28, and 13.30 for all groups if C does. These claims
follow from Theorem 15.9 (ii) and (iv), Theorem 15.13 (ii) and Lemma 15.14.

Further variants of the Farrell-Jones Conjecture for other theories such as
𝐴-theory, topological cyclic homology and Hochschild homology, homotopy 𝐾-
theory, and the 𝐾-theory of Hecke algebras of totally disconnected groups will be
discussed in Sections 15.10, 15.11, 15.12, and 15.13.

A coarse version of the Farrell-Jones Conjecture is treated in [1032].
A version of the Farrell-Jones Conjecture for polyhedra is proved in [149].



Chapter 14
The Baum-Connes Conjecture

14.1 Introduction

In this chapter we discuss the Baum-Connes Conjecture 14.9 for the topological
𝐾-theory of the reduced group 𝐶∗-algebra 𝐶∗𝑟 (𝐺, 𝐹) for 𝐹 = R,C. It predicts that
certain assembly maps

𝐾𝐺𝑛 (𝐸FIN (𝐺)) → 𝐾𝑛 (𝐶∗𝑟 (𝐺,C));
𝐾𝑂𝐺𝑛 (𝐸FIN (𝐺)) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)),

are bijective for all 𝑛 ∈ Z. The target is the topological 𝐾-theory of 𝐶∗𝑟 (𝐺, 𝐹),
which one wants to understand. The source is an expression that depends only on
the values of these topological 𝐾-groups on finite subgroups of 𝐺 and is therefore
much more accessible. The version above is often the one which is relevant in
concrete applications, but there is also a more general version, the Baum-Connes
Conjecture 14.11 with coefficients, where one allows coefficients in a𝐺-𝐶∗-algebra.
Note that in contrast to the Full Farrell-Jones Conjecture 13.30 it suffices to consider
finite subgroups instead of virtually cyclic subgroups.

A status report of the Baum-Connes Conjecture 14.9 and its version 14.11 with
coefficients will be given in Section 16.4.

The main point about the Baum-Connes Conjecture 14.9 is that it implies a great
variety of other prominent conjectures such as the ones due to Kadison and Novikov,
and leads to very deep and interesting results about manifolds and 𝐶∗-algebras, as
we will record and explain in Section 14.8.

Variants of the Baum-Connes Conjecture 14.9 and its versions 14.11 with coeffi-
cient are presented in Section 14.5.

We will discuss the inheritance properties of the Baum-Connes Conjecture 14.11
with coefficients in Section 14.6.

We have tried to keep this chapter independent of the other chapters as much as
possible, so that one may start reading directly here.

14.2 The Analytic Version of the Baum-Connes Assembly Map

Let 𝐴 be a 𝐺-𝐶∗-algebra over 𝐹 = R,C. Denote by 𝐴 ⋊𝑟 𝐺 the 𝐶∗-algebra over
𝐹 given by the reduced crossed product, see [802, 7.7.4 on page 262]. If 𝐴 is R
or C with the trivial 𝐺-action, this is the reduced real or complex reduced group

415
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𝐶∗-algebra 𝐶∗𝑟 (𝐺,R) or 𝐶∗𝑟 (𝐺,C), see Subsection 10.3.1. Denote by 𝐾𝑛 (𝐴 ⋊𝑟 𝐺)
and 𝐾𝑂 (𝐴 ⋊𝑟 𝐺) their topological 𝐾-theory, as introduced in Subsection 10.3.2.

Let 𝑋 be a proper 𝐺-𝐶𝑊-complex. Denote by 𝐾𝐺∗ (𝑋; 𝐴) and 𝐾𝑂𝐺∗ (𝑋; 𝐴) the
complex and real equivariant topological 𝐾-theory of 𝑋 with coefficients in 𝐴, see
Section 10.6. Note that 𝐾𝐺∗ (−; 𝐴) and 𝐾𝑂𝐺∗ (−; 𝐴) are 𝐺-homology theories in the
sense of Definition 12.1 such that𝐾𝐺𝑛 (𝐺/𝐻; 𝐴) = 𝐾𝑛 (𝐴⋊𝑟𝐻) and𝐾𝑂𝐺𝑛 (𝐺/𝐻; 𝐴) =
𝐾𝑂𝑛 (𝐴 ⋊𝑟 𝐻) hold for any finite subgroup 𝐻 ⊆ 𝐺 and 𝑛 ∈ Z, provided that we
consider proper 𝐺-𝐶𝑊-complexes only.

We want to explain the analytic Baum-Connes assembly map

asmb𝐺,C
𝐴
(𝑋)𝑛 : 𝐾𝐺𝑛 (𝑋; 𝐴) → 𝐾𝑛 (𝐴 ⋊𝑟 𝐺);(14.1)

asmb𝐺,R
𝐴
(𝑋)𝑛 : 𝐾𝑂𝐺𝑛 (𝑋; 𝐴) → 𝐾𝑂𝑛 (𝐴 ⋊𝑟 𝐺).(14.2)

We will only treat the case 𝐹 = C, the case 𝐹 = R is analogous.
We first consider the special case where 𝑋 is proper and cocompact and then

explain how the map extends by a colimit argument to arbitrary proper 𝐺-𝐶𝑊-
complexes. Note that for a proper and cocompact𝐺-𝐶𝑊-complex 𝑋 we can identify
𝐾𝐺𝑛 (𝑋; 𝐴) with the equivariant 𝐾𝐾-groups 𝐾𝐾𝐺𝑛 (𝐶0 (𝑋), 𝐴), see Section 10.6.

One description is in terms of indices with values in 𝐶∗-algebras. Namely, one
assigns to a Kasparov cycle representing an element in𝐾𝐾𝐺𝑛 (𝐶0 (𝑋), 𝐴) its𝐶∗-valued
index in 𝐾𝑛 (𝐴⋊𝐺) in the sense of Mishchenko-Fomenko [738], thus defining a map
𝐾𝐾𝐺𝑛 (𝐶0 (𝑋), 𝐴) → 𝐾𝑛 (𝐴 ⋊ 𝐺), provided that 𝑋 is proper and cocompact. This is
the approach appearing in [109].

The other equivalent approach is based on the Kasparov product. Given a
proper cocompact 𝐺-𝐶𝑊-complex 𝑋 , one can assign to it an element [𝑝𝑋] ∈
𝐾𝐾𝐺0 (C, 𝐶0 (𝑋)⋊𝑟 𝐺). Now define the map (14.1) by the composite of a descent map
and a map coming from the Kasparov product

𝐾𝐾𝐺𝑛 (𝐶0 (𝑋), 𝐴)
𝑗𝐺𝑟−−→ 𝐾𝐾𝑛 (𝐶0 (𝑋) ⋊𝑟 𝐺, 𝐴 ⋊𝑟 𝐺)

[𝑝𝑋 ] ⊗̂𝐶0 (𝑋)⋊𝑟𝐺 −−−−−−−−−−−−−−−→ 𝐾𝐾𝑛 (C, 𝐴 ⋊𝑟 𝐺) = 𝐾𝑛 (𝐴 ⋊ 𝐺).

For some information about these two approaches and their identification, we refer
to [612] in the torsionfree case and to [184, 585] in the general case.

This extends to arbitrary proper 𝐺-𝐶𝑊-complexes 𝑋 by the following argu-
ment. If 𝑓 : 𝑋 → 𝑌 is a 𝐺-map of proper cocompact 𝐺-𝐶𝑊-complexes, then
𝑓 is a proper map (after forgetting the group action). Hence composition with
𝑓 defines a homomorphism of 𝐺-𝐶∗-algebras 𝐶0 ( 𝑓 ) : 𝐶0 (𝑌 ) → 𝐶0 (𝑋). We
denote by 𝐾𝐾𝐺𝑛 (𝐶0 ( 𝑓 ), id𝐴) : 𝐾𝐾𝐺𝑛 (𝐶0 (𝑋), 𝐴) → 𝐾𝐾𝐺𝑛 (𝐶0 (𝑌 ), 𝐴) the induced
map on the equivariant 𝐾𝐾-groups. It is not hard to check that asmb𝐺,C (𝑌 )𝑛 ◦
𝐾𝐾𝐺𝑛 (𝐶0 ( 𝑓 ), id𝐴) = asmb𝐺,C(𝑋)𝑛 holds. We conclude by inspecting Defini-
tion (10.67) that for any proper 𝐺-𝐶𝑊-complex 𝑋 the canonical map

colim𝐶⊆𝑋 𝐾
𝐺
𝑛 (𝐶)

�−→ 𝐾𝐺𝑛 (𝑋)
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is an isomorphism where 𝐶 runs through the finite 𝐺-𝐶𝑊-subcomplexes of 𝑋
directed by inclusion. Hence by a colimit argument over the directed systems
of proper cocompact 𝐺-𝐶𝑊-subcomplexes the definition above for proper com-
pact 𝐺-𝐶𝑊-complexes extends to the desired assembly maps (14.1) for any proper
𝐺-𝐶𝑊-complex 𝑋 . Moreover, for any𝐺-map of proper𝐺-𝐶𝑊-complexes 𝑓 : 𝑋 → 𝑌 ,
we obtain again by passing to the colimit a homomorphism 𝐾𝐺𝑛 ( 𝑓 ) : 𝐾𝐺𝑛 (𝑋; 𝐴) →
𝐾𝐺𝑛 (𝑌 ; 𝐴) satisfying

asmb𝐺,C(𝑌 )𝑛 ◦ 𝐾𝐺𝑛 ( 𝑓 ; 𝐴) = asmb𝐺,C(𝑋)𝑛;(14.3)
asmb𝐺,R(𝑌 )𝑛 ◦ 𝐾𝑂𝐺𝑛 ( 𝑓 ; 𝐴) = asmb𝐺,R(𝑋)𝑛.(14.4)

14.3 The Version of the Baum-Connes Assembly Map in Terms
of Spectra

There is also a version of the Baum-Connes assembly map, which is very close to
the construction of the one for the Farrell-Jones Conjecture. Namely, if we apply
Theorem 12.30, taking Remark 12.31 into account, to the functor

KTOP
𝐹 : GROUPOIDSinj → SPECTRA,

of (12.46) for𝐹 = R,C, then we obtain an equivariant homology theory𝐻?
∗ (−; KTOP

𝐹
)

in the sense of Definition 12.9 such that we get for every inclusion 𝐻 ⊆ 𝐺 of groups
natural identifications

𝐻𝐺𝑛 (𝐺/𝐻; KTOP
𝐹 ) � 𝐻𝐻𝑛 (𝐻/𝐻; KTOP

𝐹 ) � 𝜋𝑛 (KTOP
𝐹 ◦ 𝐼 (𝐻)) = 𝐾𝑛 (𝐶∗𝑟 (𝐻, 𝐹)).

Note that 𝐻?
𝑛 (𝑋; KTOP

𝐹
) is defined for any𝐺-𝐶𝑊-complex 𝑋 , whereas the definition

of 𝐾𝐺𝑛 (𝑋) and 𝐾𝑂𝑛 (𝑋) in terms of 𝐾𝐾-theory only makes sense for proper 𝐺-𝐶𝑊-
complexes.

We get assembly maps induced by the projection pr : 𝑋 → 𝐺/𝐺

𝐻𝐺𝑛 (pr; KTOP
C ) : 𝐻𝐺𝑛 (𝑋; KTOP

C ) → 𝐻𝐺𝑛 (𝐺/𝐺; KTOP
C ) = 𝐾𝑛 (𝐶∗𝑟 (𝐺,C));(14.5)

𝐻𝐺𝑛 (pr; KTOP
R ) : 𝐻𝐺𝑛 (𝑋; KTOP

R ) → 𝐻𝐺𝑛 (𝐺/𝐺; KTOP
R ) = 𝐾𝑛 (𝐶∗𝑟 (𝐺,R)).(14.6)

The assembly maps (14.1) and (14.5) are identified in [280, Section 6]. Unfortunately,
the proof is based on an unpublished preprint by Carlsson-Pedersen-Roe. Another
proof of the identification is given in [461, Corollary 8.4] and [745].

The identification above, in the general case where one allows coefficients in a
𝐺-𝐶∗-algebra 𝐴, is carried out in [184, 585].

Consider a proper 𝐺-𝐶𝑊-complex 𝑋 . One sometimes finds in the literature the
notation

𝑅𝐾𝐺𝑛 (𝑋) := colim𝐶⊆𝑋 𝐾𝐾
𝐺
𝑛 (𝐶0 (𝑋),C),(14.7)
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where 𝐶 runs through the finite 𝐺-𝐶𝑊-subcomplexes of 𝑋 directed by inclusion.
By definition and by the discussion above we get for every proper 𝐺-𝐶𝑊-complex
𝑋 identifications, natural in 𝑋 ,

(14.8) 𝑅𝐾𝐺𝑛 (𝑋) = 𝐾𝐺𝑛 (𝑋) = 𝐻𝐺𝑛 (𝑋; KTOP
C ),

and analogously in the real case.

14.4 The Baum-Connes Conjecture

Recall that a model for the classifying space for proper 𝐺-actions is a 𝐺-𝐶𝑊-
complex 𝐸𝐺 = 𝐸FIN (𝐺) such that 𝐸𝐺𝐻 is non-empty and contractible for each
finite subgroup 𝐻 ⊆ 𝐺 and empty for each infinite subgroup 𝐻 ⊆ 𝐺. Two such
models are 𝐺-homotopy equivalent. See Definition 11.18 and Theorem 11.19.

Conjecture 14.9 (Baum-Connes Conjecture). A group 𝐺 satisfies the Baum-
Connes Conjecture if the assembly maps

asmb𝐺,C(𝐸𝐺)𝑛 : 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺,C));
asmb𝐺,R (𝐸𝐺)𝑛 : 𝐾𝑂𝐺𝑛 (𝐸𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)),

defined in (14.1) and (14.2) are bijective for all 𝑛 ∈ Z in the special case when 𝐴 is
C or R, respectively, with the trivial 𝐺-action.

Exercise 14.10. Show 𝐾𝐺𝑛 (𝐸𝐺) � Z𝑘 for 𝑘, 𝑛 ∈ Z, 𝑘 ≥ 1 and 𝐺 = Z × Z/𝑘 .

Conjecture 14.11 (Baum-Connes Conjecture with coefficients). A group 𝐺 sat-
isfies the Baum-Connes Conjecture with coefficients if the assembly maps

asmb𝐺,C
𝐴
(𝐸𝐺)𝑛 : 𝐾𝐺𝑛 (𝐸𝐺; 𝐴) → 𝐾𝑛 (𝐴 ⋊𝑟 𝐺);

asmb𝐺,R
𝐴
(𝐸𝐺)𝑛 : 𝐾𝑂𝐺𝑛 (𝐸𝐺; 𝐴) → 𝐾𝑂𝑛 (𝐴 ⋊𝑟 𝐺),

defined in (14.1) and (14.2) are bijective for all 𝑛 ∈ Z and all 𝐺-𝐶∗-algebras 𝐴 over
𝐹 = R,C.

Remark 14.12 (Counterexample to the Baum-Connes Conjecture 14.11 with
coefficients and a modified version). We will discuss the status and further ap-
plications of the Baum-Connes Conjecture 14.11 with coefficients in Section 14.8
and 16.4, but immediately want to point out that there exist counterexamples to
the version 14.11 with coefficients, see [487], but no counterexample to the Baum-
Connes Conjecture 14.9 is known.

In [111] a new formulation of the Baum-Connes Conjecture with coefficients
is given by considering a different crossed product for which the counterexam-
ples mentioned above are not counterexamples anymore, see also [192], and no
counterexample is known to the author’s knowledge. The new version takes care
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of the problem that there exist groups 𝐺 together with short exact sequences
of 𝐺-𝐶∗-algebras 0 → 𝐼 → 𝐴 → 𝐵 → 0 for which the induced sequence
0 → 𝐼 ⋊ 𝐺 → 𝐴 ⋊ 𝐺 → 𝐵 ⋊ 𝐺 → 0 is not exact anymore and it is hence not
clear that there exists a long exact sequence

· · · → 𝐾𝑛 (𝐼 ⋊ 𝐺) → 𝐾𝑛 (𝐴 ⋊ 𝐺) → 𝐾𝑛 (𝐵 ⋊ 𝐺)
→ 𝐾𝑛−1 (𝐼 ⋊ 𝐺) → 𝐾𝑛−1 (𝐴 ⋊ 𝐺) → 𝐾𝑛−1 (𝐵 ⋊ 𝐺) → · · ·

whose existence is a consequence of the Baum-Connes Conjecture 14.11 with co-
efficients. The new version still has the flaw that the left-hand side of the assembly
map is functorial under arbitrary group homomorphism, whereas this is unknown
for the right-hand side, compare Remark 14.20.

The original source of the Baum-Connes Conjecture (with coefficients) is [109,
Conjecture 3.15 on page 254].

Remark 14.13 (The complex case implies the real case). The complex version of
the Baum-Connes Conjecture 14.9 and 14.11 automatically implies the real version,
see [116, 897].

Remark 14.14 (The torsionfree case). There are canonical isomorphisms
𝐾𝐺∗ (𝐸𝐺)

�−→ 𝐾∗ (𝐵𝐺) and 𝐾𝑂𝐺∗ (𝐸𝐺)
�−→ 𝐾𝑂∗ (𝐵𝐺). Suppose that 𝐺 is torsion-

free. Then 𝐸𝐺 is a model for 𝐸𝐺 and under the identification above the assembly
map appearing in the Baum-Connes Conjecture 14.9 agrees with the one appearing in
the Baum-Connes Conjecture for torsionfree groups 10.44. Hence the Baum-Connes
Conjecture for torsionfree groups 10.44 is a special case of the Baum-Connes Con-
jecture 14.9.

Exercise 14.15. Let 𝑓 : 𝐻 → 𝐺 be a group homomorphism of torsionfree groups.
Suppose that 𝐻 and 𝐺 satisfy the Baum-Connes Conjecture 14.9 and the induced
map on group homology 𝐻𝑛 ( 𝑓 ) : 𝐻𝑛 (𝐻) → 𝐻𝑛 (𝐺) is bijective for 𝑛 ∈ Z. Show
that then 𝐾𝑛 (𝐶∗𝑟 (𝐺,C)) � 𝐾𝑛 (𝐶∗𝑟 (𝐻,C)) and 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)) � 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐻,R))
holds for all 𝑛 ∈ Z.

14.5 Variants of the Baum-Connes Conjecture

In this section we discuss some variants of the Baum-Connes Conjecture.

14.5.1 The Baum-Connes Conjecture for Maximal Group 𝑪∗-Algebras

There are also versions of the Baum-Connes assembly map using the maximal
crossed product 𝐴 ⋊𝑚 𝐺, see [802, 7.6.5 on page 257] for a 𝐺-𝐶∗-algebra 𝐴 over
𝐹 and the maximal group 𝐶∗-algebra 𝐶∗𝑚 (𝐺, 𝐹) for 𝐹 = R,C. Namely, there are
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assembly maps

asmb𝐺,C,𝑚
𝐴

(𝑋)∗ : 𝐾𝐺∗ (𝑋; 𝐴) → 𝐾∗ (𝐴 ⋊𝑚 𝐺);(14.16)

asmb𝐺,R,𝑚
𝐴

(𝑋)∗ : 𝐾𝑂𝐺∗ (𝑋; 𝐴) → 𝐾𝑂∗ (𝐴 ⋊𝑚 𝐺),(14.17)

which reduce for 𝐴 = R,C equipped with the trivial 𝐺-action to assembly maps

asmb𝐺,C,𝑚(𝐸𝐺)𝑛 : 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐶∗𝑚 (𝐺,C));(14.18)
asmb𝐺,R,𝑚(𝐸𝐺)𝑛 : 𝐾𝑂𝐺𝑛 (𝐸𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑚 (𝐺,R)).(14.19)

In the sequel we only consider the complex case, the corresponding statements
are true over R as well.

There is always a 𝐶∗-homomorphism 𝑝 : 𝐴 ⋊𝑚 𝐺 → 𝐴 ⋊𝑟 𝐺, and we obtain the
following factorization of the Baum-Connes assembly map of (14.1)

asmb𝐺,C
𝐴
(𝑋)∗ : 𝐾𝐺𝑛 (𝑋; 𝐴)

asmb𝐺,C,𝑚
𝐴

(𝑋)∗
−−−−−−−−−−−−→ 𝐾∗ (𝐴 ⋊𝑚 𝐺)

𝐾∗ (𝑝)−−−−−→ 𝐾∗ (𝐴 ⋊𝑟 𝐺).

The Baum-Connes Conjecture 14.11 implies that the map asmb𝐺,C,𝑚
𝐴

(𝐸𝐺)∗ is always
injective, and that it is surjective if and only if the map 𝐾∗ (𝑝) is bijective.

Remark 14.20 (Functoriality of the Baum-Connes assembly map). Note that
the source of the assembly maps asmb𝐺,C (𝐸𝐺)𝑛 : 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺)) and
asmb𝐺,C.𝑚(𝐸𝐺)𝑛 : 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐶∗𝑚 (𝐺)) are functorial in 𝐺. The target
𝐾𝑛 (𝐶∗𝑚 (𝐺)) is also functorial in 𝐺 since 𝐶∗𝑚 (𝐺) is functorial in 𝐺, and the as-
sembly map asmb𝐺,C.𝑚(𝐸𝐺)𝑛 : 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐶∗𝑚 (𝐺)) is natural in 𝐺.

However, it is not known whether the target 𝐾𝑛 (𝐶∗𝑟 (𝐺)) is functorial in 𝐺 and we
have already explained in Subsection 10.3.1 that not every group homomorphism
𝛼 : 𝐺 → 𝐻 induces a homomorphism of 𝐶∗-algebras 𝐶∗𝑟 (𝐺) → 𝐶∗𝑟 (𝐻). This is
irritating since the Baum-Connes Conjecture 14.9 implies that 𝐾𝑛 (𝐶∗𝑟 (𝐺)) is also
functorial in 𝐺.

The same problem is still present in the new formulation of the Baum-Connes
Conjecture with coefficients in [111].

Remark 14.21 (The Baum-Connes Conjecture does not hold in general for the
maximal group 𝐶∗-algebra). It is known that the assembly map asmb𝐺,C,𝑚

𝐴
(𝐸𝐺)∗

of (14.16) is in general not surjective. Namely, 𝐾0 (𝑝) is not injective if 𝐺 is any
infinite group with property (T), compare for instance the discussion in [536]. There
are infinite groups with property (T) for which the Baum-Connes Conjecture is
known, see [599] and also [918]. Hence there are counterexamples to the conjecture
that asmb𝐺,C,𝑚 (𝐸𝐺)𝑛 is surjective.

Remark 14.22 (The Baum-Connes Conjecture for the maximal group
𝐶∗-algebra holds for A-T-menable groups). A countable group 𝐺 is called
𝐾-amenable if the map 𝑝 : 𝐶∗max (𝐺) → 𝐶∗𝑟 (𝐺) induces a 𝐾𝐾-equivalence, see [267].
This implies in particular that the map 𝐾𝑛 (𝑝) above is an isomorphism for all 𝑛 ∈ Z.
A-T-menable groups are 𝐾-amenable, see [486] and they satisfy the Baum-Connes
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Conjecture 14.9, see Theorem 16.7 (ia). Hence for A-T-menable groups the assembly
map asmb𝐺,C,𝑚

𝐴
(𝐸𝐺)∗ of (14.16) is bijective for all 𝑛 ∈ Z. This is also true for the

real version of the assembly map (14.19).

14.5.2 The Bost Conjecture

Some of the strongest results about the Baum-Connes Conjecture are proven using
the so-called Bost Conjecture, see [601, page 798]. The Bost Conjecture is the
version of the Baum-Connes Conjecture where one replaces the reduced group
𝐶∗-algebra 𝐶∗𝑟 (𝐺, 𝐹) by the Banach algebra 𝐿1 (𝐺, 𝐹). One still can define the
topological 𝐾-theory of 𝐿1 (𝐺, 𝐹) and the assembly map in this context.

Conjecture 14.23 (Bost Conjecture). The assembly maps

asmb𝐺,C,𝐿
1 (𝐸𝐺)𝑛 : 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐿1 (𝐺,C));

asmb𝐺,R,𝐿
1 (𝐸𝐺)𝑛 : 𝐾𝑂𝐺𝑛 (𝐸𝐺) → 𝐾𝑂𝑛 (𝐿1 (𝐺,R)),

are isomorphism for all 𝑛 ∈ Z.

In the sequel we only consider the complex case, the corresponding statements
are true over R as well.

Again the left-hand side coincides with the left-hand side of the Baum-Connes
assembly map. There is a canonical map of Banach ∗-algebras 𝑞 : 𝐿1 (𝐺) → 𝐶∗𝑟 (𝐺).
We obtain a factorization of the Baum-Connes assembly map appearing in the
Baum-Connes Conjecture 14.9

(14.24) asmb𝐺,C
𝐴
(𝐸𝐺)∗ : 𝐾𝐺𝑛 (𝐸𝐺)

asmb𝐺,C,𝐿
1 (𝐸𝐺)∗−−−−−−−−−−−−−−→ 𝐾∗ (𝐿1 (𝐺))

𝐾∗ (𝑞)−−−−−→ 𝐾∗ (𝐶∗𝑟 (𝐺)).

Every group homomorphism 𝐺 → 𝐻 induces a homomorphism of Banach al-
gebras 𝐿1 (𝐺) → 𝐿1 (𝐻) and the assembly map appearing in Conjecture 14.23 is
natural in 𝐺.

However, the disadvantage of 𝐿1 (𝐺) is that indices of operators tend to take values
in the topological 𝐾-theory of the group 𝐶∗-algebras, not in 𝐾𝑛 (𝐿1 (𝐺)). Moreover
the representation theory of 𝐺 is closely related to the group 𝐶∗-algebra, whereas
the relation to 𝐿1 (𝐺) is not well understood.

There is also a version of the Bost Conjecture with coefficients in a 𝐶∗-algebra:

(14.25) asmb𝐺,C,𝐿
1

𝐴
(𝐸𝐺)∗ : 𝐾𝐺∗ (𝐸𝐺; 𝐴) → 𝐾∗ (𝐴 ⋊𝐿1 𝐺).

For more information about the Bost Conjecture 14.23, we refer for instance
to [71, 601, 603, 789, 790, 918].
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14.5.3 The Strong and the Integral Novikov Conjecture

We mention the following conjectures, which actually follow from the Baum-Connes
Conjecture 14.9.

Conjecture 14.26 (Strong Novikov Conjecture). A group 𝐺 satisfies the Strong
Novikov Conjecture if the assembly maps appearing in (10.42) or (10.43)

asmb𝐺,C (𝐵𝐺)∗ : 𝐾𝑛 (𝐵𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺,C));
asmb𝐺,R(𝐵𝐺)∗ : 𝐾𝑂𝑛 (𝐵𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)),

are rationally injective for all 𝑛 ∈ Z.

Conjecture 14.27 (Integral Novikov Conjecture). A torsionfree group 𝐺 satisfies
the Integral Novikov Conjecture if the assembly maps appearing in (10.42) or (10.43)
are injective for all 𝑛 ∈ Z.

The assembly maps appearing in the Integral Novikov Conjecture 14.26 agree
with the assembly maps appearing in the Baum-Connes Conjecture for torsionfree
groups.

The Integral Novikov Conjecture only makes sense for torsionfree groups.

Exercise 14.28. Find a finite group 𝐺 for which there cannot be an injective map
from 𝐾1 (𝐵𝐺) to 𝐾1 (𝐶∗𝑟 (𝐺)).

Theorem 14.29 (The Baum-Connes Conjecture implies the Novikov Conjec-
ture). Given a group𝐺, the Baum-Connes Conjecture 14.9 for𝐺 implies the Strong
Novikov Conjecture 14.26 for 𝐺 and the Strong Novikov Conjecture 14.26 for 𝐺
implies the Novikov Conjecture 9.137 for 𝐺.

Proof. The implication that the Baum-Connes Conjecture 14.9 implies the Strong
Novikov Conjecture 14.26 follows from Lemma 13.38. For proofs that the Strong
Novikov Conjecture 14.26 implies the Novikov Conjecture 9.137 we refer to
Kasparov [564, § 9], [556] or Kaminker-Miller [542]. ⊓⊔

14.5.4 The Coarse Baum-Connes Conjecture

We briefly explain the Coarse Baum-Connes Conjecture, a variant of the Baum-
Connes Conjecture that applies to metric spaces and not only to groups. Its im-
portance lies in the fact that isomorphism results about the Coarse Baum-Connes
Conjecture can be used to prove injectivity results about the classical assembly map
for topological 𝐾-theory, see Theorem 16.15.

A metric 𝑋 is proper if for each 𝑟 > 0 and 𝑥 ∈ 𝑋 the closed ball of radius 𝑟
centered at 𝑥 is compact. Let 𝑋 be a proper metric space. Let 𝐻𝑋 a separable Hilbert
space with a faithful nondegenerate ∗-representation of𝐶0 (𝑋). Let 𝑇 : 𝐻𝑋 → 𝐻𝑋 be
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a bounded linear operator. Its support supp𝑇 ⊂ 𝑋 × 𝑋 is defined as the complement
of the set of all pairs (𝑥, 𝑥′) for which there exist functions 𝜙 and 𝜙′ ∈ 𝐶0 (𝑋)
satisfying 𝜙(𝑥) ≠ 0, 𝜙′ (𝑥′) ≠ 0, and 𝜙′𝑇𝜙 = 0. The operator 𝑇 is said to be a finite
propagation operator if there exists a constant 𝛼 such that 𝑑 (𝑥, 𝑥′) ≤ 𝛼 holds for
all pairs in the support of 𝑇 . The operator is said to be locally compact if 𝜙𝑇 and
𝑇𝜙 are compact for every 𝜙 ∈ 𝐶0 (𝑋). An operator is called pseudolocal if 𝜙𝑇𝜓 is
a compact operator for all pairs of continuous functions 𝜙 and 𝜓 with compact and
disjoint supports.

The Roe algebra 𝐶∗ (𝑋) is the operator-norm closure of the ∗-algebra of all
locally compact finite propagation operators on 𝐻𝑋. The algebra 𝐷∗ (𝑋) is the
operator-norm closure of the pseudolocal finite propagation operators. One can
show that the topological 𝐾-theory of the quotient 𝐾∗ (𝐷∗ (𝑋)/𝐶∗ (𝑋)) agrees with
𝐾-homology 𝐾∗−1 (𝑋). A metric space is called uniformly contractible if for every
𝑅 > 0 there exists an 𝑆 > 𝑅 such that for every 𝑥 ∈ 𝑋 the inclusion of open balls
𝐵𝑅 (𝑥) → 𝐵𝑆 (𝑥) is nullhomotopic. For a uniformly contractible proper metric space
the coarse assembly map 𝐾𝑛 (𝑋) → 𝐾𝑛 (𝐶∗ (𝑋)) is the boundary map in the long
exact sequence associated to the short exact sequence of 𝐶∗-algebras

0→ 𝐶∗ (𝑋) → 𝐷∗ (𝑋) → 𝐷∗ (𝑋)/𝐶∗ (𝑋) → 0.

For general metric spaces one first approximates the metric space by spaces with
nice local behavior, compare [854].

For simplicity we only explain the case where 𝑋 is a discrete metric space. Let
𝑃𝑑 (𝑋) be the Rips complex for a fixed distance 𝑑, i.e., the geometric realization of
the abstract simplicial complex with vertex set 𝑋 where a simplex is spanned by
every collection of points in which every two points are a distance less than 𝑑 apart.
Equip 𝑃𝑑 (𝑋) with the spherical metric, compare [1025].

A discrete metric space has bounded geometry if for each 𝑟 > 0 there exists a
natural number 𝑁 (𝑟) such that for all 𝑥 the open ball of radius 𝑟 centered at 𝑥 ∈ 𝑋
contains at most 𝑁 (𝑟) elements.

Conjecture 14.30 (Coarse Baum-Connes Conjecture). Let 𝑋 be a discrete metric
space of bounded geometry. Then for 𝑛 ∈ Z the coarse assembly map

colim𝑑→∞ 𝐾𝑛 (𝑃𝑑 (𝑋)) → colim𝑑→∞ 𝐾𝑛 (𝐶∗ (𝑃𝑑 (𝑋))) � 𝐾𝑛 (𝐶∗ (𝑋))

is an isomorphism.

A counterexample to the surjectivity part is constructed in [487, Section 6].
The injectivity part of this conjecture is false if one drops the bounded geometry
hypothesis, see [313, 1026].

The Coarse Baum-Connes Conjecture for a finitely generated discrete group 𝐺
(considered as a metric space) can be interpreted as a case of the Baum-Connes
Conjecture 14.11 with coefficients for the group 𝐺 with a certain specific choice of
coefficients, see [1030].
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Further information about the coarse Baum-Connes Conjecture can be found for
instance in [239, 389, 410, 411, 488, 489, 491, 769, 854, 1013, 1014, 1025, 1026,
1027, 1024].

14.6 Inheritance Properties of the Baum-Connes Conjecture

Similar to the Farrell-Jones Conjecture, the Baum-Connes Conjecture 14.11 with
coefficients has much better inheritance properties than the Baum-Connes Conjec-
ture 14.9. This is illustrated by the next theorem.

Theorem 14.31 (Inheritance properties of the Baum-Connes Conjecture with
coefficients).

(i) Passing to subgroups
Let 𝐻 ⊆ 𝐺 be an inclusion of groups. If 𝐺 satisfies the Baum-Connes Conjec-
ture 14.11 with coefficients, then𝐻 satisfies the Baum-Connes Conjecture 14.11
with coefficients;

(ii) Group extensions
Let 1 → 𝐾 → 𝐺

𝑝
−→ 𝑄 → 1 be an extension of groups. Suppose that for

any finite subgroup 𝐻 ⊆ 𝑄 the group 𝑝−1 (𝐻) satisfies the Baum-Connes
Conjecture 14.11 with coefficients and that the group 𝑄 satisfies the Baum-
Connes Conjecture 14.11 with coefficients.
Then 𝐺 satisfies the Baum-Connes Conjecture 14.11 with coefficients;

(iii) Passing to finite direct products
If the groups 𝐺0 and 𝐺1 satisfy the Baum-Connes Conjecture 14.11 with coef-
ficients, then 𝐺0 ×𝐺1 satisfies the Baum-Connes Conjecture 14.11 with coeffi-
cients;

(iv) Directed unions
Let 𝐺 be a union of the directed system of subgroups {𝐺𝑖 | 𝑖 ∈ 𝐼}.
If each group 𝐺𝑖 satisfies the Baum-Connes Conjecture 14.11 with coefficients,
then 𝐺 satisfies the Baum-Connes Conjecture 14.11 with coefficients;

(v) Actions on trees
Suppose that 𝐺 acts on a tree without inversion. Assume that the Baum-Connes
Conjecture 14.11 with coefficients holds for the stabilizers of any of the vertices.
Then the Baum-Connes Conjecture 14.11 with coefficients holds for 𝐺;

(vi) Amalgamated free products
Let 𝐺0 be a subgroup of 𝐺1 and 𝐺2 and 𝐺 be the amalgamated free product
𝐺 = 𝐺1 ∗𝐺0 𝐺2. Suppose 𝐺𝑖 satisfies the Baum-Connes Conjecture 14.11 with
coefficients for 𝑖 = 0, 1, 2.
Then 𝐺 satisfies Baum-Connes Conjecture 14.11 with coefficients;

(vii) HNN extension
Let 𝐺 be an HNN extension of the group 𝐻. Suppose that 𝐺 satisfies the Baum-
Connes Conjecture 14.11 with coefficients.
Then 𝐺 satisfies the Baum-Connes Conjecture 14.11 with coefficients.
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Proof. (i) This has been stated in [109], a proof can be found for instance in [221,
Theorem 2.5].
(ii) See [786, Theorem 3.1].
(iii) This follows from assertion (ii).
(iv) See [71, Theorem 1.8 (ii)].
(v) This is proved by Oyono-Oyono [787, Theorem 1.1].
(vi) and (vii) These are special case of assertion (v). ⊓⊔
Exercise 14.32. Show that the Baum-Connes Conjecture 14.11 with coefficients
holds for any abelian group and any free group.
Exercise 14.33. Let G be the fundamental group of the orientable closed surface of
genus 𝑔 ≥ 1. Show

𝐾𝑛 (𝐶∗𝑟 (𝐺,C)) =
{
Z2 𝑛 is even;
Z𝑔 𝑛 is odd.

Remark 14.34 (The Baum-Connes Conjecture with coefficients is not compat-
ible with colimits in general). The Baum-Connes Conjecture with coefficients is
not compatible with colimits in general. This is in contrast to the Full Farrell-Jones
Conjecture 13.30, see Theorem 13.32 (vi) and to the Bost Conjecture (14.25) with
coefficients, see [71, Theorem 1.8 (i)]. The Baum-Connes Conjecture 14.11 with
coefficients is known for hyperbolic groups, see [599, 918]. Now let 𝐺 be a col-
imit of a directed system of hyperbolic groups {𝐺𝑖 | 𝑖 ∈ 𝐼} (whose structure maps
𝐺𝑖 → 𝐺 𝑗 are not injective). Suppose that the Baum-Connes Conjecture 14.11 with
coefficients passes to colimits of directed systems of groups. Then the Baum-Connes
Conjecture 14.11 with coefficients holds for𝐺 as well. However, there exists a group
𝐺 which is a colimit of hyperbolic groups and contains appropriate expanders so
that [487] applies and hence the Baum-Connes Conjecture 14.11 with coefficients
does not hold for 𝐺. The construction of such a group is described in [39, 783].
Remark 14.35 (The Farrell-Jones Conjecture and actions on trees). The inheri-
tance properties of the Baum-Connes Conjecture 14.11 with coefficients for actions
on trees, see Theorem 14.31 (v), is very useful. It is not known to hold for the Full
Farrell-Jones Conjecture 13.30. The main reason is that in the Baum-Connes setting
the family FIN suffices, whereas in the Farrell-Jones setting we have to use the
familyVCY, since in the Farrell-Jones setting Nil-phenomena occur which are not
present in the Baum-Connes setting. Nevertheless, some partial results about this
question in the Farrell-Jones setting can be found in [75]. Alternatively, one uses
actions on trees to compute 𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅), see Section 15.7, and treats the
relative group𝐻𝐺𝑛 (𝐸FIN (𝐺) → 𝐸VCY (𝐺); K𝑅) separately, for which the results of
Section 13.10 are very useful. Thanks to the splitting results of Section 13.8 one can
put these two computations together to get a full description of𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅).
The analogous remark applies to 𝐿-theory.
Remark 14.36 (Passing to overgroups of finite index). It is not known whether
the Baum-Connes Conjecture 14.11 with coefficients passes to overgroups of finite
index. The same is true for the 𝐾- and 𝐿-theoretic Farrell-Jones Conjecture with
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coefficients in additive 𝐺-categories (with involution), see Conjecture 13.11 and
Conjecture 13.19. This was the reason why we introduced in Section 13.5 the versions
“with finite wreath products”. One can do the same in the Baum-Connes setting.

14.7 Reducing the Family of Subgroups for the Baum-Connes
Conjecture

The following result is proved in [76, Theorem 0.5] based on a Completion Theorem,
see [670, Theorem 6.5] and a Universal Coefficient Theorem, see [146, 525]. An
argument for the complex case using equivariant Euler classes is given by Mislin
and Matthey [709] for the complex case. It is not clear to us whether it is possible to
extend the methods of [709] to the real case.

Theorem 14.37 (Reducing the family of subgroups for the Baum-Connes Con-
jecture). For any group 𝐺 the relative assembly maps

𝐾𝐺𝑛 (𝐸FCY (𝐺)) → 𝐾𝐺𝑛 (𝐸FIN (𝐺));
𝐾𝑂𝐺𝑛 (𝐸FCY (𝐺)) → 𝐾𝑂𝐺𝑛 (𝐸FIN (𝐺)),

are bijective for all 𝑛 ∈ Z where FCY is the family of finite cyclic subgroups.

Remark 14.38 (FCY is the smallest family for the Baum-Connes Conjecture).
Let 𝐶 be a finite cyclic group and F be a family of subgroups of 𝐶. Then the
assembly map

𝐾𝐶0 (𝐸F (𝐶)) → 𝐾𝐶0 (𝐶/𝐶) = RepC (𝐶)

is surjective if and only if F consists of all subgroups. This follows from [651,
Theorem 0.7 and Lemma 3.4] since they predict that the homomorphism induced by
the various inclusions ⊕

𝐷∈F
RepC (𝐷) → RepC (𝐶)

is rationally surjective and hence 𝐶 must be contained in F .
Let C be a class of groups that is closed under taking subgroups and passing

to isomorphic groups. Examples are the classes of finite cyclic groups or of finite
groups. Given a group 𝐺, let C(𝐺) be the family of subgroups of 𝐺 that belong to
𝐺. Suppose that for any group 𝐺 the assembly map

𝐾𝐺𝑛 (𝐸C(𝐺) (𝐺)) → 𝐾𝐺𝑛 (𝐺/𝐺)

is bijective. The considerations above imply that C has to contain all finite cyclic
subgroups. So, roughly speaking, FCY is the smallest family for which one can
hope that the Baum-Connes Conjecture 14.9 is true for all groups.
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14.8 Applications of the Baum-Connes Conjecture

14.8.1 The Kadison Conjecture and the Trace Conjecture for Torsionfree
Groups

The Baum-Connes Conjecture for torsionfree groups 10.44 follows from the Baum-
Connes Conjecture 14.9, see Remark 14.14. If the Baum-Connes Conjecture for
torsionfree groups 10.44 holds for the torsionfree group 𝐺, then the following con-
jectures hold for 𝐺, see Subsections 10.4.1 and 10.4.2.

• Trace Conjecture 10.50 for torsionfree groups
For a torsionfree group 𝐺 the image of

tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R

consists of the integers.
• Kadison Conjecture 10.52

If 𝐺 is a torsionfree group, then the only idempotent elements in 𝐶∗𝑟 (𝐺) are 0
and 1.

14.8.2 The Novikov Conjecture and the Zero-in-the-Spectrum Conjecture

If the Baum-Connes Conjecture 14.9 holds for the group 𝐺, then the following
conjecture holds for 𝐺 by Theorem 14.29.

• Strong Novikov Conjecture 14.26
The assembly maps

asmb𝐺,C(𝐵𝐺)∗ : 𝐾𝑛 (𝐵𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺,C));
asmb𝐺,R(𝐵𝐺)∗ : 𝐾𝑂𝑛 (𝐵𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)).

of (10.42) and (10.43) are rationally injective for all 𝑛 ∈ Z.

The strong Novikov Conjecture 14.26 for the group 𝐺 (and hence also the Baum-
Connes Conjecture 14.9 for the group 𝐺) implies the next conjecture, see Subsec-
tion 10.4.3.

• Zero-in-the-Spectrum Conjecture 10.55
If 𝑀 is the universal covering of an aspherical closed Riemannian manifold 𝑀
with fundamental group isomorphic𝐺, then zero is in the spectrum of the minimal
closure of the 𝑝th Laplacian on 𝑀 for some 𝑝 ∈ {0, 1, . . . , dim𝑀}.
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Moreover, we have already shown in Theorem 14.29 that the Baum-Connes Conjec-
ture 14.9 for the group 𝐺 implies the following conjecture.

• Novikov Conjecture 9.137
Higher signatures over 𝐺 are homotopy invariant.

14.8.3 The Modified Trace Conjecture

Denote by Λ𝐺 the subring of Q that is obtained from Z by inverting all orders |𝐻 | of
finite subgroups 𝐻 of 𝐺, i.e.,

Λ𝐺 = Z
[
|𝐻 |−1 | 𝐻 ⊂ 𝐺, |𝐻 | < ∞

]
.(14.39)

The following conjecture generalizes Conjecture 10.50 to the case where the group
need no longer be torsionfree. For the standard trace see (10.48).

Conjecture 14.40 (Trace Conjecture, modified). Let𝐺 be a group. Then the image
of the homomorphism induced by the standard trace

tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R(14.41)

is contained in Λ𝐺 .

The following result is proved in [651, Theorem 0.3].

Theorem 14.42. Let 𝐺 be a group. Then the image of the composite

𝐾𝐺0 (𝐸FIN (𝐺)) ⊗Z Λ𝐺
asmb𝐺,C (𝐸𝐺)𝑛⊗Zid
−−−−−−−−−−−−−−−→ 𝐾0 (𝐶∗𝑟 (𝐺)) ⊗Z Λ𝐺

tr𝐶∗𝑟 (𝐺)−−−−−−→ R

is Λ𝐺 . Here asmb𝐺,C (𝐸𝐺)𝑛 is the map appearing in the Baum-Connes Conjec-
ture 14.9. In particular, the Baum-Connes Conjecture 14.9 implies the Modified
Trace Conjecture 14.40.

The original version of the Trace Conjecture due to Baum and Connes [108,
page 21] makes the stronger claim that the image of tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R is the
additive subgroup of Q generated by all numbers 1

|𝐻 | where 𝐻 ⊂ 𝐺 runs though all
finite subgroups of 𝐺. Roy has constructed a counterexample to this version in [881]
based on her article [882]. The examples of Roy do not contradict the Modified Trace
Conjecture 14.40 or the Baum-Connes Conjecture 14.9.

Exercise 14.43. The 𝐺 be a finite group. Show that the image of the trace map
tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R is {𝑛 · |𝐺 |−1 | 𝑛 ∈ Z}.
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14.8.4 The Stable Gromov-Lawson-Rosenberg Conjecture

The Stable Gromov-Lawson-Rosenberg Conjecture is a typical conjecture relating
Riemannian geometry to topology. It is concerned with the question when a given
manifold admits a metric of positive scalar curvature. It is related to the real version
of the Baum-Connes Conjecture 14.9.

Let ΩSpin
𝑛 (𝐵𝐺) be the bordism group of closed Spin-manifolds 𝑀 of dimension

𝑛 with a reference map to 𝐵𝐺. Given an element [𝑢 : 𝑀 → 𝐵𝐺] ∈ ΩSpin
𝑛 (𝐵𝐺), we

can take the 𝐶∗𝑟 (𝐺,R)-valued index of the equivariant Dirac operator associated to
the 𝐺-covering 𝑀 → 𝑀 determined by 𝑢. Thus we get a homomorphism

ind𝐶∗𝑟 (𝐺,R) : Ω
Spin
𝑛 (𝐵𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)).(14.44)

A Bott manifold is any simply connected closed Spin-manifold 𝐵 of dimension
8 whose 𝐴-genus 𝐴(𝐵) is 1. We fix such a choice, the particular choice does
not matter for the sequel. Note that ind𝐶∗𝑟 ({1},R) (𝐵) ∈ 𝐾𝑂8 (R) � Z is a genera-
tor and the product with this element induces the Bott periodicity isomorphisms
𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R))

�−→ 𝐾𝑂𝑛+8 (𝐶∗𝑟 (𝐺,R)). In particular,

ind𝐶∗𝑟 (𝐺,R) (𝑀) = ind𝐶∗𝑟 (𝐺,R) (𝑀 × 𝐵),(14.45)

if we identify 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)) = 𝐾𝑂𝑛+8 (𝐶∗𝑟 (𝐺,R)) via Bott periodicity.

Conjecture 14.46 (Stable Gromov-Lawson-Rosenberg Conjecture). Let 𝑀 be a
connected closed Spin-manifold of dimension 𝑛 ≥ 5. Let 𝑢𝑀 : 𝑀 → 𝐵𝜋1 (𝑀) be
the classifying map of its universal covering. Then 𝑀 × 𝐵𝑘 carries for some integer
𝑘 ≥ 0 a Riemannian metric with positive scalar curvature if and only if

ind𝐶∗𝑟 (𝜋1 (𝑀 ) ,R) ( [𝑀, 𝑢𝑀 ]) = 0 ∈ 𝐾𝑂𝑛 (𝐶∗𝑟 (𝜋1 (𝑀),R)).

If 𝑀 carries a Riemannian metric with positive scalar curvature, then the index
of the Dirac operator must vanish by the Bochner-Lichnerowicz formula [857].
The converse statement that the vanishing of the index implies the existence of a
Riemannian metric with positive scalar curvature is the hard part of the conjecture.
The following result is due to Stolz. A sketch of the proof can be found in [931,
Section 3].

Theorem 14.47 (The Baum-Connes Conjecture implies the Stable Gromov-
Lawson-Rosenberg Conjecture). If the assembly map for the real version of
the Baum-Connes Conjecture 14.9 is injective for the group 𝐺, then the Stable
Gromov-Lawson-Rosenberg Conjecture 14.46 is true for all closed Spin-manifolds
of dimension ≥ 5 with 𝜋1 (𝑀) � 𝐺.

The requirement dim(𝑀) ≥ 5 is essential in the Stable Gromov-Lawson-
Rosenberg Conjecture since in dimension four new obstructions, the Seiberg-Witten
invariants, occur. The unstable version of this conjecture says that 𝑀 carries a
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Riemannian metric with positive scalar curvature if and only if
ind𝐶∗𝑟 (𝜋1 (𝑀 ) ,R) ( [𝑀, 𝑢𝑀 ]) = 0. Schick [895] constructs counterexamples to the un-
stable version using minimal hypersurface methods due to Schoen and Yau, see
also [321]. There are counterexamples with 𝜋 � Z4 × Z/3. However for appro-
priate 𝜌 : Z/3 → aut(Z4) the unstable version does hold for 𝜋 � Z4 ⋊𝜌 Z/3 and
dim(𝑀) ≥ 5, see [282, Theorem 0.7 and Remark 0.9]. More infinite groups for
which the unstable version holds are presented in [507, Theorem 6.3].

Since the Baum-Connes Conjecture 14.9 is true for finite groups (for the trivial
reason that 𝐸FIN (𝐺) = {•} for finite groups 𝐺), Theorem 14.47 implies that the
Stable Gromov-Lawson Conjecture 14.46 holds for finite fundamental groups, see
also [869]. It is not known at the time of writing whether the unstable version is true
for finite fundamental groups.

The index map appearing in (14.44) can be factorized as a composite

(14.48) ind𝐶∗𝑟 (𝐺,R) : Ω
Spin
𝑛 (𝐵𝐺) 𝐷−→ 𝐾𝑂𝑛 (𝐵𝐺)

asmb𝐺,C (𝐵𝐺)𝑛−−−−−−−−−−−−→ 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R))

where 𝐷 sends [𝑀, 𝑢] to the class of the 𝐺-equivariant Dirac operator of the
𝐺-manifold 𝑀 given by 𝑢 and asmb𝐺,C (𝐵𝐺)𝑛 is the real version of the classical
assembly map. The homological Chern character defines an isomorphism

𝐾𝑂𝑛 (𝐵𝐺) ⊗Z Q
�−→

⊕
𝑝∈Z

𝐻𝑛+4𝑝 (𝐵𝐺;Q).

Recall that associated to 𝑀 there is the 𝐴-class

Â(𝑀) ∈
∏
𝑝≥0

𝐻 𝑝 (𝑀;Q)(14.49)

which is a certain polynomial in the Pontrjagin classes. The map 𝐷 appearing
in (14.48) sends the class of 𝑢 : 𝑀 → 𝐵𝐺 to 𝑢∗ (Â(𝑀) ∩ [𝑀]Q), i.e., the image of
the Poincaré dual of Â(𝑀) under the map induced by 𝑢 in rational homology. Hence
𝐷 ( [𝑀, 𝑢]) = 0 if and only if 𝑢∗ (Â(𝑀)∩[𝑀]Q) vanishes. For 𝑥 ∈ ∏

𝑘≥0 𝐻
𝑘 (𝐵𝐺;Q)

define the higher 𝐴-genus of (𝑀, 𝑢) associated to 𝑥 to be

𝐴𝑥 (𝑀, 𝑢) = ⟨Â(𝑀) ∪ 𝑢∗𝑥, [𝑀]Q⟩ = ⟨𝑥, 𝑢∗ (Â(𝑀) ∩ [𝑀]Q)⟩ ∈ Q.(14.50)

The vanishing of Â(𝑀) is equivalent to the vanishing of all higher 𝐴-genera
𝐴𝑥 (𝑀, 𝑢). The following conjecture is a weak version of the Stable Gromov-Lawson-
Rosenberg Conjecture.

Conjecture 14.51 (Homological Gromov-Lawson-Rosenberg Conjecture). Let
𝐺 be a group. Then for any closed Spin-manifold 𝑀 which admits a Riemannian
metric with positive scalar curvature, the 𝐴-genus 𝐴𝑥 (𝑀, 𝑢) vanishes for all maps
𝑢 : 𝑀 → 𝐵𝐺 and elements 𝑥 ∈ ∏

𝑘≥0 𝐻
𝑘 (𝐵𝐺;Q).

From the discussion above we obtain the following result.
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Lemma 14.52. If the assembly map

𝐾𝑂𝑛 (𝐵𝐺) ⊗Z Q→ 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)) ⊗Z Q

is injective for all 𝑛 ∈ Z, then the Homological Gromov-Lawson-Rosenberg Conjec-
ture 14.51 holds for 𝐺.

The following conjecture is due to Gromov-Lawson [443, page 313].

Conjecture 14.53 (Aspherical closed manifolds carry no Riemannian metric
with positive scalar curvature). An aspherical closed manifold carries no Rieman-
nian metric with positive scalar curvature.

Conjecture 14.53 is known to be true in dimensions 4 and 5 by Chodosh-Li-
Liokumovich [241] and Gromov [442].

Lemma 14.54. Let 𝑀 be an aspherical closed Spin-manifold whose fundamental
group satisfies the Homological Gromov-Lawson-Rosenberg Conjecture 14.51.

Then 𝑀 satisfies Conjecture 14.53, i.e., 𝑀 carries no Riemannian metric with
positive scalar curvature.

Proof. Suppose 𝑀 carries a Riemannian metric of positive scalar curvature. Since 𝑀
is aspherical, we can take 𝑀 = 𝐵𝐺 for𝐺 = 𝜋1 (𝑀) and 𝑓 = id𝐺 in Conjecture 14.51.
Since Â(𝑀)0 = 1, we get for all 𝑥 ∈ 𝐻dim(𝑀 ) (𝑀;Q) that ⟨𝑥, [𝑀]⟩ = 0 holds, a
contradiction. ⊓⊔

Exercise 14.55. Let 𝐹 → 𝑀 → 𝑆1 be a fiber bundle such that 𝐹 is an orientable
closed surface and 𝑀 is a closed spin-manifold. Show that 𝑀 carries a Riemannian
metric with positive scalar curvature if and only if 𝐹 is 𝑆2.

The (moduli) space of metrics of positive scalar curvature of closed spin manifolds
is studied in [156, 157, 264, 323, 466, 899].

14.8.5 𝑳2-Rho-Invariants and 𝑳2-Signatures

Let𝑀 be an orientable connected closed Riemannian manifold. Denote by 𝜂(𝑀) ∈ R
the eta-invariant of 𝑀 and by 𝜂 (2) (𝑀) ∈ R the 𝐿2-eta-invariant of the 𝜋1 (𝑀)-
covering given by the universal covering 𝑀 → 𝑀 . Let 𝜌 (2) (𝑀) ∈ R be the
𝐿2-rho-invariant that is defined to be the difference 𝜂 (2) (𝑀) − 𝜂(𝑀). These in-
variants were studied by Cheeger and Gromov [237, 238]. They show that 𝜌 (2) (𝑀)
depends only on the diffeomorphism type of 𝑀 and is in contrast to 𝜂(𝑀) and
𝜂 (2) (𝑀) independent of the choice of Riemannian metric on 𝑀 . The following
conjecture is taken from Mathai [708].

Conjecture 14.56 (Homotopy invariance of the 𝐿2-Rho-invariant for torsionfree
groups). If 𝜋1 (𝑀) is torsionfree, then 𝜌 (2) (𝑀) is a homotopy invariant.
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Theorem 14.57 (Homotopy Invariance of 𝜌 (2) (𝑀)). Let 𝑀 be an oriented con-
nected closed manifold 𝑀of odd dimension such that 𝐺 = 𝜋1 (𝑀) is torsionfree.
Suppose that the assembly map 𝐾0 (𝐵𝐺) → 𝐾0 (𝐶∗max (𝐺)) for the maximal group
𝐶∗-algebra, see Subsection 14.5.1, is surjective.

Then 𝜌 (2) (𝑀) is a homotopy invariant.

Proof. This is proved by Keswani [577, 578]. ⊓⊔

Remark 14.58 (𝐿2-signature Theorem). Let 𝑋 be a 4𝑛-dimensional Poincaré space
overQ. Let 𝑋 → 𝑋 be a normal covering with torsionfree covering group𝐺. Suppose
that the assembly map 𝐾0 (𝐵𝐺) → 𝐾0 (𝐶∗max (𝐺)) for the maximal group 𝐶∗-algebra
is surjective, see Subsection 14.5.1, or suppose that the rationalized assembly map
for 𝐿-theory

𝐻4𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) ⊗Z Q→ 𝐿
⟨−∞⟩
4𝑛 (Z𝐺) ⊗Z Q

is surjective. Then the following 𝐿2-signature theorem is proved in Lück-Schick [681,
Theorem 0.3]

(14.59) sign(2) (𝑋) = sign(𝑋).

If one drops the condition that 𝐺 is torsionfree this equality becomes false.
Namely, Wall has constructed a finite Poincaré space 𝑋 with a finite 𝐺 covering
𝑋 → 𝑋 for which sign(𝑋) ≠ |𝐺 | · sign(𝑋) holds, see [839, Example 22.28], [985,
Corollary 5.4.1]. If 𝑋 is a closed topological manifold, then (14.59) is true for all
groups 𝐺, see [681, Theorem 0.2].

Remark 14.60. Chang-Weinberger [225] assign to an oriented connected closed
(4𝑘 − 1)-dimensional manifold 𝑀 a Hirzebruch-type invariant 𝜏 (2) (𝑀) ∈ R as
follows. By a result of Hausmann [473] there is an oriented connected closed
4𝑘-dimensional smooth manifold𝑊 with 𝑀 = 𝜕𝑊 such that the inclusion 𝜕𝑊 → 𝑊

induces an injection on the fundamental groups. Define 𝜏 (2) (𝑀) as the difference
sign(2) (𝑊) − sign(𝑊) of the 𝐿2-signature of the 𝜋1 (𝑊)-covering given by the uni-
versal covering 𝑊 → 𝑊 and the signature of 𝑊 . This is indeed independent of
the choice of 𝑊 . We conjecture that 𝜌 (2) (𝑀) = 𝜏 (2) (𝑀) is always true. Chang-
Weinberger [225] use 𝜏 (2) to prove that, if 𝜋1 (𝑀) is not torsionfree, there are
infinitely many diffeomorphically distinct smooth manifolds which are tangentially
simple homotopy equivalent to 𝑀 , if 𝑀 is an oriented connected closed (4𝑘 − 1)-
dimensional manifold for 𝑘 ≥ 2.

If 𝜋1 (𝑀) is not torsionfree, then 𝜏 (2) (𝑀) is not a homotopy invariant. Suppose
that 𝐺 is torsionfree and the rationalized assembly map for 𝐿-theory

𝐻4𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) ⊗Z Q→ 𝐿
⟨−∞⟩
4𝑛 (Z𝐺) ⊗Z Q

is surjective for 𝑛 ∈ Z. Then it is conceivable that 𝜏 (2) (𝑀) is a homotopy invariant
if 𝐺 = 𝜋1 (𝑀).
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Remark 14.61 (Obstructions for knots to be slice). Cochran-Orr-Teichner give
in [246] new obstructions for a knot to be slice, which are sharper than the Casson-
Gordon invariants. They use 𝐿2-signatures and the Baum-Connes Conjecture 14.9.
We also refer to the survey article [245] about non-commutative geometry and knot
theory.

14.9 Notes

The Baum-Connes Conjecture has also been formulated and proved for (not nec-
essarily discrete) topological groups, see for instance [109, 112, 222, 603]. It is
interesting for representation theory, see for instance [113].

The Baum-Connes assembly maps in terms of localizations of triangulated cate-
gories are considered in [514, 515, 516, 716, 717, 718].

Certain so-called Cuntz-Lie 𝐶∗-algebras, see [268, 269], were classified in [629,
Corollary 1.3]. The main difficulty is to compute the topological 𝐾-theory of these
𝐶∗-algebras, which boils down to the computation of the topological 𝐶∗-algebra of
certain crystallographic groups. This in turn leads via the Baum-Connes Conjecture
to an open conjecture about group homology which was solved in the case needed
for this application, see [618, 619].

Other classification results whose proof uses the Baum-Connes Conjecture 14.9,
can be found in [324, Theorem 0.1].

We propose that one should also construct a Baum-Connes assembly map for
the Fréchet algebra R(𝐺) associated to a group 𝐺. This will lead to the intriguing
factorization of the Baum-Connes assembly map

𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (R(𝐺)) → 𝐾𝑛 (𝐿1 (𝐺)) → 𝐾𝑛 (𝐶∗𝑟 (𝐺)).

There is some hope that the methods of proof for the 𝐾-theoretic Farrell-Jones Con-
jecture will carry over to group Fréchet algebras. This would lead for instance to the
proof of the bijectivity of 𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (R(𝐺)) for (not necessarily cocompact)
lattices in second countable locally compact Hausdorff groups with finitely many
path components. Note that the Baum-Connes Conjecture 14.9 is open for SL𝑛 (Z)
for 𝑛 ≥ 3.

For more information about the Baum-Connes Conjecture and its applications we
refer for instance to [109, 426, 484, 492, 493, 494, 601, 602, 673, 742, 807, 866,
896, 963].





Chapter 15
The (Fibered) Meta- and Other Isomorphism
Conjectures

15.1 Introduction

In this section we deal with Isomorphism Conjectures in their most general form.
Namely, given a 𝐺-homology theory H𝐺

∗ , the Meta-Isomorphism Conjecture 15.2
predicts that, for a group 𝐺 and a family F of subgroups of 𝐺, the map induced by
the projection 𝐸F (𝐺) → 𝐺/𝐺

H𝐺
𝑛 (𝐸F (𝐺)) → H𝐺

𝑛 (𝐺/𝐺)

is bijective for all 𝑛 ∈ Z.
If we take special examples for H𝐺

∗ and F , then we obtain the Farrell-Jones
Conjecture for a ring 𝑅 (with involution), see Conjectures 13.1 and 13.4, and the
Baum-Connes Conjecture 14.9. We will also introduce a Fibered Meta-Isomorphism
Conjecture 15.8, which is more general and has much better inheritance properties,
see Section 15.6. The versions of the Farrell-Jones Conjecture with coefficients
in additive categories, see Conjectures 13.11 and 13.19, and the Baum-Connes
Conjecture 14.11 with coefficients are automatically fibered, see Theorem 15.9, and
hence have good inheritance properties.

The main tool to reduce the family of subgroups is the Transitivity Principle,
which we discuss in Section 15.5.

Section 15.7 is devoted to actions on trees and their implications, such as the
existence of Mayer-Vietoris sequences associated to amalgamated free products and
Wang sequences associated to semidirect products with Z, or more generally to
HNN-extensions.

In Section 15.8 we pass to the special case where the homology theory comes
from a functor from spaces to spectra which respects weak homotopy equivalences
and disjoint unions, and discuss inheritance properties in this framework.

By specifying the functor from spaces to spectra, we obtain the Farrell-Jones
Conjecture for Waldhausen’s 𝐴-theory for pseudoisotopy and Whitehead spaces
in Section 15.10. We also deal with topological Hochschild homology and cyclic
homology in Section 15.11. We explain the Farrell-Jones Conjecture for homotopy
𝐾-theory in Section 15.12. The only instance where we will consider not necessarily
discrete groups is the Farrell-Jones Conjecture 15.80 for the algebraic 𝐾-theory
of the Hecke algebra of a totally disconnected locally compact second countable
Hausdorff group.

In Section 15.14 interesting relations between these conjectures are discussed,
namely, between the Farrell-Jones Conjecture for the 𝐾-theory of group rings, for
the 𝐴-theory of classifying spaces of groups, and for pseudoisotopy of classifying

435
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spaces of groups, see Subsections 15.14.1 and 15.14.2, between the Farrell-Jones
Conjecture for the𝐾-theory and for the topological cyclic homology of integral group
rings, see Subsection 15.14.3, between the Farrell-Jones Conjecture of the 𝐿-theory
of group rings and the Baum-Connes Conjecture for the topological 𝐾-theory of
reduced group𝐶∗-algebras, see Subsection 15.14.4, between the Bost Conjecture for
the topological𝐾-theory of group Banach algebras and the Baum-Connes Conjecture
for the topological 𝐾-theory of reduced group 𝐶∗-algebras, see Subsection 15.14.6,
and between the Farrell-Jones Conjecture for 𝐾-theory and the homotopy 𝐾-theory
of group rings, see Subsection 15.14.7. We will briefly also relate the geometric
Surgery Exact Sequence in the topological category to an analytic Surgery Exact
Sequence in Subsection 15.14.5.

15.2 The Meta-Isomorphism Conjecture

Let 𝐺 be a (discrete) group. Let H𝐺
∗ be a 𝐺-homology theory with values in

Λ-modules for some commutative associative ring with unit Λ. Recall that it assigns
to every 𝐺-𝐶𝑊-pair (𝑋, 𝐴) and integer 𝑛 ∈ Z a Λ-module H𝐺

𝑛 (𝑋, 𝐴) such that the
obvious generalization to 𝐺-𝐶𝑊-pairs of the axioms of a (non-equivariant general-
ized) homology theory for 𝐶𝑊-complexes holds, i.e., 𝐺-homotopy invariance, the
long exact sequence of a 𝐺-𝐶𝑊-pair, excision, and the disjoint union axiom are sat-
isfied. The precise definition of a𝐺-homology theory can be found in Definition 12.1
and of a 𝐺-𝐶𝑊-complex in Definition 11.2, see also Remark 11.3.

Recall that we have defined the notion of a family of subgroups of a group 𝐺 in
Definition 2.62, namely, it is a set of subgroups of𝐺 that is closed under conjugation
with elements of 𝐺 and passing to subgroups. Let F be a family of subgroups of 𝐺.
Denote by 𝐸F (𝐺) a model for the classifying 𝐺-𝐶𝑊-complex for the family F of
subgroups of 𝐺, i.e., a 𝐺-𝐶𝑊-complex 𝐸F (𝐺) whose isotropy groups belong to F
and for which for each 𝐻 ∈ F the 𝐻-fixed point set 𝐸F (𝐺)𝐻 is weakly contractible.
Such a model always exists and is unique up to 𝐺-homotopy, see Definition 11.18
and Theorem 11.19.

The projection pr : 𝐸F (𝐺) → 𝐺/𝐺 induces for all integers 𝑛 ∈ Z a homomor-
phism of Λ-modules

(15.1) H𝐺
𝑛 (pr) : H𝐺

𝑛 (𝐸F (𝐺)) → H𝐺
𝑛 (𝐺/𝐺),

which is sometimes called an assembly map.

Conjecture 15.2 (Meta-Isomorphism Conjecture). The group 𝐺 satisfies the
Meta-Isomorphism Conjecture with respect to the 𝐺-homology theory H𝐺

∗ and
the family F of subgroups of 𝐺 if the assembly map

H𝑛 (pr) : H𝐺
𝑛 (𝐸F (𝐺)) → H𝐺

𝑛 (𝐺/𝐺)

of (15.1) is bijective for all 𝑛 ∈ Z.
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If we choose F to be the familyALL of all subgroups, then 𝐺/𝐺 is a model for
𝐸ALL (𝐺) and the Meta-Isomorphism Conjecture 15.2 is obviously true. The point
is to find a family F that is as small as possible. The idea of the Meta-Isomorphism
Conjecture 15.2 is that one wants to compute H𝐺

𝑛 (𝐺/𝐺), which is the unknown
and the interesting object, by assembling it from the values H𝐺

𝑛 (𝐺/𝐻) for 𝐻 ∈ F ,
which are usually much more accessible since the structure of the groups 𝐻 is easy.
For instance, F could be the family FIN of finite subgroups or the family VCY
of virtually cyclic subgroups.

The various Isomorphism Conjectures are now obtained by specifying the
𝐺-homology theory H𝐺

∗ and the family F . For instance, the 𝐾-theoretic Farrell-
Jones Conjecture 13.1 with coefficients in the ring 𝑅 and the 𝐿-theoretic Farrell-Jones
Conjecture 13.4 with coefficients in the ring with involution 𝑅 are equivalent to the
Meta-Isomorphism Conjecture 15.2 if we choose F to be VCY and H𝐺

𝑛 to be
𝐻𝐺𝑛 (−; K𝑅) and 𝐻𝐺𝑛 (−; L⟨−∞⟩

𝑅
). The Baum-Connes Conjecture 14.9 is equivalent

the Meta-Isomorphism Conjecture 15.2 if we choose F to be FIN and H𝐺
𝑛 to be

𝐾𝐺𝑛 (−) = 𝐻𝐺𝑛 (−; KTOP
C ) or 𝐾𝑂𝐺𝑛 (−) = 𝐻𝐺𝑛 (−; KTOP

R ). The analogous statement
holds for the versions with coefficients in additive 𝐺-categories (with involutions),
Conjectures 13.11, 13.19, and 14.11, and for the version with coefficients in higher
𝐺-categories, see Conjecture 13.23.

Exercise 15.3. LetH ?
∗ be an equivariant homology theory with values in Λ-modules

in the sense of Definition 12.9. Fix a class of groups C that is closed under isomor-
phisms, taking subgroups, and taking quotients, e.g., the class of finite groups or
the class of virtually cyclic subgroups. For a group 𝐺 let C(𝐺) be the family of
subgroups of𝐺 that belong to C. Then we obtain for each group𝐺 an assembly map
induced by the projection 𝐸C(𝐺) (𝐺) → 𝐺/𝐺

H𝐺
𝑛 (𝐸C(𝐺) (𝐺)) → H𝐺

𝑛 (𝐺/𝐺).

By using the induction structure ofH ?
∗ explain how we can turn the source and target

to be functors from the category of groups to the category of Λ-modules such that
the assembly maps yield a natural transformation of such functors.

15.3 The Fibered Meta-Isomorphism Conjecture

Given a group homomorphism 𝜙 : 𝐾 → 𝐺 and a family F of subgroups of𝐺, define
the family of subgroups of 𝐾

𝜙∗F := {𝐻 ⊆ 𝐾 | 𝜙(𝐻) ∈ F }.(15.4)

If 𝜙 is an inclusion of subgroups, we also write

F |𝐾 := 𝜙∗F = {𝐻 ⊆ 𝐾 | 𝐻 ∈ F }.(15.5)
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If 𝜓 : 𝐻 → 𝐾 is another group homomorphism, then

𝜓∗ (𝜙∗F ) = (𝜙 ◦ 𝜓)∗F .(15.6)

Exercise 15.7. Let 𝜙 : 𝐾 → 𝐺 be a group homomorphism. Consider a family F
of subgroups of 𝐺 and a 𝐺-𝐶𝑊-model 𝐸F (𝐺). Show that its restriction to 𝐾 by
𝜙 : 𝐾 → 𝐺 is a 𝐾-𝐶𝑊-complex which is a model for 𝐸𝜙∗F (𝐾).

Consider an equivariant homology theory H ?↓Γ
∗ over the group Γ with values in

Λ-modules in the sense of Definition 12.91.

Conjecture 15.8 (Fibered Meta-Isomorphism Conjecture). A group (𝐺, 𝜉) over
Γ satisfies the Fibered Meta-Isomorphism Conjecture with respect to H ?↓Γ

∗ and the
family F of subgroups of 𝐺 if for each group homomorphism 𝜙 : 𝐾 → 𝐺 the group
𝐾 satisfies the Meta-Isomorphism Conjecture 15.2 with respect to the 𝐾-homology
theoryH𝐾,𝜉◦𝜙

∗ and the family 𝜙∗F of subgroups of 𝐾 .

15.4 The Farrell-Jones Conjecture with Coefficients in Additive
or Higher Categories is Fibered

We will see that it is important for inheritance properties to pass to the fibered
version. It turns out that the fibered version is automatically built into the versions
of the Farrell-Jones Conjecture with coefficients in additive 𝐺-categories (with
involution) and in higher categories.

Theorem 15.9 (The Farrell-Jones Conjecture with coefficients in additive
𝐺-categories (with involutions) is automatically fibered).

(i) Let 𝜙 : 𝐾 → 𝐺 be a group homomorphism. Let F be a family of subgroups of
𝐺. Suppose that the assembly map

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸F (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
is bijective for every 𝑛 ∈ Z and every additive 𝐺-category A.
Then the assembly map

𝐻𝐾𝑛 (pr) : 𝐻𝐾𝑛 (𝐸𝜙∗F (𝐾); KB) → 𝐻𝐾𝑛 (𝐾/𝐾; KB) = 𝜋𝑛
(
KB (𝐼 (𝐾))

)
is bijective for every 𝑛 ∈ Z and every additive 𝐾-category B.
The analogous statement holds for higher categories as coefficients;

(ii) Suppose that 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjecture 13.11 with
coefficients in additive 𝐺-categories.
Then the Fibered Meta-Isomorphism Conjecture 15.8 holds for the group
(𝐺, id𝐺) over 𝐺, the family VCY, and the equivariant homology theory
𝐻?
∗ (−; KA) over 𝐺 for every additive 𝐺-category A.

The analogous statement holds for higher categories as coefficients;
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(iii) Let 𝜙 : 𝐾 → 𝐺 be a group homomorphism. Let F be a family of subgroups of
𝐺. Suppose that the assembly map

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸F (𝐺); L⟨−∞⟩A ) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is bijective for every 𝑛 ∈ Z and every additive 𝐺-category with involution A.
Then the assembly map

𝐻𝐾𝑛 (pr) : 𝐻𝐾𝑛 (𝐸𝜙∗F (𝐺); L⟨−∞⟩B ) → 𝐻𝐾𝑛 (𝐾/𝐾; L⟨−∞⟩B ) = 𝜋𝑛
(
L⟨−∞⟩B (𝐼 (𝐾))

)
is bijective for every 𝑛 ∈ Z and every additive 𝐾-category with involution B;

(iv) Suppose that 𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture 13.19 with
coefficients in additive 𝐺-categories with involution.
Then the Fibered Meta-Isomorphism Conjecture 15.8 holds for the group
(𝐺, id𝐺) over 𝐺, the family VCY, and the equivariant homology theory
𝐻?
∗ (−; L⟨−∞⟩A ) over 𝐺 for every additive 𝐺-category with involution A.

Proof. (i) See [92, Corollary 4.3] and [185, Corollary 8.2].
(ii) This follows from assertion (i) by taking B = 𝜙∗A since a direct inspection
of the definitions in [77, Section 9] shows that the 𝐾-homology theory obtained by
taking in 𝐻?

∗ (−; KA) the variable ? to be 𝜙 is the same as the 𝐾-homology theory
H𝐾
∗ (−; K𝜙∗A) associated to the additive 𝐾-category 𝜙∗A.

(iii) See [77, Theorem 11.3].
(iv) This follows from (iii) by the same proof as for assertion (ii). ⊓⊔

It is useful to have the Fibered Meta Conjecture 15.8 available since there are
other situations where it is not known how to formulate it with adequate coefficients,
as is possible in the Farrell-Jones setting for 𝐾- and 𝐿-theory.

15.5 Transitivity Principles

In this subsection we treat only equivariant homology theories H ?
∗ to keep the

notation and exposition simple. The generalizations to an equivariant homology
theory over a group Γ are obvious, just equip each group occurring below with the
appropriate reference map to Γ.

Lemma 15.10. Let 𝐺 be a group, and let F be a family of subgroups of 𝐺. Let 𝑚 be
an integer. Let 𝑍 be a𝐺-𝐶𝑊-complex. For𝐻 ⊆ 𝐺 let F |𝐻 be the family of subgroups
of 𝐻 given by {𝐿 ⊆ 𝐻 | 𝐿 ∈ F }. Suppose for each 𝐻 ⊆ 𝐺 occurring as an isotropy
group in 𝑍 that the maps induced by the projection pr𝐻 : 𝐸F|𝐻 (𝐻) → 𝐻/𝐻

H𝐻
𝑛 (pr𝐻 ) : H𝐻

𝑛 (𝐸F|𝐻 (𝐻)) → H𝐻
𝑛 (𝐻/𝐻)

satisfy one of the following conditions
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(i) They are bijective for 𝑛 ∈ Z with 𝑛 ≤ 𝑚;
(ii) They are bijective for 𝑛 ∈ Z with 𝑛 ≤ 𝑚 − 1 and surjective for 𝑛 = 𝑚.

Then the maps induced by the projection pr2 : 𝐸F (𝐺) × 𝑍 → 𝑍

H𝐺
𝑛 (pr2) : H𝐺

𝑛 (𝐸F (𝐺) × 𝑍) → H𝐺
𝑛 (𝑍)

satisfies the same condition.

Proof. We first prove the claim for finite-dimensional𝐺-𝐶𝑊-complexes by induction
over 𝑑 = dim(𝑍). The induction beginning dim(𝑍) = −1, i.e. 𝑍 = ∅, is trivial. In
the induction step from (𝑑 − 1) to 𝑑 we choose a 𝐺-pushout∐

𝑖∈𝐼𝑑 𝐺/𝐻𝑖 × 𝑆𝑑−1 //

��

𝑍𝑑−1

��∐
𝑖∈𝐼𝑑 𝐺/𝐻𝑖 × 𝐷𝑑 // 𝑍𝑑 .

If we cross it with 𝐸F (𝐺), we obtain another 𝐺-pushout of 𝐺-𝐶𝑊-complexes.
The various projections induce a map from the Mayer-Vietoris sequence of the latter
𝐺-pushout to the Mayer-Vietoris sequence of the first𝐺-pushout. By the Five Lemma
(or its obvious variant if we consider assumption (ii)) it suffices to prove that the
following maps

H𝐺
𝑛 (pr2) : H𝐺

𝑛

(
𝐸F (𝐺) ×

∐
𝑖∈𝐼𝑑

𝐺/𝐻𝑖 × 𝑆𝑑−1

)
→ H𝐺

𝑛

(∐
𝑖∈𝐼𝑑

𝐺/𝐻𝑖 × 𝑆𝑑−1

)
;

H𝐺
𝑛 (pr2) : H𝐺

𝑛 (𝐸F (𝐺) × 𝑍𝑑−1) → H𝐺
𝑛 (𝑍𝑑−1);

H𝐺
𝑛 (pr2) : H𝐺

𝑛

(
𝐸F (𝐺) ×

∐
𝑖∈𝐼𝑑

𝐺/𝐻𝑖 × 𝐷𝑑
)
→ H𝐺

𝑛

(∐
𝑖∈𝐼𝑑

𝐺/𝐻𝑖 × 𝐷𝑑
)
,

satisfy condition (i) or (ii) respectively. This follows from the induction hypothesis for
the first two maps. Because of the disjoint union axiom and 𝐺-homotopy invariance
of H ?

∗ the claim follows for the third map if we can show for any 𝐻 ⊆ 𝐺 which
occurs as an isotropy group in 𝑍 that the maps

H𝐺
𝑛 (pr2) : H𝐺

𝑛 (𝐸F (𝐺) × 𝐺/𝐻) → H𝐺 (𝐺/𝐻)(15.11)

satisfy condition (i) or (ii) respectively. The 𝐺-map

𝐺 ×𝐻 res𝐻𝐺 𝐸F (𝐺) → 𝐺/𝐻 × 𝐸F (𝐺) (𝑔, 𝑥) ↦→ (𝑔𝐻, 𝑔𝑥)

is a 𝐺-homeomorphism where res𝐻
𝐺

denotes the restriction of the 𝐺-action to an
𝐻-action. Since F |𝐻 = {𝐾 ∩ 𝐻 | 𝐾 ∈ F }, the 𝐻-space res𝐻

𝐺
𝐸F (𝐺) is a model

for 𝐸F|𝐻 (𝐻). We conclude from the induction structure that the map (15.11) can be
identified with the map
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H𝐻
𝑛 (pr𝐻 ) : H𝐻

𝑛 (𝐸F|𝐻 (𝐻)) → H𝐻 (𝐻/𝐻),

which satisfies condition (i) or (ii) respectively by assumption. This finishes the
proof in the case that 𝑍 is finite-dimensional. The general case follows by a colimit
argument using Lemma 12.5. ⊓⊔

Theorem 15.12 (Transitivity Principle for equivariant homology). Suppose F ⊆
G are two families of subgroups of the group 𝐺. Suppose for every 𝐻 ∈ G that the
maps induced by the projection

H𝐻
𝑛 (𝐸F|𝐻 (𝐻)) → H𝐻

𝑛 (𝐻/𝐻)

satisfy one of the following conditions:

(i) They are bijective for 𝑛 ∈ Z with 𝑛 ≤ 𝑚;
(ii) They are bijective for 𝑛 ∈ Z with 𝑛 ≤ 𝑚 − 1 and surjective for 𝑛 = 𝑚.

Then the maps induced by the up to 𝐺-homotopy unique 𝐺-map 𝜄F⊆G : 𝐸F (𝐺) →
𝐸𝐺 (G)

H𝐺
𝑛 (𝜄F⊆G) : H𝐺

𝑛 (𝐸F (𝐺)) → H𝐺
𝑛 (𝐸G (𝐺))

satisfy the same condition.

Proof. If we equip 𝐸F (𝐺) × 𝐸G (𝐺) with the diagonal 𝐺-action, it is a model for
𝐸F (𝐺). Now apply Lemma 15.10 in the special case 𝑍 = 𝐸G (𝐺). ⊓⊔

This implies the following transitivity principle for the Fibered Isomorphism
Conjecture. At the level of spectra this transitivity principle is due to Farrell and
Jones [366, Theorem A.10].

Theorem 15.13 (Transitivity Principle). Suppose F ⊆ G are two families of
subgroups of 𝐺.

(i) Assume that for every element 𝐿 ∈ G the group 𝐿 satisfies the Meta-Isomorphism
Conjecture 15.2 or the Fibered Meta-Isomorphism Conjecture 15.8 respectively
for F |𝐿 .
Then the group𝐺 satisfies the Meta-Isomorphism Conjecture 15.2 or the Fibered
Meta-Isomorphism Conjecture 15.8 respectively with respect to G if and only
if 𝐺 satisfies the Meta-Isomorphism Conjecture 15.2 or the Fibered Meta-
Isomorphism Conjecture 15.8 respectively with respect to F ;

(ii) The group 𝐺 satisfies the Fibered Meta-Isomorphism Conjecture 15.8 with re-
spect to G if 𝐺 satisfies the Fibered Meta-Isomorphism Conjecture 15.8 respec-
tively with respect to F .

Proof. (i) We first treat the (slightly harder) case of the Fibered Meta-Isomorphism
Conjecture 15.8.

Consider a group homomorphism 𝜙 : 𝐾 → 𝐺. Then for every subgroup 𝐻 of 𝐾
we conclude

(𝜙|𝐻 )∗ (F |𝜙 (𝐻 ) ) = (𝜙∗F )|𝐻
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from (15.6), where 𝜙|𝐻 : 𝐻 → 𝜙(𝐻) is the group homomorphism induced by 𝜙. For
every element 𝐻 ∈ 𝜙∗G the map

H𝐻
𝑛 (𝐸 (𝜙 |𝐻 )∗ (F |𝜙 (𝐻) ) (𝐻)) = H

𝐻
𝑛 (𝐸𝜙∗F|𝐻 (𝐻)) → H𝐻

𝑛 (𝐻/𝐻)

is bijective for all 𝑛 ∈ Z by the assumption that the element 𝜙(𝐻) ∈ G satisfies the
Fibered Isomorphism Conjecture for F |𝜙 (𝐻 ) . Hence by Theorem 15.12 applied to
the inclusion 𝜙∗F ⊆ 𝜙∗G of families of subgroups of 𝐾 we get an isomorphism

H𝐾
𝑛 (𝜄𝜙∗F⊆𝜙∗G) : H𝐾

𝑛 (𝐸𝜙∗F (𝐾))
�−→ H𝐾

𝑛 (𝐸𝜙∗G (𝐾)).

Therefore the map H𝐾
𝑛 (𝐸𝜙∗F (𝐾)) → H𝐾

𝑛 (𝐾/𝐾) is bijective for all 𝑛 ∈ Z if and
only if the mapH𝐾

𝑛 (𝐸𝜙∗G (𝐾)) → H𝐾
𝑛 (𝐾/𝐾) is bijective for all 𝑛 ∈ Z.

The argument for the Meta-Isomorphism Conjecture 15.8 is analogous, just spe-
cialize the argument above to the case 𝜙 = id𝐺 .
(ii) We want to apply assertion (i). We have to show that for every element 𝐻 ∈ G the
group 𝐻 satisfies the Fibered Meta-Isomorphism Conjecture 15.8 for F |𝐻 , provided
that 𝐺 satisfies the Fibered Meta-Isomorphism Conjecture 15.8 with respect to F .
This follows from the elementary Lemma 15.16 below since F |𝐻 = 𝑖∗F for the
inclusion 𝑖 : 𝐻 → 𝐺. ⊓⊔

Note that assertion (ii) of Theorem 15.13 is only formulated for the fibered version.
The Fibered Isomorphism Conjecture is also well behaved with respect to finite

intersections of families of subgroups.

Lemma 15.14. Let𝐺 be a group, and let F and G be families of subgroups. Suppose
that 𝐺 satisfies the Fibered Meta-Isomorphism Conjecture 15.8 for both F and G.

Then 𝐺 satisfies the Fibered Meta-Isomorphism Conjecture 15.8 for the family
F ∩ G := {𝐻 ⊆ 𝐺 | 𝐻 ∈ F and 𝐻 ∈ G}.

Proof. Obviously F ∪ G := {𝐻 ⊆ 𝐺 | 𝐻 ∈ F or 𝐻 ∈ G} is a family of subgroups
of 𝐺.

Consider a group homomorphism 𝜙 : 𝐾 → 𝐺. We have to show that the Meta-
Isomorphism Conjecture 15.2 holds for 𝐺 with respect to 𝜙∗ (F ∩ G).

Choose 𝐺-𝐶𝑊-models 𝐸F∩G (𝐺), 𝐸F (𝐺), and 𝐸G (𝐺) such that 𝐸F∩G (𝐺) is a
𝐺-𝐶𝑊-subcomplex of both 𝐸F (𝐺) and 𝐸G (𝐺). This can be arranged by a mapping
cylinder construction. Define a 𝐺-𝐶𝑊-complex

𝑋 = 𝐸F (𝐺) ∪𝐸F∩G (𝐺) 𝐸G (𝐺).

For any subgroup 𝐻 ⊆ 𝐺 we get

𝑋𝐻 = 𝐸F (𝐺)𝐻 ∪𝐸F∩G (𝐺)𝐻 𝐸G (𝐺)
𝐻 .

If 𝐸F (𝐺)𝐻 and 𝐸G (𝐺)𝐻 are empty, the same is true for 𝑋𝐻 . If 𝐸F (𝐺)𝐻 is empty,
then 𝐸G (𝐺)𝐻 = 𝑋𝐻 . If 𝐸G (𝐺)𝐻 is empty, then 𝐸F (𝐺)𝐻 = 𝑋𝐻 . If 𝐸F∩G (𝐺)𝐻
is empty, 𝐸F (𝐺)𝐻 or 𝐸G (𝐺)𝐻 is empty. If 𝐸F (𝐺)𝐻 , 𝐸G (𝐺)𝐻 , and 𝐸F∩G (𝐺)𝐻
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are all non-empty and hence weakly contractible, the same is true for 𝑋𝐻 . Hence
𝑋 is a model for 𝐸F∪G (𝐺). If we apply restriction with 𝜙, we get a decompo-
sition of 𝐸𝜙∗ (F∪G) (𝐾) = 𝜙∗𝐸F∪G (𝐺) as the union of 𝐸𝜙∗F (𝐾) = 𝜙∗𝐸F (𝐺)
and 𝐸𝜙∗G (𝐾) = 𝜙∗𝐸G (𝐺) such that the intersection of 𝐸𝜙∗F (𝐾) and 𝐸𝜙∗G (𝐾)
is 𝐸𝜙∗ (F∩G) (𝐾) = 𝜙∗𝐸F∩G (𝐺). By assumption and by Theorem 15.13 (ii) the
Fibered Meta-Isomorphism Conjecture 15.8 holds for 𝐺 with respect to F , G, and
F ∪ G. Hence the Meta-Isomorphism Conjecture 15.2 holds for 𝐺 with respect to
𝜙∗ (F ∪G), 𝜙∗F , and 𝜙∗G. Using the Mayer-Vietoris sequence for the decomposition
of 𝐸𝜙∗F∪𝜙∗G (𝐾) above and the Five Lemma, we conclude that Meta-Isomorphism
Conjecture 15.2 holds for 𝐺 with respect to 𝜙∗ (F ∩ G). Since 𝜙 : 𝐾 → 𝐺 is an
arbitrary group homomorphism with target 𝐺, the group 𝐺 satisfies the Fibered
Meta-Isomorphism Conjecture 15.8 for the family F ∩ G. ⊓⊔

Exercise 15.15. Assume that the Fibered Meta-Isomorphism Conjecture 15.8 holds
for 𝐺 = Z, the family F = FIN , and the equivariant homology theory 𝐻?

∗ (−; K𝑅)
for a given ring 𝑅.

Show that then we have 𝑁𝐾𝑛 (𝑅𝐺) = 0 for every group 𝐺 and 𝑛 ∈ Z.

15.6 Inheritance Properties of the Fibered Meta-Isomorphism
Conjecture

The Fibered Meta-Isomorphism Conjecture 15.8 has better inheritance properties
than the Meta-Isomorphism Conjecture 15.2.

In this subsection we treat only equivariant homology theoriesH ?
∗ for simplicity.

The generalizations to an equivariant homology theory over a group Γ are obvious.

Lemma 15.16. Let 𝜙 : 𝐾 → 𝐺 be a group homomorphism and F be a family of
subgroups. If (𝐺, F ) satisfies the Fibered Meta-Isomorphism Conjecture 15.8 then
(𝐾, 𝜙∗F ) satisfies the Fibered Meta-Isomorphism Conjecture 15.8.

Proof. If 𝜓 : 𝐿 → 𝐾 is a group homomorphism, then 𝜓∗ (𝜙∗F ) = (𝜙 ◦ 𝜓)∗F
by (15.6). ⊓⊔

Exercise 15.17. Fix a class of groups C that is closed under isomorphisms and taking
subgroups, e.g., the class of finite groups or the class of virtually cyclic subgroups.
For a group 𝐺 let C(𝐺) be the family of subgroups of 𝐺 that belong to C. Suppose
that the Fibered Meta-Isomorphism Conjecture 15.8 holds for (𝐺, C(𝐺)). Let𝐻 ⊆ 𝐺
be a subgroup.

Show that (𝐻, C(𝐻)) satisfies the Fibered Meta-Isomorphism Conjecture 15.8.

Lemma 15.18. Fix a class of groups C that is closed under isomorphisms, taking
subgroups, and taking quotients, e.g., the class of finite groups or the class of
virtually cyclic subgroups. For a group 𝐺 let C(𝐺) be the family of subgroups of 𝐺
that belong to C. Let 1 → 𝐾 → 𝐺

𝑝
−→ 𝑄 → 1 be an extension of groups. Suppose
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that (𝑄, C(𝑄)) and (𝑝−1 (𝐻), C(𝑝−1 (𝐻)) for every 𝐻 ∈ C(𝑄) satisfy the Fibered
Meta-Isomorphism Conjecture 15.8.

Then (𝐺, C(𝐺)) satisfies the Fibered Meta-Isomorphism Conjecture 15.8.

Proof. By Lemma 15.16 the pair (𝐺, 𝑝∗C(𝑄)) satisfies the Fibered Meta-Isomorph-
ism Conjecture 15.8. Obviously C(𝐺) ⊆ 𝑝∗C(𝑄). Because of the Transitivity Prin-
ciple 15.13 (i) it remains to show for each 𝐿 ∈ 𝑝∗C(𝑄) that the pair (𝐿, C(𝐿))
satisfies the Fibered Meta-Isomorphism Conjecture 15.8. Since 𝐿 ⊆ 𝑝−1 (𝑝(𝐿))
and 𝑝(𝐿) ∈ C(𝑄) holds, we conclude from Exercise 15.17 that this follows from
the assumption that (𝑝−1 (𝐻), C(𝑝−1 (𝐻)) satisfy the Fibered Meta-Isomorphism
Conjecture 15.8 for every 𝐻 ∈ C(𝑄). ⊓⊔

Fix an equivariant homology theory H ?
∗ with values in Λ-modules. Let 𝑋 be a

𝐺-𝐶𝑊-complex. Let 𝛼 : 𝐻 → 𝐺 be a group homomorphism. Denote by 𝛼∗𝑋 the
𝐻-𝐶𝑊-complex obtained from 𝑋 by restriction with 𝛼. Recall that 𝛼∗𝑌 denotes the
induction of an 𝐻-𝐶𝑊-complex 𝑌 and is a 𝐺-𝐶𝑊-complex. The functors 𝛼∗ and
𝛼∗ are adjoint to one another. In particular, the adjoint of the identity on 𝛼∗𝑋 is a
natural 𝐺-map

(15.19) 𝑓 (𝑋, 𝛼) : 𝛼∗𝛼∗𝑋 → 𝑋.

It sends an element in 𝐺 ×𝛼 𝛼∗𝑋 given by (𝑔, 𝑥) to 𝑔𝑥. Define the Λ-map

𝑎𝑛 = 𝑎𝑛 (𝑋, 𝛼) : H𝐻
𝑛 (𝛼∗𝑋)

ind𝛼−−−→ H𝐺
𝑛 (𝛼∗𝛼∗𝑋)

H𝐺𝑛 ( 𝑓 (𝑋,𝛼) )−−−−−−−−−−−→ H𝐺
𝑛 (𝑋).

If 𝛽 : 𝐺 → 𝐾 is another group homomorphism, then by the axioms of an induc-
tion structure the composite H𝐻

𝑛 (𝛼∗𝛽∗𝑋)
𝑎𝑛 (𝛽∗𝑋,𝛼)−−−−−−−−−→ H𝐺

𝑛 (𝛽∗𝑋)
𝑎𝑛 (𝑋,𝛽)−−−−−−−→ H𝐾

𝑛 (𝑋)
agrees with 𝑎𝑛 (𝑋, 𝛽◦𝛼) : H𝐻

𝑛 (𝛼∗𝛽∗𝑋) = H𝐻
𝑛 ((𝛽◦𝛼)∗𝑋) → H𝐺

𝑛 (𝑋) for a 𝐾-𝐶𝑊-
complex 𝑋 .

Consider a directed system of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} with 𝐺 = colim𝑖∈𝐼 𝐺𝑖 and
structure maps 𝜓𝑖 : 𝐺𝑖 → 𝐺 for 𝑖 ∈ 𝐼 and 𝜙𝑖, 𝑗 : 𝐺𝑖 → 𝐺 𝑗 for 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗 . (The
group homomorphism 𝜙𝑖, 𝑗 are not required to be injective or to be surjective.) We
obtain for every 𝐺-𝐶𝑊-complex 𝑋 a system of Λ-modules {H𝐺𝑖

𝑛 (𝜓∗𝑖 𝑋) | 𝑖 ∈ 𝐼}
with structure maps 𝑎𝑛 (𝜓∗𝑗𝑋, 𝜙𝑖, 𝑗 ) : H

𝐺𝑖
𝑛 (𝜓∗𝑖 𝑋) → H

𝐺 𝑗
𝑛 (𝜓∗𝑗𝑋). We get a map of

Λ-modules

(15.20)
𝑡𝐺𝑛 (𝑋, 𝐴) := colim𝑖∈𝐼 𝑎𝑛 (𝑋, 𝜓𝑖) : colim𝑖∈𝐼 H𝐺𝑖

𝑛 (𝜓∗𝑖 (𝑋, 𝐴)) → H𝐺
𝑛 (𝑋, 𝐴).

Definition 15.21 ((Strongly) continuous equivariant homology theory). An equi-
variant homology theory H ?

∗ is called continuous if for every group 𝐺 and every
directed system of subgroups {𝐺𝑖 | 𝑖 ∈ 𝐼} of 𝐺 with 𝐺 =

⋃
𝑖∈𝐼 𝐺𝑖 the Λ-map,

see (15.20),
𝑡𝐺𝑛 ({•}) : colim𝑖∈𝐼 H𝐺𝑖

𝑛 ({•}) → H𝐺
𝑛 ({•})

is an isomorphism for every 𝑛 ∈ Z.
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An equivariant homology theory H ?
∗ is called strongly continuous if for every

directed system of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} with 𝐺 = colim𝑖∈𝐼 𝐺𝑖 and (not necessarily
injective or surjective) structure maps 𝜓𝑖 : 𝐺𝑖 → 𝐺 for 𝑖 ∈ 𝐼 the Λ-map

𝑡𝐺𝑛 ({•}) : colim𝑖∈𝐼 H𝐺𝑖
𝑛 ({•}) → H𝐺

𝑛 ({•})

is an isomorphism for every 𝑛 ∈ Z.

The next result is taken from [71, Lemma 3.4].

Lemma 15.22. Consider a directed system of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} with 𝐺 =

colim𝑖∈𝐼 𝐺𝑖 and structure maps 𝜓𝑖 : 𝐺𝑖 → 𝐺 for 𝑖 ∈ 𝐼. Let (𝑋, 𝐴) be a 𝐺-𝐶𝑊-
pair. Suppose thatH ?

∗ is strongly continuous.
Then the Λ-homomorphism, see (15.20)

𝑡𝐺𝑛 (𝑋, 𝐴) : colim𝑖∈𝐼 H𝐺𝑖
𝑛 (𝜓∗𝑖 (𝑋, 𝐴))

�−→ H𝐺
𝑛 (𝑋, 𝐴)

is bijective for every 𝑛 ∈ Z.

The proof of the next result is based on Lemma 15.22.

Lemma 15.23. Fix a class of groups C that is closed under isomorphisms, taking
subgroups, and taking quotients, e.g., the class of finite groups or the class of virtually
cyclic subgroups. For a group𝐺 let C(𝐺) be the family of subgroups of𝐺 that belong
to C. Let 𝐺 be a group.

(i) Let 𝐺 be the directed union of subgroups {𝐺𝑖 | 𝑖 ∈ 𝐼}. Suppose that H ?
∗ is

continuous and for every 𝑖 ∈ 𝐼 the Meta-Isomorphism Conjecture 15.2 holds for
𝐺𝑖 and C(𝐺𝑖).
Then the Meta-Isomorphism Conjecture 15.2 holds for 𝐺 and C(𝐺);

(ii) Let 𝐺 be the directed union of subgroups {𝐺𝑖 | 𝑖 ∈ 𝐼}. Suppose that H ?
∗

is continuous and for every 𝑖 ∈ 𝐼 the assembly map appearing in the Meta-
Isomorphism Conjecture 15.2 for 𝐺𝑖 and C(𝐺𝑖) is injective for all 𝑛 ∈ Z.
Then the assembly map appearing in the Meta-Isomorphism Conjecture 15.2
for 𝐺 and C(𝐺) is injective for all 𝑛 ∈ Z.
The same statement is true if we replace “injective” by “surjective”.

(iii) Let {𝐺𝑖 | 𝑖 ∈ 𝐼} be a directed system of groups with 𝐺 = colim𝑖∈𝐼 𝐺𝑖 and
structure maps 𝜓𝑖 : 𝐺𝑖 → 𝐺. Suppose that H ?

∗ is strongly continuous and for
every 𝑖 ∈ 𝐼 the Fibered Meta-Isomorphism Conjecture 15.8 holds for 𝐺𝑖 and
C(𝐺𝑖).
Then the Fibered Meta-Isomorphism Conjecture 15.8 holds for 𝐺 and C(𝐺).

Proof. (i) is proved in [75, Proposition 3.4].
(ii) The proof of [75, Proposition 3.4] for isomorphisms also yields a proof for the
injectivity or surjectivity version since the colimit over a directed system is an exact
functor and hence preserves injectivity and surjectivity.
(iii) See [71, Theorem 5.6]. ⊓⊔
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Remark 15.24 (Injectivity, surjectivity, and the Transitivity Principle). For col-
imits over a directed system of subgroups, we got a statement about injectivity or
surjectivity in Lemma 15.23 (ii), essentially since the colimit over a directed system
is an exact functor. We cannot prove such injectivity or surjectivity statement for
assertion (iii) since its proof uses the Transitivity Principle 15.13, for which the
injectivity or surjectivity version is not true in general, essentially, because the Five
Lemma does not have a version for injectivity or surjectivity.

15.7 Actions on Trees

In this subsection we treat only equivariant homology theories H ?
∗ for simplicity.

The generalizations to an equivariant homology theory over a group Γ are obvious.
Given a subgroup 𝐻 ⊆ 𝐺, we obtain a 𝐺-homeomorphism 𝐺 ×𝐻 𝐸𝐺 |𝐻

�−→
𝐺/𝐻 × 𝐸𝐺 sending (𝑔, 𝑧) to (𝑔𝐻, 𝑔𝑧), where 𝐺 acts diagonally on the target. The
inverse sends (𝑔𝐻, 𝑧) to (𝑔, 𝑔−1𝑧). Since 𝐸𝐺 |𝐻 is a model for 𝐸𝐻, we obtain a
𝐺-homotopy equivalence

(15.25) 𝜇(𝐻) : 𝐺 ×𝐻 𝐸𝐻
≃−→ 𝐺/𝐻 × 𝐸𝐺.

Recall that we obtain for any subgroup𝐻 ⊆ 𝐺 and 𝑛 ∈ Z from the induction structure
an isomorphism

(15.26) ind𝐺𝐻 : H𝐻
𝑛 (𝐸𝐻)

�−→ H𝐺
𝑛 (𝐺 ×𝐻 𝐸𝐻).

In the sequel we denote by pr the obvious projection and by 𝜄 the obvious inclusion.
Lemma 15.27. Suppose that𝐺 acts on the tree 𝑇 by automorphisms of trees without
inversion. LetH ?

∗ be an equivariant homology theory.
(i) We can write 𝑇 as a 𝐺-pushout∐

𝑗∈𝐽 𝐺/𝐾 𝑗 × 𝑆0 𝑞 //

𝑘

��

∐
𝑖∈𝐼 𝐺/𝐻𝑖

𝑘

��∐
𝑗∈𝐽 𝐺/𝐾 𝑗 × 𝐷1

𝑞

// 𝑇

where there are for every 𝑗 ∈ 𝐽 two elements 𝑖( 𝑗 ,+) and 𝑖( 𝑗 ,−) in 𝐼 such that
the restriction of 𝑞 to 𝐺/𝐾 𝑗 considered as 𝐺-subspace of

∐
𝑗∈𝐽 𝐺/𝐾 𝑗 × 𝑆0 by

𝐺/𝐾 𝑗 = 𝐺/𝐾 𝑗 × {±1} ⊆ 𝐺/𝐾 𝑗 × 𝑆0 ⊆
∐
𝑗∈𝐽

𝐺/𝐾 𝑗 × 𝑆0

is given by the composite of a 𝐺-map 𝑞 𝑗 ,±1 : 𝐺/𝐾 𝑗 → 𝐺/𝐻𝑖 ( 𝑗 ,±) with the
canonical inclusion 𝐺/𝐻𝑖 ( 𝑗 ,±) →

∐
𝑖∈𝐼 𝐺/𝐻𝑖;
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(ii) We obtain a long exact sequence

· · · →
⊕
𝑗∈𝐽
H𝐾 𝑗
𝑛 (𝐸𝐾 𝑗 )

𝑡𝑛 ( 𝑗 ,+)−𝑡𝑛 ( 𝑗 ,−)−−−−−−−−−−−−−→
⊕
𝑖∈𝐼
H𝐻𝑖
𝑛 (𝐸𝐻𝑖)

𝑠𝑛−−→ H𝐺
𝑛 (𝐸𝐺)

→
⊕
𝑗∈𝐽
H𝐾 𝑗

𝑛−1 (𝐸𝐾 𝑗 )
𝑡𝑛−1 ( 𝑗 ,+)−𝑡𝑛−1 ( 𝑗 ,−)−−−−−−−−−−−−−−−−→

⊕
𝑖∈𝐼
H𝐻𝑖
𝑛−1 (𝐸𝐻𝑖)

𝑠𝑛−1−−−→ · · ·

where 𝑡𝑛 ( 𝑗 ,±) is given by the composite

H𝐾 𝑗
𝑛 (𝐸𝐾 𝑗 )

ind𝐺
𝐾𝑗−−−−→ H𝐺

𝑛 (𝐺 ×𝐾 𝑗 𝐸𝐾 𝑗 )
H𝐺𝑛 (𝜇 (𝐾 𝑗 ) )−−−−−−−−−−→ H𝐺

𝑛 (𝐺/𝐾 𝑗 × 𝐸𝐺)
H𝐺𝑛 (𝑞 𝑗,±1×id𝐸𝐺 )
−−−−−−−−−−−−−−→ H𝐺

𝑛 (𝐺/𝐻𝑖 ( 𝑗 ,±) ×𝐸𝐺)
H𝐺𝑛 (𝜇 (𝐻𝑖 ( 𝑗,±) ) )−1

−−−−−−−−−−−−−−−→ H𝐺
𝑛 (𝐺 ×𝐻𝑖 ( 𝑗,±) 𝐸𝐻𝑖 ( 𝑗 ,±) )

(ind𝐺
𝐻𝑖 ( 𝑗,±)

)−1

−−−−−−−−−−−→ H𝐻𝑖 ( 𝑗,±)
𝑛 (𝐸𝐻𝑖 ( 𝑗 ,±) )

𝜄−→
⊕
𝑖∈𝐼
H𝐻𝑖
𝑛 (𝐸𝐻𝑖)

and 𝑠𝑛 is the direct sum of the maps for 𝑖 ∈ 𝐼

H𝐻𝑖
𝑛 (𝐸 (𝐻𝑖))

ind𝐺
𝐻𝑖−−−−→ H𝐺

𝑛 (𝐺 ×𝐻𝑖 𝐸 (𝐻𝑖))
H𝐺𝑛 (𝜇 (𝐻𝑖 ) )−−−−−−−−−−→ H𝐺

𝑛 (𝐺/𝐻 × 𝐸 (𝐺))
H𝐺𝑛 (pr)
−−−−−−→ H𝐺

𝑛 (𝐸𝐺).

Proof. (i) Since 𝐺 acts on 𝑇 by automorphisms of trees without inversion, 𝑇 is a
1-dimensional𝐺-𝐶𝑊-complex and the𝐺-pushout just describes how the 1-skeleton
is obtained from the 0-skeleton

∐
𝑖∈𝐼 𝐺/𝐻𝑖 .

(ii) If we cross the 𝐺-pushout of assertion (i) with 𝐸𝐺 using the diagonal 𝐺-action,
we obtain the 𝐺-pushout

(15.28)
∐
𝑗∈𝐽 𝐺/𝐾 𝑗 × 𝐸𝐺 × 𝑆0 𝑞×id𝐸𝐺 //

𝑘×id𝐸𝐺
��

∐
𝑖∈𝐼 𝐺/𝐻𝑖 × 𝐸𝐺

𝑘×id𝐸𝐺
��∐

𝑗∈𝐽 𝐺/𝐾 𝑗 × 𝐸𝐺 × 𝐷1
𝑞×id𝐸𝐺

// 𝑇 × 𝐸𝐺.

The 𝐻-fixed point set 𝑇𝐻 is a non-empty subtree and therefore contractible for every
finite subgroup𝐻 ⊆ 𝐺, see [911, Theorem 15 in 6.1 on page 58 and 6.3.1 on page 60].
We conclude that the projection 𝐸𝐺 ×𝑇 → 𝐸𝐺 is a 𝐺-homotopy equivalence from
the Equivariant Whitehead Theorem, see for instance [644, Theorem 2.4 on page 36].
The desired long exact sequence can be derived from the Mayer-Vietoris sequence
associated to the𝐺-pushout (15.28) using the identifications (15.25) and (15.26). ⊓⊔
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Lemma 15.29. Suppose that 𝐺 acts on the tree 𝑇 by automorphisms of trees with-
out inversion. Let H ?

∗ be an equivariant homology theory. Suppose that the Meta-
Isomorphism Conjecture 15.2 holds for 𝐺 with respect to FIN . Assume that for
any isotropy group 𝐻 of the 𝐺-action on 𝑇 the Meta-Isomorphism Conjecture 15.2
holds for 𝐻 with respect to FIN .

(i) The projection 𝑇 → {•} induces for all 𝑛 ∈ Z an isomorphism

H𝐺
𝑛 (𝑇)

�−→ H𝐺
𝑛 ({•});

(ii) Write 𝑇 as a 𝐺-pushout as described in Lemma 15.27 (i). Let 𝑔( 𝑗 ,±) be
an element in 𝐺 such that 𝑔( 𝑗 ,±)𝐾 𝑗𝑔( 𝑗 ,±))−1 ⊆ 𝐻𝑖 ( 𝑗 ,±) and the 𝐺-map
𝑞 𝑗 ,±1 : 𝐺/𝐾 𝑗 → 𝐺/𝐻𝑖± ( 𝑗 ) is given by 𝑔𝐾 𝑗 ↦→ 𝑔𝑔( 𝑗 ,±)−1𝐻𝑖 ( 𝑗 ,±) . Let 𝑐(𝑔( 𝑗 ,±)) :
𝐾 𝑗 → 𝐻𝑖 ( 𝑗 ,±) be the group homomorphism sending 𝑘 to 𝑔( 𝑗 ,±))𝑘𝑔( 𝑗 ,±))−1.
We get a long exact sequence

· · · →
⊕
𝑗∈𝐽
H𝐾 𝑗
𝑛 ({•})

𝑡 ′𝑛 ( 𝑗 ,+)−𝑡 ′𝑛 ( 𝑗 ,−)−−−−−−−−−−−−−→
⊕
𝑖∈𝐼
H𝐻𝑖
𝑛 ({•})

𝑠′−→ H𝐺
𝑛 ({•})

→
⊕
𝑗∈𝐽
H𝐾 𝑗

𝑛−1 ({•})
𝑡 ′
𝑛−1 ( 𝑗 ,+)−𝑡

′
𝑛−1 ( 𝑗 ,−)−−−−−−−−−−−−−−−−→

⊕
𝑖∈𝐼
H𝐻𝑖
𝑛−1 ({•})

𝑠′
𝑛−1−−−→ · · ·

where 𝑡′𝑛 ( 𝑗 ,±) is given by the composite

H𝐾 𝑗
𝑛 ({•})

ind𝑐 (𝑔 ( 𝑗,±) )−−−−−−−−→ H𝐻𝑖 ( 𝑗,±)
𝑛 (ind𝑐 (𝑔 ( 𝑗 ,±) ) {•})

pr
−→ H𝐻𝑖 ( 𝑗,±)

𝑛 ({•}) 𝜄−→
⊕
𝑖∈𝐼
H𝐻𝑖
𝑛 ({•})

and 𝑠′𝑛 is the direct sum of the maps for 𝑖 ∈ 𝐼

H𝐻𝑖
𝑛 ({•})

ind𝐺
𝐻𝑖−−−−→ H𝐺

𝑛 (𝐺 ×𝐻𝑖 {•})
H𝐺𝑛 (pr)
−−−−−−→ H𝐺

𝑛 ({•}).

Proof. (i) We have already explained in the proof of Lemma 15.27 (ii) that the pro-
jection 𝐸𝐺 ×𝑇 → 𝐸𝐺 is a 𝐺-homotopy equivalence. By assumption the projection
𝐸𝐺 → {•} induces for all 𝑛 ∈ Z isomorphismsH𝐺

𝑛 (𝐸𝐺) → H𝐺
𝑛 ({•}). Hence the

projection 𝐸𝐺 × 𝑇 → {•} induces for all 𝑛 ∈ Z isomorphisms H𝐺
𝑛 (𝐸𝐺 × 𝑇) →

H𝐺
𝑛 ({•}). By Lemma 15.10 and the assumptions on 𝑇 the projection 𝐸𝐺 × 𝑇 → 𝑇

induces for all 𝑛 ∈ Z isomorphismsH𝐺
𝑛 (𝐸𝐺 ×𝑇) → H𝐺

𝑛 (𝑇). Hence the projection
𝑇 → {•} induces for all 𝑛 ∈ Z isomorphismsH𝐺

𝑛 (𝑇) → H𝐺
𝑛 ({•}).

(ii) This follows from Lemma 12.12 and Lemma 15.27 (ii). ⊓⊔

Example 15.30 (Amalgamated free products). LetH ?
∗ be an equivariant homology

theory with values in Λ-modules. Let𝐺 be the amalgamated free product𝐺1 ∗𝐺0 𝐺2
for a common subgroup 𝐺0 of the groups 𝐺1 and 𝐺2. Suppose that 𝐺𝑖 for 𝑖 = 0, 1, 2
and 𝐺 satisfy the Meta-Isomorphism Conjecture 15.2 with respect to the family
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FIN . Then there is a long exact sequence

(15.31) · · · → H𝐺0
𝑛 ({•}) → H𝐺1

𝑛 ({•}) ⊕ H𝐺1
𝑛 ({•}) → H𝐺

𝑛 ({•})
→ H𝐺0

𝑛−1 ({•}) → H
𝐺1
𝑛−1 ({•}) ⊕ H

𝐺1
𝑛−1 ({•}) → · · · .

Namely, there is a 1-dimensional𝐺-𝐶𝑊-complex𝑇 whose underlying space is a tree
such that the 1-skeleton is obtained from the 0-skeleton by the 𝐺-pushout

𝐺/𝐺0 × 𝑆0 𝑞 //

��

𝐺/𝐺1
∐
𝐺/𝐺2

��
𝐺/𝐺0 × 𝐷1 // 𝑇

where 𝑞 is the disjoint union of the canonical projection 𝐺/𝐺0 → 𝐺/𝐺1 and
𝐺/𝐺0 → 𝐺/𝐺2, see [911, Theorem 7 in §4.1 on page 32]. Now the desired long
exact sequence is the one appearing in Lemma 15.29 (ii).

Suppose that𝐺0,𝐺1,𝐺2, and𝐺 satisfy the Baum-Connes Conjecture 14.9, which
is equivalent to the Meta-Isomorphism Conjecture 15.2 if we choose F to be FIN
andH𝐺

𝑛 to be 𝐻𝐺𝑛 (−; KTOP
C ). Then we obtain a long exact sequence

(15.32)

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺0))
𝐾𝑛 (𝐶∗𝑟 (𝑖1 ) )⊕𝐾𝑛 (𝐶∗𝑟 (𝑖2 ) )−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺1)) ⊕ 𝐾𝑛 (𝐶∗𝑟 (𝐺2))

𝐾𝑛 (𝐶∗𝑟 ( 𝑗1 ) )−𝐾𝑛 (𝐶∗𝑟 ( 𝑗2 ) )−−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺))
𝜕𝑛−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺0))

𝐾𝑛−1 (𝐶∗𝑟 (𝑖1 ) )⊕𝐾𝑛−1 (𝐶∗𝑟 (𝑖2 ) )−−−−−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺2)) ⊕ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺1))
𝐾𝑛−1 (𝐶∗𝑟 ( 𝑗1 ) )−𝐾𝑛−1 (𝐶∗𝑟 ( 𝑗2 ) )−−−−−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺))

𝜕𝑛−1−−−→ · · ·

where 𝑖1,𝑖2, 𝑗1, and 𝑗2 are the obvious inclusions. Actually, such long exact Mayer-
Vietoris sequence exists always for an amalgamated free product 𝐺 = 𝐺1 ∗𝐺0 𝐺2,
see Pimsner [812, Theorem 18 on page 632].

Suppose that 𝐺0, 𝐺1, 𝐺2, and 𝐺 satisfy the 𝐾-theoretic Farrell Conjecture 13.1
with coefficients in the regular ring 𝑅 with Q ⊆ 𝑅. Then we obtain using Theo-
rem 13.51 a long exact sequence

(15.33) · · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝑅𝐺0)
𝐾𝑛 (𝑅𝑖1 )⊕𝐾𝑛 (𝑅𝑖2 )−−−−−−−−−−−−−−→ 𝐾𝑛 (𝑅𝐺1) ⊕ 𝐾𝑛 (𝑅𝐺2)

𝐾𝑛 (𝑅 𝑗1 )−𝐾𝑛 (𝑅 𝑗2 )−−−−−−−−−−−−−−−→ 𝐾𝑛 (𝑅𝐺)
𝜕𝑛−−→ 𝐾𝑛−1 (𝑅𝐺0)

𝐾𝑛−1 (𝑅𝑖1 )⊕𝐾𝑛−1 (𝑅𝑖2 )−−−−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐺2) ⊕ 𝐾𝑛−1 (𝑅𝐺1)
𝐾𝑛−1 (𝑅 𝑗1 )−𝐾𝑛−1 (𝑅 𝑗2 )−−−−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝑅𝐺)

𝜕𝑛−1−−−→ · · · .
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Without extra assumptions on 𝑅 the long exact sequence above does not exist, certain
Nil-terms enter, see Theorem 6.62.

Suppose that 𝐺0, 𝐺1, 𝐺2, and 𝐺 satisfy the 𝐿-theoretic Farrell-Jones Conjec-
ture 13.1 with coefficients in the ring 𝑅 with involution. Then we obtain using
Theorem 13.62 (i) a long exact sequence

(15.34) · · · 𝜕𝑛+1−−−→ 𝐿𝑛 (𝑅𝐺0) [1/2]
𝐿𝑛 (𝑅𝑖1 ) [1/2]⊕𝐿𝑛 (𝑅𝑖2 ) [1/2]−−−−−−−−−−−−−−−−−−−−−−→ 𝐿𝑛 (𝑅𝐺1) [1/2] ⊕ 𝐿𝑛 (𝑅𝐺2) [1/2]

𝐿𝑛 (𝑅 𝑗1 ) [1/2]−𝐿𝑛 (𝑅 𝑗2 ) [1/2]−−−−−−−−−−−−−−−−−−−−−−−→ 𝐿𝑛 (𝑅𝐺) [1/2]
𝜕𝑛−−→ 𝐿𝑛−1 (𝑅𝐺0) [1/2]

𝐿𝑛−1 (𝑅𝑖1 ) [1/2]⊕𝐿𝑛−1 (𝑅𝑖2 ) [1/2]−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐿𝑛−1 (𝑅𝐺2) [1/2] ⊕ 𝐿𝑛−1 (𝑅𝐺1) [1/2]
𝐿𝑛−1 (𝑅 𝑗1 ) [1/2]−𝐿𝑛−1 (𝑅 𝑗2 ) [1/2]−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐿𝑛−1 (𝑅𝐺) [1/2]

𝜕𝑛−1−−−→ · · · .

Note that the decoration of the 𝐿-groups does not play a role since we invert 2.
Actually, such long exact Mayer-Vietoris sequences always exist for an amalgamated
free product 𝐺 = 𝐺1 ∗𝐺0 𝐺2, see Cappell [204]. Without inverting 2 the long exact
sequence above does not exist, certain UNil-terms enter.

Exercise 15.35. Let H ?
∗ be an equivariant homology theory. Let 𝜙 : 𝐺 → 𝐺 be a

group automorphism. Let 𝐺 ×𝜙 Z be the associated semidirect product. Denote by
𝑖 : 𝐺 → 𝐺 ⋊𝜙 Z the obvious inclusion. Suppose that 𝐺 and 𝐺 ×𝜙 Z satisfy the
Meta-Isomorphism Conjecture 15.2 with respect to the family FIN .

Prove the existence of a long exact sequence

· · · → H𝐺
𝑛 ({•})

𝜙∗−id
−−−−→ H𝐺

𝑛 ({•})
𝑘∗−→ H𝐺⋊𝜙Z

𝑛 ({•})

→ H𝐺
𝑛−1 ({•})

𝜙∗−id
−−−−→ H𝐺

𝑛−1 ({•})
𝑘∗−→ · · ·

where 𝜙∗ : H𝐺
𝑛 ({•}) → H𝐺

𝑛 ({•}) and 𝑘∗ come from the induction structure and the
identification ind𝜙{•} = {•} and the projection ind𝑖{•} → {•}.

Explain that this reduces in the case of the Baum-Connes Conjecture to the long
exact sequence

(15.36)

· · · → 𝐾𝑛 (𝐶∗𝑟 (𝐺))
𝐾𝑛 (𝐶∗𝑟 (𝜙) )−id
−−−−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺))

𝐾𝑛 (𝐶∗𝑟 (𝑘 ) )−−−−−−−−−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺 ⋊𝜙 Z))

→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺))
𝐾𝑛−1 (𝐶∗𝑟 (𝜙) )−id
−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝐶∗𝑟 (𝐺))

𝐾𝑛−1 (𝐶∗𝑟 (𝑘 ) )−−−−−−−−−−→ · · · ,

and similarly for the 𝐾-theoretic Farrell-Jones Conjecture for a regular ring 𝑅 with
Q ⊆ 𝑅 and the 𝐿-theoretic Farrell-Jones Conjecture after inverting 2.
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15.8 The Meta-Isomorphism Conjecture for Functors from
Spaces to Spectra

Let S : SPACES → SPECTRA be a covariant functor. Throughout this section we
will assume that it respects weak equivalences and disjoint unions, i.e., a weak
homotopy equivalence of spaces 𝑓 : 𝑋 → 𝑌 is sent to a weak homotopy equivalence
of spectra S( 𝑓 ) : S(𝑋) → S(𝑌 ) and for a collection of spaces {𝑋𝑖 | 𝑖 ∈ 𝐼} for an
arbitrary index set 𝐼 the canonical map∨

𝑖∈𝐼
S(𝑋𝑖) → S

(∐
𝑖∈𝐼

𝑋𝑖

)
is weak homotopy equivalence of spectra.

We obtain a covariant functor

(15.37) S𝐵 : GROUPOIDS→ SPECTRA, G ↦→ S(𝐵G)

where 𝐵G is the classifying space of the category G, which is the geometric realiza-
tion of the simplicial set given by its nerve and denoted by 𝐵barG in [280, page 227].
Let 𝐻?

𝑛 (−; S𝐵) be the equivariant homology theory in the sense of Definition 12.9,
which is associated to S𝐵 by the construction of Theorem 12.30. It has the property
that for any group 𝐺 and subgroup 𝐻 ⊆ 𝐺 we have canonical identifications

𝐻𝐺𝑛 (𝐺/𝐻; S𝐵) � 𝐻𝐻𝑛 (𝐻/𝐻; S𝐵) � 𝜋𝑛 (S(𝐵𝐻)).

Conjecture 15.38 (Meta-Isomorphism Conjecture for functors from spaces to
spectra). Let S : SPACES → SPECTRA be a covariant functor that respects weak
equivalences and disjoint unions. The group𝐺 satisfies the Meta-Isomorphism Con-
jecture for S with respect to the family F of subgroups of 𝐺 if it satisfies the
Meta-Isomorphism Conjecture 15.2 for the𝐺-homology theory 𝐻𝐺∗ (−; S𝐵), i.e., the
assembly map

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸F (𝐺); S𝐵) → 𝐻𝐺𝑛 (𝐺/𝐺; S𝐵)

is bijective for all 𝑛 ∈ Z.

Example 15.39 (The Farrell-Jones Conjecture in the setting of functors from
spaces to spectra). In the sequel Π(𝑋) denotes the fundamental groupoid of a space
𝑋 . If we take the covariant functorS to be the one that sends a space 𝑋 to K𝑅 (Π(𝑋)),
L⟨−∞⟩
𝑅
(Π(𝑋)), or KTOP

𝐹
(Π(𝑋)) respectively, see Theorem 12.43, then the Meta-

Isomorphism Conjecture 15.38 for S for a group 𝐺 and the family VCY, VCY,
or FIN respectively is equivalent to the 𝐾-theoretic Farrell-Jones Conjecture 13.1
with coefficients in the ring 𝑅, the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with
coefficients in the ring with involution 𝑅, or the Baum-Connes Conjecture 14.9
respectively. This follows from the obvious natural weak equivalence of groupoids
G ≃−→ Π(𝐵G).
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Let𝐺 be a group and 𝑍 be a𝐺-𝐶𝑊-complex. Define a covariantOr(𝐺)-spectrum

(15.40) S𝐺𝑍 : Or(𝐺) → SPECTRA, 𝐺/𝐻 ↦→ S(𝐺/𝐻 ×𝐺 𝑍)

where 𝐺/𝐻 ×𝐺 𝑍 is the orbit space of the diagonal left 𝐺-action on 𝐺/𝐻 × 𝑆. Note
that there is an obvious homeomorphism 𝐺/𝐻 ×𝐺 𝑍

�−→ 𝐻\𝑍 .

Conjecture 15.41 (Meta-Isomorphism Conjecture for functors from spaces to
spectra with coefficients). Let S : SPACES → SPECTRA be a covariant functor
that respects weak equivalences and disjoint unions. The group 𝐺 satisfies the
Meta-Isomorphism Conjecture for S with coefficients with respect to the family F
of subgroups of 𝐺 if for any free 𝐺-𝐶𝑊-complex 𝑍 the pair (𝐺, F ) satisfies the
Meta-Isomorphism Conjecture 15.2 for 𝐻𝐺∗ (−; S𝐺

𝑍
), i.e., the assembly map

𝐻𝐺𝑛 (𝐸F (𝐺); S𝐺𝑍 ) → 𝐻𝐺𝑛 (𝐺/𝐺; S𝐺𝑍 )

is bijective for all 𝑛 ∈ Z.

Exercise 15.42. Let S : SPACES→ SPECTRA be a covariant functor that respects
weak equivalences. Suppose that it satisfies the Meta-Isomorphism Conjecture 15.41
for every group 𝐺 and the trivial family TR consisting of one element, the trivial
subgroup. Let 𝑋 be a connected 𝐶𝑊-complex. Prove:

(i) We obtain a weak homotopy equivalence

𝐸𝜋1 (𝑋)+ ∧𝜋1 (𝑋) S(𝑋) → S(𝑋);

(ii) 𝜋𝑛
(
𝐸𝜋1 (𝑋)+ ∧𝜋1 (𝑋) S(𝑋)

)
and 𝜋𝑛

(
𝐵𝜋1 (𝑋)+ ∧ S({•})

)
are not isomorphic in

general;
(iii) 𝜋𝑛

(
𝐸𝜋1 (𝑋)+∧𝜋1 (𝑋) S(𝑋)

)
and 𝜋𝑛

(
𝐵𝜋1 (𝑋)+∧S({•})

)
are isomorphic, provided

that 𝑋 is contractible or S is of the shape 𝑌 ↦→ T(Π(𝑌 )) for some covariant
functor T : GROUPOIDS→ SPECTRA.

Example 15.43 (𝑍 = 𝐸𝐺). If we take 𝑍 = 𝐸𝐺 in Conjecture 15.41, then Conjec-
ture 15.41 reduces to Conjecture 15.38, since there is a natural homotopy equivalence
𝐺/𝐻 ×𝐺 𝐸𝐺

≃−→ 𝐵G𝐺 (𝐺/𝐻) and hence we get a weak homotopy equivalence of
Or(𝐺)-spectra S𝐺

𝐸𝐺

≃−→ S𝐵 (G𝐺 (𝐺/?)).

Remark 15.44 (Relation to the original formulation). In [366, Section 1.7 on
page 262] Farrell and Jones formulate a fibered version of their conjectures for a
covariant functor S : SPACES → SPECTRA for every (Serre) fibration 𝜉 : 𝑌 →
𝑋 over a connected CW-complex 𝑋 . In our setup this corresponds to choosing
𝑍 to be the total space of the fibration obtained from 𝑌 → 𝑋 by pulling back
along the universal covering 𝑋 → 𝑋 . This space 𝑍 is a free 𝐺-𝐶𝑊-complex for
𝐺 = 𝜋1 (𝑋). Note that an arbitrary free 𝐺-𝐶𝑊-complex 𝑍 can always be obtained in
this fashion from the fiber bundle 𝐸𝐺×𝐺 𝑍 → 𝐵𝐺 up to𝐺-homotopy, compare [366,
Corollary 2.2.1 on page 263].
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We sketch the proof of this identification. Let 𝐴 be a 𝐺-𝐶𝑊-complex. Let E(𝑋)
be the𝐺-quotient of the diagonal𝐺 = 𝜋1 (𝑋)-action on 𝐴×𝑋 and let 𝑓 : E(𝑋) → 𝑋

be the obvious projection. Denote by 𝑝 : E(𝜉) → E(𝑋) the pullback of 𝜉 with 𝑓 .
Let 𝑞 : E(𝜉) → 𝐴/𝐺 be the composite of 𝑝 with the map E(𝑋) → 𝐴/𝐺 induced
by the projection 𝐴 × 𝑋 → 𝐴. This is a stratified fibration, and one can consider the
spectrum H(𝐴/𝐺;S(𝑞)) in the sense of Quinn [824, Section 8]. Put

H𝐺
𝑛 (𝐴; 𝜉) := 𝜋𝑛 (H(𝐴/𝐺;S(𝑞)).

The projection pr : 𝐴→ 𝐺/𝐺 induces a map

(15.45) 𝑎𝑛 (𝐴) : H𝐺
𝑛 (𝐴; 𝜉) → H𝐺

𝑛 (𝐺/𝐺; 𝜉) = 𝜋𝑛 (S(𝑌 ))

which is the assembly map in [366, Section 1.7 on page 262] if we take
𝐴 = 𝐸VCY (𝐺). The construction of H𝐺

𝑛 (𝐴; 𝜉) := H(𝐴/𝐺;S(𝑞)) is very com-
plicated, but, fortunately, for us only two facts are relevant. We obtain byH𝐺

∗ (−; 𝜉)
a 𝐺-homology theory in the sense of Definition 12.1, and for every 𝐻 ⊆ 𝐺

we get a natural identification H𝐺
𝑛 (𝐺/𝐻; 𝜉) = S𝐺

𝑍
(𝐺/𝐻). Hence the functor

𝐺-CW-COM→ SPECTRA sending 𝐴→ H(𝐴/𝐺;S(𝑞)) is weakly excisive and its
restriction to Or(𝐺) is the functor S𝐺

𝑍
. Corollary 18.16 implies that the map (15.45)

can be identified with the map induced by the projection 𝐴→ 𝐺/𝐺

𝐻𝐺𝑛 (𝐴; S𝐺𝑍 ) → 𝐻𝐺𝑛 (𝐺/𝐺; S𝐺𝑍 ) = 𝜋𝑛 (S(𝑍/𝐺)) = 𝜋𝑛 (S(𝑌 ))

which appears in Meta-Isomorphism Conjecture 15.41 for functors from spaces to
spectra with coefficients.

Remark 15.46 (The condition free is necessary in Conjecture 15.41). In general
Conjecture 15.41 is not true if we drop the condition that 𝑍 is free. Take for instance
𝑍 = 𝐺/𝐺. Then Conjecture 15.41 predicts that the projection 𝐸F (𝐺)/𝐺 → 𝐺/𝐺
induces for all 𝑛 ∈ Z an isomorphism

𝐻𝑛 (pr; S({•})) : 𝐻𝑛 (𝐸F (𝐺)/𝐺; S({•})) → 𝐻𝑛 ({•}, S({•}))

where 𝐻∗ (−; S({•})) is the (non-equivariant) homology theory associated to the
spectrum S({•}). This statement is in general wrong, except in extreme cases such
as F = ALL.

The proof of the next theorem will be given at the end of Section 15.9.

Theorem 15.47 (Inheritance properties of the Meta-Isomorphism Conjecture
15.41 for functors from spaces to spectra with coefficients). Let S : SPACES→
SPECTRA be a covariant functor that respects weak equivalences and disjoint
unions. Fix a class of groups C that is closed under isomorphisms, taking subgroups,
and taking quotients.
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(i) Suppose that the Meta-Isomorphism Conjecture 15.41 for functors from spaces
to spectra with coefficients holds for the group 𝐺 and the family of subgroups
C(𝐺) := {𝐾 ⊆ 𝐺, 𝐾 ∈ C} of 𝐺. Let 𝐻 ⊆ 𝐺 be a subgroup.
Then Conjecture 15.41 holds for (𝐻, C(𝐻));

(ii) Let 1→ 𝐾 → 𝐺
𝑝
−→ 𝑄 → 1 be an extension of groups. Suppose that (𝑄, C(𝑄))

and (𝑝−1 (𝐻), C(𝑝−1 (𝐻)) for every 𝐻 ∈ C(𝑄) satisfy Conjecture 15.41.
Then (𝐺, C(𝐺)) satisfies Conjecture 15.41;

(iii) Suppose that Conjecture 15.41 is true for (𝐻1 × 𝐻2, C(𝐻1 × 𝐻2)) for every
𝐻1, 𝐻2 ∈ C.
Then for two groups 𝐺1 and 𝐺2 Conjecture 15.41 is true for the direct product
𝐺1 × 𝐺2 and the family C(𝐺1 × 𝐺2) if and only it is true for (𝐺𝑘 , C(𝐺𝑘)) for
𝑘 = 1, 2;

(iv) Suppose that, for any directed system of spaces {𝑋𝑖 | 𝑖 ∈ 𝐼} indexed over an
arbitrary directed set 𝐼, the canonical map

hocolim𝑖∈𝐼 S(𝑋𝑖) → S
(
hocolim𝑖∈𝐼 𝑋𝑖

)
is a weak homotopy equivalence. Let {𝐺𝑖 | 𝑖 ∈ 𝐼} be a directed system of groups
over a directed set 𝐼 (with arbitrary structure maps). Put 𝐺 = colim𝑖∈𝐼 𝐺𝑖 .
Suppose that Conjecture 15.41 holds for (𝐺𝑖 , C(𝐺𝑖)) for every 𝑖 ∈ 𝐼;
Then Conjecture 15.41 holds for (𝐺, C(𝐺)).

Exercise 15.48. Let S : SPACES → SPECTRA be a covariant functor which re-
spects weak equivalences and disjoint unions. Suppose that, for any directed system
of spaces {𝑋𝑖 | 𝑖 ∈ 𝐼} indexed over an arbitrary directed set 𝐼, the canonical map

hocolim𝑖∈𝐼 S(𝑋𝑖) → S
(
hocolim𝑖∈𝐼 𝑋𝑖

)
is a weak homotopy equivalence. Let C be the class of finite groups or let C be
the class of virtually cyclic subgroups. Suppose that Conjecture 15.41 holds for
(𝐻, C(𝐻)) if 𝐻 contains a subgroup 𝐾 of finite index such that 𝐾 is a finite product
of finitely generated free groups.

Show that for a collection of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} Conjecture 15.41 is true for the
free product ∗𝑖∈𝐼𝐺𝑖 and the family C(∗𝑖∈𝐼𝐺𝑖) if and only it is true for (𝐺𝑖 , C(𝐺𝑖))
for every 𝑖 ∈ 𝐼.
Lemma 15.49. Suppose that there is a spectrum E such that S : SPACES →
SPECTRA is given by 𝑌 ↦→ 𝑌+ ∧ E.

(i) Then, for any group𝐺, any𝐺-𝐶𝑊-complex 𝑋 that is contractible (after forgetting
the𝐺-action), and any free𝐺-𝐶𝑊-complex 𝑍 , the projection 𝑋 → 𝐺/𝐺 induces
for all 𝑛 ∈ Z an isomorphism

𝐻𝐺𝑛 (𝑋; S𝐺𝑍 )
�−→ 𝐻𝐺𝑛 (𝐺/𝐺; S𝐺𝑍 );

(ii) Both Conjecture 15.38 and Conjecture 15.41 for S hold for every group 𝐺 and
every family F of subgroups of 𝐺.
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Proof. (i) There are natural isomorphisms of spectra

map𝐺 (𝐺/?, 𝑋)+ ∧Or(𝐺)
(
(𝐺/? ×𝐺 𝑍)+ ∧ E

)
�−→

(
(map𝐺 (𝐺/?), 𝑋) ×Or(𝐺) 𝐺/?) ×𝐺 𝑍

)
+ ∧ E

�−→ (𝑋 ×𝐺 𝑍)+ ∧ E

where the second isomorphism comes from the 𝐺-homeomorphism

map𝐺 (𝐺/?), 𝑋) ×Or(𝐺) 𝐺/?
�−→ 𝑋

of [280, Theorem 7.4 (1)]. Since 𝑍 is a free 𝐺-𝐶𝑊-complex and 𝑋 is contractible
(after forgetting the group action), the projection 𝑋×𝐺 𝑍 → 𝐺/𝐺×𝐺 𝑍 is a homotopy
equivalence and hence induces a weak homotopy equivalence

(𝑋 ×𝐺 𝑍)+ ∧ E ≃−→ (𝐺/𝐺 ×𝐺 𝑍)+ ∧ E.

Thus we get a weak homotopy equivalence

map𝐺 (𝐺/?), 𝑋)+ ∧Or(𝐺)
(
(𝐺/? ×𝐺 𝑍)+ ∧ E

)
→ (𝐺/𝐺 ×𝐺 𝑍)+ ∧ E.

Under the identifications coming from the definitions

𝐻𝐺𝑛 (𝑋; S𝐺𝑍 ) := 𝜋𝑛
(
map𝐺 (𝐺/?, 𝑋)+ ∧Or(𝐺) ((𝐺/? ×𝐺 𝑍)+ ∧ E)

)
;

𝐻𝐺𝑛 (𝐺/𝐺; S𝐺𝑍 ) = 𝜋𝑛 ((𝐺/𝐺 ×𝐺 𝑍)+ ∧ E) ,

this weak homotopy equivalence induces on homotopy groups the isomorphism
𝐻𝐺𝑛 (𝑋; S𝐺

𝑍
) → 𝐻𝐺𝑛 (𝐺/𝐺; S𝐺

𝑍
).

(ii) This follows from assertion (i). ⊓⊔

Lemma 15.50. Let S,T,U : SPACES → SPECTRA be covariant functors that re-
spect weak equivalences and disjoint unions. Let i : S→ T and p : T→ U be natural
transformations such that for any space 𝑌 the map of spectra S(𝑌 )

i(𝑌 )
−−−→ T(𝑌 )

p(𝑌 )
−−−−→

U(𝑌 ) is up to weak homotopy equivalence a cofibration of spectra.

(i) Then we obtain for every group 𝐺 and all 𝐺-𝐶𝑊-complexes 𝑋 and 𝑍 a natural
long exact sequence

· · · → 𝐻𝐺𝑛 (𝑋; S𝐺𝑍 ) → 𝐻𝐺𝑛 (𝑋; T𝐺𝑍 ) → 𝐻𝐺𝑛 (𝑋; U𝐺𝑍 )
→ 𝐻𝐺𝑛−1 (𝑋; S𝐺𝑍 ) → 𝐻𝐺𝑛−1 (𝑋; T𝐺𝑍 ) → 𝐻𝐺𝑛−1 (𝑋; U𝐺𝑍 ) → · · · ;

(ii) Let 𝐺 be a group and F be a family of subgroups of 𝐺. Then Conjecture 15.38
or Conjecture 15.41 respectively holds for all three functors S, T, and U for
(𝐺, F ) if Conjecture 15.38 or Conjecture 15.41 respectively holds for two of the
functors S, T, and U for (𝐺, F ).
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Proof. (i) This is a consequence of the fact following from the version for spectra
of [280, Theorem 3.11] that we obtain an up to weak homotopy equivalence cofiber
sequence of spectra

map𝐺 (𝐺/?, 𝑋)+∧Or(𝐺) S(𝐺/?×𝐺 𝑍) → map𝐺 (𝐺/?, 𝑋)+∧Or(𝐺) T(𝐺/?×𝐺 𝑍)
→ map𝐺 (𝐺/?, 𝑋)+ ∧Or(𝐺) U(𝐺/? ×𝐺 𝑍).

(ii) This follows from assertion (i) and the Five Lemma. ⊓⊔

15.9 Proof of the Inheritance Properties

This section is entirely devoted to the proof of Theorem 15.47.
Let S : SPACES → SPECTRA be a covariant functor. Throughout this section

we will assume that it respects weak equivalences and disjoint unions.

Lemma 15.51. Let 𝜓 : 𝐾1 → 𝐾2 be a group homomorphism.

(i) If 𝑍 is a 𝐾1-𝐶𝑊-complex and 𝑋 is a 𝐾2-𝐶𝑊-complex, then there is a natural
isomorphism

𝐻𝐾1
𝑛 (𝜓∗𝑋; S𝐾1

𝑍
) �−→ 𝐻𝐾2

𝑛 (𝑋; S𝐾2
𝜓∗𝑍
);

(ii) If 𝑍 is a 𝐾2-𝐶𝑊-complex and 𝑋 is a 𝐾1-𝐶𝑊-complex, then there is a natural
isomorphism

𝐻𝐾1
𝑛 (𝑋; S𝐾1

𝜓∗𝑍 )
�−→ 𝐻𝐾2

𝑛 (𝜓∗𝑋; S𝐾2
𝑍
).

Proof. (i) The fourth isomorphism appearing in [280, Lemma 1.9] implies that it
suffices to construct a natural weak homotopy equivalence of Or(𝐾2)-spectra

𝑢(𝜓, 𝑍) : 𝜓∗S𝐾1
𝑍

�−→ S𝐾2
𝜓∗𝑍

where 𝜓∗S𝐾1
𝑍

is the Or(𝐾2)-spectrum obtained by induction in the sense of [280,
Definition 1.8] with the functor Or(𝜓) : Or(𝐾1) → Or(𝐾2), 𝐾1/𝐻 ↦→ 𝜓∗ (𝐾1/𝐻)
applied to the Or(𝐾1)-spectrum S𝐾1

𝑍
. For a homogeneous space 𝐾2/𝐻, we define

𝑢(𝜓, 𝑍) (𝐾2/𝐻) to be the composite

𝜓∗S𝐾1
𝑍
(𝐾2/𝐻) := map𝐾2

(𝜓∗ (𝐾1/?), 𝐾2/𝐻) ×Or(𝐾1 ) S
(
𝐾1/? ×𝐾1 𝑍

)
�−→ map𝐾1

(𝐾1/?, 𝜓∗ (𝐾2/𝐻)) ×Or(𝐾1 ) S(𝐾1/? ×𝐾1 𝑍)
�−→ S(𝜓∗ (𝐾2/𝐻) ×𝐾1 𝑍)
�−→ S(𝐾2/𝐻 ×𝐾2 𝜓∗𝑍)
=: S𝐾2

𝜓∗𝑍
(𝐾2/𝐻).
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Here the first map comes from the adjunction isomorphism

map𝐾2
(𝜓∗ (𝐾1/?), 𝐾2/𝐻)

�−→ map𝐾1
(𝐾1/?, 𝜓∗ (𝐾2/𝐻))

and the third map comes from the canonical homeomorphism

𝜓∗ (𝐾2/𝐻) ×𝐾1 𝑍
�−→ 𝐾2/𝐻 ×𝐾2 𝜓∗𝑍.

The second map is the special case 𝑇 = 𝜓∗𝐾2/? of the natural weak homotopy
equivalence defined for any 𝐾1-set 𝑇

𝜅(𝑇) : map𝐾1
(𝐾1/?, 𝑇) ×Or(𝐾1 ) S

(
𝐾1/? ×𝐾1 𝑍

) �−→ S(𝑇 ×𝐾1 𝑍)

that is given by (𝑢 : 𝐾1/? → 𝑇) × 𝑠 ↦→ S(𝑢 ×𝐾1 id𝑍 ) (𝑠). If 𝑇 is a homogeneous
𝐾1-set, then 𝜅(𝑇) is an isomorphism by the Yoneda Lemma. Since 𝜓 is compatible
with disjoint unions, S is compatible with disjoint unions up to weak homotopy
equivalence by assumption, and every 𝐾1-set is the disjoint union of homogeneous
𝐾1-sets, 𝜅(𝑇) is a weak homotopy equivalence for all 𝐾1-sets 𝑇 .
(ii) The third isomorphism appearing in [280, Lemma 1.9] implies that it suffices to
construct a natural weak homotopy equivalence of Or(𝐾1)-spectra

𝑣(𝜓, 𝑍) : 𝜓∗S𝐾2
𝑍

≃−→ S𝐾1
𝜓∗𝑍

where 𝜓∗S𝐾2
𝑍

is the Or(𝐾1)-spectrum obtained by restriction in the sense of [280,
Definition 1.8] with the functor Or(𝜓) : Or(𝐾1) → Or(𝐾2), 𝐾1/𝐻 ↦→ 𝜓∗ (𝐾1/𝐻)
applied to the Or(𝐾2)-spectrum S𝐾2

𝑍
. Actually, we obtain even an isomorphism

𝑣(𝜓, 𝑍) using the adjunction

𝜓∗ (𝐾1/𝐻) ×𝐾2 𝑍 � 𝐾1/𝐻 ×𝐾1 𝜓
∗𝑍

for any subgroup 𝐻 ⊆ 𝐾1. ⊓⊔

Note that for a homomorphism 𝜙 : 𝐻 → 𝐺 the restriction 𝜙∗𝑍 of a free 𝐺-𝐶𝑊-
complex 𝑍 is free again if and only if 𝜙 is injective. We have already explained
in Remark 15.46 that the assumption that 𝑍 is free is needed in Conjecture 15.41.
In the Fibered Meta-Isomorphism Conjecture 15.8 it is crucial not to require that
𝜙 : 𝐻 → 𝐺 is injective, since we want to have good inheritance properties such as
the one appearing in assertion (iii) of Lemma 15.23, which will be crucial for the
proof of assertion (iv) of Theorem 15.47. Therefore we are forced to introduce the
following construction.

Consider a group 𝐺 and a 𝐺-𝐶𝑊-complex 𝑍 . We want to define an equivariant
homology theory 𝐻?

∗ (−; S↓𝐺
𝑍
) over𝐺 in the sense of Definition 12.91. Given a group

homomorphism 𝜙 : 𝐾 → 𝐺, define the associated 𝐾-homology theory

𝐻
𝐾,𝜙
∗ (−; S↓𝐺

𝑍
) := 𝐻𝐾∗ (−; S𝐾𝐸𝐾×𝜙∗𝑍 ).
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Given group homomorphisms 𝜓 : 𝐾1 → 𝐾2, 𝜙1 : 𝐾1 → 𝐺, and 𝜙2 : 𝐾2 → 𝐺 with
𝜙2 ◦ 𝜓 = 𝜙1, a 𝐾1-𝐶𝑊-complex 𝑋 , and 𝑛 ∈ Z, we have to define a natural map

𝐻𝐾1
𝑛 (𝑋; S𝐾1

𝐸𝐾1×𝜙∗1𝑍
) → 𝐻𝐾2

𝑛 (𝜓∗𝑋; S𝐾2
𝐸𝐾2×𝜙∗2𝑍

).

We get the isomorphism 𝐻
𝐾2
𝑛 (𝜓∗𝑋; S𝐾2

𝐸𝐾2×𝜙∗2𝑍
) = 𝐻

𝐾1
𝑛 (𝑋; S𝐾2

𝜓∗ (𝐸𝐾2×𝜙∗2𝑍 )
) from

Lemma 15.51 (ii). Hence it suffices to specify a 𝐾1-map

𝐸𝐾1 × 𝜙∗1𝑍 → 𝜓∗ (𝐸𝐾2 × 𝜙∗2𝑍) = 𝜓
∗ (𝐸𝐾2) × 𝜙∗1𝑍.

The homomorphism 𝜓 : 𝐾1 → 𝐾2 induces a 𝐾1-map 𝐸𝐾1 → 𝜓∗ (𝐸𝐾2) and we can
take its product with id𝜙∗1𝑍 .

The proof of the next lemma is left to the reader.

Lemma 15.52. Given a group𝐺 and a𝐺-𝐶𝑊-complex 𝑍 , all the axioms of an equi-
variant homology theory over 𝐺, see Definition 12.91, are satisfied by 𝐻?

∗ (−; S↓𝐺
𝑍
).

Exercise 15.53. Let 𝐺 be a group and 𝑍 be a 𝐺-𝐶𝑊-complex. Consider the functor

E : GROUPOIDS ↓ 𝐺 → SPECTRA, 𝑝 : G → 𝐼 (𝐺) ↦→ S
(
𝐸G ×G 𝑝∗𝑍

)
.

Here 𝐸G is the classifyingG-𝐶𝑊-complex associated toG, see [280, Definition 3.8],
for which we use the functorial model 𝐸barG of [280, page 230], we consider 𝑍 as
an 𝐼 (𝐺)-𝐶𝑊-complex and hence get a G-𝐶𝑊-complex 𝑝∗𝑍 by restriction with
𝑝 : G → 𝐼 (𝐺), and the space 𝐸G ×G 𝑝∗𝑍 is defined in [280, Definition 1.4].

Show that the equivariant homology theory 𝐻?
∗ (−; E) over 𝐺 associated to E in

Theorem 12.93 is isomorphic to 𝐻?
∗ (−; S↓𝐺

𝑍
).

Lemma 15.54. Let 𝜙 : 𝐻 → 𝐾 and 𝜓 : 𝐾 → 𝐺 be group homomorphisms.

(i) Let 𝑋 be a 𝐺-𝐶𝑊-complex and let 𝑍 be a 𝐾-𝐶𝑊-complex. Then we obtain a
natural isomorphism

𝐻
𝐻,𝜙
𝑛 (𝜙∗𝜓∗𝑋; S↓𝐾

𝑍
) �−→ 𝐻𝐺𝑛 (𝑋; S𝐺(𝜓◦𝜙)∗ (𝐸𝐻×𝜙∗𝑍 ) );

(ii) Let 𝑋 be a 𝐻-𝐶𝑊-complex and let 𝑍 be a 𝐺-𝐶𝑊-complex. Then we obtain a
natural isomorphism

𝐻
𝐻,𝜙
𝑛 (𝑋; S↓𝐾

𝜓∗𝑍 )
�−→ 𝐻

𝐻,𝜓◦𝜙
𝑛

(
𝑋; S↓𝐺

𝑍

)
.

Proof. (i) We have by definition

𝐻
𝐻,𝜙
𝑛 (𝜙∗𝜓∗𝑋; S↓𝐾

𝑍
) := 𝐻𝐻𝑛 (𝜙∗𝜓∗𝑋; S𝐻𝐸𝐻×𝜙∗𝑍 ).

Now apply Lemma 15.51 (i).
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(ii) We get by definition

𝐻
𝐻,𝜙
𝑛 (𝑋; S↓𝐾

𝜓∗𝑍 ) := 𝐻𝐻𝑛 (𝑋; S𝐻𝐸𝐻×𝜙∗𝜓∗𝑍 )

= 𝐻𝐻𝑛 (𝑋; S𝐻
𝐸𝐻×(𝜓◦𝜙)∗𝑍 ) =: 𝐻𝐻,𝜓◦𝜙𝑛

(
𝑋; S↓𝐺

𝑍

)
.

⊓⊔

Conjecture 15.55 (Fibered Meta-Isomorphism Conjecture for functors from
spaces to spectra with coefficients). We say that S satisfies the Fibered Meta-
Isomorphism Conjecture for a functor from spaces to spectra with coefficients for
the group 𝐺 and the family of subgroups F of 𝐺 if for any 𝐺-𝐶𝑊-complex 𝑍

the equivariant homology theory 𝐻?
∗ (−; S↓𝐺

𝑍
) over 𝐺 satisfies the Fibered Meta-

Isomorphism Conjecture 15.8 for the group (𝐺, id𝐺) over 𝐺 and the family F .

Note that Conjecture 15.41 is a statement about 𝐻𝐺∗ (−S𝐺
𝑍
) and 𝑍 is required to be

a free 𝐺-𝐶𝑊-complex, whereas Conjecture 15.55 is a statement about 𝐻𝐺∗ (−; S↓𝐺
𝑍
)

and 𝑍 can be any 𝐺-𝐶𝑊-complex. Moreover, we introduce Conjecture 15.55 only
for technical reasons.

Lemma 15.56. Let 𝜓 : 𝐾 → 𝐺 be a group homomorphism.

(i) Suppose that the Meta Conjecture 15.41 with coefficients holds for the group
𝐺 and the family F . Then the Fibered Meta Conjecture 15.55 with coefficients
holds for the group 𝐾 and the family 𝜓∗F ;

(ii) If the Fibered Meta Conjecture 15.55 with coefficients holds for the group 𝐺
and the family F , then the Meta Conjecture 15.41 with coefficients holds for the
group 𝐺 and the family F ;

(iii) Suppose that the Fibered Meta Conjecture 15.55 with coefficients holds for𝐾 and
the family F . Then for every 𝐺-𝐶𝑊-complex 𝑍 the Fibered Meta-Isomorphism
Conjecture 15.8 holds for the equivariant homology theory 𝐻𝑛 (−; S↓𝐺

𝑍
) over 𝐺

for the group (𝐾, 𝜓) over 𝐺 and the family F of subgroups of 𝐾 .

Proof. (i) This follows from Lemma 15.54 (i) since in the notation used there we
have 𝜙∗𝜓∗𝐸F (𝐺) = 𝜙∗𝐸𝜓∗F (𝐾) and 𝜙∗𝜓∗𝐺/𝐺 = 𝐻/𝐻, and (𝜓 ◦ 𝜙)∗ (𝐸𝐻 × 𝜙∗𝑍)
is a free 𝐺-𝐶𝑊-complex.
(ii) This follows from the fact that for a free 𝐺-𝐶𝑊-complex 𝑍 the projection
𝐸𝐺 × 𝑍 → 𝑍 is a𝐺-homotopy equivalence and hence we get a natural isomorphism

𝐻
𝐺,id𝐺
𝑛 (𝑋; S↓𝐺

𝑍
) := 𝐻𝐺𝑛 (𝑋; S𝐺𝐸𝐺×𝑍 )

�−→ 𝐻𝐺𝑛 (𝑋; S𝐺𝑍 )

for every 𝐺-𝐶𝑊-complex 𝑋 and 𝑛 ∈ Z.
(iii) This follows from Lemma 15.54 (ii). ⊓⊔
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Lemma 15.57. Suppose that, for any directed system of spaces {𝑋𝑖 | 𝑖 ∈ 𝐼} indexed
over an arbitrary directed set 𝐼, the canonical map

hocolim𝑖∈𝐼 S(𝑋𝑖) → S
(
hocolim𝑖∈𝐼 𝑋𝑖

)
is a weak homotopy equivalence.

Then for every group 𝐺 and 𝐺-𝐶𝑊-complex 𝑍 the equivariant homology theory
over 𝐺 given by 𝐻?

∗ (−S↓𝐺
𝑍
) is strongly continuous.

Proof. We only treat the case id𝐺 : 𝐺 → 𝐺, the case of a group 𝜓 : 𝐾 → 𝐺 over
𝐺 is completely analogous. Consider a directed system of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} with
𝐺 = colim𝑖∈𝐼 𝐺𝑖 . Let 𝜓𝑖 : 𝐺𝑖 → 𝐺 be the structure map for 𝑖 ∈ 𝐼.

The canonical map

(15.58) hocolim𝑖∈𝐼 S(𝐸𝐺𝑖 ×𝐺𝑖 𝜓∗𝑖 𝑍) → S
(
hocolim𝑖∈𝐼 (𝐸𝐺𝑖 ×𝐺𝑖 𝜓∗𝑖 𝑍)

)
is by assumption a weak homotopy equivalence. We have the homeomorphisms

𝐸𝐺𝑖 ×𝐺𝑖 𝜓∗𝑖 𝑍
�−→ (𝜓𝑖)∗𝐸𝐺𝑖 ×𝐺 𝑍;(

hocolim𝑖∈𝐼 (𝜓𝑖)∗𝐸𝐺𝑖
)
×𝐺 𝑍

�−→ hocolim𝑖∈𝐼
(
(𝜓𝑖)∗𝐸𝐺𝑖 ×𝐺 𝑍

)
.

They induce a homeomorphism

(15.59) S(hocolim𝑖∈𝐼 (𝐸𝐺𝑖 ×𝐺𝑖 𝜓∗𝑖 𝑍)
) �−→ S

(
(hocolim𝑖∈𝐼 (𝜓𝑖)∗𝐸𝐺𝑖) ×𝐺 𝑍

)
The canonical map

hocolim𝑖∈𝐼 (𝜓𝑖)∗𝐸𝐺𝑖 → 𝐸𝐺

is a𝐺-homotopy equivalence. The proof of this fact is a special case of the argument
appearing in the proof of [688, Theorem 4.3 on page 516]. It induces a weak
homotopy equivalence

(15.60) S
(
(hocolim𝑖∈𝐼 (𝜓𝑖)∗𝐸𝐺𝑖) ×𝐺 𝑍) → S(𝐸𝐺 ×𝐺 𝑍).

Hence we get by taking the composite of the maps (15.58), (15.59), and (15.60) a
weak homotopy equivalence

hocolim𝑖∈𝐼 S(𝐸𝐺𝑖 ×𝐺𝑖 𝜓∗𝑖 𝑍) → S(𝐸𝐺 ×𝐺 𝑍).

It induces after taking homotopy groups for every 𝑛 ∈ Z an isomorphism

colim𝑖∈𝐼 𝜋𝑛
(
S(𝐸𝐺𝑖 ×𝐺𝑖 𝜓∗𝑖 𝑍)

)
→ 𝜋𝑛

(
S(𝐸𝐺 ×𝐺 𝑍)

)
which is by definition the same as the canonical map

colim𝑖∈𝐼 𝐻
𝐺𝑖 ,𝜓𝑖
𝑛 (𝐺𝑖/𝐺𝑖; S↓𝐺

𝑍
) → 𝐻

𝐺,id𝐺
𝑛 (𝐺/𝐺; S↓𝐺

𝑍
).

This finishes the proof of Lemma 15.57. ⊓⊔
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Proof of Theorem 15.47. (i) Consider a free 𝐻-𝐶𝑊-complex 𝑍 . Let 𝑖 : 𝐻 → 𝐺

be the inclusion. Then 𝑖∗𝑍 is a free 𝐺-𝐶𝑊-complex, 𝑖∗𝐸C(𝐺) (𝐺) is a model for
𝐸C(𝐻 ) (𝐻),and 𝑖∗𝐺/𝐺 = 𝐾/𝐾 . From Lemma 15.51 (i) we obtain a commutative
diagram with isomorphisms as vertical maps

𝐻𝐻𝑛 (𝐸C(𝐻 ) (𝐻); S𝐻
𝑍
) //

�

��

𝐻𝐻𝑛 (𝐻/𝐻; S𝐺
𝑍
)

�

��
𝐻𝐺𝑛 (𝐸C(𝐺) (𝐺); S𝐺

𝑖∗𝑍
) // 𝐻𝐺𝑛 (𝐺/𝐺; S𝐺

𝑖∗𝑍
)

where the horizontal maps are induced by the projections. The lower map is bijective
by assumption. Hence the upper map is bijective as well.
(ii) Since (𝑄, C(𝑄)) and (𝑝−1 (𝐻), C(𝑝−1 (𝐻))) for every 𝐻 ∈ C(𝑄) satisfy the
Meta-Isomorphism Conjecture Conjecture 15.41 with coefficients by assumption,
we conclude from Lemma 15.56 (i) that the Fibered Meta-Isomorphism Conjec-
ture 15.55 with coefficients holds for the group𝐺 and the family 𝑝∗C(𝑄) and that for
every 𝐻 ∈ C(𝑄) the Fibered Meta-Isomorphism Conjecture 15.55 with coefficients
holds for 𝑝−1 (𝐻) and the family C(𝑝−1 (𝐻)) = C(𝐺) |𝑝−1 (𝐻 ) . Lemma 15.56 (iii) im-
plies that for every𝐻 ∈ C(𝑄) and𝐺-𝐶𝑊-complex 𝑍 the Fibered Meta-Isomorphism
Conjecture 15.8 holds for the equivariant homology theory 𝐻?

𝑛 (−; S↓𝐺
𝑍
) over 𝐺 for

the group (𝑝−1 (𝐻) ⊆ 𝐺) over 𝐺 and the family C(𝐺) |𝑝−1 (𝐻 ) . Since for every
𝐿 ∈ 𝑝∗C(𝑄) we have 𝑝(𝐿) ∈ C(𝑄) and hence 𝐿 ⊆ 𝑝−1 (𝑝(𝐿)), we conclude from
Lemma 15.16 that for every 𝐿 ∈ 𝑝∗C(𝑄) and 𝐺-𝐶𝑊-complex 𝑍 the Fibered Meta-
Isomorphism Conjecture 15.8 holds for the equivariant homology theory𝐻?

𝑛 (−; S↓𝐺
𝑍
)

over𝐺 for the group (𝐿 ⊆ 𝐺) over𝐺 and the family C(𝐺) |𝐿 . The Transitivity Princi-
ple 15.13 (i) implies that for every𝐺-𝐶𝑊-complex 𝑍 the Fibered Meta-Isomorphism
Conjecture 15.8 holds for the equivariant homology theory 𝐻?

𝑛 (−; S↓𝐺
𝑍
) over 𝐺 for

the group (𝐺, id𝐺) over 𝐺 and the family C(𝐺), in other words, the Fibered Meta-
Isomorphism Conjecture 15.55 with coefficients holds for 𝐺 and the family C(𝐺).
We conclude from Lemma 15.56 (ii) that the Meta-Isomorphism Conjecture 15.41
holds for the group 𝐺 and the family C(𝐺).
(iii) If the Meta-Isomorphism Conjecture 15.41 with coefficients holds for
(𝐺1 × 𝐺1, C(𝐺1 × 𝐺2)), it holds for 𝐺𝑘 and the family C(𝐺𝑘) = C(𝐺1 × 𝐺2) |𝐺𝑘
for 𝑘 = 1, 2 by assertion (i).

Suppose that the Meta-Isomorphism Conjecture 15.41 with coefficients holds for
(𝐺𝑘 , C(𝐺𝑘)) for 𝑘 = 1, 2. By assertion (ii) applied to the obvious exact sequence
1→ 𝐻2 → 𝐺1×𝐻2 → 𝐺1 → 1, Conjecture 15.41 holds for (𝐺1×𝐻2, C(𝐺1×𝐻2))
for every 𝐻2 ∈ C(𝐺2). By assertion (ii) applied to the obvious exact sequence
1 → 𝐺1 → 𝐺1 × 𝐺2 → 𝐺2 → 1 Conjecture 15.41 with coefficients holds for
(𝐺1 × 𝐺2, C(𝐺1 × 𝐺2)).
(iv) Since the Meta-Isomorphism Conjecture 15.41 with coefficients holds for 𝐺𝑖
and C(𝐺𝑖) for every 𝑖 ∈ 𝐼 by assumption, we conclude from Lemma 15.56 (i) that the
Fibered Meta-Isomorphism Conjecture 15.55 with coefficients holds for the group
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𝐺𝑖 and the familyC(𝐺𝑖) for every 𝑖 ∈ 𝐼. Lemma 15.56 (iii) implies that for every 𝑖 ∈ 𝐼
and𝐺-𝐶𝑊-complex 𝑍 the Fibered Meta-Isomorphism Conjecture 15.8 holds for the
equivariant homology theory 𝐻𝑛 (−; S↓𝐺

𝑍
) over 𝐺 for the group 𝜓𝑖 : 𝐺𝑖 → 𝐺 over 𝐺

and the family C(𝐺𝑖). We conclude from Lemma 15.23 (iii) and Lemma 15.57 that
for every 𝐺-𝐶𝑊-complex 𝑍 the Fibered Meta-Isomorphism Conjecture 15.8 holds
for the equivariant homology theory 𝐻?

∗ (−; S↓𝐺
𝑍
) over 𝐺 for the group (𝐺, id𝐺) over

𝐺 and the family C(𝐺), in other words, the Fibered Meta-Isomorphism Conjec-
ture 15.55 with coefficients holds for the group𝐺 and the family C(𝐺). We conclude
from Lemma 15.56 (ii) that the Meta-Isomorphism Conjecture Conjecture 15.41
with coefficients holds for the group 𝐺 and the family C(𝐺). This finishes the proof
of Theorem 15.47. ⊓⊔

15.10 The Farrell-Jones Conjecture for 𝑨-Theory,
Pseudoisotopy, and Whitehead Spaces

Conjecture 15.61 (Farrell-Jones Conjecture for 𝐴-theory (with coefficients)).
A group 𝐺 satisfies the Farrell-Jones Conjecture for 𝐴-theory if the Meta-Isomor-
phism Conjecture 15.38 for functors from spaces to spectra applied to the case S = A
for the functor non-connective 𝐴-theory A introduced in (7.12) holds for (𝐺,VCY).

A group 𝐺 satisfies the Farrell-Jones Conjecture for 𝐴-theory with coefficients
if the Meta-Isomorphism Conjecture 15.41 for functors from spaces to spectra with
coefficients applied to the case S = A for the functor non-connective 𝐴-theory A
introduced in (7.12) holds for (𝐺,VCY).

Note that A respects weak equivalences and disjoint unions, see Theorem 7.16.

Exercise 15.62. Suppose that𝐺 is torsionfree and satisfies the Farrell-Jones Conjec-
ture 15.61 for 𝐴-theory. Show that 𝜋𝑛 (A(𝐵𝐺)) = 0 for 𝑛 ≤ −1 and 𝜋0 (A(𝐵𝐺)) � Z.

Conjecture 15.63 (Farrell-Jones Conjecture for (smooth) pseudoisotopy (with
coefficients)). A group 𝐺 satisfies the Farrell-Jones Conjecture for (smooth) pseu-
doisotopy if the Meta-Isomorphism Conjecture 15.38 for functors from spaces to
spectra applied to the case S = P or S = PDIFF for the functor non-connective
(smooth) pseudoisotopy P and PDIFF of Definition 7.1 holds for (𝐺,VCY).

A group𝐺 satisfies the Farrell-Jones Conjecture for (smooth) pseudoisotopy with
coefficients if the Meta-Isomorphism Conjecture 15.41 for functors from spaces to
spectra with coefficients applied to the case S = P or S = PDIFF (𝑋) for the functor
non-connective (smooth) pseudoisotopy P and PDIFF of Definition 7.1 holds for
(𝐺,VCY).

Conjecture 15.64 (Farrell-Jones Conjecture for (smooth) Whitehead spectra
(with coefficients)). A group 𝐺 satisfies the Farrell-Jones Conjecture for (smooth)
Whitehead spectra if the Meta-Isomorphism Conjecture 15.38 for functors from
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spaces to spectra applied to the case S = Wh or S = WhDIFF for the functor non-
connective (smooth) Whitehead spectra Wh and WhDIFF of Remark 7.34 holds for
(𝐺,VCY).

A group 𝐺 satisfies the Farrell-Jones Conjecture for (smooth) Whitehead spectra
with coefficients if the Meta-Isomorphism Conjecture 15.41 for functors from spaces
to spectra with coefficients applied to the case S = Wh or S = WhDIFF for the functor
non-connective (smooth) Whitehead spectra Wh and WhDIFF of Remark 7.34 holds
for (𝐺,VCY).

Note that P and PDIFF respect weak equivalences and disjoint unions, see The-
orem 7.3. Moreover, Wh and WhDIFF also have these properties because of Theo-
rem 7.16 and the homotopy (co)fibration sequences (7.35) and (7.36).

Theorem 15.65.

(i) The following assertions are equivalent for a group 𝐺:

(a) The Farrell-Jones Conjecture 15.61 for 𝐴-theory holds for 𝐺;
(b) The Farrell-Jones Conjecture 15.63 for pseudoisotopy holds for 𝐺;
(c) The Farrell-Jones Conjecture 15.63 for smooth pseudoisotopy holds for 𝐺;
(d) The Farrell-Jones Conjecture 15.64 for Whitehead spectra holds for 𝐺;
(e) The Farrell-Jones Conjecture 15.64 for smooth Whitehead spectra holds for

𝐺;

(ii) Assertion (i) holds also for the versions of the conjectures with coefficients;
(iii) Suppose that the𝐾-theoretic Farrell-Jones Conjecture with coefficients in higher

𝐺-categories, see Conjecture 13.23 holds for 𝐺. Then the versions with coeffi-
cients of the Conjectures 15.61, 15.63, and 15.64 holds for 𝐺.

Proof. Assertions (i) and (ii) are proved in [344, Lemma 3.3]. They are direct
consequences of (7.35), (7.36), the non-connective versions of (7.26) and (7.30),
Lemma 15.49 (ii), and Lemma 15.50 (ii).
(iii) is proved in [180, Example 1.1.11 and Corollary 7.5.6] ⊓⊔

15.11 The Farrell-Jones Conjecture for Topological Hochschild
and Cyclic Homology

There are the notions of Hochschild homology and cyclic homology of alge-
bras, which are defined in the algebraic setting, see for instance Connes [250] or
Loday [636]. One of the important insights of Waldhausen was that one can define
an analog of algebraic 𝐾-theory for rings where one “spacifies” the constructions.
This led to 𝐴-theory, which we have described in Chapter 7. This circle of ideas also
motivated the definition of topological Hochschild homology by Bökstedt and then
of topological cyclic homology by Bökstedt-Hsiang-Madsen [150], which are better
approximations of the algebraic 𝐾-theory than their original algebraic counterparts.



464 15 The (Fibered) Meta- and Other Isomorphism Conjectures

A systematic study of how much algebraic cyclic homology detects from the alge-
braic 𝐾-theory of group rings is presented in [674], showing that the topological
versions are much more effective. Roughly speaking, in the topological versions one
replaces rings by ring spectra and tensor products by (highly structured and strictly
commutative) smash products. The role of the ring Z of integers, which is initial
in the category of rings, is now played by the sphere spectrum S, which is initial
in the category of ring spectra. For further information, we refer to the book by
Dundas-Goodwillie-McCarthy [316] and the survey article by Madsen [696].

Given a symmetric ring spectrum A and a prime 𝑝, one can define functors
see [675, (14.1) and Example 14.3]

THHA : GROUPOIDS→ SPECTRA;(15.66)
TCA;𝑝 : GROUPOIDS → SPECTRA,(15.67)

such that for a group 𝐺 considered as the groupoid 𝐼 (𝐺) the value of these func-
tors is the topological Hochschild homology and the topological cyclic homol-
ogy with respect to the prime 𝑝 of the group ring spectrum A[𝐺] := A ∧ 𝐺+.
From Theorem 12.30 we obtain equivariant homology theories H ?

∗ (−; THHA) and
H ?
∗ (−; TCA;𝑝) satisfying for any group 𝐺 and subgroup 𝐻 ⊆ 𝐺

H𝐺
𝑛 (𝐺/𝐻; THHA) = H𝐻

𝑛 (𝐻/𝐻; THHA) = 𝜋𝑛
(
THH(A[𝐻])

)
;

H𝐺
𝑛 (𝐺/𝐻; TCA;𝑝) = H𝐻

𝑛 (𝐻/𝐻; TCA;𝑝) = 𝜋𝑛
(
TC(A[𝐻]; 𝑝)

)
.

15.11.1 Topological Hochschild Homology

The following theorem is taken from [675, Theorem 1.19]. The notion of a very well
pointed spectrum and of a connective+-spectrum are introduced in [675, Subsec-
tion 4J]. These are mild condition that are satisfied by the sphere spectrum S and the
Eilenberg-MacLane spectrum of a discrete ring.

Theorem 15.68 (The Farrell-Jones Conjecture holds for topological Hochschild
homology). Let 𝐺 be a group and F be a family of subgroups. Let A be a very
well pointed symmetric ring spectrum. Then the map induced by the projection
pr : 𝐸F (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (𝐸F (𝐺); THHA) → 𝐻𝐺𝑛 (𝐺/𝐺; THHA) = 𝜋𝑛
(
THH(A[𝐺])

)
is split injective for all 𝑛 ∈ Z. If F contains all cyclic subgroups, then it is bijective
for all 𝑛 ∈ Z.

Topological Hochschild homology is one of the rare instances where an Isomor-
phism Conjecture is known for all groups and an interesting family of subgroups,
namely the family of all cyclic subgroups, and the reasons are not completely ele-
mentary.
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15.11.2 Topological Cyclic Homology

For the rest of this subsection we assume that A is connective+.
The assembly map for topological cyclic homology

𝐻𝐺𝑛 (𝐸VCY (𝐺); TCA.𝑝) → 𝐻𝐺𝑛 (𝐺/𝐺; TCA.𝑝) = 𝜋𝑛
(
TC𝑝 (A[𝐺])

)
for the family VCY of virtually cyclic subgroups is not bijective in general. For
instance, it is not surjective for 𝑛 = −1 if A is the Eilenberg-MacLane spectrum
associated to the (discrete) ring Z(𝑝) and𝐺 is either finitely generated free abelian or
torsionfree hyperbolic, but not cyclic, see [676, Theorem 1.5]. More counterexamples
against surjectivity are presented in [676, Remark 6.7]. Counterexamples against
rational injectivity are described in [676, Remark 1.9] based on [675, Remark 3.7].

There are also some positive results.

Theorem 15.69 (Bijectivity of the assembly map for topological cyclic homology
for finite groups and the family of cyclic subgroups). If 𝐺 is finite, then the
assembly map for the family of cyclic subgroups

𝐻𝐺𝑛 (𝐸CYC (𝐺); TCA.𝑝) → 𝐻𝐺𝑛 (𝐺/𝐺; TCA.𝑝) = 𝜋𝑛𝑙 (TC𝑝 (A[𝐺]))

is bijective for all 𝑛 ∈ Z.

Proof. See [676, Theorem 1.1]. ⊓⊔

Exercise 15.70. Let 𝑆3 be the symmetric group on the set {1, 2, 3}. Let 𝐶2 and 𝐶3
be any cyclic subgroups of 𝑆3 of order 2 and 3.

Show that for any prime 𝑝 there is a weak equivalence

TC(A[𝐶2]; 𝑝) ∨
(
(𝐸𝐶2)+ ∧𝐶2 T̃C(A[𝐶3]; 𝑝)

) ≃−→ TC(A[𝑆3]; 𝑝)

where 𝐶2 acts on 𝐶3 by sending the generator to its inverse and T̃C(A[𝐺]; 𝑝) is the
homotopy cofiber of the map TC(A; 𝑝) → TC(A[𝐺]; 𝑝) induced by the inclusion.

Theorem 15.71. Let 𝐺 be a group and 𝑝 be a prime.

(i) Assume that there is a 𝐺-𝐶𝑊-model for 𝐸FIN (𝐺) of finite type. Then the map
induced by the projection pr : 𝐸FIN (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (𝐸FIN (𝐺); TCA.𝑝) → 𝐻𝐺𝑛 (𝐺/𝐺; TCA;𝑝) = 𝜋𝑛
(
TC(A[𝐺]; 𝑝)

)
is split injective for all 𝑛 ∈ Z;

(ii) Assume that𝐺 is hyperbolic or virtually finitely generated abelian. Then the map
induced by the projection pr : 𝐸VCY (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (𝐸VCY (𝐺); TCA.𝑝) → 𝐻𝐺𝑛 (𝐺/𝐺; TCA;𝑝) = 𝜋𝑛
(
TC(A[𝐺]; 𝑝)

)
is injective for all 𝑛 ∈ Z;
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Proof. See [676, Theorem 1.4], ⊓⊔

A more general result about rational injectivity of the assembly map for topolo-
gical cyclic homology can be found in [676, Theorem 1.8].

One of the reasons why topological cyclic homology is much harder than topolo-
gical Hochschild homology is that in the construction of topological cyclic homology
a homotopy inverse limits occurs and taking the smash product does not commute
with homotopy inverse limits in general, see [677]. This is the main reason for the
existence of the counterexamples above.

Remark 15.72 (Pro-systems). If one does not pass to the assembly maps but argues
on the level of pro-systems, then there is a kind of assembly map for pro-systems
for any group 𝐺 and the family CYC of cyclic subgroups which is indeed a pro-
isomorphism, see [676, Theorem 1.3]. In other words, a pro-system version of the
Farrell-Jones Conjecture for topologically cyclic homology holds for any group 𝐺
and any connective+ spectrum A for the family CYC of cyclic subgroups.

More information about topological cyclic homology and its applications to alge-
braic 𝐾-theory via the cyclotomic trace can be found for instance in [316, 479, 759].

15.12 The Farrell-Jones Conjecture for Homotopy 𝑲-Theory

Let E : ADDCAT → SPECTRA be a (covariant) functor from the category
ADDCAT of small additive categories. In [684, Definition 8.1] its homotopy stabi-
lization is constructed, which consists of a covariant functor

EH : ADDCAT → SPECTRA

together with a natural transformation

h : E→ EH

We call E homotopy stable if h(A) is an equivalence for any objectA inADDCAT .
This construction has the following basic properties. Given an automorphism

Φ : A → A, let AΦ [𝑡] be the additive category of twisted polynomials with co-
efficients in A, see [686, Definition 1.2]. Let ev+0 : AΦ [𝑡] → A be the functor of
additive categories given by taking 𝑡 = 0 and let i+ : A → AΦ [𝑡] be the obvious
inclusion see [686, (1.10) and (1.12)].

Lemma 15.73. Let E : ADDCAT → SPECTRA be a covariant functor.

(i) EH is homotopy stable;
(ii) Suppose that E is homotopy stable. Let A be any additive category with an

automorphism Φ : A �−→ A. Then the maps
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E(ev+0 ) : E(AΦ [𝑡])
≃−→ E(A);

E(i+) : E(A) ≃−→ E(AΦ [𝑡]),

are weak homotopy equivalences;
(iii) The functor E is homotopy stable if and only if for every additive categoryA the

inclusionA → A[𝑡] induces a weak homotopy equivalence E(A) → E(A[𝑡]).

Proof. (i) and (ii) See [684, Lemma 8.2].
(iii) The only if statement follows from assertion (ii). The if-statement is a direct
consequence of the definition of EH, see [684, Definition 8.1]. ⊓⊔

Lemma 15.73 (ii) essentially says that homotopy stable automatically implies
homotopy stable in the twisted sense.

Remark 15.74 (Universal property of EH). Note that Lemma 15.73 (i) says that
up to weak homotopy equivalence the transformation h : E → EH is universal
(from the left) among transformations f : E → F to homotopy stable functors
F : ADDCAT → SPECTRA, since we obtain a commutative square whose lower
vertical arrow is a weak homotopy equivalence

E h //

f
��

EH

Hf
��

F
h
≃ // FH

Definition 15.75 (Homotopy 𝐾-theory). Let K : ADDCAT → SPECTRA be the
covariant functor that sends an additive category to its non-connective 𝐾-theory
spectrum, see for instance [209, 684, 800]. Define the homotopy 𝐾-theory functor

KH : ADDCAT → SPECTRA

to be the homotopy stabilization of K.

The next result is taken from [684, Lemma 8.6].

Theorem 15.76 (Bass-Heller-Swan decomposition for homotopy 𝐾-theory). Let
A be an additive category with an automorphism Φ : A �−→ A. Then we get for all
𝑛 ∈ Z a weak homotopy equivalence

a : TKH(Φ−1 )
≃−→ KH(AΦ [𝑡, 𝑡−1])

where TKH(Φ−1 ) is the mapping torus of the self-map KH(Φ−1) : KH(A) →
KH(A).

Remark 15.77 (Identification with Weibel’s definition). Weibel has defined a ver-
sion of homotopy 𝐾-theory for a ring 𝑅 by a simplicial construction in [996]. It
is not hard to check using Remark 15.74, which applies also to the constructions
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of [996] instead of H, that 𝜋𝑖 (KH(R)) can be identified with the one in [996] if R
is a skeleton of the category of finitely generated free 𝑅-modules.

Conjecture 15.78 (Farrell-Jones Conjecture for homotopy 𝐾-theory with coef-
ficients in additive 𝐺-categories). We say that 𝐺 satisfies the Farrell-Jones Con-
jecture with coefficients for homotopy 𝐾-theory in additive 𝐺-categories if for every
additive 𝐺-category A and every 𝑛 ∈ Z the assembly map given by the projection
pr : 𝐸FIN (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (𝐸FIN (𝐺); KHA) → 𝐻𝐺𝑛 (𝐺/𝐺; KHA) = 𝜋𝑛
(
KHA (𝐼 (𝐺))

)
is bijective, where KHA : GROUPOIDS ↓ 𝐺 → SPECTRA is analogously defined
as the functor appearing in (13.10) but with K replaced by KH.

A version of Conjecture 15.78 has been treated for rings in [75].

Conjecture 15.79 (Farrell-Jones Conjecture for homotopy 𝐾-theory with coef-
ficients in additive 𝐺-categories with finite wreath products). We say that 𝐺
satisfies the Farrell-Jones Conjecture with coefficients for homotopy 𝐾-theory in
additive 𝐺-categories with finite wreath products if for any finite group 𝐹 the group
𝐺 ≀ 𝐹 satisfies the Farrell-Jones Conjecture with coefficients for homotopy 𝐾-theory
in additive 𝐺 ≀ 𝐹-categories 15.78.

15.13 The Farrell-Jones Conjecture for Hecke Algebras

There is one instance where one can formulate the Farrell-Jones Conjecture for non-
discrete groups, namely, for the algebraic 𝐾-theory of a Hecke algebra H(𝐺) of a
totally disconnected locally compact second countable Hausdorff group 𝐺.

Denote byH(𝐺) the Hecke algebra of𝐺 that consists of locally constant functions
𝐺 → C with compact support and inherits its multiplicative structure from the
convolution product. The Hecke algebra H(𝐺) plays the same role for 𝐺 as the
complex group ringC𝐺 for a discrete group𝐺 and reduces to this notion if𝐺 happens
to be discrete. There is a𝐺-homology theoryH𝐺

∗ with the property that for any open
and closed subgroup 𝐻 ⊆ 𝐺 and all 𝑛 ∈ Z we haveH𝐺

𝑛 (𝐺/𝐻) = 𝐾𝑛 (H (𝐻)), where
𝐾𝑛 (H (𝐻)) is the algebraic 𝐾-group of the Hecke algebra H(𝐻). There is also the
notion of a classifying space 𝐸KO (𝐺) for the family of compact-open subgroups of
𝐺. Note that KO is not closed under passing to subgroups but at least under finite
intersections, which suffices to our purposes. The space 𝐸KO (𝐺) is characterized
by the property that for any 𝐺-𝐶𝑊-complex 𝑋 whose isotropy groups are compact-
open, there is up to 𝐺-homotopy precisely one 𝐺-map from 𝑋 to 𝐸KO (𝐺). More
information about this space and the comparison with the classifying space for
numerable 𝐺-spaces 𝐽KO (𝐺) can be found in [655]. The following conjecture has
appeared already in [673, Conjecture 119 on page 773].
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Conjecture 15.80 (The Farrell-Jones Conjecture for the algebraic 𝐾-theory of
Hecke-Algebras). For a totally disconnected locally compact second countable
Hausdorff group 𝐺 the assembly map

H𝐺
𝑛 (𝐸KO (𝐺)) → H𝐺 ({•}) = 𝐾𝑛 (H (𝐺))(15.81)

induced by the projection pr : 𝐸KO (𝑇) → {•} is an isomorphism for all 𝑛 ∈ Z.

In the case 𝑛 = 0 this reduces to the statement that

colim𝐺/𝐻∈OrKO (𝐺) 𝐾0 (H (𝐻)) → 𝐾0 (H (𝐺))(15.82)

is an isomorphism. Some evidence for this comes for instance from [274], where
the bijectivity of (15.82) has been proved rationally for a reductive 𝑝-adic group
𝐺. For 𝑛 ≤ −1 the conjecture predicts 𝐾𝑛 (H (𝐺)) = 0. The Hecke algebra H(𝐺)
and its projective class group 𝐾0 (H (𝐺)) are closely related to the theory of smooth
representations of 𝐺, see for instance [129, 901, 902]. The 𝐺-homology theory can
be constructed using an appropriate functor KH : OrKO (𝐺) → SPECTRA and the
recipe explained in Theorem 12.27. The desired functor KH is constructed in [890].

All this is explained and carried out in the papers by Bartels and Lück [81, 83, 84],
actually also for twisted Hecke algebras with respect to a central character and
more general coefficient than C. Moreover, the following result is proved in [81,
Corollaries 1.8 and 1.18] and [84, Theorem 1.1].

Theorem 15.83 (The Farrell-Jones Conjecture for the algebraic 𝐾-theory of
Hecke algebras). Suppose that 𝐺 is modulo a compact subgroup isomorphic to
a closed subgroup of a reductive 𝑝-adic group. Then Conjecture 15.80 is true, the
map (15.82) is bijective, and 𝐾𝑛 (H (𝐺)) vanishes for 𝑛 ≤ −1.

The Farrell-Jones Conjecture for the algebraic 𝐾-theory of Hecke algebras for
completed Kac-Moody groups will be treated in Bartels-Lück-Witzel [91].

15.14 Relations among the Isomorphism Conjectures

15.14.1 The Farrell-Jones Conjecture for 𝑲-Theory and for 𝑨-Theory

Let 𝐺 be a group and let 𝑋 be a 𝐺-𝐶𝑊-complex. We get from the linearization map
of (7.17) a natural map

(15.84) 𝐿𝐺𝑛 (𝑋) : 𝐻𝐺𝑛 (𝑋; A𝐵) → 𝐻𝐺𝑛 (𝑋; KZ)

if we take Example 15.39 into account and A𝐵 is defined by (15.37) for S = A for the
functor A of (7.12). We conclude from Theorem 7.18 and the equivariant Atiyah-
Hirzebruch spectral sequence, see Theorem 12.48, that 𝐿𝐺𝑛 (𝑋) is bijective for 𝑛 ≤ 1,
surjective for 𝑛 = 2 and rationally bijective for all 𝑛 ∈ Z. If we take 𝑋 = 𝐸VCY (𝐺)



470 15 The (Fibered) Meta- and Other Isomorphism Conjectures

and 𝑋 = 𝐺/𝐺, we obtain a commutative diagram where the horizontal maps are
assembly maps and the vertical maps are given by the maps (15.84)

𝐻𝐺𝑛 (𝐸VCY (𝐺); A𝐵) //

��

𝐻𝐺𝑛 (𝐺/𝐺; A𝐵) = 𝜋𝑛 (A(𝐵𝐺))

��
𝐻𝐺𝑛 (𝐸VCY (𝐺); KZ) // 𝐻𝐺𝑛 (𝐺/𝐺; KZ) = 𝐾𝑛 (Z𝐺).

We conclude that for 𝑛 ∈ Z with 𝑛 ≤ 1 the upper arrow is bijective if and only if the
lower arrow is bijective. We also conclude for every 𝑛 ∈ Z that the lower arrow is
rationally bijective if and only if the lower arrow is rationally bijective. This gives
some interesting relations between the 𝐾-theoretic Farrell-Jones Conjecture 13.1
with coefficients in the ring Z and the Farrell-Jones Conjecture 15.61 for 𝐴-theory
(without coefficients). For instance, they are equivalent in degrees 𝑛 ≤ 1, and they
are rationally equivalent.

The case where we allow coefficients in the Farrell-Jones Conjecture 15.61 for
𝐴-theory is more complicated since in Theorem 7.18 (ii) the assumption occurs that
the space under consideration has to be aspherical. Consider a free𝐺-𝐶𝑊-complex 𝑍
that is simply connected (but not necessarily contractible). Then 𝜋1 (𝐺/𝐻×𝐺𝑍) � 𝐻.
We still get a commutative diagram

𝐻𝐺𝑛 (𝐸VCY (𝐺); A𝐺
𝑍
) //

��

𝐻𝐺𝑛 (𝐺/𝐺; A𝐺
𝑍
) = 𝜋𝑛 (A(𝐺\𝑍))

��
𝐻𝐺𝑛 (𝐸VCY (𝐺); KZ) // 𝐻𝐺𝑛 (𝐺/𝐺; KZ) = 𝐾𝑛 (Z𝐺)

and we know that the vertical arrows are bijective for 𝑛 ≤ 1 and surjective for 𝑛 = 2,
but not anymore that they are rationally bijective for all 𝑛 ∈ Z.

15.14.2 The Farrell-Jones Conjecture for 𝑨-Theory, Pseudoisotopy, and
Whitehead Spaces

The Farrell Jones Conjecture 15.61 for 𝐴-theory (with coefficients), the Farrell-
Jones Conjecture 15.63 for (smooth) pseudoisotopy (with coefficients) and the
Farrell-Jones Conjecture 15.64 for (smooth) Whitehead spaces are equivalent by
Theorem 15.65.
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15.14.3 The Farrell-Jones Conjecture for 𝑲-Theory and for Topological Cyclic
Homology

The basic reason why topological cyclic homology is a powerful approximation of
algebraic 𝐾-theory is the cyclotomic trace due to Bökstedt-Hsiang-Madsen [150].
It can be extended to the equivariant setting and thus be used together with the
linearization map (7.17) to construct the following commutative diagram, which is
closely related to the main diagram in [675, (3.1)] for 𝑛 ≥ 0,

(15.85) 𝐻𝐺𝑛 (𝐸VCY (𝐺); K≥0
Z ) // 𝐻𝐺𝑛 (𝐺/𝐺; K≥0

Z ) = 𝐾𝑛 (Z𝐺)

𝐻𝐺𝑛 (𝐸FCY (𝐺); K≥0
Z ) //

𝐻𝑛 ( 𝜄FCY⊆VCY ;K≥0
Z ) �Q

OO

𝐻𝐺𝑛 (𝐺/𝐺; K≥0
Z ) = 𝐾𝑛 (Z𝐺)

id�Q

OO

𝐻𝐺𝑛 (𝐸FCY (𝐺); A≥0) //

𝐻𝑛 (𝐸FCY (𝐺);L≥0 ) �Q

OO

𝐻𝑛 (𝐸FCY (𝐺);ct≥0 )
��

𝐻𝐺𝑛 (𝐺/𝐺; A≥0) = 𝐴𝑛 (𝐵𝐺)

𝐿𝑛�Q

OO

ct𝑛
��

𝐻𝐺𝑛 (𝐸FCY (𝐺); TCS) // 𝐻𝐺𝑛 (𝐺/𝐺; TCS, 𝑝) = 𝑇𝐶𝑛 (𝐵𝐺, 𝑝).

Here FCY is the family of finite cyclic subgroups of𝐺, the superscript≥ 0 indicates
that we consider the 0-connective covers, the vertical arrows from the third row to
the second row come from the linearization map, and the vertical arrows from the
third row to the fourth row come from the cyclotomic trace. All arrows marked
with �Q are known to be rationally bijective. This follows from the maps induced
by the linearization from Theorem 7.18. For the map 𝐻𝑛 (𝜄FCY⊆VCY ; K≥0

Z ), this
follows from Theorem 13.51 and further computations based on equivariant Chern
characters using Theorem 12.79 and [675, Example 12.12].

Rationally the natural map 𝐻𝐺𝑛 (𝐸VCY (𝐺); K≥0
Z ) → 𝐻𝐺𝑛 (𝐸VCY (𝐺); KZ) is split

injective and has a cokernel that is given by an expression involving the groups
𝐾−1 (Z𝐶) for finite cyclic subgroups 𝐶 ⊆ 𝐺. Hence the rational injectivity of the
uppermost horizontal arrow in the diagram (15.85) implies that the 𝐾-theoretic
Farrell-Jones assembly map is rationally injective, ignoring certain contributions
from the collection of the groups 𝐾−1 (Z𝐶) for finite cyclic subgroups 𝐶 ⊆ 𝐺,

The uppermost horizontal arrow in the diagram (15.85) is rationally injective, pro-
vided that the composite of the lowermost horizontal arrow and𝐻𝑛 (𝐸FCY (𝐺); ct≥0)
is rationally injective. This is the basic idea in the proof of rational injectivity results
for the 𝐾-theoretic Farrell-Jones assembly map presented in [675, Theorem 1.13],
where the actual argument is more involved and uses the 𝐶-functors as well.

A rational computation of 𝐾𝑛 (Z𝐺) is given in Theorem 17.1, provided that 𝐺
satisfies the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring
Z. With the methods mentioned above, one can detect under certain conditions,
without assuming the Farrell-Jones Conjecture 13.1 with coefficients in the ring Z,
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that the map appearing in Theorem 17.1 is injective if one ignores in the source the
summand for 𝑞 = −1. An interesting special case is Theorem 16.33, which deals
with Whitehead groups.

15.14.4 The 𝑳-Theoretic Farrell-Jones Conjecture and the Baum-Connes
Conjecture

In the sequel [1/2] stands for inverting 2 at the level of spectra or abelian groups. Note
that for a spectrum E we have a natural isomorphism 𝜋𝑛 (E) [1/2]

�−→ 𝜋𝑛 (E[1/2]).
One can construct the following commutative diagram

(15.86) 𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩Z ) [1/2] //

𝑙 �

��

𝐿
⟨−∞⟩
𝑛 (Z𝐺) [1/2]

id �

��
𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩Z [1/2]) // 𝐿 ⟨−∞⟩𝑛 (Z𝐺) [1/2]

𝐻𝐺𝑛 (𝐸𝐺; L𝑝Z [1/2])

𝑖1 �

��

𝑖0 �

OO

// 𝐿 𝑝𝑛 (Z𝐺) [1/2]

𝑗1�

��

𝑗0�

OO

𝐻𝐺𝑛 (𝐸𝐺; L𝑝Q [1/2])

𝑖2 �

��

// 𝐿 𝑝𝑛 (Q𝐺) [1/2]

𝑗2

��
𝐻𝐺𝑛 (𝐸𝐺; L𝑝R [1/2])

𝑖3 �

��

// 𝐿 𝑝𝑛 (R𝐺) [1/2]

𝑗3

��
𝐻𝐺𝑛 (𝐸𝐺; L𝑝

𝐶∗𝑟 (?,R)
[1/2]) // 𝐿 𝑝𝑛 (𝐶∗𝑟 (𝐺,R)) [1/2]

𝐻𝐺𝑛 (𝐸𝐺; KTOP
R [1/2]) //

𝑖4 �

OO

𝐾TOP
𝑛 (𝐶∗𝑟 (𝐺,R)) [1/2]

𝑗4�

OO

𝐻𝐺𝑛 (𝐸𝐺; KTOP
R ) [1/2]
��

𝑖5
��

𝑙�

OO

𝐾TOP
𝑛 (𝐶∗𝑟 (𝐺,R)) [1/2]��

𝑗5

��

�id

OO

𝐻𝐺𝑛 (𝐸𝐺; KTOP
C ) [1/2] // 𝐾𝑛 (𝐶∗𝑟 (𝐺)) [1/2]
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where all horizontal maps are assembly maps and the vertical arrows are induced
by transformations of functors GROUPOIDS → SPECTRA. These transforma-
tions are induced by change of rings maps except the one from KTOP

R [1/2] to
L𝑝
𝐶∗𝑟 (?,R)

[1/2], which is much more complicated and carried out in [614, 615].
Actually, it does not exist without inverting two on the spectrum level. Since it is a
weak equivalence, the maps 𝑖4 and 𝑗4 are bijections.

On the level of homotopy groups the comparison between the algebraic 𝐿-theory
and the topological 𝐾-theory of a real and of a complex 𝐶∗-algebra have already
been explained in Theorem 10.78, namely we obtain isomorphisms

𝐾𝑂𝑛 (𝐴) [1/2]
�−→ 𝐿

𝑝
𝑛 (𝐴) [1/2], if 𝐴 is a real 𝐶∗-algebra;(15.87)

𝐾𝑛 (𝐴)
�−→ 𝐿

𝑝
𝑛 (𝐴), if 𝐴 is a complex 𝐶∗-algebra.(15.88)

Since for any finite group 𝐻 each of the following maps is known to be a bijection
because of [839, Proposition 22.34 on page 252] and R𝐻 = 𝐶∗𝑟 (𝐻,R)

𝐿
𝑝
𝑛 (Z𝐻) [1/2]

�−→ 𝐿
𝑝
𝑛 (Q𝐻) [1/2]

�−→ 𝐿
𝑝
𝑛 (R𝐻) [1/2]

�−→ 𝐿
𝑝
𝑛 (𝐶∗𝑟 (𝐻,R)),

we conclude from the equivariant Atiyah-Hirzebruch spectral sequence, see Theo-
rem 12.48, that the vertical arrows 𝑖1, 𝑖2, and 𝑖3 are isomorphisms. The arrow 𝑗1 is
bijective by [837, page 376]. The maps 𝑙 are isomorphisms for general results about
localizations.

The lowermost vertical arrows 𝑖5 and 𝑗5 are known to be split injective, a splitting
comes by restriction with the inclusions 𝐶∗𝑟 (𝐺,R) → 𝐶∗𝑟 (𝐺,C).

The following conjecture is already raised as a question in [587, Remark 23.14
on page 197], see also [614, Conjecture 1 in Subsection 5.2].

Conjecture 15.89 (Passage for 𝐿-theory from Q𝐺 to R𝐺 to 𝐶∗𝑟 (𝐺,R)). The maps
𝑗2 and 𝑗3 appearing in diagram (15.86) are bijective.

Lemma 15.90. Let 𝐺 be a group.

(i) Suppose that 𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with
coefficients in the ring 𝑅 for 𝑅 = Q and 𝑅 = R and the complex version of the
Baum-Connes Conjecture 14.9. Then 𝐺 satisfies Conjecture 15.89;

(ii) Suppose that 𝐺 satisfies Conjecture 15.89. Then 𝐺 satisfies the 𝐿-theoretic
Farrell-Jones Conjecture 13.4 for the ring Z after inverting 2 if and only if 𝐺
satisfies the real version of the Baum-Connes Conjecture 14.9 after inverting 2;

(iii) Suppose that the assembly map appearing in the complex version of the Baum-
Connes Conjecture 14.9 is (split) injective after inverting 2. Then the assembly
map appearing in 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients
in the ring for 𝑅 = Z is (split) injective after inverting 2.

Proof. This follows from Theorem 13.62 (i), Remark 14.13, and the diagram (15.86).
⊓⊔
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15.14.5 Mapping Surgery to Analysis

Let 𝑋 be a connected 𝐶𝑊-complex with fundamental group 𝜋. Let 𝑋 → 𝑋 be its
universal covering. Denote by 𝜖 one of the decorations 𝑠, ℎ or 𝑝. We have constructed
functors L𝜖Z and KTOP

R : GROUPOIDS→ SPECTRA in Theorem 12.43. We obtain
maps of spectra

𝑋+ ∧ L𝜖Z ({∗}) 𝑋+ ∧𝜋 L𝜖Z (G
𝜋 (𝜋)) //≃oo L𝜖Z (G

𝜋 (𝜋/𝜋));

𝑋+ ∧KTOP
R ({∗}) 𝑋 ∧𝜋 KTOP

R (G 𝜋 (𝜋)) //≃oo KTOP
R (G 𝜋 (𝜋/𝜋)).

Here {∗} denotes the trivial groupoid with one object, the horizontal arrows pointing
to the left are defined in the obvious way and are weak homotopy equivalences since
𝑋 is a free 𝜋-𝐶𝑊-complex with 𝜋\𝑋 = 𝑋 and G𝜋 (𝜋) → {∗} is an equivalence of
groupoids, and the horizontal arrows to the right are assembly maps composed with
maps induced by a fixed 𝜋-map 𝑋 → 𝐸𝜋. (If one wants to get rid of the dependency
of a choice of 𝜋-map 𝑋 → 𝐸𝜋, one can consider Π(𝜋/𝐻×𝜋 𝑋) instead of G 𝜋 (𝜋/𝐻)
for objects 𝜋/𝐻 in Or(𝜋).)

Denote by S𝜖 (𝑋) and D(𝑋) respectively the homotopy fiber of the arrow pointing
to the right in the first and second row above.

After taking homotopy groups we obtain long exact sequences

(15.91) · · · → 𝐻𝑛+1 (𝑋; L𝜖Z ({∗})) → 𝐿 𝜖𝑛+1 (Z𝜋) → 𝜋𝑛 (S𝜖 (𝑋))
→ 𝐻𝑛 (𝑋; L𝜖Z ({∗})) → 𝐿 𝜖𝑛 (Z𝜋) → · · · ,

and

(15.92) · · · → 𝐾𝑂𝑛+1 (𝑋) → 𝐾𝑂𝑛+1 (𝐶∗𝑟 (𝜋,R)) → 𝜋𝑛 (D(𝑋))
→ 𝐾𝑂𝑛 (𝑋) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝜋,R)) → · · · .

After inverting 2 there is a zigzag of natural transformation from KTOP
R [1/2]

L𝜖Z [1/2] as explained in Subsection 15.14.4. It yields a map between long exact
sequences
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(15.93)
...

��

...

��
𝐾𝑂𝑛+1 (𝑋) [1/2] //

��

𝐻𝑛+1 (𝑋; L𝜖Z ({∗})) [1/2]

��
𝐾𝑂𝑛+1 (𝐶∗𝑟 (𝜋,R)) //

��

𝐿 𝜖
𝑛+1 (Z𝜋) [1/2] [1/2]

��
𝜋𝑛 (D(𝑋)) [1/2] //

��

𝜋𝑛 (S𝜖 (𝑋)) [1/2]

��
𝐾𝑂𝑛 (𝑋) [1/2] //

��

𝐻𝑛 (𝑋; L𝜖Z ({∗})) [1/2]

��
𝐾𝑂𝑛 (𝐶∗𝑟 (𝜋,R)) [1/2] //

��

𝐿 𝜖𝑛 (Z𝜋) [1/2]

��
...

...

Lemma 15.94. Suppose that 𝜋 satisfies the 𝐿-theoretic Farrell-Jones Conjec-
ture 13.4 with coefficients in the ring with involution Z and the Baum-Connes
Conjecture 14.9 for the real group 𝐶∗-algebra.

Then the map
𝜋𝑛 (D(𝑀)) [1/2]

�−→ 𝜋𝑛 (S𝜖 (𝑀)) [1/2]

is bijective for 𝑛 ∈ Z.

Proof. The first and fourth horizontal arrow in the diagram 15.93 are bijective since
they are given by transformation of homology theories and their evaluation at {•}
is known to be bijective. The Rothenberg sequences of Subsection 9.10.4, Theo-
rem 13.62 (i), and the diagram (15.86) together with the assumption that 𝜋 satisfies
the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the ring with invo-
lution Z and the Baum-Connes Conjecture 14.9 for the real group 𝐶∗-algebra imply
that the second and fifth horizontal arrow in the diagram 15.93 are bijective. Now
apply the Five Lemma to the diagram (15.93). ⊓⊔

Now consider the case 𝑋 = 𝑀 for a closed orientable topological manifold 𝑀
of dimension 𝑑. Then the part of the sequence (15.91) for 𝑛 ≥ 𝑑 can identified
with the long Surgery Exact Sequence in the topological category appearing in
Theorem 9.130, see for instance [839, Theorem 18.5 on page 198] or [596]. Some
extra care is necessary at the end in degree 𝑑 since one has to pass to the 1-connective
cover of the 𝐿-theory spectrum. In particular, we get an identification of 𝜋𝑑 (S𝑠 (𝑀))
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with the topological structure set STOP,𝑠
𝑑

(𝑀), see Subsection 9.12.1, which is the
central object of study in the classification of topological manifolds. Note that in
view of Lemma 15.94 one can hope for an identification ofSTOP,𝑠

𝑑
(𝑀) after inverting

2 with 𝜋𝑑 (D(𝑀)), which is an object related to the topological 𝐾-theory of spaces
and 𝐶∗-algebras. An analytic Surgery Exact Sequence in terms of the topological
𝐾-theory of 𝐶∗-algebras associated to 𝑀 is constructed in [494, Section 1].

Problem 15.95 (Identification of analytic Surgery Exact Sequences). Identify the
real version of the analytic Surgery Exact Sequence appearing in [494, Section 1]
with the exact sequence (15.92) for a closed orientable manifold of dimension 𝑑.

Note that Higson-Roe have to work with smooth manifolds, since they want to
apply index theory. So they have to consider the Surgery Exact Sequence in the
smooth category. They construct a diagram relating the Surgery Exact Sequence in
the smooth category to their analytic Surgery Exact Sequence.

A more direct approach to the map comparing the Surgery Exact Sequence in
the smooth category to the analytic Surgery Exact Sequence is given in Piazza-
Schick [808].

A comparison map starting with the Surgery Exact Sequence in the topological
category is constructed in Zenobi [1033] using the approach of [808] and Lipschitz
structures.

Recall that the Surgery Exact Sequence in the topological category is an exact
sequence of abelian groups, which is not true for the smooth category. It is not clear
whether the construction in Zenobi [1033] is compatible with the abelian group
structures on the topological and analytic structure sets.

Note that the comparison maps appearing in [494, 808, 1033] go in the opposite
direction, namely, from 𝐿-theory to 𝐾𝑂-theory, in comparison with the transforma-
tions appearing in [614, 615].

So one can state the following problem after Problem 15.95 has been solved:

Problem 15.96 (Identification of transformations from the Surgery Exact
Sequence to its analytic counterpart). Identify the comparison map (15.93) from
the Surgery Exact Sequence in the topological category to the analytic Surgery Ex-
act Sequence appearing in [494, Section 5] with the comparison map appearing in
Zenobi [1033].

15.14.6 The Baum-Connes Conjecture and the Bost Conjecture

We have the a factorization of the Baum-Connes assembly map appearing in the
Baum-Connes Conjecture 14.11 with coefficients

asmb𝐺,C
𝐴
(𝐸𝐺)∗ : 𝐾𝐺𝑛 (𝐸𝐺; 𝐴)

asmb𝐺,C,𝐿
1

𝐴
(𝐸𝐺)∗

−−−−−−−−−−−−−−→ 𝐾∗ (𝐴 ⋊𝐿1 𝐺)
𝐾∗ (𝑞)−−−−−→ 𝐾∗ (𝐴 ⋊𝑟 𝐺).
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Recall that the Bost Conjecture with coefficients predicts the bijectivity of the first
map. We have also mentioned that there are counterexamples to the Baum-Connes
Conjecture Conjecture 14.11 with coefficients. The group 𝐺 involved in these coun-
terexamples can be constructed as colimits of hyperbolic groups. For such colimits
the Bost Conjecture with coefficients is known to be true. Hence for such a group
𝐺 the map 𝐾∗ (𝑞) : 𝐾∗ (𝐴 ⋊𝐿1 𝐺) → 𝐾∗ (𝐴 ⋊𝑟 𝐺) fails to be bijective. More details
about this discussion can be found in [71, Section 1.5].

15.14.7 The Farrell-Jones Conjecture for 𝑲-Theory and for Homotopy
𝑲-theory

Theorem 15.97 (The 𝐾-theoretic Farrell-Jones Conjecture implies the Farrell-
Jones Conjecture for homotopy 𝐾-theory). If 𝐺 satisfies the 𝐾-theoretic Farrell-
Jones Conjecture 13.11 with coefficients in additive 𝐺-categories, then 𝐺 also
satisfies the Farrell-Jones Conjecture 15.78 for homotopy 𝐾-theory with coefficients
in additive 𝐺-categories.

Proof. See [684, Theorem 9.1 (iii)]. ⊓⊔

Remark 15.98 (Implications of the homotopy 𝐾-theory version to the 𝐾-theory
version). Next we discuss some cases where the Farrell-Jones Conjecture 15.78 for
homotopy 𝐾-theory with coefficients in additive𝐺-categories gives implications for
the injectivity part of the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients
in the ring 𝑅. These all follow by inspecting for a ring 𝑅 the following commutative
diagram

𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅) // 𝐻𝐺𝑛 ({•}; K𝑅) = 𝐾𝑛 (𝑅𝐺)

𝐾𝐻 (h)

��

𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅)

𝜄FIN⊆VCY

OO

ℎ

��
𝐻𝐺𝑛 (𝐸FIN (𝐺); KH𝑅) // 𝐻𝐺𝑛 ({•}; KH𝑅) = 𝐾𝐻𝑛 (𝑅𝐺)

where the two vertical arrows pointing downwards are induced by the transforma-
tion h : K → KH, the map 𝜄FIN⊆VCY is induced by the inclusion of families
FIN ⊆ VCY, and the two horizontal arrows are the assembly maps for 𝐾-theory
and homotopy 𝐾-theory.

Suppose that 𝑅 is regular and the order of any finite subgroup of 𝐺 is invertible
in 𝑅. Then the two left vertical arrows are known to be bijections. This follows for
𝜄FIN⊆VCY from [673, Proposition 70 on page 744] and for ℎ from [280, Lemma 4.6]
and the fact that 𝑅𝐻 is regular for all finite subgroups 𝐻 of𝐺 and hence 𝐾𝑛 (𝑅𝐻) →
𝐾𝐻𝑛 (𝑅𝐻) is bijective for all 𝑛 ∈ Z by Theorem 6.16. Hence the (split) injectivity



478 15 The (Fibered) Meta- and Other Isomorphism Conjectures

of the lower horizontal arrow implies the (split) injectivity of the upper horizontal
arrow.

Suppose that 𝑅 is regular. Then the two left vertical arrows are rational bijections.
This follows for 𝜄FIN⊆VCY from Theorem 13.51. To prove it for ℎ, it suffices because
of [280, Lemma 4.6] to show that 𝐾𝑛 (𝑅𝐻) → 𝐾𝐻𝑛 (𝑅𝐻) is rationally bijective for
each finite group 𝐻 and 𝑛 ∈ Z. By the version of the spectral sequence appearing
in [996, 1.3] for non-connective 𝐾-theory, it remains to show that 𝑁 𝑝𝐾𝑛 (𝑅𝐻)
vanishes rationally for all 𝑛 ∈ Z. Since 𝑅[𝑡] is regular if 𝑅 is, this boils down to
showing that 𝑁𝐾 𝑝 (𝑅𝐻) is rationally trivial for any regular ring 𝑅 and any finite
group 𝐻. The proof that 𝑁𝐾 𝑝 (𝑅𝐻) is rationally trivial for any regular ring 𝑅 and
any finite group 𝐻 can be found for instance in [685, Theorem 9.4]. Hence the upper
horizontal arrow is rationally injective if the lower horizontal arrow is rationally
injective.

The next conjecture generalizes Conjecture 6.76 from torsionfree groups to arbi-
trary groups.

Conjecture 15.99 (𝐾-theory versus homotopy 𝐾-theory for regular rings). Let
𝐺 be a group. Suppose that 𝑅 is regular and the order of any finite subgroup of 𝐺 is
invertible in 𝑅.

Then the natural map
𝐾𝑛 (𝑅𝐺) → 𝐾𝐻𝑛 (𝑅𝐺)

is an isomorphism for all 𝑛 ∈ Z.

Exercise 15.100. Suppose that 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjec-
ture 13.11 with coefficients in additive 𝐺-categories. Then 𝐺 satisfies Conjec-
ture 15.99.

Exercise 15.101. Let 𝐺 be a group. Suppose that 𝑅 is regular and the order of any
finite subgroup of 𝐺 is invertible in 𝑅. Suppose that Conjecture 15.99 is true for 𝐺.
Show that then 𝑁𝐾𝑛 (𝑅𝐺) = 0 holds for all 𝑛 ∈ Z.

15.15 Notes

One can also define a version of the Meta-Isomorphism Conjecture 15.2 or of the
Fibered Meta-Isomorphism Conjecture 15.8 with finite wreath products, compare
Section 13.5. Let C be a class of groups closed under isomorphisms and taking
subgroups and quotients. LetH ?

∗ be an equivariant homology theory.

Definition 15.102 (Fibered Meta-Isomorphism Conjecture with finite wreath
products). A group 𝐺 satisfies the Fibered Isomorphism Conjecture with finite
wreath products with respect to H ?

∗ and C if for any finite group 𝐹 the wreath
product 𝐺 ≀ 𝐹 satisfies the Fibered Meta-Isomorphism Conjecture 15.8 with respect
toH ?

∗ and the family C(𝐺 ≀ 𝐹) consisting of subgroups of 𝐺 ≀ 𝐹 that belong to C.
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The inheritance properties for the Fibered Meta-Isomorphism Conjecture 15.8
plus the passage to overgroups of finite index also hold for the Fibered Meta-
Isomorphism Conjecture 15.102 with finite wreath products, see [595, Section 3].

Proofs of some of the inheritance properties above are also given in [464, 878].
One may ask whether one can find abstractly for the Fibered Meta-Isomorphism

Conjecture 15.8 a smallest family for which it is true. For instance what happens if
one takes the intersection of all families for which the Fibered Meta-Isomorphism
Conjecture 15.8 is true. This questions turns out to be equivalent to the difficult and
unsolved question whether the Fibered Meta-Isomorphism Conjecture 15.8 holds
for an infinite product of groups, provided that for each of these groups the Fibered
Meta-Isomorphism Conjecture 15.8 is true,

The following observation is taken from [819, Section 7]. Fix an equivariant
homology theoryH ?. Take for simplicity Γ to be the trivial group when considering
the Fibered Meta Isomorphism Conjecture 15.8.

We consider the following properties:

(P) For any set {(𝐺𝑖 , F𝑖) | 𝑖 ∈ 𝐼} for 𝐺𝑖 a group and F𝑖 a family of subgroups of 𝐺𝑖
such that (𝐺𝑖 , F𝑖) satisfies the Fibered Meta Isomorphism Conjecture 15.8 for
every 𝑖 ∈ 𝐼, the group

∏
𝑖∈𝐼 𝐺𝑖 with respect to the family∏

𝑖∈𝐼
F𝑖 :=

{
𝐻 ⊆

∏
𝑖∈𝐼

𝐺𝑖

����� ∃𝐻𝑖 ∈ F𝑖 for every 𝑖 ∈ 𝐼 with 𝐻 ⊆
∏
𝑖∈𝐼

𝐻𝑖

}
satisfies the Fibered Meta Isomorphism Conjecture 15.8.

(I) For any group G and families of subgroups {F𝑖 | 𝑖 ∈ 𝐼} of 𝐺 such that (𝐺, F𝑖)
satisfies the Fibered Meta Isomorphism Conjecture 15.8 for every 𝑖 ∈ 𝐼, the pair
(𝐺,⋂𝑖∈𝐼 F𝑖) satisfies the Fibered Meta Isomorphism Conjecture 15.8.

Lemma 15.103. The properties (I) and (P) are equivalent.

Exercise 15.104. Prove Lemma 15.103 using Lemma 15.16.

Recall that for the Baum-Connes Conjecture 14.9 for a group 𝐺 the smallest
family for which it can be true is the family of finite cyclic subgroups FCY, see
Theorem 14.37 and Remark 14.38. For the𝐾-theoretic Farrell-Jones Conjecture for a
group𝐺 with arbitrary rings as coefficients 13.2, one expects thatHE𝐼 is the smallest
family for which it can be true, see Theorem 13.48. For topological Hochschild
homology one expects the family FCY of infinite cyclic group to be smallest family
for which the Farrell-Jones Conjecture can be true, see Theorem 15.68.





Chapter 16
Status

16.1 Introduction

In this chapter we give a status report about the class of groups for which the
Full Farrell-Jones Conjecture 13.30, see Theorem 16.1, the Baum-Connes Conjec-
ture 14.11 with coefficients, see Theorem 16.7, the Baum-Connes Conjecture 14.9,
see Theorem 16.12, and the Novikov Conjecture 9.137, see Section 16.7, have been
proved. We discuss injectivity results in Sections 16.5 and 16.6. In order to restrict
the length of the exposition, we do not present the long history of these results and
concentrate only on the current state of the art, although this unfortunately means
that certain papers, which were spectacular breakthroughs at the time of their writing
and had a big impact on the following papers, may not appear here.

A review of and a status report for some classes of groups is given in Section 16.8.
This may be helpful for a reader who is interested in a certain class of groups, although
this means that there are some repetitions of statements of results.

At the time of writing no counterexamples to the Full Farrell-Jones Conjec-
ture 13.30, the Baum-Connes Conjecture 14.9 without coefficients, and the Novikov
Conjecture 9.137 are known to the author. These conjectures are open in general.
In Section 16.10 we explain that the search for counterexamples is not easy at all.
In Subsection 16.10.5 we mention a few results which are consequences of the
𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring 𝑅 and for
which there exist proofs for all groups.

16.2 Status of the Full Farrell-Jones Conjecture

The most general form of the Farrell-Jones Conjecture is the Full Farrell-Jones
Conjecture 13.30. It has the best inheritance properties and all variants of the Farrell-
Jones Conjecture presented in this book are special cases of it, see Section 13.11.

Theorem 16.1 (Status of the Full Farrell-Jones Conjecture 13.30). Let FJ be
the class of groups for which the Full Farrell-Jones Conjecture 13.30 is true.

(i) The following classes of discrete groups belong to FJ :

(a) Hyperbolic groups;
(b) Finite-dimensional CAT(0)-groups;
(c) Virtually solvable groups;

481
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(d) (Not necessarily cocompact) lattices in path connected second countable
locally compact Hausdorff groups.
More generally, if 𝐿 is a (not necessarily cocompact) lattice in a second
countable locally compact Hausdorff group 𝐺 such that 𝜋0 (𝐺) is discrete
and belongs to FJ , then 𝐿 belongs to FJ ;

(e) Fundamental groups of (not necessarily compact) connected manifolds (pos-
sibly with boundary) of dimension ≤ 3;

(f) The groups GL𝑛 (Q) and GL𝑛 (𝐹 (𝑡)) for 𝐹 (𝑡) the function field over a finite
field 𝐹;

(g) 𝑆-arithmetic groups;
(h) The mapping class group Γ𝑠𝑔,𝑟 of a closed orientable surface of genus 𝑔 with

𝑟 boundary components and 𝑠 punctures for 𝑔, 𝑟, 𝑠 ≥ 0;
(i) Fundamental groups of graphs of abelian groups;
(j) Fundamental groups of graphs of virtually cyclic groups;
(k) Artin’s full braid groups 𝐵𝑛;
(l) Coxeter groups;

(m) Groups in the class AC(VSOLV) defined in (20.46) for the class
VSOLV of virtually solvable groups;

(n) Groups which acts properly and cocompactly on a finite product of hyper-
bolic graphs.

(ii) The class FJ has the following inheritance properties:

(a) Passing to subgroups
Let 𝐻 ⊆ 𝐺 be an inclusion of groups. If 𝐺 belongs to FJ , then 𝐻 belongs
to FJ ;

(b) Passing to finite direct products
If the groups 𝐺0 and 𝐺1 belong to FJ , then 𝐺0 × 𝐺1 also belongs to FJ ;

(c) Group extensions
Let 1→ 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups. Suppose that for any
infinite cyclic subgroup 𝐶 ⊆ 𝑄 the group 𝑝−1 (𝐶) belongs to FJ and that
the groups 𝐾 and 𝑄 belong to FJ .
Then 𝐺 belongs to FJ ;

(d) Group extensions with virtually torsionfree hyperbolic groups as kernel
Let 1→ 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups such that𝐾 is virtually
torsionfree hyperbolic and 𝑄 belongs to FJ . Then 𝐺 belongs to FJ ;

(e) Group extensions with countable free groups as kernel
Let 1 → 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups such that 𝐾 is a
countable free group (of possibly infinite rank) and 𝑄 belongs to FJ . Then
𝐺 belongs to FJ ;

(f) Colimits over directed systems
Let {𝐺𝑖 | 𝑖 ∈ 𝐼} be a direct system of groups indexed by the directed set 𝐼
(with arbitrary structure maps). Suppose that for each 𝑖 ∈ 𝐼 the group 𝐺𝑖
belongs to FJ .
Then the colimit colim𝑖∈𝐼 𝐺𝑖 belongs to FJ ;
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(g) Passing to free products
Consider a collection of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} such that 𝐺𝑖 belongs FJ for
each 𝑖 ∈ 𝐼. Then ∗𝑖∈𝐼𝐺𝑖 belongs to FJ ;

(h) Passing to overgroups of finite index
Let 𝐺 be an overgroup of 𝐻 with finite index [𝐺 : 𝐻]. If 𝐻 belongs to FJ ,
then 𝐺 belongs to FJ ;

(i) Graph products
A graph product of groups, each of which belongs to FJ , belongs to FJ
again.

Proof. We begin with assertion (i) about classes of groups belonging to FJ .

(ia) This is proved for 𝐾-theory with coefficients in additive 𝐺-categories in [87,
Main Theorem] and for 𝐿-theory with coefficients in additive 𝐺-categories in [78,
Theorem B], but not including the “with finite wreath product” property. How this
can be included is explained in [89, Remark 6.4]. The proof for 𝐾-theory with coef-
ficients in higher 𝐺-categories can be found in [185, Theorem 1.7 (3)].
(ib) This is proved for 𝐾-theory with coefficients in additive 𝐺-categories in degree
≤ 1 and for 𝐿-theory with coefficients in additive 𝐺-categories in all degrees in [78,
Theorem B]. The argument why the 𝐾-theory case with coefficients in additive
𝐺-categories holds in all degrees can be found in [992, Theorem 1.1 and Theo-
rem 3.4]. Note that for a finite-dimensional CAT(0)-group 𝐺 and a finite group 𝐹
the wreath product 𝐺 ≀ 𝐹 is a finite-dimensional CAT(0)-group again so that the
passage to the version with finite wreath products is automatically true. The proof
for 𝐾-theory with coefficients in higher 𝐺-categories can be found in [185, Theo-
rem 1.71.7 (2)].
(ic) For coefficients in additive categories see [993, Theorem 1.1]. (The special case
of certain nearly crystallographic groups is treated in [374, Main Theorem].) For
coefficients in higher categories we refer to [185, Theorem 1.7 (4)].
(id) See [543, Theorem 8] whose proof is based on the case of cocompact lattices
in an almost connected Lie groups handled in [72, Theorem 1.2 and Remark 1.4]
and [185, Theorem 1.7 (6)].
(ie) In dimension 3 this is proved in [72, Corollary 1.3 and Remark 1.4],
where [878, 879] are used, and in [185, Theorem 1.7 (7)]. The dimensions 1 and 2
can be handled directly or reduced to dimension 3 by crossing with 𝐷1.
(if) See [884, Theorem 8.13] and [185, Theorem 1.7 (5)].
(ig) This follows from assertion (if) and the inheritance property passing to sub-
groups, see assertion (iia), since any 𝑆-arithmetic group is a subgroup of GL𝑛 (Q) or
of GL𝑛 (𝐹 (𝑡)) for 𝐹 (𝑡) the function field over a finite field 𝐹.
(ih) See [70, Theorem A and Remark 9.4] and [185, Theorem 1.7 (9)].
(ii) See [415, Main Theorem] and [185, Theorem 1.7 (8)].
(ij) See [1019, Theorem A] and [185, Theorem 1.7 (8)].
(ik) The pure Artin braid group 𝑃𝑛 is a strongly poly-surface group in the sense
of Definition 16.24 by [37, Theorem 2.1]. Hence it satisfies the Full Farrell-Jones
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Conjecture 13.30 by Theorem 16.25. Since the full braid group 𝐵𝑛 contains 𝑃𝑛 as
a subgroup of finite index, 𝐵𝑛 satisfies the Full Farrell-Jones Conjecture 13.30 by
assertion (iih).
(il) The argument in [78, page 636] for the version without “finite wreath products”
extends directly to the case with “finite wreath products”.
(im) See Theorem 20.47.
(in) Such a group 𝐺 is strongly transfer reducible in the sense of Definition 20.38
by inspecting the proof of [571, Theorem 6.1 and Example 2.9] and Theorem 22.45.
Now apply Theorem 20.39.

Finally we deal with the assertion (ii) about inheritance properties. Here we can
refer to Theorem 13.32 except for assertions (iid), (iie), and (iii).

In the sequel we give references only where additive categories are considered.
The arguments carry over to the setting of higher 𝐺-categories as coefficients, since
they are based only on inheritance properties which also hold for higher𝐺-categories
as coefficients.

Assertion (iii) is proved in [416].
Assertion (iid) follows from assertion (im) and from [136, Theorem 2.3].
Assertion (iie), follows from [173, Theorem 2.5].
This finishes the proof of Theorem 16.1. ⊓⊔

Exercise 16.2. Let 𝐺 be a cocompact torsionfree lattice in an almost connected Lie
group 𝐿 with dim(𝐿) ≥ 5. Let 𝑀 be an aspherical closed manifold with funda-
mental group 𝐺. Let 𝐾 ⊆ 𝐿 be a maximal compact subgroup. Show that then 𝑀 is
homeomorphic to 𝐺\𝐿/𝐾 .

Exercise 16.3. Let𝑈 be a group that is universal finitely presented, i.e., any finitely
presented group is isomorphic to a subgroup of 𝐺. (Such a group exists by
Higman [480, page 456], and there is even a universal finitely presented group
which is the fundamental group of a complement of an embedded 𝑆3 in 𝑆5, see [429,
Corollary 3.4].) Show that the Full Farrell-Jones Conjecture 13.30 holds for all
groups if and only if it holds for𝑈.

Exercise 16.4. Let 𝑆 ⊆ 𝑅 be a subring of 𝑅 such that 𝑅 as a right 𝑆-module is finitely
generated free. Suppose that for every natural number 𝑚 the group 𝐺𝐿𝑚 (𝑆) belongs
to FJ . Show that GL𝑛 (𝑅) belongs to FJ for every natural number 𝑛.

16.3 Status of the Farrell-Jones Conjecture for Homotopy
𝑲-Theory

Theorem 16.5 (Status of the Farrell-Jones Conjecture for homotopy 𝐾-theory).
Let FJKH be the class of groups for which the Farrell-Jones Conjecture 15.79

for homotopy 𝐾-theory with coefficients in additive 𝐺-categories with finite wreath
products is true.
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(i) The class FJKH contains the class FJ of groups for which the Full Farrell-
Jones Conjecture 13.30 holds. (The class FJ is analyzed in Theorem 16.1.)
Moreover, FJKH contains all elementary amenable groups and all one-relator
groups;

(ii) The class FJKH has the following inheritance properties:

(a) Passing to subgroups
Let 𝐻 ⊆ 𝐺 be an inclusion of groups. If 𝐺 belongs to FJKH , then 𝐻 also
belongs to FJKH ;

(b) Passing to finite direct products
If the groups𝐺0 and𝐺1 belong toFJKH , then𝐺0×𝐺1 belongs toFJKH ;

(c) Group extensions
Let 1→ 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups. If 𝐾 and 𝑄 belong to
FJKH , then 𝐺 belongs to FJKH ;

(d) Directed colimits
Let {𝐺𝑖 | 𝑖 ∈ 𝐼} be a direct system of subgroups indexed by the directed set
𝐼 (with arbitrary structure maps). Suppose that for each 𝑖 ∈ 𝐼 the group 𝐺𝑖
belongs to FJKH , then colim𝑖∈𝐼 𝐺𝑖 belongs to FJKH ;

(e) Passing to free products
Consider a collection of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} such that 𝐺𝑖 belongs FJKH
for each 𝑖 ∈ 𝐼. Then ∗𝑖∈𝐼𝐺𝑖 belongs to FJKH ;

(f) Passing to overgroups of finite index
Let 𝐺 be an overgroup of 𝐻 with finite index [𝐺 : 𝐻]. If 𝐻 belongs to
FJKH , then 𝐺 belongs to FJKH ;

(g) Graph products
A graph product of groups each of which belongs to FJKH belongs to
FJKH again;

(h) Actions on trees
If 𝐺 acts on a tree 𝑇 without inversion such that every stabilizer group 𝐺𝑥
of any vertex 𝑥 in 𝑇 belongs to FJKH . Then 𝐺 belongs to FJKH .

Proof. This follows from Theorem 15.97 and [684, Remark 9.3] except for asser-
tion (iig). Here the arguments of [416] apply also directly to homotopy 𝐾-theory, the
situation is actually easier because of assertion (iic). ⊓⊔

The class of groups FJKH is larger and has better inheritance properties than
the class FJ . The decisive difference is that we can use for the homotopy 𝐾-theory
the family FIN instead of the family VCY. This is essentially a consequence of
and reflected by Theorem 15.76.

Exercise 16.6. Let 𝐺 be a torsionfree elementary amenable group and let 𝑅 be
regular.

Show that then the assembly map 𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺) is split injective.

One can also construct a version of homotopy 𝐾-theory for higher categories. For
instance one could generalize the construction in [684, Section 8].
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16.4 Status of the Baum-Conjecture (with Coefficients)

We have introduced the Baum-Connes Conjecture 14.11 with coefficients in Sec-
tion 14.4.

Theorem 16.7 (Status of the Baum-Connes 14.11 with coefficients). Let BC be
the class of groups for which the Baum-Connes Conjecture 14.11 with coefficients
holds.

(i) The following classes of groups belong to BC.

(a) A-T-menable groups;
(b) CAT(0)-cubical groups in the sense of [168], i.e., groups which act prop-

erly and cocompactly on a finite-dimensional CAT(0)-cubical complex with
bounded geometry;

(c) countable subgroups of GL2 (𝐹) for a field 𝐹;
(d) Hyperbolic groups;
(e) One-relator groups;
(f) Fundamental groups of compact 3-manifolds (possibly with boundary);
(g) Artin’s full braid groups 𝐵𝑛;
(h) Thompson’s groups 𝐹, 𝑇 , and 𝑉;
(i) Coxeter groups;

(ii) The class BC has the following inheritance properties:

(a) Passing to subgroups
Let 𝐻 ⊆ 𝐺 be an inclusion of groups. If 𝐺 belongs to BC, then 𝐻 belongs to
BC;

(b) Passing to finite direct products
If the groups 𝐺0 and 𝐺1 belong to BC, then 𝐺0 × 𝐺1 also belongs to BC;

(c) Group extensions
Let 1→ 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups. Suppose that for any
finite subgroup 𝐹 ⊆ 𝑄 the group 𝑝−1 (𝐹) belongs to BC and that the group
𝑄 belongs to BC.
Then 𝐺 belongs to BC;

(d) Directed unions
Let {𝐺𝑖 | 𝑖 ∈ 𝐼} be a direct system of subgroups of 𝐺 indexed by the directed
set 𝐼 such that 𝐺 =

⋃
𝑖∈𝐼 𝐺𝑖 . Suppose that 𝐺𝑖 belongs to BC for every 𝑖 ∈ 𝐼.

Then 𝐺 belongs to BC;
(e) Actions on trees

Let 𝐺 be a countable group acting without inversion on a tree 𝑇 . Then 𝐺
belongs to BC if and only if the stabilizers of each of the vertices of 𝑇 belong
to BC.
In particular, BC is closed under amalgamated free products and HNN-
extensions.
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Proof. We begin with assertion (i) about classes of groups belong to BC.

(ia). This is proved in [486, Theorem 1.1].
(ib) See [168]. This also follows from assertion (ia).
(ic) Such groups are a-T-menable by [446, Theorem 4]. Now apply assertion (ia).
(id) This is proved in [604, Théorème 0.4], see also [818]. (The proof without
coefficients can be found in [732].)
(ie) See [787, Corollary 1.3].
(if) Let 𝑀 be a closed Seifert manifold. Then there is an extension 1 → Z →
𝜋1 (𝑀) → 𝑄 → 1 such that 𝑄 contains a subgroup 𝐻 of finite index that is
isomorphic to the fundamental group of a closed surface 𝑆, see [477, Theorem 12.2
on page 118]. If 𝑆 carries the structure of a hyperbolic manifold, 𝜋1 (𝑆) and hence 𝑄
are hyperbolic and belongs to BC by assertion (id). If 𝑆 does not carry the structure
of a hyperbolic manifold, its fundamental group and hence 𝑄 are virtually finitely
generated abelian and hence belong to BC by assertion (ia). Now assertions (ia)
and (iic) imply that 𝜋1 (𝑀) belongs to BC.

Let 𝑀 be a closed hyperbolic 3-manifold. Then its fundamental group is hyper-
bolic and hence belongs to BC by assertion (id).

Let 𝑀 be a compact irreducible manifold with infinite fundamental group such
that its boundary is non-trivial or is Haken. Then 𝜋1 (𝑀) can be obtained from the
trivial group by a finite number of HNN extensions and amalgamated free products.
See [976, proof of Proposition 19.5 (6) on page 253] where the condition orientable is
only assumed for simplicity, or see [477, Theorem 13.3 on page 141]. Hence 𝜋1 (𝑀)
belongs toBC by assertion (iie). Let𝑀 be an irreducible closed 3-manifold. If it does
not contain an incompressible torus, it is either Seifert or hyperbolic by the proof
of Thurston’s Geometrization Conjecture due to Perelman, see for instance [751],
and hence belongs to BC. If it contains an incompressible torus, it is Haken and
hence belongs to BC by the argument above. We conclude that 𝜋1 (𝑀) belongs to
BC for any compact irreducible 3-manifold. Since any prime 3-manifold that is not
irreducible is an 𝑆1-bundle over 𝑆2, see [477, Lemma 3.13 on page 28], and hence
belongs to BC by assertion (ia), any compact prime 3-manifold 𝑀 belongs to BC.
Since any compact 3-manifold is a connected sum of prime compact 3-manifolds,
see [477, Theorem 3.15 on page 31], assertion (if) follows from assertion (iie).
(ig) See [898, Theorem 20].
(ih) These groups are a-T-menable by Farley [348], and hence we can apply asser-
tion (ia).
(ii) Since a finitely generated Coxeter group is a-T-menable, it satisfies the Baum-
Connes Conjecture 14.11 with coefficients by Theorem 16.7 (ia). By a colimit argu-
ment based on Theorem 16.7 (iid) every Coxeter group satisfies the Baum-Connes
Conjecture 14.11 with coefficients.

Finally we deal with the assertion (ii) about inheritance properties.
(iia) See [221, Theorem 2.5].
(iib) See [221, Theorem 3.17], or [786, Corollary 7.12].
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(iic) See [786, Theorem 3.1].
(iid) This follows from [71, Theorem 5.6 (i) and Lemma 6.2].
(iie) This is proved in [787, Theorem 1.1]. ⊓⊔

Exercise 16.8. Let 1 → 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups such that
𝐾 and 𝑄 satisfy the Baum-Connes Conjecture 14.11 with coefficients and 𝑄 is
torsionfree. Show that then 𝐺 satisfies the Baum-Connes Conjecture 14.11 with
coefficients.

Exercise 16.9. Let 𝐺 be a torsionfree group. Suppose that C𝐺 has an idempotent
different from 0 and from 1. Show that then 𝐺 cannot be a subgroup of a hyperbolic
group, a finite-dimensional CAT(0)-group, a lattice in an almost connected Lie
group, the fundamental group of a manifold of dimension ≤ 3, an amenable group,
a mapping class group, or a one-relator group.

Remark 16.10 (Passing to overgroups of finite index). It is not known in general
whether a group 𝐺 belongs to BC, i.e., 𝐺 satisfies the Baum-Connes Conjec-
ture 14.11 with coefficients if a subgroup of finite index does. Partial answers to this
question are given by Schick [898, Theorem 20].

This suggests to systematically implement the with “finite wreath product version”
in the Baum-Connes setting, as we did in the Farrell-Jones setting, see Section 13.5.

Remark 16.11 (The Status of the Baum-Connes Conjecture for topological
groups). We have only dealt with the Baum-Connes Conjecture for discrete groups.
The Baum Connes Conjecture (with coefficients) also makes sense for second count-
able locally compact Hausdorff groups. Here are some results in this setting.

Higson-Kasparov [486] treat the Baum-Connes Conjecture with coefficients for
second countable locally compact Hausdorff groups which are a-T-menable

Julg-Kasparov [538, Theorem 5.4 (i)] prove the Baum-Connes Conjecture with
coefficients for connected Lie groups 𝐿 whose Levi-Malcev decomposition 𝐿 = 𝑅𝑆

into the radical 𝑅 and semisimple part 𝑆 is such that 𝑆 is locally of the form

𝑆 = 𝐾 × SO(𝑛1, 1) × · · · × SO(𝑛𝑘 , 1) × SU(𝑚1, 1) × · · · × SU(𝑚𝑙 , 1)

for a compact group 𝐾 . The Baum-Connes Conjecture with coefficients for Sp(𝑛, 1)
is proved by Julg [537].

The Baum-Connes Conjecture without coefficients has been proven by Chabert-
Echterhoff-Nest [222] for second countable almost connected Hausdorff groups,
based on the work of Higson-Kasparov [486] and Lafforgue [603].

Next we deal with the Baum-Connes Conjecture 14.9 without coefficients for
(discrete) groups. Recall that all groups which satisfy the Baum-Connes Conjec-
ture 14.11 with coefficients in particular satisfy the Baum-Connes Conjecture 14.9.
We mention a few cases below, some of which are not covered by this implication.

A length function on 𝐺 is a function 𝐿 : 𝐺 → R≥0 such that 𝐿 (1) = 0, 𝐿 (𝑔) =
𝐿 (𝑔−1) for 𝑔 ∈ 𝐺 and 𝐿 (𝑔1𝑔2) ≤ 𝐿 (𝑔1) + 𝐿 (𝑔2) for 𝑔1, 𝑔2 ∈ 𝐺 holds. The word
length metric 𝐿𝑆 associated to a finite set 𝑆 of generators is an example. A length
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function 𝐿 on 𝐺 has property (RD) (“rapid decay”) if there exist 𝐶, 𝑠 > 0 such that
for any 𝑢 =

∑
𝑔∈𝐺 𝜆𝑔 · 𝑔 ∈ C𝐺 we have

| |𝜌𝐺 (𝑢) | |∞ ≤ 𝐶 ·
(∑︁
𝑔∈𝐺
|𝜆𝑔 |2 · (1 + 𝐿 (𝑔))2𝑠

)1/2

where | |𝜌𝐺 (𝑢) | |∞ is the operator norm of the bounded 𝐺-equivariant operator
𝑙2 (𝐺) → 𝑙2 (𝐺) coming from right multiplication by 𝑢. A group 𝐺 has property
(RD) if there is a length function which has property (RD). This notion is due to
Jolissaint [529]. More information about property (RD) can be found for instance
in [233, 235], [600], and [963, Chapter 8]. Bolicity generalizes Gromov’s notion of
hyperbolicity for metric spaces. A simply connected complete Riemannian manifold
with non-positive sectional curvature is bolic. We refer to [557, Section 2] for a
precise definition.

Theorem 16.12 (Status of the Baum-Connes Conjecture (without coefficients)).
A group 𝐺 satisfies the Baum-Connes Conjecture 14.9 (without coefficients) if it

satisfies one of the following conditions:

(i) The group 𝐺 is a discrete subgroup of a connected Lie groups 𝐿 whose Levi-
Malcev decomposition 𝐿 = 𝑅𝑆 into the radical 𝑅 and semisimple part 𝑆 is such
that 𝑆 is locally of the form

𝑆 = 𝐾 × SO(𝑛1, 1) × · · · × SO(𝑛𝑘 , 1) × SU(𝑚1, 1) × · · · × SU(𝑚𝑙 , 1)

for a compact group 𝐾;
(ii) The group 𝐺 has property (RD) and admits a proper isometric action on a

strongly bolic weakly geodesic uniformly locally finite metric space;
(iii) The group 𝐺 is a discrete finite covolume subgroup of the isometry groups

of a simply connected complete Riemannian manifold with pinched negative
sectional curvature;

(iv) The group 𝐺 is a discrete subgroup of Sp(𝑛, 1).

Proof. (i) See [538].
(ii) See [599] or [918].
(iii) See [235, Corollary 0.3].
(iv) See [537]. ⊓⊔

16.5 Injectivity Results in the Baum-Connes Setting

There are cases where one can show that the assembly maps appearing in the Farrell-
Jones setting or Baum-Connes setting are injective without knowing that they are
bijective. There is no case where one can prove surjectivity but not prove bijectivity
as well. This is a common phenomenon in algebraic topology where surjectivity



490 16 Status

arguments often contain an injectivity argument. Essentially one applies the surjec-
tivity argument to a cycle whose boundary is the image of a cycle representing an
element in the kernel of the assembly map. Moreover, this shows that in general
surjectivity results are harder than injectivity results.

The main value of surjectivity statements is that they allow us to interpret elements
in the 𝐾- or 𝐿-groups homologically and thus to obtain valuable information. The
injectivity statements are interesting since they imply the Novikov Conjecture or
give some idea how large the 𝐾- and 𝐿-groups are.

Theorem 16.13 (Split injectivity of the assembly map appearing in the Baum-
Connes Conjecture 14.9 (without coefficients) for fundamental groups of com-
plete Riemannian manifolds with non-positive sectional curvature). The assem-
bly map appearing in the Baum-Connes Conjecture 14.9 is split injective if 𝐺 is the
fundamental group of a complete Riemannian manifold with non-positive sectional
curvature.

Proof. See Kasparov [563, Theorem 6.7]. ⊓⊔

More general results for bolic spaces are proved in Kasparov-Skandalis [558].
A metric space (𝑋, 𝑑) admits a uniform embedding in a Hilbert space, some-

times also called a coarse embedding in a Hilbert space, if there exist a separable
Hilbert space 𝐻, a map 𝑓 : 𝑋 → 𝐻, and non-decreasing functions 𝜌1 and 𝜌2 from
[0,∞) → R such that 𝜌1 (𝑑 (𝑥, 𝑦)) ≤ || 𝑓 (𝑥) − 𝑓 (𝑦) | | ≤ 𝜌2 (𝑑 (𝑥, 𝑦)) for 𝑥, 𝑦 ∈ 𝑋 and
lim𝑟→∞ 𝜌𝑖 (𝑟) = ∞ for 𝑖 = 1, 2. Recall that a metric space 𝑋 is proper if for each
𝑟 > 0 and 𝑥 ∈ 𝑋 the closed ball of radius 𝑟 centered at 𝑥 is compact. The question
whether a discrete group 𝐺 equipped with a proper left 𝐺-invariant length metric 𝑑
admits a uniform embedding in a Hilbert space is independent of the choice of 𝑑,
since the induced coarse structure does not depend on 𝑑, see [919, page 808]. We
mention that for a finitely generated group any left invariant word length metric is
an example of a proper left 𝐺-invariant length metric.

For more information about groups admitting a uniform embedding in a Hilbert
space we refer to [314, 446].

The next result is due to Yu [1027, Theorem 2.2 and Proposition 2.6].

Theorem 16.14 (Status of the Coarse Baum-Connes Conjecture). The Coarse
Baum-Connes Conjecture 14.30 is true for a discrete metric space 𝑋 of bounded
geometry if 𝑋 admits a uniform embedding in a Hilbert space. In particular, a count-
able group𝐺 satisfies the Coarse Baum-Connes Conjecture 14.30 if𝐺 equipped with
a proper left 𝐺-invariant length metric admits a uniform embedding in a Hilbert
space.

Theorem 16.15 (Split injectivity of the assembly map appearing in the Baum-
Connes Conjecture 14.11 with coefficients). Let 𝐺 be a countable group. Then
for any 𝐶∗-algebra 𝐴 the assembly map appearing in the Baum-Connes Conjec-
ture 14.11

𝐾𝐺𝑛 (𝐸𝐺; 𝐴) → 𝐾𝑛 (𝐴 ⋊𝑟 𝐺)

is split injective if the group 𝐺 has one of the following properties:
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(i) The group 𝐺 admits a proper left 𝐺-invariant length metric for which 𝐺 admits
a uniform embedding in a Hilbert space;

(ii) The group 𝐺 admits a proper left 𝐺-invariant length metric for which 𝐺 admits
a uniform embedding in a Banach space with property (H);

(iii) The group 𝐺 is a subgroup of GL𝑛 (𝐹) for some field 𝐹 and natural number 𝑛;
(iv) The group 𝐺 is a subgroup of an almost connected Lie group.

Proof. (i) This is proved by Skandalis-Tu-Yu [919, Theorem 6.1] using ideas of
Higson [485] and Theorem 16.14.
(ii) See Kasparov-Yu [559, Theorem 1.3].
(iii) Assertion (i) applies to 𝐺 by Guentner-Higson-Weinberger [446, Theorem 2
and 3].
(iv) Assertion (i) applies to 𝐺 by Guentner-Higson-Weinberger [446, Theorem 7].

⊓⊔

Exercise 16.16. Let 𝐺 be a group such that for any finitely generated subgroup
𝐻 ⊆ 𝐺 and every 𝐻-𝐶∗-algebra 𝐴 the assembly map 𝐾𝐻𝑛 (𝐸𝐻; 𝐴) → 𝐾𝑛 (𝐴 ⋊𝑟 𝐻)
is injective.

Show that then the assembly map 𝐾𝐺𝑛 (𝐸𝐺; 𝐴) → 𝐾𝑛 (𝐴 ⋊𝑟 𝐺) is injective
for every 𝐺-𝐶∗-algebra 𝐴. Prove the analogous statement for the 𝐾-theoretic and
𝐿-theoretic assembly maps with coefficients in additive categories (with involution)
and the family of virtually cyclic subgroups.

Split injectivity of the Baum-Connes assembly map (for trivial coefficients) is
proved under certain conditions about the compactifications of the model for the
space for proper 𝐺-actions by Rosenthal [875] based on techniques developed by
Carlsson-Pedersen [214].

Remark 16.17 (Groups Acting Amenably on a Compact Space). A continuous
action of a discrete group 𝐺 on a compact space 𝑋 is called topologically amenable
if there exists a sequence

𝑝𝑛 : 𝑋 → 𝑀1 (𝐺) = { 𝑓 : 𝐺 → [0, 1] |
∑︁
𝑔∈𝐺

𝑓 (𝑔) = 1}

of weak-∗-continuous maps such that for each 𝑔 ∈ 𝐺 one has

lim
𝑛→∞

sup
𝑥∈𝑋
| |𝑔 ∗ (𝑝𝑛 (𝑥) − 𝑝𝑛 (𝑔 · 𝑥)) | |1 = 0.

More information about this notion can be found for instance in [25, 26]. It should
not be confused with the notion of an amenable action of a group 𝐺 on a set 𝑋 ,
where amenable in this context means that there exists a 𝐺-invariant mean on 𝑋 .
Note that the following statements are equivalent:

• The group 𝐺 is amenable;
• The action of 𝐺 on 𝐺 by multiplication is amenable;
• The obvious action on 𝐺 on the one-point-space is topologically amenable.
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A group 𝐺 is called boundary amenable if it admits a topologically amenable
action on a compact metric space in the sense above.

Higson-Roe [490, Theorem 1.1 and Proposition 2.3] show that a finitely generated
group is boundary amenable if and only if it belongs to the class 𝐴 defined in [1027,
Definition 2.1], and hence admits a uniform embedding in a Hilbert space. Hence
Theorem 16.15 (i) implies the result of Higson [485, Theorem 1.1] that the assembly
map 𝐾𝐺𝑛 (𝐸𝐺; 𝐴) → 𝐾𝑛 (𝐴 ⋊𝑟 𝐺) appearing in the Baum-Connes Conjecture 14.11
with coefficients is split injective if 𝐺 is boundary amenable.

Finally we mention that a finitely generated group 𝐺 is boundary amenable if
and only if the reduced group 𝐶∗-algebra 𝐶∗𝑟 (𝐺) is exact, i.e., the minimal tensor
product with it preserves short exact sequences of𝐶∗-algebras, see for instance [426,
Proposition 9.9].

16.6 Injectivity Results in the Farrell-Jones Setting

Theorem 16.18 (Split injectivity of the assembly map appearing in the
𝐿-theoretic Farrell Jones Conjecture with coefficients in the ring Z for funda-
mental groups of complete Riemannian manifolds with non-positive sectional
curvature). The assembly map appearing in the 𝐿-theoretic Farrell Jones Conjec-
ture 13.4 with coefficients in the ring Z is split injective if𝐺 is the fundamental group
of a complete Riemannian manifold with non-positive sectional curvature.

Proof. See [386, Theorem 2.3]. ⊓⊔

The asymptotic dimension of a proper metric space 𝑋 is the infimum over all
integers 𝑛 such that for any 𝑅 > 0 there exists a cover U of 𝑋 with the property
that the diameter of the members ofU is uniformly bounded and every open ball of
radius 𝑅 intersects at most (𝑛+1) elements ofU, see [441, page 29]. The asymptotic
dimension of a finitely generated group is the asymptotic dimension of its Cayley
graph (and is independent of the choice of set of finite generators.)

For a torsionfree group 𝐺 with finite asymptotic dimension and a finite model
for 𝐵𝐺 and any ring 𝑅 the split injectivity of 𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺) is proved
by Bartels [95, Theorem 1.1] and by Carlsson-Goldfarb [213, Main Theorem on
page 406]. The 𝐿-theory version is proved in Bartels [95, Section 7] as well, provided
that there exists a natural number 𝑁 with 𝐾−𝑖 (𝑅) = 0 for 𝑖 ≥ 𝑁 .

The notion of finite decomposition complexity was introduced and studied by
Guentner-Tessera-Yu [447, 448]. It is a weaker notion than finite asymptotic dimen-
sion. The split injectivity of the assembly maps 𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺) and of
𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) → 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺) for a torsionfree group 𝐺 with finite model for

𝐵𝐺 and finite decomposition complexity is proved by Ramras-Tessera-Yu [831, The-
orem 1.1] and Guentner-Tessera-Yu [447, page 334] for any ring 𝑅 (with involution),
provided that in the 𝐿-theory case there exists a natural number 𝑁 with 𝐾−𝑖 (𝑅) = 0
for 𝑖 ≥ 𝑁 .
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Kasprowski [566, Theorem 8.1] proved, for a group 𝐺 with finite-dimensional
model for 𝐸FIN (𝐺) and finite quotient finite decomposition complexity, a strength-
ening of the notion of finite decomposition complexity, and a global upper bound
on the orders of the finite subgroups that the assembly map 𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅) →
𝐾𝑛 (𝑅𝐺) is split injective for all 𝑛 ∈ Z. An 𝐿-theory version is proved in [566,
Theorem 9.1].

The paper [566] uses ideas of [93]. Kasprowski [566, page 566] points out a gap
in the proof of [93] which has the consequence that the results in [93] are only proved
under the additional assumption that there is a finite model for 𝐸FIN (𝐺).

The papers by Kasprowski [567, 568] are based on [566] and lead to the following
two results.

Theorem 16.19 (Injectivity of the Farrell-Jones assembly map for FIN for
subgroups of almost connected Lie groups). Let 𝐺 be a subgroup of an almost
connected Lie group 𝐿. (We do not assume that 𝐺 with the subspace topology is
discrete.) Equip 𝐺 with the discrete topology.

(i) Let A be an additive 𝐺-category. Suppose that G admits a finite-dimensional
model for the classifying space 𝐸FIN (𝐺).
Then the assembly map

𝐻𝐺𝑛 (𝐸FIN (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
is split injective for all 𝑛 ∈ Z;

(ii) LetA be an additive𝐺-category with involution. Suppose that G admits a finite-
dimensional model for the classifying space 𝐸FIN (𝐺). Suppose that there exists
an 𝑁 ≥ 0 such that 𝜋−𝑖 (KA (𝐼 (𝐴))

)
= 0 holds for all 𝑖 ≥ 𝑁 and all virtually

abelian subgroups 𝐴 ⊆ 𝐺.
Then the assembly map

𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩A ) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is split injective for all 𝑛 ∈ Z;

(iii) LetC be a right exact𝐺-∞-category. Suppose that G admits a finite-dimensional
model for the classifying space 𝐸FIN (𝐺).
Then the assembly map

𝐻𝐺𝑛 (𝐸FIN (𝐺); KC) → 𝐻𝐺𝑛 (𝐺/𝐺; KC) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
is split injective for all 𝑛 ∈ Z;

(iv) The group𝐺 admits a finite dimensional model for 𝐸FIN (𝐺) if and only if there
exists an 𝑁 ∈ N such that every finitely generated abelian subgroup of 𝐺 has
rank at most 𝑁;

(v) If 𝐺 is a discrete subgroup of 𝐿, then 𝐺 possesses a finite-dimensional model
for 𝐸FIN (𝐺).
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Proof. (i) and (ii) If 𝐺 is finitely generated, this is proved in [567, Theorem 1.1 and
Theorem 6.1]. Since every group is the union of its finitely generated subgroups, the
general case for injectivity follows from Lemma 15.23 (ii). One even obtains split
injectivity since the retraction is natural, see [567, Section 7].
(iii) This is proved in [180, Theorem 1.1.6 (2)] provided that 𝐺 is finitely generated.
The general case follows from Lemma 15.23 (ii).
(iv) See [567, Proposition 1.3].
(v) See Theorem 11.24. ⊓⊔

Theorem 16.20 (Injectivity of the Farrell-Jones assembly map for FIN for
linear groups). Let R be a commutative ring with unit and let 𝐺 ⊆ GL𝑛 (𝑅) be
a subgroup. Equip 𝐺 with the discrete topology. Suppose that G admits a finite
dimensional model for the classifying space 𝐸FIN (𝐺).

(i) Let A be any additive 𝐺-category. Then the assembly map

𝐻𝐺𝑛 (𝐸FIN (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
is split injective for all 𝑛 ∈ Z;

(ii) Let A be any additive 𝐺-category with involution. Suppose that there exists
an 𝑁 ≥ 0 such that 𝜋−𝑖 (KA (𝐼 (𝐻)) = 0 holds for all 𝑖 ≥ 𝑁 and all virtually
nilpotent subgroups 𝐻 ⊆ 𝐺.
Then the assembly map

𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩A ) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is split injective for all 𝑛 ∈ Z;

(iii) Let C be a right exact 𝐺-∞-category. Then the assembly map

𝐻𝐺𝑛 (𝐸FIN (𝐺); KC) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
is split injective for all 𝑛 ∈ Z;

Proof. If 𝐺 is finitely generated, this is proved in [568, Theorem 1.1]. Since every
group is the union of its finitely generated subgroups, the general case for injectivity
follows from Lemma 15.23 (ii). One even obtains split injectivity since the retraction
is natural, as explained in [567, Section 7]. The case of higher𝐺-categories is proved
in [180, Theorem 1.1.6 (2)]. ⊓⊔

Split injectivity of the 𝐾- and 𝐿-theoretic Farrell-Jones assembly map (for trivial
coefficients) is proved under certain conditions about the compactifications of the
model for the space for proper 𝐺-actions by Rosenthal [871, 872, 873], based on
techniques developed by Carlsson-Pedersen [214].

We will present further injectivity results based on cyclotomic traces in Subsec-
tion 16.8.30.
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16.7 Status of the Novikov Conjecture

Recall that the Novikov Conjecture 9.137 holds for a group𝐺 if one of the following
conditions is satisfied:

• The assembly map

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) = 𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩ (Z))

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩ (Z)) = 𝐿
⟨−∞⟩
𝑛 (Z𝐺)

is rationally injective for all 𝑛 ∈ Z, see Theorem 13.65 (xi);
• The assembly map

𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩Z ) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩Z ) = 𝐿
⟨−∞⟩
𝑛 (Z𝐺)

is rationally injective, see Lemma 13.38 and Theorem 13.65 (xi);
• The 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the ring Z holds,

see Theorem 13.65 (xi);
• The assembly map

𝐾𝑛 (𝐵𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺))

is rationally injective for all 𝑛 ∈ Z, see Theorem 14.29;
• The assembly map

𝐾𝐺𝑛 (𝐸FIN (𝐺))) → 𝐾𝑛 (𝐶∗𝑟 (𝐺))

is rationally injective for all 𝑛 ∈ Z, see Lemma 13.38 and Theorem 14.29;
• The Baum-Connes Conjecture 14.9 holds for 𝐺, see Theorem 14.29.

Hence all groups appearing in Theorems 16.1, 16.7, 16.12, 16.13, 16.15, 16.18,
and 16.19 satisfy the Novikov Conjecture 9.137. In particular, a group 𝐺 satisfies
the Novikov Conjecture 9.137 if 𝐺 is a countable discrete subgroup of one of the
following type of groups:

• Hyperbolic groups (or more generally directed colimits of hyperbolic groups);
• Finite-dimensional CAT(0)-groups;
• Almost connected Lie groups;
• (Not necessarily cocompact) lattices in second countable locally compact Haus-

dorff groups 𝐺 for which 𝜋0 (𝐺) is discrete and belongs to FJ ;
• GL𝑛 (𝐹) for a field 𝐹 and some natural number 𝑛;
• 𝑆-arithmetic groups;
• Mapping class groups;
• Fundamental groups of (not necessarily compact) connected manifolds (possibly

with boundary) of dimension ≤ 3;
• A-T-menable groups and hence also amenable and elementary amenable groups;
• One-relator groups;
• Coxeter groups;
• Thompson’s groups 𝐹, 𝑇 and 𝑉 ;
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• Artin’s full braid groups 𝐵𝑛;
• Out(𝐹𝑛) or more generally, Out(Γ) for a torsionfree hyperbolic group or a right-

angled Artin group Γ, see [137].

Furthermore, the Novikov Conjecture 9.137 is satisfied for a countable group 𝐺
if one of the following conditions is satisfied:

• 𝐺 is the fundamental group of a complete Riemannian manifold with non-positive
sectional curvature;
• The group 𝐺 admits a proper left 𝐺-invariant length metric for which 𝐺 admits a

uniform embedding in a Hilbert space;
• The group 𝐺 admits a proper left 𝐺-invariant length metric for which 𝐺 admits a

uniform embedding in a Banach space with property (H);
• 𝐺 has a finite model for 𝐵𝐺 and finite asymptotic dimension, see [1026], or,

more generally, has a finite model for 𝐵𝐺 and finite decomposition complexity,
Guentner-Tessera-Yu [447, page 334];
• 𝐺 is a geometrically discrete subgroup of a volume preserving diffeomorphism

of any smooth compact manifold, see [428]. See also [427], where the volume
preserving condition is no longer assumed.

A Banach version of the strong Novikov conjecture is proved in [341] for groups
having polynomially bounded higher-order combinatorial functions. This includes
all automatic groups. If the group 𝐺 is of type 𝐹∞, is polynomially contractible, and
has property (RD), it satisfies the strong Novikov Conjecture 14.26.

More information about the Novikov Conjecture and its status can be found for
instance in [1029].

16.8 Review of and Status Report for Some Classes of Groups

16.8.1 Hyperbolic Groups

Almost all conjectures in this book about groups are satisfied for hyperbolic groups,
since they satisfy both the Full Farrell-Jones Conjecture 13.30, see Theorem 16.1 (ia),
and the Baum-Connes Conjecture 14.11 with coefficients, see Theorem 16.7 (id).

16.8.2 Lacunary Hyperbolic Groups

A finitely generated group is a lacunary hyperbolic group if one of its asymptotic
cones is an R-tree, see Olshanskii-Osin-Sapir [780]. Since they are directed colimits
of hyperbolic groups, see [780, Theorem 1.1], they satisfy the Full Farrell-Jones
Conjecture 13.30, see Theorem 16.1 (ia) and (iif). It is not known whether lacunary
hyperbolic groups satisfy the Baum-Connes Conjecture 14.9.
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A lacunary hyperbolic group is finitely presented if and only if it is hyperbolic.
This is due to Kapovich-Kleiner, see [780, Theorem 8.1].

There are rather exotic examples of lacunary hyperbolic groups. For instance an
infinite finitely generated torsionfree non-cyclic group all of whose proper subgroups
are all infinite cyclic is constructed by Ol’shanskii [778]. It is a lacunary hyperbolic
group. This follows from [780, Theorem 1.1].

Other examples of lacunary hyperbolic groups are constructed in [39]. These
finitely generated groups contain (in a weak sense) an infinite expander. Hence they
admit no uniform embedding in a Hilbert space (or in any 𝑙 𝑝 with 1 ≤ 𝑝 < ∞)
and any infinite-dimensional linear representation of these groups has infinite im-
age. Note that for these groups a counterexample to the Baum-Connes Conjec-
ture 14.11 with coefficients is constructed by Higson-Lafforgue-Skandalis [487].
This led Baum-Guentner-Willet [111] to reformulate the Baum-Connes Conjec-
ture 14.11 with coefficients by introducing a new crossed product, see also [192], for
which no counterexamples are known so far.

The class of lacunary groups contains some non–virtually cyclic elementary
amenable groups and some infinite torsion groups. More examples of exotic lacunary
hyperbolic groups are discussed in [780] and [889, Section 4].

16.8.3 Hierarchically hyperbolic groups

Durham-Minsky-Sisto [320] deal with so-called hierarchically hyperbolic groups.
For instance the Full Farrell-Jones Conjecture 13.30 holds for decomposable hierar-
chically hyperbolic groups, see [320, Corollay D].

16.8.4 Relatively Hyperbolic Groups

For the definition and basic information about relatively hyperbolic groups we refer
for instance to [160, 178, 346, 440, 785, 944, 945]. We use the notion of relatively
hyperbolic groups of Bowditch [160].

Theorem 16.21 (The Full Farrell-Jones Conjecture and relatively hyperbolic
groups). Let G be a countable group which is relatively hyperbolic to the subgroups
𝑃1, 𝑃2, . . . , 𝑃𝑛. If 𝑃1, 𝑃2, . . . , 𝑃𝑛 satisfy the Full Farrell-Jones Conjecture 13.30,
then 𝐺 satisfies the Full Farrell-Jones Conjecture 13.30.

Proof. The case of coefficients in additive categories follows from Bartels [68,
Remark 4.7]. The case of higher categories as coefficients follows by the same
argument using [68, Theorem 3.1 and Remark 4.7] and Theorem 20.45. ⊓⊔
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The analog of assertion (iid) of Theorem 16.1, which is due to Bestvina-Fujiwara-
Wigglesworth [136, Theorem 2.3], has been studied for certain relatively hyperbolic
groups by Andrew-Guerch-Hughes [31]. The strategy of the proof of Bartels [68] is
used by Knopf [581, Corollary 4.2] to study the Farrell-Jones Conjecture for groups
acting acylindrically on a simplicial tree.

16.8.5 Systolic Groups

Let 𝐺 be a group which acts cocompactly and properly on a systolic complex
with the Isolated Flats Property by simplicial automorphisms. Then 𝐺 is relatively
hyperbolic to the family of virtually abelian groups by Elsner [335, Theorem B].
Hence Theorem 16.1 (ic) and Theorem 16.21 imply that 𝐺 satisfies the Full Farrell-
Jones Conjecture 13.30.

16.8.6 Finite-Dimensional CAT(0)-Groups

A CAT(0)-group is a group admitting a cocompact proper isometric action on a
CAT(0)-space 𝑋 . We call it a finite-dimensional CAT(0)-group if we can additionally
arrange that 𝑋 has finite topological dimension. Basic properties of this notion can
be found for instance in [165, 657]. Examples of finite-dimensional CAT(0)-groups
are fundamental groups of closed Riemannian manifolds with non-positive sectional
curvature.

A finite-dimensional CAT(0)-group satisfies the Full Farrell-Jones Conjec-
ture 13.30, see Theorem 16.1 (ib).

It is not known whether every finite-dimensional CAT(0)-group satisfies the
Baum-Connes Conjecture 14.11 with coefficients or the Baum-Connes Conjec-
ture 14.9. If 𝐺 admits a cocompact proper isometric action on a CAT(0)-space
with the Isolated Flats Property in the sense of [235, Definition 3.1], then the Baum-
Connes Conjecture 14.9 holds for 𝐺, see [235, Corollary 0.3 b]. If 𝐺 is a CAT(0)-
cubical groups in the sense of [168], then the Baum-Connes Conjecture 14.9 holds
for 𝐺, see [168].

16.8.7 Limit Groups

Limit groups as they appear, for instance, in [907] have been a focus of geometric
group theory for the last few years. Expositions about limit groups include, for
instance, [224, 794]. Alibegović-Bestvina [22] have shown that limit groups are
CAT(0)-groups. It is not hard to check that their proof shows that a limit group is
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even a finite-dimensional CAT(0)-group. Hence every limit group satisfies the Full
Farrell-Jones Conjecture 13.30.

16.8.8 Fundamental Groups of Complete Riemannian Manifolds with
Non-Positive Sectional Curvature

Let 𝜋 be the fundamental group of a complete Riemannian manifold 𝑀 . Let sec
denote its sectional curvature.

• 𝑀 closed and sec(𝑀) < 0
If 𝑀 is closed and has negative sectional curvature, then 𝜋 is hyperbolic and hence
satisfies both the Full Farrell-Jones Conjecture 13.30, see Theorem 16.1 (ia), and
the Baum-Connes Conjecture 14.11 with coefficients, see Theorem 16.7 (id).
• 𝑀 closed and sec(𝑀) ≤ 0

If 𝑀 is closed and has non-positive sectional curvature, then 𝜋 is a finite-
dimensional CAT(0)-group and satisfies the Full Farrell-Jones Conjecture 13.30,
see Theorem 16.1 (ib). It is not known whether all such 𝜋 satisfy the Baum-Connes
Conjecture 14.11 with coefficients or the Baum-Connes Conjecture 14.9.
• 𝐶1 ≤ sec(𝑀) ≤ 𝐶2 < 0 and finite volume

Let 𝑀 be a complete Riemannian manifold which is pinched negatively curved
and has finite volume. Then 𝜋 satisfies the Full Farrell-Jones Conjecture 13.30
since 𝜋 is relatively hyperbolic with respect to the family of virtually finitely
generated nilpotent groups, see [160], or [346, Theorem 4.11], and we can apply
Theorem 16.1 (ic) and Theorem 16.21.
If we additionally assume that the curvature tensor has bounded derivatives, then
also the Baum-Connes Conjecture 14.9 holds for𝐺 by Chatterji-Ruan [235, Corol-
lary 0.3 a]. Lattices in rank one Lie groups are examples for 𝜋.
• 𝑀 𝐴-regular and sec(𝑀) ≤ 0

A complete Riemannian manifold 𝑀 is called 𝐴-regular if there exists a sequence
of positive real numbers 𝐴0, 𝐴1, 𝐴2, . . . such that | |∇𝑛𝐾 | | ≤ 𝐴𝑛 holds for 𝑛 ≥ 0,
where | |∇𝑛𝐾 | | is the supremum-norm of the 𝑛-th covariant derivative of the curva-
ture tensor 𝐾 . Every locally symmetric space is A-regular since ∇𝐾 is identically
zero.
Let 𝑀 be a complete Riemannian manifold with non-positive sectional curvature
that is 𝐴-regular. Then 𝜋 = 𝜋1 (𝑀) satisfies the 𝐾-theoretic Farrell-Jones Con-
jecture 13.1 with coefficients in the ring Z in degree 𝑛 ≤ 1 and the 𝐿-theoretic
Farrell-Jones Conjecture 13.4 with coefficients in the ring with involution Z, see
Farrell-Jones [370, Proposition 0.10 and Lemma 0.12]. Since 𝜋 is torsionfree,
this implies that Wh(𝜋), 𝐾0 (Z𝜋), and 𝐾𝑛 (Z𝜋) for 𝑛 ≤ −1 all vanish and Conjec-
ture 9.114 holds for 𝑅 = Z.
• 𝐶1 ≤ sec(𝑀) ≤ 𝐶2 < 0

Let 𝑀 be a complete Riemannian manifold with pinched negative curvature. Then
there is another Riemannian metric for which𝑀 is complete, negatively curved, and
A-regular. This fact is mentioned in Farrell-Jones [370, page 216] and attributed
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there to Abresch [2] and Shi [914]. Hence the conclusions above for complete
Riemannian manifolds with non-positive sectional curvature that are 𝐴-regular
also hold for pinched negatively curved complete Riemannian manifolds.
• sec(𝑀) ≤ 0

If 𝑀 is a complete Riemannian manifold with non-positive sectional curvature,
we have already stated some injectivity results for 𝜋 in Theorem 16.13 and Theo-
rem 16.18.
In particular, 𝜋 satisfies the Novikov Conjecture 9.137 by Theorem 13.65 (xi) or
Theorem 14.29.

16.8.9 Lattices

A discrete subgroup 𝐺 of a locally compact second countable Hausdorff group Γ

is called a lattice if the quotient space Γ/𝐺 has finite covolume with respect to the
Haar measure of Γ.

Every lattice 𝐺 in Γ satisfies the Full Farrell-Jones Conjecture 13.30 if 𝜋0 (Γ) is
discrete and belongs to the class FJ introduced and analyzed in Theorem 16.1, for
instance, if Γ is path connected or an almost connected Lie group. This follows from
Theorem 16.1 (id).

It is a prominent open problem to decided whether lattices satisfy the Baum-
Connes Conjecture 14.11 with coefficients or the Baum-Connes Conjecture 14.9.
This is not even known for lattices in almost connected Lie groups. The case SL𝑛 (Z)
is still open for 𝑛 ≥ 3. By [235, Corollary 0.3 a] lattices 𝐺 in rank one Lie groups
satisfy the Baum-Connes Conjecture 14.9. Some other lattices satisfying the Baum-
Connes Conjecture 14.9 come from Theorem 16.12.

16.8.10 𝑺-Arithmetic Groups

Every 𝑆-arithmetic group satisfies the Full Farrell-Jones Conjecture 13.30, see The-
orem 16.1 (ig). This is not known for the Baum-Connes Conjecture 14.11 with
coefficients or the Baum-Connes Conjecture 14.9, the group SL𝑛 (Z) for 𝑛 ≥ 3 is
still an open problem.

16.8.11 Linear Groups

The Full Farrell-Jones Conjecture 13.30, and actually even the 𝐾-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution, are in general open for
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linear groups, i.e., GL𝑛 (𝐹) for some field 𝐹. The same statement holds for the
Baum-Connes Conjecture.

The Novikov-Conjecture holds by Theorem 14.29, Theorem 16.15 (iii), and
Exercise 16.16 for any countable subgroup of GL𝑛 (𝐹) for a field 𝐹.

16.8.12 Subgroups of Almost Connected Lie Groups

The Full Farrell-Jones Conjecture 13.30, and actually even the 𝐾-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution, are open for discrete
subgroups of almost connected Lie groups in general. The same statement holds for
the Baum-Connes Conjecture 14.9.

The Novikov-Conjecture holds by Theorem 14.29 and Theorem 16.15 (iv) and
Exercise 16.16 for any countable subgroup of an almost connected Lie group.

16.8.13 Virtually Solvable Groups

Virtually solvable groups satisfy both the Full Farrell-Jones Conjecture 13.30, see
Theorem 16.1 (ic) and the Baum-Connes Conjecture 14.11 with coefficients, see
Theorem 16.7 (ia).

16.8.14 A-T-menable, Amenable and Elementary Amenable Groups

A group 𝐺 is called amenable if there is a (left) 𝐺-invariant linear operator
𝜇 : 𝐿∞ (𝐺,R) → R with 𝜇(1) = 1 that satisfies for all 𝑓 ∈ 𝑙∞ (𝐺,R)

inf{ 𝑓 (𝑔) | 𝑔 ∈ 𝐺} ≤ 𝜇( 𝑓 ) ≤ sup{ 𝑓 (𝑔) | 𝑔 ∈ 𝐺}.

The latter condition is equivalent to the condition that 𝜇 is bounded and 𝜇( 𝑓 ) ≥ 0 if
𝑓 (𝑔) ≥ 0 for all 𝑔 ∈ 𝐺.

The class of elementary amenable groups is defined as the smallest class of groups
that has the following properties:

(i) It contains all finite and all abelian groups;
(ii) It is closed under taking subgroups;

(iii) It is closed under taking quotient groups;
(iv) It is closed under extensions, i.e., if 1 → 𝐻 → 𝐺 → 𝐾 → 1 is an exact

sequence of groups and 𝐻 and 𝐾 belong to the class, then also 𝐺;
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(v) It is closed under directed unions i.e., if {𝐺𝑖 | 𝑖 ∈ 𝐼} is a directed system of
subgroups such that 𝐺 =

⋃
𝑖∈𝐼 𝐺𝑖 and each 𝐺𝑖 belongs to the class, then 𝐺

belongs to the class.

Since the class of amenable groups has all the properties mentioned above,
every elementary amenable group is amenable. The converse is not true. For more
information about amenable and elementary amenable groups, we refer for instance
to [650, Section 6.4.1] or [792].

A group 𝐺 is a-T-menable, or, equivalently, has the Haagerup property, if 𝐺
admits a metrically proper isometric action on some affine Hilbert space. Metrically
proper means that for any bounded subset 𝐵 the set {𝑔 ∈ 𝐺 | 𝑔𝐵 ∩ 𝐵 ≠ ∅} is finite.

An extensive treatment of such groups is presented in [240, 964]. Any a-T-
menable group is countable. The class of a-T-menable groups is closed under taking
subgroups, under extensions with finite quotients, and under finite products. It is
not closed under semidirect products. Examples of a-T-menable groups are count-
able amenable groups, countable free groups, discrete subgroups of 𝑆𝑂 (𝑛, 1) and
𝑆𝑈 (𝑛, 1), Coxeter groups, countable groups acting properly on trees, products of
trees, or simply connected CAT(0) cubical complexes. A group 𝐺 has Kazhdan’s
property (T) if, whenever it acts isometrically on some affine Hilbert space, it has a
fixed point. For more information about this property we refer for instance to [119].
An infinite a-T-menable group does not have property (T). Since SL𝑛 (Z) for 𝑛 ≥ 3
has property (T), it cannot be a-T-menable.

Every a-T-menable, every amenable, and every elementary-amenable group sat-
isfies the Baum-Connes Conjecture 14.11 with coefficients. This follows from The-
orem 16.7 (ia) in the a-T-menable case. Since every group is the directed union of its
finitely generated subgroups, every finitely generated group is countable, and every
countable amenable group is a-T-menable, the claim follows for amenable groups
and hence also for elementary amenable groups from Theorem 16.7 (iid).

The Full Farrell-Jones Conjecture 13.30, and actually even the𝐾-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution, are open for elementary
amenable groups. The main problem in the Farrell-Jones setting is that one has
to deal with virtually cyclic subgroups in its formulation and for the inheritance
property under extensions, see Theorem 16.7 (iic), whereas in the Baum-Connes
setting finite subgroups suffice. This also explains why elementary amenable groups
satisfy the Farrell-Jones Conjecture 15.79 for homotopy 𝐾-theory with coefficients
in additive 𝐺-categories with finite wreath products, see Theorem 16.5 (i).

The 𝐿-theoretic Farrell-Jones Conjecture 13.8 with coefficients in rings with
involution after inverting 2 holds for elementary amenable groups by [475, Theo-
rem 5.2.1].
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16.8.15 Three-Manifold Groups

Let 𝑀 be a (not necessarily compact) manifold (possibly with boundary) of
dimension ≤ 3. Then 𝜋1 (𝑀) satisfies the Full Farrell-Jones Conjecture 13.30, see
Theorem 16.1 (ie).

If we additionally assume that 𝑀 is compact, then 𝜋1 (𝑀) satisfies the Baum-
Connes Conjecture 14.11 with coefficients, see Theorem 16.7 (if).

In the Farrell-Jones setting the reason why we do not need compactness is the
inheritance property under directed colimits of directed systems of subgroups, see
Theorem 16.1 (iif), which is not available in the Baum-Connes setting, where we
need that all structure maps are injective, see Theorem 16.7 (iid).

Exercise 16.22. Let 𝐺 be the fundamental group of a knot complement.
Show for any regular ring 𝑅 that the projection pr : 𝐺 → 𝐺/[𝐺,𝐺] � Z induces

for every ring 𝑅 an isomorphism 𝐾𝑛 (𝑅𝐺) → 𝐾𝑛 (𝑅[𝐺/[𝐺,𝐺]]) and we get an
isomorphism 𝐾𝑛 (𝑅𝐺) � 𝐾𝑛 (𝑅) ⊕ 𝐾𝑛−1 (𝑅).

Show for any ring 𝑅 with involution 𝐿 ⟨−∞⟩𝑛 (𝑅𝐺) � 𝐿 ⟨−∞⟩𝑛 (𝑅) ⊕ 𝐿 ⟨−∞⟩𝑛 (𝑅).

16.8.16 One-Relator Groups

The Baum-Connes Conjecture 14.11 with coefficients holds for one-relator groups
by Theorem 16.7 (ie).

A consequence of Newman’s spelling theorem, see [757], is that a one-relator
group which is not torsionfree is hyperbolic and hence satisfies the Full Farrell-Jones
Conjecture 13.30 by Theorem 16.1 (ia).

The Full Farrell-Jones Conjecture 13.30, and actually even the𝐾-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution, are open for torsionfree
one-relator groups. Note that not all one-relator groups are solvable, hyperbolic, or
finite-dimensional CAT(0)-groups, so that we cannot apply Theorem 16.1 in general.

Nevertheless the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in
the ring 𝑅 is known if 𝑅 is regular and 𝐺 is a subgroup of a torsionfree one-relator
group by Waldhausen [976, Theorem 19.4 on page 249] in the connective case and
by Bartels-Lück [75, Theorem 0.11] for the non-connective version. Recall that in
this special case Conjecture 13.1 boils down to Conjecture 6.53.

The 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients in any ring
with involution 𝑅 holds after inverting two for torsionfree one-relator groups by
Cappell [204, Corollary 8].

All Baumslag-Solitar groups satisfy the Full Farrell-Jones Conjecture 13.30, see
Farrell-Wu [376] for the version without “finite wreath products” and Gandini-
Meinert-Rüping [415, Corollary 1.1].
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16.8.17 Self-Similar Groups

We use the notion of self-similar group as presented in [96, Section 3], which is
slightly more general than the classical notion defined for instance in [97, 756].
Self-similar groups are groups acting in a recursive manner on a regular rooted tree
𝑅𝑇𝑑 . If the recursion of every element involves only a linearly growing subtree of
𝑇𝑑 , the group is said to be bounded.

The Full Farrell-Jones Conjecture 13.30 is proved by Bartholdi [96, Theorem A]
for bounded self-similar groups since these are subgroups of finite-dimensional
CAT(0)-groups and hence Theorem 16.1 (ib) and (iia) applies. Using Theo-
rem 16.1 (ib) and (iib) Bartholdi [96, Theorem C] proves the Full Farrell-Jones
Conjecture 13.30 for Aleshin-Grigorchuk groups, Gupta-Sidki groups, and gener-
alized Grigorchuk groups, whose definition and intriguing properties are reviewed
in [96, Section 4].

16.8.18 Virtually Torsionfree Hyperbolic by Infinite Cyclic Groups

If 𝐻 is a virtually torsionfree hyperbolic group and 𝜙 : 𝐻 → 𝐻 is an automorphism,
then 𝐺 = 𝐻 ⋊𝜙 Z satisfies the Full Farrell-Jones Conjecture 13.30.

This follows from [136, Proposition 2.2 and Theorem 2.3] using [70, Remark 9.4].
Note that this implies the more general assertion (iid) appearing in Theorem 16.1.

There is no counterexample to the conjecture that every hyperbolic group is
virtually torsionfree.

Exercise 16.23. Let 𝐺 be a group with a filtration {1} = 𝐺0 ⊆ 𝐺1 ⊆ . . . ⊆ 𝐺𝑑 = 𝐺

such that 𝐺𝑖−1 is normal in 𝐺 and 𝐺𝑖/𝐺𝑖−1 is a virtually torsionfree hyperbolic
group for 𝑖 = 1, 2, . . . , 𝑑.

Show that then the Full Farrell-Jones Conjecture 13.30 holds for 𝐺.

16.8.19 Countable Free Groups by Infinite Cyclic Groups

If 𝐹 is a countable free group (of possibly infinite rank) and 𝜙 : 𝐹 → 𝐹 is an
automorphism, then 𝐺 = 𝐹 ⋊𝜙 Z satisfies the Full Farrell-Jones Conjecture 13.30.

This follows from [173, Theorem 2.5] using [136]. Note that this implies the more
general assertion (iie) appearing in Theorem 16.1.

The condition that 𝐹 is countable ensures that 𝐹 has a countable basis. It is
conceivable that it is not necessary.
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16.8.20 Strongly Poly-Surface Groups

Definition 16.24 (Strongly poly-surface group). Let 𝐺 be a group with a finite
filtration {1} = 𝐺0 ⊆ 𝐺1 ⊆ · · · ⊆ 𝐺𝑑 = 𝐺.

We call 𝐺 strongly poly-surface if the filtration satisfies the following conditions:

(i) 𝐺𝑖 is normal in 𝐺 for 𝑖 = 0, 1, 2, . . . , 𝑑;
(ii) For every 𝑖 ∈ {1, 2, . . . , 𝑑} and 𝑔 ∈ 𝐺, there is a (not necessarily compact)

surface 𝑆 (possibly with boundary) with torsionfree 𝜋1 (𝑆), a diffeomorphism
𝑓 : 𝑆 → 𝑆, and an isomorphism 𝛼 : 𝐺𝑖/𝐺𝑖−1

�−→ 𝜋1 (𝑆) such that the following
diagram commutes

𝐺𝑖/𝐺𝑖−1
𝑐𝑔 //

𝛼

��

𝐺𝑖/𝐺𝑖−1

𝛼

��
𝜋1 (𝑆)

𝜋1 ( 𝑓 ) // 𝜋1 (𝑆)

where 𝑐𝑔 is induced by conjugation with 𝑔 ∈ 𝐺.

Note that condition (ii) is automatically satisfied if 𝑆 is a closed surface.

Theorem 16.25 (The Full Farrell-Jones Conjecture for strongly poly-surface
groups). A strongly poly-surface group 𝐺 satisfies the Full Farrell-Jones Conjec-
ture 13.30.

Proof. Fix a filtration {1} = 𝐺0 ⊆ 𝐺1 ⊆ · · · ⊆ 𝐺𝑑 = 𝐺 as it occurs in Defini-
tion 16.24. We show by induction over 𝑖 = 0, 1, 2, . . . , 𝑑 that 𝐺/𝐺𝑑−𝑖 satisfies the
Full Farrell-Jones Conjecture 13.30. The induction beginning 𝑖 = 0 is trivial, the
induction step from (𝑖 − 1) to 𝑖 done as follows.

We have the exact sequence 1→ 𝐺𝑑−𝑖+1/𝐺𝑑−𝑖 → 𝐺/𝐺𝑑−𝑖
𝑝
−→ 𝐺/𝐺𝑑−𝑖+1 → 1.

By induction hypothesis𝐺/𝐺𝑑−𝑖+1 satisfies the Full Farrell-Jones Conjecture 13.30.
Since𝐺𝑑−𝑖+1/𝐺𝑑−𝑖 � 𝜋1 (𝑆), the group𝐺𝑑−𝑖+1/𝐺𝑑−𝑖 satisfies the Full Farrell-Jones
Conjecture 13.30 by Theorem 16.1 (ie). Consider any infinite cyclic subgroup 𝐶 ⊆
𝐺/𝐺𝑑−𝑖+1. Choose 𝑔 ∈ 𝐺 such that the image of 𝑔 under 𝑝 : 𝐺/𝐺𝑑−𝑖 → 𝐺/𝐺𝑑−𝑖+1
sends 𝑔 to a generator of 𝐶. Hence 𝑝−1 (𝐶) is isomorphic to 𝐺𝑑−𝑖+1/𝐺𝑑−𝑖 ⋊𝑐𝑔 Z.
From the assumptions about 𝐺, we get a diffeomorphism 𝑓 : 𝑆 → 𝑆 of a surface 𝑆
such that 𝑝−1 (𝐶) is isomorphic to 𝜋1 (𝑇 𝑓 ). Since 𝑇 𝑓 is a 3-manifold, 𝜋1 (𝑇 𝑓 ) satisfies
the Full Farrell-Jones Conjecture 13.30 by Theorem 16.1 (ie). We conclude from
Theorem 16.1 (iic) that𝐺/𝐺𝑑−𝑖 satisfies the Full Farrell-Jones Conjecture 13.30. ⊓⊔

Exercise 16.26. Let 𝐺 be a group with a filtration {1} = 𝐺0 ⊆ 𝐺1 ⊆ · · · ⊆ 𝐺𝑑 = 𝐺

such that 𝐺𝑖−1 is normal in 𝐺𝑖 and 𝐺𝑖/𝐺𝑖−1 is torsionfree and isomorphic to the
fundamental group of a compact manifold of dimension≤ 3 (possibly with boundary)
for 𝑖 = 1, 2, . . . , 𝑑.

Show that then the Baum-Connes Conjecture 14.11 with coefficients holds for𝐺.
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16.8.21 Normally Poly-Free Groups

A group 𝐺 is called poly-free if there is a finite filtration {1} = 𝐺0 ⊆ 𝐺1 ⊆ · · · ⊆
𝐺𝑑 = 𝐺 such that 𝐺𝑖−1 ⊆ 𝐺𝑖 is normal and 𝐺𝑖/𝐺𝑖−1 is countable and free (of
possibly infinite rank) for 𝑖 = 1, 2, . . . , 𝑑. The Baum-Connes Conjecture 14.11 with
coefficients holds for poly-free groups 𝐺 by Theorem 16.7 (iic), (iid), and (iie).

The Full Farrell-Jones Conjecture 13.30 is not known for all poly-free groups.
We call a group a normally poly-free group if there is a finite filtration {1} =

𝐺0 ⊆ 𝐺1 ⊆ · · · ⊆ 𝐺𝑑 = 𝐺 such that 𝐺𝑖−1 ⊆ 𝐺 is normal and 𝐺𝑖/𝐺𝑖−1 is countable
and free (of possibly infinite rank) for 𝑖 = 1, 2, . . . , 𝑑.

Theorem 16.27 (The Full Farrell-Jones Conjecture for normally poly-free
groups). A normally poly-free group satisfies the Full Farrell-Jones Conjec-
ture 13.30.

Proof. This is proved by Brück-Kielak-Wu [173] using the proof for the case
of a finitely generated free group extended by Z due to Bestvina-Fujiwara-
Wigglesworth [136]. ⊓⊔

Exercise 16.28. Let 1→ 𝐾 → 𝐺 → 𝑄 → 1 be an extension of groups such that 𝐾
is the fundamental group of a compact connected manifold (possibly with boundary)
of dimension ≤ 2.

Show that 𝐺 satisfies the Full Farrell-Jones Conjecture 13.30 if 𝑄 does.

16.8.22 Coxeter Groups

For the definition of and information about Coxeter groups we refer to [289]. Every
Coxeter group satisfies the Full Farrell-Jones Conjecture 13.30 by Theorem 16.1 (il)
and the Baum-Connes Conjecture 14.11 with coefficients by Theorem 16.7 (ii).

16.8.23 Right-Angled Artin groups

Every right-angled Artin group can be embedded in a right-angled Coxeter groups
as a subgroup of finite index, see [292]. Hence every right-angled Artin group
satisfies the Full Farrell-Jones Conjecture 13.30 by Theorem 16.1 (il) and (iia) and
the Baum-Connes Conjecture 14.11 with coefficients by Theorem 16.7 (ii) and (iia).

For more information about Right-Angled Artin groups we refer for instance
to [231].
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16.8.24 Artin groups

The Full Farrell-Jones Conjecture 13.30 and the Baum-Connes Conjecture 14.11 are
open for Artin groups, only some partial results are known.

It is an open problem whether every Artin group admits a cocompact proper
isometric action on a complete CAT(0)-space. This is known in some cases, see
for instance Haettel [452, 453]. It seems to be also an open question whether Artin
groups are A-T-menable.

Even Artin groups of type FC satisfy the Full Farrell-Jones Conjecture 13.30 by
Huang-Osajda [506, Corollary], see also [173, Corollary B] and [1020].

Extra large type Artin groups satisfy the Full Farrell-Jones Conjecture 13.30,
see [320, Corollary E].

The Baum-Connes Conjecture 14.11 with coefficients is proved for some Artin
groups by Haettel [453, Corollary C].

16.8.25 Braid Groups

Artin’s full braid groups 𝑃𝑛 satisfy both the Full Farrell-Jones Conjecture 13.30
by Theorem 16.1 (ik) and the Baum-Connes Conjecture 14.11 with coefficients by
Theorem 16.7 (ig).

16.8.26 Mapping Class Groups

Let 𝐹𝑠𝑔,𝑟 be the orientable compact surface of genus 𝑔 with 𝑟 boundary components
and 𝑠 punctures where 𝑠 punctures means the choice of 𝑠 pairwise distinct points.
Let Diff (𝐹𝑠𝑔,𝑟 , rel) be the group of orientation preserving diffeomorphisms 𝐹𝑠𝑔,𝑟 →
𝐹𝑠𝑔,𝑟 that leave the boundary and the punctures pointwise fixed. Then the mapping
class group Γ𝑠𝑔,𝑟 is defined to be 𝜋0 (Diff (𝑆𝑠𝑔,𝑟 , rel)), the group of isotopy classes
of such diffeomorphisms. All mapping class groups satisfy the Full Farrell-Jones
Conjecture 13.30 by Theorem 16.1 ih.

The Baum-Connes Conjecture 14.9 does not seem to be known to be true for all
mapping class groups.

16.8.27 Out(𝑭𝒏)

The Full Farrell-Jones Conjecture 13.30, and actually even the 𝐾-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution, are open for Out(𝐹𝑛) for
𝑛 ≥ 3. The same statement holds for the Baum-Connes Conjecture.
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The group Out(𝐹𝑛) is boundary amenable by a result of Bestvina-Guiardel-
Horbez [137]. Hence the assembly map appearing in the Baum-Connes Conjec-
ture 14.11 with coefficients is rationally injective, see Remark 16.17, and therefore
also the Novikov Conjecture holds for any subgroup of Out(𝐹𝑛), see Section 14.8.
Actually, in [137] groups other than 𝐹𝑛, for instance torsionfree hyperbolic groups,
and right-angled Artin groups, are also treated.

At least the rational injectivity of the 𝐾-theoretic Farrell-Jones assembly map
with coefficients in Z (disregarding some 𝐾−1-term contribution) follows from [675]
for Out(𝐹𝑛).

16.8.28 Thompson’s Groups

Thompson defined the groups 𝐹, 𝑇 , and 𝑉 in some handwritten notes from 1965.
Thompson’s group 𝑉 is the group of right-continuous automorphisms 𝑓 of [0, 1]
that map dyadic rational numbers to dyadic rational numbers, that are differentiable
except at finitely many dyadic rational numbers, and such that, on each interval on
which 𝑓 is differentiable, 𝑓 is affine with derivative a power of 2. The group 𝐹 is
the subgroup of 𝑉 consisting of homeomorphisms. The group 𝑇 is the subgroup of
𝑉 consisting of those elements that induce homeomorphisms of the circle where the
circle is regarded as [0, 1] with 0 and 1 identified. These groups have some unusual
properties. It is an open question whether 𝐹 is amenable. It is known that 𝐹 is not
elementary amenable.

Farley [348] has shown that 𝐹, 𝑇 , and 𝑉 are a-T-menable and hence satisfy the
Baum-Connes Conjecture 14.11 with coefficients, see Theorem 16.7 (ia).

The Full Farrell-Jones Conjecture 13.30, and actually even the𝐾-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the 𝐿-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution, are open for 𝐹, 𝑇 , and 𝑉 .

At least the rational injectivity of the 𝐾-theoretic Farrell-Jones assembly map
with coefficients in Z (disregarding some 𝐾−1-term contribution) follows from [675]
for 𝑇 using [420].

16.8.29 Helly Groups

The Full Farrell-Jones Conjecture 13.30 is proved for Helly groups by Chalopin-
Chepoi-Genevois-Osajda [223, Section 7.5] using [571]. This implies that the Full
Farrell-Jones Conjecture 13.30 holds also for weak Garside groups of finite type, see
Huang-Osajda [506, Theorem and Corollary].
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16.8.30 Groups Satisfying Homological Finiteness Conditions

So far the groups for which we were able to prove the Farrell-Jones Conjecture
or the Baum-Connes Conjecture have satisfied some geometric conditions, often
reminiscent of non-positive sectional curvature. At least for the 𝐾-theoretic Farrell-
Jones Conjecture there are results where no geometric conditions but some finiteness
conditions are required. The celebrated prototype of such a result is the following
theorem due to Boekstedt-Hsiang-Madsen [150].

Theorem 16.29 (Bökstedt-Hsiang-Madsen Theorem). Let𝐺 be a group such that
𝐻𝑖 (𝐺;Z) is finitely generated for all 𝑖 ≥ 0. Then 𝐺 satisfies the 𝐾-theoretic Novikov
Conjecture 13.63, i.e., the assembly map

𝐻𝑛 (𝐵𝐺; K(Z)) → 𝐾𝑛 (Z𝐺)

is rationally injective for all 𝑛 ∈ Z.

This raises the question under which finiteness conditions one can show that
the assembly map appearing in the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in the ring Z is rationally injective. Recall from Theorem 13.51 that for
a group 𝐺 and a regular ring 𝑅 the map

(16.30) 𝐻𝐺𝑛 (𝜄FIN⊆VCY ; K𝑅

)
: 𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅)

�−→ 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅)

is bijective for all 𝑛 ∈ Z after applying Q ⊗Z −.
The source of the map (16.30) has already been computed rationally using equi-

variant Chern characters in Theorem 12.79

(16.31)
⊕
𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈𝐽

𝐻𝑝 (𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗𝑅 𝐾𝑞 (𝑅𝐶)

)
�−→ Q ⊗𝑅 𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅).

By the isomorphisms (16.30) and (16.31), the assembly map appearing in the Farrell-
Jones Conjecture 13.1 with coefficients in the regular ring 𝑅 becomes rationally a
map

(16.32)
⊕
𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈𝐽

𝐻𝑝 (𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗𝑅 𝐾𝑞 (𝑅𝐶)

)
→ Q ⊗𝑅 𝐾𝑛 (𝑅𝐺).

So the question above is equivalent to the question whether the map (16.32) is
rationally injective.

From now on we consider the special case 𝑅 = Z. The restriction of the
map (16.32) to the summand corresponding to 𝐶 = {1} is rationally the same
as the map appearing in Theorem 16.29. Hence a positive answer to the question
above implies Theorem 16.29.
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The main result of [675] says that under certain finiteness assumptions, which are
for instance satisfied if there is a model for 𝐸FIN (𝐺) of finite type, and certain num-
ber theoretic conditions, which are implied by the Leopoldt-Schneider Conjecture,
the assembly map (16.32) is rational injective if we ignore the summands for 𝑞 = −1.
This summand cannot be detected since topological cyclic homology does not see
𝐾−1. Note that Theorem 16.31 just detects the summand for 𝐶 = {1} and does not
see the ones for non-trivial 𝐶. Nevertheless, the methods and proofs of [675] are
based on the ideas of [150].

As an illustration we mention two easy to formulate consequences of the results
of [675, Main Theorem 1.13] where the necessary input from number theory is
known to be true and therefore does not appear in the assumptions, similar to the
situation in Theorem 16.29.

Theorem 16.33 (Rationally injectivity of the colimit map for finite subgroups
for the Whitehead group). Let 𝐺 be a group. Assume that for every finite cyclic
subgroup 𝐶 of 𝐺 the abelian groups 𝐻1 (𝐵𝐶𝐺𝐶;Z) and 𝐻2 (𝐵𝐶𝐺𝐶;Z) associated
to their centralizers 𝐶𝐺𝐶 are finitely generated.

Then the canonical map

colim𝐻∈Sub𝐺 (FIN) Q ⊗Z Wh(𝐻) → Q ⊗Z Wh(𝐺)

is injective.

Proof. See [675, Theorem 1.1] ⊓⊔

Note that theQ-module colim𝐻∈Sub𝐺 (FIN) Q⊗ZWh(𝐻) above can be identified
with

⊕
(𝐶 ) ∈𝐽 Q⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·

(
Q⊗Z 𝐾1 (Z𝐶)

)
, where 𝐽 is the set of conjugacy

classes of finite cyclic subgroups of 𝐺. This is the portion for 𝑝 = 0 appearing in
the source of the isomorphism with Q ⊗Z 𝐻𝐺𝑛 (𝐸𝐺; K𝑅) as target of Theorem 12.79.
Moreover, the Q[aut(𝐶)]-module Θ𝐶 ·

(
Q ⊗Z 𝐾1 (Z𝐶)

)
is described explicitly in

Remark 12.80.

Theorem 16.34 (Eventual injectivity of the rational 𝐾-theoretic assembly map
for 𝑅 = Z). Let 𝐺 be a group. Assume that there is a finite 𝐺-𝐶𝑊-model for
𝐸FIN (𝐺).

Then there exists an integer 𝐿 > 0 such that the rationalized Farrell-Jones
assembly map (16.32) is injective for all 𝑛 ≥ 𝐿. The bound 𝐿 only depends on the
dimension of 𝐸FIN (𝐺) and on the orders of the finite cyclic subgroups of 𝐺.

Proof. See [675, Theorem 1.15] ⊓⊔

16.9 Open Cases

Here is a list of interesting groups for which the Full Farrell-Jones Conjecture 13.30
is open in general:
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• elementary amenable, amenable, or a-T-menable groups;
• Out(𝐹𝑛) for 𝑛 ≥ 3;
• Artin groups;
• Thompson’s groups 𝐹, 𝑉 , and 𝑇 ;
• Torsionfree one-relator groups;
• Linear groups;
• Subgroups of almost connected Lie groups;
• Residual finite groups;
• (Bi-)Automatic groups;
• Locally indicable groups.

Here is a list of interesting groups for which the Baum-Connes Conjecture 14.11
with coefficients is open in general:

• Finite-dimensional CAT(0)-groups.
• Fundamental groups of closed Riemannian manifolds with non-positive sectional

curvature;
• Lattices in almost connected Lie groups, for instance SL𝑛 (Z) for 𝑛 ≥ 3;
• 𝑆-arithmetic groups;
• Out(𝐹𝑛) for 𝑛 ≥ 3;
• Artin groups;
• Mapping class groups (of higher genus);
• Linear groups;
• Subgroups of almost connected Lie groups;
• Residual finite groups;
• (Bi-)Automatic groups;
• Locally indicable groups.

16.10 How Can We Find Counterexamples?

We are not aware of any group for which the Full Farrell-Jones Conjecture 13.30 is
known to be false. The same statement holds for the Baum-Connes Conjecture 14.9
without coefficients and the Novikov Conjecture 9.137.

16.10.1 Is the Full Farrell-Jones Conjecture True for All Groups?

It is hard to believe that the Full Farrell-Jones Conjecture 13.30 is true for all groups
since there have been so many prominent conjectures about groups which were open
for some time and for which counterexamples were finally found. On the other hand,
the conjecture is known for so many groups that we currently have no strategy to
find counterexamples, as we will illustrate below.
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We have already mentioned that the groups that come from the construc-
tion of Arzhantseva-Delzant [39], see also Osajda [783], yield counterexamples
to the Baum-Connes Conjecture 14.11 with coefficients by Higson-Lafforgue-
Skandalis [487]. These groups are colimits of hyperbolic groups and hence satisfy
the Full Farrell-Jones Conjecture 13.30 by Theorem 16.1 (ia) and (iif).

Baum-Guentner-Willet [111] give a reformulation of the Baum-Connes Conjec-
ture 14.11 with coefficients by introducing a new crossed product, see also [192], for
which no counterexamples are known so far.

We have already discussed the problem concerning the Baum-Connes Conjec-
ture 14.9, which does not occur for the Full Farrell-Jones Conjecture 13.30, that
the left-hand side of the Baum-Connes Conjecture is functorial under group homo-
morphism and there is no reason why the right-hand side should have this property,
see Remark 14.12. The new version of Baum-Guentner-Willet [111] still faces this
problem. This sheds additional doubts on the Baum-Connes Conjecture.

16.10.2 Exotic Groups

One does not know of a property of a group for which one may expect that groups
with this property are automatically counterexamples to the Full Farrell-Jones Con-
jecture 13.30 or to the Baum-Connes Conjecture 14.9. Next we list some groups
with an exotic property for which the Full Farrell-Jones Conjecture 13.30 is known
to be true at least for some groups satisfying this property.

• Finitely generated infinite torsion 𝑝-groups
Given a large enough prime 𝑝, there exists an infinite finitely generated group all
of whose proper subgroups are finite cyclic groups of order 𝑝, see [779]. These
groups are lacunary hyperbolic groups and hence satisfy the Full Farrell-Jones
Conjecture 13.30, see Subsection 16.8.2.
Other examples of finitely generated infinite torsion 𝑝-groups are mentioned in
Subsection 16.8.17;
• Groups with expanders

There exists a group 𝐺 that is a colimit of hyperbolic groups and contains appro-
priate expanders, see [39]. It satisfies the Full Farrell-Jones Conjecture 13.30 by
Theorem 16.1 (ia) and (iif);
• Self-similar groups

See Subsection 16.8.17.
• Infinite torsionfree simple groups

There exists finitely presented torsionfree simple CAT(0)-groups, see [188, Corol-
lary 5.4 and Theorem 5.5]. They satisfy the Full Farrell-Jones Conjecture 13.30
by Theorem 16.1 (ib);
• Groups which do not possess a finite-dimensional model or a model of finite type

for 𝐵𝐺 or 𝐵𝐺
Examples of such groups satisfying the Full Farrell-Jones Conjecture 13.30 can
easily be constructed using Theorem 16.1 (iig);
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• Groups with property (T)
There are hyperbolic groups that have property (T). They satisfy the Full Farrell-
Jones Conjecture 13.30 by Theorem 16.1 (ia);
• Groups for which certain decision problems are unsolvable.

A lot of groups for which the Full Farrell-Jones Conjecture 13.30 is known and
some decision problems such as the isomorphism problem, conjugacy problem
and membership problem are unsolvable can be found in Bridson [164].

The results about groups with some homological finiteness conditions of Subsec-
tion 16.8.30 also indicate that the search for counterexamples for the Farrell-Jones
Conjecture is not easy.

In order to find counterexamples one seems to need completely new ideas, maybe
from random groups or logic. It is unlikely that the counterexample is a concrete
group, but rather a group with certain strange properties, for which existence can be
shown by abstract methods but not by a concrete construction.

It is probably easier to find counterexamples to surjectivity than to injectivity.

16.10.3 Infinite Direct Products

Nothing is known about infinite products. It would be very interesting if one can
show that for a family of groups {𝐺𝑖 | 𝑖 ∈ 𝐼} (with infinite 𝐼) the Full Farrell-
Jones Conjecture 13.30 is true for the direct product

∏
𝑖∈𝐼 𝐺𝑖 if it holds for each

𝐺𝑖 . (Note that the corresponding statement is true for the direct sum
⊕

𝑖∈𝐼 𝐺𝑖 by
Theorem 16.1 (iib) and (iif).) In view of Theorem 16.1 (iia) this would imply that
the Full Farrell-Jones Conjecture 13.30 is stable under inverse limits over directed
systems of groups. This would have the immediate consequence that the Full Farrell-
Jones Conjecture 13.30 is true for all residually finite groups. On the other hand it may
be worthwhile to look at infinite direct products in order to find a counterexample.

For this discussion see also Lemma 15.103.

16.10.4 Exotic Aspherical Closed Manifolds

One may also look for counterexamples to one of the conjecture which follow from the
Full Farrell-Jones Conjecture 13.30, for instance to the Borel Conjecture 9.163. There
are indeed aspherical closed manifolds with unusual properties, but the fundamental
groups of some of them do satisfy the Full Farrell-Jones Conjecture 13.30 and
hence the Borel Conjecture. Note that we have already discussed aspherical closed
manifolds with exotic properties in Subsection 9.15.1.

Davis constructed for every 𝑛 ≥ 4 aspherical closed manifolds of dimension 𝑛
whose universal covering is not homeomorphic to Euclidean space [288, Corol-
lary 15.8]. In particular, these manifolds do not support metrics of non-positive
sectional curvature. The fundamental groups of these examples are finite index
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subgroups of Coxeter groups 𝑊 . Thus they satisfy the Full Farrell-Jones Conjec-
ture 13.30 by Theorem 16.1 (il) and (iia). In particular, these manifolds are indeed
topologically rigid, provided that 𝑛 ≥ 5.

Davis and Januszkiewicz [291, Theorem 5b.1] used Gromov’s hyperbolization
technique to construct for every 𝑛 ≥ 5 an aspherical closed 𝑛-dimensional manifold
𝑀 such that the universal covering 𝑀 is a finite-dimensional CAT(0)-space whose
fundamental group at infinity is non-trivial. In particular, these universal covers
are not homeomorphic to Euclidean space. Because these examples are in addition
non-positively curved polyhedra, their fundamental groups are finite-dimensional
CAT(0)-groups. There is a variation of this construction that uses the strict hyper-
bolization of Charney-Davis [232] and produces an aspherical closed manifold 𝑀
whose universal cover is not homeomorphic to Euclidean space and whose funda-
mental group is hyperbolic. The fundamental groups of these manifolds 𝑀 satisfy
the Full Farrell-Jones Conjecture 13.30 by Theorem 16.1 (ia) and (ib). In particular,
these manifolds 𝑀 are topologically rigid.

Davis-Januszkiewicz [291, Theorem 5a.1 and Corollary 5a.4] constructed a
4-manifold 𝑁 such that 𝜋1 (𝑁) is a finite-dimensional CAT(0)-group and 𝑁 × 𝑇 𝑘
for 𝑘 ≥ 1 is not homotopy equivalent to a PL-manifold. Since 𝜋1 (𝑁 × 𝑇 𝑘) is a
finite-dimensional CAT(0)-group and dim(𝑁 × 𝑇 𝑘) ≥ 5 for 𝑘 ≥ 1, the manifolds
𝑁 × 𝑇 𝑘 for 𝑘 ≥ 1 are topologically rigid by Theorem 16.1 (ib).

Davis-Fowler-Lafont [290] constructed using the work of Manolescu [706, 705]
non-triangulable aspherical closed manifolds with hyperbolic fundamental group in
all dimensions ≥ 6. In particular, these manifolds 𝑀 are topologically rigid since hy-
perbolic groups satisfy the Full Farrell-Jones Conjecture 13.30 by Theorem 16.1 (ia).

Some proofs of the results above are based on the reflection group trick as it
appears for instance in [286, Sections 8,10 and 13]. It can be summarized as follows.

Theorem 16.35 (Reflection group trick). Let 𝐺 be a group that possesses a finite
model for 𝐵𝐺. Then there is an aspherical closed manifold𝑀 and a map 𝑖 : 𝐵𝐺 → 𝑀

and 𝑟 : 𝑀 → 𝐵𝐺 such that 𝑟 ◦ 𝑖 = id𝐵𝐺 .

An interesting immediate consequence of the reflection group trick is that many
well-known conjectures about groups hold for every group that possesses a finite
model for 𝐵𝐺 if and only if it holds for the fundamental group of every aspherical
closed manifold, see also [286, Sections 11].

Exercise 16.36. Suppose that the Farrell-Jones Conjecture 6.53 for torsionfree
groups and regular rings holds for the fundamental group of any aspherical closed
manifold. Show that it then holds for all groups 𝐺 with a finite model for 𝐵𝐺.

Prove the analogous statement for the 𝐿-theoretic Farrell-Jones Conjecture 9.114
for torsionfree groups.

The upshot of the discussion is that one does not know of a property of aspherical
closed manifolds, such as being not triangulable, for which one may expect that the
Borel Conjecture 9.163 automatically fails if this property is satisfied.
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16.10.5 Some Results Which Hold for All Groups

Here is a result which holds for all (discrete) groups, is non-trivial, and is related to
the Farrell-Jones Conjecture. Let 𝑖 : 𝐻 → 𝐺 be the inclusion of a normal subgroup
𝐻 ⊂ 𝐺. It induces a homomorphism 𝑖0 : Wh(𝐻) → Wh(𝐺). The conjugation
actions of𝐺 on 𝐻 and on𝐺 induce𝐺-actions on Wh(𝐻) and on Wh(𝐺) which turns
out to be trivial on Wh(𝐺). Hence 𝑖0 induces homomorphisms

𝑖1 : Z ⊗Z𝐺 Wh(𝐻) → Wh(𝐺);(16.37)
𝑖2 : Wh(𝐻)𝐺 → Wh(𝐺).(16.38)

Theorem 16.39 (Rational injectivity of Z ⊗Z𝐺 Wh(𝐻) → Wh(𝐺) for normal
finite 𝐻 ⊆ 𝐺). Let 𝑖 : 𝐻 → 𝐺 be the inclusion of a normal finite subgroup 𝐻 into
an arbitrary group 𝐺. Then the maps 𝑖1 and 𝑖2 defined in (16.37) and (16.38) have
finite kernel.

Proof. See [650, Theorem 9.38 on page 354]. ⊓⊔

We omit the details of the proof that the result of Theorem 16.39 can be deduced
from the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring Z.

In Lück-Oliver [672] there is a systematic study of those finite groups 𝐻 for which
Theorem 16.39 implies that for every group 𝐺 with Q ⊗Z Wh(𝐺) = {0} the group
𝐻 cannot occur as a normal subgroup in 𝐺.

Exercise 16.40. Let 𝐺 be a group with vanishing Whitehead group. Show that then
each element in the center has order 1, 2, 3, 4, or 6.

We have already stated a more advanced detection result for Q and C as coeffi-
cients, see Theorem 6.78, which also holds for all groups. Recall also Theorem 16.33,
which requires only very mild conditions on the group 𝐺.

Another non-trivial consequence of the Farrell-Jones Conjecture which concerns
the Hattori-Stallings rank of idempotents in 𝐹𝐺 for fields 𝐹 and groups𝐺 and holds
for all groups 𝐺 has been discussed in Remark 2.98.

Furthermore, Yu [1028, Theorem 1.1], see also Cortinas-Tartaglia [261], proved
that the 𝐾-theoretic assembly map 𝐻𝐺𝑛 (𝐸VCY (𝐺); KS) → 𝐾𝑛 (S𝐺) appearing
in the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring 𝑅 is
rationally injective for every group𝐺, provided that 𝑅 is the ring S of Schatten class
operators of an infinite-dimensional separable Hilbert space.

16.11 Notes

There are groups for which the Full Farrell-Jones Conjecture 13.30 is not known
to be true but weaker versions of it have been proved. For example, the 𝐾-theoretic
Farrell-Jones Conjecture 13.1 with coefficients in the ring 𝑅 is known if 𝑅 is regular
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and 𝐺 belongs to the class CL′ described in [75, Definition 0.10]. The class CL′
contains for instance all torsionfree 1-relator groups.

The class of groups for which the 𝐿-theoretic Farrell-Jones Conjecture 13.8
with coefficients in rings with involution after inverting 2 is analyzed in [475,
Proposition 5.2.2 and Lemma 5.2.3]; actually the more general fibered version is
treated. It contains for instance all elementary amenable groups. The result and its
proof is analogous to Theorem 16.5.

A proof of the Full Farrell-Jones Conjecture 13.30 for finite-dimensional CAT(0)-
groups has been extended to a larger class of groups which also contains all hyperbolic
groups by Kasprowski-Rüping [571, Theorem 6.1]. In particular, they prove it for
all groups acting properly and cocompactly on a finite product of hyperbolic graphs,
see [571, Theorem 1.1], as already mentioned in Theorem 16.1 (in).

The bijectivity of the algebraic 𝐾-theoretic assembly map for certain coefficients
coming from 𝐶∗-algebras is proved by Cortinas-Tartaglia [259, Corollary 1.5] for
a-T-menable groups 𝐺 by reducing it to the Baum-Connes Conjecture.

Gonzalez-Acuna-Gordon-Simon [429, Theorem 5.6, Corollary 5.7, Theorem 5.8]
show that the problem whether the projective class group, the Whitehead group, or
the 𝐿-group of a group is trivial, cannot be decided. So it is possible that the problem
whether a group 𝐺 satisfies the Farrell-Jones Conjecture holds cannot be decided.



Chapter 17
Guide for Computations

17.1 Introduction

One major goal is to compute 𝐾- and 𝐿-groups such as 𝐾𝑛 (𝑅𝐺), 𝐿 ⟨−∞⟩𝑛 (𝑅𝐺),
and 𝐾𝑛 (𝐶∗𝑟 (𝐺)). Assuming that the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in the ring 𝑅, the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coef-
ficients in the ring with involution 𝑅, or the Baum-Connes Conjecture 14.9 hold
for 𝐺, this reduces to the computation of the left-hand side of the correspond-
ing assembly maps, namely, of 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅), 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩

𝑅
), or

𝐻𝐺𝑛 (𝐸FIN (𝐺); KTOP) = 𝐾𝐺𝑛 (𝐸FIN (𝐺)). This is much easier, since here we can
use standard methods from algebraic topology. The main general tools are the equiva-
riant Atiyah-Hirzebruch spectral sequence, see Theorem 12.48, the 𝑝-chain spectral
sequence, see Theorem 12.50, and equivariant Chern characters, see Theorem 12.58.
Nevertheless such computations can be pretty hard. Roughly speaking, one can ob-
tain a reasonable answer after rationalization, but integral computations have only
been done case by case, and there seems to be no pattern for a general answer. Often
the key is a good understanding of how one can built 𝐸FIN (𝐺) from 𝐸𝐺 and how
one can built 𝐸VCY (𝐺) from 𝐸FIN (𝐺). These passages have already been studied
in Theorems 11.32 and 11.37.

17.2 𝑲- and 𝑳-Groups for Finite Groups

For the computations of 𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅), 𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩
𝑅
), and

𝐻𝐺𝑛 (𝐸FIN (𝐺); KTOP) = 𝐾𝐺𝑛 (𝐸FIN (𝐺)), one has to understand 𝐾𝑛 (𝑅𝐻),
𝐿
⟨−∞⟩
𝑛 (𝑅𝐻), and 𝐾𝑛 (𝐶∗𝑟 (𝐻)) for finite groups 𝐻, since these are the values of
𝐻𝐺𝑛 (𝐺/𝐻; K𝑅), 𝐻𝐺𝑛 (𝐺/𝐻; L⟨−∞⟩

𝑅
), and 𝐻𝐺𝑛 (𝐺/𝐻; KTOP) = 𝐾𝐺𝑛 (𝐺/𝐻) for homo-

geneous spaces 𝐺/𝐻 for finite subgroups 𝐻 ⊆ 𝐺.
For a finite group 𝐺 we have given information about 𝐾0 (Z𝐺) in Section 2.12,

about 𝐾1 (Z𝐺) and Wh(𝐺) in Section 3.12, about 𝐾𝑛 (Z𝐺) for 𝑛 ≤ −1 in Exam-
ple 4.12, Section 4.5, and Example 5.15, about 𝐾2 (Z𝐺) and Wh2 (𝐺) in Section 5.8,
about 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝐺) in Section 9.22, and about 𝐾𝑛 (𝐶∗𝑟𝐺) and 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) in Sec-
tion 10.9.

Let us summarize what we know for a finite group 𝐺. There is a complete calcu-
lation of the finitely generated abelian group 𝐾−1 (Z𝐺), and one knows 𝐾𝑛 (Z𝐺) = 0
for 𝑛 ≤ −2. One has a very good understanding of Wh(𝐺). The group 𝐾0 (Z𝐺)
is finite, but a complete computation of 𝐾0 (Z[Z/𝑝]) for arbitrary primes 𝑝 is out

517
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of reach. A complete computation of 𝐾𝑛 (Z) is not known for all 𝑛 ∈ Z. We have
already mentioned Borel’s formula for𝐾𝑛 (Z)⊗ZQ for all 𝑛 ∈ Z in Theorem 6.24. The
𝐿-groups of Z𝐺 are pretty well understood. The finitely generated abelian groups
𝐾𝑛 (𝐶∗𝑟 (𝐺)) and 𝐾𝑛 (𝐶∗𝑟 (𝐺;R)) are explicitly known. They are torsionfree in the
complex case. In the real case every non-trivial element of finite order has order 2.

17.3 The Passage from FIN to VCY

In the Baum-Connes setting it is enough to consider the family FIN . In the Farrell-
Jones Conjecture we have to pass from FIN to VCY. This passage has been
discussed in detail already in Section 13.8. We get a splitting

𝐻𝐺𝑛
(
𝐸VCY (𝐺); K𝑅

)
� 𝐻𝐺𝑛

(
𝐸FIN (𝐺); K𝑅

)
⊕ 𝐻𝐺𝑛

(
𝐸FIN (𝐺) → 𝐸VCY (𝐺); KA

)
and under mild 𝐾-theoretic assumptions a splitting

𝐻𝐺𝑛
(
𝐸VCY (𝐺); L⟨−∞⟩

𝑅

)
� 𝐻𝐺𝑛

(
𝐸FIN (𝐺); L⟨−∞⟩

𝑅

)
⊕ 𝐻𝐺𝑛

(
𝐸FIN (𝐺) → 𝐸VCY (𝐺); L⟨−∞⟩

𝑅

)
.

We have also explained in Theorem 13.47 that in 𝐾-theory it suffices to replace
VCY by VCY𝐼 and in Theorem 13.60 that in 𝐿-theory there is no difference
between FIN andVCY𝐼 .

If we are only interested in rational information, then there is no difference between
FIN and VCY when we are dealing with the algebraic 𝐾-theory of group rings
𝑅𝐺 for regular rings 𝑅, see Theorem 13.51, and when we are dealing with 𝐿-theory,
see Theorem 13.62 (i).

For 𝐿-theory the Tate cohomology of the 𝐾-theory is important when one is
comparing different decorations, see Subsection 9.10.4.

In general the 𝐿-theoretic Farrell-Jones assembly map is not an isomorphism if
one replaces the decoration ⟨−∞⟩ by the decoration 𝑝, ℎ, or 𝑠, see Remark 13.9.
This can be very unpleasant since for applications one needs the decorations 𝑠 or ℎ.
The situation is better when 𝐺 is torsionfree, as explained in Theorem 9.106.

17.4 Rational Computations for Infinite Groups

Next we state what is known rationally about the 𝐾- and 𝐿-groups of an infinite
(discrete) group, provided the Farrell-Jones Conjectures 13.1 or 13.4 or the Baum-
Connes Conjecture 14.9 hold.
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17.4.1 Rationalized Algebraic 𝑲-Theory

The next result follows from Theorem 12.79 and Theorem 13.51. For 𝑅 = Z see also
Grunewald [444, Corollary on page 165].

Theorem 17.1 (Rational computations of 𝐾𝑛 (𝑅𝐺) for regular 𝑅). Let 𝑅 be a
regular ring, e.g., 𝑅 is Z. Suppose that the group 𝐺 satisfies the 𝐾-theoretic Farrell-
Jones Conjecture 13.1 with coefficients in the ring 𝑅.

Then we have for all 𝑛 ∈ Z a natural isomorphism⊕
𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈ (FCY)

𝐻𝑝 (𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗Z 𝐾𝑞 (𝑅𝐶)

)
�−→ Q ⊗Z 𝐾𝑛 (𝑅𝐺)

where we use the notation from Theorem 12.79.

Computations of Θ𝐶 ·
(
Q ⊗Z 𝐾𝑞 (𝑅𝐶)

)
as Q[aut(𝐶)]-module for finite cyclic

groups 𝐶 and 𝑅 = Z or 𝑅 a field of characteristic zero can be found in [793], see
Remark 12.80.

Exercise 17.2. If in Theorem 17.1 we drop the condition that 𝑅 is regular, show that
then we still know that the map appearing there is split injective.

Example 17.3 (A Formula for 𝐾0 (𝑅𝐺) ⊗Z Q for 𝑅 the ring of integers in an
algebraic number field). Let 𝑅 be the ring of integers in an algebraic number
field, e.g., 𝑅 = Z. Note that then 𝑅 is regular by Theorems 2.21 and 2.23. Suppose
that the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring 𝑅 is
true for 𝐺. Then Conjecture 4.20 is true by Theorem 13.65. Hence we obtain from
Theorem 2.105, Theorem 4.22 (i), and Theorem 17.1 an isomorphism

𝐾0 (𝑅𝐺) ⊗Z Q �
⊕

(𝐶 ) ∈ (FCY)
𝐶≠{1}

𝐻1 (𝐵𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] 𝜃𝐶 · 𝐾−1 (𝑅𝐶) ⊗Z Q.

Note that 𝐾0 (𝑅𝐺) ⊗Z Q contains only contributions from 𝐾−1 (𝑅𝐶) ⊗Z Q for finite
cyclic subgroups 𝐶 ⊆ 𝐺.

Next we give criteria for the rational vanishing of middle and lower 𝐾-theory,
where the homology of the centralizers of the cyclic subgroups does not occur.

Theorem 17.4 (Criteria for the rational vanishing of middle and lower 𝐾-theory
of integral group rings). Let 𝐺 be a Farrell-Jones group. Let 𝐼 be the subgroup
of aut(𝐶) generated by the automorphism of 𝐶 sending 𝑥 to 𝑥−1. Denote by 𝐷𝐺𝐶
the subgroup of aut(𝐶) which is the image of the injective group homomorphism
𝑁𝐺𝐶/𝐶𝐺𝐶 → aut(𝐶) given by conjugation with elements in 𝑁𝐺𝐶. Consider the
following conditions:
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(P) The order of every finite cyclic subgroup 𝐶 is a prime power;
(A) For every non-trivial finite cyclic subgroup 𝐶 of 𝐺, we have

aut(𝐶) = 𝐼 · 𝐷𝐺𝐶.

Then:

(i) 𝐾𝑛 (Z𝐺) = 0 for 𝑛 ≤ −2;
(ii) We have Q ⊗Z 𝐾−1 (Z𝐺) = 0 if and only if condition (P) holds;

(iii) We have Q ⊗Z 𝐾0 (Z𝐺) = 0 if condition (P) is satisfied;
(iv) We have Q ⊗Z Wh(𝐺) = 0, if conditions (P) and (A) are satisfied;
(v) If Q ⊗Z Wh(𝐺) = 0 holds, then condition (A) is satisfied.

Proof. (i) This is a consequence of Conjecture 4.20, which follows from the Full
Farrell-Jones Conjecture by Theorem 13.65 (i) and (vi).
(ii) For the sequel note that Theorem 4.22 (i) and (v) imply that 𝐾−𝑛 (Z𝐶) = 0
holds for every cyclic group 𝐶 and every 𝑛 ≤ −2 and that 𝐾−1 (Z𝐶) = 0 holds for
every cyclic subgroup 𝐶, whose order is a prime power order. We conclude from
Theorem 17.1 that Q ⊗Z 𝐾−1 (Z𝐺) = 0 is trivial, if condition (P) is satisfied.

Now suppose that Q ⊗Z 𝐾−1 (Z𝐺) = 0 holds. Theorem 17.1 implies that
Q ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·

(
Q ⊗Z 𝐾−1 (𝑅𝐶)

)
vanishes for every finite cyclic subgroup 𝐶

of 𝐺. Fix a non-trivial finite cyclic subgroup 𝐶. Because of Remark 12.80 we get an
isomorphism of Q-modules

Q ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗Z 𝐾−1 (Z𝐶)

)
⊕ Q ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Q

�
⊕
𝑝 | |𝐶 |

Q ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Q[aut(𝐶)/Gal𝑝 (𝐶)] .

Hence we get

Q �Q Q ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Q �Q
⊕
𝑝 | |𝐶 |

Q ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Q[aut(𝐶)/Gal𝑝 (𝐶)] .

Since each Q[𝑁𝐺𝐶/𝐶𝐺𝐶]-module Q[aut(𝐶)/Gal𝑝 (𝐶)] is non-trivial, there is at
most one prime 𝑝 dividing |𝐶 |. Hence condition (P) is satisfied.
(iii) This follows from Example 17.3.
(iv) and (v) Remark 12.80 implies for a non-trivial finite cyclic subgroup 𝐶 of 𝐺
that Θ𝐶 ·

(
Q ⊗Z 𝐾1 (Z𝐶)

)
= 0 holds if and only if aut(𝐶) = 𝐼 · 𝐷𝐺𝐶 is true and that

we have Θ𝐶 ·
(
Q ⊗Z 𝐾0 (Z𝐶)

)
= 0. Now the claim follows from Theorem 17.1. ⊓⊔
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17.4.2 Rationalized Algebraic 𝑳-Theory

The next result follows from Subsection 9.10.4, Theorem 12.79, and Theo-
rem 13.62 (i).

Theorem 17.5 (Rational computation of algebraic 𝐿-theory). Suppose that the
group 𝐺 satisfies the 𝐿-theoretic Farrell-Jones Conjecture 13.6 with coefficients in
the ring with involution 𝑅 after inverting 2.

Then we get for every decoration ⟨ 𝑗⟩ and every 𝑛 ∈ Z an isomorphism⊕
𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈ (FCY)

𝐻𝑝 (𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑞 (𝑅𝐶)

)
�−→ Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅𝐺).

Exercise 17.6. Let 𝐹 be a finite group of odd order. Put 𝐺 = 𝐹 ≀ Z. Show for all
decorations 𝑗 ∈ Z, 𝑗 ≤ 2 and odd 𝑛 ∈ Z

Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝐺) �
{
Q 𝑛 ≡ 1 mod 4;
{0} 𝑛 ≡ 3 mod 4.

17.4.3 Rationalized Topological 𝑲-Theory

Theorem 17.7 (Rational computation of topological 𝐾-theory). Suppose that the
group 𝐺 satisfies the Baum-Connes Conjecture 14.9. Let Λ be the ring Z ⊆ Λ ⊆ Q
that is obtained from Z by inverting the orders of the finite subgroups of 𝐺.

Then there is an isomorphism⊕
(𝐶 ) ∈ (FCY)

Λ ⊗Z 𝐾𝑛 (𝐵𝐶𝐺𝐶) ⊗Λ[𝑁𝐺𝐶/𝐶𝐺𝐶 ] 𝜃𝐶 · Λ ⊗Z RepC (𝐶)

�−→ Λ ⊗Z 𝐾𝑛 (𝐶∗𝑟 (𝐺))

where (F CY) is the set of conjugacy classes of finite cyclic subgroups of 𝐺.
If we tensor with Q, we get an isomorphism⊕
𝑝+𝑞=𝑛

⊕
(𝐶 ) ∈ (FCY)

𝐻𝑝 (𝐵𝐶𝐺𝐶;Q) ⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 · Q ⊗Z 𝐾𝑞 (𝐶∗𝑟 (𝐶))

�−→ Q ⊗Z 𝐾𝑛 (𝐶∗𝑟 (𝐺)).

Proof. This follows from Theorem 10.69 and Theorem 12.79. ⊓⊔
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17.4.4 The Complexified Comparison Map from Algebraic to Topological
𝑲-Theory

If we consider 𝑅 = C as coefficient ring and apply − ⊗Z C instead of − ⊗Z Q, the
formulas simplify. Suppose that 𝐺 satisfies the Baum-Connes Conjecture 14.9 and
the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring C. Recall
that con(𝐺) 𝑓 is the set of conjugacy classes (𝑔) of elements 𝑔 ∈ 𝐺 of finite order.
We denote for 𝑔 ∈ 𝐺 by ⟨𝑔⟩ the cyclic subgroup generated by 𝑔.

Then we get the following commutative square whose horizontal maps are iso-
morphisms and whose vertical maps are induced by the obvious change of theory
homomorphisms, see [649, Theorem 0.5],⊕

𝑝+𝑞=𝑛
⊕
(𝑔) ∈con(𝐺) 𝑓 𝐻𝑝 (𝐶𝐺 ⟨𝑔⟩;C) ⊗Z 𝐾

ALG
𝑞 (C) � //

��

𝐾ALG
𝑛 (C𝐺) ⊗Z C

��⊕
𝑝+𝑞=𝑛

⊕
(𝑔) ∈con(𝐺) 𝑓 𝐻𝑝 (𝐶𝐺 ⟨𝑔⟩;C) ⊗Z 𝐾

TOP
𝑞 (C) � // 𝐾TOP

𝑛 (𝐶∗𝑟 (𝐺)) ⊗Z C.

Suslin [935, Theorem 4.9] has proved that the algebraic 𝐾-theory of C in dimensions
2𝑛 for 𝑛 ≥ 1 has a unique divisible group and hence admits no non-trivial map to
Z. This implies that the canonical map 𝐾ALG

𝑞 (C) → 𝐾TOP
𝑞 (C) from the algebraic

𝐾-theory of C to the topological 𝐾-theory of C is trivial in dimensions 𝑞 ≠ 0
and a bijection in dimension 𝑞 = 0. Thus rationally we understand by the diagram
above the comparison map from algebraic 𝐾-theory of the complex group ring
to the topological 𝐾-theory of the group 𝐶∗-algebra provided that 𝐺 satisfies the
Baum-Connes Conjecture 14.9 and the 𝐾-theoretic Farrell-Jones Conjecture 13.1
with coefficients in the ring C.

Remark 17.8 (Separation of Variables). In Theorems 17.1, 17.5, and 17.7 and in
Subsection 17.4.4 we see a principle which we call separation of variables: There
is a group homology part that is independent of the coefficient ring 𝑅 and the 𝐾- or
𝐿-theory under consideration and a part depending only on the values of the theory
under consideration on 𝑅𝐶 or 𝐶∗𝑟 (𝐶) for all finite cyclic subgroups 𝐶 ⊆ 𝐺.

17.4.5 Rationalized Topological 𝑲-Theory of Virtually Z𝒏 Groups

Consider a group extension 1 → 𝐴 → 𝐺
𝑝
−→ 𝑄 → 1 of a finitely generated free

abelian group 𝐴 by a finite group𝑄. Our goal is to compute the rank rkZ (𝐾𝑛 (𝐶∗𝑟 (𝐺)))
of the finitely generated abelian group 𝐾𝑛 (𝐶∗𝑟 (𝐺)). This turns out to be rather
difficult. The most applicable result will be Theorem 17.21.

As 𝐴 is abelian, we get a well-defined group homomorphism

(17.9) 𝜌 : 𝑄 → autZ (𝐴)
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to the group of automorphisms of the abelian group 𝐴 by sending 𝑞 to the
Z-automorphism of 𝐴 given by conjugation with any lift of 𝑞 to 𝐺 under 𝑝.

Consider a cyclic subgroup 𝐶 ⊆ 𝑄. Choose a generator 𝑞 ∈ 𝐶. Recall that
𝐻1 (𝐶; 𝐴) is the quotient of the kernel of the Z-homomorphism 𝑁𝑞 : 𝐴→ 𝐴 sending
𝑎 to

∑ |𝑞 |−1
𝑖=0 𝜌(𝑞)𝑖 (𝑎) by the image of the Z-homomorphism 𝜌(𝑞) − id𝐴 : 𝐴 → 𝐴

sending 𝑎 to 𝜌(𝑞) (𝑎) − 𝑎. Note that 𝑁𝑞 is independent of the choice of 𝑞. Moreover,
the image of 𝜌(𝑞) − id𝐴 : 𝐴→ 𝐴 is independent of the choice of the generator 𝑞.

For a cyclic subgroup 𝐶 ⊆ 𝑄 let 𝐶𝑄𝐶 be the centralizer of 𝐶, i.e., 𝐶𝑄𝐶 =

{𝑞1 ∈ 𝑄 | 𝑞1𝑐 = 𝑐𝑞1 for all 𝑐 ∈ 𝐶}. Let 𝐶𝑄𝐶 be the quotient of 𝐶𝑄𝐶 by 𝐶, i.e.,
𝐶𝑄𝐶 = 𝐶𝑄𝐶/𝐶. For 𝑞1 ∈ 𝐶𝑄𝐶 let 𝑞1 ∈ 𝐶𝐺𝐶 be the element in represented by 𝑞1.

For any element 𝑎 ∈ ker(𝑁𝑞) we denote by 𝑎 its class in 𝐻1 (𝐶; 𝐴). The group
homomorphism 𝜌 : 𝑄 → autZ (𝐴) induces by restriction to 𝐶𝑄𝐶 a group homo-
morphism 𝜌 |𝐶𝑄𝐶 : 𝐶𝑄𝐶 → autZ𝐶 (𝐴), where we consider 𝐴 as a Z𝐶-module by
restricting 𝜌 : 𝑄 → autZ (𝐴) to 𝐶. One easily checks that 𝜌 |𝐶𝑄𝐶 induces a group
homomorphism

(17.10) 𝜌𝐶 : 𝐶𝑄𝐶 → autZ (𝐻1 (𝐶; 𝐴))

which sends 𝑞1 for 𝑞1 ∈ 𝐶𝑄𝐶 to the automorphism 𝐻1 (𝐶; 𝐴) �−→ 𝐻1 (𝐶; 𝐴) which
maps 𝑎 to 𝜌(𝑞1) (𝑎) = 𝑞1𝑎𝑞1

−1 for any 𝑎 ∈ ker(𝑁𝑞) and any 𝑞1 ∈ 𝑝−1 (𝑞1). Note that
the composite of 𝜌𝐶 : 𝐶𝑄𝐶 → autZ (𝐻1 (𝐶; 𝐴)) with the projection𝐶𝑄𝐶 → 𝐶𝑄𝐶 is
given by the group homomorphism 𝜌 |𝐶𝑄𝐶 : 𝐶𝑄𝐶 → autZ𝐶 (𝐴) and the functoriality
of 𝐻1 (𝐶; 𝐴) in 𝐴. In order to show that 𝜌𝐶 is well-defined, one needs to show
for 𝑐 ∈ 𝐶 that the Z𝐶-automorphism 𝑙𝑐 : 𝐴 → 𝐴 sending 𝑎 to 𝜌(𝑐) (𝑎) induces
the identity on 𝐻1 (𝐶; 𝐴). This follows from the fact that for any projective Z𝐶-
resolution 𝑃∗ of the trivial Z𝐶-module Z the Z𝐶-chain map (𝑙𝑐)∗ : 𝑃∗ → 𝑃∗ given
by multiplication by 𝑐 is Z𝐶-chain homotopic to the identity id𝑃∗ .

Fix an element 𝑞 ∈ 𝑄 together with a lift 𝑞 ∈ 𝐺, i.e., 𝑝(𝑞) = 𝑞. We assume that
𝑞 has finite order. Then we have |𝑞 | = |𝑞 |. We want to define a map

(17.11) 𝜇𝑞 : 𝐶𝑄 ⟨𝑞⟩ → 𝐻1 (⟨𝑞⟩; 𝐴)

sending 𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ represented by 𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ to 𝑞−1𝑞1𝑞𝑞1
−1 for any lift 𝑞1 of

𝑞1. We need to check that 𝜇 is well-defined.
Obviously 𝑝(𝑞−1𝑞1𝑞𝑞1

−1) = 𝑞−1𝑞1𝑞𝑞
−1
1 = 𝑞1𝑞

−1𝑞𝑞−1
1 = 𝑒𝑄 holds, which

implies 𝑞−1𝑞1𝑞𝑞1
−1 ∈ 𝐴. One easily proves by induction over 𝑛 = 1, 2, . . .

𝑛−1∑︁
𝑖=0

𝑞𝑖 (𝑞−1𝑞1𝑞𝑞1
−1)𝑞−𝑖 = 𝑞−1𝑞1𝑞

𝑛𝑞1
−1
𝑞−𝑛+1.

This implies that 𝑞−1𝑞1𝑞𝑞1
−1 lies in the kernel of ker(𝑁𝑞) and hence defines an

element 𝑞−1𝑞1𝑞𝑞1
−1 in 𝐻1 (⟨𝑞⟩; 𝐴). Next one has to show that this is independent

of the choice of the lift 𝑞1 of 𝑞1. This is a consequence of the following calculation
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for 𝑎 ∈ 𝐴

𝑞−1 (𝑞1𝑎)𝑞(𝑞1𝑎)−1 = 𝑞−1𝑞1𝑞𝑞1
−1
𝑞1𝑞

−1𝑎𝑞𝑎−1𝑞1
−1

= 𝑞−1𝑞1𝑞𝑞1
−1 + 𝑞1 (𝑞−1𝑎𝑞𝑎−1)𝑞1

−1

= 𝑞−1𝑞1𝑞𝑞1
−1 + 𝜌(𝑞1) (𝜌(𝑞−1) (𝑎) − 𝑎)

= 𝑞−1𝑞1𝑞𝑞1
−1 + 𝜌(𝑞1) ◦ 𝜌(𝑞−1) (𝑎) − 𝜌(𝑞1) (𝑎)

= 𝑞−1𝑞1𝑞𝑞1
−1 + 𝜌(𝑞1) ◦ 𝜌(𝑞−1) (𝑎) − 𝜌(𝑞𝑞1𝑞

−1) (𝑎)
= 𝑞−1𝑞1𝑞𝑞1

−1 + 𝜌(𝑞1) ◦ 𝜌(𝑞−1) (𝑎) − 𝜌(𝑞) ◦ 𝜌(𝑞1) ◦ 𝜌(𝑞−1) (𝑎)
= 𝑞−1𝑞1𝑞𝑞1

−1 + (𝜌(𝑞) − id)
(
𝜌(𝑞1) ◦ 𝜌(𝑞−1) (−𝑎)

)
,

which implies 𝑞−1 (𝑞1𝑎)𝑞(𝑞1𝑎)−1 = 𝑞−1𝑞1𝑞𝑞1
−1.

The choice of the representative 𝑞1 of 𝑞1 does not matter, since we have for 𝑖 ≥ 0

𝑞−1 (𝑞1𝑞
𝑖)𝑞(𝑞1𝑞

𝑖)−1 = 𝑞−1𝑞1𝑞
𝑖𝑞𝑞−𝑖𝑞1

−1
= 𝑞−1𝑞1𝑞𝑞1

−1
.

Note that 𝜇𝑞 depends on the choice of the lift 𝑞 of 𝑞. Moreover, it is not necessarily
a group homomorphism. Namely, for 𝑞1, 𝑞2 ∈ 𝐶𝑄 ⟨𝑞⟩ we get

(17.12) 𝜇𝑞 (𝑞1𝑞2) = 𝜇𝑞 (𝑞1) + 𝜌⟨𝑞⟩ (𝑞1) (𝜇(𝑞2))

from the following calculation, since 𝑞1𝑞2 is a lift of 𝑞1𝑞2

𝜇𝑞 (𝑞1𝑞2) = 𝑞−1 (𝑞1𝑞2)𝑞(𝑞1𝑞2)−1

= 𝑞−1𝑞1𝑞𝑞1
−1
𝑞1𝑞−1𝑞2𝑞𝑞2

−1
𝑞1
−1

= 𝑞−1𝑞1𝑞𝑞1
−1 + 𝑞1𝑞−1𝑞2𝑞𝑞2

−1
𝑞1
−1

= 𝜇𝑞 (𝑞1) + 𝜌⟨𝑞⟩ (𝑞1) (𝜇𝑞 (𝑞2)).

The composite of 𝜇𝑞 with the map induced by 𝑝 from 𝐶𝐺 ⟨𝑞⟩ to 𝐶𝑄 ⟨𝑞⟩ is obviously
trivial. If 𝑝 has a splitting 𝑠 : 𝑄 → 𝐺 and we consider 𝑞 = 𝑠(𝑞), then the map 𝜇𝑞 is
trivial because we get for 𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩

𝜇𝑞 (𝑞1) = 𝑠(𝑞)−1𝑠(𝑞1)𝑠(𝑞)𝑠(𝑞1)−1 = 𝑠(𝑞−1𝑞1𝑞𝑞
−1
1 ) = 𝑠(𝑒𝑄) = 0.

Lemma 17.13. We get for 𝑎 ∈ 𝐴:

𝑝(𝐶𝐺 ⟨𝑞𝑎⟩) = {𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ | 𝜇𝑞 (𝑞1) = 𝑎 − 𝜌⟨𝑞⟩ (𝑞1) (𝑎)}.

Proof. Consider 𝑞1 ∈ 𝑝(𝐶𝐺 ⟨𝑞𝑎⟩). Let 𝑔1 ∈ 𝐶𝐺 ⟨𝑞𝑎⟩ be an element with 𝑝(𝑔1) = 𝑞1.
Then 𝑔1𝑞𝑎𝑔

−1
1 = 𝑞𝑎. Hence 𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ and we get:
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𝑎 = 𝑞−1𝑔1𝑞𝑎𝑔
−1
1

= (𝑞−1𝑔1𝑞𝑔
−1
1 ) (𝑔1𝑎𝑔

−1
1 )

= (𝑞−1𝑔1𝑞𝑔
−1
1 ) + 𝑔1𝑎𝑔

−1
1

= 𝜇𝑞 (𝑞1) + 𝜌⟨𝑞⟩ (𝑞1) (𝑎).

Consider an element 𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ satisfying 𝜇𝑞 (𝑞1) = 𝑎 − 𝜌⟨𝑞⟩ (𝑞1) (𝑎). Choose
𝑔1 ∈ 𝐺 with 𝑝(𝑔1) = 𝑞1. Then we get from the calculation above 𝑎 = 𝑞−1𝑔1𝑞𝑎𝑔

−1
1 .

Hence there is an element 𝑏 ∈ 𝐴 satisfying

𝑎 = 𝑞−1𝑔1𝑞𝑎𝑔
−1
1 + (𝜌(𝑞) − id) (𝑏).

Consider any 𝑐 ∈ 𝐴. Put 𝑔2 = 𝑐𝑔1. Then

𝑝(𝑔2) = 𝑝(𝑐𝑔1) = 𝑝(𝑐)𝑝(𝑔1) = 𝑝(𝑔1) = 𝑞1

and

𝑞−1𝑔2𝑞𝑎𝑔
−1
2 = 𝑞−1𝑐𝑔1𝑞𝑎(𝑐𝑔1)−1

= 𝑞−1𝑐𝑞𝑞−1𝑔1𝑞𝑎𝑔
−1
1 𝑐−1

= 𝜌(𝑞−1) (𝑐)𝑞−1𝑔1𝑞𝑎𝑔
−1
1 𝑐−1

= 𝑞−1𝑔1𝑞𝑎𝑔
−1
1 + 𝜌(𝑞

−1) (𝑐) − 𝑐
= 𝑎 − 𝜌(𝑞) (𝑏) + 𝑏 + 𝜌(𝑞−1) (𝑐) − 𝑐.

If we take 𝑐 = −𝜌(𝑞) (𝑏), then −𝜌(𝑞) (𝑏) + 𝑏 + 𝜌(𝑞−1) (𝑐) − 𝑐 = 0 and hence
𝑞−1𝑔2𝑞𝑎𝑔

−1
2 = 𝑎. This implies 𝑔2𝑞𝑎𝑔

−1
2 = 𝑞𝑎 and therefore 𝑔2 ∈ 𝐶𝐺 ⟨𝑞𝑎⟩. Hence

𝑞1 ∈ 𝑝(𝐶𝐺 ⟨𝑞𝑎⟩) holds. ⊓⊔

As a special case we get 𝑝(𝐶𝐺 ⟨𝑞⟩) = ker(𝜇𝑞) since 𝜌⟨𝑞⟩ (𝑞1) (0) = 0 holds for all
𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩. Moreover, if 𝑝 has a section 𝑠 and we put 𝑞 = 𝑠(𝑞), then 𝜇𝑞 is trivial
and hence 𝑝(𝐶𝐺 ⟨𝑠(𝑞)⟩) = 𝐶𝑄 ⟨𝑞⟩.

Lemma 17.14. (i) Consider 𝑎 ∈ 𝐴. Then 𝑞𝑎 has finite order if and only if 𝑎 ∈
ker(𝑁𝑞);

(ii) Consider 𝑎0, 𝑎1 ∈ ker(𝑁𝑞). Then we have (𝑞𝑎0) = (𝑞𝑎1) if and only if there
exists a 𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ with 𝑎1 − 𝜌⟨𝑞⟩ (𝑞1) (𝑎0) = 𝜇𝑞 (𝑞1).

Proof. (i) If |𝑞𝑎 | < ∞ holds, then we have |𝑞𝑎 | = |𝑞 | = |𝑞 |. Now the claim follows
from the equality (𝑞𝑎) |𝑞 | = 𝑁𝑞 (𝑎).
(ii) Suppose (𝑞𝑎0) = (𝑞𝑎1). Then there is an element 𝑔1 ∈ 𝐺 satisfying 𝑔1𝑞𝑎0𝑔

−1
1 =

𝑞𝑎1. This implies

𝑝(𝑔1)𝑞𝑝(𝑔1)−1 = 𝑝(𝑔1)𝑞𝑝(𝑎0)𝑝(𝑔1)−1 = 𝑝(𝑔1𝑞𝑎0𝑔
−1
1 )

= 𝑝(𝑞𝑎1) = 𝑝(𝑞)𝑝(𝑎1) = 𝑞.
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If we put 𝑞1 = 𝑝(𝑔1), then 𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ and we take as a lift 𝑞1 of 𝑞1 the element 𝑔1.
We get

𝑎1 = 𝑞−1𝑞1𝑞𝑎0𝑞1
−1

= 𝑞−1𝑞1𝑞𝑞1
−1
𝑞1𝑎0𝑞1

−1

= 𝑞−1𝑞1𝑞𝑞1
−1 + 𝑞1𝑎0𝑞1

−1
= 𝜇𝑞 (𝑞1) + 𝜌⟨𝑞⟩ (𝑞1) (𝑎0).

Now suppose that there exists a 𝑞1 ∈ 𝑄 satisfying 𝑎1−𝜌⟨𝑞⟩ (𝑞1) (𝑎0) = 𝜇𝑞 (𝑞1). Let 𝑔1

be any lift of 𝑞1 to 𝐺. Then the same computation above shows 𝑞−1𝑔1𝑞𝑎0𝑔
−1
1 = 𝑎1.

We can arrange by replacing 𝑔1 by 𝑔2 = 𝑐𝑔1 for 𝑐 ∈ 𝐴 that 𝑞−1𝑔2𝑞𝑎0𝑔
−1
2 = 𝑎1 holds

by the same argument as in the proof of Lemma 17.13. Now we get

(𝑞𝑎1) = (𝑞𝑞−1𝑔2𝑞𝑎0𝑔
−1
2 ) = (𝑔2𝑞𝑎0𝑔

−1
2 ) = (𝑞𝑎0).

⊓⊔

Lemma 17.15. For every finite cyclic subgroup 𝐷 ⊆ 𝐺 and every 𝑛 ∈ Z we get a
Q-isomorphism

𝐻𝑛 (𝐶𝐺𝐷;Q) � 𝐻𝑛 (𝐴𝑝 (𝐷) ;Q) 𝑝 (𝐶𝐺𝐷)

where 𝐴𝑝 (𝐷) is to be understood with respect to the 𝑄-action 𝜌 on 𝐴 and
the 𝑝(𝐶𝐺𝐷)-fixed point set 𝐻𝑛 (𝐴𝑝 (𝐷) ;Q) 𝑝 (𝐶𝐺𝐷) is understood with respect to
the 𝐶𝑄𝑝(𝐷)-action on 𝐻𝑛 (𝐴𝑝 (𝐷) ;Q) induced by 𝜌 |𝐶𝑄 𝑝 (𝐷) and the inclusion
𝑝(𝐶𝐺𝐷) ⊆ 𝐶𝑄𝑝(𝐷).

Proof. This follows from the Lyndon-Hochschild-Serre spectral sequence applied to
the group extension

1→ 𝐴𝑝 (𝐷) = 𝐴 ∩ 𝐶𝐺𝐷 → 𝐶𝐺𝐷 → 𝑝(𝐶𝐺𝐷) → 1.

⊓⊔

Denote by con 𝑓 (𝐺) the conjugacy classes of elements of finite order in 𝐺. Let
con 𝑓 (𝑝) : con 𝑓 (𝐺) → con 𝑓 (𝑄) be the map sending (𝑔) to (𝑝(𝑔)). Then we have

con 𝑓 (𝐺) =
∐

{ (𝑞) ∈con 𝑓 (𝑄) |∃𝑞∈𝑝−1 (𝑞) , |𝑞 |<∞}
con 𝑓 (𝑝)−1 ((𝑞)).

We conclude from [649, Example 8.1]

(17.16) rkZ (𝐾𝑛 (𝐶∗𝑟 (𝐺))) =
∑︁
𝑚∈Z

∑︁
(𝑔) ∈con 𝑓 (𝑔)

dimQ
(
𝐻𝑛+2𝑚 (𝐶𝐺 ⟨𝑔⟩;Q)

)
.
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Hence Lemma 17.15 implies for every 𝑛 ∈ Z,

rkZ (𝐾𝑛 (𝐶∗𝑟 (𝐺)))(17.17)

=
∑︁
𝑚∈Z

∑︁
(𝑞) ∈con 𝑓 (𝑄)

∃𝑞∈𝑝−1 (𝑞) , |𝑞 |<∞

∑︁
(𝑔) ∈con 𝑓 (𝐺)
(𝑝 (𝑔) )=(𝑞)

dimQ
(
𝐻𝑛+2𝑚 (𝐴⟨𝑞⟩ ;Q) 𝑝 (𝐶𝐺 ⟨𝑔⟩)

)
where 𝐴⟨𝑞⟩ is to be understood with respect to the𝑄-action 𝜌 and the 𝑝(𝐶𝐺 ⟨𝑔⟩)-fixed
point set 𝐻𝑚 (𝐴⟨𝑞⟩ ;Q) 𝑝 (𝐶𝐺 ⟨𝑔⟩) is understood with respect to the 𝑝(𝐶𝐺 ⟨𝑔⟩)-action
on 𝐴⟨𝑞⟩ induced by 𝜌 |𝑝 (𝐶𝐺 ⟨𝑔⟩) .

Next we define a group homomorphism

(17.18) 𝜎𝑞 : 𝐶𝐺 ⟨𝑞⟩ → aut(𝐻1 (⟨𝑞⟩; 𝐴)),

where aut(𝐻1 (⟨𝑞⟩; 𝐴)) is the set of automorphisms of the set 𝐻1 (⟨𝑞⟩; 𝐴). It sends
𝑞1 ∈ 𝐶𝑄 ⟨𝑞⟩ to the automorphism of the set 𝐻1 (⟨𝑞⟩; 𝐴) mapping 𝑎 to 𝜌⟨𝑞⟩ (𝑞1) (𝑎) +
𝜇𝑞 (𝑞1). This is indeed a group homomorphism by the following calculation for
𝑞1, 𝑞2 ∈ 𝐶𝐺 ⟨𝑞⟩ and 𝑎 ∈ 𝐻1 (⟨𝑞⟩; 𝐴)

𝜎𝑞 (𝑞1) ◦ 𝜎𝑞 (𝑞2) (𝑎) = 𝜎𝑞 (𝑞1)
(
𝜌⟨𝑞⟩ (𝑞2) (𝑎) + 𝜇𝑞 (𝑞2)

)
= 𝜌⟨𝑞⟩ (𝑞1)

(
𝜌⟨𝑞⟩ (𝑞2) (𝑎) + 𝜇𝑞 (𝑞2)

)
+ 𝜇𝑞 (𝑞1)

= 𝜌⟨𝑞⟩ (𝑞1) ◦ 𝜌⟨𝑞⟩ (𝑞2) (𝑎) + 𝜌⟨𝑞⟩ (𝑞1) (𝜇𝑞 (𝑞2)) + 𝜇𝑞 (𝑞1)
(17.12)
= 𝜌⟨𝑞⟩ (𝑞1𝑞2) (𝑎) + 𝜇𝑞 (𝑞1𝑞2)
= 𝜎𝑞 (𝑞1𝑞2) (𝑎)

and by 𝜎𝑞 (𝑒) (𝑎) = 𝜌⟨𝑞⟩ (𝑒) (𝑎) + 𝜇𝑞 (𝑒) = 𝑎 + 0 = 𝑎 for 𝑒 ∈ 𝐶𝑄 ⟨𝑞⟩ the unit
element. Note for 𝑞1 ∈ 𝐶𝐺 ⟨𝑞⟩ that 𝜎𝑞 (𝑞1) : 𝐻1 (⟨𝑞⟩; 𝐴) → 𝐻1 (⟨𝑞⟩; 𝐴) is not neces-
sarily a Z-homomorphism, whereas 𝜌𝑞 (𝑞1) : 𝐻1 (⟨𝑞⟩; 𝐴) → 𝐻1 (⟨𝑞⟩; 𝐴) is always a
Z-homomorphism. If 𝑝 has a section and we put 𝑞 = 𝑠(𝑞), then 𝜇 is trivial and hence
the two 𝐶𝐺 ⟨𝑞⟩-operations 𝜌⟨𝑞⟩ and 𝜎𝑞 on aut(𝐻1 (⟨𝑞⟩; 𝐴)) agree.

Lemma 17.19. Consider 𝑞 ∈ 𝑄 and 𝑞 ∈ 𝐺 with 𝑝(𝑞) = 𝑞 and |𝑞 | < ∞.

(i) There is a bijection

𝑡𝑞 : 𝐶𝐺 ⟨𝑞⟩\𝐻1 (⟨𝑞⟩; 𝐴) �−→ con 𝑓 (𝑝)−1 ((𝑞)), 𝐶𝐺 ⟨𝑞⟩𝑎 ↦→ (𝑞𝑎)

for any choice 𝑎 ∈ ker(𝑁𝑞 − id) representing 𝑎, where the quotient
𝐶𝐺 ⟨𝑞⟩\𝐻1 (⟨𝑞⟩; 𝐴) is to be understood with respect to the operation 𝜎𝑞;

(ii) Consider 𝑎 ∈ ker(𝑁𝑞 − id). Then we get

𝑝(𝐶𝐺 ⟨𝑞𝑎⟩) = {𝑞1 ∈ 𝐶𝐺 ⟨𝑞⟩ | 𝑎 = 𝜎𝑞 (𝑞1) (𝑎)}.

Proof. (i) This follows from Lemma 17.14.
(ii) This follows from Lemma 17.13. ⊓⊔
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Theorem 17.20 (Rational computation of 𝐾∗ (𝐶∗𝑟 (𝐺)) for a virtually Z𝑛-group
𝐺). Consider a group extension 1→ 𝐴→ 𝐺

𝑝
−→ 𝑄 → 1 of a finitely generated free

abelian group 𝐴 by a finite group𝑄. Then we get in the setup and the notation above
for 𝑛 ∈ Z

rkZ (𝐾𝑛 (𝐶∗𝑟 (𝐺)))

=
∑︁
𝑚∈Z

∑︁
(𝑞) ∈con(𝑄)

∃𝑞∈𝑝−1 (𝑞) , |𝑞 |<∞

∑︁
𝐶𝑄 ⟨𝑞⟩𝑎∈

𝐶𝑄 ⟨𝑞⟩\𝐻1 (⟨𝑞⟩;𝐴)

dimQ
(
𝐻𝑛+2𝑚 (𝐴⟨𝑞⟩ ;Q) (𝐶𝐺 ⟨𝑞⟩)𝑎

)
,

where 𝐴⟨𝑞⟩ is to be understood with respect to the𝑄-action 𝜌 and the (𝐶𝑄 ⟨𝑞⟩)𝑎-fixed
point set 𝐻𝑚 (𝐴⟨𝑞⟩ ;Q) (𝐶𝑄 ⟨𝑞⟩)𝑎 is understood with respect to the (𝐶𝑄 ⟨𝑞⟩)𝑎-action
on 𝐴⟨𝑞⟩ induced by 𝜌 | (𝐶𝑄 ⟨𝑞⟩)𝑎 and (𝐶𝑄 ⟨𝑞⟩)𝑎 is the isotropy of 𝑎 ∈ 𝐻1 (⟨𝑞⟩, 𝐴) with
respect to the 𝐶𝐺 ⟨𝑞⟩-operation 𝜎𝑞 of (17.18).

Proof. This follows (17.17) and Lemma 17.19. ⊓⊔

Note that (𝐶𝐺 ⟨𝑞⟩)𝑎 depends on the choice of 𝑞 as 𝜎𝑞 depends on this choice.
The situation improves drastically if we assume that 𝑝 has a section 𝑠 : 𝑄 → 𝐺,

since then 𝜇𝑞 is trivial and 𝜌⟨𝑞⟩ = 𝜎𝑞 . Namely, Theorem 17.20 reduces to the
following result.

Theorem 17.21 (Rational computation of 𝐾∗ (𝐶∗𝑟 (𝐺)) for a virtually Z𝑛-group𝐺
in the split case). Consider a group extension 1→ 𝐴→ 𝐺

𝑝
−→ 𝑄 → 1 of a finitely

generated free abelian group 𝐴 by a finite group 𝑄. Suppose that there is a group
homomorphism 𝑠 : 𝑄 → 𝐺 with 𝑝 ◦ 𝑠 = id𝑄. Then we get

rkZ (𝐾𝑛 (𝐶∗𝑟 (𝐺)))

=
∑︁
𝑚∈Z

∑︁
(𝑞) ∈con(𝑄)

∑︁
𝐶𝑄 ⟨𝑞⟩𝑎∈

𝐶𝑄 ⟨𝑞⟩\𝐻1 (⟨𝑞⟩;𝐴)

dimQ
(
𝐻𝑛+2𝑚 (𝐴⟨𝑞⟩ ;Q) (𝐶𝑄 ⟨𝑞⟩)𝑎

)
,

where 𝐴⟨𝑞⟩ is to be understood with respect to the 𝑄-action 𝜌, the (𝐶𝑄 ⟨𝑞⟩)𝑎-fixed
point set 𝐻𝑚 (𝐴⟨𝑞⟩ ;Q) (𝐶𝑄 ⟨𝑞⟩)𝑎 is understood with respect to the (𝐶𝑄 ⟨𝑞⟩)𝑎-action
on 𝐴⟨𝑞⟩ induced by 𝜌 | (𝐶𝑄 ⟨𝑞⟩)𝑎 , and (𝐶𝑄 ⟨𝑞⟩)𝑎 is the isotropy of 𝑎 ∈ 𝐻1 (⟨𝑞⟩, 𝐴)
with respect to the 𝐶𝑄 ⟨𝑞⟩-operation 𝜌⟨𝑞⟩ of (17.10).

Remark 17.22. Note that in the situation of Theorem 17.21 (𝐶𝐺 ⟨𝑞⟩)𝑎 depends only
on ⟨𝑞⟩ as 𝜌⟨𝑞⟩ depends only on ⟨𝑞⟩. Hence the formula appearing in Theorem 17.21
can be rewritten in terms of conjugacy classes of finite cyclic subgroups as
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(17.23) rkZ (𝐾𝑛 (𝐶∗𝑟 (𝐺)))

=
∑︁
𝑚∈Z

∑︁
(𝐶 )

𝐶⊆𝑄 cyclic

| gen(𝐶)/𝑁𝑄𝐶 | ·
∑︁

𝐶𝑄𝐶𝑎∈
𝐶𝑄𝐶\𝐻1 (𝐶;𝐴)

dimQ
(
𝐻𝑛+2𝑚 (𝐴𝐶 ;Q) (𝐶𝑄𝐶 )𝑎

)
,

where gen(𝐶) is the set of generators of 𝐶 and 𝑁𝑄𝐶 is the normalizer of 𝐶 in 𝑄,
which acts on gen(𝐶) by conjugation. This follows from the observation that for a
cyclic group 𝐶 of 𝑄 the number of elements (𝑞) ∈ con(𝑄) with (⟨𝑞⟩) = (𝐶) is
| gen(𝐶)/𝑁𝑄𝐶 |.

Exercise 17.24. Apply Theorem 17.21 to the infinite dihedral group 𝐷∞ = Z⋊Z/2.

17.5 Integral Computations for Infinite Groups

As mentioned above, no general pattern for integral calculations is known or ex-
pected. We give some examples where computations are possible and which will
illustrate the techniques.

17.5.1 Groups Satisfying Conditions (M) and (NM)

We mention at least one situation where a certain class of groups can be treated
systematically. LetMFIN be the subset of FIN consisting of elements in FIN
that are maximal in FIN .

Consider the following assertions concerning𝐺 which we have already introduced
in Subsection 11.6.12.

(M) Every non-trivial finite subgroup of 𝐺 is contained in a unique maximal
finite subgroup;

(NM) 𝑀 ∈ MFIN , 𝑀 ≠ {1} =⇒ 𝑁𝐺𝑀 = 𝑀 .

Classes of groups satisfying conditions (M) and (NM) have been given in Exam-
ple 11.33.

Denote by 𝐾𝑛 (𝐶∗𝑟 (𝐺)) the cokernel of 𝐾𝑛 (𝐶∗𝑟 ({1})) → 𝐾𝑛 (𝐶∗𝑟 (𝐺)), by
𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) the cokernel of 𝐾𝑂𝑛 (𝐶∗𝑟 ({1};R)) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)), and by
𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅𝐺) the cokernel of 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅) → 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅𝐺). This coincides with �̃� ⟨ 𝑗 ⟩𝑛 (𝑅), which

is defined for any ring 𝑅 with involution to be the cokernel of 𝐿 ⟨ 𝑗 ⟩𝑛 (Z) → 𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅)

if 𝑅 = Z𝐺, but not in general if we replace Z by other coefficients. Recall that
Wh𝑅𝑛 (𝐺) is the (𝑛 − 1)-th homotopy group of the homotopy fiber of the assembly
map 𝐵𝐺+ ∧ K(𝑅) → K(𝑅𝐺). Recall that we abbreviate 𝐸𝐺 = 𝐸FIN (𝐺) and
𝐵𝐺 = 𝐺\𝐸FIN (𝐺).
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Theorem 17.25 (Fundamental exact sequences for groups satisfying conditions
(M) and (NM)). Let Z ⊆ Λ ⊆ Q be a ring such that the order of any finite subgroup
of 𝐺 is invertible in Λ. Suppose that the group 𝐺 satisfies conditions (M) and (NM).
Let {𝑀𝑖 | 𝑖 ∈ 𝐼} be a complete set of representatives for the conjugacy classes of
maximal finite subgroups of 𝐺. Then:

(i) If 𝐺 satisfies the Baum-Connes Conjecture 14.9, then there is a short exact
sequence of topological 𝐾-groups

0→
⊕
𝑖∈𝐼

𝐾𝑛 (𝐶∗𝑟 (𝑀𝑖)) → 𝐾𝑛 (𝐶∗𝑟 (𝐺)) → 𝐾𝑛 (𝐵𝐺) → 0

where the maps 𝐾𝑛 (𝐶∗𝑟 (𝑀𝑖)) → 𝐾𝑛 (𝐶∗𝑟 (𝐺)) are induced by the inclusions
𝐻 → 𝐺.
It splits after applying − ⊗Z Λ;

(ii) If 𝐺 satisfies the Baum-Connes Conjecture 14.9, then there is a long exact
sequence of topological 𝐾-groups

· · · → 𝐾𝑂𝑛+1 (𝐵𝐺) →
⊕
𝑖∈𝐼

𝐾𝑂𝑛 (𝐶∗𝑟 (𝑀𝑖;R)) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R))

→ 𝐾𝑂𝑛 (𝐵𝐺) →
⊕
𝑖∈𝐼

𝐾𝑂𝑛−1 (𝐶∗𝑟 (𝑀𝑖;R)) → · · ·

where the maps 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐻;R)) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) are induced by the inclu-
sions 𝐻 → 𝐺.
It splits after applying − ⊗Z Λ. More precisely, the Λ-homomorphism

𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) ⊗Z Λ→ 𝐾𝑂𝑛 (𝐵𝐺) ⊗Z Λ

is split surjective;
(iii) Suppose that every infinite virtually cyclic subgroup of 𝐺 is of type 𝐼, and 𝐺

satisfies the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the
ring with involution 𝑅.
Then for all 𝑛 ∈ Z there is an exact sequence

· · · → 𝐻𝑛+1 (𝐵𝐺; L⟨−∞⟩ (𝑅)) →
⊕
𝑖∈𝐼

𝐿
⟨−∞⟩
𝑛 (𝑅𝑀𝑖)

→ 𝐿
⟨−∞⟩
𝑛 (𝑅𝐺) → 𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) → · · ·

where the maps 𝐿 ⟨−∞⟩𝑛 (𝑅𝐻) → 𝐿
⟨−∞⟩
𝑛 (𝑅𝐺) are induced by the inclusions

𝐻 → 𝐺.
It splits after applying − ⊗Z Λ, more precisely

𝐿
⟨−∞⟩
𝑛 (𝑅𝐺) ⊗Z Λ→ 𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) ⊗Z Λ

is a split-surjective map of Λ-modules;
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(iv) If 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in
the ring 𝑅, then there is for 𝑛 ∈ Z an isomorphism

𝐻𝑛 (𝐸FIN (𝐺) → 𝐸VCY (𝐺); K𝑅) ⊕
⊕
𝑖∈𝐼

Wh𝑅𝑛 (𝑀𝑖)
�−→Wh𝑅𝑛 (𝐺)

where the homomorphisms Wh𝑅𝑛 (𝐻) →Wh𝑅𝑛 (𝐺) are induced by the inclusions
𝐻 → 𝐺.

Proof. This follows from the existence of a nice model for 𝐸FIN (𝐺), see Theo-
rem 11.32, the long exact sequence (12.86), and Lemma 12.18 (ii). ⊓⊔

Remark 17.26 (Role of 𝐵𝐺). Theorem 17.25 illustrates that for such computations
a good understanding of the geometry of the orbit space 𝐵𝐺 is necessary. This can be
hard to figure out, even for what seem at first glance to be nice groups with pleasant
geometric properties such as crystallographic groups. In general 𝐵𝐺 can be very
complicated, see Theorem 11.63.

Many of the following results are based on Theorem 17.25.

17.5.2 Torsionfree One-Relator Groups

Let 𝐺 = ⟨𝑠𝑖 , 𝑖 ∈ 𝐼 | 𝑟⟩ be the presentation of a one-relator group 𝐺. Denote by 𝐹 the
free group on the set of generators {𝑠𝑖 | 𝑖 ∈ 𝐼}. Note that 𝑟 is an element in 𝐹. The
group 𝐺 is torsionfree if and only if for any element 𝑠 ∈ 𝐹 and natural number 𝑚
satisfying 𝑟 = 𝑠𝑚 we get 𝑚 = 1, see [553] or [693, Proposition 5.17 on page 107].

We begin with the following lemma.

Lemma 17.27. Let 𝑋 be the 2-dimensional 𝐶𝑊-complex given by the pushout

(17.28) 𝑆1 𝑞 //

𝑖

��

∨
𝑖∈𝐼 𝑆

1

𝑖

��
𝐷2

𝑄
// 𝑋.

Let 𝑑𝑖 ∈ Z be the degree of the composition 𝑆1 𝑞
−→ ∨

𝑖∈𝐼 𝑆
1 pr𝑖−−→ 𝑆1 where pr𝑖 is

the projection onto the 𝑖-th summand. Let H∗ be any (non-equivariant) generalized
homology theory satisfying the disjoint union axiom.

(i) Suppose that 𝑑𝑖 = 0 holds for all 𝑖 ∈ 𝐼. Then we get for 𝑛 ∈ Z an isomorphism

H𝑛 (𝑋) � H𝑛 ({•}) ⊕
⊕
𝑖∈𝐼
H𝑛−1 ({•}) ⊕ H𝑛−2 ({•});
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(ii) Suppose that there is one 𝑖 ∈ 𝐼 with 𝑑𝑖 ≠ 0. Then we have an isomorphism

H𝑛 (𝑋)
�−→ H𝑛 (𝑋, {•}) ⊕ H𝑛 ({•}),

and a short exact sequence

0→ 𝐻1 (𝑋) ⊗Z H𝑛−1 ({•}) → H𝑛 (𝑋, {•}) → TorZ1 (𝐻1 (𝑋),H𝑛−2 ({•})) → 0;

(iii) Let 𝑑 be the common greatest divisor of the finite set {|𝑑𝑖 | | 𝑖 ∈ 𝐼, 𝑑𝑖 ≠ 0},
provided that {|𝑑𝑖 | | 𝑖 ∈ 𝐼, 𝑑𝑖 ≠ 0} is non-empty.
Then 𝐻1 (𝑋) �

⊕
𝑖∈𝐼 Z and 𝐻2 (𝑋) is infinite cyclic if 𝑑𝑖 = 0 holds for all 𝑖 ∈ 𝐼.

If there is one 𝑖 ∈ 𝐼 with 𝑑𝑖 ≠ 0, then𝐻2 (𝑋) is trivial and𝐻1 (𝑋) � Z/𝑑
⊕

𝑖∈𝐽 Z
where the set |𝐽 | has cardinality |𝐼 | − 1 if |𝐼 | is finite, and the same cardinality
as |𝐼 | if 𝐼 is infinite.

Proof. We can assume without loss of generality that the pushout (17.28) above
consists of base point preserving maps, otherwise change 𝑞 up to homotopy to be
base point preserving. From the Mayer-Vietoris sequence of the pair (𝑋, {•}) and
the projection 𝑋 → {•}, we obtain an isomorphism

H𝑛 (𝑋)
�−→ H𝑛 (𝑋, {•}) ⊕ H𝑛 ({•}).

(i) If we apply 𝑆1 ∧ − to (17.28), we obtain a pushout of pointed spaces

𝑆2 𝑞 //

𝑖

��

∨
𝑖∈𝐼 𝑆

2

𝑖
��

𝐷3
𝑄
// 𝑆1 ∧ 𝑋

Since 𝑆2 is simply connected, one gets using the Hurewicz Theorem an isomorphism⊕
𝑖∈𝐼 𝐻2 (𝑆2) �−→ 𝜋2

( ∨
𝑖∈𝐼 𝑆

2) . We conclude that id𝑆1 ∧𝑞 is pointed nullhomotopic.
Hence we obtain a pointed homotopy equivalence 𝑆1 ∧ 𝑋 ≃−→ 𝑆3 ∨ ∨

𝑖∈𝐼 𝑆
2. Now

assertion (i) follows from the suspension isomorphism.
(ii) Since 𝑆1 is compact, only finitely many of the numbers 𝑑𝑖 are different from
zero. We get for any abelian group 𝐴 a group homomorphism

𝐷 (𝐴) : 𝐴→
⊕
𝑖∈𝐼

𝐴, 𝑎 ↦→ (𝑑𝑖 · 𝑎)𝑖∈𝐼 .



17.5 Integral Computations for Infinite Groups 533

The long exact sequence

(17.29) · · · → H𝑛−1 ({•})
𝐷 (H𝑛−1 ({•}) )−−−−−−−−−−−−→

⊕
𝑖∈𝐼
H𝑛−1 ({•}) → H𝑛 (𝑋, {•})

→ H𝑛−2 ({•})
𝐷 (H𝑛−2 ({•}) )−−−−−−−−−−−−→

⊕
𝑖∈𝐼
H𝑛−2 ({•}) → · · ·

comes from the long Mayer-Vietoris sequence of the pushout of pointed spaces (17.28)
above and the identification derived from the disjoint union axiom and the suspension
isomorphism ⊕

𝑖∈𝐼
H𝑛−1 ({•})

�−→ H𝑛
(∨
𝑖∈𝐼

𝑆1, {•}
)
.

If we take H∗ to be singular homology with integer coefficients, we see that 𝐷 (𝐴)
is obtained from 𝐷 (Z) by 𝐷 (𝐴) = 𝐷 (Z) ⊗𝐴 id𝐴 and there is a short exact sequence
0→ Z

𝐷 (Z)
−−−−→

⊕
𝑖∈𝐼 Z→ 𝐻1 (𝑋) → 0. This implies

coker(𝐷 (𝐴)) = 𝐻1 (𝑋) ⊗Z 𝐴;
ker(𝐷 (𝐴)) = TorZ1 (𝐻1 (𝑋), 𝐴).

(iii) If 𝑑𝑖 = 0 holds for all 𝑖 ∈ 𝐼, this follows from assertion (i). If there is one 𝑖 ∈ 𝐼
with 𝑑𝑖 ≠ 0, we conclude 𝐻2 (𝑋) = {0} from assertion (ii) and the claim about
𝐻1 (𝑋) follows from the exact sequence 0 → Z

𝐷 (Z)
−−−−→

⊕
𝑖∈Z Z → 𝐻1 (𝑋) → 0

established in the proof of assertion (ii). ⊓⊔

We denote by 𝐻𝑛 (𝑌 ; 𝐴) the singular homology of a space 𝑌 with coefficients
in the abelian group 𝐴 and abbreviate 𝐻𝑛 (𝑌 ) := 𝐻𝑛 (𝑌 ;Z). Note that the group
homology 𝐻𝑛 (𝐺) is 𝐻𝑛 (𝐵𝐺) and 𝐻1 (𝐺) = 𝐺/[𝐺,𝐺].

Lemma 17.30. Suppose that the one-relator-group 𝐺 is torsionfree. Let H∗ be any
(non-equivariant) generalized homology theory.

(i) If 𝑟 lies in [𝐹, 𝐹], we get isomorphisms

H𝑛 (𝐵𝐺) � H𝑛 ({•}) ⊕
⊕
𝑖∈𝐼
H𝑛−1 ({•}) ⊕ H𝑛−2 ({•});

(ii) If 𝑟 does not lie in [𝐹, 𝐹], then we get isomorphisms

H𝑛 (𝐵𝐺) � H𝑛 ({•}) ⊕ H𝑛 (𝐵𝐺, {•}),

and a short exact sequence

0→ 𝐻1 (𝐵𝐺) ⊗Z H𝑛−1 ({•}) → H𝑛 (𝐵𝐺, {•})
→ TorZ1 (𝐻1 (𝐵𝐺);H𝑛−2 ({•})) → 0;
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(iii)

𝐻𝑛 (𝐵𝐺; 𝐴) �



𝐴 𝑛 = 0;⊕
𝑖∈𝐼 𝐴 𝑛 = 1 and 𝑟 ∈ [𝐹, 𝐹];

𝐻1 (𝐵𝐺) ⊗Z 𝐴 𝑛 = 1 and 𝑟 ∉ [𝐹, 𝐹];
𝐴 𝑛 = 2 and 𝑟 ∈ [𝐹, 𝐹];
TorZ1 (𝐻1 (𝐵𝐺); 𝐴) 𝑛 = 2 and 𝑟 ∉ [𝐹, 𝐹];
0 𝑛 ≥ 3.

Proof. Consider the pushout

𝑆1 𝑞 //

𝑖

��

∨
𝑖∈𝐼 𝑆

1

𝑖

��
𝐷2

𝑄
// 𝑍

where the upper vertical arrow is given by the word 𝑟 ∈ ∗𝑖∈𝐼Z = 𝜋1
(∨

𝑖∈𝐼 𝑆
1) . Then

𝑍 is a model for 𝐵𝐺, see [693, Chapter III §§9 -11].
(i) This follows from Lemma 17.27 (i).
(ii) This follows from Lemma 17.27 (ii).
(iii) This follows from assertions (i) and (ii) applied to the special case when H∗ is
singular homology with coefficients in the abelian group 𝐴. ⊓⊔

Recall that the Baum-Connes-Conjecture 10.44 for torsionfree groups holds for
every torsionfree one-relator group 𝐺 predicting isomorphisms

asmb𝐺,C(𝐵𝐺)𝑛 : 𝐾𝑛 (𝐵𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺;C));
asmb𝐺,R (𝐵𝐺)𝑛 : 𝐾𝑂𝑛 (𝐵𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)).

Hence we get from Lemma 17.30 (i) in the case when 𝑟 belongs to [𝐹, 𝐹]

𝐾𝑛 (𝐶∗𝑟 (𝐺;C)) � 𝐾𝑛 ({•}) ⊕
⊕
𝑖∈𝐼

𝐾𝑛−1 ({•}) ⊕ 𝐾𝑛−2 ({•}) �
{⊕

𝑖∈Z Z 𝑛 even;
Z2 𝑛 odd,

and

𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) � 𝐾𝑂𝑛 ({•}) ⊕
⊕
𝑖∈𝐼

𝐾𝑂𝑛−1 ({•}) ⊕ 𝐾𝑂𝑛−2 ({•}).

If 𝑟 does not belong to [𝐹, 𝐹], then get from Lemma 17.30 (ii)

𝐾𝑛 (𝐶∗𝑟 (𝐺;C)) �
{
Z 𝑛 even;
𝐻1 (𝐺) 𝑛 odd,
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𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) � 𝐾𝑂𝑛 ({•}) ⊕ 𝐾𝑂𝑛 (𝐵𝐺, {•}),

and a short exact sequence

0→ 𝐻1 (𝐺) ⊗Z 𝐾𝑂𝑛−1 ({•}) → 𝐾𝑂𝑛 (𝐵𝐺, {•})
→ TorZ1 (𝐻1 (𝐺), 𝐾𝑂𝑛−2 ({•})) → 0.

The computation for 𝐾∗ (𝐶∗𝑟 (𝐺)) agrees with the one in [117].
Recall that the Farrell-Jones Conjecture 6.53 for torsionfree groups and reg-

ular rings for 𝐾-theory holds for torsionfree one-relator groups predicting for a
regular ring 𝑅 an isomorphism 𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺) for 𝑛 ∈ Z, and one
can apply Lemma 17.30 to 𝐻𝑛 (𝐵𝐺; K(𝑅)). Moreover, the Farrell-Jones Conjec-
ture 9.114 for torsionfree groups for 𝐿-theory predicts that the assembly map
𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) → 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺) is bijective for 𝑛 ∈ Z, and is known for tor-

sionfree one-relator groups to be true after inverting 2. So Lemma 17.30 can also
be used to compute 𝐾𝑛 (𝑅𝐺) and 𝐿 ⟨−∞⟩𝑛 (𝑅𝐺) [1/2] if one understands 𝐾𝑛 (𝑅) and
𝐿
⟨−∞⟩
𝑛 (𝑅) [1/2].

Exercise 17.31. Let 𝐺 = ⟨𝑠1, 𝑠2, . . . , 𝑠𝑛 | 𝑟⟩ be a finitely generated (not necessarily
torsionfree) one-relator group where 𝑟 is given by the word 𝑠𝑚1

𝑖1
𝑠
𝑚2
𝑖2
· · · 𝑠𝑚𝑙

𝑖𝑙
for 𝑖 𝑗 ∈

{1, 2, . . . , 𝑛} and 𝑚 𝑗 ∈ Z. Define for 𝑗 = 1, 2, . . . , 𝑛

𝑑 𝑗 =
∑︁

𝑘∈{1,2,...,𝑛}
𝑖𝑘= 𝑗

𝑚𝑘 .

Show that 𝐻1 (𝐺) � Z𝑛 if all the numbers 𝑑 𝑗 are trivial, and 𝐻1 (𝐺) � Z𝑛−1 ⊕
Z/𝑑 if not all the numbers 𝑑 𝑗 are zero and 𝑑 is the greatest common divisor of
{|𝑑 𝑗 | | 𝑗 = 1, 2, . . . , 𝑙, 𝑑 𝑗 ≠ 0}.

Exercise 17.32. Consider the 1-relator group𝐺 = ⟨𝑠1, 𝑠2 | 𝑠1𝑠2𝑠1𝑠
−1
2 𝑠−2

1 ⟩. Compute
the algebraic 𝐾-groups 𝐾𝑛 (C[Z/𝑚 × 𝐺]) for 𝑛 ≤ 1 and any natural number 𝑚.

Exercise 17.33. Let 𝐺 be the non-trivial semidirect product Z ⋊ Z. Compute
𝐿𝑠𝑛 (Z[𝐺]) for 𝑛 ∈ Z.

17.5.3 One-Relator Groups with Torsion

Let𝐺 = ⟨𝑠𝑖 , 𝑖 ∈ 𝐼 | 𝑟⟩ be the presentation of a one-relator group𝐺. For the remainder
of this subsection we assume that 𝐺 is not torsionfree.

Then there exists a maximal non-trivial finite subgroup 𝐶 ⊆ 𝐺, unique up to
conjugation. It is cyclic. Let 𝑚 ≥ 2 be its order. Denote by 𝐹 the free group on the
set of generators {𝑠𝑖 | 𝑖 ∈ 𝐼}. Note that then 𝑟 is an element in 𝐹. The natural number
𝑚 can be characterized as the largest natural number for which there exists a word
𝑠 ∈ 𝐹 with 𝑟 = 𝑠𝑚. Note that for such 𝑠 the cyclic group 𝐶 of order 𝑚 is generated
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by the class 𝑠 in 𝐺 represented by 𝑠 and every torsion element in 𝐺 is conjugated
to some power of 𝑠. This was proved by Karras-Magnus-Solitar, see [553] or [693,
Proposition 5.17 on page 107].

Let 𝑝 : 𝐵𝐺 → 𝐵𝐺 be the up to homotopy unique canonical map and let 𝑖 : 𝐶 → 𝐴

be the inclusion. The Mayer-Vietoris sequence of the 𝐺-quotient of the 𝐺-pushout
appearing in Theorem 11.32 yields the long exact sequence

(17.34) · · · → H𝑛 (𝐵𝐶, {•})
H𝑛 (𝐵𝑖)−−−−−−→ H𝑛 (𝐵𝐺, {•})

H𝑛 (𝑝)−−−−−→ H𝑛 (𝐵𝐺, {•})

→ H𝑛−1 (𝐵𝐶, {•})
H𝑛−1 (𝐵𝑖)−−−−−−−−→ H𝑛−1 (𝐵𝐺, {•})

H𝑛−1 (𝑝)−−−−−−−→ H𝑛−1 (𝐵𝐺, {•}) → · · ·

for any (non-equivariant) generalized homology theory H∗. Let Z ⊆ Λ ⊆ Q be
a ring such that the order of any finite subgroup of 𝐺 is invertible in Λ. Then
sequence (17.34) splits into short split exact sequences after applying − ⊗Z Λ, more
precisely, the Λ-map H𝑛 (𝐵𝐺, {•}) ⊗Z Λ → H𝑛 (𝐵𝐺, {•}) ⊗Z Λ is split surjective
for every 𝑛 ∈ Z. The proof is the same as the proof of Lemma 12.18 (i).

By inspecting the model for 𝐸𝐺 of Subsection 11.6.13 and dividing out the
𝐺-action, we obtain a pushout

(17.35) 𝑆1
𝑞
//

𝑖

��

∨
𝑖∈𝐼 𝑆

1

𝑖

��
𝐷2

𝑄
// 𝐵𝐺

Note that we can apply Lemma 17.30 and get information about H𝑛 (𝐵𝐺) for any
(non-equivariant) generalized homology theoryH∗. As an illustration we investigate
the singular homology groups 𝐻𝑛 (𝐵𝐺, 𝐴).

Lemma 17.36. Let 𝐺 be a one-relator group with presentation ⟨𝑠𝑖 , 𝑖 ∈ 𝐼 | 𝑟⟩ and let
𝐴 be an abelian group.

(i) The inclusion 𝐶 → 𝐺 induces isomorphisms

𝐻𝑛 (𝐵𝑖; 𝐴) : 𝐻𝑛 (𝐵𝐶; 𝐴) �−→ 𝐻𝑛 (𝐵𝐺; 𝐴)

for 𝑛 ≥ 3;
(ii) We obtain an exact sequence

0→ 𝐻2 (𝐵𝐶; 𝐴)
𝐻1 (𝐵𝑖;𝐴)−−−−−−−→ 𝐻2 (𝐵𝐺; 𝐴)

𝐻2 (𝑝;𝐴)
−−−−−−−→ 𝐻2 (𝐵𝐺; 𝐴) → 𝐻1 (𝐵𝐶; 𝐴)

𝐻1 (𝐵𝑖;𝐴)−−−−−−−→ 𝐻1 (𝐵𝐺; 𝐴)
𝐻1 (𝑝;𝐴)
−−−−−−−→ 𝐻1 (𝐵𝐺; 𝐴) → 0;
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(iii) Take 𝐴 = Z. Then precisely one of the following two cases occurs:

• Both 𝐻2 (𝐵𝐺) and 𝐻2 (𝐵𝐺) are infinite cyclic and we have 𝑟 ∈ [𝐹, 𝐹]. More-
over, we get a short exact sequence

0→ 𝐻2 (𝐵𝐺)
𝐻2 (𝑝;𝐴)
−−−−−−−→ 𝐻2 (𝐵𝐺) → 𝐶 → 0

and the homomorphism 𝐻1 (𝑝) : 𝐻1 (𝐵𝐺)
�−→ 𝐻1 (𝐵𝐺) is bijective;

• Both 𝐻2 (𝐵𝐺) and 𝐻2 (𝐵𝐺) are trivial and 𝑟 ∉ [𝐹, 𝐹]. Moreover, we get a
short exact sequence

0→ 𝐶 = 𝐻1 (𝐵𝐶)
𝐻1 (𝐵𝑖)−−−−−−→ 𝐻1 (𝐵𝐺)

𝐻2 (𝑝)−−−−−→ 𝐻1 (𝐵𝐺) → 0.

Proof. (i) and (ii) These follow from the long exact sequence (17.34) and the
conclusion of (17.35) that there is a 2-dimensional 𝐶𝑊-model for 𝐵𝐺.
(iii) Since we conclude from (17.35) that there is a 2-dimensional 𝐶𝑊-model for
𝐵𝐺 with precisely one 2-cell, 𝐻2 (𝐵𝐺) is either trivial or infinite cyclic.

Since 𝐻2 (𝐵𝐶) vanishes and 𝐻1 (𝐵𝐶) is finite, 𝐻2 (𝐵𝐺) is a subgroup of finite
index of 𝐻2 (𝐵𝐺). This implies that 𝐻2 (𝐵𝐺) is infinite cyclic if and only if 𝐻2 (𝐵𝐺)
is infinite cyclic and that 𝐻2 (𝐵𝐺) is trivial if and only if 𝐻2 (𝐵𝐺) is trivial.

Suppose that 𝐻2 (𝐵𝐺) is infinite cyclic. Let 𝑋 be the presentation complex of
𝐺 for some presentation ⟨𝑠𝑖 , 𝑖 ∈ 𝐼 | 𝑟⟩. Then the classifying map 𝑓 : 𝑋 → 𝐵𝐺

is 2-connected and induces an epimorphism 𝐻2 (𝑋) → 𝐻2 (𝐵𝐺) and an isomor-
phism 𝐻1 (𝑋)

�−→ 𝐻1 (𝐵𝐺). Since 𝑋 is a 2-dimensional 𝐶𝑊-complex with precisely
one 2-cell. 𝐻2 (𝑋) is either trivial or infinite cyclic. Hence 𝐻2 (𝑋) is infinite cyclic.
Lemma 17.27 (iii) implies that 𝑟 ∈ [𝐹, 𝐹] and 𝐻1 (𝑋) � 𝐻1 (𝐵𝐺) is torsionfree.
Hence any map 𝐻1 (𝐶) → 𝐻1 (𝐵𝐺) is trivial. Now the claim follows from asser-
tion (ii).

Suppose that 𝐻2 (𝐵𝐺) is trivial. Then Lemma 17.27 (iii) implies that 𝑟 ∉ [𝐹, 𝐹]
and the claim follows from assertion (ii). ⊓⊔

Recall that the Baum-Connes Conjecture 14.11 with coefficients holds for one-
relator groups. Hence the assembly maps

𝐾𝐺𝑛 (𝐸𝐺) → 𝐾𝑛 (𝐶∗𝑟 (𝐺;C));
𝐾𝑂𝐺𝑛 (𝐸𝐺) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)),

are bijective for all 𝑛 ∈ Z.
Recall that the Full Farrell-Jones Conjecture 13.30 holds for one-relator groups

with torsion. If 𝑅 is a regular ring with Q ⊆ 𝑅 then we obtain an isomorphism for
every 𝑛 ∈ Z, see Theorem 13.51

𝐻𝐺𝑛 (𝐸𝐺; K𝑅)
�−→ 𝐾𝑛 (𝑅𝐺).
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If 𝑚 is odd, any virtually cyclic subgroup of 𝐺 is of type I, and we obtain for any
ring with involution and 𝑛 ∈ Z an isomorphism, see Theorem 13.60,

𝐻𝐺𝑛 (𝐸𝐺; L⟨−∞⟩
𝑅
) �−→ 𝐿

⟨−∞⟩
𝑅
(𝑅𝐺).

If 𝑚 is even, we know at least that this map is bijective after inverting two.
In any case we want to compute the source of the assembly maps. A far reaching

strategy is to use Theorem 17.25 after one has computed 𝐾𝐺 (𝐵𝐺), 𝐾𝑂𝐺 (𝐵𝐺),
𝐻𝑛 (𝐵𝐺; K(𝑅)), or 𝐻𝑛 (𝐵𝐺; L⟨−∞⟩) by applying Lemma 17.27 to (17.35)

Example 17.37 (Topological 𝐾-theory in the complex case). Given a one-relator
group 𝐺 with presentation ⟨𝑠𝑖 , 𝑖 ∈ 𝐼 | 𝑟⟩, we carry this out for 𝐾𝑛 (𝐶∗𝑟 (𝐺)). Let
𝐶 ⊆ 𝐺 be the maximal cyclic subgroup of 𝐺 and put 𝑚 = |𝐶 |. Since 𝐾𝑛 ({•}) is Z
for even 𝑛 and trivial for odd 𝑛, we get from Lemma 17.27 applied to (17.35) and
Lemma 17.36 (iii)

𝐾𝑛 (𝐵𝐺) �


Z2 𝑟 ∈ [𝐹, 𝐹] and 𝑛 even;⊕

𝑖∈𝐼 Z 𝑟 ∈ [𝐹, 𝐹] and 𝑛 odd;
Z 𝑟 ∉ [𝐹, 𝐹] and 𝑛 even;
𝐻1 (𝐵𝐺) � coker

(
𝐻1 (𝐶) → 𝐻1 (𝐺)

)
𝑟 ∉ [𝐹, 𝐹] and 𝑛 odd.

We get from Theorem 17.25 (i) the short exact sequence

0→ 𝐾𝑛 (𝐶∗𝑟 (𝐶)) → 𝐾𝑛 (𝐶∗𝑟 (𝐺)) → 𝐾𝑛 (𝐵𝐺) → 0

which splits after inverting 𝑚. Since 𝐾𝑛 (𝐶∗𝑟 (Z/𝑚)) � Z𝑚−1 for even 𝑛 and is {0}
for odd 𝑛, we get

𝐾𝑛 (𝐶∗𝑟 (𝐺)) �


Z𝑚+1 𝑟 ∈ [𝐹, 𝐹] and 𝑛 even;⊕

𝑖∈Z Z 𝑟 ∈ [𝐹, 𝐹] and 𝑛 odd;
Z𝑚 𝑟 ∉ [𝐹, 𝐹] and 𝑛 even;
coker

(
𝐻1 (𝑖) : 𝐻1 (𝐶) → 𝐻1 (𝐺)

)
𝑟 ∉ [𝐹, 𝐹] and 𝑛 odd.

This computation for 𝐾∗ (𝐶∗𝑟 (𝐺)) agrees with the one in [117].

The following example is illuminating, since it combines a lot of the material and
methods we have presented so far in this book.

Example 17.38. Consider the finitely generated one-relator group

𝐺 = ⟨𝑠1, 𝑠2, 𝑠3 | 𝑟⟩ for 𝑟 = 𝑠6
1𝑠

9
2𝑠

21
1 𝑠

9
2𝑠

21
1 𝑠

9
2𝑠

15
1 .

Put 𝑠 = 𝑠6
1𝑠

9
2𝑠

15
1 . Then 𝑟 = 𝑠3. If 𝑚 is a natural number for which 𝑟 = 𝑠′𝑚 for some

word 𝑠′, then 𝑚 = 1, 3. Hence 𝐺 has a maximal finite subgroup 𝐶 generated by the
element 𝑠 ∈ 𝐺 represented by 𝑠 and 𝐶 is cyclic of order 3. We can compute 𝐻1 (𝐺)
using the recipe stated in Exercise 17.31 and obtain 𝐻1 (𝐺) � Z2 ⊕Z/9. Since 𝑟 does
not belong to [𝐹, 𝐹], we get from Lemma 17.36
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𝐻𝑛 (𝐺) �


Z/3 𝑛 ≥ 3 and 𝑛 odd;
0 𝑛 ≥ 2 and 𝑛 even;
Z2 ⊕ Z/9 𝑛 = 1;
Z 𝑛 = 0.

We get from Example 17.37

𝐾𝑛 (𝐶∗𝑟 (𝐺)) �
{
Z3 𝑛 even;
Z2 ⊕ Z/3 𝑛 odd.

We conclude from Theorem 10.79 (ii) that 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐶;R)) is Z for 𝑛 even and
{0} for 𝑛 odd.

We conclude from Lemma 17.27 (ii) in the case H∗ = 𝐾𝑂∗ applied to the
pushout (17.35) an isomorphism

𝐾𝑂𝑛 (𝐵𝐺)
�−→ 𝐾𝑂𝑛 (𝐵𝐺, {•}) ⊕ 𝐾𝑂𝑛 ({•}),

and a short exact sequence

0→ 𝐻1 (𝐵𝐺) ⊗Z 𝐾𝑂𝑛−1 ({•}) → 𝐾𝑂𝑛 (𝐵𝐺, {•})
→ TorZ1 (𝐻1 (𝐵𝐺), 𝐾𝑂𝑛−2 ({•})) → 0.

Since 𝐻1 (𝐵𝐺) � Z2 ⊕ Z/3 by Lemma 17.36 (iii), this implies

𝐾𝑂𝑛 (𝐵𝐺) � 𝐾𝑂𝑛 ({•}) ⊕ 𝐾𝑂𝑛−1 ({•}) ⊕ 𝐾𝑂𝑛−1 ({•}) ⊕ Z/3 ⊗Z 𝐾𝑂𝑛−1 ({•}).

Since 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐶;R)) is Z or trivial, we obtain from Theorem 17.25 (ii) for every
𝑛 ∈ Z a short exact sequence

0→ 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐶;R)) → 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) → 𝐾𝑂𝑛 (𝐵𝐺) → 0

which splits after inverting 3.

When 𝑛 is odd, 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐶;R)) vanishes, and we obtain an isomorphism
𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) � 𝐾𝑂𝑛 (𝐵𝐺). Thus we get

𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) �


Z/2 ⊕ Z ⊕ Z ⊕ Z/3 𝑛 ≡ 1 mod 8;
Z/2 ⊕ Z/2 𝑛 ≡ 3 mod 8;
Z ⊕ Z ⊕ Z/3 𝑛 ≡ 5 mod 8;
{0} 𝑛 ≡ 7 mod 8.
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When 𝑛 is even, 𝐾𝑂𝑛 (𝐵𝐺) contains no 3-torsion and we get

𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)) � 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐶;R)) ⊕ 𝐾𝑂𝑛 (𝐵𝐺)

�


Z ⊕ Z 𝑛 ≡ 0 mod 8;
Z ⊕ Z/2 ⊕ Z/2 ⊕ Z/2 𝑛 ≡ 2 mod 8;
Z ⊕ Z 𝑛 ≡ 4 mod 8;
Z 𝑛 ≡ 6 mod 8.

Let 𝑉 ⊆ 𝐺 be an infinite virtually cyclic subgroup of type I. Then we can find an
exact sequence 1 → 𝐻 → 𝑉 → Z → 0. Any finite subgroup of 𝐺 is subconjugate
to 𝐶 and hence we can find 𝑔 ∈ 𝐺 with 𝑔𝐻𝑔−1 ⊆ 𝐶. Since 𝑔𝑉𝑔−1 ⊆ 𝑁𝐺 (𝑔𝐻𝑔−1)
and 𝑁𝐺𝐶 = 𝐶 by Example 11.33, we get 𝐻 = {1} and hence 𝑉 � Z.

Suppose that there exists an infinite virtually cyclic subgroup 𝑉 ⊆ 𝐺 of type II.
It contains an infinite cyclic subgroup 𝑉 ′ of type 𝐼 satisfying [𝑉 : 𝑉 ′] = 2. Since we
have already proved that 𝑉 ′ is infinite cyclic. 𝑉 ′ must be Z/2 ∗Z/2. This contradicts
the fact that any finite subgroup of 𝐺 is subconjugate to 𝐶 � Z/3. Thus we have
shown that any infinite virtually cyclic subgroup of 𝐺 is infinite cyclic.

We conclude from Theorem 6.16 and the Transitivity Principle 15.12 that the
assembly map𝐻𝐺𝑛 (𝐸FIN (𝐺); KZ) → 𝐻𝐺𝑛 (𝐸VCY (𝐺); KZ) is bijective for all 𝑛 ∈ Z.
We conclude from Theorem 13.60 that the assembly map𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩Z ) →
𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩Z ) is bijective for all 𝑛 ∈ Z.

We conclude from Theorem 17.25 (iv) that the inclusion 𝐶 → 𝑀 induces for all
𝑛 ∈ Z an isomorphism

WhZ𝑛 (𝐶)
�−→WhZ𝑛 (𝐺).

Since Wh(Z/3) by Theorem 3.115 and Theorem 3.116 (iii), 𝐾0 (Z[Z/3]) by Theo-
rem 2.113 (i), and 𝐾𝑛 (Z[Z/3]) for 𝑛 ≤ −1 by Theorem 4.10 all vanish, the groups
Wh(𝐺), 𝐾0 (Z𝐺), and 𝐾𝑛 (Z𝐺) for 𝑛 ≤ −1 also vanish.

We conclude from Theorem 9.106 that the 𝐿-groups of Z𝐺 are independent of
the decoration, namely, for every 𝑗 ∈ Z, 𝑗 ≤ −1 and every 𝑛 ∈ Z the forgetful maps
induce isomorphisms

𝐿𝑠𝑛 (Z𝐺)
�−→ 𝐿ℎ𝑛 (Z𝐺)

�−→ 𝐿
𝑝
𝑛 (Z𝐺)

�−→ 𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝐺)

�−→ 𝐿
⟨−∞⟩
𝑛 (Z𝐺).

The same statement is true for the 𝐿-groups ofZ𝐶. We conclude from Theorem 9.204

𝐿
⟨−∞⟩
𝑛 (Z𝐶) �


Z 𝑛 ≡ 0 mod (4);
0 𝑛 ≡ 1 mod (4);
Z 𝑛 ≡ 2 mod (4);
0 𝑛 ≡ 3 mod (4).
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Hence we get from Theorem 17.25 (iii) for 𝑛 ∈ Z a short exact sequence

0→ 𝐿
⟨−∞⟩
𝑛 (Z𝐶) → 𝐿

⟨−∞⟩
𝑛 (Z𝐺) → 𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) → 0

which splits after inverting 3.
We obtain from Theorem 17.27 (ii) an isomorphism

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) � 𝐻𝑛 (𝐵𝐺, {•}; L⟨−∞⟩ (Z)) ⊕ 𝐻𝑛 ({•}; L⟨−∞⟩ (Z))

and the short exact sequence

0→ 𝐻1 (𝐵𝐺) ⊗Z 𝐿 ⟨−∞⟩𝑛−1 (Z) → 𝐻𝑛 (𝐵𝐺, {•}; L⟨−∞⟩ (Z))

→ TorZ1 (𝐻1 (𝐵𝐺), 𝐿 ⟨−∞⟩𝑛−2 (Z)) → 0.

We get from Lemma 17.36 (ii) and (iii)

𝐻𝑛 (𝐵𝐺) �

Z 𝑛 = 0;
Z2 ⊕ Z/3 𝑛 = 1;
0 otherwise.

Hence we get for every decoration 𝑗

𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝐺) �


Z 𝑛 ≡ 0 mod (4);
Z2 ⊕ Z/3 𝑛 ≡ 1 mod (4);
Z/2 𝑛 ≡ 2 mod (4);
Z/2 ⊕ Z/2 𝑛 ≡ 3 mod (4).

17.5.4 Fuchsian Groups

Let 𝐹 be a cocompact Fuchsian group with presentation

𝐹 = ⟨𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔, 𝑐1, . . . , 𝑐𝑡 |
𝑐
𝛾1
1 = · · · = 𝑐𝛾𝑡𝑡 = 𝑐−1

1 · · · 𝑐
−1
𝑡 [𝑎1, 𝑏1] · · · [𝑎𝑔, 𝑏𝑔] = 1⟩

for integers 𝑔, 𝑡 ≥ 0 and 𝛾𝑖 > 1. Then 𝐵𝐹 is an orientable closed surface of genus 𝑔.
The following is essentially a consequence of Theorem 17.25 and Example 11.33,
see [683], in particular [683, Remark 4.10] for assertion (iv), for the details. Lower
algebraic 𝐾-theory has also been computed in [127].
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Theorem 17.39 (𝐾-and 𝐿-groups of Fuchsian groups).

(i) There are isomorphisms

𝐾𝑛 (𝐶∗𝑟 (𝐹)) �
{ (

2 +∑𝑡
𝑖=1 (𝛾𝑖 − 1)

)
· Z 𝑛 = 0;

(2𝑔) · Z 𝑛 = 1;

(ii) The inclusions of the maximal subgroups Z/𝛾𝑖 = ⟨𝑐𝑖⟩ induce an isomorphism

𝑡⊕
𝑖=1

Wh𝑛 (Z/𝛾𝑖)
�−→Wh𝑛 (𝐹)

for 𝑛 ≤ 1;
(iii) There are isomorphisms

𝐿𝑛 (Z𝐹) [1/2] �


(
1 +∑𝑡

𝑖=1
⌊
𝛾𝑖
2
⌋ )
· Z[1/2] 𝑛 ≡ 0 (4);

(2𝑔) · Z[1/2] 𝑛 ≡ 1 (4);(
1 +∑𝑡

𝑖=1

⌊
𝛾𝑖−1

2

⌋ )
· Z[1/2] 𝑛 ≡ 2 (4);

0 𝑛 ≡ 3 (4),

where ⌊𝑟⌋ for 𝑟 ∈ R denotes the largest integer less than or equal to 𝑟.
(iv) From now on suppose that each 𝛾𝑖 is odd. Then we get for 𝜖 = 𝑝 and 𝑠

𝐿 𝜖𝑛 (Z𝐹) �


Z/2

⊕ (
1 +∑𝑡

𝑖=1
𝛾𝑖−1

2

)
· Z 𝑛 ≡ 0 (4);

(2𝑔) · Z 𝑛 ≡ 1 (4);
Z/2

⊕ (
1 +∑𝑡

𝑖=1
𝛾𝑖−1

2

)
· Z 𝑞 ≡ 2 (4);

(2𝑔) · Z/2 𝑛 ≡ 3 (4).

For 𝜖 = ℎ we do not know an explicit formula for 𝐿 𝜖𝑛 (Z𝐹). The problem is that
no general formula is known for the 2-torsion contained in �̃�ℎ2𝑞 (Z[Z/𝑚]), for 𝑚 odd,
since it is given by the term 𝐻2 (Z/2;𝐾0 (Z[Z/𝑚])), see [60, Theorem 2].

Exercise 17.40. Let 𝐹 be a Fuchsian group as above. Show that its Whitehead group
Wh(𝐹) is a free abelian group of rank

⊕𝑡

𝑖=1⌊𝛾𝑖/2⌋ + 1 − 𝛿(𝛾𝑖) where 𝛿(𝛾𝑖) is the
number of divisors of 𝛾𝑖 .

17.5.5 Torsionfree Hyperbolic Groups

Theorem 17.41 (Farrell-Jones Conjecture for torsionfree hyperbolic groups for
𝐾-theory). Let 𝐺 be a non-trivial torsionfree hyperbolic group.

(i) We obtain for all 𝑛 ∈ Z an isomorphism

𝐻𝑛 (𝐵𝐺; K(𝑅)) ⊕
⊕
𝐶

(
𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅)

) �−→ 𝐾𝑛 (𝑅𝐺)
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where 𝐶 runs through a complete system of representatives of the conjugacy
classes of maximal infinite cyclic subgroups;

(ii) The abelian groups 𝐾𝑛 (Z𝐺) for 𝑛 ≤ −1, 𝐾0 (Z𝐺), and Wh(𝐺) vanish;
(iii) We get for every ring 𝑅 with involution and 𝑛 ∈ Z an isomorphism

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (𝑅)) �−→ 𝐿
⟨−∞⟩
𝑛 (𝑅𝐺).

For every 𝑗 ∈ Z, 𝑗 ≤ 2, and 𝑛 ∈ Z, the natural map

𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝐺)

�−→ 𝐿
⟨−∞⟩
𝑛 (Z𝐺)

is bijective;
(iv) We get for any 𝑛 ∈ Z isomorphisms

𝐾𝑛 (𝐵𝐺)
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺));

𝐾𝑂𝑛 (𝐵𝐺)
�−→ 𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)).

Proof. (i) By [688, Corollary 2.11, Theorem 3.1 and Example 3.6], see also Theo-
rem 11.37, there is a 𝐺-pushout∐

𝐶 𝐺 ×𝐶 𝐸𝐶

𝑝

��

𝑖 // 𝐸FIN (𝐺)

��∐
𝐶 𝐺/𝐶 // 𝐸VCY (𝐺)

where 𝑖 is an inclusion of 𝐺-𝐶𝑊-complexes and 𝑝 is the obvious projection. Hence
we obtain using Theorem 6.16 an isomorphism

𝐻𝐺𝑛
(
𝐸FIN (𝐺) → 𝐸VCY (𝐺); K𝑅

)
�

⊕
𝐶

𝐻𝐺𝑛
(
𝐺 ×𝐶 𝐸𝐶 → 𝐺/𝐶; K𝑅

)
�

⊕
𝐶

𝐻𝐶𝑛
(
𝐸𝐶 → {•}; K𝑅

)
�

⊕
𝐶

(
𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅)

)
.

We obtain from Theorem 13.36 an isomorphism

𝐻𝐺𝑛
(
𝐸VCY (𝐺); K𝑅

)
� 𝐻𝐺𝑛

(
𝐸𝐺; KA

)
⊕ 𝐻𝐺𝑛

(
𝐸FIN (𝐺) → 𝐸VCY (𝐺); K𝑅

)
� 𝐻𝑛 (𝐵𝐺; K(𝑅)) ⊕

⊕
𝐶

(
𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅)

)
.

Since 𝐺 satisfies the Full Farrell-Jones Conjecture 13.30, see Theorem 16.1 (ia),
Theorem 13.65 implies that𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjecture 13.1
with coefficients in the ring 𝑅.
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(ii) Since 𝐺 satisfies the Full Farrell-Jones Conjecture 13.30, see Theorem 16.1 (ia)
and hence Conjectures 3.110 and 4.18 by Theorem 13.65, assertion (ii) follows.
(iii) Since𝐺 satisfies the Full Farrell-Jones Conjecture 13.30, see Theorem 16.1 (ia),
Theorem 13.65 implies that𝐺 satisfies Conjecture 9.114. Now assertion (iii) follows
from assertion (ii) and Theorem 9.106.
(iv) This follows from the fact that 𝐺 satisfies the Baum-Connes Conjecture 14.11
with coefficients by Theorem 16.7 (id) and from Remark 14.14. ⊓⊔

17.5.6 Hyperbolic Groups

Not necessarily torsionfree hyperbolic groups are treated in [679, Theorem 1.1],
which says the following.

Theorem 17.42 (Hyperbolic groups). Let 𝐺 be a hyperbolic group, and letM be
a complete system of representatives of the conjugacy classes of maximal infinite
virtually cyclic subgroups of 𝐺.

(i) For each 𝑛 ∈ Z there is an isomorphism

𝐻𝐺𝑛
(
𝐸𝐺; K𝑅

)
⊕

⊕
𝑉∈M

𝐻𝑉𝑛
(
𝐸𝑉 → {•}; K𝑅

) �−→ 𝐾𝑛 (𝑅𝐺);

(ii) For each 𝑛 ∈ Z there is an isomorphism

𝐻𝐺𝑛
(
𝐸𝐺; L⟨−∞⟩

𝑅

)
⊕

⊕
𝑉∈M

𝐻𝑉𝑛
(
𝐸𝑉 → {•}; L⟨−∞⟩

𝑅

) �−→ 𝐿
⟨−∞⟩
𝑛 (𝑅𝐺),

provided that there exists an 𝑛0 ≤ −2 such that 𝐾𝑛 (𝑅𝑉) = 0 holds for all 𝑛 ≤ 𝑛0
and all virtually cyclic subgroups 𝑉 ⊆ 𝐺. (The latter condition is satisfied if
𝑅 = Z or if 𝑅 is regular with Q ⊆ 𝑅.)

17.5.7 𝑳-Theory of Torsionfree Groups

Throughout this subsection, let𝐺 be a torsionfree group satisfying Conjecture 9.114,
i.e., we have the isomorphism

𝐻𝑛 (𝐵𝐺; L⟨−∞⟩ (Z)) �−→ 𝐿
⟨−∞⟩
𝑛 (Z𝐺).

Thus we obtain from Subsection 15.14.4 an isomorphism

(17.43) 𝐾𝑂 (𝐵𝐺) [1/2] �−→ 𝐿
⟨−∞⟩
𝑛 (Z𝐺) [1/2] .
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Example 17.44 (𝑝-torsion in 𝐿-groups). Let 𝑛 ≥ 3 be an odd natural number.
Consider the group automorphism

𝛼 : Z2 → Z2, (𝑎, 𝑏) ↦→ (𝑎 + 𝑛𝑏, 𝑏).

Let 𝐺 be the semidirect product Z2 ⋊ Z. Obviously there is an orientable aspherical
closed smooth 3-manifold 𝑀 that is the total space in a locally trivial fiber bundle
𝑇2 → 𝑀 → 𝑆1 whose fundamental group is 𝐺, namely, the mapping torus of the
self-diffeomorphism 𝑆1 × 𝑆1 → 𝑆1 × 𝑆1 sending (𝑧1, 𝑧2) to (𝑧1𝑧

𝑛
2 , 𝑧2). The group 𝐺

satisfies the Full Farrell-Jones Conjecture and hence Conjecture 9.114. One easily
computes

𝐻𝑘 (𝑀;Z) � 𝐻𝑘 (𝐺) �

Z 𝑘 = 0, 2, 3;
Z ⊕ Z/𝑛 𝑘 = 1;
0 otherwise.

An elementary spectral sequence argument shows

𝐿
⟨−∞⟩
𝑛 (Z𝐺) [1/2] � 𝐾𝑂𝑘 (𝑀;Z) [1/2] �


Z[1/2] 𝑘 = 0, 2, 3 mod 4;
Z[1/2] ⊕ Z/𝑛 𝑘 = 1 mod 4;
0 otherwise.

Hence 𝐿 ⟨−∞⟩𝑛 (Z𝐺) can contain 𝑝-torsion for any odd prime 𝑝. Recall that for finite
groups 𝐺 only 2-torsion occurs in 𝐿 ⟨−∞⟩𝑛 (Z𝐺) by Theorem 9.204 (ii).

Exercise 17.45. Let 𝑝 be a prime. Show for every 𝑛 ≥ 6 and every decoration
𝑗 ∈ {2, 1, 0,−1, . . .} ⨿ {−∞} that there is an orientable aspherical closed smooth
manifold 𝑀 of dimension 𝑛 such that 𝐿 ⟨ 𝑗 ⟩

𝑘
(Z𝜋1 (𝑀)) contains non-trivial 𝑝-torsion

for every 𝑘 ∈ Z.

Since we have the decomposition of spectra after localization at 2

L⟨−∞⟩ (Z) (2) =
∏
𝑘∈Z

K(Z(2) , 4𝑘) ×
∏
𝑘∈Z

K(Z/2, 4𝑘 − 2),

see Remark 9.133 in the connective case and [946, Theorem A(2) on page 178] in
the periodic case, we obtain for any torsionfree group 𝐺 satisfying Conjecture 9.114

(17.46) 𝐿
⟨−∞⟩
𝑛 (Z𝐺) (2) �

∏
𝑘∈Z

𝐻𝑛+4𝑘 (𝐵𝐺;Z(2) ) ×
∏
𝑘∈Z

𝐻𝑛+4𝑘−2(𝐵𝐺;Z/2).
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17.5.8 Cocompact NEC-Groups

A calculation of Wh𝑛 (𝐺), 𝐿 ⟨−∞⟩𝑛 (Z𝐺), and 𝐾𝑛 (𝐶𝑟∗ (𝐺)) for 2-dimensional crystallo-
graphic groups𝐺 and more general cocompact NEC-groups𝐺 is presented in [683],
see also [795]. For these groups the orbit spaces 𝐵𝐺 are compact surfaces possibly
with boundary.

17.5.9 Crystallographic Groups

A crystallographic group of dimension 𝑛 is a discrete group that acts cocompactly,
properly, and isometrically on the Euclidean space R𝑛 for some 𝑛 ≥ 0. A group 𝐺
is a crystallographic group of dimension 𝑛 if and only if there exists an extension
1→ 𝐴→ 𝐺 → 𝑄 → 1 such that 𝐴 is isomorphic to Z𝑛, 𝑄 is a finite group, and the
centralizer of 𝐴 in 𝐺 is 𝐴 itself. One does not have a complete calculation of 𝐾- and
𝐿-groups of integral group rings or reduced group 𝐶∗-algebras of crystallographic
groups except in dimension two, as mentioned above in Subsection 17.5.8. Compu-
tations of the lower and middle algebraic 𝐾-theory of the integral group ring of split
three-dimensional crystallographic groups are carried out by Farley-Ortiz [349], see
also [24].

As an illustration we mention the following result taken from [619, Theorem 0.1].

Theorem 17.47 (Computation of the topological 𝐾-theory of Z𝑛 ⋊Z/𝑚 for a free
conjugation action). Consider the extension of groups 1→ Z𝑛 → 𝐺 → Z/𝑚 → 1
such that the conjugation action of Z/𝑚 on Z𝑛 is free outside the origin 0 ∈ Z𝑛. Let
M be the set of conjugacy classes of maximal finite subgroups of 𝐺.

(i) We obtain an isomorphism

𝜔1 : 𝐾1 (𝐶∗𝑟 (𝐺))
�−→ 𝐾1 (𝐵𝐺).

Restriction with the inclusion 𝑘 : Z𝑛 → 𝐺 induces an isomorphism

𝑘∗ : 𝐾1 (𝐶∗𝑟 (𝐺))
�−→ 𝐾1 (𝐶∗𝑟 (Z𝑛))Z/𝑚.

Induction with the inclusion 𝑘 yields a homomorphism

𝑘∗ : Z ⊗Z[Z/𝑚] 𝐾1 (𝐶∗𝑟 (Z𝑛)) → 𝐾1 (𝐶∗𝑟 (𝐺)).

It fits into an exact sequence

0→ 𝐻−1 (Z/𝑚, 𝐾1 (𝐶∗𝑟 (Z𝑛))) → Z ⊗Z[Z/𝑚] 𝐾1 (𝐶∗𝑟 (Z𝑛))
𝑘∗−→ 𝐾1 (𝐶∗𝑟 (𝐺)) → 0
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where 𝐻∗ (Z/𝑚;𝑀) denotes the Tate cohomology of Z/𝑚 with coefficients in a
Z[Z/𝑚]-module 𝑀 . In particular, 𝑘∗ is surjective and its kernel is annihilated
by multiplication with 𝑚;

(ii) There is an exact sequence

0→
⊕
(𝑀 ) ∈M

R̃epC (𝑀)
⊕
(𝑀) ∈M 𝑖𝑀−−−−−−−−−−→ 𝐾0 (𝐶∗𝑟 (𝐺))

𝜔0−−→ 𝐾0 (𝐵𝐺) → 0

where R̃epC (𝑀) is the kernel of the map RepC (𝑀) → Z sending the class [𝑉]
of a complex 𝑀-representation 𝑉 to dimC (C ⊗C𝑀 𝑉) and the map 𝑖𝑀 comes
from the inclusion 𝑀 → 𝐺 and the identification RepC (𝑀) = 𝐾0 (𝐶∗𝑟 (𝑀)).
We obtain a homomorphism

𝑘∗ ⊕
⊕
(𝑀 ) ∈M

𝑖𝑀 : Z ⊗Z[Z/𝑚] 𝐾0 (𝐶∗𝑟 (Z𝑛)) ⊕
⊕
(𝑀 ) ∈M

R̃epC (𝑀) → 𝐾0 (𝐶∗𝑟 (𝐺)).

It is injective. It is bijective after inverting 𝑚;
(iii) We have

𝐾𝑖 (𝐶∗𝑟 (𝐺)) � Z𝑠𝑖

where

𝑠𝑖 =

{(∑
(𝑀 ) ∈M ( |𝑀 | − 1)

)
+∑

𝑙∈Z rkZ
(
(Λ2𝑙Z𝑛)Z/𝑚

)
if 𝑖 even;∑

𝑙∈Z rkZ
(
(Λ2𝑙+1Z𝑛)Z/𝑚

)
if 𝑖 odd;

(iv) If 𝑚 is even, then 𝑠1 = 0 and

𝐾1 (𝐶∗𝑟 (𝐺)) � {0}.

The numbers 𝑠𝑖 can be made more explicit, see [619]. For instance, if 𝑚 = 𝑝 for
a prime number 𝑝, then there exists a natural number 𝑘 that is determined by the
property 𝑛 = (𝑝 − 1) · 𝑘 , and we get:

𝑠𝑖 =


𝑝𝑘 · (𝑝 − 1) + 2𝑛+𝑝−1

2𝑝 + 𝑝𝑘−1 · (𝑝−1)
2 𝑝 ≠ 2 and 𝑖 even;

2𝑛+𝑝−1
2𝑝 − 𝑝𝑘−1 · (𝑝−1)

2 𝑝 ≠ 2 and 𝑖 odd;
3 · 2𝑘−1 𝑝 = 2 and 𝑖 even;
0 𝑝 = 2 and 𝑖 odd.

(17.48)

Exercise 17.49. The automorphism 𝜙 : Z2 → Z2, (𝑎, 𝑏) ↦→ (𝑏,−𝑎 − 𝑏) satisfies
𝜙3 = id. Show

𝐾𝑖
(
𝐶∗𝑟 (Z2 ⋊𝜙 Z/3)

)
�

{
Z8 𝑖 even;
{0} 𝑖 odd.
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Theorem 17.47 in the special case where 𝑚 is a prime number is treated in [282].
The groups appearing in Theorem 17.47 are crystallographic groups, see [619,

Lemma 3.1].
The proof of Theorem 17.47 is surprisingly complicated. It is based on compu-

tations of the group homology of Z𝑛 ⋊ Z/𝑚 by Langer-Lück [618, Theorem 0.5].
They prove a conjecture of Adem-Ge-Pan-Petrosyan [17, Conjecture 5.2], which
says that the associated Lyndon-Hochschild-Serre spectral sequence collapses in the
strongest sense, in the special case when the conjugation action of Z/𝑚 of Z𝑛 is
free outside the origin 0 ∈ Z𝑛. Moreover, it uses generalizations of the Atiyah-Segal
Completion Theorem for finite groups to infinite groups, see Lück-Oliver [670, 671].
Interestingly the conjecture of Adem-Ge-Pan-Petrosyan is disproved in general by
Langer-Lück [618, Theorem 0.6].

The computation of 𝐾∗ (𝐶∗𝑟 (Z𝑛 ⋊ Z/𝑚)) for square free 𝑚 is carried out by
Sánchez-Velásquez [887].

17.5.10 Virtually Z𝒏 Groups

One does not have a complete calculation of the 𝐾-groups and 𝐿-groups of inte-
gral group rings or group 𝐶∗-algebras of crystallographic groups and hence not of
virtually finitely generated abelian groups. This has already been illustrated in Sub-
section 17.4.5, where a rather complicated recipe for the computation of the rank
is given. The favorite situation is the one occurring in Example 11.33, when one
considers groups 𝐺 occurring in an extensions 1→ Z𝑛 → 𝐺 → 𝐹 → 1 for finite 𝐹
such that the conjugation action of 𝐹 on Z𝑛 is free outside 0 ∈ Z𝑛. The computation
of Wh𝑛 (𝐺; 𝑅) can be found in [679, Theorem 1.7], provided that the 𝑄-action on
Z𝑛 is free outside the origin.

Question 17.50 (Is 𝐾𝑖 (𝐶∗𝑟 (Z𝑛 ⋊ Z/𝑚)) torsionfree?). For which groups 𝐺 of the
shape Z𝑛 ⋊ Z/𝑚 is the topological complex 𝐾-theory 𝐾𝑖 (𝐶∗𝑟 (𝐺)) torsionfree for
every 𝑖 ∈ Z?

The answer to Question 17.50, which is also stated in [887, Question 1.3], is
positive if the Z/𝑚-action of Z𝑛 is free outside the origin, see Theorem 17.47, or
if 𝑚 is square-free, see [887]. Note that in these cases the conjecture of Adem-Ge-
Pan-Petrosyan [17, Conjecture 5.2] is known to be true. Counterexamples to it can
be found in Langer-Lück [618, Theorem 0.6] and these are potential candidates for
a negative answer to Question 17.50.

The next example shows that one cannot expect in general a positive answer to
Question 17.50 if one considers an extension 1 → Z𝑛+1 → 𝐺 → Z/𝑚 → 1 which
does not split.
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Example 17.51. In this example we give an elementary computation of the topolo-
gical 𝐾-theory of 𝐾𝑛 (𝐶∗ (𝐺)) of the semi-direct product 𝐺 = Z𝑛 ⋊𝜌 Z for a natural
number 𝑛 and the group homomorphism 𝜌 : Z → autZ (Z𝑛) sending a generator of
Z to 𝜑𝑛 := − idZ𝑛 : Z𝑛 → Z𝑛.

The associated Wang sequence, see [812, Theorem 18 on page 632] looks like

· · · → 𝐾1 (𝐶∗𝑟 (Z𝑛))
id −𝐾1 (𝐶∗𝑟 (𝜑𝑛 ) )−−−−−−−−−−−−−→ 𝐾1 (𝐶∗𝑟 (Z𝑛)) → 𝐾1 (𝐶∗𝑟 (𝐺))

→ 𝐾0 (𝐶∗𝑟 (Z𝑛))
id −𝐾0 (𝐶∗𝑟 (𝜑𝑛 ) )−−−−−−−−−−−−−→ 𝐾0 (𝐶∗𝑟 (Z𝑛)) → 𝐾0 (𝐶∗𝑟 (𝐺))

→ 𝐾1 (𝐶∗𝑟 (Z𝑛))
id −𝐾1 (𝐶∗𝑟 (𝜑𝑛 ) )−−−−−−−−−−−−−→ 𝐾1 (𝐶∗𝑟 (Z𝑛)) → 𝐾1 (𝐶∗𝑟 (𝐺)) → · · · .

It yields the short exact sequence

(17.52)
0→ coker

(
id−𝐾𝑖 (𝐶∗𝑟 (𝜑𝑛)) : 𝐾𝑖 (𝐶∗𝑟 (Z𝑛)) → 𝐾𝑖 (𝐶∗𝑟 (Z𝑛))

)
→ 𝐾𝑖 (𝐶∗𝑟 (𝐺))

→ ker
(
id−𝐾𝑖−1(𝐶∗𝑟 (𝜑𝑛)) : 𝐾𝑖−1 (𝐶∗𝑟 (Z𝑛)) → 𝐾𝑖−1(𝐶∗𝑟 (Z𝑛))

)
→ 0

for 𝑖 ∈ Z. The external product on topological 𝐾-theory induces an isomorphism
natural in Z𝑛 and Z(
𝐾𝑖 (𝐶∗𝑟 (Z𝑛)) ⊗ 𝐾0 (𝐶∗𝑟 (Z))

)
⊕

(
𝐾𝑖−1 (𝐶∗𝑟 (Z𝑛)) ⊗ 𝐾1 (𝐶∗𝑟 (Z))

) �−→ 𝐾𝑖 (𝐶∗𝑟 (Z𝑛+1)).

Since 𝐾𝑖 (𝜑1) : 𝐾𝑖 (𝐶∗ (Z)) → 𝐾𝑖 (𝐶∗ (Z)) is (−1)𝑖 · id, we get a commutative diagram
with isomorphisms as horizontal arrows(
𝐾𝑖 (𝐶∗𝑟 (Z𝑛)) ⊗ 𝐾0 (𝐶∗𝑟 (Z))

)
⊕

(
𝐾𝑖−1(𝐶∗𝑟 (Z𝑛)) ⊗ 𝐾1 (𝐶∗𝑟 (Z))

) � //

(𝐾𝑖 (𝜑𝑛 )⊗id)⊕(𝐾𝑖−1 (𝜑𝑛 )⊗− id)
��

𝐾𝑖 (𝐶∗𝑟 (Z𝑛+1))

𝐾𝑖 (𝜑𝑛+1 )
��(

𝐾𝑖 (𝐶∗𝑟 (Z𝑛)) ⊗ 𝐾0 (𝐶∗𝑟 (Z))
)
⊕

(
𝐾𝑖−1(𝐶∗𝑟 (Z𝑛)) ⊗ 𝐾1 (𝐶∗𝑟 (Z))

) � // 𝐾𝑖 (𝐶∗𝑟 (Z𝑛+1)).

Now one shows by induction over 𝑛 = 0, 1, 2, . . . that we obtain for 𝑚 ∈ Z a
commutative diagram with isomorphisms as horizontal arrows⊕𝑛

𝑗=0 𝐾𝑖− 𝑗 (C)
(𝑛𝑗) � //

⊕𝑛
𝑗=0 (−1) 𝑗 ·id

��

𝐾𝑖 (𝐶∗𝑟 (Z𝑛))

𝐾𝑖 (𝜑𝑛 )

��⊕𝑛

𝑗=0 𝐾𝑖− 𝑗 (C)
(𝑛𝑗) � // 𝐾𝑖 (𝐶∗𝑟 (Z𝑛)).
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This implies

coker
(
id−𝐾𝑖 (𝐶∗𝑟 (𝜑𝑛)) : 𝐾𝑖 (𝐶∗𝑟 (Z𝑛)) → 𝐾𝑖 (𝐶∗𝑟 (Z𝑛))

)
�

𝑛⊕
𝑗=0

coker
(
id−(−1) 𝑗 ·

𝑛⊕
𝑗=0

𝐾𝑖− 𝑗 (C) (
𝑛
𝑗) →

𝑛⊕
𝑗=0

𝐾𝑖− 𝑗 (C) (
𝑛
𝑗)
)

�
⊕

𝑗=0,1,...,𝑛
𝑖− 𝑗 even

coker
(
id−(−1) 𝑗 · Z(

𝑛
𝑗) → Z(

𝑛
𝑗)
)

�

( ⊕
𝑗=0,1,...,𝑛
𝑖, 𝑗 even

Z(
𝑛
𝑗)
)
⊕

( ⊕
𝑗=0,1,...,𝑛
𝑖, 𝑗 odd

Z/2(
𝑛
𝑗)
)

and

ker
(
id−𝐾𝑖 (𝐶∗𝑟 (𝜑𝑛)) : 𝐾𝑖 (𝐶∗𝑟 (Z𝑛)) → 𝐾𝑖 (𝐶∗𝑟 (Z𝑛))

)
�

𝑛⊕
𝑗=0

ker
(

id−(−1) 𝑗 ·
𝑛⊕
𝑗=0

𝐾𝑖− 𝑗 (C) (
𝑛
𝑗) →

𝑛⊕
𝑗=0

𝐾𝑖− 𝑗 (C) (
𝑛
𝑗)
)

�
⊕

𝑗=0,1,...,𝑛
𝑖− 𝑗 even

ker
(

id−(−1) 𝑗 · Z(
𝑛
𝑗) → Z(

𝑛
𝑗)
)

�
⊕

𝑗=0,1,...,𝑛
𝑖, 𝑗 even

Z(
𝑛
𝑗) .

Since ker
(
id−𝐾𝑖 (𝐶∗𝑟 (𝜑𝑛)) : 𝐾𝑖 (𝐶∗𝑟 (Z𝑛)) → 𝐾𝑖 (𝐶∗𝑟 (Z𝑛))

)
is torsionfree for all 𝑖 ∈ Z,

we conclude from the short exact sequence (17.52)

𝐾𝑖 (𝐶∗𝑟 (𝐺)) �
( ⊕
𝑗=0,1,...,𝑛
𝑖, 𝑗 even

Z(
𝑛
𝑗)
)
⊕

( ⊕
𝑗=0,1,...,𝑛
𝑖, 𝑗 odd

Z/2(
𝑛
𝑗)
)
⊕

( ⊕
𝑗=0,1,...,𝑛
𝑖 odd,, 𝑗 even

Z(
𝑛
𝑗)
)

�

( ⊕
𝑗=0,1,...,𝑛
𝑗 even

Z(
𝑛
𝑗)
)
⊕

( ⊕
𝑗=0,1,...,𝑛
𝑖, 𝑗 odd

Z/2(
𝑛
𝑗)
)
.

Since we have ∑︁
𝑗=0,1,...,𝑛
𝑗 even

(
𝑛

𝑗

)
=

∑︁
𝑗=0,1,...,𝑛
𝑗 odd

(
𝑛

𝑗

)
= 2𝑛−1

we conclude for 𝑛 ≥ 1 and 𝐺 = Z𝑛 ⋊𝜌 Z

(17.53) 𝐾𝑖 (𝐶∗𝑟 (𝐺)) �
{
Z2𝑛−1 ⊕ (Z/2)2𝑛−1 if 𝑖 is odd;
Z2𝑛−1 if 𝑖 is even.
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Note that 𝐾𝑖 (𝐶∗𝑟 (𝐺)) does contain torsion. Obviously 𝐺 is a crystallographic group.
It can be written as an extension

1→ Z𝑛+1 → 𝐺 → Z/2→ 1

if we identify Z𝑛+1 with the preimage of 2Z under the canonical projection 𝐺 =

Z𝑛 ⋊𝜌 Z → Z. The Z/2-action on Z𝑛+1 given by the extension above is not free
outside the origin. So we get no contradiction with Theorem 17.47 but we see that
Theorem 17.47 does not hold if we drop the assumption that the conjugation action
of Z𝑚 on Z𝑛 is free outside the origin. Note that Theorem 17.47 applies to the
semidirect product Z𝑛 ⋊𝜌 Z/2 where 𝜌 : Z/2 → autZ (Z𝑛) sends the generator to
𝜑𝑛 = − idZ𝑛 .

17.5.11 Mayer-Vietoris Sequences and Wang Sequences

We have explained in Section 15.7 how an action of𝐺 on a tree 𝑇 yields a long exact
sequence involving the isotropy groups. In particular, we get for an amalgamated
free product a Mayer-Vietoris sequence and for a semidirect product with Z, or, more
generally, for an HNN-extension, a long exact Wang sequence, computing the value
at 𝐸𝐺.

17.5.12 SL2(Z)

We want to illustrate this in the case 𝐺 = SL2 (Z). We have explained in Subsec-
tion 11.6.11 that SL2 (Z) is the amalgamated free product Z/4 ∗Z/2 Z/6. Since the
inclusion Z/2 → Z/6 is split injective, we obtain from the long exact sequence
appearing in Theorem 15.27 (ii) for every equivariant homology theory H ?

∗ an
isomorphism

HZ/4
𝑛 ({•}) ⊕ coker

(
HZ/2
𝑛 ({•}) → HZ/6

𝑛 ({•})
) �−→ HSL2 (Z)

𝑛 (𝐸 SL2 (Z)).

Since SL2 (Z) is hyperbolic, it satisfies the Baum-Connes Conjecture 14.11 with
coefficients by Theorem 16.7 (id) and the Full Farrell-Jones Conjecture 13.30 by
Theorem 16.1 (ia). In particular, we get isomorphisms

𝐾𝑛 (𝐶∗𝑟 (Z/4;C)) ⊕ coker
(
𝐾𝑛 (𝐶∗𝑟 (Z/2;C)) → 𝐾𝑛 (𝐶∗𝑟 (Z/6;C))

)
� 𝐾

SL2 (Z)
𝑛 (𝐸 SL2 (Z)) � 𝐾𝑛 (𝐶∗𝑟 (SL2 (Z);C));
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𝐾𝑂𝑛 (𝐶∗𝑟 (Z/4;R)) ⊕ coker
(
𝐾𝑂𝑛 (𝐶∗𝑟 (Z/2;R)) → 𝐾𝑂𝑛 (𝐶∗𝑟 (Z/6;R))

)
� 𝐾𝑂

SL2 (Z)
𝑛 (𝐸 SL2 (Z)) � 𝐾𝑂𝑛 (𝐶∗𝑟 (SL2 (Z);R));

𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅[Z/4]) [1/2] ⊕ coker

(
𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅[Z/2]) [1/2] → 𝐿

⟨ 𝑗 ⟩
𝑛 (𝑅[Z/6]) [1/2]

)
� 𝐻

SL2 (Z)
𝑛 (𝐸 SL2 (Z); L⟨ 𝑗 ⟩

𝑅
) [1/2] � 𝐿 ⟨ 𝑗 ⟩𝑛 (𝑅[SL2 (Z)]) [1/2];

𝐿
⟨−∞⟩
𝑛 (𝑅[Z/4]) ⊕ coker

(
𝐿
⟨−∞⟩
𝑛 (𝑅[Z/2]) → 𝐿

⟨−∞⟩
𝑛 (𝑅[Z/6])

)
� 𝐻

SL2 (Z)
𝑛 (𝐸 SL2 (Z); L⟨−∞⟩

𝑅
);

𝐾𝑛 (𝑅[Z/4]) ⊕ coker
(
𝐾𝑛 (𝑅[Z/2]) → 𝐾𝑛 (𝑅[Z/6])

)
� 𝐻SL2

𝑛 (Z) (𝐸 SL2 (Z); K𝑅).

Since every infinite cyclic subgroup of type I of SL2 (Z) is isomorphic to Z or
Z×Z/2, we conclude from Theorem 4.3 and Theorem 6.21 that𝐻𝑉𝑛 (𝐸𝑉 → {•}; KZ)
vanishes for 𝑛 ≤ 1 for any infinite virtually cyclic subgroup of type I of SL2 (Z). The
Transitivity Principal of Theorem 15.12 and Theorem 13.47 imply that the relative
assembly map 𝐻𝑉𝑛 (𝐸 SL2 (Z); KZ) → 𝐻𝑉𝑛 (𝐸 SL2 (Z); KZ) is bijective for 𝑛 ≤ 1.
Hence the map

𝐻𝑉𝑛 (𝐸 SL2 (Z); KZ) → 𝐻𝑉𝑛 ({•}; KZ) = 𝐾𝑛 (Z[SL2 (Z)])

is bijective for 𝑛 ≤ 1. So we get for 𝑛 ≤ 1 an isomorphism

𝐾𝑛 (Z[Z/4]) ⊕ coker
(
𝐾𝑛 (Z[Z/2]) → 𝐾𝑛 (Z[Z/6])

)
� 𝐾𝑛 (Z[SL2 (Z)]).

Recall that Wh(Z/𝑚) vanishes for 𝑚 = 2, 4, 6 and that 𝐾𝑛 (Z[Z/𝑚]) vanishes for
𝑛 ≤ 0 and 𝑚 = 2, 4, 6 except for 𝑛 = −1 and 𝑚 = 6, where 𝐾−1 (Z[Z/6]) turns out
to be infinite cyclic, see Theorem 2.113 (i), Theorem 3.115, Theorem 3.116 (iv),
Example 4.12, and Theorem 4.22 (i) and (v). We conclude that Wh(SL2 (Z)),
𝐾0 (Z[SL2 (Z)]), and 𝐾𝑛 (Z[SL2 (Z)]) for 𝑛 ≤ −2 vanish and that the inclusion
Z/6→ SL2 (Z) induces an isomorphism 𝐾−1 (Z[Z/6])

�−→ 𝐾−1 (Z[SL2 (Z)]).
For 𝐿-theory we get using [204] an isomorphism

𝐻
SL2 (Z)
𝑛 (𝐸 SL2 (Z); L⟨−∞⟩

𝑅
) ⊕ UNil𝑛 (Z/2;Z/4,Z/6; 𝑅) � 𝐿 ⟨−∞⟩𝑛 (Z[SL2 (Z)])

where UNil𝑛 (Z/2;Z/4,Z/6; 𝑅) is a certain UNil-term which is known to be a (not
necessarily finitely generated) 2-primary abelian group and vanishes if 2 is invertible
in 𝑅. Hence we get for 𝑛 ∈ Z an isomorphism

𝐿
⟨−∞⟩
𝑛 (𝑅[Z/4]) ⊕ coker

(
𝐿
⟨−∞⟩
𝑛 (𝑅[Z/2]) → 𝐿

⟨−∞⟩
𝑛 (𝑅[Z/6])

)
⊕ UNil𝑛 (Z/2;Z/4,Z/6; 𝑅) � 𝐿 ⟨−∞⟩𝑛 (Z[SL2 (Z)]).
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We get from Theorem 11.37 and Theorem 13.60 isomorphisms

𝐻
SL2 (Z)
𝑛 (𝐸 SL2 (Z); L⟨−∞⟩

𝑅
) ⊕

⊕
𝑉

𝐻𝑉𝑛 (𝐸𝑉 → {•}; L⟨−∞⟩
𝑅
)

� 𝐿
⟨−∞⟩
𝑛 (𝑅[SL2 (Z)])

for 𝑛 ∈ Z, where 𝑉 runs through a complete system of representatives of the con-
jugacy classes of maximal infinite virtually cyclic subgroups of type II. Note that
every infinite virtually cyclic subgroup of type II is isomorphic to the semidirect
product Z ⋊ Z/4, where the generator of Z/4 acts on Z by − id. In particular, we get
an isomorphism

UNil𝑛 (Z/2;Z/4,Z/6; 𝑅) �
⊕
𝑉

𝐻
Z⋊Z/4
𝑛 (𝐸 (Z ⋊ Z/4) → {•}; L⟨−∞⟩

𝑅
).

Exercise 17.54. Prove

𝐾𝑛 (𝐶∗𝑟 (SL2 (Z);C)) �
{
Z8 𝑛 even;
0 𝑛 odd,

and

𝐾𝑂𝑛 (𝐶∗𝑟 (SL2 (Z);R)) �



Z5 𝑛 ≡ 0 mod (8);
(Z/2)2 𝑛 ≡ 1 mod (8);
(Z/2)2 ⊕ Z3 𝑛 ≡ 2 mod (8);
{0} 𝑛 ≡ 3 mod (8);
Z5 𝑛 ≡ 4 mod (8);
{0} 𝑛 ≡ 5 mod (8);
Z3 𝑛 ≡ 6 mod (8);
{0} 𝑛 ≡ 7 mod (8).

Exercise 17.55. Let 𝐷8 be the dihedral group of order eight and 𝐶 be its center,
which is a group of order two. Let 𝐺 be the group 𝐷8 ∗𝐶 𝐷8. Prove

𝐾0 (C𝐺) � Z8 ⊕ Z/2;

𝐾𝑛 (𝐶∗𝑟 (𝐺)) �
{
Z8 ⊕ Z/2 if 𝑛 is even;
{0} if 𝑛 is odd.

17.5.13 SL3(Z)

Since SL3 (Z) satisfies the Full Farrell-Jones Conjecture 13.30, see Theorem 16.1 (id),
Theorem 13.65 implies that𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjecture 13.1
with coefficients inZ. Using this fact the following result is proved in [926] and [962].
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Theorem 17.56 (Lower and middle 𝐾-theory of the integral group ring of
SL3 (Z)). The groups𝐾𝑛 (Z[SL3 (Z)]) for 𝑛 ≤ −2,𝐾0 (Z[SL3 (Z)]), and Wh(SL3 (Z))
are trivial. For an appropriate subgroup 𝐶6 ⊆ SL3 (Z), which is cyclic of order six,
the inclusion 𝐶6 → SL3 (Z) induces an isomorphism

Z � 𝐾−1 (Z[𝐶6])
�−→ 𝐾−1 (Z[SL3 (Z)]).

The following result is taken from [885, Corollary 2] in the complex case and
from [507, Theorem 4.2] in the real case.

Theorem 17.57 (Topological equivariant 𝐾-theory of 𝐸FIN (SL3 (Z))).

(i) The abelian group 𝐾SL3 (Z)
𝑛 (𝐸FIN (SL3 (Z))) is Z8 for even 𝑛 and vanishes for

odd 𝑛;
(ii) We have for 𝑛 = 0, 1, 2, . . . , 7

𝐾𝑂
SL3 (Z)
𝑛 (𝐸FIN (SL3 (Z))) = Z8,Z/28,Z/28, {0},Z8, {0}, {0}, {0}

and the remaining groups are given by 8-fold Bott periodicity.

The groups 𝐾GL3 (Z)
𝑛 (𝐸FIN (GL3 (Z))) are determined in [885, Corollary 4], and

the groups 𝐾𝑂GL3 (Z)
𝑛 (𝐸FIN (GL3 (Z))) are determined in [507, Corollary 3.3].

Recall that the Baum-Connes Conjecture is not known to be true for SL3 (Z). So
it would be interesting to compute 𝐾𝑛 (𝐶∗𝑟 (SL3 (Z);C)) and 𝐾𝑂𝑛 (𝐶∗𝑟 (SL3 (Z);R))
directly and to compare the result with the computations of Theorem 17.57.

17.5.14 Right Angled Artin Groups

The group homology, the algebraic 𝐾- and 𝐿-groups, and the topological 𝐾-groups
of right-angled Artin groups, and, more generally, of graph products are computed
in [570, Section 6].

Let 𝑋 be a finite simplicial graph on the vertex set 𝑉 and suppose that we are
given a collection of groupsW = {𝑊𝑣 | 𝑣 ∈ 𝑉}. Then the graph product𝑊 (𝑋,W)
is defined as the quotient of the free product ∗𝑣∈𝑉𝑊𝑣 of the collection of groupsW
by introducing the relations

{[𝑔, 𝑔′] = 1 | 𝑣, 𝑣′ ∈ 𝑉, there is an edge joining 𝑣 and 𝑣′, 𝑔 ∈ 𝑊𝑣 , 𝑔′ ∈ 𝑊𝑣′ }.

In other words, elements of subgroups 𝑊𝑣 and 𝑊𝑣′ commute if there is an edge
joining 𝑣 and 𝑣′. This notion is due to Green [437].

A right-angled Artin group is a graph product 𝑊 = 𝑊 (𝑋,W) for which each of
the groups 𝑊𝑣 is infinite cyclic. For general information about right-angled Artin
groups, we refer for instance to Charney [231]. Denote by Σ the flag complex
associated to the finite simplicial graph 𝑋 . Let P be the poset of simplices of Σ,
both ordered by inclusion where the empty subcomplex and the empty simplex are
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allowed and the dimension of the empty simplex is defined to be −1. Note that𝑊 is
torsionfree. In the sequel we denote by 𝑟𝑘 the number of 𝑘-simplices in P.

Let K∗ be any generalized non-equivariant homology theory with values in
Λ-modules. Then ⊕

𝜎∈P
K𝑛−dim(𝜎)−1 ({•})

�−→ K𝑛 (𝐵𝑊).

If we take for K∗ singular homology 𝐻∗ (−; 𝐴) with coefficients in 𝐴, this boils
down to the well-known isomorphism

(17.58) 𝐴𝑟𝑛−1 �−→ 𝐻𝑛 (𝐵𝑊 ; 𝐴).

In particular, we get the following relation for the Euler characteristics

𝜒(𝐵𝑊) = 1 − 𝜒(Σ).

Theorem 17.59 (The algebraic 𝐾-theory and 𝐿-theory of right-angled Artin
groups).

(i) Let 𝑅 be a regular ring. Then there is an explicit isomorphism of abelian groups⊕
𝜎∈P

𝐾𝑛−dim(𝜎)−1 (𝑅)
�−→ 𝐾𝑛 (𝑅𝑊).

In particular, we get 𝐾𝑛 (𝑅𝑊) = 0 for 𝑛 ≤ −1.
If we take 𝑅 = Z, we conclude that 𝐾𝑛 (Z𝑊) for 𝑛 ≤ −1, 𝐾0 (Z𝑊), and Wh(𝑊)
vanish;

(ii) Let 𝑅 be a ring with involution. Then there is an explicit isomorphism of abelian
groups ⊕

𝜎∈P
𝐿
⟨−∞⟩
𝑛−dim(𝜎)−1 (𝑅)

�−→ 𝐿
⟨−∞⟩
𝑛 (𝑅𝑊).

Theorem 17.60 (The topological 𝐾-theory of right-angled Artin groups). There
are explicit isomorphisms of abelian groups⊕

𝜎∈P
𝐾𝑛−dim(𝜎)−1 (C)

�−→ 𝐾𝑛 (𝐶∗𝑚 (𝑊)) � 𝐾𝑛 (𝐶∗𝑟 (𝑊));⊕
𝜎∈P

𝐾𝑂𝑛−dim(𝜎)−1 (R)
�−→ 𝐾𝑂𝑛 (𝐶∗𝑚 (𝑊 ;R)) � 𝐾𝑂𝑛 (𝐶∗𝑟 (𝑊 ;R)).

In particular, we get an isomorphism of abelian groups

𝐾𝑛 (𝐶∗𝑚 (𝑊)) � 𝐾𝑛 (𝐶∗𝑟 (𝑊)) � Z𝑡𝑛 ,

if we put 𝑡𝑛 =
∑
𝑘∈{−1,0,1,2,...,dim(Σ) }

(𝑛−𝑘 ) odd
𝑟𝑘 .

Exercise 17.61. Let 𝐺 be Z2 ∗Z Z2 where we consider Z as a subgroup of Z2 by
sending 𝑛 to (𝑛, 0). Compute 𝐻∗ (𝐺), 𝐾∗ (𝐶∗𝑟 (𝐺;C)), and 𝐾𝑂∗ (𝐶∗𝑟 (𝐺;R)).
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17.5.15 Right Angled Coxeter Groups

Recall that a right-angled Coxeter group is a graph product𝑊 = 𝑊 (𝑋,W) for which
each of the groups 𝑊𝑣 is cyclic of order two. The group homology, the algebraic
𝐾- and 𝐿-groups, and the topological 𝐾-groups of right-angled Coxeter groups, and,
more generally, of graph products are computed in [570, Section 7]. The results are
nearly as explicit as in the case of right-angled Artin groups which we have presented
in Subsection 17.5.14.

For instance, the integral group homology 𝐻𝑛 (𝑊 ;Z) is in degree 𝑛 ≥ 1 an
explicit F2-vector space, 𝐾𝑛 (Z𝑊) = 0 for 𝑛 ≤ −1, 𝐾0 (Z𝑊) ⊗Z Z[1/2] = 0, and
𝐾1 (Z𝑊) ⊗Z Z[1/2] = 0. Next we state the result for the topological 𝐾-theory.

Theorem 17.62 (The topological 𝐾-theory of right-angled Coxeter groups).
There are for every 𝑛 ∈ Z isomorphisms⊕

𝜎∈P
𝐾𝑛 (C)

�−→ 𝐾𝑛 (𝐶∗𝑚 (𝑊)) � 𝐾𝑛 (𝐶∗𝑟 (𝑊));⊕
𝜎∈P

𝐾𝑂𝑛 (R)
�−→ 𝐾𝑂𝑛 (𝐶∗𝑚 (𝑊 ;R)) � 𝐾𝑂𝑛 (𝐶∗𝑟 (𝑊 ;R)).

In particular, there are isomorphisms of abelian groups

𝐾𝑛 (𝐶∗𝑚 (𝑊)) � 𝐾𝑛 (𝐶∗𝑟 (𝑊)) �
{
Z𝑟 if 𝑛 is even;
{0} otherwise;

𝐾𝑂𝑛 (𝐶∗𝑚 (𝑊 ;R)) � 𝐾𝑂𝑛 (𝐶∗𝑟 (𝑊 ;R)) �

Z𝑟 if 𝑛 ≡ 0 mod 4;
(Z/2)𝑟 if 𝑛 ≡ 1, 2 mod 8;
{0} otherwise,

where 𝑟 is the number of simplices (including the empty simplex) in P.

The computation of the topological 𝐾-theory of the complex reduced group
𝐶∗-algebra of a right-angled Coxeter group is also done by Sanchez-Garcia [886]
using the Davis complex as a model for 𝐸𝑊 . The real case is treated by Fuentes [409].

Exercise 17.63. Let 𝐺 be a group that is isomorphic to some amalgamated free
product of the form (Z/2)3∗Z/2 (Z/2)2. Compute𝐾𝑛 (𝐶∗𝑟 (𝐺;C)) and𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R))
for 𝑛 ∈ Z.

17.5.16 Fundamental Groups of 3-Manifolds

The algebraic 𝐾-theory 𝐾𝑛 (𝑅[𝜋1 (𝑀)]) has been computed for a compact connected
3-manifold 𝑀 in [534] based on Theorem 16.1 (ie) and [527] modulo Nil-terms of
the ring 𝑅. We at least present the computation for an already interesting special
case, also including the algebraic 𝐿-theory.
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Theorem 17.64 (𝐾-and 𝐿-groups of 3-manifolds). Let 𝑀 be a compact connected
orientable 3-manifold with fundamental group 𝜋 and prime decomposition 𝑀 �
𝑀1♯𝑀2♯ · · · ♯𝑀𝑟 .

(i) Suppose that 𝑅 is a regular ring. Then we get for 𝑛 ∈ Z

𝐾𝑛 (𝑅𝜋) �
𝑛⊕
𝑖=1

𝐾𝑛 (𝑅[𝜋1 (𝑀𝑖)]);

𝐾𝑛 (𝑅𝜋) � 0 if 𝑛 ≤ −1,

where 𝐾𝑛 (𝑅𝐺) is the cokernel of the split injective map 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑅𝐺). If
𝜋 is torsionfree, then there is an isomorphism

𝐻𝑛 (𝐵𝜋; K𝑅)
�−→ 𝐾𝑛 (𝑅𝜋);

(ii) Let 𝑅 be a ring with involution. Suppose that 𝜋 contains no 2-torsion. We get for
𝑛 ∈ Z

𝐿
⟨−∞⟩
𝑛 (𝑅𝜋) �

𝑛⊕
𝑖=1

𝐿
⟨−∞⟩
𝑛 (𝑅[𝜋1 (𝑀𝑖)])

where 𝐿
⟨−∞⟩
𝑛 (𝑅𝐺) is the cokernel of the split injective map 𝐿

⟨−∞⟩
𝑛 (𝑅) →

𝐿
⟨−∞⟩
𝑛 (𝑅𝐺).

If 𝜋 is torsionfree, then there is an isomorphism

𝐻𝑛 (𝐵𝜋; L⟨−∞⟩
𝑅
) �−→ 𝐿

⟨−∞⟩
𝑛 (𝑅𝜋).

Proof. We conclude from Theorem 16.1 (ie) that 𝜋 satisfies the Full Farrell-Jones
Conjecture 13.30.

Note that 𝜋 � ∗𝑟
𝑖=1𝜋1 (𝑀𝑖). The Kurosh Subgroup Theorem, see [693, Theorem

1.10 on page 178], says for a subgroup 𝐻 ⊆ 𝜋 that 𝐻 � (∗ 𝑗∈𝐽𝐻 𝑗 ) ∗ 𝐹 where each
𝐻 𝑗 is the intersection of 𝐻 with some conjugate of 𝜋1 (𝑀𝑖) and 𝐹 is a free group.
Note that 𝜋1 (𝑀𝑖) is either finite or torsionfree since every irreducible 3-manifold
with infinite fundamental group is aspherical by the Sphere Theorem, see [477, 4.3
on page 40], and a prime 3-manifold that is not irreducible is a 𝑆2 bundle over
𝑆1, see [477, Lemma 3.13 on page 28]. Every torsionfree virtually cyclic group
is isomorphic to Z. A virtually cyclic group 𝑉 is isomorphic to a non-trivial free
product 𝐿1 ∗ 𝐿2 if and only if 𝑉 is isomorphic to Z/2 ∗ Z/2. Hence any virtually
cyclic subgroup 𝑉 of 𝜋 is isomorphic to Z or Z/2 ∗ Z/2.
(i) Since 𝑅 is regular, we conclude from Lemma 13.54 and Lemma 13.55 that the
assembly map

𝐻 𝜋
𝑛 (𝐸𝜋; K𝑅) → 𝐾𝑛 (𝑅𝜋)
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is an isomorphism for 𝑛 ∈ Z. We conclude from Example 15.30 that the obvious map⊕𝑛

𝑖=1 𝐾𝑛 (𝑅[𝜋1 (𝑀𝑖)]) → 𝐾𝑛 (𝑅𝜋) is bijective. The claim in the special case that 𝜋 is
torsionfree follows from Conjecture 6.53, which holds for 𝜋 by Theorem 13.65 (xii).
(ii) The assembly map

𝐻 𝜋
𝑛 (𝐸𝜋; L⟨−∞⟩

𝑅
) → 𝐿

⟨−∞⟩
𝑛 (𝑅𝜋)

is an isomorphism by Theorem 13.60 since every virtually cyclic subgroup of
𝜋 is isomorphic to Z. We conclude from Example 15.30 that the obvious map⊕𝑛

𝑖=1 𝐿
⟨−∞⟩
𝑛 (𝑅[𝜋1 (𝑀𝑖)]) → 𝐿

⟨−∞⟩
𝑛 (𝑅𝜋) is bijective. The claim in the special case

that 𝜋 is torsionfree follows from Conjecture 9.114, which holds for 𝜋 by Theo-
rem 13.65 (xii). ⊓⊔
Exercise 17.65. Let 𝑀 be a connected orientable irreducible closed 3-manifold with
infinite fundamental group 𝜋. Show that 𝐿 ⟨𝑖⟩𝑛 (Z𝜋) is independent of the decoration
and that we have isomorphisms

𝐿0 (Z𝜋) � Z ⊕ homZ (𝜋,Z/2);
𝐿1 (Z𝜋) � 𝜋/[𝜋, 𝜋] ⊕ Z/2;
𝐿2 (Z𝜋) � Z/2 ⊕ homZ (𝜋,Z);
𝐿3 (Z𝜋) � Z ⊕ (𝜋/[𝜋, 𝜋] ⊗Z Z/2).

17.6 Applications of Some Computations

17.6.1 Classification of Some 𝑪∗-algebras

Theorem 17.47 is an important input in the classification of certain 𝐶∗-algebras
associated to number fields by Li-Lück [629]. Here the key point is the rather
surprising result that the topological 𝐾-groups are all torsionfree, which is not the
case for the group homology. Actually, it is intriguing that the topological complex
𝐾-groups are finitely generated free abelian groups in many of the examples presented
in Subsection 17.5, see also Question 17.50.

Another application of the computation of the topological 𝐾-theory of group
𝐶∗-algebras can be found in [324], namely, to the structure of crossed products of
irrational rotation algebras by finite subgroups of SL2 (Z).

17.6.2 Unstable Gromov-Lawson Rosenberg Conjecture

We have already discussed in Subsection 14.8.4 that Schick [895] constructed coun-
terexamples to the unstable version of the Gromov-Lawson-Rosenberg Conjecture
with fundamental group 𝜋 � Z4 × Z/3. However for appropriate 𝜌 : Z/3→ aut(Z4)
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the unstable version does hold for 𝜋 � Z4 ⋊𝜌 Z/3 and dim(𝑀) ≥ 5. This is proved
by Davis-Lück [282, Theorem 0.7 and Remark 0.9] based on explicit calculations
of the topological 𝐾-theory of the reduced real group 𝐶∗-algebra of Z4 ⋊𝜌 Z/3.
More infinite groups for which the unstable version holds are presented in [507,
Theorem 6.3].

17.6.3 Classification of Certain Manifolds with Infinite Not Torsionfree
Fundamental Groups

Manifolds homotopy equivalent to the total space of certain fiber bundles over lens
spaces with tori as fiber are classified by Davis-Lück [283]; see also [988]. Here the
key input is the calculation of algebraic 𝐾-and 𝐿-groups of integral group rings of
groups of the shape 𝜋 = Z ⋊𝜌 Z/𝑝 for odd primes 𝑝 where the conjugation action of
Z/𝑝 on Z𝑛 is free outside the origin. Note that 𝜋 is infinite and not torsionfree. This
is one of the few classification result about a class of closed manifolds whose funda-
mental group is not obtained from torsionfree and finite groups using amalgamated
free products and HNN-extensions.

17.7 Notes

The lower and middle algebraic 𝐾-theory of integral group rings of certain re-
flection groups has been computed by Lafont-Ortiz [607] and by Lafont-Margurn-
Ortiz [605], of Γ3 := 𝑂+ (3, 1) ∩ GL4 (Z) by Ortiz [781, 782], of Bianchi groups
by Berkove-Farrell-Pineda-Pearson [125], and of pure braid groups by Aravinda-
Farrell-Roushon [37]. The lower and middle algebraic 𝐾-theory of integral group
rings of mapping class group of genus 1 is computed in [126]. The topological
𝐾-theory of the complex group 𝐶∗-algebra of a cocompact 3-dimensional hyper-
bolic reflection group is computed by Lafont-Ortiz-Rahm-Sanchez-Gracia [608].
Computations of the algebraic 𝐾-groups 𝐾𝑛 (𝑅𝐺) for Artin groups 𝐺 of dihedral
type can be found in [33].

Some necessary conditions on a group 𝐺 for which Q ⊗Z Wh(𝐺) vanishes can
be found in Lück-Oliver [672].





Chapter 18
Assembly Maps

18.1 Introduction

In this chapter we discuss assembly maps and the assembly principle in general.
We recall the homological approach in Section 18.2, which we have used in this

book.
We give the version in terms of spectra in Section 18.3. Actually, in all concrete

situations, such as in the Farrell-Jones Conjecture for 𝐾- and 𝐿-theory and pseu-
doisotopy or the Baum-Connes Conjecture, the assembly map can be implemented
in terms of spectra. This can easily be identified with the elementary approach in
terms of homotopy colimits, which nicely illustrates the name assembly, but works
only if we confine ourselves to classifying spaces of families of subgroups, see
Section 18.4. The approach in terms of homotopy colimits is the quickest and most
natural approach for a homotopy theorist.

The universal property of assembly is explained in Section 18.5. Roughly speak-
ing, it says that the assembly map is the best approximation of a weakly homotopy
invariant functor E : 𝐺-CW-COM→ SPECTRA from the left by a weakly excisive
functor 𝐺-CW-COM→ SPECTRA, where weakly excisive essentially means that
after taking homotopy groups the functor yields a 𝐺-homology theory. This is very
helpful to identify the various versions of the assembly maps appearing in the liter-
ature with our homological approach, since the constructions of the assembly maps
can be very complicated and it is much easier to use the universal property to estab-
lish the desired identifications than to go through the actual definitions. The universal
property will be exploited to identify the various assembly maps in Section 18.6.

This universal approach explains the philosophical background of assembly and
presents a uniform approach to the assembly map in all cases, such as the Farrell-
Jones Conjecture or the Baum-Conjecture. It is important to have the other more
geometric or operator-theoretic definitions of assembly maps in terms of surgery
theory or index theory at hand, in order to apply the Farrell-Jones Conjecture and the
Baum-Connes Conjecture to geometric problems, such as the topological rigidity of
closed aspherical manifolds or the existence of a Riemannian metric with positive
scalar curvature.

The homological or homotopy theoretic approach to assembly maps is best suited
for computations based on the Isomorphism Conjectures and for proofs of inheritance
properties, but not necessarily for their proofs for specific classes of groups such
as hyperbolic groups or CAT(0)-groups, where the approach using index theory or
controlled topology come into play.

561
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18.2 Homological Approach

The homological version of assembly is manifested in the Meta-Isomorphism Con-
jecture 15.2. Recall that it predicts for a group 𝐺, a family F of subgroups of 𝐺, and
a 𝐺-homology theory H𝐺

∗ in the sense of Definition 12.1 that the map induced by
the projection pr : 𝐸F (𝐺) → 𝐺/𝐺, for 𝐸F (𝐺) the classifying space of the family F
in the sense of Definition 11.18,

(18.1) H𝑛 (pr) : H𝐺
𝑛 (𝐸F (𝐺)) → H𝐺

𝑛 (𝐺/𝐺)

is bijective for all 𝑛 ∈ Z. The various conjectures due to Baum-Connes and Farrell-
Jones are special cases where one explicitly specifies F andH𝐺

∗ .

18.3 Extension from Homogenous Spaces to 𝑮-𝑪𝑾-Complexes

Let E be a covariant Or(𝐺)-spectrum, i.e., a covariant functor E : Or(𝐺) →
SPECTRA. We get an extension of E to the category 𝐺-CW-COM of 𝐺-𝐶𝑊-
complexes by

(18.2) E% : 𝐺-CW-COM→ SPECTRA, 𝑋 ↦→ map𝐺 (−, 𝑋)+ ∧Or(𝐺) E,

where map𝐺 (−, 𝑋) and ∧Or(𝐺) have been defined in Example 12.24 and in (12.25).
The projection pr : 𝐸F (𝐺) → 𝐺/𝐺 for 𝐸F (𝐺) induces a map of spectra

(18.3) E% (pr) : E% (𝐸F (𝐺)) → E% (𝐺/𝐺).

After taking homotopy groups we get for all 𝑛 ∈ Z a homomorphism

(18.4) 𝜋𝑛
(
E% (pr)

)
: 𝜋𝑛

(
E% (𝐸F (𝐺))

)
→ 𝜋𝑛

(
E% (𝐺/𝐺)

)
.

We have constructed a 𝐺-homology theory 𝐻𝐺∗ (−; E) with the property that
𝐻𝐺𝑛 (𝐺/𝐻; E) � 𝜋𝑛 (E(𝐺/𝐻)) holds for all 𝑛 ∈ Z and all subgroups 𝐻 ⊆ 𝐺 in
Theorem 12.27. The 𝐺-homology theories relevant for the Baum-Connes and the
Farrell-Jones Conjecture are given by specifying such covariant functors E. It follows
essentially from the definitions that the map (18.1) forH𝐺

∗ = 𝐻𝐺∗ (−; E) agrees with
the map (18.4).

18.4 Homotopy Colimit Approach

Consider a covariant functor E : Or(𝐺) → SPECTRA. Recall that OrF (𝐺) denotes
the F -restricted orbit category, see Definition 2.64. If the 𝐺-homology theory H𝐺

∗
is given by 𝐻𝐺∗ (−; E), one can identify the assembly map (18.4) with the map
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(18.5) 𝜋𝑛 (p) : 𝜋𝑛
(
hocolimOrF (𝐺) E

)
→ 𝜋𝑛 (E(𝐺/𝐺))

where the map of spectra

p : hocolimOrF (𝐺) E→ hocolimOr(𝐺) E = E(𝐺/𝐺)

comes from the inclusion of categories OrF (𝐺) → Or(𝐺) and the fact that 𝐺/𝐺
is a terminal object in Or(𝐺). For more information about homotopy colimits and
the identification of the maps (18.1), (18.4), and (18.5), we refer to [280, Sections 3
and 5].

This interpretation is one explanation for the name assembly. If the assembly
map (18.5) is bijective for all 𝑛 ∈ Z, or, equivalently, the map p above is a weak ho-
motopy equivalence, we have a recipe to assemble E(𝐺/𝐺) from its values E(𝐺/𝐻),
where 𝐻 runs through F . The idea is that F consists of well-understood subgroups,
for which one knows the values E(𝐺/𝐻) for 𝐻 ⊆ 𝐺 and hence hocolimOrF (𝐺) E,
whereas E(𝐺/𝐺) is the object which one wants to understand and is very hard to
access.

18.5 Universal Property

In this section we characterize assembly maps by a universal property. This is useful
for identifying different constructions of assembly maps.

Lemma 18.6. Let E be a covariant Or(𝐺)-spectrum. Then:

(i) The canonical map

E% (𝑋) ∪E% ( 𝑓 ) E% (𝑌 ) → E% (𝑋 ∪ 𝑓 𝑌 )

is an isomorphism of spectra where (𝑋, 𝐴) is a 𝐺-𝐶𝑊-pair and 𝑓 : 𝐴→ 𝑌 is a
cellular 𝐺-map;

(ii) The canonical map
colim𝑖∈𝐼 E% (𝑋𝑖) → E% (𝑋)

is an isomorphism of spectra where {𝑋𝑖 | 𝑖 ∈ 𝐼} is a directed system of 𝐺-𝐶𝑊-
subcomplexes of the 𝐺-𝐶𝑊-complex 𝑋 directed by inclusion and satisfying
𝑋 =

⋃
𝑖∈𝐼 𝑋𝑖;

(iii) The canonical map
𝑍+ ∧ E% (𝑋) → E% (𝑍 × 𝑋)

is an isomorphism of spectra where 𝑍 is a 𝐶𝑊-complex (with trivial 𝐺-action)
and 𝑋 is a 𝐺-𝐶𝑊-complex;

(iv) The canonical map
E% (𝐺/𝐻) → E(𝐺/𝐻)

is an isomorphism of spectra for all 𝐻 ∈ F .
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Proof. One easily checks that the 𝐻-fixed point set functor map𝐺 (𝐺/𝐻,−) com-
mutes with the passage from a 𝐺-𝐶𝑊-pair (𝑋, 𝐴) and a cellular 𝐺-map 𝑓 : 𝐴→ 𝑌

to 𝑋 ∪ 𝑓 𝑌 and with directed unions of 𝐺-𝐶𝑊-subcomplexes. Now assertions (i)
and (ii) follow from the fact that − ∧Or(𝐺) E commutes with colimits, since it has
a right adjoint, see [280, Lemma 1.5]. Assertions (iii) and (iv) follow by inspecting
the definition of E%. ⊓⊔

Lemma 18.7. Let E be a covariant Or(𝐺)-spectrum. Then the extension E ↦→ E% is
uniquely determined up to isomorphism of 𝐺-CW-COM-spectra by the properties
of Lemma 18.6.

Proof. Let E ↦→ E$ be another such extension. There is an (a priori not necessarily
continuous) set-theoretic natural transformation

T(𝑋) : E% (𝑋) = 𝑋+ ∧Or(𝐺) E −→ E$ (𝑋)

which sends an element represented by (𝑥 : 𝐺/𝐻 −→ 𝑋, 𝑒) in map𝐺 (𝐺/𝐻, 𝑋) ×
E(𝐺/𝐻) to E$ (𝑥) (𝑒). Since any 𝐺-𝐶𝑊-complex is constructed from orbits 𝐺/𝐻
with 𝐻 ∈ F via products with disks and disjoint unions, attaching a 𝐺-space to a
𝐺-space along a 𝐺-map, and is the directed union over its skeletons, and T(𝐺/𝐻)
is an isomorphism of spectra for 𝐻 ⊆ 𝐺, T(𝑋) is an isomorphism of spectra for all
𝐺-𝐶𝑊-complexes 𝑋 . ⊓⊔

Lemma 18.7 is a characterization of E ↦→ E% up to isomorphism. Next we give
a homotopy theoretic characterization.

Definition 18.8 ((Weakly) excisive). We call a covariant functor

E : 𝐺-CW-COM→ SPECTRA

(weakly) homotopy invariant if it sends 𝐺-homotopy equivalences to (weak) homo-
topy equivalences of spectra.

The functor E is (weakly) excisive if it has the following four properties:

• It is (weakly) homotopy invariant;
• The spectrum E(∅) is (weakly) contractible;
• It respects homotopy pushouts up to (weak) homotopy equivalence, i.e., if the
𝐺-𝐶𝑊-complex 𝑋 is the union of 𝐺-𝐶𝑊-subcomplexes 𝑋1 and 𝑋2 with inter-
section 𝑋0, then the canonical map from the homotopy pushout of E(𝑋2) ←−
E(𝑋0) −→ E(𝑋2) to E(𝑋) is a (weak) homotopy equivalence of spectra;
• It respects disjoint unions up to (weak) homotopy, i.e., the natural map∨

𝑖∈𝐼 E(𝑋𝑖) → E(∐𝑖∈𝐼 𝑋𝑖) is a (weak) homotopy equivalence for all index sets 𝐼.

Exercise 18.9. Let E : CW-COM → SPECTRA be an excisive functor for the
trivial group. Show that the functor 𝐺-CW-COM → SPECTRA sending 𝑋 to
E(𝑋/𝐺) is excisive.
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Notation 18.10. If E : 𝐺-CW-COM→ SPECTRA is a covariant functor, we denote
(E|Or(𝐺) )% by E% again where E|Or(𝐺) is the composite of E with the obvious
inclusion Or(𝐺) → 𝐺-CW-COM.

The following result has been proved for 𝐺 = {1} in Weiss-Williams [1002].

Theorem 18.11 (Universal Property of assembly).

(i) Suppose that E : Or(𝐺) → SPECTRA is a covariant functor. Then E% is
excisive;

(ii) Suppose that E : Or(𝐺) → SPECTRA is a covariant functor. Then we obtain
a 𝐺-homology theory 𝐻𝐺𝑛 (−; E) in the sense of Definition 12.1 from Theo-
rem 12.27, and we get for every pair (𝑋, 𝐴) of 𝐺-𝐶𝑊-complexes (𝑋, 𝐴) a
natural isomorphism

𝐻𝐺𝑛 (𝑋, 𝐴; E) � coker
(
𝜋𝑛 (E% (∅+)) → 𝜋𝑛 (E% (𝑋/𝐴))

)
.

If 𝐴 = ∅, this becomes an isomorphism

𝐻𝐺𝑛 (𝑋; E) � 𝜋𝑛 (E% (𝑋));

(iii) Let T : E → F be a transformation of (weakly) excisive functors E and F from
𝐺-CW-COM to SPECTRA so that T(𝐺/𝐻) is a (weak) homotopy equivalence
of spectra for all 𝐻 ⊆ 𝐺.
Then T(𝑋) is a (weak) homotopy equivalence of spectra for all 𝐺-𝐶𝑊-
complexes 𝑋;

(iv) For every (weakly) homotopy invariant functor E from 𝐺-CW-COM to
SPECTRA, there is a (weakly) excisive functor

E% : 𝐺-CW-COM→ SPECTRA

and natural transformations

AE : E% → E;

BE : E% → E%

which induce (weak) homotopy equivalences of spectra AE (𝐺/𝐻) for all𝐻 ⊆ 𝐺
and (weak) homotopy equivalences of spectra BE (𝑋) for all 𝐺-𝐶𝑊-complexes
𝑋 .
The constructions E%, E%, AE, and BE are natural in E.
Moreover, E is (weakly) excisive if and only if AE (𝑋) is a (weak) homotopy
equivalence of spectra for all 𝐺-𝐶𝑊-complexes 𝑋 .

Proof. (i) follows from Lemma 18.6 after one has shown that in the situation of
Lemma 18.6 (i) the canonical map from the homotopy pushout of spectra to the
pushout of spectra is a weak homotopy equivalence. This follows from the fact that
the inclusion of E% (𝐴) → E% (𝑋) is on each level a cofibration of spaces.
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(ii) There is an obvious 𝐺-homotopy equivalence of pointed 𝐺-𝐶𝑊-complexes
𝑋+ ∪𝐴+ cone(𝐴+) → 𝑋/𝐴. Hence we get from the definitions

𝐻𝐺𝑛 (𝑋, 𝐴; E) = 𝜋𝑛
(
map𝐺 (−, 𝑋/𝐴) ∧Or(𝐺) E

)
.

Now the assertion follows from the cofibration sequence of spectra

E% (∅+) = map𝐺 (−, ∅+)+ ∧Or(𝐺) E
→ E% (𝑋/𝐴) = map𝐺 (−, 𝑋/𝐴)+ ∧OrF (𝐺) E→ map𝐺 (−, 𝑋/𝐴) ∧OrF (𝐺) E.

(iii) Use the fact that a (weak) homotopy colimit of homotopy equivalences of spectra
is again a (weak) homotopy equivalence of spectra.
(iv) See [280, Theorem 6.3]. ⊓⊔

Exercise 18.12. Show that a covariant functor E : 𝐺-CW-COM → SPECTRA
is weakly excisive if and only if the assignment sending a pair (𝑋, 𝐴) of 𝐺-𝐶𝑊-
complexes to coker

(
𝜋𝑛 (E(∅+)) → 𝜋𝑛 (E(𝑋/𝐴))

)
defines a𝐺-homology in the sense

of Definition 12.1.

Exercise 18.13. Let E : 𝐺-CW-COM → SPECTRA be a weakly excisive functor
such that 𝜋𝑛 (E(𝐺/𝐻)) is finitely generated for every 𝐻 ⊆ 𝐺 and 𝑛 ∈ Z. Then
𝜋𝑛 (E(𝑋)) is finitely generated for every finite 𝐺-𝐶𝑊-complex 𝑋 and 𝑛 ∈ Z.

Definition 18.14 (Homotopy theoretic assembly transformation). Given a covari-
ant functor E : 𝐺-CW-COM → SPECTRA, we call the transformation appearing
in Theorem 18.11 (iv)

AE : E% → E

the homotopy theoretic assembly transformation.

Remark 18.15 (No continuity condition E). One may be tempted to define a natural
transformation S : E% → E as indicated in the proof of Lemma 18.7. Then S(𝑋) is
a well-defined bijection of sets but is not necessarily continuous because we do not
want to assume that E is continuous, i.e., that the induced map from homC (𝑋,𝑌 )
to homC (E(𝑋),E(𝑌 )) is continuous for all 𝐺-𝐶𝑊-complexes 𝑋 and 𝑌 . This is the
reason why we have to pass to the more complicated construction of E% and only
obtain a zigzag

E%
BE←−− E% AE−−→ E,

which suffices for all our purposes. The construction of this zigzag uses the (weak)
homotopy invariance of E and does not require any continuity condition for E.

Theorem 18.11 implies the following corollary.
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Corollary 18.16. Let E : 𝐺-CW-COM→ SPECTRA be a weakly excisive functor.
Denote by E|Or(𝐺) its restriction to a covariant functor Or(𝐺) → SPECTRA.

Then we obtain for every 𝑛 ∈ Z and every 𝐺-𝐶𝑊-complex 𝑋 an isomorphism,
natural in 𝑋 ,

𝜋𝑛 (E(𝑋))
�−→ 𝐻𝐺𝑛 (𝑋; E|Or(𝐺) ).

In particular, we get for every family of subgroups F and 𝑛 ∈ Z a commutative
diagram with isomorphisms as vertical arrows

𝜋𝑛 (E(𝐸F (𝐺)))
𝜋𝑛 (E(pr) ) //

�

��

𝜋𝑛 (E(𝐺/𝐺))

�

��
𝐻𝐺𝑛 (𝐸F (𝐺); E|Or(𝐺) )

𝐻𝐺𝑛 (pr;E |Or(𝐺) ) // 𝐻𝐺𝑛 (𝐺/𝐺; E|Or(𝐺) ).

Exercise 18.17. Consider the covariant functor

E : 𝐺-CW-COM→ SPECTRA, 𝑋 ↦→ K𝑅 (Π(𝐸𝐺 ×𝐺 𝑋))

where Π(𝐸𝐺 ×𝐺 𝑋) is the fundamental groupoid of the space 𝐸𝐺 ×𝐺 𝑋 and
K𝑅 : GROUPOIDS → SPECTRA has been defined in (12.44). Suppose that E
is weakly excisive.

Show that then for every family F of subgroups the assembly map induced by
the projection 𝐸F (𝐺) → 𝐺/𝐺

𝐻𝐺𝑛 (𝐸F (𝐺); K𝑅) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅) = 𝐾𝑛 (𝑅𝐺)

is bijective for all 𝑛 ∈ Z.

Remark 18.18 (Universal property of the homotopy theoretic assembly transfor-
mation). Next we explain why Theorem 18.11 characterizes the homotopy theoretic
assembly map

AE : E% −→ E

in the sense that it is the universal approximation from the left by a (weakly) excisive
functor of a (weakly) homotopy invariant functor E from𝐺-CW-COM toSPECTRA
up to (weak) homotopy equivalence. Namely, let T : F → E be a transformation of
covariant functors from𝐺-CW-COM to SPECTRA such that F is (weakly) excisive.
Then for any 𝐺-𝐶𝑊-complex 𝑋 the following diagram commutes

F% (𝑋)

T% (𝑋)
��

AF (𝑋)
≃

// F(𝑋)

T(𝑋)
��

E% (𝑋)
AE (𝑋)

// E(𝑋)
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and AF (𝑋) is a (weak) homotopy equivalence by Theorem 18.11 (iv). Hence one
may say that T(𝑋) factorizes over AE (X) up to (weak) homotopy equivalence.

Suppose additionally that T(𝐺/𝐻) is a (weak) homotopy equivalence for all
𝐻 ⊆ 𝐺. Then both AF (𝑋) and T% (𝑋) are (weak) homotopy equivalences by
Theorem 18.11 (iii) and (iv). In particular, we obtain for every 𝐺-𝐶𝑊-complex
𝑋 a commutative diagram with an isomorphism as vertical arrow

𝜋𝑛 (F(𝑋))
𝜋𝑛 (T(𝑋) )

++
�𝜋𝑛 (T% (𝑋) )◦𝜋𝑛 (AF (𝑋) )−1

��

𝜋𝑛 (E(𝑋)).

𝜋𝑛 (E% (𝑋))
𝜋𝑛 (AE (𝑋) )

33

18.6 Identifying Assembly Maps

In this section we explain and summarize that we can identify all the various assembly
maps we have studied so far.

We recall that we have the following versions of assembly maps.

• The Meta-Isomorphism Conjecture 15.2 with respect to the 𝐺-homology theory
H𝐺
∗ and the family F of subgroups of 𝐺, where the assembly map

H𝑛 (pr) : H𝐺
𝑛 (𝐸F (𝐺)) → H𝐺

𝑛 (𝐺/𝐺)

comes from the projection pr : 𝐸F (𝐺) → 𝐺/𝐺;
• The Meta-Isomorphism Conjecture 15.2, whereH𝐺

∗ is the value at 𝐺 of the equi-
variant homology theoryH ?

∗ coming from a functorGROUPOIDS→ SPECTRA
respecting equivalences, see Theorem 12.30 and Section 12.5;
• The Meta-Isomorphism Conjecture 15.38 for functors from spaces to spectra;
• The homotopy theoretic assembly transformation in the sense of Definition 18.14;
• For the 𝐿-theoretic Farrell-Jones Conjecture and 𝐺 the fundamental group of an

aspherical closed manifold, the assembly map given by taking surgery obstructions,
see the sketch of the proof of Theorem 9.171 in Subsection 9.15.3;
• For the Baum-Connes Conjecture in terms of index theory, see Section 14.2.

Remark 18.19 (The homotopy theoretic assembly transformation and the Meta-
Isomorphism Conjecture 15.41 for functors from spaces to spectra with coeffi-
cients). Consider a functor S : SPACES→ SPECTRA which respects weak equiv-
alences and disjoint unions. Given a group 𝐺 and a free 𝐺-𝐶𝑊-complex 𝑍 , we get
a functor

S𝐺𝑍 : 𝐺-CW-COM→ SPECTRA, 𝑋 ↦→ S(𝑋 ×𝐺 𝑍)
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whose restriction to Or(𝐺) is denoted in the same way and has already been intro-
duced in (15.40). The Meta-Isomorphism Conjecture 15.41 for functors from spaces
to spectra with coefficients predicts for a family F of subgroups of 𝐺 that the map

(18.20) 𝐻𝐺𝑛 (pr; S𝐺𝑍 ) : 𝐻
𝐺
𝑛 (𝐸F (𝐺); S𝐺𝑍 ) → H

𝐺
𝑛 (𝐺/𝐺; S𝐺𝑍 )

induced by the projection pr : 𝐸F (𝐺) → 𝐺/𝐺 is bijective for all 𝑛 ∈ Z. This map
can be identified with the map

(18.21) 𝜋𝑛
(
(S𝐺𝑍 )

% (pr)
)
: 𝜋𝑛

(
(S𝐺𝑍 )

% (𝐸F (𝐺))
)
→ 𝜋𝑛

(
(S𝐺𝑍 )

% (𝐺/𝐺)
)

and with the map induced on homotopy groups by the homotopy theoretic assembly
map of Definition 18.14

(18.22) 𝜋𝑛
(
AS𝐺

𝑍
(𝐸F (𝐺))

)
: 𝜋𝑛

(
(S𝐺𝑍 )

% (𝐸F (𝐺))
)
→ 𝜋𝑛

(
S𝐺𝑍 (𝐸F (𝐺))

)
by the following argument.

Because of Theorem 18.11 (ii) the map (18.20) can be identified with the map
induced by the projection pr : 𝐸F (𝐺) → 𝐺/𝐺

𝜋𝑛
(
(S𝐺𝑍 )% (pr)

)
: 𝜋𝑛

(
(S𝐺𝑍 )% (𝐸F (𝐺))

)
→ 𝜋𝑛

(
(S𝐺𝑍 )% (𝐺/𝐺)

)
,

and hence by Theorem 18.11 (iv) with the map (18.21).
We have the following commutative diagram

(S𝐺
𝑍
)% (𝐸F (𝐺))

(S𝐺
𝑍
)% (pr)

//

AS𝐺
𝑍

(𝐸F (𝐺) )
��

(S𝐺
𝑍
)% (𝐺/𝐺)

AS𝐺
𝑍

(𝐺/𝐺)
��

S𝐺
𝑍
(𝐸F (𝐺))

S𝐺
𝑍
(pr)

// S𝐺
𝑍
(𝐺/𝐺).

The right vertical arrow is a weak homotopy equivalence by Theorem 18.11 (iv).
Since 𝑍 is a free 𝐺-𝐶𝑊-complex and 𝐸F (𝐺) is contractible (after forgetting the
group action), the map id×𝐺 pr : 𝑍 ×𝐺 𝐸F (𝐺) → 𝑍 ×𝐺 𝐺/𝐺 is a homotopy equiva-
lence and hence the lower horizontal arrow is a weak homotopy equivalence. Hence
we get an identification of the maps (18.22) and (18.21). Thus we have identified the
maps (18.20), (18.21), and (18.22).

Example 18.23 (The Farrell-Jones Conjecture and the Baum-Connes Conjec-
ture in the setting of the homotopy theoretic assembly transformation). In
the sequel Π(𝑋) denotes the fundamental groupoid of a space 𝑋 . If we take in
Remark 18.19 the covariant functor S : SPACES→ SPECTRA to be the one which
sends a space 𝑋 to K𝑅 (Π(𝑋)) or L⟨−∞⟩

𝑅
(Π(𝑋)) respectively, see Theorem 12.43,

then we conclude from Example 15.39 and Remark 18.19 that the assembly map
appearing in the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the
ring 𝑅
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𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅) = 𝐾𝑛 (𝑅𝐺)

or the assembly map appearing in the 𝐿-theoretic Farrell-Jones Conjecture 13.4 with
coefficients in the ring with involution 𝑅

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); L⟨−∞⟩
𝑅
) → 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩

𝑅
) = 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺)

respectively can be identified with the map

𝜋𝑛
(
S𝐺𝐸𝐺 (𝐸VCY (𝐺))

% (pr)
)
: 𝜋𝑛

(
(S𝐺𝐸𝐺)

% (𝐸VCY (𝐺))
)
→ 𝜋𝑛

(
(S𝐺𝐸𝐺)

% (𝐺/𝐺)
)

and with the map induced on homotopy groups by the homotopy theoretic assembly
map of Definition 18.14

𝜋𝑛
(
AS𝐺

𝐸𝐺
(𝐸VCY (𝐺))

)
: 𝜋𝑛

(
(S𝐺𝐸𝐺)

% (𝐸VCY (𝐺))
)
→ 𝜋𝑛

(
S𝐺𝐸𝐺 (𝐸VCY (𝐺))

)
.

The claims above directly extend to additive or higher categories as coefficients.
In the Baum-Connes setting we get an identification of the assembly map

𝐻𝐺𝑛 (pr; KTOP) : 𝐻𝐺𝑛 (𝐸FIN (𝐺); KTOP) → 𝐻𝐺𝑛 (𝐺/𝐺; KTOP) = 𝐾𝑛 (𝐶∗𝑟 (𝐺))

with the map

𝜋𝑛
(
S𝐺𝐸𝐺 (𝐸FIN (𝐺))

% (pr)
)
: 𝜋𝑛

(
(S𝐺𝐸𝐺)

% (𝐸FIN (𝐺))
)
→ 𝜋𝑛

(
(S𝐺𝐸𝐺)

% (𝐺/𝐺)
)

and with the map induced on homotopy groups by the homotopy theoretic assembly
map of Definition 18.14

𝜋𝑛
(
S𝐺𝐸𝐺 (𝐸FIN (𝐺))

% (pr)
)
: 𝜋𝑛

(
(S𝐺𝐸𝐺)

% (𝐸FIN (𝐺))
)
→ 𝜋𝑛

(
S𝐺𝐸𝐺 (𝐸FIN (𝐺))

)
,

if we take S = KTOP (Π(𝑋)), see Theorem 12.43, and analogously in the real case.

We have explained in Remark 15.44 the identification of the original formulation
of the fibered Farrell-Jones Conjecture for covariant functors from SPACES to
SPECTRA, e.g., for pseudoisotopy,𝐾-theory and 𝐿-theory, due to Farrell-Jones [366,
Section 1.7 on page 262] with the setting we are using in the Meta-Isomorphism
Conjecture 15.41 for functors from spaces to spectra with coefficients.

We have discussed the various Baum-Connes assembly maps and their relations
already in Sections 14.2 and 14.3.

We have explained the relationship between the 𝐿-theoretic assembly map in terms
of spectra, which we are using here, and the surgery obstruction map appearing in
the geometric Surgery Exact Sequence in the sketch of the proof of Theorem 9.171
in Subsection 9.15.3.
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18.7 Notes

The Baum-Connes assembly maps in terms of localizations of triangulated categories
are considered in [514, 515, 516, 716, 717, 718]. A categorial approach in terms of
codescent is presented in [62].

Chain complex versions of the 𝐿-theoretic assembly map for additive categories
are intensively studied by Ranicki [839] and Kühl-Macko-Mole [596, Section 11]
emphasizing the aspect of comparing local Poincaré duality and global Poincaré
duality.

The idea of the geometric assembly map is due to Quinn [823, 828] and its
algebraic counterpart was introduced by Ranicki [839]. See also Loday [635]. The
basic and uniform approach to assembly as presented in this chapter is sometimes
called the Davis-Lück approach and was developed in [280].

For more information about assembly maps we refer for instance to the survey
article [663].





Chapter 19
Motivation, Summary, and History of the Proofs
of the Farrell-Jones Conjecture

19.1 Introduction

The purpose of this chapter is to present basic ideas and motivations for the proofs of
the Farrell-Jones Conjecture and some information about their long history without
getting lost in technical details. So it will be a soft introduction to the methods of
proofs conveying only ideas. Moreover, we also want to provide some insight into
why some input such as controlled topology, transfers, and flows occurs, which one
might not expect at first glance since so far the assembly maps have been purely
homotopy theoretic notions. We refer the interested reader, who wants to see more
details, to Chapters 21, 22, 23, and 24.

We also want to explain why it is rather difficult to say something about all the
proofs in full detail since the proofs and their methods have been moving targets.
Many new ideas and technical modifications have been introduced over the last
few decades, up to the present, so that sometimes the original ideas can hardly be
recognized, and the overwhelming variety of different proofs cannot be presented in
detail in a single book. The most advanced presentation of a framework of a proof
will be given in Chapter 24, where we will work in the setting of higher categories as
coefficients, which is more general than considering additive categories or rings as
coefficients. We will not deal with the Farrell-Jones Conjecture for reductive 𝑝-adic
groups, see Bartels-Lück [81, 83], which is the next level of complexity, since we
confine ourselves in this book to discrete groups and do not consider topological
groups.

The original formulation of the Farrell-Jones Conjecture appears in [366, 1.6 on
page 257]. Of course it had many previous versions, some of them can be found in
Subsection 13.11.1.

19.2 Homological Aspects

We have already explained in the introduction of this book, see Chapter 1, how
homological aspects concerning the topological 𝐾-theory 𝐾∗ (𝐶∗𝑟 (𝐺)) of the reduced
group 𝐶∗-algebra 𝐶∗𝑟 (𝐺) of 𝐺 and the algebraic 𝐾-theory 𝐾∗ (𝑅𝐺) and algebraic
𝐿-theory 𝐿 ⟨−∞⟩∗ (𝑅𝐺) of the group ring 𝑅𝐺 lead to the assembly maps

573
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𝐾𝐺𝑛 (𝐸VCY (𝐺))
�−→ 𝐾𝑛 (𝐶∗𝑟 (𝐺));

𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅)
�−→ 𝐾𝑛 (𝑅𝐺);

𝐻𝐺𝑛 (𝐸FIN (𝐺); L⟨−∞⟩
𝑅
) �−→ 𝐿

⟨−∞⟩
𝑛 (𝑅𝐺).

They appear in the Baum-Connes Conjecture 1.1 and the Farrell-Jones Conjec-
tures 1.2 and 1.3, which predict that these assembly maps are bijections for all 𝑛 ∈ Z.
Moreover we have explained in Chapter 18 that, after passing to the spectrum version
of 𝐾∗ (𝐶∗𝑟 (𝐺)), 𝐾∗ (𝑅𝐺), and 𝐿 ⟨−∞⟩∗ (𝑅𝐺) as functors from the category of 𝐺-𝐶𝑊-
complexes to the category of spectra, these assembly maps are characterized by the
universal property that they are the best approximation from the left by an excisive
functor and do have interpretations in terms of homotopy colimits over the orbit
category. So the first attempt to prove these conjectures is to show that these functors
are excisive. However, this direct strategy has never really worked out, at least not
without further sophisticated input. The problem is to isolate the reason why these
functors are excisive in general. It is unclear which basic properties of the 𝐾- and
𝐿-theory of group rings or reduced group 𝐶∗-algebras guarantee excisiveness.

19.3 Constructing Detection maps

The next idea is just to construct an inverse to these assembly maps. In the Baum-
Connes setting this is a successful strategy relying on the equivariant Kasparov
product and the Dirac-Dual Dirac Method, see Section 25.2. In the Farrell-Jones set-
ting this has nearly never worked out. The main reason is that it is hard to construct
detecting maps with the algebraic 𝐾- or 𝐿-theory of group rings as source. There
are interesting attempts to do this, most prominently the cyclotomic trace for the al-
gebraic K-theory of group rings, or Chern characters for the topological K-theory of
𝐶∗-algebras with values in cyclic homology, but these give inverses to the assembly
maps only in a very few instances. However, they can be used to show injectivity
results, as explained in Sections 16.5 and 16.6. Note that surjectivity results are
more valuable than injectivity results, since they give some insight about elements in
the 𝐾- or 𝐿-groups under consideration and imply many other conjectures, whereas
injectivity results only describe some portion of the 𝐾- or 𝐿-groups under consid-
eration and do not have so many consequences, with the exception of the Novikov
Conjecture, which is essentially an injectivity claim about assembly maps. Moreover,
surjectivity results can often be turned into bijectivity results by considering relative
versions.

In the Farrell-Jones setting the most successful method for proving bijectivity
results is controlled topology, as motivated and explained next.
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19.4 Controlled Topology

19.4.1 Two Classical Results

Let 𝛼 be an open cover of a space 𝑌 . Two maps 𝑓 , 𝑔 : 𝑋 → 𝑌 are called 𝛼-close
if for every 𝑥 ∈ 𝑋 there is a 𝑈𝑥 ∈ 𝛼 satisfying 𝑓 (𝑥), 𝑔(𝑥) ∈ 𝑈𝑥 . They are called
𝛼-homotopic if there exists a homotopy ℎ : 𝑋 × [0, 1] → 𝑌 such that ℎ0 = 𝑓 and
ℎ1 = 𝑔 hold and for every 𝑥 ∈ 𝑋 there is a 𝑈𝑥 ∈ 𝛼 satisfying ℎ({𝑥} × [0, 1]) ⊆ 𝑈𝑥 .
A map 𝑓 : 𝑋 → 𝑌 is an 𝛼-domination if there is a map 𝑔 : 𝑌 → 𝑋 such that 𝑓 ◦ 𝑔 is
𝛼-homotopic to the identity id𝑌 . In such a situation, 𝑔 is called a right 𝛼-homotopy
inverse for 𝑓 . We call 𝑓 : 𝑋 → 𝑌 an 𝛼-homotopy equivalence if 𝑓 is an 𝛼-domination
and, for some right 𝛼-homotopy inverse 𝑔, the composite 𝑔 ◦ 𝑓 is 𝑓 −1 (𝛼)-homotopic
to the identity id𝑋, where 𝑓 −1 (𝛼) denotes the cover { 𝑓 −1 (𝑈) | 𝑈 ∈ 𝛼} of 𝑋 . We
call 𝑔 an 𝛼-homotopy inverse of 𝑓 .

Recall that a map 𝑓 : 𝑋 → 𝑌 is proper if 𝑓 −1 (𝐶) is compact for every compact
subset 𝐶 ⊆ 𝑌 .

Obviously a homeomorphism 𝑓 : 𝑋 → 𝑌 is an 𝛼-homotopy equivalence for every
𝛼 and a proper map.

The next result is due to Chapman and Ferry, see [230].

Theorem 19.1 (𝛼-Approximation Theorem). Let 𝑁 be a topological manifold of
dimension 𝑛 and let 𝛼 be an open cover of 𝑁 . Then there is an open cover 𝛽 of 𝑁 with
the following property: If 𝑀 is a topological manifold and 𝑓 : (𝑀, 𝜕𝑀) → (𝑁, 𝜕𝑁)
is a proper 𝛽-homotopy equivalence of pairs such that either 𝑛 ≥ 6 or (𝑛 ≥ 5 and
𝜕 𝑓 is a homeomorphism) hold, then 𝑓 is 𝛼-close to a homeomorphism.

The following result is a special case of a theorem due to Ferry [379, Theorem 1].
Its proof relies on the 𝛼-Approximation Theorem 19.1.

Theorem 19.2. Let 𝑀 be a closed topological manifold of dimension 𝑛 ≥ 5. Equip
𝑀 with a metric generating the given topology. Then there is an 𝜖 > 0 with the
following property: Every surjective map 𝑓 : 𝑀 → 𝑁 to some closed manifold 𝑁
of dimension 𝑛 for which the diameter of 𝑓 −1 (𝑦) for every 𝑦 ∈ 𝑁 is less than 𝜖 is
homotopic to a homeomorphism.

The next result follows from Quinn [824, Theorem 2.7], which is closely related
to the work of Chapman and Ferry [229, 230, 378].

Let 𝑀0 be a closed topological manifold of dimension 𝑛 ≥ 5. Equip 𝑀 with a
metric generating the given topology. An ℎ-cobordism (𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) is called
𝜖-controlled if for 𝑖 = 0, 1 the composite 𝑀𝑖

𝑓𝑖−→ 𝜕𝑖𝑊
𝑗𝑖−→ 𝑊 for 𝑗𝑖 the inclusion

possesses a retraction 𝑟𝑖 : 𝑊 → 𝑀𝑖 coming with a homotopy 𝐻𝑖 : 𝑗𝑖 ◦ 𝑟𝑖 ≃ id𝑊 such
that for every 𝑤 ∈ 𝑊 the subset of 𝑀0 given by 𝑟0 ◦𝐻𝑖 ({𝑤} × [0, 1]) has a diameter
less than 𝜖 , in other words, the images of all the tracks of the two homotopies 𝐻0
and 𝐻1 under 𝑟0 have diameter less than 𝜖 .
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An 𝜖-controlled ℎ-cobordism (𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) has an 𝜖-product structure if
there is additionally a homeomorphism 𝐹 : 𝑊 �−→ 𝑀0×[0, 1] such that 𝐹◦ 𝑗0◦ 𝑓0 sends
𝑥 ∈ 𝑀0 to (𝑥, 0) and 𝑟0 and pr𝑀0

◦𝐹 for the projection pr𝑀0
: 𝑀0 × [0, 1] → 𝑀0 are

𝜖-homotopic in the sense that there exists a homotopy 𝐿 : 𝑊 × [0, 1] → 𝑀0 between
them such that the diameter of the subset 𝐿 ({𝑤} × [0, 1]) of 𝑀0 is less than 𝜖 for
every 𝑤 ∈ 𝑊 . In particular every 𝜖-controlled ℎ-cobordism (𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) with
an 𝜖-product structure is trivial and hence has vanishing Whitehead torsion.

Theorem 19.3 (Thin ℎ-Cobordism Theorem). Let 𝑀0 be a closed topological
manifold of dimension 𝑛 ≥ 5. Equip 𝑀0 with a metric generating the given topology.

Then for every 𝜖 > 0 there exists a 𝛿 with 0 < 𝛿 < 𝜖 such that every topological
ℎ-cobordism (𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) over 𝑀0 which is 𝛿-controlled has an 𝜖-product
structure. In particular, there exists a 𝛿 > 0 such that every topological ℎ-cobordism
(𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) over 𝑀0 which is 𝛿-controlled is trivial.

19.4.2 The Strategy of Gaining Control

Let 𝑁 and 𝑀0 be closed topological manifolds of dimension 𝑛 ≥ 5 equipped with a
metric generating the given topology. Then there exists an 𝜖 > 0 with the following
properties:

• Let 𝑀 be a closed manifold and 𝑓 : 𝑀 → 𝑁 be a homotopy equivalence which is
𝜖-controlled in the sense that it is an 𝛼-homotopy equivalence for the open covering
𝛼 of 𝑁 consisting of all open balls of radius 𝜖/2. Then by the 𝛼-Approximation
Theorem 19.1 𝑓 is homotopic to a homeomorphism and in particular has trivial
Whitehead torsion. So in order to prove that 𝑁 is topological rigid in the sense of
Definition 9.162, it suffices to show that a given homotopy equivalence 𝑔 : 𝑀 → 𝑁

is homotopic to an 𝜖-controlled homotopy equivalence. Roughly speaking, to
achieve up to homotopy a homeomorphism, it suffices to gain 𝜖-control.
• An ℎ-cobordism (𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) over 𝑀0 is trivial and hence has vanish-

ing Whitehead torsion if we can show that it is 𝜖-controlled. This follows
from the Thin ℎ-Cobordism Theorem 19.3. In particular, in order to show that
Wh(𝜋1 (𝑁)) vanishes, it suffices to show because of the 𝑠-Cobordism Theorem 3.47
that, for any ℎ-cobordism (𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) over 𝑀0, we can find another
an ℎ-cobordism (𝑊 ′;𝑀0, 𝑀

′
1, 𝑓
′
0 , 𝑓

′
1 ) over 𝑀0 such that (𝑊 ;𝑀0, 𝑀1, 𝑓0, 𝑓1) and

(𝑊 ′;𝑀0, 𝑀
′
1, 𝑓
′
0 , 𝑓

′
1 ) have the same Whitehead torsion and the new ℎ-cobordism

(𝑊 ′;𝑀0, 𝑀
′
1, 𝑓
′
0 , 𝑓

′
1 ) is 𝜖-controlled.

Hence to prove the Farrell-Jones Conjecture 3.110 for the Whitehead group
Wh(𝐺) for torsionfree 𝐺, which predicts the vanishing of Wh(𝐺), or the Borel
Conjecture 9.163 for 𝐺, which predicts the topological rigidity of an aspherical
closed manifold with fundamental group 𝐺, a promising strategy is to gain control,
i.e., turning an ℎ-cobordism or a homotopy equivalence to an 𝜖-controlled one
without changing the class associated to the ℎ-cobordism in the Whitehead group.
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With this strategy one can also achieve the𝐾𝑛 (Z𝐺) part for 𝑛 ≤ 0 of Conjecture 3.110
and Conjecture 4.18 using the Bass-Heller-Swan decomposition 3.73 and replacing
𝑁 by 𝑁 × 𝑇𝑛.

This turns out to be a major breakthrough since it allows us to bring in completely
new methods, namely, geometric methods, into the play. This was pioneered by
Farrell and Jones, in particular in their seminal papers [359, 360]. They used the
Thin ℎ-Cobordism Theorem 19.3, which does not play a role anymore in more recent
proofs but inspired them.

19.4.3 Controlled Algebra

Fix an infinite cardinal 𝜅. Let F 𝜅 (𝑅) be a small model for the category of all free
𝑅-modules which admit a basis 𝐵 with card(𝐵) ≤ 𝜅 such that F 𝜅 (𝑅) possesses
direct sums over index sets of cardinality ≤ 𝜅.

We have to consider this cardinal 𝜅 andF 𝜅 (𝑅) and consider only countable groups
and spaces whose cardinality is less than or equal to 𝜅 for set theoretic reasons which
the reader may ignore in the sequel. Denote by F 𝑓 (𝑅) ⊆ F 𝜅 (𝑅) the full subcategory
consisting of all free 𝑅-modules which admit a finite basis 𝐵. For more information
about these issues and F 𝜅 (𝑅) see for instance [92, Lemma 9.2].

Definition 19.4 (Geometric modules). Let 𝐺 be a group, 𝑅 be a ring, and 𝑋 be
a free 𝐺-space with card(𝑋) ≤ 𝜅. We define the additive category GM𝐺 (𝑋) of
geometric modules over 𝑋 as follows.

An object 𝑀 is a collection {𝑀𝑥 | 𝑥 ∈ 𝑋} of objects in F 𝜅 (𝑅) such that
𝑀𝑔𝑥 = 𝑀𝑥 holds for every 𝑥 ∈ 𝑋 and 𝑔 ∈ 𝐺. Define the support of an object

supp(𝑀) = {𝑥 ∈ 𝑋 | 𝑀𝑥 ≠ {0}} ⊆ 𝑋.

For two objects 𝑀 = {𝑀𝑥 | 𝑥 ∈ 𝑋} and 𝑁 = {𝑁𝑦 | 𝑦 ∈ 𝑋}, a morphism 𝑓 : 𝑀 → 𝑁

consists of a collection of 𝑅-homomorphisms 𝑓 = { 𝑓𝑥,𝑦 : 𝑀𝑥 → 𝑁𝑦 | 𝑥, 𝑦 ∈ 𝑋}
such that 𝑓𝑔𝑥,𝑔𝑦 = 𝑓𝑥,𝑦 holds for 𝑥, 𝑦 ∈ 𝑋 and 𝑔 ∈ 𝐺 and for every 𝑥 ∈ 𝑥 the set
{𝑦 ∈ 𝑌 | 𝑓𝑥,𝑦 ≠ 0} is finite and for every 𝑦 ∈ 𝑋 the set {𝑥 ∈ 𝑥 | 𝑓𝑥,𝑦 ≠ 0} is finite.
Define the support of a morphism

supp( 𝑓 ) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | 𝑓𝑥,𝑦 ≠ {0}} ⊆ 𝑋 × 𝑋.

If 𝑃 = {𝑃𝑧 | 𝑧 ∈ 𝑋} is an object and 𝑔 : 𝑁 → 𝑃 is a morphism, define the
composite

𝑔 ◦ 𝑓 = {(𝑔 ◦ 𝑓 )𝑥,𝑧 : 𝑀𝑥 → 𝑃𝑧 | 𝑥, 𝑧 ∈ 𝑋} : 𝑀 → 𝑃

by (𝑔 ◦ 𝑓 )𝑥,𝑧 =
∑
𝑦∈𝑌 𝑔𝑦,𝑧 ◦ 𝑓𝑥,𝑦 . Define the identity

id𝑀 = (id𝑀 )𝑥,𝑦 | 𝑥, 𝑦 ∈ 𝑋} : 𝑀𝑥 → 𝑀𝑦

of the object 𝑀 by (id𝑀 )𝑥,𝑦 = id𝑀𝑥 for 𝑥 = 𝑦 and by (id𝑀 )𝑥,𝑦 = 0 for 𝑥 ≠ 𝑦.
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Given two morphisms 𝑓 , 𝑔 : 𝑀 → 𝑁 and 𝑚, 𝑛 ∈ Z, define the morphism 𝑚 · 𝑓 +
𝑛 · 𝑔 : 𝑀 → 𝑁 by (𝑚 · 𝑓 + 𝑛 · 𝑔)𝑥,𝑦 = 𝑚 · 𝑓𝑥,𝑦 + 𝑛 · 𝑔𝑥,𝑦 for 𝑥, 𝑦 ∈ 𝑋 . The direct sum
of two objects 𝑀 and 𝑁 is defined by (𝑀 ⊕ 𝑁)𝑥 = 𝑀𝑥 ⊕ 𝑁𝑥 for 𝑥 ∈ 𝑋 .

Denote by GM𝐺 (𝑋) 𝑓 the full additive subcategory of GM𝐺 (𝑋) consisting of
those objects 𝑀 = {𝑀𝑥 | 𝑥 ∈ 𝑋} such that 𝑀𝑥 belongs to F 𝑓 (𝑅) for all 𝑥 ∈ 𝑋
and the support supp(𝑀) = {𝑥 ∈ 𝑋 | 𝑀𝑥 ≠ {0}} is 𝐺-cofinite, i.e., there is a finite
subset 𝑆 of 𝑋 with supp(𝑀) = 𝐺 · 𝑆, or, equivalently, 𝐺\ supp(𝑀) is finite.

The additive category GM𝐺 (𝑋) is equivalent to the additive category F 𝜅 (𝑅𝐺).
Namely, there is an equivalence of additive categories

(19.5) 𝐹 : GM𝐺 (𝑋) → F 𝜅 (𝑅𝐺)

defined as follows. Given an object 𝑀 = {𝑀𝑥 | 𝑥 ∈ 𝑋} in GM𝐺 (𝑋), we obtain an
𝑅𝐺-module whose underlying 𝑅-module is

⊕
𝑥∈𝑋 𝑀𝑥 and 𝑔 ∈ 𝐺 acts by sending

{𝑚𝑥 | 𝑥 ∈ 𝑋} to {𝑚𝑔−1𝑥 | 𝑥 ∈ 𝑋}. The 𝐺-action is well-defined since 𝑀𝑥 = 𝑀𝑔𝑥
holds for 𝑥 ∈ 𝑋 and 𝑔 ∈ 𝐺 by assumption. Since 𝐺 acts freely on 𝑋 , each 𝑀𝑥 is free
as 𝑅-module, and 𝐹 (𝑀) is isomorphic to the free 𝑅𝐺-module 𝑅𝐺 ⊗𝑅

(⊕
𝑦∈𝑆 𝑀𝑦

)
for a set 𝑆 with supp(𝑀) = 𝐺 · 𝑆. Hence we can choose an object 𝑉𝑀 in F 𝜅 (𝑅𝐺)
and an 𝑅𝐺-isomorphism 𝜉𝑀 :

⊕
𝑥∈𝑋 𝑀𝑥

�−→ 𝑉𝑀 and define 𝐹 (𝑀) = 𝑉𝑀 .
Given a morphism 𝑓 = { 𝑓𝑥,𝑦 : 𝑀𝑥 → 𝑁𝑦 | 𝑥, 𝑦 ∈ 𝑋} : 𝑀 → 𝑁 , we get an

𝑅𝐺-homomorphism 𝜂 𝑓 :
⊕

𝑥∈𝑋 𝑀𝑥 →
⊕

𝑦∈𝑋 𝑁𝑦 by sending (𝑢𝑥 | 𝑥 ∈ 𝑋} to
{𝑣𝑦 | 𝑦 ∈ 𝑋} with 𝑣𝑦 =

∑
𝑥∈𝑋 𝑓𝑥,𝑦 (𝑢𝑥). Now define 𝐹 ( 𝑓 ) to be the composite

𝜉𝑁 ◦ 𝜂 𝑓 ◦ 𝜉−1
𝑀

.
The functor 𝐹 induces an equivalence of additive categories

(19.6) 𝐹 𝑓 : GM𝐺 (𝑋) 𝑓 → F 𝑓 (𝑅𝐺).

Exercise 19.7. Show that the functors 𝐹 and 𝐹 𝑓 are equivalences of additive cate-
gories.

The additive categoriesGM𝐺 (𝑋) andGM𝐺 (𝑋) 𝑓 become much more interesting
than F 𝜅 (𝑅𝐺) and F 𝑓 (𝑅𝐺) if we bring the notion of control into play. Namely,
suppose that we have a metric space 𝑍 = (𝑍, 𝑑) with free isometric𝐺-action together
with a 𝐺-map 𝑝 : 𝑋 → 𝑍 . Given 𝜖 ≥ 0, we call a morphism 𝑓 = { 𝑓𝑥,𝑦 : 𝑀𝑥 →
𝑁𝑦 | 𝑥, 𝑦 ∈ 𝑋} : 𝑀 → 𝑁 𝜖-controlled if the implication 𝑥, 𝑦 ∈ 𝑋, 𝑓𝑥,𝑦 ≠ 0 =⇒
𝑑 (𝑝(𝑥), 𝑝(𝑦)) ≤ 𝜖 holds. An automorphism 𝑓 : 𝑀 �−→ 𝑀 is called an 𝜖-controlled
automorphism if both 𝑓 and 𝑓 −1 are 𝜖-controlled.

Geometric modules were introduced by Connell-Hollowingsworth [248]. Their
theory was developed further by, among others, Pedersen and Quinn and is some-
times referred to as controlled algebra. More information can be found in the survey
article [798]. One can find an algebraic proof of the topological invariance of White-
head torsion in [798, Section 5].

Next we give a kind of algebraic version of the Thin ℎ-Cobordism Theorem 19.3
taken from [67, Theorem 1.2.8].
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An abstract simplicial complex Σ = (Σ, 𝑉) consists of a set 𝑉 and a family Σ

of non-empty finite subsets of 𝑉 such that for every element 𝜎 in Σ, and every
non-empty subset 𝜏 ⊆ 𝜎, the subset 𝜏 also belongs to Σ and for each 𝑣 ∈ 𝑉 the
subset {𝑣} belongs to Σ. In the sequel we will often identify 𝑣 ∈ 𝑉 with {𝑣} ∈ Σ. The
dimension dim(𝜎) of a simplex is defined to be |𝜎 | − 1. The dimension dim(Σ) is
the supremum of the dimension of all simplices of Σ. A map of simplicial complexes
𝑓 : (Σ, 𝑉) → (Σ′, 𝑉 ′) is a map 𝑓 : 𝑉 → 𝑉 ′ such that for any element 𝜎 ∈ Σ the
subset 𝑓 (𝜎) ⊆ 𝑉 ′ belongs to Σ′. The barycentric subdivision Σ′ of an abstract
simplicial complex Σ is the abstract simplicial complex whose set of vertices is Σ

and whose set of simplices consists of non-empty finite subsets of Σ which are totally
ordered with respect to inclusion. Note that a 𝑑-simplex in Σ′ is the same as a flag
𝜎0 ⊊ 𝜎1 ⊊ · · · ⊊ 𝜎𝑑 of elements 𝜎𝑖 ∈ Σ.

We equip the geometric realization |Σ | of Σ, which consists of functions
𝑏 : 𝑉 → [0, 1] whose support supp(𝑏) = {𝑣 ∈ 𝑉 | 𝑓 (𝑣) ≠ 0} is finite and belongs to
Σ and satisfies

∑
𝑣∈𝑉 𝑏(𝑣) = 1, with the 𝐿1-metric given by 𝑑𝐿1 (𝑏, 𝑏′) =∑

𝑣∈𝑉 |𝑏(𝑣) − 𝑏′ (𝑣) |.
An abstract simplicial 𝐺-complex is an abstract simplicial complex Σ together

with𝐺-action by simplicial automorphisms. The𝐺-action on Σ induces an isometric
𝐺-action on |Σ | equipped with its 𝐿1-metric. Let F be a family of subgroups. We
call Σ an abstract simplicial (𝐺, F )-complex if the isotropy group 𝐺𝑏 = {𝑔 ∈ 𝐺 |
𝑔𝑏 = 𝑏} for every 𝑏 ∈ |Σ | belongs to F . Note that |Σ | is not necessarily a 𝐺-𝐶𝑊-
complex, but |Σ′ | for the barycentric subdivision Σ′ of Σ is. If the isotropy group of
each vertex 𝑣 ∈ 𝑉 belongs to F and F ′ is the family of subgroups of 𝐺 consisting
of those subgroups which contain a subgroup of finite index belonging to F , then
Σ and Σ′ are abstract simplicial (𝐺, F ′)-complexes and |Σ′ | is a 𝐺-𝐶𝑊-complex
whose isotropy groups belong to F ′.

Theorem 19.8 (Algebraic Thin ℎ-Cobordism Theorem). Given a natural number
𝑁 , there exists an 𝜖𝑁 > 0 with the following property. Consider:

(i) A family F of subgroups of 𝐺;
(ii) An abstract simplicial (𝐺, F )-complex 𝑍 of dimension ≤ 𝑁;

(iii) A free 𝐺-space 𝑋 together with a 𝐺-map 𝑝 : 𝑋 → |𝑍 |;
(iv) An automorphism 𝑎 : 𝑀 → 𝑀 in GM𝐺 (𝑋) 𝑓 which is 𝜖𝑁 -controlled with

respect to 𝑝 and the 𝐿1-metric on |𝑍 |.

Then the class [𝐹 𝑓 (𝑎)] ∈ 𝐾1 (Z𝐺) of the 𝑅𝐺-automorphism 𝐹 𝑓 (𝑎) : 𝐹 𝑓 (𝑀) �−→
𝐹 𝑓 (𝑀) of the finitely generated free 𝑅𝐺-module 𝐹 𝑓 (𝑀) for the functor 𝐹 𝑓 of (19.6)
is contained in the image of the assembly map 𝐻1 (𝐸F (𝐺); KZ) → 𝐾1 (Z𝐺).

The Algebraic Thin ℎ-Cobordism Theorem 19.8 follows from [78, Theorem 5.3]
and implies the Thin ℎ-Cobordism Theorem 19.3, as explained in [67, Remark 1.2.11
and Remark 1.2.9]. There is also a converse to the Algebraic Thin ℎ-Cobordism
Theorem 19.8, as discussed in [67, Remark 1.2.11 and Remark 1.2.15]. It says,
roughly speaking, that any element appearing in the image of the assembly map can
be realized as [𝐹 𝑓 (𝑎)] for appropriate 𝑍 , 𝑋 , 𝑝, and 𝑎.
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Remark 19.9 (Control-Strategy). The considerations above lead to the following
Control-Strategy for proving the Farrell-Jones Conjecture.

(i) Interpret each element in the target group𝐾𝑛 (Z𝐺) of the assembly map as a kind
of cycle and the elements of the source of the assembly map 𝐻𝐺𝑛 (𝐸F (𝐺); K𝑅)
as controlled cycles, i.e., cycles satisfying certain control conditions related to
the family F ;

(ii) Identify the assembly map as a kind of forget control map;
(iii) For a specific group 𝐺 and a specific family F , develop a strategy to change a

cocycle without changing its class in 𝐾𝑛 (Z𝐺) such that the new representative
satisfies the necessary control conditions to ensure that it defines an element in
𝐻𝐺𝑛 (𝐸F (𝐺); K𝑅). This proves surjectivity of the assembly map. One may call
this process gaining control;

(iv) Use a relative version of part (iii) to prove injectivity of the assembly map. One
may call this process gaining relative control;

The strategy for 𝐿-theory is completely analogous.

Example 19.10 (Singular homology). Next we illustrate this strategy in a much
easier and classical instance, namely, singular homology, by repeating how one
proves excision for it.

Let 𝑋 be a topological space, and let 𝐶sing
∗ (𝑋; 𝑅) be the singular chain complex

of 𝑋 with coefficients in the ring 𝑅. Let U = {𝑈𝑖 | 𝑖 ∈ 𝐼} be a cover of 𝑋 , i.e.,
a collection of subsets 𝑈𝑖 such that the union of their interiors 𝑈◦

𝑖
is 𝑋 . Denote

by 𝑆U𝑛 (𝑋) the subset of the set 𝑆𝑛 (𝑋) of those singular 𝑛-simplices 𝜎 : Δ𝑛 → 𝑋

for which there exists an 𝑖 ∈ 𝐼 satisfying im(𝜎) ⊆ 𝑈𝑖 . Let 𝐶sing,U
∗ (𝑋; 𝑅) be the 𝑅

subchain complex of𝐶sing
∗ (𝑋; 𝑅) whose 𝑛th chain module consists of elements of the

shape
∑
𝜎∈𝑆U𝑛 (𝑋) 𝑟𝜎 ·𝜎. Let 𝑖U∗ : 𝐶sing,U

∗ (𝑋; 𝑅) → 𝐶
sing
∗ (𝑋; 𝑅) be the inclusion. The

main ingredient in the proof of excision is to show that 𝑖∗ is a homology equivalence.
Then excision follows by applying the result above toU = {𝑋 \𝐴, 𝐵} for 𝐴 ⊆ 𝐵 ⊆ 𝑋
with 𝐴 ⊆ 𝐵◦.

The proof that 𝑖U∗ : 𝐶sing,U
∗ (𝑋; 𝑅) → 𝐶

sing
∗ (𝑋; 𝑅) is a homology equivalence

is based on the construction of the subdivision operator which subdivides Δ𝑛 into
a bunch of smaller copies of Δ𝑛 and replaces the singular simplex 𝜎 : Δ𝑛 → 𝑋

by the sum of the singular simplices obtained by restricting to these smaller
pieces. This process does not change the homology class but can be used to ar-
range that the representing cycle lies in 𝐶sing,U

∗ (𝑋; 𝑅). This implies surjectivity of
𝐻𝑛 (𝑖U∗ ) : 𝐻𝑛 (𝐶

sing,U
∗ (𝑋; 𝑅)) → 𝐻𝑛 (𝐶sing

∗ (𝑋; 𝑅)). One obtains injectivity by apply-
ing this construction to an (𝑛+1)-simplex 𝜏 : Δ𝑛+1 → 𝑋 , provided that the restriction
of 𝜏 to faces of Δ𝑛+1 already lies in 𝑆U𝑛 (𝑋).

Roughly speaking, the process of gaining control is realized by subdivision.
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19.4.4 Controlled Algebra Defined Using the Open Cone

In order to carry out the Control Strategy discussed in Remark 19.9, one needs to find
the equivalent setup of the homotopy theoretic construction of 𝐻𝐺𝑛 (𝐸F (𝐺); K𝑅), but
now in the controlled setting. The basic idea is to construct additive categories (with
involution) which encode F and the relevant control conditions and to consider their
𝐾- or 𝐿-groups.

An obvious drawback of the notion of 𝜖-controlled morphisms between geometric
modules, see Subsection 19.4.3, is that they do not form a subcategory of the additive
category of geometric modules. The composite of two 𝜖-controlled morphisms
is 2𝜖-controlled but not necessary 𝜖-controlled. The same applies to 𝜖-controlled
automorphisms. In order to fix this problem, Pedersen-Weibel [801] considered for
a finite PL-subcomplex 𝑋 of 𝑆𝑛 (for large 𝑛) the open cone 𝑂 (𝑋) = {𝑠𝑥 | 𝑠 ∈
R, 𝑠 > 0, 𝑥 ∈ 𝑋} ⊆ R𝑛+1 with the metric induced by the maximum metric on
R𝑛+1 and introduced a quotient category in which every morphism has for any
𝜖 > 0 a representative that is 𝜖-controlled. They used this construction to produce
a geometric homology theory digesting these finite PL-complexes 𝑋 ⊆ 𝑆𝑛 with
coefficients in the 𝐾-theory spectrum K𝑅 of a ring 𝑅, which is a delooping of the
homology theory associated to the algebraic 𝐾-theory spectrum K𝑅 sending 𝑋 to the
homotopy groups of the spectrum 𝑋+∧K𝑅. This construction can easily be extended
to additive categories A as coefficients instead of a ring 𝑅 as coefficient.

The idea of the open cone 𝑂 (𝑋) is that, given a constant 𝐶 > 0, for two points
𝑥 and 𝑦 in 𝑋 the implication 𝑑 (𝑠𝑥, 𝑠𝑦) ≤ 𝐶 =⇒ 𝑑 (𝑥, 𝑦) ≤ 𝐶

𝑠
holds for 𝑠 > 0.

Hence 𝑑 (𝑥, 𝑦) becomes arbitrarily small if 𝑑 (𝑠𝑥, 𝑠𝑦) ≤ 𝐶 holds for large enough 𝑠.
More generally, given constants 𝐶 > 0 and 𝑅 > 0, we can find for every 𝜖 > 0 a real
number 𝑇 > 0 such that for 𝑥, 𝑦 ∈ 𝑋 and 𝑠, 𝑡 > 0 the implication

𝑑 (𝑠𝑥, 𝑡𝑦) ≤ 𝐶, |𝑡 − 𝑠 | ≤ 𝑅, 𝑡 ≥ 𝑇 =⇒ 𝑑 (𝑥, 𝑦) ≤ 𝜖

holds. These points 𝑠𝑥 and 𝑡𝑦 will be points contained in the support supp( 𝑓 ) =
{𝑠𝑥, 𝑡𝑦) ∈ 𝑂 (𝑋)×𝑂 (𝑋) | 𝑓𝑠𝑥,𝑡 𝑦 ≠ 0} of a morphism 𝑓 = { 𝑓𝑠𝑥,𝑡 𝑦} inGM{1} (𝑂 (𝑋)).
Our setup ensures that we get an additive subcategory of GM{1} (𝑂 (𝑋)) if we
consider only those morphisms 𝑓 = { 𝑓𝑠𝑥,𝑡 𝑦} for which there exist constants 𝐶 > 0
and 𝑅 ≥ 0 satisfying 𝑑 (𝑡𝑥, 𝑠𝑦) ≤ 𝐶 and |𝑡− 𝑠 | ≤ 𝑅 for every (𝑠𝑥, 𝑡𝑦) ∈ supp( 𝑓 ). One
may think of the inclusion of this subcategory to GM{1} (𝑂 (𝑋)) as a forget control
functor.

19.4.5 Continuous Control

Roughly speaking, the idea is to introduce a new non-compact coordinate, for in-
stance the distance from the origin in R𝑛+1 in the open cone 𝑂 (𝑋) appearing in
Subsection 19.4.4, so that bounded control for objects or morphisms over the given
space 𝑋 correspond to 𝜖-controlled morphisms in the new extended space for which
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the 𝜖 can be chosen to be smaller and smaller the farer out the objects and morphisms
are with respect to this new coordinate. In principle one uses the observation that
bounded plus bounded is bounded (in contrast to the wrong statement 𝜖 plus 𝜖 is 𝜖) so
that bounded controlled morphisms form a subcategory. One has to consider germs
of morphisms where it is allowed to ignore everything which is bounded in this
new coordinate, or, equivalently, where only the asymptotic behavior at ∞ matters.
Therefore one takes the quotient by the category of those objects and morphisms
that live in a bounded region with respect to the new coordinate, in other word, do
not get arbitrarily close to ∞. This quotient has the desired property that for every
morphism and 𝜖 > 0, we can find a representative that is 𝜖-controlled. Taking this
quotient has the side effect that one deals with a delooping of the desired homology
theory.

The constructions of Pedersen-Weibel [801] have undergone a long lasting mu-
tation through various steps, in order to get a better and better setting. For instance,
one needs to design equivariant versions, and the theory should digest arbitrary
𝐺-𝐶𝑊-complexes and no conditions such as an embedding into 𝑆𝑛 as above should
occur.

For these development we refer to the papers by Bartels-Farrell-Jones-Reich [73,
74], Bartels-Lück-Reich [87], and Bartels-Lück [78]. The most advanced setup is
presented in Bartels-Lück [81] where for the first time the Farrell-Jones Conjecture
is considered for topological groups, namely, for totally disconnected groups such
as reductive 𝑝-adic groups. We will not discuss this long process but we will give
details about the constructions in [81] in the discrete case in Chapter 21, where we
also give the full proof that we indeed get a 𝐺-homology theory digesting arbitrary
𝐺-𝐶𝑊-complexes. The construction of the TOD-sequence in Section 21.5 is the
detailed and mathematically complete manifest of the discussion above.

As an illustration we want to describe the notion of continuous control (in the
non-equivariant setting), which will replace the open cone construction, can digest
any 𝐶𝑊-complex 𝑋 without any embedding into 𝑆𝑛, and does not need a choice of
a metric.

We define an additive subcategory O(𝑋) of GM{1} (𝑋 ×N) as follows, where N
denotes the natural numbers. The support of an object 𝑀 = {𝑀(𝑥,𝑠) | (𝑥, 𝑠) ∈ 𝑋×N}
is defined to be supp(𝑀) = {(𝑥, 𝑠) ∈ 𝑋 ×N | 𝑀𝑥,𝑠 ≠ {0}}. We require for an object
𝑀 in O(𝑋):

• Compact support over 𝑋
The set {𝑥 ∈ 𝑋 | ∃𝑠 ∈ N with (𝑥, 𝑠) ∈ supp(𝑀)} is contained in a compact subset
of 𝑋;
• Locally finiteness over N

For every 𝑛 ∈ N the set {𝑥 ∈ 𝑋 | (𝑥, 𝑛) ∈ supp(𝑀)} is finite.

We require for the support

supp( 𝑓 ) = {((𝑥, 𝑠), (𝑦, 𝑡)) ∈ (𝑋 × N) × (𝑋 × N) | { 𝑓(𝑥,𝑠) , (𝑦,𝑡 ) ≠ 0}

of a morphism 𝑓 = { 𝑓(𝑥,𝑠) , (𝑦,𝑡 ) } in O(𝑋):
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• Bounded control in the N direction
There is an 𝑁 ∈ N such that |𝑡 − 𝑠 | ≤ 𝑁 holds for ((𝑥, 𝑠), (𝑦, 𝑡)) ∈ supp( 𝑓 );
• Continuous control

For every 𝑧 ∈ 𝑋 and every open neighborhood 𝑉 of 𝑧, there exists an open
neighborhood𝑈 of 𝑧 with𝑈 ⊆ 𝑉 and 𝑟 ∈ N such that the implications

((𝑥, 𝑠), (𝑦, 𝑡)) ∈ supp( 𝑓 ), 𝑥 ∈ 𝑈, 𝑠 ≥ 𝑟 =⇒ 𝑦 ∈ 𝑉 ;
((𝑥, 𝑠), (𝑦, 𝑡)) ∈ supp( 𝑓 ), 𝑦 ∈ 𝑈, 𝑡 ≥ 𝑟 =⇒ 𝑥 ∈ 𝑉,

hold.

The condition above ensures that the morphisms become more and more con-
trolled in the 𝑋 direction the further we go out in the N-direction. The other con-
ditions will be needed to construct the transfer or certain quotient categories. One
may also consider the full additive subcategory T (𝑋) of O(𝑋) where we addition-
ally require for an object 𝑀 that there exists a natural number 𝑚 ∈ N for which
the implication (𝑥, 𝑠) ∈ supp(𝑀) =⇒ 𝑠 ≤ 𝑚 holds. Then the quotient category
D(𝑋) = O(𝑋)/T (𝑋) can be thought of as equivalence classes of objects and mor-
phism in O(𝑋) where we identify two of them if they agree outside of a bounded
region in the N-direction. In this category D(𝑋) we can always find representa-
tives in O(𝑋) which are with respect to the 𝑋 direction arbitrarily well controlled
since we can set all modules and morphism to be zero in any region bounded in
the N-direction. The definition of the quotient category D(𝑋) has been given in
Definition 8.42 and we get the weak homotopy fibration sequence of non-connective
spectra

(19.11) K(T (𝑋)) → K(O(𝑋)) → K(D(𝑋))

from Theorem 8.46. It will be the key ingredient to show that the functor sending
𝑋 to K(D(𝑋)) is weakly excisive in the sense of Definition 18.8 for 𝐺 = {1}, or,
equivalently, that we get a homology theory with values in abelian groups by sending
a𝐶𝑊-complex 𝑋 to𝐾𝑛+1 (D(𝑋)) for 𝑛 ∈ Z. An Eilenberg swindle towards infinity in
the N-direction will show that 𝐾𝑛 (O({•})) vanishes for all 𝑛 ∈ Z. It is not hard to see
thatT (𝑋) is equivalent toGM{1} (𝑋) 𝑓 and hence we get from the equivalence (19.6)
an identification 𝐾𝑛 (T (𝑋)) = 𝐾𝑛 (𝑅). Thus we obtain an identification 𝐾𝑛 (𝑅) =
𝐾𝑛+1 (D({•})). We conclude from the universal property of assembly maps, see
Theorem 18.11 and Remark 18.18, that we get natural identifications𝐻𝑛 (𝑋; K(𝑅)) �
𝜋𝑛+1 (D(𝑋)). Furthermore, if we take 𝑋 = 𝐵𝐺, the assembly map

𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐾𝑛 (𝑅𝐺)

appearing in Conjecture 6.53 can be identified with a map

𝜋𝑛+1 (D(𝐵𝐺)) → 𝐾𝑛 (𝑅𝐺)

which can be thought of as a forget control map.
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All this will be fully explained in Chapter 21, also in the equivariant setting. In
particular, there is for any 𝐺-𝐶𝑊-complex 𝑋 an equivariant version of (19.11)

K(T𝐺 (𝑋)) → K(O𝐺 (𝑋)) → K(D𝐺 (𝑋))

such that the assembly map

𝐻𝐺𝑛 (pr) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); K𝑅) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅) = 𝐾𝑛 (𝑅𝐺)

appearing in the 𝐾-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the
ring 𝑅 can be identified with the homomorphism

𝐾𝑛+1 (D𝐺 (𝐸VCY (𝐺))) → 𝐾𝑛+1 (D𝐺 (𝐺/𝐺))

induced by the projection pr : 𝐸VCY (𝐺) → 𝐺/𝐺 which can be thought of as a
forget control map.

Exercise 19.12. Show that the inclusion 𝐼 : GM{1} (𝑋) → T (𝑋) coming from the
inclusion 𝑋 → 𝑋 × N sending 𝑥 to (𝑥, 0) is an equivalence of additive categories.

19.5 Gaining Control by Using Flows and Transfers

In this section we briefly sketch the basic ideas appearing in the seminal papers
by Farrell-Jones [359, 360]. These papers do of course rely on earlier work by
Farrell and Jones and other mathematicians, which we will not explain here. For
us it is important to explain briefly the main idea in these two papers to prove the
vanishing of the Whitehead group Wh(𝐺) for torsionfree groups 𝐺 which occur as
fundamental groups of certain closed manifolds. For simplicity we only consider the
case 𝐺 = 𝜋1 (𝑀) for an orientable hyperbolic closed smooth Riemannian manifold
of dimension 𝑑 ≥ 5.

The key ingredient is to lift an element 𝑥 in the Whitehead group Wh(𝜋1 (𝑀))
to the Whitehead group Wh(𝜋1 (𝑆𝑇𝑀)) of the fundamental group of the total
space 𝑆𝑇𝑀 of the sphere tangent bundle 𝑝 : 𝑆𝑇𝑀 → 𝑀 by a transfer map
𝑝∗ : Wh(𝜋1 (𝑀)) → Wh(𝜋1 (𝑆𝑇𝑀)) and to use the geometric flow on 𝑆𝑇𝑀 and
the hyperbolic structure on 𝑀 to show that this element 𝑝∗ (𝑥) has a representa-
tive with good enough control ensuring that 𝑝∗ (𝑥) vanishes. The composite of the
transfer 𝑝∗ with the obvious map 𝑝∗ : Wh(𝜋1 (𝑆𝑇𝑀)) → Wh(𝜋1 (𝑀)) induced by
the isomorphism 𝜋1 (𝑝) : 𝜋1 (𝑆𝑇𝑀) → 𝜋1 (𝑀) satisfies 𝑝∗ ◦ 𝑝∗ = 2 · idWh(𝜋1 (𝑀 ) )
if 𝑑 is odd, since the fiber of 𝑝 is an even-dimensional sphere 𝑆𝑑−1 and hence has
Euler characteristic 2. This implies 2𝑥 = 0, if 𝑑 is odd. To get rid of the factor 2,
Farrell and Jones replaced the sphere bundle 𝑝 : 𝑆𝑇𝑀 → 𝑀 by a kind of upper
hemisphere bundle 𝑝+ : 𝑆+𝑇𝑀 → 𝑀 whose fiber is the upper hemisphere 𝑆𝑑−1

+
and hence contractible and therefore has Euler characteristic 1. Then the composite
Wh(𝜋1 (𝑀))

(𝑝+ )∗−−−−→Wh(𝜋1 (𝑆+𝑇𝑀))
(𝑝+ )∗−−−−→Wh(𝜋1 (𝑀)) is the identity for all 𝑑 ≥ 5,
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and one can still show using the geometric flow on 𝑆+𝑇𝑀 and the hyperbolic struc-
ture on 𝑀 that (𝑝+)∗ (𝑥) vanishes if 𝑑 ≥ 5. (All these claims about the transfers will
be explained in Example 23.14, which is a consequence of Theorem 23.13.)

We will give more information about the transfer in Chapter 23 and will confine
ourself for the remainder of this section to explaining why every element in Wh(𝑆𝑇𝑀)
vanishes if 𝑀 is a hyperbolic closed smooth Riemannian manifold. Farrell and Jones
used the Algebraic Thin ℎ-Cobordism Theorem 19.8 and the fact that every element
in the Whitehead group Wh(𝜋1 (𝑆𝑇𝑀)) can be realized by the Whitehead torsion
of an ℎ-cobordism over 𝑆𝑇𝑀 , see Theorem 3.47 (i). The main ingredients in proof
of Farrell and Jones was to use the geodesic flow and its specific properties due
to the hyperbolic structure to convert an arbitrary ℎ-cobordism into a thin one
without changing its Whitehead torsion in Wh(𝜋1 (𝑀)). Having the Algebraic Thin
ℎ-Cobordism Theorem 19.8 in mind, we just will explain how the geodesic flow can
be used to turn automorphisms of geometric modules into 𝜖-controlled ones without
changing their Whitehead torsion in the Whitehead group. For this we look at the
very specific case, namely, the geodesic flow on the half plane model H2 for the
two-dimensional hyperbolic space.

Consider two points with coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in H2. We want to
use the geodesic flow to make their distance smaller in a functorial fashion. This
is achieved by letting these points flow towards the boundary at infinity along the
two geodesics given by the vertical lines through these points, i.e., towards infinity
in the 𝑦-direction. However, there is a fundamental problem: if 𝑦1 ≠ 𝑦2, then the
distance between these points will be bounded from below by a constant 𝐶 > 0,
regardless how long we let them flow to infinity. Therefore we make the following
prearrangement. Suppose that 𝑦1 < 𝑦2. Then we first let the point (𝑥1, 𝑦1) flow
so that it reaches a position where 𝑦1 = 𝑦2 and do nothing to the point (𝑥2, 𝑦2),
and then we let both points flow simultaneously. Inspecting the hyperbolic metric,
one sees that the distance between the two points (𝑥1, 𝜏) and (𝑥2, 𝜏) goes to zero
if 𝜏 goes to infinity. This is the basic idea to gain control in the negatively curved
case. In some sense we will see this wait and then flow together principle in the
more general theorems about flows, which we will present in Chapter 22. Note that
moving along a flow is a continuous process and therefore should not change the
associated homology class or element in the Whitehead group. It should also be clear
what it means for instance to move an object or a morphism in GM{1} (𝑋 ×N) along
a flow, just move the positions of the modules 𝑀(𝑥,𝑠) and morphisms 𝑓( (𝑥,𝑠) , (𝑦,𝑡 ) )
accordingly. All of this also works in the case where 𝑀 is a closed Riemannian
manifold with strictly negative sectional curvature.

Exercise 19.13. Consider two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in the half plane modelH2.
Denote by 𝛾(𝑥𝑘 ,𝑦𝑘 ) (𝑡) the point obtained by flowing upwards starting with (𝑥𝑘 , 𝑥𝑘)
along the two geodesics given by the vertical lines though (𝑥𝑘 , 𝑦𝑘) for 𝑘 = 1, 2. Show
for the hyperbolic metric 𝑑hyp

lim
𝑡→∞

𝑑hyp (𝛾(𝑥1 ,𝑦1 ) (𝑡), 𝛾𝑥2 ,𝑦2 (𝑡)) = | ln(𝑦2) − ln(𝑦1) |.
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Later Farrell-Jones could also deal with the case where 𝑀 is a closed Riemannian
manifold with non-positive sectional curvature, see for instance [365]. This case is
significantly harder, as illustrated next. Again, consider the half plane model, but
this time equip it with the flat Riemannian metric coming from the Euclidean inner
product on R2. Then the same construction makes sense, but the distance between
two points (𝑥1, 𝜏) and (𝑥2, 𝜏) is unchanged if we change 𝜏. The basic first idea is
to choose a so-called focus point far away, say 𝑓 :=

(
(𝑥1 + 𝑥2)/2, 𝜏 + 169356991

)
,

and then let (𝑥1, 𝜏) and (𝑥2, 𝜏) flow along the rays emanating from them and passing
through the focus point 𝑓 . In the beginning the effect is indeed that the distance
becomes smaller, but as soon as we have passed the focus point the distance grows
again. Either one simultaneously movies the focus point towards infinity while the
points 𝑥1 and 𝑥2 flow towards it, as Farrell and Jones did, or one stops the flow when
has reached the focus point. We will use the second solution. In particular, we want
to fix a base point 𝑥0 and carry out all the constructions inside the closed ball 𝐵𝑅 (𝑥0)
for large 𝑅 > 0.

The problem with this idea is obvious, we must describe this process in a functorial
way and carefully check all the estimates to guarantee the desired effects.

Another problem is that we later need to make everything equivariant. So if the
group 𝐺 acts isometrically (and does not necessarily leave the origin 𝑥0 fixed), there
are points 𝑥 ∈ 𝐵𝑅 (𝑥0) and 𝑔 ∈ 𝐺 such that 𝑔𝑥 lands outside 𝐵𝑅 (𝑥). Then we have
to use the radial projection to pull back 𝑔𝑥 to 𝐵𝑅 (𝑥0). With this modification we of
course do not get a strict𝐺-action on 𝐵𝑅 (𝑥0) but an up to homotopy (and actually up
to higher homotopies) well-defined 𝐺-action. This is the reason why in the CAT(0)-
setting one has to deal with these kind of non-strict 𝐺-actions. Moreover, we also
have to deal with the problem that the focus point 𝑓 may also not be fixed under the
𝐺-action.

Next we give a quantitative version of the sketch of ideas above for R𝑛 with the
Euclidian metric 𝑑. For two distinct points 𝑎, 𝑏 ∈ R, define

𝑐𝑎,𝑏 : R→ R𝑛, 𝑡 ↦→

𝑎 𝑡 ≤ 0;
𝑎 + 𝑡

𝑑 (𝑎,𝑏) · (𝑏 − 𝑎) 0 ≤ 𝑡 ≤ 𝑑 (𝑎, 𝑏);
𝑏 𝑡 ≥ 𝑑 (𝑎, 𝑏).

Note that the restriction of 𝑐 to [0, 𝑑 (𝑎, 𝑏)] is the geodesic line starting at 𝑎 and
ending at 𝑏 and is constant for 𝑡 ≤ 0 and 𝑡 ≥ 𝑑 (𝑎, 𝑏).

Lemma 19.14. Fix 𝑥0 ∈ R𝑛 and real numbers 𝑟 ′, 𝑟 ′′, 𝛽, and 𝐿 satisfying 𝑟 ′, 𝐿, 𝛽 >
0 and 𝑟 ′′ > 2𝛽. Put 𝑇 := 𝑟 ′′ + 𝑟 ′. Fix 𝑥1, 𝑥2 ∈ 𝐵𝛽 (𝑥0). Let 𝑥 be any point in
𝐵𝑟 ′+𝑟 ′′+𝐿 (𝑥0). Put 𝜏 := 𝑑 (𝑥2, 𝑥) − 𝑑 (𝑥1, 𝑥).

Then we get for all 𝑡 ∈ [𝑇 − 𝑟 ′, 𝑇 + 𝑟 ′]

𝑑 (𝑐𝑥1 ,𝑥 (𝑡), 𝑐𝑥2 ,𝑥 (𝑡 + 𝜏)) ≤
4 · 𝛽 · (𝑟 ′ + 𝛽 + 𝐿)

𝑟 ′′
;

𝑐𝑥1 ,𝑥 (𝑡) ∈ 𝐵2𝑟 ′+𝑟 ′′+2𝛽 (𝑥1);
𝑐𝑥2 ,𝑥 (𝑡 + 𝜏) ∈ 𝐵2𝑟 ′+𝑟 ′′+2𝛽 (𝑥2).
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Note that the larger we take 𝑟 ′′ (without changing 𝑟 ′, 𝛽, and 𝐿), the smaller
𝑑 (𝑐𝑥1 ,𝑥 (𝑡), 𝑐𝑥2 ,𝑥 (𝑡 + 𝜏)) becomes for 𝑡 ∈ [𝑇 − 𝑟 ′, 𝑇 + 𝑟 ′] and that the geodesic
triangle with 𝑥,𝑥1, and 𝑥2 as vertices lies in 𝐵𝑟 ′+𝑟 ′′+𝛽+𝐿 (𝑥0). Actually, the obvious
analogue of Lemma 19.14 holds in any CAT(0)-space. The contents of Lemma 19.14
will be stated in more generality in Proposition 22.30 and Theorem 22.34.

In the situation of Lemma 19.14 the points 𝑥1 and 𝑥2 flow towards the focal point
𝑥 and everything takes place in a fixed ball around a fixed base point 𝑥0. The wait
and then flow together principle is reflected in Lemma 19.14 by the appearance of 𝜏.

Exercise 19.15. Give a proof of Lemma 19.14.

More details about the discussion of this subsection will be given in Chapter 22.

19.6 Notes

Farrell-Hsiang used in [355] a beautiful combination of controlled topology and
induction theory à la Dress to prove that the Whitehead group of fundamental groups
of compact flat Riemannian manifolds is trivial. This general method, often called the
Farrell-Hsiang method, has been refined and used further, see for example [79, 357,
358, 361, 829, 960, 1015]. This will be explained in some more detail in Chapter 20,
notably in Sections 20.2 and 20.9.

There are survey articles about continuously controlled algebra by Rosenthal [874]
and about controlled K-theory by Quinn [830].





Chapter 20
Conditions on a Group Implying the
Farrell-Jones Conjecture

20.1 Introduction

In this chapter we want to isolate geometric properties of a group𝐺 which guarantee
that the strategy of proofs discussed in Chapter 19 works out. So we want to describe
a bunch of geometric conditions on 𝐺 which imply the Farrell-Jones Conjecture but
do not contain any 𝐾-theoretic or homotopy theoretic data. This may be useful for
someone who wants to prove the Farrell-Jones Conjecture for a new class of groups,
since she or he needs only to check that this class satisfies one of the properties
(or some appropriate variation or generalization) appearing below without having to
deal with the proofs relying on homotopy theory and 𝐾-theory that these properties
imply the Farrell-Jones Conjecture.

We do this in chronological order taking into account that these conditions have
been reformulated, been generalized and evolved over the last decades. Here is a list
of the different notions which we will treat:

• Farrell-Hsiang groups in Section 20.2;
• Strictly transfer reducible groups – almost equivariant version in Section 20.3;
• Strictly transfer reducible groups – cover version in Section 20.4;
• Transfer reducible groups in Section 20.5;
• Strongly transfer reducible groups in Section 20.6;
• Finitely F -amenable groups in Section 20.7;
• Finitely homotopy F -amenable groups in Section 20.8;
• Dress-Farrell-Hsiang groups in Section 20.9;
• Dress-Farrell-Hsiang-Jones groups in Section 20.10.

Remark 20.1. These various notions come in two flavors, in terms of covers or in
terms of almost equivariant maps, where in general the first version implies the
second. This is essentially a consequence of results such as Proposition 20.22 or
Lemma 20.42.

Some of the notions above imply one another, as the next result shows.

Lemma 20.2.

(i) Strictly transfer reducible groups – cover version =⇒ strictly transfer re-
ducible groups – almost equivariant version;

(ii) Strictly transferF -reducible – almost equivariant version and finitely presented
=⇒ transfer F -reducible;

(iii) Strictly transfer reducible groups – cover version =⇒ finitely F -amenable;

589
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(iv) Strongly transfer F -reducible =⇒ finitely homotopy F -amenable;
(v) Strongly transfer F -reducible =⇒ transfer F -reducible;

(vi) Finitely F -amenable =⇒ finitely homotopy F -amenable;
(vii) Farrell-Hsiang over F =⇒ Dress-Farrell-Hsiang over F ;

(viii) Dress-Farrell-Hsiang over F =⇒ Dress-Farrell-Hsiang-Jones over F ;
(ix) Finitely homotopy F -amenable =⇒ Dress-Farrell-Hsiang-Jones over F .

Proof. (i) see Lemma 20.25.
(ii) This follows directly from the definitions.
(iii) An 𝑁-transfer space is a compact metrizable finite-dimensional contractible
ANR by Lemma 20.15. A compact metrizable topological space 𝑋 is an ER if and
only if it is a finite-dimensional contractible ANR, see [154, Theorem V.10.1 on
page 122]. Hence any 𝑁-transfer space is a compact ER. Now the assertion follows
from Lemma 20.42.
(iv) This follows from the argument appearing in the proof of assertion (iii) about
𝑁-transfer spaces using a variation of Lemma 20.42 and the fact that an ANR is an
AR if and only if it is contractible, see [505, Theorem 7.1 and Proposition 7.2 in
Chapter III on page 96].
(v) This follows directly from the definitions.
(vi) This follows from Lemma 20.42.
(vii) This follows directly from the definitions.
(viii) see [185, Remark 7.2 (2)].
(ix) see [185, Remark 7.2 (1)]. ⊓⊔

Remark 20.3. Note that by Lemma 20.2 the notion of a Dress-Farrell-Hsiang-Jones
group is the most general one if we ignore transfer reducible groups. Namely every
Farrell-Hsiang group, strictly transfer reducible group – almost equivariant version,
strictly transfer reducible group – cover version, strongly transfer reducible group,
finitely F -amenable group, finitely homotopy F -amenable group, or Dress-Farrell-
Hsiang group is a Dress-Farrell-Hsiang-Jones group.

The notion of transfer reducible groups deals only with homotopy 𝐺-actions and
not with strong homotopy𝐺-actions or strict𝐺-actions and therefore does not imply
Dress-Farrell-Hsiang-Jones group. Note that the conclusions for transfer reducible
groups predicts only that the 𝐾-theoretic assembly map is 1-connected and not that
it is a weak equivalence, cf. Theorem 20.31 and Theorem 20.61.

Proofs of the Farrell-Jones Conjecture for prominent classes such as hyperbolic
groups or finite-dimensional CAT(0)-groups are based on showing that they fall into
one of the classes above. We will explain for the various classes which versions of
the Farrell-Jones Conjecture is known for them.
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20.2 Farrell-Hsiang Groups

The next definition is equivalent to [79, Definition 1.1], see [67, Remark.1.3.21].

Definition 20.4 (Farrell-Hsiang group). Let 𝐺 be a finitely generated group and
F be a family of subgroups. We call 𝐺 a Farrell-Hsiang group with respect to F
if there exists a natural number 𝑁 such that for one (and hence all) finite set 𝑆 of
generators we can find for every 𝜖 > 0:

(i) A finite group 𝐹 together with a surjective group homomorphism 𝑝 : 𝐺 → 𝐹;
(ii) For every 𝐻 ∈ H (𝐹) an abstract simplicial (𝐺, F )-complex Σ𝐻 of

dimension ≤ 𝑁 , where H(𝐹) denotes the set of hyperelementary subgroups
of 𝐹;

(iii) For every 𝐻 ∈ H (𝐹) a map 𝑓𝐻 : 𝐺/𝑝−1 (𝐻) → |Σ𝐻 | that is (𝜖, 𝑆)-almost
𝐺-equivariant, i.e., we have 𝑑𝐿1 ( 𝑓𝐻 (𝑠𝑥), 𝑠 𝑓𝐻 (𝑥)) ≤ 𝜖 for all 𝑥 ∈ 𝑝−1 (𝐻) and
all 𝑠 ∈ 𝑆.

The appearance of the hyperelementary subgroups in Definition 20.4 is due to the
result of Swan [937, Corollary 4.2] that for a finite group 𝐹 and the family H(𝐹)
of hyperelementary subgroups there are elements 𝜏𝐻 ∈ Sw𝑝 (𝐻) for 𝐻 ∈ H (𝐹)
satisfying

(20.5) 1Sw𝑝 (𝐹 ) =
∑︁
𝐻∈H

ind𝐹𝐻 (𝜏𝐻 ) ∈ Sw𝑝 (𝐹),

where Sw𝑝 (𝐹) denotes the Swan ring defined in Definition 12.65 and the homo-
morphisms ind𝐹𝐻 : Sw𝑝 (𝐻) → Sw𝑝 (𝐹) are induced by induction. This is the key
ingredient in induction theorems à la Dress, see for instance [76, Section 2], and
leads for instance to Theorem 13.46. There is also an 𝐿-theoretic version due to
Dress [315, Theorem 2]

(20.6) 1GW(𝐹 ) =
∑︁
𝐻∈H

ind𝐹𝐻 (𝜎𝐻 ) ∈ GW(𝐹)

for Dress’ equivariant Witt ring GW(𝐹) and elements 𝜎𝐻 ∈ GW(𝐻) for 𝐻 ∈ H (𝐹).
It is often not so easy to check that a finitely generated group𝐺 is a Farrell-Hsiang

group. The proof for Z2 ⋊ Z/2 can be found in [72, Lemma 3.8].
The proof of the next theorem is given in [79, Theorem 1.2]. It combines methods

from controlled geometry and induction theory.

Theorem 20.7 (Hsiang-Farrell groups and the Farrell-Jones Conjecture). Let 𝐺
be a finitely generated group 𝐺 and F be a family of subgroups such that 𝐺 is a
Hsiang-Farrell group with respect to the family F in the sense of Definition 20.4.

Then the assembly maps

𝐻𝐺𝑛 (pr; ; KA) : 𝐻𝐺𝑛 (𝐸F (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
and
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𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸F (𝐺); L⟨−∞⟩A )

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
are bijective for every additive 𝐺-category (with involution) and 𝑛 ∈ Z.

Remark 20.8. Definition 20.4 can be weakened if one is only interested in the
𝐿-theoretic Farrell–Jones conjecture. Then it suffices to consider all subgroups 𝐻 of
𝐹 that are either 2-hyperelementary or 𝑝-elementary for some odd prime 𝑝. In other
words 𝑝-hyperelementary subgroups that are not 𝑝-elementary can be ignored for
all odd primes 𝑝.

In the setting of higher categories one has to enlarge the class of hyperelementary
groups as explained in Section 20.9.

20.3 Strictly Transfer Reducible Groups – Almost Equivariant
Version

Definition 20.9 (𝑁-transfer space 𝑋). Let 𝑁 be a natural number. An 𝑁-transfer
space is a compact metric space 𝑋 possessing the following property:

For any 𝛿 > 0 there exists an abstract simplicial complex 𝐾 of dimension at most
𝑁 , maps 𝑖 : 𝑋 → |𝐾 | and 𝑟 : |𝐾 | → 𝑋 , and a homotopy ℎ : 𝑋 × [0, 1] → 𝑋 from
𝑟 ◦ 𝑖 to id𝑋 which is 𝛿-controlled, i.e., for every 𝑥 ∈ 𝑋 the diameter of the subset
ℎ({𝑥} × [0, 1]) of 𝑋 is smaller than 𝛿.

Remark 20.10 (No uniform bound on the dimensions). In Definition 20.9 and also
in [67, Definition 1.3.1] it is required that there is a natural number 𝑁 such that the
dimensions of the simplicial complexes 𝐾 appearing in Definition 20.9 is uniformly
bounded by 𝑁 . It turns out that this condition is not needed, cf., Remark 20.49.
However, it is satisfied in all the applications, e.g., to hyperbolic groups, finite-
dimensional CAT(0)-groups, or mapping class groups.

Definition 20.11 (Strictly F -transfer reducible group – almost equivariant ver-
sion). Let 𝐺 be a finitely generated group, and let F be a family of subgroups. We
call 𝐺 strictly F -transfer reducible if there exists a natural number 𝑁 such that for
one (and hence all) finite set 𝑆 of generators there exists for any given 𝜖 > 0:

(i) an 𝑁-transfer space 𝑋 in the sense of Definition 20.9 equipped with a 𝐺-action;
(ii) an abstract simplicial (𝐺, F )-complex Σ of dimension ≤ 𝑁;

(iii) a map 𝑓 : 𝑋 → |Σ | that is (𝜖, 𝑆)-almost 𝐺-equivariant, i.e., we have

𝑑𝐿1 ( 𝑓 (𝑠𝑥), 𝑠 𝑓 (𝑥)) ≤ 𝜖

for every 𝑠 ∈ 𝑆 and every 𝑥 ∈ 𝑋 .

Note that [86, Theorem 1.2] implies that hyperbolic groups are strictly VCY-
transfer reducible. If there exists a group 𝐺 which is strictly F -transfer reducible,
then F must contain all cyclic subgroups of 𝐺, see [67, Remark 1.3.9].
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In the sequel we denote for a family of subgroups F of 𝐺 by F2 the family
of subgroups of 𝐺 consisting of those group 𝐻 ⊆ 𝐺 for which 𝐻 or a subgroup
𝐻′ ⊆ 𝐻 of index [𝐻 : 𝐻′] = 2 belong to F . For instance, (VCY𝐼 )2 = VCY and
FIN2 = FIN .

Theorem 20.12 (Strictly transfer F -reducible groups and the Farrell-Jones
Conjecture). Let𝐺 be a finitely generated group, and let F be a family of subgroups
such that 𝐺 is strictly F -transfer reducible in the sense of Definition 20.11.

Then the assembly maps

𝐻𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸F (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
;

𝐻𝐺𝑛 (pr; HC) : 𝐻𝐺𝑛 (𝐸F (𝐺); HC) → 𝐻𝐺𝑛 (𝐺/𝐺; HC) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
,

are bijective for every additive 𝐺-category A, every right exact 𝐺-∞-category C,
and every 𝑛 ∈ Z, and the assembly map

𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸F2 (𝐺); L⟨−∞⟩A )

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
,

is bijective for every additive 𝐺-category with involution A and every 𝑛 ∈ Z.

Later we will give as an illustration a proof of a special case of Theorem 20.12 in
Proposition 23.24.

Remark 20.13 (Meaning and proof of Theorem 20.12). Theorem 20.12 implies
that every strictly VCY-transfer reducible group satisfies both the 𝐾-theoretic
Farrell-Jones Conjecture 13.11 and the 𝐿-theoretic Farrell-Jones Conjecture 13.19
with coefficients in additive 𝐺-categories with involution.

The 𝐾-theoretic part of Theorem 20.12 for additive categories is a minor re-
formulation of [87, Theorem 1.1], as explained in [67, Theorem A, Remark 1.3.7
and Remark 1.3.8]. So the 𝐾-theoretic part of the proof of Theorem 20.12 follows
from [87, Theorem 1.1].

The same ideas apply also to the 𝐿-theoretic part, see [78, Theorem B]. Note that
the passage from F to F2 for 𝐿-theory is due to [78, Lemma 9.2 and Remark 9.3].
This is consistent with the fact that Theorem 13.47 holds for the 𝐾-theoretic version
but not for the 𝐿-theoretic version.

The 𝐾-theory part for higher categories (and hence also the one for additive
categories) follows from Theorem 20.61 using Remark 20.3.

The passage to almost equivariant maps as pursued by Bartels [67] is illuminating,
since it better isolates what is needed for proofs of the Farrell-Jones Conjecture, see
also Remark 20.26.

Exercise 20.14. Let Σ be a finite simplicial complex such that |Σ | is contractible. Let
𝐺 be a group which acts simplicially on Σ. Denote by F (Σ) the family of subgroups
of Σ which occur as subgroups of isotropy groups of |Σ |. Show:
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(i) The assembly maps appearing in Theorem 20.12 are isomorphisms for the family
F (Σ);

(ii) Each isotropy group of |Σ | has finite index in 𝐺.

In connection with Exercise 20.14 Theorem 20.53 is interesting.
Next we prove the following lemma, which we have already used in the proof of

Lemma 20.2.

Lemma 20.15. Let 𝑋 be an 𝑁-transfer space in the sense of Definition 20.9. Then
𝑋 is a compact metrizable ANR with dim(𝑋) ≤ 𝑁 .

Proof. By definition 𝑋 is a compact metric space.
Next we show that 𝑋 satisfies dim(𝑋) ≤ 𝑁 . Consider an open coverU of 𝑋 . Since

𝑋 is compact, there exists a finite subcover V = {𝑉1, . . . , 𝑉𝑙} of U. Let 𝛿 > 0 be a
Lebesgue number for V. Define 𝑉 ′

𝑖
= {𝑥 ∈ 𝑉𝑖 | 𝐵𝛿/2(𝑥) ⊆ 𝑉𝑖} for 𝑖 = 1, 2, . . . , 𝑙

where 𝐵𝛿/2(𝑥) is the closed ball of radius 𝛿/2 around 𝑥. ThenV′ = {𝑉 ′1, . . . , 𝑉
′
𝑙
} is

an open cover of 𝑋 . Choose an abstract simplicial complex 𝐾 of dimension at most
𝑁 , maps 𝑖 : 𝑋 → |𝐾 | and 𝑟 : |𝐾 | → 𝑋 , and a homotopy ℎ : 𝑋 × [0, 1] → 𝑋 from
𝑟 ◦ 𝑖 to id𝑋 which is 𝛿/2-controlled, i.e., for every 𝑥 ∈ 𝑋 the diameter of the subset
ℎ({𝑥} × [0, 1]) of 𝑋 is smaller than 𝛿/2. Note that this implies that for every 𝑥 ∈ 𝑋
we have 𝑑𝑋 (𝑥, 𝑟 ◦ 𝑖(𝑥)) < 𝛿/2. Since the image of 𝑖 is compact, it is contained in 𝐾0
for a finite subcomplex 𝐾0 of 𝐾 . Hence we can assume without loss of generality
that 𝐾 itself is a finite abstract simplicial complex of dimension ≤ 𝑁 . This implies
dim( |𝐾 |) ≤ 𝑁 . Consider the open covering 𝑟−1 (V′) = {𝑟−1 (𝑉 ′1), . . . , 𝑟

−1 (𝑉 ′
𝑙
)}.

Choose an open cover W of |𝐾 | which is a refinement of 𝑟−1 (V′) and satisfies
dim(W) ≤ 𝑁 . Consider the open cover 𝑖−1 (W) = {𝑖−1 (𝑊) | 𝑊 ∈ W} of 𝑋 .
Obviously we have dim(𝑖−1 (W)) ≤ 𝑁 and 𝑖−1 (W) is a refinement of the open cover
𝑖−1 (𝑟−1 (V′)) = {(𝑟 ◦ 𝑖)−1 (𝑈′1), . . . , (𝑟 ◦ 𝑖)

−1 (𝑈′
𝑙
)}. We have (𝑟 ◦ 𝑖)−1 (𝑉 ′

𝑖
) ⊆ 𝑉𝑖 for

𝑖 = 1, . . . , 𝑙. Hence 𝑖−1 (W) is a refinement ofV and hence ofU.
An 𝑁-transfer space is an ANR by [505, Theorem 6.3 in Chapter IV on page 139]

since for every 𝛿 > 0 there exists a finite simplicial complex Σ, maps 𝑖 : 𝑋 → |𝐾 |
and 𝑟 : |𝐾 | → 𝑋 , and a homotopy ℎ : 𝑋 × [0, 1] → 𝑋 from 𝑟 ◦ 𝑖 to id𝑋 which is
𝛿-controlled. ⊓⊔

20.4 Strictly Transfer Reducible Groups – Cover Version

Next we state the version of strictly transfer reducible as it appears in [87, Theo-
rem 1.1]. and give more details about some of the claims appearing in Remark 20.13.

We begin by recalling the criterion of [87, Theorem 1.1], where only the
𝐾-theoretic version is treated. Its extension to 𝐿-theory follows from the proof
of [78, Theorem B].
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Definition 20.16 (Strictly F -transfer reducible group – cover version). Let 𝐺 be
a finitely generated group. Let F be a family of subgroups of 𝐺. Suppose:

(i) There exists a 𝐺-space 𝑋 such that the underlying space 𝑋 is the realization of
a finite-dimensional abstract simplicial complex 𝐾;

(ii) There exists a 𝐺-space 𝑋 which contains 𝑋 as an open 𝐺-subspace such that
the underlying space of 𝑋 is compact, metrizable, and contractible;

(iii) Assumption 20.17 holds;
(iv) Assumption 20.19 holds for F .

Next we give some explanations about the conditions appearing in Defini-
tion 20.16.

Assumption 20.17 (Weak Z-set condition). There exists a homotopy
𝐻 : 𝑋 × [0, 1] → 𝑋 , such that 𝐻0 = id

𝑋
and 𝐻𝑡 (𝑋) ⊂ 𝑋 for every 𝑡 > 0.

In order to state the second assumption we introduce the notion of an open
F -cover.

Definition 20.18 ((Open) F -cover). Let 𝑌 be a 𝐺-space. Let F be a family of
subgroups of 𝐺. An F -cover of 𝑌 is a collection U of subsets of 𝑌 such that the
following conditions are satisfied:

(i) 𝑌 =
⋃
𝑈∈U 𝑈;

(ii) For 𝑔 ∈ 𝐺 and𝑈 ∈ U, the set 𝑔(𝑈) := {𝑔𝑥 | 𝑥 ∈ 𝑈} belongs toU;
(iii) For 𝑔 ∈ 𝐺 and𝑈 ∈ U, we have 𝑔(𝑈) = 𝑈 or𝑈 ∩ 𝑔(𝑈) = ∅;
(iv) For every𝑈 ∈ U, the subgroup {𝑔 ∈ 𝐺 | 𝑔(𝑈) = 𝑈} lies in F .

We call an F -coverU of 𝑌 open if each𝑈 ∈ U is open.

Consider an open F -cover U. Then its nerve Nerv(U) is a simplicial complex
with cell preserving simplicial 𝐺-action and hence a 𝐺-𝐶𝑊-complex. (A 𝐺-action
on a simplicial complex is called cell preserving if for every simplex 𝜎 and element
𝑔 ∈ 𝐺 such that the intersection of the interior 𝜎◦ of 𝜎 with 𝑔𝜎◦ is non-empty we
have 𝑔𝑥 = 𝑥 for every 𝑥 ∈ 𝜎. Note that a simplicial action is not necessarily cell
preserving, but the induced simplicial action on the barycentric subdivision is cell
preserving.) Moreover all isotropy groups of its geometric realization |Nerv(U)|
lie in F , in other words, Nerv(U) is a simplicial (𝐺, F )-complex. Recall that by
definition the dimension dim(U) of an open cover is the dimension of the 𝐶𝑊-
complex |Nerv(U)|.

If 𝐺 is a finitely generated discrete group, then 𝑑𝐺 denotes the word metric with
respect to some chosen finite set of generators. Recall that 𝑑𝐺 depends on the choice
of the set of generators but its quasi-isometry class is independent of it.

Assumption 20.19 (Wide open F -covers). There exists an 𝑁 ∈ N, which only
depends on the 𝐺-space 𝑋 , such that for every 𝛽 ≥ 1 there exists an open
F -coverU(𝛽) of𝐺 × 𝑋 equipped with the diagonal𝐺-action with the following two
properties:
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(i) For every 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 there exists a𝑈 ∈ U(𝛽) such that

𝐵𝛽 (𝑔) × {𝑥} ⊂ 𝑈.

Here 𝐵𝛽 (𝑔) denotes the open 𝛽-ball around 𝑔 in 𝐺 with respect to the word
metric 𝑑𝐺 , i.e., the set {ℎ ∈ 𝐺 | 𝑑𝐺 (𝑔, ℎ) < 𝛽};

(ii) The dimension of the open coverU(𝛽) is smaller than or equal to 𝑁 .
Exercise 20.20. Let 𝑋 be a 𝐺-space. Let 𝐺 ×1 𝑋 be the topological space 𝐺 × 𝑋
with the 𝐺-action given by 𝑔′ · (𝑔, 𝑥) = (𝑔′𝑔, 𝑥) and let 𝐺 ×𝑑 𝑋 be the topological
space 𝐺 × 𝑋 with the diagonal 𝐺-action given by 𝑔′ · (𝑔, 𝑥) = (𝑔′𝑔, 𝑔′𝑥). Show that
𝐺 ×1 𝑋 and 𝐺 ×𝑑 𝑋 are 𝐺-homeomorphic.

Next we describe some of the geometric constructions in [87].
Let (𝑍, 𝑑) be a metric space. Let U be a finite-dimensional cover of 𝑍 by open

sets. Recall that points in the geometric realization of the nerve |Nerv(U)| are formal
sums 𝑥 =

∑
𝑈∈U 𝑥𝑈𝑈, with 𝑥𝑈 ∈ [0, 1] such that

∑
𝑈∈U 𝑥𝑈 = 1 and such that the

intersection of all the 𝑈-s with 𝑥𝑈 ≠ 0 is non-empty, i.e., {𝑈 | 𝑥𝑈 ≠ 0} is a simplex
in the nerve ofU. There is a well-defined map

(20.21) 𝑓 = 𝑓 U : 𝑍 → |Nerv(U)|, 𝑥 ↦→
∑︁
𝑈∈U

𝑓𝑈 (𝑥)𝑈

where

𝑓𝑈 (𝑥) =
𝑎𝑈 (𝑥)∑

𝑉∈U 𝑎𝑉 (𝑥)
with 𝑎𝑈 (𝑥) = 𝑑 (𝑥, 𝑍 −𝑈) = inf{𝑑 (𝑥, 𝑢) | 𝑢 ∉ 𝑈}.

If 𝑍 is a𝐺-space, 𝑑 is𝐺-invariant, andU is an open F -cover, then the map 𝑓 = 𝑓 U

is 𝐺-equivariant.
The proof of the following proposition can be found in [87, Proposition 5.3].

Proposition 20.22. Let 𝑍 = (𝑍, 𝑑) be a metric space and let 𝛽 ≥ 1. Suppose thatU
is an open cover of 𝑍 of dimension less than or equal to 𝑁 with the property that for
every 𝑧 ∈ 𝑍 there exists a 𝑈 ∈ U such that the open ball 𝐵𝛽 (𝑧) of radius 𝛽 around
𝑧 lies in𝑈.

Then the map 𝑓 U : 𝑍 → |Nerv(U)| of (20.21) has the contracting property that
for 𝑧, 𝑧′ ∈ 𝑋 satisfying 𝑑 (𝑧, 𝑧′) ≤ 𝛽

4𝑁 we get

𝑑𝐿1 ( 𝑓 U (𝑧), 𝑓 U (𝑧′)) ≤ 16𝑁2

𝛽
· 𝑑 (𝑧, 𝑧′).

Note that if 𝛽 gets bigger, the estimate applies more often and 𝑓 U contracts more
strongly. Of course contracting maps can and will be used to gain control.

Let 𝑋 be as in Definition 20.16. Next we define a 𝐺-invariant metric 𝑑𝐶 on
the 𝐺-space 𝐺 × 𝑋 , depending on a constant 𝐶 > 0. Recall that 𝑋 is assumed
to be metrizable. We choose some (not necessarily 𝐺-invariant) metric 𝑑

𝑋
on 𝑋

which generates the topology. Recall that we have already fixed some choice of a
word-metric 𝑑𝐺 on 𝐺.
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Definition 20.23. Let 𝐶 > 0. For (𝑔, 𝑥), (ℎ, 𝑦) ∈ 𝐺 × 𝑋 set

𝑑𝐶 ((𝑔, 𝑥), (ℎ, 𝑦)) = inf
𝑛∑︁
𝑖=1

𝐶𝑑
𝑋
(𝑔−1
𝑖 𝑥𝑖−1, 𝑔

−1
𝑖 𝑥𝑖) + 𝑑𝐺 (𝑔𝑖−1, 𝑔𝑖)

where the infimum is taken over all finite sequences (𝑔0, 𝑥0), . . . , (𝑔𝑛, 𝑥𝑛) with
(𝑔0, 𝑥0) = (𝑔, 𝑥) and (𝑔𝑛, 𝑥𝑛) = (ℎ, 𝑦).

The elementary proof of the next proposition can be found in [87, Proposition 4.3].

Proposition 20.24.

(i) We obtain a 𝐺-invariant metric 𝑑𝐶 on 𝐺 × 𝑋 equipped with the diagonal action
by 𝑑𝐶 ;

(ii) We get 𝑑𝐺 (𝑔, ℎ) ≤ 𝑑𝐶 ((𝑔, 𝑥), (ℎ, 𝑦)) for all 𝑔, ℎ ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝑋 .

The next lemma illustrates Remark 20.1.

Lemma 20.25. Let 𝐺 be a finitely generated group and F be a family of subgroups.
Suppose that 𝐺 is strictly transfer F -reducible – cover version in the sense of
Definition 20.16

Then 𝐺 is strictly F -transfer reducible – almost equivariant version in the sense
of Definition 20.11.

Proof. Let 𝑁 be the number appearing in Assumption 20.19. By possibly enlarging
𝑁 we can arrange that the dimension of the finite-dimensional abstract simplicial
complex 𝐾 whose geometric realization is 𝑋 is less than or equal to 𝑁 . Consider any
𝜖 > 0. As 𝑁-transfer space, as required in Definition 20.11, we take 𝑋 . Note that 𝑋
is indeed an 𝑁-transfer space by Assumption 20.17, since any compact subset of 𝑋
is a contained in |𝐿 | for a finite simplicial subcomplex 𝐿 of 𝐾 for which obviously
dim(𝐿) ≤ 𝑁 holds.

Let U be the open covering appearing in Assumption 20.19. Then we take Σ

to be the simplicial complex given by the nerve of U and we have by definition
|Σ | = |Nerv(U)|.

Fix a finite set of generators 𝑆 and let 𝑑𝐺 be the corresponding word metric on
𝐺. Fix 𝐶 > 0. The function 𝑋 → R sending 𝑥 to 𝑑𝐶 ((𝑒, 𝑥), (𝑠, 𝑠𝑥)) is continuous.
Since 𝑋 is compact, we can find a constant 𝐷 such that 𝑑𝐶 ((𝑒, 𝑥), (𝑠, 𝑠𝑥)) ≤ 𝐷

holds for every 𝑥 ∈ 𝑋 and 𝑠 ∈ 𝑆. Choose 𝛽 > 0 satisfying 4𝑁𝐷 ≤ 𝛽 and
16𝑁2

𝜖
< 𝛽. Then we get 𝑑𝐶 ((𝑒, 𝑥), (𝑠, 𝑠𝑥)) ≤ 𝛽

4𝑁 for every 𝑥 ∈ 𝑋 and 𝑠 ∈ 𝑆. Let
𝑓U : 𝐺 × 𝑋 → |Nerv(U)| be the 𝐺-map defined in (20.21). Proposition 20.22
implies that 𝑑𝐿1 ( 𝑓U (𝑒, 𝑥), 𝑓U (𝑠, 𝑠𝑥)) < 𝜖 holds for every 𝑥 ∈ 𝑋 and 𝑠 ∈ 𝑆.

Define the desired map 𝑓 : 𝑋 → |Nerv(U)| by sending 𝑥 to 𝑓U (𝑒, 𝑥). Since we
have

𝑑𝐿1 ( 𝑓 (𝑠𝑥), 𝑠 𝑓 (𝑥)) = 𝑑𝐿1 ( 𝑓U (𝑒), 𝑠 𝑓U (𝑒, 𝑥)) = 𝑑𝐿1 ( 𝑓U (𝑒), 𝑓U (𝑠, 𝑠𝑥)) < 𝜖,

the group𝐺 is strictlyF -transfer reducible group in the sense of Definition 20.11. ⊓⊔
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We conclude from Lemma 20.25 that Theorem 20.12 applies also to groups which
are strictly transfer F -reducible in the sense of Definition 20.16

In some sense one can also get the other direction of the implication appearing
in Lemma 20.25 since maps from a topological space to the geometric realization
of a finite-dimensional simplicial space translate to finite dimensional covers of the
source, as we can pull back standard coverings of the simplicial complex.

Remark 20.26 (Role of the compactification). Note that in Definition 20.11 the
compactification 𝑋 appearing in Definition 20.16 does not occur anymore and hence
the criterion may be easier to verify. Moreover, this formulation isolates in a nice
fashion what is really needed for the proof of the Farrell-Jones Conjecture. On the
other hand, in many cases where the Farrell-Jones Conjecture has been proved,
such as hyperbolic groups, finite-dimensional CAT(0)-groups, or mapping class
groups, these compactifications 𝑋 and in particular their boundary 𝜕𝑋 = 𝑋 \ 𝑋
were well-known and often played a role, leading to the necessary constructions,
since the elements on the boundary correspond to geodesic rays emanating in the
space 𝑋 and going to infinity. It is conceivable that for future proofs for new groups
Definition 20.11 may be more appropriate, but we also expect that some shadow of
the notion of a compactification and its boundary and of non-positive curvature will
be needed.

20.5 Transfer Reducible Groups

The strict versions of transfer reducible of the previous Sections 20.3 and 20.4 were
sufficient to treat hyperbolic groups. In order to handle CAT(0) groups, one has to
pass to the following generalizations of this notion, where homotopy coherent group
actions come in and one has to drop strict.

Definition 20.27 (Homotopy action of a (finitely presented) group on a space).
A homotopy action of a group 𝐺 on a space 𝑋 is a group homomorphism 𝜌 : 𝐺 →
[𝑋, 𝑋] to the monoid of homotopy classes of self-maps of 𝑋 .

Let 𝐺 be finitely presented group with a finite presentation ⟨𝑆 | 𝑅⟩. A homotopy
action of the finitely presented group (𝜑, ℎ) of𝐺 on 𝑋 is given by the following data:

(i) For every 𝑠 ∈ 𝑆 ∪ 𝑆−1 = {𝑠 ∈ 𝐺, 𝑠 or 𝑠−1 belongs to 𝑆}, we have a map

𝜑𝑠 : 𝑋 → 𝑋;

(ii) For every word 𝑟 = 𝑠1𝑠2 · · · 𝑠𝑛 ∈ 𝑅 for 𝑠𝑖 ∈ 𝑆 ∪ 𝑆−1, we have a homotopy

ℎ𝑟 : 𝜑𝑠1 ◦ 𝜑𝑠2 ◦ · · · ◦ 𝜑𝑠𝑛 ≃ id𝑋 .

Note that a homotopy action of the finitely presented group 𝐺 yields a homotopy
𝐺-action, but is a stronger notion, since the choice of the homotopies ℎ for the
relations is part of the structure.
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Definition 20.28 (TransferF -reducible group). Let𝐺 be a finitely presented group
and let F be a family of subgroups. We call 𝐺 transfer F -reducible if for one (and
hence all) finite presentation ⟨𝑆 | 𝑅⟩ there exists a natural number 𝑁 such that there
is for any given 𝜖 > 0:

(i) an 𝑁-transfer space 𝑋 in the sense of Definition 20.9 equipped with a homotopy
𝐺-action (𝜑, ℎ) in the sense of Definition 20.27;

(ii) an abstract simplicial (𝐺, F )-complex Σ of dimension ≤ 𝑁;
(iii) a map 𝑓 : 𝑋 → |Σ | that is (𝜖, ⟨𝑆 | 𝑅⟩)-almost 𝐺-equivariant, i.e., it satisfies:

(a) We have 𝑑𝐿1 ( 𝑓 (𝑠𝑥), 𝑠 𝑓 (𝑥)) < 𝜖 for every 𝑠 ∈ 𝑆 and every 𝑥 ∈ 𝑋;
(b) For every 𝑥 ∈ 𝑋 and 𝑟 ∈ 𝑅, the diameter of the subset ℎ𝑟 ({𝑥} × [0, 1]) of 𝑋

is ≤ 𝜖 .

Remark 20.29. Definition 20.28 is just the condition appearing in [67, Theorem B]
and motivated by [78, Definition 1.8], one replaces the formulation in terms of open
coverings by the formulation in terms of almost equivariant maps, in the spirit of
Remark 20.1 or of Lemma 20.25 and its proof. In particular, a group which satisfies
the notion of transfer reducible over F in the sense of [78, Definition 1.8] is transfer
F -reducible group in the sense of Definition 20.28.

Remark 20.30. Note that [80, Main Theorem] implies that finite-dimensional
CAT(0)-groups are finitely presented and transfer VCY-reducible. A sketch of
this proof can also be found in [67, Section 1.5]. We recall that a finite-dimensional
CAT(0)-group is a group admitting a cocompact proper isometric action on a CAT(0)-
space which has finite topological dimension.

Theorem 20.31 (Transfer reducible groups and the Farrell-Jones Conjecture).
Let F be a family of subgroups. Let 𝐺 be a finitely presented group coming with

a presentation ⟨𝑆 | 𝑅⟩ such that 𝐺 is transfer F -reducible in the sense of Defini-
tion 20.28.

Then the assembly map

𝐻𝐺𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸F (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
is bijective for 𝑛 ≤ 0 and surjective for 𝑛 = 1 for every additive 𝐺-category, and the
assembly map

𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸F2 (𝐺); L⟨−∞⟩A )

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is bijective for every 𝑛 ∈ Z and every additive 𝐺-category with involution.

Theorem 20.31 is a reformulation of [87, Theorem 1.1] as pointed out in [67,
Remarks 1.3.15 and 1.3.18] for the 𝐾-theory version. Its extension to 𝐿-theory
follows from the proof of [78, Theorem B].
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20.6 Strongly Transfer Reducible Groups

In Theorem 20.31 we deal only with lower and middle 𝐾-theory. In order to treat
higher algebraic 𝐾-theory, one needs to take higher homotopies into account.

The next definition is taken from [185, Definition 5.2], see also Wegner [992,
Definition 2.1].

Definition 20.32 (Strong homotopy action). A strong homotopy action, sometimes
also called a homotopy coherent 𝐺-action, (Γ, 𝑍) of a group 𝐺 on a topological
space 𝑍 consists of a map

Γ :
∞∐
𝑘=0

(( 𝑘∏
𝑗=1

𝐺 × [0, 1]
)
× 𝐺 × 𝑍

)
→ 𝑍

satisfying

Γ(𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔1, 𝑡1, 𝑔0, 𝑧)

=



Γ(𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔 𝑗 , Γ(𝑔 𝑗−1, 𝑡 𝑗−1, . . . , 𝑔0, 𝑧)) 𝑡 𝑗 = 0, 1 ≤ 𝑗 ≤ 𝑘;
Γ(𝑔𝑘 , 𝑡𝑘 , . . . , 𝑡 𝑗+1, 𝑔 𝑗𝑔 𝑗−1, 𝑡 𝑗−1, . . . , 𝑔0, 𝑧) 𝑡 𝑗 = 1, 1 ≤ 𝑗 ≤ 𝑘;
Γ(𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔2, 𝑡2, 𝑔1, 𝑧) 𝑔0 = 𝑒;
Γ(𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔 𝑗+1, 𝑡 𝑗+1𝑡 𝑗 , 𝑔 𝑗−1, . . . , 𝑔0, 𝑧) 𝑔 𝑗 = 𝑒, 1 ≤ 𝑗 ≤ 𝑘 − 2;
Γ(𝑔𝑘−1, 𝑡𝑘−1, . . . , 𝑔0, 𝑧) 𝑔𝑘 = 𝑒;
𝑥 𝑔0 = 𝑒, 𝑘 = 0.

Here we use the convention that non-existing entries are dropped, e.g., 𝑔𝑘 , 𝑡𝑘 in the
first line if 𝑗 = 𝑘 or the entry 𝑡 𝑗−1 in the second line if 𝑗 = 1.

Next we present the notion of strongly transfers reducible over F , which we prefer
to call strongly F -transfer reducible, due to Wegner [992, Definition 3.1], where all
the higher homotopies are taken into account.

Given a strong homotopy action Γ in the sense of Definition 20.32, we need to
introduce the following notions. For 𝑘 ∈ N, 𝑔 ∈ 𝐺, and a subset 𝑆 ⊆ 𝐺 containing 𝑒
and 𝑔, we define a subset of map(𝑋, 𝑋)

(20.33) 𝐹𝑔 (Γ, 𝑆, 𝑘)
:= {Γ(𝑔𝑘 , 𝑡𝑘 , . . . 𝑔0, ?) : 𝑋 → 𝑋 | 𝑔𝑖 ∈ 𝑆, 𝑡 𝑗 ∈ [0, 1], 𝑔𝑘 · · · 𝑔0 = 𝑔}.

For (𝑔, 𝑥) ∈ 𝐺 × 𝑋 , we put

(20.34) 𝑆0
Γ,𝑆,𝑘 (𝑔, 𝑥) = {(𝑔, 𝑥)} ⊆ 𝐺 × 𝑋

and we define

(20.35) 𝑆1
Γ,𝑆,𝑘 (𝑔, 𝑥) ⊆ 𝐺 × 𝑋
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as the subset of all (ℎ, 𝑦) ∈ 𝐺 × 𝑋 with the property that there are 𝑎, 𝑏 ∈ 𝑆,
𝑓 ∈ 𝐹𝑎 (Γ, 𝑆, 𝑘), and 𝑓 ′ ∈ 𝐹𝑏 (Γ, 𝑆, 𝑘) satisfying both 𝑓 (𝑥) = 𝑓 ′ (𝑦) and ℎ = 𝑔𝑎−1𝑏.
For 𝑛 ≥ 2 define inductively

(20.36) 𝑆𝑛Γ,𝑆,𝑘 (𝑔, 𝑥) ⊆ 𝐺 × 𝑋

by
𝑆𝑛Γ,𝑆,𝑘 (𝑔, 𝑥) =

⋃
{ (ℎ,𝑦) ∈𝑆𝑛−1

Γ,𝑆,𝑘
(𝑔,𝑥 ) }

𝑆1
Γ,𝑆,𝑘 (ℎ, 𝑦).

Exercise 20.37. Let 𝑋 be a 𝐺-space 𝑋 . Consider the 𝐺-action as a homotopy 𝐺-
action in the sense of Definition 20.32 in the obvious way. Define the subsets of 𝐺
by

𝑆[𝑘] := {𝑔0𝑔1 · · · 𝑔𝑘 | 𝑔𝑖 ∈ 𝑆};
𝑆[𝑘, 𝑛] := {𝑎−1

1 𝑏1 · · · 𝑎−1
𝑛 𝑏𝑛 | 𝑎1, . . . 𝑎𝑛, 𝑏1, . . . 𝑏𝑛 ∈ 𝑆[𝑘]}.

Show that then the sets 𝐹𝑔 (Γ, 𝑆, 𝑘) of (20.33), 𝑆1
Γ,𝑆,𝑘
(𝑔, 𝑥) of (20.35), and

𝑆𝑛
Γ,𝑆,𝑘
(𝑔, 𝑥) of (20.36) reduce to

𝐹𝑔 (Γ, 𝑆, 𝑘) = {𝑙𝑔 : 𝑋 → 𝑋 | 𝑔 ∈ 𝑆[𝑘]} ⊆ map(𝑋, 𝑋);
𝑆1
Γ,𝑆,𝑘 (𝑔, 𝑥) = {(𝑔𝑢, 𝑢

−1𝑥) | 𝑢 ∈ 𝑆[𝑘, 1]};
𝑆𝑛Γ,𝑆,𝑘 (𝑔, 𝑥) = {(𝑔𝑣, 𝑣

−1𝑥) | 𝑣 ∈ 𝑆[𝑘, 𝑛]}.

Definition 20.38 (Strongly transfer F - reducible). A group 𝐺 is strongly
F -transfer reducible if there exists a natural number 𝑁 with the following prop-
erty: For all subsets 𝑆 ⊆ 𝐺 which satisfy 𝑆 = {𝑔−1 | 𝑔 ∈ 𝑆} and contain the unit
𝑒 ∈ 𝐺, and all natural numbers 𝑛, 𝑘 , there are:

• an 𝑁-transfer space 𝑋 in the sense of Definition 20.9;
• a strong homotopy action Γ on 𝑋 in the sense of Definition 20.32;
• An open F -coverU of𝐺×𝑋 , where the𝐺-action on𝐺×𝑋 is given by 𝑔′ · (𝑔, 𝑥) =
(𝑔′𝑔, 𝑥), of dimension at most 𝑁 such that for every (𝑔, 𝑥) ∈ 𝐺 × 𝑋 there exists an
𝑈 ∈ U with 𝑆𝑛

Γ,𝑆,𝑘
(𝑔, 𝑥) ⊆ 𝑈.

Hyperbolic groups are strongly transfer reducible overVCY by the proof of [78,
Proposition 2.1], as explained in [992, Example 3.2]. Wegner [992, Theorem 3.4]
explains that finite-dimensional CAT(0)-groups are strongly transfer reducible over
VCY by [80, Main Theorem].

Theorem 20.39 (Strongly transfer F -reducible groups and the Farrell-Jones
Conjecture). Let 𝐺 be a group and F be a family of subgroups such that 𝐺 is
strongly F -transfer reducible.

Then the assembly maps

𝐻𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸F (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
;

𝐻𝐺𝑛 (pr; HC) : 𝐻𝐺𝑛 (𝐸F (𝐺); HC) → 𝐻𝐺𝑛 (𝐺/𝐺; HC) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
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are bijective for every additive 𝐺-category A, every right exact 𝐺-∞-category C,
and every 𝑛 ∈ Z, and the assembly map

𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸F2 (𝐺); L⟨−∞⟩A )

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is bijective for every additive 𝐺-category with involution A and every 𝑛 ∈ Z.

Proof. For the 𝐾-theoretic part in the setting of additive categories we refer to [992,
Theorem 1.1], whose proof is based on [78, Theorem B]. The more general proof
of the 𝐾-theory version for higher categories follows from Remark 20.3 and Theo-
rem 20.61.

The 𝐿-theory part follows already from Theorem 20.31, since strongly F -transfer
reducible implies transfer F -reducible by Lemma 20.2 (v). ⊓⊔

We have explained in Section 19.5 why in the CAT(0)-setting one needs to
consider strong homotopy 𝐺-actions instead of strict 𝐺-actions.

Theorem 20.40 (Strongly transferVCY-reducible groups and the Full Farrell-
Jones Conjecture). Let 𝐺 be a group such that 𝐺 is strongly VCY-transfer
reducible.

Then 𝐺 is a Farrell-Jones group, i.e., it satisfies the Full Farrell-Jones Conjec-
ture 13.30.

Proof. Let 𝐹 be a finite subgroup. LetVCY𝑙 be the family of subgroups 𝐻 of 𝐺 ≀ 𝐹
such that there is a subgroup 𝐻′ ⊆ 𝐻 of finite index such that 𝐻′ is isomorphic
to a finite product 𝑉1 × 𝑉2 × · · · × 𝑉𝑘 for virtually cyclic groups 𝑉𝑖 . Then 𝐺 ≀ 𝐹
satisfies the Farrell-Jones Conjecture for 𝐾 and 𝐿-theory with additive 𝐺-categories
as coefficients, see Conjecture 13.11 and Conjecture 13.19, with respect to the family
VCY ≀ by [89, Theorem 5.1 (ii)]. Every element in VCY≀ is virtually abelian and
hence satisfies the Farrell-Jones Conjecture for 𝐾 and 𝐿-theory with additive 𝐺-
categories as coefficients, see Theorem 16.1 (ic). We conclude from the Transitivity
Principle 15.13 that 𝐺 ≀ 𝐹 satisfies the Farrell-Jones Conjecture for 𝐾 and 𝐿-theory
with additive 𝐺-categories as coefficients. Hence 𝐺 satisfies the 𝐾-theoretic and the
𝐿-theoretic Farrell-Jones Conjecture with coefficients in additive 𝐺-categories with
finite wreath products, see Conjecture 13.27 and Conjecture 13.28. It remains to
show that 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjecture with coefficients in
higher 𝐺-categories with finite wreath products, see Conjecture 13.29. This follows
from Remark 20.3 and Theorem 20.62. ⊓⊔

20.7 Finitely F-Amenable Groups

Let 𝐺 be a group and let F be a family of subgroups. The next definition is taken
from [70, Introduction], which is motivated by [87, Theorem 1.1].
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Definition 20.41 (Finitely F -amenable group action). For a natural number 𝑁 , a
𝐺-action on a space 𝑋 is called 𝑁-F -amenable if for all finite subsets 𝑆 of 𝐺 there
exists an open F -coverU in the sense of Definition 20.18 of 𝐺 × 𝑋 equipped with
the diagonal 𝐺-action 𝑔 · (ℎ, 𝑥) = (𝑔ℎ, 𝑔𝑥) satisfying:

• The dimension ofU is at most 𝑁;
• The open F -cover U is 𝑆-long (in the group coordinate), i.e., for every
(𝑔, 𝑥) ∈ 𝐺 × 𝑋 there is𝑈 ∈ U with 𝑔𝑆 × {𝑥} ⊆ 𝑈.

A 𝐺-action on a space 𝑋 is called finitely F -amenable if it is 𝑁-F -amenable for
some natural number 𝑁 .

The proof of the next lemma can be found in [70, Lemma 4.2], whose proof
is based on [449, Proposition 4.2]. It is useful for studying how 𝑁-F -amenability
behaves under finite extensions, see [70, Section 4.1].

Lemma 20.42. Let 𝐺 be a group 𝐺 and F be a family of subgroups. Then the
following statements are equivalent for a compact metric space 𝑋 and a 𝐺-action
on it:

(i) The 𝐺-action on 𝑋 is 𝑁-F -amenable in the sense of Definition 20.41;
(ii) For every finite subset 𝑆 ⊆ 𝐺 and every 𝜖 > 0, there exists an abstract simplicial
(𝐺, F )-complex Σ of dimension at most 𝑁 together with a map 𝑓 : 𝑋 → |Σ | that
is (𝜖, 𝑆)-almost 𝐺-equivariant, i.e., we have 𝑑𝐿1 ( 𝑓 (𝑠𝑥), 𝑠 𝑓 (𝑥)) ≤ 𝜖 for every
𝑠 ∈ 𝑆 and every 𝑥 ∈ |Σ |.

Exercise 20.43. Suppose that𝐺 is finitely generated. Let 𝑆1 and 𝑆2 be two finite sets
of generators. Then the second condition appearing in Lemma 20.42 holds for 𝑆1 if
and only if holds for 𝑆2.

Recall that a metric space X is an ER (= Euclidean retract) if it can be embedded
in some R𝑛 as a retract. A compact metric space 𝑋 is an ER if and only if it is a
finite-dimensional contractible ANR, see [154, Theorem V.10.1 on page 122].

Definition 20.44 (Finitely F -amenable group). We call a group 𝐺 finitely
F -amenable if 𝐺 admits a finitely F -amenable action on a compact ER.

Theorem 20.45 (Finitely F -amenable actions and the Farrell-Jones Conjec-
ture). Let 𝐺 be a group and F be a family of subgroups. Suppose that 𝐺 is
finitely F -amenable.

Then the assembly maps

𝐻𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸F (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
;

𝐻𝐺𝑛 (pr; HC) : 𝐻𝐺𝑛 (𝐸F (𝐺); HC) → 𝐻𝐺𝑛 (𝐺/𝐺; HC) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
are bijective for every additive 𝐺-category A, every right exact 𝐺-∞-category C,
and every 𝑛 ∈ Z, and the assembly map
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𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸F2 (𝐺); L⟨−∞⟩A )

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is bijective for every additive 𝐺-category with involution A and every 𝑛 ∈ Z.

Proof. This follows from the axiomatic results in [78, Theorem 1.1] and [87, The-
orem 1.1], as explained in [70, Theorem 4.8] for additive 𝐺-categories (with invo-
lution) as coefficients. (In [70, Theorem 4.8] it is required that F is closed under
passage to overgroups of finite index but this is not necessary, see also [68, Theo-
rem 4.3]). The 𝐾-theoretic version for higher 𝐺-categories as coefficients follows
from Remark 20.3 and Theorem 20.62. ⊓⊔

LetC be a class of groups that is closed under isomorphisms and taking subgroups.
Letac(C) be the class of all groups𝐺 that admit a finitely generated C(𝐺)-amenable
action on an ER where C(𝐺) is the family of subgroups of 𝐺 which belong to C.
Because of the action on a one-point-space we get C ⊆ ac(C). Starting with
ac0 (C) = C, we can define inductively ac𝑛+1 (C) = ac(ac𝑛 (C)). We set

(20.46) AC(C) =
∞⋃
𝑛=0

ac𝑛 (C).

LetVNIL be the class of virtually nilpotent groups andVSOLV be the class of
virtually solvable groups.

Theorem 20.47 (Groups in AC(VSOLV) satisfy the Full Farrell-Jones Con-
jecture). Every group in AC(VSOLV) satisfies the Full Farrell-Jones Conjec-
ture 13.30.

Proof. This follows from the Transitivity Principle, see Theorem 15.13, Theo-
rem 16.1 (ic), and Theorem 20.45 for additive 𝐺-categories as coefficients as ex-
plained in [70, Corollary 4.10 and Remark 9.4]. For the setting of higher𝐺-categories
one needs to replace Theorem 20.45 by [185, Theorem 1.4]. ⊓⊔

The main result in [70, Lemma 9.3] says that mapping class groups belong to
AC(VNIL) and hence satisfy the Full Farrell-Jones Conjecture 13.30, see [70,
Theorem A and Remark 9.4].

20.8 Finitely Homotopy F-Amenable Groups

Next we state the version of finitely homotopyF -amenable groups appearing in [185,
Definition 5.4], which goes back to [78, 87, 992] and is essentially the one appearing
in Bartels [69, Definition 2.11 and Theorem 2.12].

An AR (= absolute retract) is a metrizable topological space such that for every
embedding 𝑖 : 𝑋 → 𝑌 as a closed subspace into a metric space 𝑌 there is a retraction
𝑟 : 𝑌 → 𝑋 , or, equivalently, for every metric space 𝑍 , every closed subset 𝑌 ⊆ 𝑍 ,
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and every (continuous) map 𝑓 : 𝑌 → 𝑋 , there exists an extension 𝐹 : 𝑍 → 𝑋 of
𝑓 . An ANR is an AR if and only if it is contractible, see [505, Theorem 7.1 and
Proposition 7.2 in Chapter III on page 96].

Definition 20.48 (Finitely homotopy F -amenable group). Let 𝐺 be a group and
let F be a family of subgroups. We call 𝐺 finitely homotopy F -amenable if there
exist:

(i) A sequence {Γ𝑛, 𝑍𝑛}𝑛∈N of homotopy coherent 𝐺-actions in the sense of Defi-
nition 20.32;

(ii) A sequence {Σ𝑛}𝑛∈N of abstract simplicial complexes coming with a simplicial
𝐺-action;

(iii) A sequence { 𝑓𝑛}𝑛∈N of continuous maps 𝑓𝑛 : 𝑍𝑛 → |Σ𝑛 |,

such that the following holds:

(a) For every 𝑛 ∈ N the space 𝑍𝑛 is a compact contractible AR;
(b) For every 𝑛 ∈ N the isotropy groups of |Σ𝑛 | belong to F ;
(c) There exists a natural number 𝑁 with dim(Σ𝑛) ≤ 𝑁 for all 𝑛 ∈ N;
(d) For every 𝑘 ∈ N and elements 𝑔0, 𝑔1, . . . , 𝑔𝑘 in G we have

lim
𝑛→∞

sup
(𝑡1 ,...,𝑡𝑘 ) ∈ [0,1]𝑘 ,

𝑧∈𝑍𝑛

𝑑
Σ𝑛

𝐿1

(
𝑓𝑛 (Γ𝑛 (𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔1, 𝑡1, 𝑔0, 𝑧)), 𝑔𝑘 . . . 𝑔0 𝑓𝑛 (𝑧)

)
= 0.

Note that a finitely homotopy F -amenable group is in particular a Dress-Farrell-
Hsiang-Jones group, see [185, Remark 7.2 (1)]. Hence Theorem 20.61 and Theo-
rem 20.62 apply to homotopy F -amenable groups, see also [185, Theorem 5.1].

Remark 20.49. The condition formulated in Definition 20.48 is slightly weaker than
the assumptions in Bartels [69, Theorem 2.12] since we do not require a uniform
bound on the dimension of the AR-s 𝑍𝑛. In practice, however, the dimensions of
the simplicial complexes Σ𝑛 are usually bounded in terms of the dimensions of the
spaces 𝑍𝑛. In this case, 𝑍𝑛 is a sequence of ER-s with uniformly bounded covering
dimension.

20.9 Dress-Farrell-Hsiang Groups

Definition 20.50 (Dress group). A finite group 𝐷 is called a Dress group if there
exist (not necessarily distinct) prime numbers 𝑝 and 𝑞 and subgroups 𝑃 ⊆ 𝐶 ⊆ 𝐷
such that 𝑃 is normal in 𝐶 and 𝐶 is normal in 𝐷, 𝑃 is a 𝑝-group, 𝐶/𝑃 is cyclic, and
𝐷/𝐶 is a 𝑞-group.

For 𝐹 a finite group, we denote the family of Dress subgroups of 𝐹 by D(𝐹).

Exercise 20.51. Show for a finite group 𝐹 thatH(𝐹) ⊆ D(𝐹) holds.

The next definition is taken from [185, Definition 6.3].
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Definition 20.52 (Dress-Farrell-Hsiang group). Let𝐺 be a finitely generated group
and let F be a family of subgroups. We call 𝐺 a Dress-Farrell-Hsiang group over
F if there exist:

(i) A sequence {𝐹𝑛}𝑛∈N of finite groups;
(ii) A sequence {𝛼𝑛}𝑛∈N of surjective group homomorphism 𝛼𝑛 : 𝐺 → 𝐹𝑛;

(iii) A collection {(Σ𝑛, 𝐷) | 𝑛 ∈ N, 𝐷 ∈ D(𝐹𝑛)}, where Σ𝑛 is an abstract simplicial
complex with a simplicial 𝛼−1

𝑛 (𝐷)-action;
(iv) A collection { 𝑓𝑛 | 𝑛 ∈ N, 𝐷 ∈ D(𝐹𝑛)} of maps of sets 𝑓𝑛,𝐷 : 𝐺 → Σ𝑛,𝐷 ,

such that the following holds:

(a) For every 𝑛 ∈ N and 𝐷 ∈ F (𝐹𝑛), the 𝛼−1
𝑛 (𝐷)-isotropy groups of |Σ𝑛,𝐷 | belong

to the family F |𝛼−1
𝑛 (𝐷) = {𝐻 ∩ 𝛼

−1
𝑛 (𝐷) | 𝐻 ∈ F };

(b) There exists a natural number 𝑁 with dim(Σ𝑛,𝐷) ≤ 𝑁 for all 𝑛 ∈ N and
𝐷 ∈ D(𝐹𝑛);

(c) For every 𝑛 ∈ N and 𝐷 ∈ F (𝐹𝑛), the map 𝑓𝑛,𝐷 is 𝛼−1
𝑛 (𝐷)-equivariant, where

𝛼−1
𝑛 (𝐷) acts on 𝐺 from the left;

(d) For every 𝑔 ∈ 𝐺 we have

lim
𝑛→∞

sup
𝐷∈D(𝐹𝑛 ) ,𝛾∈𝐺

𝑑
Σ𝑛,𝐷

𝐿1

(
𝑓𝑛,𝐷 (𝛾𝑔), 𝑓𝑛,𝐷 (𝛾)

)
= 0.

Note that a Dress-Farrell-Hsiang group is in particular a Dress-Farrell-Hsiang-
Jones group, see [185, Remark 7.2 (2)]. Hence Theorem 20.61 and Theorem 20.62
apply to Dress-Farrell-Hsiang groups, see also [185, Theorem 6.1].

The next result is due to Oliver [770, Theorem 7].

Theorem 20.53 (Fixed point free smooth actions of finite groups on disks). Let
𝐺 be a finite group. Then 𝐺 is not a Dress group if and only if 𝐺 acts smoothly on
some disk 𝐷𝑛 such that (𝐷𝑛)𝐺 is empty.

Exercise 20.54. Let𝐺 be a finite abelian group. Show that𝐺 admits a smooth action
on some disk 𝐷𝑛 with (𝐷𝑛)𝐺 = ∅ if and only if there are three distinct primes 𝑝1,
𝑝2, and 𝑝3 such that the 𝑝𝑘-Sylow subgroup of 𝐺 is non-cyclic for 𝑘 = 1, 2, 3.

The following definition is equivalent to the one in [960, Definition 8.1].

Definition 20.55 (𝐴-theoretic Swan ring Sw𝐴(𝐺)). For a group 𝐺 define the
𝐴-theoretic Swan ring Sw𝐴(𝐺) as follows. The underlying abelian group is defined
as follows. Every compact 𝐺-𝐶𝑊-complex 𝑋 , or, equivalently, 𝐺-𝐶𝑊-complex 𝑋 ,
whose underlying 𝐶𝑊-complex is finite, or, equivalently, 𝐺-𝐶𝑊-complex 𝑋 such
that 𝑋 has finitely many equivariant cells and the isotropy group of each 𝑥 ∈ 𝑋 has
finite index in 𝐺, defines an element [𝑋] in Sw𝐴(𝐺). The relations are given as
follows. If 𝑋 and 𝑌 are compact 𝐺-𝐶𝑊-complexes and there is a 𝐺-map 𝑓 : 𝑋 → 𝑌

such that 𝑓 is a homotopy equivalence (after forgetting the 𝐺-actions), then we
require [𝑋] = [𝑌 ]. If the compact 𝐺-𝐶𝑊-complex 𝑋 is the union of sub 𝐺-𝐶𝑊-
complexes 𝑋1 and 𝑋2 and 𝑋0 is the intersection of 𝑋1 and 𝑋2, then we require
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[𝑋] = [𝑋1] + [𝑋2] − [𝑋0]. The multiplication comes from the cartesian product
of two compact 𝐺-𝐶𝑊-complexes equipped with the diagonal 𝐺-action. The zero
element is represented by the empty set and the unit by 𝐺/𝐺.

The group Sw𝐴(𝐺) is the 𝐴-theoretic analog of the Swan group Sw𝑝 (𝐺) intro-
duced in Definition 12.65.

Exercise 20.56. Let 𝐺 be a (not necessarily finite) group. Define for a compact
𝐺-𝐶𝑊-complex 𝑋 the element

𝑠(𝑋) :=
∑︁
𝑛≥0
(−1)𝑛 · [𝐶𝑐𝑛 (𝑋)] ∈ Sw𝑝 (𝐺),

where 𝐶𝑐∗ (𝑋) is the cellular Z𝐺-chain complex of 𝑋 . Show that we obtain a well-
defined ring homomorphism

𝑠 : Sw𝐴(𝐺) → Sw𝑝 (𝐺), [𝑋] ↦→ 𝑠(𝑋).

Exercise 20.57. Let 𝐺 be a (not necessarily finite) group. Let 𝐴(𝐺) be the Burn-
side ring defined in Example 12.63. Show that we obtain a well-defined surjective
ring homomorphism 𝑎 : 𝐴(𝐺) → Sw𝐴(𝐺) by viewing a finite 𝐺-set as a compact
0-dimensional 𝐺-𝐶𝑊-complex.

Exercise 20.58. Let 𝑝 be a prime. Then we get a sequence of homomorphisms of
abelian groups

Z ⊕ Z
𝑢−→ 𝐴(Z/𝑝) 𝑎−→ Sw𝐴(Z/𝑝) 𝑠−→ Sw𝑝 (Z/𝑝) 𝑐−→ Z ⊕ Z

where 𝑢 sends (𝑚, 𝑛) to 𝑚 · [Z/𝑝] + 𝑛 · [{∗}], the map 𝑎 has been defined in
Exercise 20.57, the map 𝑠 has been defined in Exercise 20.56, and 𝑐 sends [𝑀] to
(rkZ (𝑀), rkZ (𝑀Z/𝑝)).

Show that 𝑢 and 𝑐 are well-defined and that the maps 𝑢, 𝑎, and 𝑐 ◦ 𝑠 are bijective.

The appearance of the Dress subgroups in Definition 20.60 is due to the result of
Ullmann-Winges [960, Theorem 8.7 ] that for a finite group 𝐹 and the family D(𝐹)
of Dress subgroup there are elements 𝜇𝐻 ∈ Sw𝐴(𝐻) for 𝐻 ∈ D(𝐹) satisfying

(20.59) 1Sw𝐴 (𝐹 ) =
∑︁
𝐻∈H

ind𝐹𝐻 (𝜇𝐻 ) ∈ Sw𝐴(𝐹),

where the homomorphisms ind𝐹𝐻 : Sw𝐴(𝐻) → Sw𝐴(𝐹) are induced by induction.
The proof of (20.59) is based on Oliver’s Theorem 20.53. Note that one needs to
pass to the 𝐴-theoretic Swan ring in the context of higher categories since Sw𝑝 (𝐹)
acts on 𝐾𝑛 (𝑅𝐹) but for instance not on 𝜋𝑛 (𝐴(𝐵𝐺)).

Note that a Dress-Farrell-Hsiang group is in particular a Dress-Farrell-Hsiang-
Jones group, see [185, Remark 7.2 (2)]. Hence Theorem 20.61 and Theorem 20.62
apply to Dress-Farrell-Hsiang groups.
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20.10 Dress-Farrell-Hsiang-Jones Groups

The next definition is taken from [185, Definition 7.1]. Recall that it essentially
implies all the other ones, see Remark 20.3.

Definition 20.60 (Dress-Farrell-Hsiang-Jones group). Let 𝐺 be a finitely gener-
ated group and F be a family of subgroups. We call𝐺 a Dress-Farrell-Hsiang-Jones
group over F if there exist:

(i) A sequence {𝐹𝑛}𝑛∈N of finite groups;
(ii) A sequence {𝛼𝑛}𝑛∈N of surjective group homomorphism 𝛼𝑛 : 𝐺 → 𝐹𝑛;

(iii) A collection {(Γ𝑛,𝐷 , 𝑍𝑛,𝐷) | 𝑛 ∈ N, 𝐷 ∈ D(𝐹𝑛)} of homotopy coherent
𝐺-actions in the sense of Definition 20.32;

(iv) A collection {Σ𝑛,𝐷 | 𝑛 ∈ N, 𝐷 ∈ D(𝐹𝑛)}, where Σ𝑛,𝐷 is an abstract simplicial
complex with a simplicial 𝛼−1

𝑛 (𝐷)-action;
(v) A collection { 𝑓𝑛,𝐷 | 𝑛 ∈ N, 𝐷 ∈ D(𝐹𝑛)} of continuous maps 𝑓𝑛,𝐷 : 𝐺×𝑍𝑛,𝐷 →
|Σ𝑛,𝐷 |,

such that the following holds:

(a) For every 𝑛 ∈ N and every 𝐷 ∈ D(𝐹𝑛), the topological space 𝑍𝑛,𝐷 is a compact
AR;

(b) For every 𝑛 ∈ N and every 𝐷 ∈ D(𝐹𝑛), the 𝛼−1
𝑛 (𝐷)-isotropy groups of |Σ𝑛,𝐷 |

belong to the family F |𝛼−1
𝑛 (𝐷) = {𝐻 ∩ 𝛼

−1
𝑛 (𝐷) | 𝐻 ∈ F };

(c) The exists a natural number𝑁 with dim(Σ𝑛,𝐷) ≤ 𝑁 for all 𝑛 ∈ N and𝐷 ∈ D(𝐹𝑛);
(d) For every 𝑛 ∈ N and every 𝐷 ∈ D(𝐹𝑛), the map 𝑓𝑛,𝐷 is 𝛼−1

𝑛 (𝐷)-equivariant,
where 𝛼−1

𝑛 (𝐷) acts on 𝐺 × 𝑍𝑛,𝐷 diagonally from the left;
(e) For every 𝑘 ∈ N and elements 𝑔0, 𝑔1, . . . , 𝑔𝑘 in G we have

lim
𝑛→∞

(
sup

𝐷∈D(𝐹𝑛 ) ,𝛾∈𝐺
(𝑡1 ,...,𝑡𝑘 ) ∈ [0,1]𝑘 ,

𝑧∈𝑍𝑛,𝐷

𝑢𝑛

)
= 0

for

𝑢𝑛 := 𝑑Σ𝑛,𝐷
𝐿1

(
𝑓𝑛,𝐷 (𝛾, Γ𝑛,𝐷 (𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔1, 𝑡1, 𝑔0, 𝑧)), 𝑓𝑛,𝐷 (𝛾𝑘𝑔𝑘 . . . 𝑔0, 𝑧)

)
.

The next result is taken from [185, Theorem 7.4]. We will give more details of its
proof in Chapter 24.

Theorem 20.61 (Dress-Farrell-Hsiang-Jones groups and the𝐾-theoretic Farrell-
Jones Conjecture). Let 𝐺 be a finitely generated group which is a Dress-Farrell-
Hsiang-Jones group over F in the sense of Definition 20.60.

Then the assembly maps

𝐻𝑛 (pr; KA) : 𝐻𝐺𝑛 (𝐸F (𝐺); KA) → 𝐻𝐺𝑛 (𝐺/𝐺; KA) = 𝜋𝑛
(
KA (𝐼 (𝐺))

)
;

𝐻𝐺𝑛 (pr; HC) : 𝐻𝐺𝑛 (𝐸F (𝐺); HC) → 𝐻𝐺𝑛 (𝐺/𝐺; HC) = 𝜋𝑛
(
KC (𝐼 (𝐺))

)
,
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are bijective for every additive 𝐺-category A, every right exact 𝐺-∞-category C,
and every 𝑛 ∈ Z.

Theorem 20.62 (Dress-Farrell-Hsiang-Jones groups and the𝐾-theoretic Farrell-
Jones Conjecture with finite wreath products). Let 𝐺 be finitely generated group
which is a Dress-Farrell-Hsiang-Jones group over VCY in the sense of Defini-
tion 20.60.

Then 𝐺 satisfies the 𝐾-theoretic Farrell-Jones Conjecture with coefficients in
additive 𝐺-categories with finite wreath products, see Conjecture 13.27, and the
𝐾-theoretic Farrell-Jones Conjecture with coefficients in higher 𝐺-categories with
finite wreath products, see Conjecture 13.29.

Proof. This follows from the last paragraph starting on page 127 in [185] and Theo-
rem 16.1 (ic). ⊓⊔

Remark 20.63. Note that we need for the proof of Theorem 20.61 and Theorem 20.62
the assumption that 𝐺 is finitely generated. If 𝐺 is finitely generated, then it suffices
in Definitions 20.48, 20.52, and 20.60 to check the last requirement appearing there
only for the elements 𝑔1, 𝑔2, . . . , 𝑔𝑘 or 𝑔 contained in one fixed finite set 𝑆 of
generators, since then it hold automatically for any finite subset of 𝐺 or any element
of 𝐺, essentially because of the triangle inequality.

20.11 Notes

It is conceivable that, if𝐺 is a Dress-Farrell-Hsiang-Jones group over F in the sense
of Definition 20.60. the assembly map

𝐻𝐺𝑛 (pr; L⟨−∞⟩A ) : 𝐻𝐺𝑛 (𝐸F2 (𝐺); L⟨−∞⟩A )

→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛
(
L⟨−∞⟩A (𝐼 (𝐺))

)
is bijective for every additive 𝐺-category A (with involution) and every 𝑛 ∈ Z.
Details of this claim have not been checked. If this claim is true, one would get that a
group 𝐺 which is a Dress-Farrell-Hsiang-Jones group overVCY is a Farrell-Jones
group, i.e., it satisfies the Full Farrell-Jones Conjecture 13.30.

So far the 𝐿-theoretic version of the Farrell-Jones Conjecture has only been
established for additive categories with involution. Christoph Winges is at the time
of writing working on a generalization to the setting of higher categories for all
Dress-Farrell-Hsiang-Jones groups.

Sawicki [891] discusses the notion of equivariant asymptotic dimension, which
is closely related to the notion of a transfer F -reducible group, see Definition 20.28,
and of finitely F -amenable group, see Definition 20.44.
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There is also the notion of an almost transfer F -reducible group, which is intro-
duced in [89, Definition 5.3] and is weaker than transfer F -reducible group. Both
conditions are equivalent if the family F is closed under the passage to overgroups
of finite index, see for instance [891, Corollary 2.6].



Chapter 21
Controlled Topology Methods

21.1 Introduction

In this chapter we explain and prove in detail for any group 𝐺 and any 𝐺-𝐶𝑊-
complex 𝑋 what we have briefly discussed in Subsection 19.4.5. We will allow more
general coefficients than rings or additive 𝐺-categories, namely, categories with
𝐺-support, see Definition 21.1. This notion seems to be the most general one and
illustrates nicely what is needed to successfully establish the desired constructions
and theorems appearing in this chapter.

Given such a category with 𝐺-support B, we will construct covariant functors

O𝐺 (−;B),T𝐺 (−;B),D𝐺 (−;B) : 𝐺-CW-COM→ ADDCAT

and for every 𝐺-𝐶𝑊-complex 𝑋 in Theorem 21.19 the so-called TOD-sequence,

𝐾 (T𝐺 (𝑋;B)) → 𝐾 (O𝐺 (𝑋;B)) → 𝐾 (D𝐺 (𝑋;B)),

which is a weak homotopy fibration of spectra and natural in 𝑋 .
Actually, the functor D𝐺 (−;B) digests 𝐺-𝐶𝑊-pairs, and we will prove in

Theorem 21.26 that we obtain a𝐺-homology theory with values in Z-modules in the
sense of Definition 12.1 by the covariant functor from the category of 𝐺-𝐶𝑊-pairs
to the category of Z-graded abelian groups sending (𝑋, 𝐴) to 𝐾∗ (D𝐺 (𝑋, 𝐴;B)).
We will analyze the coefficients of this 𝐺-homology theory, namely, the covariant
functor

K(D𝐺 (?;B)) : Or(𝐺) → SPECTRA, 𝐺/𝐻 ↦→ K(D𝐺 (𝐺/𝐻;B))

in Section 21.8.
In Lemma 21.76 (i) we will identify the assembly map appearing in the

Meta-Isomorphism Conjecture 15.2 associated to the 𝐺-homology theory
𝐻𝐺∗ (−; K(B(?)⊕)) for a specific covariant Or(𝐺)-spectrum K(B(?)⊕) introduced
in (21.68) and the family F

𝐻𝐺𝑛 (𝐸F (𝐺); K(B(?)⊕)) → 𝐻𝐺𝑛 ({•}; K(B(?)⊕)) = 𝐾𝑛 (B⊕)

with the homomorphism induced by the projection 𝐸F (𝐺) → 𝐺/𝐺

𝐾𝑛+1 (D𝐺 (𝐸F (𝐺);B)) → 𝐾𝑛+1 (D𝐺 (𝐺/𝐺;B)) = 𝐾𝑛 (B⊕)
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for every 𝑛 ∈ Z. Moreover we show in Lemma 21.76 (ii) that the Meta-Isomorphisms
Conjecture 15.2 for the 𝐺-homology theory 𝐻𝐺∗ (−; K(B(?))) and the family F is
true if and only if the spectrum K(O𝐺 (𝐸F (𝐺);B)) is weakly contractible.

Note that for a𝐺-Z-categoryA we can define the category with𝐺-supportA[𝐺],
see Example 21.2, and obtain an isomorphism

𝐾𝑛 (A[𝐻]⊕)
�−→ 𝐾𝑛+1 (D𝐺 (𝐺/𝐻;A[𝐺]))

for every 𝑛 ∈ Z and every subgroup 𝐻 ⊆ 𝐺, see Remark 21.82. This boils down for
a ring 𝑅 coming with a group homomorphism 𝜌 : 𝐺 → aut(𝑅) to an isomorphism,
see Example 21.83

𝐾𝑛 (𝑅𝜌 |𝐻 [𝐻])
�−→ 𝐾𝑛+1 (D𝐺 (𝐺/𝐻; 𝑅[𝐺])).

So for an adequate choice of B, the homomorphism 𝐾𝑛+1 (D𝐺 (𝐸F (𝐺);B)) →
𝐾𝑛+1 (D𝐺 (𝐺/𝐺;B)) can be identified with the map appearing in the 𝐾-theoretic
Farrell-Jones Conjecture 13.11 with coefficients in additive 𝐺-categories, and of
course analogously for rings as coefficients. All this carries over to 𝐿-theory.

We also deal with a version D𝐺0 (𝑋;B) with zero-control over N which also
yields a 𝐺-homology theory, see Theorem 21.126, and is related to D𝐺 by a weak
homotopy pushout, see Theorem 21.109,

K(D𝐺0 (𝑋))
K(𝑉𝜌𝐸 (𝑋) ) //

K(𝑉𝜌𝑂 (𝑋) )
��

K(D𝐺0 (𝑋))

��
K(D𝐺0 (𝑋)) // K(D𝐺 (𝑋)).

These functors D𝐺0 (𝑋;B) occur in the transfer criterion for the Farrell-Jones Con-
jecture appearing in Theorem 23.70. The benefit of Theorem 23.70 is that it suffices
to construct the transfer only on homogeneous spaces and for the functorD𝐺0 which
has the pleasant feature that it is defined with zero-control in the N-direction. This
has, for instance, been exploited in [81, Remarks 6.14 and 7.17].

The setup with categories with 𝐺-support as coefficients is too general to expect
that the Farrell-Jones Conjecture holds, see Remark 21.85.

There are many different versions of the categories D𝐺 (𝑋) constructed below
and also the control conditions may vary. We have decided to concentrate in this
chapter on one case, namely the setting with continuous control, as established
in [74], and to use the version of the setup for totally disconnected groups, see [81],
reduced to discrete groups, where it simplifies considerably. The hope is that the
reader can easily understand the arguments in other but related situations if she or he
has absorbed the cases presented in this chapter. Moreover, we give all the details,
whereas in the literature the arguments are sometimes rather sketchy.
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21.2 The Definition of a Category with 𝑮-Support

Let 𝐺 be a discrete group. A Z-category is a small category A enriched over the
category ofZ-modules, i.e., for every two objects 𝐴 and 𝐴′ inA the set of morphisms
morA (𝐴, 𝐴′) has the structure of a Z-module for which composition is a Z-bilinear
map.

Definition 21.1 (Category with 𝐺-support). A category with 𝐺-support is a pair
B = (B, supp𝐺) consisting of:

• A Z-category B;
• A map called the support function

supp𝐺 : mor(B) → {finite subsets of 𝐺}.

We require that the following axioms are satisfied for all objects 𝐵 in B and all
morphisms 𝑢, 𝑢′ : 𝐵1 → 𝐵2, 𝑣 : 𝐵2 → 𝐵3 in B:

(i) supp𝐺 (𝑢) = ∅ ⇐⇒ 𝑢 = 0;
(ii) supp𝐺 (𝑣 ◦𝑢) ⊆ supp𝐺 (𝑣) · supp𝐺 (𝑢) := {𝑔𝑔′ | 𝑔 ∈ supp𝐺 (𝑣), 𝑔′ ∈ supp𝐺 (𝑢)};

(iii) supp𝐺 (𝑢 + 𝑢′) ⊆ supp𝐺 (𝑢) ∪ supp𝐺 (𝑢′);
(iv) supp𝐺 (𝑢) = supp𝐺 (−𝑢);
(v) For every object 𝐵 in B its support supp𝐺 (𝐵) := supp𝐺 (id𝐵) is {𝑒}.

Example 21.2. Let A be a 𝐺-Z-category, i.e., a Z-category with 𝐺 action by iso-
morphisms of Z-categories. Define the category with 𝐺-support A[𝐺] as follows.
The set of objects inA[𝐺] is the set of objects inA. For two objects 𝐴 and 𝐴′ inA,
a morphism 𝜙 : 𝐴→ 𝐴′ inA[𝐺] is a formal sum

∑
𝑔∈𝑔 𝜙𝑔 · 𝑔 where 𝜙𝑔 : 𝑔𝐴→ 𝐴′

is a morphism in A from 𝑔𝐴 to 𝐴′ and its 𝐺-support

supp𝐺 (𝜙) := {𝑔 ∈ 𝐺 | 𝜙𝑔 ≠ 0}

is assumed to be finite. The composite of 𝜙 : 𝐴 → 𝐴′ and 𝜓 : 𝐴′ → 𝐴′′ is given by
convolution, i.e.,

(𝜓 ◦ 𝜙)𝑔 =
∑︁

𝑔′ ,𝑔′′∈𝐺
𝑔=𝑔′𝑔′′

𝜓𝑔′ ◦ 𝑔′𝜙𝑔′′ : 𝑔𝐴→ 𝐴′′.

The identity of the objectA is given by
∑
𝑔∈𝑔 𝜙𝑔 · 𝑔, where 𝜙𝑒 = id𝐴 and 𝜙𝑔 = 0 for

𝑔 ≠ 𝑒. The Z-structure on morA[𝐺 ] (𝐴, 𝐴′) is given by

𝑚 ·
(∑︁
𝑔

𝜙𝑔 · 𝑔
)
+ 𝑛 ·

(∑︁
𝑔

𝜓𝑔 · 𝑔
)
=

∑︁
𝑔

(𝑚 · 𝜙𝑔 + 𝑛 · 𝜓𝑔) · 𝑔.

One easily checks that A[𝐺] is a Z-category and becomes with the notion of the
support above a category with 𝐺-support.
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Given a Z-category, let A⊕ be the associated additive category whose objects
are finite tuples of objects in A and whose morphisms are given by matrices of
morphisms in A (of the right size) and the direct sum is given by concatenation of
tuples and the block sum of matrices, see for instance [686, Section 1.3].

Let 𝑅 be a ring. We denote by 𝑅 the Z-category with precisely one object whose
Z-module of endomorphisms is given by 𝑅 with its Z-module structure and compo-
sition is given by the multiplication in 𝑅. Then we can consider the additive category
𝑅⊕ . It can be identified with the version of 𝑅⊕ appearing in Section 6.6.

Example 21.3. Let 𝑅 be a ring coming with a group homomorphism 𝜌 : 𝐺 → aut(𝑅)
to the group of ring automorphisms of 𝑅. We can consider 𝑅 as a 𝐺-Z-category. We
have defined the Z-category 𝑅[𝐺] in Example 21.2. It yields the additive category
𝑅[𝐺]⊕ .

Denote by 𝑅𝜌 [𝐺] the twisted group ring. We have defined the additive category
𝑅𝜌 [𝐺]⊕ above. One easily checks that the additive categories 𝑅[𝐺]⊕ and 𝑅𝜌 [𝐺]⊕
are isomorphic. Recall that 𝑅𝜌 [𝐺]⊕ is equivalent to the category 𝑅𝜌 [𝐺]-MODfgf

of finitely generated free 𝑅𝜌 [𝐺]-modules, see (6.42).

21.3 The Additive Category O𝑮 (𝑿; B)

21.3.1 The Definition of O𝑮 (𝑿; B)

Let 𝑋 be a 𝐺-𝐶𝑊-complex and B be a category with 𝐺-support in the sense of
Definition 21.1. We define an additive category O𝐺 (𝑋;B) as follows.

Definition 21.4 (O𝐺 (𝑋;B)). An object in O𝐺 (𝑋;B) is a quadruple B = (𝑆, 𝜋, 𝜂,B)
consisting of a set 𝑆 and maps 𝜋 : 𝑆 → 𝑋 , 𝜂 : 𝑆 → N, and B : 𝑆 → ob(B) satisfying:

• Compact support over 𝑋
The image of 𝜋 : 𝑆 → 𝑋 is contained in a compact subset of 𝑋;
• Local finiteness over N

For every 𝑡 ∈ N the preimage 𝜂−1 (𝑡) is a finite subset of 𝑆.

For two objects B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋′, 𝜂′,B′), a morphism 𝜙 : B→ B′
is given by a collection {𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′} of morphisms in B
satisfying the following conditions:

• Finite 𝐺-support
There exists a finite subset 𝐹 ⊂ 𝐺 such that

supp𝐺 (𝜙𝑠,𝑠′ ) ⊆ 𝐹

holds for all 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′;
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• Bounded control over N
There exists a natural number 𝑛 such that for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ the implication

𝜙𝑠,𝑠′ ≠ 0 =⇒ |𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑛

holds;
• Continuous control

For every 𝑥 ∈ 𝑋 and every open 𝐺𝑥-invariant neighborhood 𝑈 ⊆ 𝑋 of 𝑥, there
exists an open 𝐺𝑥-invariant neighborhood 𝑈′ ⊆ 𝑋 of 𝑥 satisfying 𝑈′ ⊆ 𝑈 and
a natural number 𝑟 ′ such that for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) the
implications

𝑔𝜋(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ 𝜋′ (𝑠′) ∈ 𝑈;(21.5)
𝑔−1𝜋′ (𝑠′) ∈ 𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′ =⇒ 𝜋(𝑠) ∈ 𝑈,(21.6)

hold.

Given three objects

B = (𝑆, 𝜋, 𝜂,B), B′ = (𝑆′, 𝜋′, 𝜂′,B′), and B′′ = (𝑆′′, 𝜋′′, 𝜂′′,B′′)

and morphisms 𝜙 : B → B′ and 𝜙′ : B′ → B′′, wedefine their composite
𝜙′ ◦ 𝜙 : B→ B′′ by

(𝜙′ ◦ 𝜙)𝑠,𝑠′′ =
∑︁
𝑠′∈𝑆′

𝜙′𝑠′ ,𝑠′′ ◦ 𝜙𝑠,𝑠′

for 𝑠 ∈ 𝑆 and 𝑠′′ ∈ 𝑆′′.
Define the identity idB for the object B = (𝑆, 𝜋, 𝜂,B) by (idB)𝑠,𝑠 = idB(𝑠) for

𝑠 ∈ 𝑆 and by (idB)𝑠,𝑠′ = 0 for 𝑠, 𝑠′ ∈ 𝑆 with 𝑠 ≠ 𝑠′.
Given two objects B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋′, 𝜂′,B′), two morphisms

𝜙, 𝜙′ : B→ B′, and 𝑚, 𝑛 ∈ Z, define the morphism 𝑚 · 𝜙 + 𝑛 · 𝜙′ by

(𝑚 · 𝜙 + 𝑛 · 𝜙′)𝑠,𝑠′ = 𝑚 · 𝜙𝑠,𝑠′ + 𝑛 · 𝜙′𝑠,𝑠′

for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′.

We have to check that Definition 21.4 makes sense. The conditions local finiteness
over N and bounded control over N ensure that the sum occurring in the definition
of the composition is indeed a finite sum, namely,

(𝜙′ ◦ 𝜙)𝑠,𝑠′′ =
∑︁
𝑠′∈𝑆′

𝜙′
𝑠′ ,𝑠′′ ,𝜙𝑠,𝑠′≠0

𝜙′𝑠′ ,𝑠′′ ◦ 𝜙𝑠,𝑠′ .

Since 𝜙 and 𝜙′ satisfy finite 𝐺-support, we can choose finite subsets 𝐹 and 𝐹′ of 𝐺
such that supp𝐺 (𝜙𝑠,𝑠′ ) ⊆ 𝐹 and supp𝐺 (𝜙′𝑠′ ,𝑠′′ ) ⊆ 𝐹′ holds for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and
𝑠′′ ∈ 𝑆′′. We get for 𝑠 ∈ 𝑆 and 𝑠′′ ∈ 𝑆′′
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supp𝐺 ((𝜙′ ◦ 𝜙)𝑠,𝑠′′ ) = supp𝐺

( ∑︁
𝑠′∈𝑆′

𝜙′𝑠′ ,𝑠′′ ◦ 𝜙𝑠,𝑠′
)

⊂
⋃
𝑠′∈𝑆′

𝜙′
𝑠′ ,𝑠′′ ,𝜙𝑠,𝑠′≠0

supp𝐺 (𝜙′𝑠′ ,𝑠′′ ◦ 𝜙𝑠,𝑠′ )

⊂
⋃
𝑠′∈𝑆′

𝜙′
𝑠′ ,𝑠′′ ,𝜙𝑠,𝑠′≠0

supp𝐺 (𝜙′𝑠′ ,𝑠′′ ) · supp𝐺 (𝜙𝑠,𝑠′ )

⊂
⋃
𝑠′∈𝑆′

𝜙′
𝑠′ ,𝑠′′ ,𝜙𝑠,𝑠′≠0

𝐹′ · 𝐹

⊂ 𝐹′ · 𝐹.

Since 𝐹′ · 𝐹 is a finite subset of 𝐺, the composite 𝜙′ ◦ 𝜙 satisfies finite 𝐺-support.
Since both 𝜙 and 𝜙′ satisfy bounded control over N, there exist natural numbers

𝑛 and 𝑛′ such that the implications 𝜙𝑠,𝑠′ ≠ 0 =⇒ |𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑛 and
𝜙′
𝑠′ ,𝑠′′ ≠ 0 =⇒ |𝜂′ (𝑠′) − 𝜂′′ (𝑠′′) | ≤ 𝑛′ hold for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑠′′ ∈ 𝑆′′. Hence

we have the implication (𝜙′ ◦ 𝜙)𝑠,𝑠′′ ≠ 0 =⇒ |𝜂(𝑠) − 𝜂′′ (𝑠′′) | ≤ 𝑛 + 𝑛′ for 𝑠 ∈ 𝑆,
and 𝑠′′ ∈ 𝑆′′. This shows that 𝜙′ ◦ 𝜙 satisfies bounded control over N

Finally we show that continuous control is satisfied by 𝜙′ ◦ 𝜙. Consider 𝑥 ∈ 𝑋
and an open 𝐺𝑥-invariant neighborhood 𝑈 ⊆ 𝑋 of 𝑥. Since 𝜙′ satisfies continuous
control, we can find an open 𝐺𝑥-invariant neighborhood 𝑈′ ⊆ 𝑋 of 𝑥 satisfying
𝑈′ ⊆ 𝑈 and a natural number 𝑟 ′ such that the implication

(21.7) 𝑔′𝜋′ (𝑠′) ∈ 𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′ =⇒ 𝜋′′ (𝑠′′) ∈ 𝑈

holds for all 𝑠′ ∈ 𝑆′, 𝑠′′ ∈ 𝑆′′, and 𝑔′ ∈ supp𝐺 (𝜙′𝑠′ ,𝑠′′ ). Because of the condition finite
𝐺-support, there exists a finite subset 𝐹′ ⊆ 𝐺 with supp𝐺 (𝜙′𝑠′ ,𝑠′′ ) ⊆ 𝐹′ for 𝑠′ ∈ 𝑆′
and 𝑠′′ ∈ 𝑆′′. Fix 𝑔′ ∈ 𝐹′. Then 𝑔′−1𝑈′ is an open 𝐺𝑔′−1𝑥-invariant neighborhood of
𝑔′−1𝑥. Since 𝜙 satisfies bounded control over N and continuous control, we can find
an open 𝐺𝑔′−1𝑥-invariant neighborhood 𝑈′′

𝑔′ ⊆ 𝑋 of 𝑔′−1𝑥 satisfying 𝑈′′
𝑔′ ⊆ 𝑔′−1𝑈

and a natural number 𝑟 ′′
𝑔′ with 𝑟 ′′

𝑔′ ≥ 𝑟 ′ such that the implication

(21.8) 𝑔𝜋(𝑠) ∈ 𝑈′′𝑔′ , 𝜂(𝑠) ≥ 𝑟 ′′𝑔′ =⇒ 𝜋′ (𝑠′) ∈ 𝑔′−1𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′

holds for all 𝑠 ∈ 𝑆′, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ). Put

𝑈′′ :=
⋂
𝑔′∈𝐹′

𝑔′𝑈′′𝑔′ ;

𝑟 ′′ := max{𝑟 ′′𝑔′ | 𝑔′ ∈ 𝐹′}.

Then 𝑈′′ ⊆ 𝑋 is an open 𝐺𝑥-invariant neighborhood of 𝑥. Moreover, we get for
𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, 𝑠′′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ), 𝑔′ ∈ supp𝐺 (𝜙′𝑠′ ,𝑠′′ )
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𝑔′𝑔𝜋(𝑠) ∈ 𝑈′′, 𝜂(𝑠) ≥ 𝑟 ′′ =⇒ 𝑔𝜋(𝑠) ∈ 𝑔′−1𝑈′′, 𝜂(𝑠) ≥ 𝑟 ′′

=⇒ 𝑔𝜋(𝑠) ∈ 𝑈′′𝑔′ , 𝜂(𝑠) ≥ 𝑟 ′′𝑔′
(21.8)
=⇒ 𝜋′ (𝑠′) ∈ 𝑔′−1𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′

=⇒ 𝑔′𝜋′ (𝑠′) ∈ 𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′
(21.7)
=⇒ 𝜙′′ (𝑠′′) ∈ 𝑈.

Since supp𝐺 (𝜙′ ◦𝜙)𝑠
′′
𝑠 ⊆

⋃
𝑠′∈𝑆′ supp𝐺 (𝜙′𝑠′ ,𝑠′′ ) · supp𝐺 (𝜙𝑠,𝑠′ ) holds, we have shown

for 𝑠 ∈ 𝑆, 𝑠′′ ∈ 𝑆′′, and 𝑔′′ ∈ supp𝐺 ((𝜙′ ◦ 𝜙)𝑠,𝑠′ )

𝑔′′𝜋(𝑠) ∈ 𝑈′′, 𝜂(𝑠) ≥ 𝑟 ′′ =⇒ 𝜙′′ (𝑠′′) ∈ 𝑈.

This finishes the proof of implication (21.5). We leave the analogous proof of the
other implication (21.6) to the reader. This finishes the proof that 𝜙′ ◦ 𝜙 satisfies
the condition continuous control and hence the proof that the composition is well-
defined.

One easily checks that the identity morphism is well-defined.
Obviously the definition of the Z-structure makes sense.
Given two objects B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋′, 𝜂′,B′), we have to define

their direct sum B ⊕ B′. We put

B ⊕ B′ = (𝑆 ⨿ 𝑆′, 𝜋 ⨿ 𝜋′, 𝜂 ⨿ 𝜂′,B ⨿ B′)

and define the desired morphisms B→ B⊕B′ and B′ → B⊕B′ in the obvious way.
This finishes the proof that O𝐺 (𝑋;B) is a well-defined additive category.
Notation 21.9. WhenB is clear from the context, we will often omit it in the notation
and write for instance O𝐺 (𝑋) instead of O𝐺 (𝑋;B).
Lemma 21.10. (i) We can replace in Definition 21.4 the condition (21.5) by the

condition

(21.11) 𝜋(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ 𝑔−1 · 𝜋′ (𝑠′) ∈ 𝑈

without changing O𝐺 (𝑋);
(ii) We can replace in Definition 21.4 the condition (21.6) by the condition

(21.12) 𝜋′ (𝑠′) ∈ 𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′ =⇒ 𝑔 · 𝜋(𝑠) ∈ 𝑈

without changing O𝐺 (𝑋);
(iii) We can replace in Definition 21.4 simultaneously the condition (21.5) by the

condition (21.11) and the condition (21.6) by the condition (21.12) without
changing O𝐺 (𝑋).

Proof. We only prove assertion (ii). The proofs of the other assertions are analogous.
We first show that the condition (21.12) is automatically satisfied. Consider 𝑥 ∈ 𝑋

and an open 𝐺𝑥-invariant neighborhood 𝑈 of 𝑥. Let 𝜙 : B→ B′ be a morphisms in
O𝐺 (𝑋). Since it satisfies finite 𝐺-support, we can find a finite subset 𝐹 ⊆ 𝐺 such
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that supp𝐺 (𝜙𝑠,𝑠′ ) ⊆ 𝐹 holds for all 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′. Fix 𝑔 ∈ 𝐹. We can apply
condition (21.6) to the open𝐺𝑔−1𝑥-invariant neighborhood 𝑔−1𝑈 of 𝑔−1𝑥, and obtain
an open 𝐺𝑔−1𝑥-invariant neighborhood 𝑈′𝑔 of 𝑔−1𝑥 with 𝑈′𝑔 ⊆ 𝑔−1𝑈′ and a natural
number 𝑟 ′𝑔 such that for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔0 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) the implication

(21.13) 𝑔−1
0 𝜋′ (𝑠′) ∈ 𝑈′𝑔, 𝜂′ (𝑠′) ≥ 𝑟 ′𝑔 =⇒ 𝜋(𝑠) ∈ 𝑔−1𝑈

holds. Define

𝑟 ′ = max{𝑟 ′𝑔 | 𝑔 ∈ 𝐹};

𝑈′ =
⋂
𝑔∈𝐺

𝑔𝑈′𝑔 .

Then 𝑈′ is an open 𝐺𝑥-invariant neighborhood of 𝑥 with 𝑈′ ⊆ 𝑈 and condi-
tion (21.12) is satisfied since for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) ⊆ 𝐹 we
get

𝜋′ (𝑠′) ∈ 𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′ =⇒ 𝑔−1𝜋′ (𝑠′) ∈ 𝑔−1𝑈′, 𝜂′ (𝑠′) ≥ 𝑟 ′

=⇒ 𝑔−1𝜋′ (𝑠′) ∈ 𝑈′𝑔, 𝜂′ (𝑠′) ≥ 𝑟 ′𝑔
(21.13)
=⇒ 𝜋(𝑠) ∈ 𝑔−1𝑈

=⇒ 𝑔𝜋(𝑠) ∈ 𝑈.

The proof in the case where we replace in Definition 21.4 condition (21.6) by
condition (21.12), and then show that condition (21.6) is satisfied, is analogous and
left to the reader. ⊓⊔

The next result gives a criterion when we can modify the map 𝜋 for an object
B = (𝑆, 𝜋, 𝜂,B) in O𝐺 (𝑋) without changing its isomorphism class.

Lemma 21.14. Consider two objects inO𝐺 (𝑋) of the form B = (𝑆, 𝜋, 𝜂,B) and B′ =
(𝑆, 𝜋′, 𝜂,B). Suppose that for every 𝑥 ∈ 𝑋 and open 𝐺𝑥-invariant neighborhood 𝑈
of 𝑥 there exists an open 𝐺𝑥-invariant neighbourhood𝑈′ of 𝑥 in 𝑋 with𝑈′ ⊆ 𝑈 and
a natural number 𝑟 ′ such that for 𝑠 ∈ 𝑆 the implications

𝜋(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ 𝜋′ (𝑠) ∈ 𝑈;
𝜋′ (𝑠) ∈ 𝑈′, 𝜂′ (𝑠) ≥ 𝑟 ′ =⇒ 𝜋(𝑠) ∈ 𝑈,

hold.
Then B and B′ are isomorphic.

Proof. Define mutually inverse morphisms 𝜙 : B → B′ and 𝜙′ : B′ → B by 𝜙𝑠,𝑠 =
𝜙′𝑠,𝑠 = idB(𝑠) for 𝑠 ∈ 𝑆 and by 𝜙𝑠,𝑠′ = 𝜙′𝑠′ ,𝑠 = 0 for 𝑠, 𝑠′ ∈ 𝑆 with 𝑠 ≠ 𝑠′. One has to
check that 𝜙 and 𝜙′ are well-defined. Note that supp𝐺 (𝜙𝑠,𝑠′ ) and supp𝐺 (𝜙𝑠′ ,𝑠) are
empty if 𝑠 ≠ 𝑠′ and agree with {𝑒} if 𝑠 = 𝑠′. Hence 𝜙 and 𝜙′ satisfy finite 𝐺-support
and bounded control over N for obvious reasons and the assumptions appearing in
Lemma 21.14 imply continuous control. ⊓⊔
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21.4 Functoriality of O𝑮 (𝑿; B)

Consider a 𝐺-map 𝑓 : 𝑋 → 𝑌 of 𝐺-𝐶𝑊-complexes. Next we show that it induces a
functor of additive categories

(21.15) O𝐺 ( 𝑓 ) : O𝐺 (𝑋) → O𝐺 (𝑌 ).

It sends an object B = (𝑆, 𝜋, 𝜂,B) in O𝐺 (𝑋) to the object (𝑆, 𝑓 ◦ 𝜋, 𝜂,B) in O𝐺 (𝑌 ).
One easily checks that the conditions compact support over 𝑋 and local finiteness
over N are satisfied for (𝑆, 𝑓 ◦ 𝜋, 𝜂,B).

For two objects B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋′, 𝜂′,B′) and a morphism
𝜙 : B → B′ given by a collection {𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′} in
O𝐺 (𝑋), define the morphism O𝐺 ( 𝑓 ) (𝜙) : O𝐺 ( 𝑓 ) (B) → O𝐺 ( 𝑓 ) (B′) in O𝐺 (𝑌 ) by
the same collection {𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′}. Obviously conditions
finite 𝐺-support and bounded control over N are satisfied for O𝐺 ( 𝑓 ) (𝜙). The hard
part is the proof of continuous control, which we will give next. We only deal with
the implication (21.5), the proof of the implication (21.6) is completely analogous.

Suppose that the implication (21.5) is not satisfied for O𝐺 ( 𝑓 ) (𝜙). Then we can
find a point 𝑦 ∈ 𝑌 and an open 𝐺𝑦-invariant neighborhood 𝑈 of 𝑦 such that for
every open 𝐺𝑦-invariant neighborhood 𝑈′ of 𝑦 with 𝑈′ ⊆ 𝑈 and natural number 𝑟 ′
there exist elements 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆 and an element 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) such that
𝑔𝜋(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′, and 𝜋′ (𝑠′) ∉ 𝑈 hold. Since 𝑌 is a 𝐺-𝐶𝑊-complex, we can
find a sequence of nested open 𝐺𝑦-invariant neighbourhoods 𝑉0 ⊇ 𝑉1 ⊇ 𝑉2 ⊇ · · ·
of 𝑦 such that

⋂
𝑛≥0𝑉𝑛 = {𝑦}. Hence we can find a sequence of nested open

𝐺𝑦-invariant neighbourhoods 𝑈′0 ⊇ 𝑈
′
1 ⊇ 𝑈

′
2 ⊇ · · · of 𝑦 satisfying

⋂
𝑛≥0𝑈

′
𝑛 = {𝑦},

a sequence of natural numbers 𝑟 ′𝑛 satisfying lim𝑛→∞ 𝑟 ′𝑛 = ∞, a sequence (𝑠𝑛)𝑛≥0 in 𝑆,
a sequence (𝑠′𝑛)𝑛≥0 in 𝑆′, and elements 𝑔 ∈ supp(𝜙𝑠𝑛 ,𝑠′𝑛 ) such that 𝑔 · 𝑓 ◦𝜋(𝑠𝑛) ∈ 𝑈′𝑛,
𝜂(𝑠𝑛) ≥ 𝑟 ′𝑛, and 𝑓 ◦ 𝜋′ (𝑠′𝑛) ∉ 𝑈 hold for all 𝑛 ∈ N.

Since 𝜙 satisfies finite 𝐺-support, we can arrange by passing to subsequences
that there exists a 𝑔 ∈ 𝐺 such that 𝑔 = 𝑔𝑛 holds for all 𝑛 ≥ 0. Since 𝜙 satisfies
compact support over 𝑋 , we can arrange by passing to subsequences that there exists
an 𝑥 ∈ 𝑋 satisfying lim𝑛→∞ 𝜋(𝑠𝑛) = 𝑥. We get lim𝑛→∞ 𝑓 ◦ 𝜋(𝑠𝑛) = 𝑓 (𝑥). Since
𝑔 · 𝑓 ◦ 𝜋(𝑠𝑛) ∈ 𝑈′𝑛 holds for all 𝑛 ≥ 0, we conclude lim𝑛→∞ 𝑔 · 𝑓 ◦ 𝜋(𝑠𝑛) = 𝑦. This
implies 𝑓 (𝑔𝑥) = 𝑦. Note that 𝑓 −1 (𝑈) is an open 𝐺𝑔𝑥-invariant neighborhood of 𝑔𝑥.
Since 𝜙 satisfies continuous control, there exists an open𝐺𝑔𝑥-invariant neighborhood
𝑉 ′′ of 𝑔𝑥 with 𝑉 ′′ ⊆ 𝑓 −1 (𝑈) and a natural number 𝑟 ′′ such that for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′,
and 𝑔′′ ∈ supp𝐺 (𝜙𝑠,𝑠′ ), the implication

𝑔′′𝜋(𝑠) ∈ 𝑉 ′′, 𝜂(𝑠) ≥ 𝑟 ′′ =⇒ 𝜋′ (𝑠′) ∈ 𝑓 −1 (𝑈)

holds. Hence we get for all 𝑛 ∈ N the implication

𝑔𝜋(𝑠𝑛) ∈ 𝑉 ′′, 𝜂(𝑠𝑛) ≥ 𝑟 ′′ =⇒ 𝜋′ (𝑠′𝑛) ∈ 𝑓 −1 (𝑈).
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Since lim𝑛→∞ 𝑟 ′𝑛 = ∞, lim𝑛→∞ 𝑔𝜋(𝑠𝑛) = 𝑔𝑥, and 𝑉 ′′ is an open neighborhood of
𝑔𝑥, we can arrange by passing to subsequences that 𝑔𝜋(𝑠𝑛) ∈ 𝑉 ′′ and 𝜂(𝑠𝑛) ≥ 𝑟 ′′
holds for all 𝑛 ≥ 0. Hence we get 𝜋′ (𝑠′𝑛) ∈ 𝑓 −1 (𝑈) for all 𝑛 ≥ 0. This implies
𝑓 ◦ 𝜋′ (𝑠′𝑛) ∈ 𝑈 for all 𝑛 ≥ 0, a contradiction.

Obviously we get a covariant functor O𝐺 (−;B) from the category of 𝐺-𝐶𝑊-
spaces with arbitrary 𝐺-maps as morphisms to the category of additive categories.

21.5 The TOD-Sequence

Let 𝑋 be a 𝐺-𝐶𝑊-complex and B be a category with 𝐺-support in the sense of
Definition 21.1.

Definition 21.16 (T𝐺 (𝑋)). Let T𝐺 (𝑋) be the full additive subcategory of O𝐺 (𝑋)
consisting of those objects B = (𝑆, 𝜋, 𝜂,B) for which there exists a natural number
𝑛 satisfying 𝜂(𝑠) ≤ 𝑛 for all 𝑠 ∈ 𝑆.

Lemma 21.17. The inclusion T𝐺 (𝑋) → O𝐺 (𝑋) is a Karoubi filtration in the sense
of Definition 8.43.

Proof. Consider an object B = (𝑆B, 𝜋B, 𝜂B,BB) in O𝐺 (𝑋), two objects U =

(𝑆U, 𝜋U, 𝜂U,BU) and V = (𝑆V, 𝜋V, 𝜂V,BV) in T𝐺 (𝑋), and morphisms 𝑓 : B → U
and 𝑔 : V → B in O𝐺 (𝑋). By definition we can find natural numbers 𝑛0 and 𝑛1
such that 𝜂U (𝑠′) ≤ 𝑛0 for 𝑠′ ∈ 𝑆U and 𝜂V (𝑠) ≤ 𝑛0 for 𝑠 ∈ 𝑆V hold and we have the
implications

𝑠 ∈ 𝑆B, 𝑠
′ ∈ 𝑆U, 𝑓𝑠,𝑠′ ≠ 0 =⇒ |𝜂B (𝑠) − 𝜂U (𝑠′) | ≤ 𝑛1;

𝑠 ∈ 𝑆V, 𝑠
′ ∈ 𝑆B, 𝑔𝑠,𝑠′ ≠ 0 =⇒ |𝜂V (𝑠) − 𝜂B (𝑠′) | ≤ 𝑛1.

Now define objects

BU = (𝑆BU , 𝜋BU , 𝜂BU ,BBU ) in T𝐺 (𝑋), and

B⊥ = (𝑆B⊥ , 𝜋B⊥ , 𝜂B⊥ ,BB⊥ ) in O𝐺 (𝑋)

by

𝑆BU := {𝑠 ∈ 𝑆B | 𝜂B (𝑠) ≤ 𝑛0 + 𝑛1};
𝑆B⊥ := {𝑠 ∈ 𝑆B | 𝜂B (𝑠) > 𝑛0 + 𝑛1},

and restricting the maps 𝜋B, 𝜂B, andBB. There are obvious morphisms 𝑖U : BU → B
and 𝑖⊥ : B⊥ → B in O𝐺 (𝑋) such that 𝑖U ⊕ 𝑖⊥ : BU ⊕ B⊥ �−→ B is an isomorphism.
We leave it to the reader to figure out the obvious definition of the maps 𝑓 U and 𝑔U
and the proof of the commutativity of the relevant diagrams. Hence the inclusion
T𝐺 (𝑋) → O𝐺 (𝑋) is a Karoubi filtration. ⊓⊔
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Definition 21.18 (D𝐺 (𝑋)). Let D𝐺 (𝑋) be the additive category given by the quo-
tient O𝐺 (𝑋)/T𝐺 (𝑋) in the sense of Definition 8.42.

Theorem 21.19 (TOD-sequence). The so-called TOD-sequence

𝐾 (T𝐺 (𝑋)) → 𝐾 (O𝐺 (𝑋)) → 𝐾 (D𝐺 (𝑋))

is a weak homotopy fibration of spectra.

Proof. This follows from Lemma 21.17 and Theorem 8.46 (i). ⊓⊔

Given a map 𝑓 : 𝑋 → 𝑌 of 𝐺-𝐶𝑊-complexes, the functor of additive categories
O𝐺 ( 𝑓 ) : O𝐺 (𝑋) → O𝐺 (𝑌 ) of (21.15) induces functors of additive categories

T𝐺 ( 𝑓 ) : T𝐺 (𝑋) → T𝐺 (𝑌 );(21.20)
D𝐺 ( 𝑓 ) : D𝐺 (𝑋) → D𝐺 (𝑌 ).(21.21)

Lemma 21.22. Let 𝑓 : 𝑋 → 𝑌 be a 𝐺-map between 𝐺-𝐶𝑊-complexes.
Then T𝐺 ( 𝑓 ) : T𝐺 (𝑋) ≃−→ T𝐺 (𝑌 ) is an equivalence of additive categories.

Proof. We can assume without loss of generality that 𝑌 = {•}.
Consider an object B = (𝑆, 𝜋, 𝜂,B) in T𝐺 ({•}). Then 𝑆 is finite. Choose any map

𝜋′ : 𝑆 → 𝑋 and define an object B′ = (𝑆, 𝜋′, 𝜂,B) inT𝐺 (𝑋). SinceT𝐺 ( 𝑓 ) (B′) = B,
we conclude that T𝐺 ( 𝑓 ) is surjective on objects. Obviously T𝐺 ( 𝑓 ) induces for two
objects B0 and B1 in T𝐺 (𝑋) a bijection

morT𝐺 (𝑋) (B0,B1)
�−→ morT𝐺 ({•}) (T𝐺 ( 𝑓 ) (B0),T𝐺 ( 𝑓 ) (B1)), 𝜙 ↦→ T𝐺 ( 𝑓 ) (𝜙)

since for T𝐺 (𝑋) the conditions finite 𝐺-support, bounded control over N, and
continuous control are automatically satisfied. Hence T𝐺 ( 𝑓 ) is an equivalence of
additive categories. ⊓⊔

21.6 The Definition for Pairs

Let (𝑋, 𝐴) be a 𝐺-𝐶𝑊-pair. Denote by 𝑖 : 𝐴→ 𝑋 the inclusion.

Lemma 21.23. (i) The functor O𝐺 (𝑖) : O𝐺 (𝐴) → O𝐺 (𝑋) of (21.15) induces an
isomorphism of additive categories from O𝐺 (𝐴) onto its image. The image is a
full additive subcategory of O𝐺 (𝑋) which is a Karoubi filtration;

(ii) The same statement holds for the functorD𝐺 (𝑖) : D𝐺 (𝐴) → D𝐺 (𝑋) of (21.21).

Proof. (i) The image of O𝐺 (𝑖) can be identified with the full additive subcategory
O𝐺 (𝑋)𝐴 of O𝐺 (𝑋) whose objects B = (𝑆, 𝜋, 𝜂,B) satisfy im(𝜋) ⊆ 𝐴. The functor
O𝐺 (𝑖;B) induces an isomorphism O𝐺 (𝐴) �−→ O𝐺 (𝑋)𝐴, since for every 𝑥 ∈ 𝐴 and
open 𝐺𝑥-invariant neighbourhood 𝑈 of 𝑥 in 𝐴 there exists an open 𝐺𝑥-invariant
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neighbourhood 𝑉 of 𝑥 in 𝑋 with 𝑈 = 𝐴 ∩ 𝑋 . It remains to show that the inclusion
O𝐺 (𝑋)𝐴 ⊆ O𝐺 (𝑋) is a Karoubi filtration.

Consider three objects B0 = (𝑆0, 𝜋0, 𝜂0,B0), B1 = (𝑆1, 𝜋1, 𝜂1,B1), and
B = (𝑆, 𝜋, 𝜂,B) in O𝐺 (𝑋) with im(𝜋0) ⊆ 𝐴 and im(𝜋1) ⊆ 𝐴, and two mor-
phism 𝑎0 : B→ B0 and 𝑎1 : B1 → B in O𝐺 (𝑋). Define subsets of 𝑆 which consists
of those elements which are interacting with 𝑆0 and 𝑆1 via 𝑎0 and 𝑎1

𝑆0 := {𝑠 ∈ 𝑆 | ∃𝑠0 ∈ 𝑆0 with (𝑎0)𝑠,𝑠0 ≠ 0};
𝑆1 := {𝑠′ ∈ 𝑆 \ 𝑆0 | ∃𝑠1 ∈ 𝑆1 with (𝑎1)𝑠1 ,𝑠 ≠ 0}.

Define objects BU = (𝑆U , 𝜋U , 𝜂U ,BU) and B⊥ = (𝑆⊥, 𝜋⊥, 𝜂⊥,B⊥) by putting
𝑆U := 𝑆0 ⨿ 𝑆1 and 𝑆⊥ = 𝑆 \ 𝑆U and defining 𝜋U , 𝜂U , BU , 𝜋⊥,𝜂⊥, and B⊥ by
restricting 𝜋, 𝜂, and B. There are obvious morphisms 𝑖U : BU → B and 𝑖⊥ : B⊥ → B
in O𝐺 (𝑋)𝐴 such that 𝑖U ⊕ 𝑖⊥ : BU ⊕ B⊥ �−→ B is an isomorphism and morphisms
𝑎U0 : BU → B0 and 𝑎U1 : BU1 → B such that the relevant diagrams as they appear in
the definition of a Karoubi filtration commute. However, we are not done since BU
is not an object in O𝐺 (𝑋)𝐴. In order to finish the proof of assertion (i) it suffices
to construct an object B̂ = (𝑆, �̂�, 𝜂, B̂) in O𝐺 (𝑋)𝐴 together with an isomorphism
𝜙 : B̂ �−→ BU in O𝐺 (𝑋).

Choose functions 𝑢0 : 𝑆0 → 𝑆0, 𝑔0 : 𝑆0 → 𝐺, 𝑢1 : 𝑆1 → 𝑆1, and 𝑔1 : 𝑆1 → 𝐺

such that 𝑔0 (𝑠) ∈ supp((𝑎0)𝑠,𝑢0 (𝑠) ) holds for 𝑠 ∈ 𝑆0 and 𝑔1 (𝑠) ∈ supp((𝑎1)𝑢1 (𝑠) ,𝑠)
holds for 𝑠 ∈ 𝑆1. Define a new object B̂ = (𝑆, �̂�, 𝜂, B̂) in O𝐺 (𝑋)𝐴 by

𝑆 := 𝑆0 ⨿ 𝑆1;

�̂�(𝑠) :=

{
𝑔0 (𝑠)−1 · 𝜋0 ◦ 𝑢0 (𝑠) if 𝑠 ∈ 𝑆0;
𝑔1 (𝑠) · 𝜋1 ◦ 𝑢1 (𝑠) if 𝑠 ∈ 𝑆1;

𝜂(𝑠) := 𝜂(𝑠) for 𝑠 ∈ 𝑆;
B̂(𝑠) := B(𝑠) for 𝑠 ∈ 𝑆.

Recall 𝑆U = 𝑆0 ⨿ 𝑆1 = 𝑆. In order to show that B̂ and BU are isomorphic, we want
to apply the criterion appearing in Lemma 21.14.

Consider an element 𝑥 ∈ 𝑋 and an open 𝐺𝑥-invariant neighbourhood 𝑈

of 𝑥 in 𝑋 . Since 𝑎0 and 𝑎1 satisfy continuous control, we can find an open
𝐺𝑥-invariant neighbourhood 𝑈′ of 𝑥 in 𝑋 with 𝑈′ ⊆ 𝑈 and 𝑟 ′ ∈ N such that
for 𝑠 ∈ 𝑆, 𝑠0 ∈ 𝑆0, 𝑔0 ∈ supp𝐺 ((𝑎0)𝑠,𝑠0 ) the implication

𝑔−1
0 · 𝜋0 (𝑠0) ∈ 𝑈′, 𝜂(𝑠0) ≥ 𝑟 ′ =⇒ 𝜋(𝑠) ∈ 𝑈

and for 𝑠1 ∈ 𝑆1, 𝑠 ∈ 𝑆, 𝑔1 ∈ supp𝐺 ((𝑎1)𝑠1 ,𝑠) the implication

𝑔1𝜋1 (𝑠1) ∈ 𝑈′, 𝜂1 (𝑠1) ≥ 𝑟 ′ =⇒ 𝜋(𝑠) ∈ 𝑈

hold. This implies that for 𝑠 ∈ 𝑆0 ⨿ 𝑆1 the implication



21.7 The Proof of the Axioms of a 𝐺-Homology Theory 623

�̂�(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ 𝜋U (𝑠) ∈ 𝑈

holds. The proof of the other implication

𝜋U (𝑠) ∈ 𝑈′, 𝜂U (𝑠) ≥ 𝑟 ′ =⇒ �̂�(𝑠) ∈ 𝑈

for 𝑠 ∈ 𝑆0 ⨿ 𝑆1 is analogous and left to the reader. Now Lemma 21.14 implies that
B̂ and BU are isomorphic.
(ii) The constructions appearing in the proof of assertion (i) yield the desired result
for D𝐺 (𝑖) using Lemma 21.22. ⊓⊔
Definition 21.24 (D𝐺 (𝑋, 𝐴)). Define the additive category D𝐺 (𝑋, 𝐴) to be the
quotient of D𝐺 (𝑋) by the image of D𝐺 (𝑖) : D𝐺 (𝐴) → D𝐺 (𝑋).

Obviously a 𝐺-map of 𝐺-𝐶𝑊-pairs 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) induces a functor of
additive categories

D𝐺 ( 𝑓 ) : D𝐺 (𝑋, 𝐴) → D𝐺 (𝑌, 𝐵).(21.25)

21.7 The Proof of the Axioms of a 𝑮-Homology Theory

The next theorem is the main result of this chapter. We will give its proof in detail,
since it is not presented in the literature in a satisfactory way and it illustrates the
main techniques needed in proofs of results and properties of controlled categories
and their 𝐾-theory in many other cases.
Theorem 21.26 (The algebraic 𝐾-groups of D𝐺 (𝑋, 𝐴) yield a 𝐺-homology the-
ory). Let B be a category with 𝐺-support in the sense of Definition 21.1.

Then we obtain a 𝐺-homology theory with values in Z-modules in the sense of
Definition 12.1 by the covariant functor from the category of 𝐺-𝐶𝑊-pairs to the
category of Z-graded abelian groups sending (𝑋, 𝐴) to 𝐾∗ (D𝐺 (𝑋, 𝐴;B)).

21.7.1 The Long Exact Sequence of a Pair

Proposition 21.27. Given a 𝐺-𝐶𝑊-pair (𝑋, 𝐴), we have the inclusions 𝑖 : 𝐴 → 𝑋

and 𝑗 : 𝑋 → (𝑋, 𝐴) and obtain a long exact sequence, infinite to both sides and
natural in (𝑋, 𝐴),

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (D𝐺 (𝐴))
𝐾𝑛 (D (𝑖) )−−−−−−−−→ 𝐾𝑛 (D𝐺 (𝑋))

𝐾𝑛 (D ( 𝑗 ) )−−−−−−−−→ 𝐾𝑛 (D𝐺 (𝑋, 𝐴))
𝜕𝑛−−→ 𝐾𝑛−1 (D𝐺 (𝐴))

𝐾𝑛−1 (D (𝑖) )−−−−−−−−−→ 𝐾𝑛−1 (D𝐺 (𝑋))
𝐾𝑛−1 (D ( 𝑗 ) )−−−−−−−−−−→ 𝐾𝑛−1 (D𝐺 (𝑋, 𝐴))

𝜕𝑛−1−−−→ · · · .

Proof. This follows from Lemma 21.23 (ii) and Theorem 8.46 (i). ⊓⊔
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21.7.2 Some Eilenberg Swindles on O𝑮 (𝑿)

Remark 21.28 (Eilenberg swindles on additive categories defined in terms of
controlled topology). Sometimes we want to show that the algebraic 𝐾-theory of
certain additive categories defined by controlled topology is weakly contractible.
This is done in all cases by constructing an Eilenberg swindle. The basic strategy is
illustrated for O𝐺 (𝑋) as follows.

One defines a functor sh : O𝐺 (𝑋) → O𝐺 (𝑋) which shifts one position to the
right over N, as follows. It sends an object B = (𝑆, 𝜋, 𝜂,B) to the object sh(B) =
(sh(𝑆), sh(𝜋), sh(𝜂), sh(B)), where sh(𝑆) = 𝑆, sh(B) = B, sh(𝜋) = 𝜋, sh(𝜂) = 𝜂+1.
Roughly speaking, nothing is changed, only the objects are moved one position to the
right in the N-direction. (Sometimes one also has to vary 𝜋.) One easily checks that
sh(B) satisfies compact support over 𝑋 and local finiteness over N. The definition of
sh(𝜙) for morphisms 𝜙 : B→ B′ is the tautological one. Again it is easy to check that
sh(𝜙) will again satisfy finite 𝐺-support, bounded control over N, and continuous
control. Moreover there is an obvious natural equivalence 𝑡 : id �−→ sh of functors of
additive categories O𝐺 (𝑋) → O𝐺 (𝑋).

The basic idea, which works in some special cases, is to the define a functor
SH: O𝐺 (𝑋) → O𝐺 (𝑋) on objects by SH(B) =

⊕∞
𝑛=0 sh𝑛 (B). This definition

indeed makes sense since B satisfies local finiteness over N and hence the set

{(𝑠, 𝑛) ∈ 𝑆 × N | 𝜂(𝑠) ≤ 𝑛,B(𝑠) ≠ 0} =
𝑛∐
𝑘=0

𝜂−1 (𝑘)

is finite. However, the obvious definition on morphisms will not work in general. The
conditions compact support over 𝑋 and local finiteness over N cause no difficulties,
whereas the condition continuous control is the problem. The reason is that in SH(B)
the objects are moved arbitrarily far to the right in the N-direction and the continuous
control condition becomes more and more restrictive the larger the position with
respect to N is. One example where this problem does not occur is for instance the
case 𝑋 = {•}, which we will handle in Lemma 21.29. If SH is well-defined, then
one obtains the desired natural equivalence using 𝑡 : id �−→ sh by

id ⊕ SH = sh0 ⊕
∞⊕
𝑛=0

sh𝑛 �−→ sh0 ⊕ sh

( ∞⊕
𝑛=0

sh𝑛
)
� sh0 ⊕

∞⊕
𝑛=1

sh𝑛 = SH .

Lemma 21.29. If B is a category with 𝐺-support, then O𝐺 ({•}) is flasque. In
particular, K(O𝐺 ({•})) is weakly contractible.

Proof. The desired Eilenberg swindle described in Remark 21.28 is constructed in
detail as follows. Next we define a functor of additive categories

SH: O𝐺 ({•}) → O𝐺 ({•}).



21.7 The Proof of the Axioms of a 𝐺-Homology Theory 625

For an object 𝐵 = (𝑆, 𝜋, 𝜂,B) in O𝐺 ({•}), define SH(B) by the quadruple
(SH(𝑆), SH(𝜋), SH(𝜂), SH(B)), where for 𝑠 ∈ 𝑆 and 𝑛 ∈ N we put

SH(𝑆) = {(𝑠, 𝑛) ∈ 𝑆 × N | 𝜂(𝑠) ≤ 𝑛};
SH(𝜋) (𝑠, 𝑛) = 𝜋(𝑠);
SH(𝜂) (𝑠, 𝑛) = 𝑛;
SH(B) (𝑠, 𝑛) = B(𝑠).

Obviously SH(B) satisfies compact support over {•}. Since B satisfies local finite-
ness and SH(𝜂)−1 (𝑛) =

⋃𝑛
𝑚=0 𝜂

−1 (𝑚) holds for 𝑛 ∈ N, SH(B) satisfies local
finiteness.

For two objects B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋′, 𝜂′,B′) and a morphism
𝜙 : B → B′ given by a collection {𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′}, de-
fine the morphism SH(𝜙) : SH(B) → SH(B′) by the collection

{SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) : B(𝑠) → B′ (𝑠′) |
𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, 𝑛 ∈ N, 𝑛′ ∈ N, 𝜂(𝑠) ≤ 𝑛, 𝜂′ (𝑠′) ≤ 𝑛′}

for SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) = 𝜙𝑠,𝑠′ if 𝑛 − 𝜂(𝑠) = 𝑛′ − 𝜂′ (𝑠′) and SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) = 0
otherwise.

Since 𝜙 satisfies finite 𝐺-support, the same is true for SH(𝜙). Since 𝜙 satisfies
bounded control over N, we can find a natural number 𝑁 such that 𝜙𝑠,𝑠′ ≠ 0 =⇒
|𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑁 holds for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′. Now consider (𝑠, 𝑛) ∈ SH(𝑆) and
(𝑠′, 𝑛′) ∈ SH(𝑆′) with SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ≠ 0. Since then 𝑛 − 𝜂(𝑠) = 𝑛′ − 𝜂′ (𝑠′) and
𝜙𝑠,𝑠′ ≠ 0 hold, we get

| SH(𝜂) (𝑠, 𝑛) − SH(𝜂′) (𝑠′, 𝑛′) | = |𝑛 − 𝑛′ | = |𝜂(𝑠) − 𝜂′ (𝑠) | ≤ 𝑁.

Hence SH(𝜙) satisfies bounded control overN. Obviously SH(𝜙) satisfies continuous
control since we are working over {•}. One easily checks that SH is a well-defined
functor of additive categories.

It remains to construct a natural equivalence 𝑇 : id ⊕ SH �−→ SH of functors of
additive categories. We have to define for any object B = (𝑆, 𝜋, 𝜂,B) an isomorphism
𝑇 (B) : B ⊕ SH(B) �−→ SH(B). We obtain a bijection of sets

𝑢 : 𝑆
∐

SH(𝑆) �−→ SH(𝑆)

by sending 𝑠 ∈ 𝑆 to (𝑠, 𝜂(𝑠)) and (𝑠, 𝑛) ∈ SH(𝑆) to (𝑠, 𝑛+ 1). Note that for 𝑠 ∈ 𝑆 we
have B(𝑠) = SH(B) ◦ 𝑢(𝑠) and for (𝑠, 𝑛) ∈ SH(𝑆) we have SH(B(𝑠, 𝑛)) = B(𝑠) =
SH ◦𝑢(𝑠, 𝑛). Now we can define 𝑇 (B)𝑡 ,𝑡 ′ for 𝑡 ∈ 𝑆∐

SH(𝑆) and 𝑡′ ∈ SH(𝑆) to be
idB(𝑡 ′ ) if 𝑢(𝑡) = 𝑡′ and to be 0 if 𝑢(𝑡) ≠ 𝑡′. It is easy and left to the reader to check
that𝑇 (B) is a well-defined isomorphism in O𝐺 ({•}) which is natural inB and hence
defines the desired natural equivalence 𝑇 : id ⊕ SH �−→ SH.
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Thus we have defined an Eilenberg swindle (SH, 𝑇) on O𝐺 ({•}). The weak
contractibility of K(O𝐺 ({•})) follows from Theorem 6.37 (iii). ⊓⊔

The next result generalizes Lemma 21.29. The basic idea of the proof is the same
but becomes much more complicated, since now we have to deal with the condition
continuous control.

Lemma 21.30. Let 𝑋 be a𝐺-𝐶𝑊-complex which is𝐺-contractible, i.e,𝐺-homotopy
equivalent to {•}.

Then K(O𝐺 (𝑋)) is weakly contractible.

Proof. Denote by cone(𝑋) the cone of 𝑋 . As 𝑋 is 𝐺-contractible, there are 𝐺-maps
𝑖 : 𝑋 → cone(𝑋) and 𝑟 : cone(𝑋) → 𝑋 with 𝑟 ◦ 𝑖 = id𝑋. Hence the composite of
maps of spectra

K(O𝐺 (𝑋))
K(O𝐺 (𝑖) )
−−−−−−−−→ K(O𝐺 (cone(𝑋)))

K(O𝐺 (𝑟 ) )
−−−−−−−−→ K(O𝐺 (𝑋))

is the identity. Therefore it suffices to show that K(cone(𝑋)) is weakly contractible.
We explain the basic idea of the proof before we give the details. In the construction

of an Eilenberg swindle for a given object B = (𝑆, 𝜋, 𝜂,B) one assigns to B a new
object SH(B) where one adds for 𝑠 ∈ 𝑆 a copy of B(𝑠) at 𝑛 for each natural number
𝑛 ≥ 𝜂(𝑠). The problem is to specify where this copy over 𝑛 sits in cone(𝑋), i.e.,
to define the image of this object under 𝜋SH. The idea is to move the copies of the
object B(𝑠) with the right speed to the cone point. This has to be done fast enough
so that the obvious definition of SH(𝜙) for a morphism 𝜙 : B → B′ still defines
continuous control but slow enough so that the desired obvious transformation
𝑇 (B) : B ⊕ SH(B) �−→ SH(B) satisfies continuous control. This will lead to the
properties of the function 𝜌 below.

Recall that cone(𝑋) is defined as the 𝐺-pushout

𝑋
𝑖0 //

��

𝑋 × [0, 1]

pr
��

{•}
𝑖0

// cone(𝑋)

where 𝑖0 : 𝑋 → 𝑋×[0, 1] sends 𝑥 to (𝑥, 0). In the sequel we write [𝑥, 𝑡] = pr(𝑥, 𝑡) for
(𝑥, 𝑡) ∈ 𝑋× [0, 1]. For 𝑡′ ∈ [0, 1] we define 𝑡′ · [𝑥, 𝑡] := [𝑥, 𝑡′𝑡]. Denote by ∗ the cone
point [𝑥, 0] for any 𝑥 ∈ 𝑋 , or, equivalently, ∗ = 𝑖0 ({•}). For 𝑧 = [𝑥, 𝑡] ∈ cone(𝑋)
we denote 𝑧𝐼 by 𝑡. For 𝑧 = [𝑥, 𝑡] ∈ cone(𝑋) \ {∗} we denote 𝑧𝑋 by 𝑥. In particular,
pr(𝑥, 𝑡)𝑋 = 𝑥 for 𝑥 ∈ 𝑋 , 𝑡 ∈ (0, 1], and pr(𝑥, 𝑡)𝐼 = 𝑡 for 𝑥 ∈ 𝑋 and 𝑡 ∈ [0, 1].

Next we define a functor of additive categories

SH: O𝐺 (cone(𝑋)) → O𝐺 (cone(𝑋)).

For this purpose we choose a function 𝜌 : N × N → (0, 1] with the following three
properties.



21.7 The Proof of the Axioms of a 𝐺-Homology Theory 627

• We have

(21.31) lim
𝑚→∞

𝜌(𝑚, 0) = 1;

• For every 𝑚 ∈ N, we have

(21.32) lim
𝑛→∞

𝜌(𝑚, 𝑛) = 0;

• For every 𝑁 ∈ N and 𝜇 > 0, there is an 𝑀 ∈ N such that for all 𝑚, 𝑚′, 𝑛 ∈ N the
implication

(21.33) 𝑚 ≥ 𝑀, |𝑚 − 𝑚′ | ≤ 𝑁 =⇒ |𝜌(𝑚, 𝑛) − 𝜌(𝑚′, 𝑛) | < 𝜇

holds;
• For every 𝜇 > 0, there exists an 𝑁 ∈ N such that for all 𝑚, 𝑛 ∈ N the implication

(21.34) 𝑛 ≥ 𝑁, 𝑚 ≤ 𝑛 =⇒ 1 − 𝜇 ≤ 𝜌(𝑚, 𝑛 + 1 − 𝑚)
𝜌(𝑚, 𝑛 − 𝑚) ≤ 1

holds.

If (𝑎𝑘)𝑘∈N is any sequence of elements in (0, 1] satisfying lim𝑘→∞ 𝑎𝑘 = 0 and∑∞
𝑘=0 𝑎𝑘 = ∞, then we can take 𝜌(𝑚, 𝑛) := exp(−∑𝑚+𝑛

𝑘=𝑚 𝑎𝑘). An example for
(𝑎𝑘)𝑘∈N is 𝑎𝑘 = 1/𝑘 .

The functor SH sends an object B = (𝑆, 𝜋, 𝜂,B) to the object SH(B) =

(SH(𝑆), SH(𝜋), SH(𝜂), SH(B)) where for 𝑠 ∈ 𝑆 we put

SH(𝑆) = {(𝑠, 𝑛) | 𝑠 ∈ 𝑆, 𝑛 ∈ N, 𝜂(𝑠) ≤ 𝑛}

and define for (𝑠, 𝑛) ∈ SH(𝑆)

SH(𝜋) (𝑠, 𝑛) = 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) · 𝜋(𝑠);
SH(𝜂) (𝑠, 𝑛) = 𝑛;
SH(B) (𝑠, 𝑛) = B(𝑠).

Since B satisfies compact support over 𝑋 , there exists a compact subset𝐶 of cone(𝑋)
with im(𝜋) ⊆ 𝐶. This implies

im(SH(𝜋)) ⊆ [0, 1] · 𝐶 := {𝑡 · 𝑐 | 𝑡 ∈ [0, 1], 𝑐 ∈ 𝐶}.

Since [0, 1] · 𝐶 is compact, SH(B) satisfies compact support over 𝑋 .
Since B satisfies local finiteness over N and SH(𝜂)−1 (𝑚) = ∐𝑚

𝑛=0 𝜂
−1 (𝑛) holds,

SH(B) satisfies local finiteness over N.
Consider a morphism 𝜙 : B = (𝑆, 𝜋, 𝜂,B) → B′ = (𝑆′, 𝜋′, 𝜂,B′) given by the

collection {𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′}. Define SH(𝜙) : SH(B) →
SH(B′) by
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SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) =
{
𝜙𝑠,𝑠′ if 𝑛′ − 𝜂′ (𝑠′) = 𝑛 − 𝜂(𝑠);
0 otherwise,

for (𝑠, 𝑛) ∈ SH(B) and (𝑠′, 𝑛′) ∈ SH(B′).
Since 𝜙 satisfies finite 𝐺-support, there exists a finite subset 𝐹 ⊆ 𝐺 such

that supp𝐺 (𝜙𝑠,𝑠′ ) ⊆ 𝐹 holds for every 𝑠 ∈ 𝑆, and 𝑠′ ∈ 𝑆′. This implies
supp𝐺 (SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ) ⊆ 𝐹 for every (𝑠, 𝑛) ∈ SH(𝑆), and (𝑠′, 𝑛′) ∈ SH(𝑆′).
Hence SH(𝜙) satisfies finite 𝐺-support.

Since 𝜙 satisfies bounded control over N, there exists a natural number 𝑁 with
|𝜂(𝑠) −𝜂′ (𝑠′) | ≤ 𝑁 for all 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ with 𝜙𝑠,𝑠′ ≠ 0. Consider (𝑠, 𝑛) ∈ SH(B)
and (𝑠′, 𝑛′) ∈ SH(B′) with SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ≠ 0. Then 𝑛′ − 𝜂′ (𝑠′) = 𝑛 − 𝜂(𝑠) and
|𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑁 . This implies

(21.35) | SH(𝜂) (𝑠, 𝑛) − SH(𝜂′) (𝑠′, 𝑛′) | = |𝑛 − 𝑛′ | = |𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑁.

Hence SH(𝜙) satisfies bounded control over N.
The hard part is to show that SH(𝜙) satisfies continuous control. We only deal

with the implication (21.5). The proof of the other implication (21.6) is completely
analogous.

Consider [𝑥, 𝑡] ∈ cone(𝑋) and an open𝐺 [𝑥,𝑡 ]-invariant neighborhood𝑈 of [𝑥, 𝑡]
in cone(𝑋). We have to find an open 𝐺 [𝑥,𝑡 ]-invariant neighborhood 𝑈′ of [𝑥, 𝑡] in
cone(𝑋) satisfying𝑈′ ⊆ 𝑈 and a natural number 𝑟 ′ such that for all (𝑠, 𝑛) ∈ SH(𝑆),
(𝑠′, 𝑛′) ∈ SH(𝑆′), and 𝑔 ∈ supp𝐺 (SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ) the implication

(21.36) 𝑔 · SH(𝜋) (𝑠, 𝑛) ∈ 𝑈′, SH(𝜂) (𝑠, 𝑛) ≥ 𝑟 ′ =⇒ SH(𝜋′) (𝑠′, 𝑛′) ∈ 𝑈

holds.
We begin with the case where [𝑥, 𝑡] is different from the cone point ∗, or, equiv-

alently 0 < 𝑡 ≤ 1. In the sequel we denote for 𝑡 ∈ (0, 1] and 𝜖 > 0 by 𝐼𝜖 (𝑡) the open
neighborhood of 𝑡 in [0, 1] given by (𝑡 − 𝜖, 𝑡 + 𝜖) ∩ [0, 1].

Choose an open 𝐺𝑥-invariant neighbourhood 𝑉0 of 𝑥 in 𝑋 and 𝜖 > 0 satisfying

pr(𝑉0 × 𝐼𝜖 (𝑡)) ⊆ 𝑈;(21.37)
𝜖 ≤ 𝑡/2.(21.38)

Since 𝜙 satisfies continuous control, we can find for 𝑡′ ∈ [𝑡/2, 1] an open
𝐺𝑥-invariant neighborhood 𝑉 ′ [𝑡′] of 𝑥, a real number 𝛿′ [𝑡′] > 0, and 𝑟 ′ [𝑡′] ∈ N
such that for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) the implication

(21.39) 𝑔𝜋(𝑠)𝑋 ∈ 𝑉 ′ [𝑡′], 𝜋(𝑠)𝐼 ∈ 𝐼𝛿′ [𝑡 ′ ] (𝑡′), 𝜂(𝑠) ≥ 𝑟 [𝑡′]
=⇒ 𝜋′ (𝑠′)𝑋 ∈ 𝑉0, 𝜋

′ (𝑠′)𝐼 ∈ 𝐼𝜖 /8 (𝑡′)

holds. Obviously we can arrange 0 < 𝛿′ [𝑡′] < 𝜖/8. Since [𝑡/2, 1] is compact, we can
find finitely many elements 𝑡′1, 𝑡

′
2, . . . , 𝑡

′
𝑙

in [𝑡/2, 1] such that for each 𝑡′ ∈ [𝑡/2, 0]
there exists an element 𝑖[𝑡′] ∈ {1, 2, . . . , 𝑙} satisfying 𝑡′ ∈ 𝐼𝛿′ [𝑡 ′

𝑖
] (𝑡𝑖). Put
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𝑉 ′ =
𝑙⋂
𝑖=1
𝑉 ′ [𝑡′𝑖 ];

𝑟 ′0 = max{𝑟 ′ [𝑡′𝑖 ] | 𝑖 = 1, 2, . . . , 𝑙}.

Then 𝑉 ′ is an open 𝐺𝑥-invariant neighbourhood of 𝑥 in 𝑋 . Moreover, for 𝑠 ∈ 𝑆,
𝑠′ ∈ 𝑆′, 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ), and 𝑡′ ∈ [𝑡/2, 1] the implication

(21.40) 𝑔𝜋(𝑠)𝑋 ∈ 𝑉 ′, 𝜋(𝑠)𝐼 ≥ 𝑡/2, 𝜂(𝑠) ≥ 𝑟 ′0
=⇒ 𝜋′ (𝑠′)𝑋 ∈ 𝑉0, |𝜋′ (𝑠′)𝐼 − 𝜋(𝑠)𝐼 | < 𝜖/4

holds, since 𝜋(𝑠)𝐼 ≥ 𝑡/2 implies the existence of 𝑖 ∈ {1, 2, . . . , 𝑙} satisfying 𝜋(𝑠)𝑋 ∈
𝑉 ′ [𝑡𝑖] and 𝜋(𝑠)𝐼 ∈ 𝐼𝛿′ [𝑡 ′

𝑖
] (𝑡𝑖), we conclude 𝜋′ (𝑠′)𝑋 ∈ 𝑉0 and 𝜋′ (𝑠′)𝐼 ∈ 𝐼𝜖 /8 (𝑡𝑖)

from (21.39), and now one can apply the triangle inequality to 𝜋(𝑠)𝐼 , 𝜋′ (𝑠′)𝐼 , and 𝑡𝑖
using 𝛿′ [𝑡′

𝑖
] + 𝜖/8 < 𝜖/8 + 𝜖/8 = 𝜖/4.

Let 𝑁 be the number appearing in (21.35). Choose a natural number 𝑀 such
that (21.33) holds if we put 𝜇 = 𝜖/2. Since lim𝑛→∞ 𝜌(𝑚, 𝑛) = 0 holds for
𝑚 ∈ {0, 1, . . . ,max{𝑟 ′0, 𝑀}} by (21.32), we can find a natural number 𝑟 ′ satisfy-
ing 𝑟 ′ ≥ max{𝑟 ′0, 𝑀} such that for every 𝑚, 𝑛 ∈ N the implication

(21.41) 𝑚 ≤ max{𝑟 ′0, 𝑀}, 𝑛 ≥ 𝑟
′ −max{𝑟 ′0, 𝑀} =⇒ 𝜌(𝑚, 𝑛) < 𝑡/2

holds. Next we show that the desired implication (21.36) holds if we put
𝑈′ := 𝑉 ′ × 𝐼𝜖 /4 (𝑡) and use the number 𝑟 ′ above.

Consider (𝑠, 𝑛) ∈ SH(𝑆), (𝑠′, 𝑛′) ∈ SH(𝑆′), and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) satisfying
SH(𝜋) (𝑠, 𝑛) ∈ 𝑈′ and 𝜂(𝑠, 𝑛) := 𝑛 ≥ 𝑟 ′. Since SH(𝜋) (𝑠, 𝑛) ∈ 𝑈′ implies that
SH(𝜋) (𝑠, 𝑛)𝐼 = 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) · 𝜋(𝑠)𝐼 belongs to 𝐼𝜖 /4 (𝑡), we get

(21.42) 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) ≥ 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) · 𝜋(𝑠)𝐼 ≥ 𝑡 − 𝜖/4
(21.38)
≥ 𝑡/2.

We conclude from (21.41) and (21.42) that 𝜂(𝑠) > max{𝑟 ′0, 𝑀} holds. In particular,
we get 𝜂(𝑠) ≥ 𝑟 ′0 and 𝜂(𝑠) ≥ 𝑀 .

Since 𝑛′ − 𝜂′ (𝑠′) = 𝑛 − 𝜂(𝑠), we conclude from (21.33) and (21.35)

(21.43) |𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) − 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) | ≤ 𝜖/2.

We have SH(𝜋) (𝑠, 𝑛)𝐼 = 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) · 𝜋(𝑠)𝐼 ∈ 𝐼𝜖 /4 (𝑡). This implies

𝜋(𝑠)𝐼 ≥ 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) · 𝜋(𝑠)𝐼 ≥ 𝑡 − 𝜖/4
(21.38)
≥ 𝑡/2.

Since 𝑔 · SH(𝜋) (𝑠)𝑋 = 𝑔𝜋(𝑠)𝑋 ∈ 𝑉 ′ and 𝜋(𝑠)𝐼 ≥ 𝑡/2 hold, we get

𝜋′ (𝑠′)𝑋 ∈ 𝑉0;(21.44)
|𝜋′ (𝑠′)𝐼 − 𝜋(𝑠)𝐼 | < 𝜖/4,(21.45)

from (21.40). We estimate
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| SH(𝜋′) (𝑠′)𝐼 − 𝑡 |
≤ | SH(𝜋′) (𝑠′)𝐼 − SH(𝜋) (𝑠)𝐼 | + | SH(𝜋) (𝑠)𝐼 − 𝑡 |
= |𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) · 𝜋′ (𝑠′)𝐼 − 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) · 𝜋(𝑠)𝐼 |

+| SH(𝜋) (𝑠)𝐼 − 𝑡 |
≤ |𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) · 𝜋′ (𝑠′)𝐼 − 𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) · 𝜋(𝑠)𝐼 |

+|𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) · 𝜋(𝑠)𝐼 − 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) · 𝜋(𝑠)𝐼 |
+| SH(𝜋) (𝑠)𝐼 − 𝑡 |

= |𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) | · |𝜋′ (𝑠′)𝐼 − 𝜋(𝑠)𝐼 |
+|𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) − 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) | · |𝜋(𝑠)𝐼 | + 𝜖/4

≤ |𝜋′ (𝑠′)𝐼 − 𝜋(𝑠)𝐼 | + |𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) − 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) | + 𝜖/4
(21.43), (21.45)

≤ 𝜖/4 + 𝜖/2 + 𝜖/4
= 𝜖 .

This implies together with (21.37) and (21.44) that SH(𝜋′) (𝑠′) ∈ 𝑈 holds. This
finishes the proof of the implication (21.36) in the case [𝑥, 𝑡] ≠ ∗.

Next we show the implication (21.36) in the case [𝑥, 𝑡] = ∗. Consider an open
𝐺-invariant neighborhood 𝑈 of ∗. We have to find an open 𝐺-invariant neigh-
bourhood 𝑈′ of ∗ and a natural number 𝑟 ′ such that for all (𝑠, 𝑛) ∈ SH(𝑆),
(𝑠′, 𝑛′) ∈ SH(𝑆′), and 𝑔 ∈ supp𝐺 (SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ) the implication

(21.46) 𝑔 · SH(𝜋) (𝑠, 𝑛) ∈ 𝑈′, SH(𝜂) (𝑠, 𝑛) ≥ 𝑟 ′ =⇒ SH(𝜋′) (𝑠′, 𝑛′) ∈ 𝑈

holds.
For 𝜖 > 0, we define𝑉𝜖 to be the open𝐺-invariant neighborhood of ∗ in cone(𝑋)

given by
𝑉𝜖 = {[𝑥, 𝑡] | 𝑥 ∈ 𝑋, 𝑡 < 𝜖}.

Since B′ satisfies compact support over cone(𝑋), the subset [0, 1] ·im(𝜋′) of cone(𝑋)
is compact. Hence there exists an 𝜖 > 0 satisfying

𝑉𝜖 ∩ [0, 1] · im(𝜋′) ⊆ 𝑈.

Since im(SH(𝜋′)) ⊆ [0, 1] · im(𝜋′) holds, it suffices to prove (21.46) in the special
case𝑈 = 𝑉𝜖 .

Since 𝜙 satisfies continuous control, there exists an open 𝐺-invariant neighbor-
hood𝑈′0 of ∗ in cone(𝑋) and a natural number 𝑟 ′2 such that for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and
𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) the implication

(21.47) 𝑔𝜋(𝑠) ∈ 𝑈′0, 𝜂(𝑠) ≥ 𝑟
′
2 =⇒ 𝜋′ (𝑠′) ∈ 𝑉𝜖

holds. Since B satisfies compact support over cone(𝑋), there exists a 𝛿 > 0 satisfying

𝑉𝛿 ∩ [0, 1] · im(𝜋) ⊆ 𝑈′0.
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We get from (21.47) the implication

(21.48) supp𝐺 (𝜙𝑠,𝑠′ ) ≠ ∅, 𝜋(𝑠)𝐼 < 𝛿, 𝜂(𝑠) ≥ 𝑟 ′2 =⇒ 𝜋′ (𝑠′) ∈ 𝑉𝜖 .

Let 𝑁 be the number appearing in (21.35). Choose a natural number 𝑀 such
that (21.33) holds if we put 𝜇 = 𝜖/2. Since lim𝑛→∞ 𝜌(𝑚, 𝑛) = 0 holds for 𝑚 ∈
{0, 1, . . . , 𝑁 + max{𝑟 ′, 𝑀}} by (21.32), we can find a natural number 𝑟 ′ satisfying
𝑟 ′ ≥ 𝑁 +max{𝑟 ′2, 𝑀} such that for every 𝑚, 𝑛 ∈ N the implication

(21.49) 𝑚 ≤ 𝑁 +max{𝑟 ′2, 𝑀}, 𝑛 ≥ 𝑟
′ − 𝑁 −max{𝑟 ′2, 𝑀} =⇒ 𝜌(𝑚, 𝑛) < 𝜖/2

holds.
Next we want to prove the implication (21.46) in the special case𝑈 = 𝑉𝜖 , where

we take 𝑟 ′ to be the natural number above and𝑈′ = 𝑉𝜖 𝛿/2. Consider (𝑠, 𝑛) ∈ SH(𝑠),
(𝑠′, 𝑛′) ∈ SH(𝑆′), and 𝑔 ∈ supp𝐺 (SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ) satisfying SH(𝜋) (𝑠, 𝑛)𝐼 ≤
𝜖𝛿/2 and SH(𝜂) (𝑠, 𝑛) := 𝑛 ≥ 𝑟 ′. We have to show 𝜋′ (𝑠′)𝐼 ≤ 𝜖 .

If 𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) < 𝜖 holds, then we get

SH(𝜋′) (𝑠′) = 𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) · 𝜋′ (𝑠′) ∈ 𝑉𝜖 .

Hence we can assume without loss of generality

(21.50) 𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) ≥ 𝜖 .

We conclude from (21.49) and (21.50) that 𝜂′ (𝑠′) > 𝑁 + max{𝑟 ′2, 𝑀} holds. In
particular, we have 𝜂′ (𝑠′) ≥ 𝑁 + 𝑟 ′2 and 𝜂′ (𝑠′) ≥ 𝑀 . Since 𝑛′ − 𝜂′ (𝑠′) = 𝑛 − 𝜂(𝑠)
holds, we conclude from (21.33) that

|𝜌(𝜂′ (𝑠′), 𝑛′ − 𝜂′ (𝑠′)) − 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) | ≤ 𝜖/2

holds. This implies together with (21.50)

(21.51) 𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠)) ≥ 𝜖/2.

Hence we get

𝜋(𝑠)𝐼 =
SH(𝜋) (𝑠)𝐼

𝜌(𝜂(𝑠), 𝑛 − 𝜂(𝑠))
(21.51)
<

2 · SH(𝜋) (𝑠)𝐼
𝜖

≤ 2 · 𝛿 · 𝜖/2
𝜖

= 𝛿.

Since 𝜂′ (𝑠′) ≥ 𝑁 + 𝑟 ′2, we conclude 𝜂(𝑠) ≥ 𝑟 ′2 from (21.35). Finally (21.48) implies
𝜋′ (𝑠′) ∈ 𝑉𝜖 .

This finishes the proof that SH(𝜙) is a well-defined morphism. Now one easily
checks that SH is a well-defined functor of additive categories.

Next we define a natural equivalence of covariant functors of additive categories
O𝐺 (cone(𝑋)) → O𝐺 (cone(𝑋))

𝑇 : id ⊕ SH �−→ SH .
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We have to define for an object B = (𝑆, 𝜋, 𝜂,B) an isomorphism𝑇 (B) : B⊕SH(B) �−→
SH(B) in O𝐺 (cone(𝑋)). Define a bijection

𝑢 : 𝑆
∐

SH(𝑆) �−→ SH(𝑆)

by sending 𝑠 ∈ 𝑆 to (𝑠, 𝜂(𝑠)) and (𝑠, 𝑛) ∈ SH(𝑆) to (𝑠, 𝑛+1). For 𝑧 ∈ 𝑆∐
SH(𝑆) and

(𝑠, 𝑛) ∈ SH(𝑆) define𝑇 (B)𝑧, (𝑠,𝑛) by idB(𝑠) for (𝑠, 𝑛) = 𝑢(𝑧) and by 0 otherwise. Note
that supp𝐺 (𝑇 (𝐵)𝑟 , (𝑠,𝑛) ) is empty or {𝑒}. Obviously 𝑇 (B) satisfies finite 𝐺-support
and bounded control over N, whereas continuous control is proved as follows. We
only deal with the implication (21.5). The proof of the other implication (21.6) is
completely analogous.

Consider an element [𝑥, 𝑡] ∈ cone(𝑋) and a 𝐺 [𝑥,𝑡 ]-invariant neighbourhood 𝑈
of [𝑥, 𝑡] in cone(𝑋). It remains to construct a 𝐺 [𝑥,𝑡 ]-invariant neighbourhood 𝑈′
of [𝑥, 𝑡] in cone(𝑋) with 𝑈′ ⊆ 𝑈 and a natural number 𝑟 ′ such that for 𝑠 ∈ 𝑆 the
implication

(21.52) 𝜋(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ SH(𝜋) (𝑠, 𝜂(𝑠)) ∈ 𝑈

and for (𝑠, 𝑛) ∈ SH(𝑆) the implication

(21.53) SH(𝜋) (𝑠, 𝑛) ∈ 𝑈′, SH(𝜂) (𝑠, 𝑛) ≥ 𝑟 ′ =⇒ SH(𝜋) (𝑠, 𝑛 + 1) ∈ 𝑈

hold.
Next we show that we can choose 𝜇 ∈ (0, 1] and an open 𝐺 [𝑥,𝑡 ]-invariant neigh-

bourhood𝑈′ of [𝑥, 𝑡] in cone(𝑋) satisfying

(21.54) 𝑡′ ·𝑈′ ⊆ 𝑈 for all 𝑡′ ∈ [1 − 𝜇, 1] .

We first consider the case [𝑥, 𝑡] = ∗. Recall that pr : 𝑋 × [0, 1] → cone(𝑋) is
the obvious projection. Let 𝑝 : 𝑋 → 𝑋/𝐺 be the canonical projection. We have
𝑋 × {0} ⊆ pr−1 (𝑈) ⊆ 𝑋 × [0, 1] as ∗ ∈ 𝑈. This implies

𝑋/𝐺 × {0} ⊆ 𝑝(pr−1 (𝑈)) ⊆ 𝑋/𝐺 × [0, 1] .

Since 𝑋/𝐺 is a 𝐶𝑊-complex and hence paracompact, see [746], and 𝑝(pr−1 (𝑈)) is
open, we can find a continuous map 𝜖 : 𝑋/𝐺 → (0, 1) such that {(𝑥𝐺, 𝑡) | 𝑥𝐺 ∈
𝑋/𝐺, 𝑡 < 𝜖 (𝑥𝐺)} is contained in 𝑝(pr−1 (𝑈)). Define

𝑈′ = pr
(
{(𝑥, 𝑡) | 𝑥 ∈ 𝑋, 𝑡 < 𝜖 ◦ 𝑝(𝑥)}

)
.

This is an open 𝐺-invariant neighborhood of ∗ in cone(𝑋) satisfying 𝑈′ ⊆ 𝑈 and
[0, 1] ·𝑈′ = 𝑈′. Hence we choose for 𝜇 any value in (0, 1].

Next we consider the case [𝑥, 𝑡] ≠ ∗, or, equivalently, 𝑡 > 0. Let 𝑝 : 𝑋 → 𝑋/𝐺𝑥
be the projection. Then pr−1 (𝑈) is an open 𝐺𝑥-invariant neighbourhood of (𝑥, 𝑡) ∈
𝑋 × [0, 1] and 𝑝(pr−1 (𝑈)) is an open neighbourhood of (𝑝(𝑥), 𝑡) in 𝑋/𝐺𝑥 × [0, 1].
Choose an open neighborhood 𝑉 ′ of 𝑝(𝑥) in 𝑋/𝐺𝑥 and 𝜖 ∈ R with 0 < 𝜖 < 𝑡/2
such that 𝑉 ′ × (𝑡 − 𝜖, 𝑡 + 𝜖) is contained in 𝑝(pr−1 (𝑈)). Put 𝑉 = 𝑝−1 (𝑉 ′). Then 𝑉
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is an open 𝐺𝑥-invariant neighborhood of 𝑥 such that 𝑉 × (𝑡 − 𝜖, 𝑡 + 𝜖) is contained
in pr−1 (𝑈). Choose 𝜇 ∈ (0, 1] such that (1 − 𝜇) · (𝑡 − 𝜖/2) > 𝑡 − 𝜖 holds. Then
𝑡′𝑡′′ ∈ (𝑡 − 𝜖, 𝑡 + 𝜖) holds for 𝑡′ ∈ [1 − 𝜇, 1] and 𝑡′′ ∈ (𝑡 − 𝜖/2, 𝑡 + 𝜖/2). Put

𝑈′ = pr
(
(𝑉 × (𝑡 − 𝜖/2, 𝑡 + 𝜖/2)

)
.

This is an open𝐺𝑥-invariant neighbourhood of [𝑥, 𝑡] satisfying (21.54). This finishes
the proof that we can choose 𝜇 ∈ (0, 1] and an open a𝐺 [𝑥,𝑡 ]-invariant neighbourhood
𝑈′ of [𝑥, 𝑡] in cone(𝑋) satisfying (21.54).

Because of (21.31) and (21.34) we can choose a natural number 𝑟 ′ such that for
all 𝑚 ∈ N with 𝑚 ≥ 𝑟 ′ we have

(21.55) 1 − 𝜇 ≤ 𝜌(𝑚, 0) ≤ 1

and for all 𝑚, 𝑛 ∈ N with 𝑚 ≤ 𝑛 and 𝑛 ≥ 𝑟 ′ we have

(21.56) 1 − 𝜇 ≤ 𝜌(𝑚, 𝑛 + 1 − 𝑚)
𝜌(𝑚, 𝑛 − 𝑚) ≤ 1.

Now (21.52) follows from (21.54) and (21.55), since SH(𝜋) (𝑠, 𝜂(𝑠)) = 𝜌(𝜂(𝑠), 0) ·
𝜋(𝑠) holds. Moreover, (21.53) follows from (21.54) and (21.56), since we have
SH(𝜂) (𝑠, 𝑛) = 𝑛 and SH(𝜋) (𝑠, 𝑛 + 1) = 𝜌(𝜂 (𝑠) ,𝑛+1−𝜂 (𝑠) )

𝜌(𝜂 (𝑠) ,𝑛−𝜂 (𝑠) ) · SH(𝜋) (𝑠, 𝑛).
One easily checks that 𝑇 (B) is an isomorphism and the collection of the 𝑇 (B)-s

fit together to define the desired natural equivalence 𝑇 .
Thus we have defined an Eilenberg swindle (SH, 𝑇) on O𝐺 (cone(𝑋)). The weak

contractibility of K(O𝐺 (cone(𝑋))) follows from Theorem 6.37 (iii). This finishes
the proof of Lemma 21.30. ⊓⊔

21.7.3 Excision and 𝑮-Homotopy Invariance

Lemma 21.57. Let (𝑋, 𝐴) be a 𝐺-𝐶𝑊-pair and let B = (𝑆, 𝜋, 𝜂,B) be an object in
O𝐺 (𝑋). Choose a nested sequence of open 𝐺-invariant sets

𝑋 ⊇ 𝑉0 ⊇ 𝑉1 ⊇ 𝑉2 ⊇ 𝑉3 ⊇ · · · ⊇ 𝐴

together with a 𝐺-map 𝜌 : 𝑉0 → 𝐴 such that
⋂
𝑛≥0𝑉𝑛 = 𝐴 and 𝜌 |𝐴 = 𝐴 hold.

Fix a non-decreasing function 𝜔 : N → N with lim𝑛→∞ 𝜔(𝑛) = ∞ and a natu-
ral number 𝑤 ∈ N. Define new objects B𝜔,𝑤 = (𝑆𝜔,𝑤 , 𝜋𝜔,𝑤 , 𝜂𝜔,𝑤 ,B𝜔,𝑤) and
B⊥ = (𝑆⊥, 𝜋⊥, 𝜂⊥,B⊥) by

𝑆𝜔,𝑤 := {𝑠 ∈ 𝑆 | 𝜂(𝑠) < 𝑤 or 𝜋(𝑠) ∈ 𝑉𝜔◦𝜂 (𝑠) };
𝑆⊥ = 𝑆 \ 𝑆𝜔,𝑤 ,

and by defining 𝜋𝜔,𝑤 , 𝜂𝜔,𝑤 , B𝜔,𝑤 , 𝜋⊥, 𝜂⊥, and B⊥ by restricting 𝜋, 𝜂, and B.
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(i) The desired sequences (𝑉𝑛)𝑛≥0 and the 𝐺-map 𝜌 exist;
(ii) There are obvious morphisms 𝑖𝜔,𝑤 : B𝜔,𝑤 → B and 𝑖⊥ : B⊥ → B such that

𝑖𝜔,𝑤 ⊕ 𝑖⊥ : B𝜔,𝑤 ⊕ B⊥ �−→ B is an isomorphism, and im(𝜋⊥) ⊆ 𝑋 \ 𝐴;
(iii) There is an object B̂ = (𝑆, �̂�, 𝜂, B̂) in O𝐺 (𝐴) such that B𝜔,𝑤 and B̂ are isomor-

phic in O𝐺 (𝑋);
(iv) Consider an object B′ = (𝑆′, 𝜋′, 𝜂′,B′) in O𝐺 (𝐴) and a morphism 𝜙 : B′ → B

in O𝐺 (𝑋). Then we can find (𝜔, 𝑤) and a morphism 𝜙′ : B′ → B𝜔,𝑤 such that
𝜙 factorizes as

𝜙 : B′
𝜙′

−−→ B𝜔,𝑤 𝑖𝜔,𝑤−−−−→ B.
Proof. (i) The inclusion 𝐴→ 𝑋 is a 𝐺-cofibration, or, equivalently, a 𝐺-NDR-pair.
The proofs of these facts in the non-equivariant case carry over to the equivariant
case. This implies assertion (i). For some information and relevant references we
refer for instance to [644, Chapter 1]. The core of the proof can also be derived
from the construction appearing in the proof of [687, Theorem 7.1]. The basic idea
is to use the retraction 𝑟 : 𝐷𝑛 \ {0} → 𝑆𝑛−1 given by the radial projection and the
continuous function 𝑢 : 𝐷𝑛 → [0, 1] given by the Euclidean norm, which obviously
satisfies 𝑢−1 (1) = 𝑆𝑛−1 and 𝑢−1 (0, 1]) = 𝐷𝑛 \ {0}.
(ii) This is obvious.
(iii) We define B̂ = (𝑆, �̂�, 𝜂, B̂) by

𝑆 := 𝑆𝜔,𝑤;

�̂�(𝑠) :=

{
𝑎0 if 𝜂(𝑠) < 𝑤;
𝜌 ◦ 𝜋(𝑠) if 𝜂(𝑠) ≥ 𝑤;

𝜂(𝑠) := 𝜂(𝑠);
B̂(𝑠) := B(𝑠),

where 𝑠 ∈ 𝑆𝜔,𝑤 and 𝑎0 is some point in 𝐴. In order to show that B𝜔,𝑤 and B̂ are
isomorphic in O𝐺 (𝑋), we check the criterion appearing in Lemma 21.14.

So consider 𝑥 ∈ 𝑋 and an open 𝐺𝑥-invariant neighborhood 𝑈 of 𝑥 in 𝑋 . Since
B satisfies compact support over 𝑋 , we can find a compact subset 𝐶 ⊆ 𝑋 such that
im(𝜋) ⊆ 𝐶 holds. Choose an open 𝐺𝑥-invariant neighbourhood 𝑈′0 of 𝑥 ∈ 𝑋 with
𝑈′0 ⊆ 𝑈. Next we show that there exists a natural number 𝑟 ′0 satisfying the implication

(21.58) 𝑦 ∈ 𝐶, 𝜌(𝑦) ∈ 𝑈′0, 𝑦 ∈ 𝑉𝜔 (𝑟 ′0 ) =⇒ 𝑦 ∈ 𝑈.

Suppose that this is not the case. Since𝑉𝑚 ⊆ 𝑉𝑛 holds for𝑚 ≥ 𝑛, and lim𝑛→∞ 𝜔(𝑛) =
∞, we can find a sequence (𝑦𝑛)𝑛≥0 of elements in 𝐶 such that 𝜌(𝑦𝑛) ∈ 𝑈′0, 𝑦𝑛 ∈ 𝑉𝑛,
and 𝑦𝑛 ∉ 𝑈 holds for 𝑛 ≥ 0. Since 𝐶 is compact, there is a strictly monotone
increasing function 𝑢 : N → N with lim𝑛→∞ 𝑢(𝑛) = ∞ and an element 𝑦 ∈ 𝐶
satisfying lim𝑛→∞ 𝑦𝑢(𝑛) = 𝑦. Since for each natural number 𝑛we have 𝑦𝑢(𝑚) ∈ 𝑉𝑢(𝑛)
for 𝑚 ≥ 𝑛, we get 𝑦 ∈ 𝑉𝑢(𝑛) for every 𝑛 ≥ 0. This implies 𝑦 ∈ ⋂

𝑛≥0𝑉𝑢(𝑛) = 𝐴 and
hence 𝜌(𝑦) = 𝑦. From lim𝑛→∞ 𝑦𝑢(𝑛) = 𝑦we conclude lim𝑛→∞ 𝜌(𝑦𝑢(𝑛) ) = 𝜌(𝑦) = 𝑦.
Since 𝜌(𝑦𝑢(𝑛) ) ∈ 𝑈′0 for 𝑛 ≥ 0, we conclude 𝑦 ∈ 𝑈′0 and hence 𝑦 ∈ 𝑈. Since
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lim𝑛→∞ 𝑦𝑢(𝑛) = 𝑦 holds, there exists a natural number 𝑛0 with 𝑦𝑢(𝑛) ∈ 𝑈 for 𝑛 ≥ 𝑛0,
a contradiction. This finishes the proof of (21.58).

Suppose that the element 𝑥 ∈ 𝑋 does not belong to 𝐴. Then we can find an
open 𝐺𝑥-invariant neighborhood 𝑈′1 of 𝑥 and a natural number 𝑟 ′1 satisfying the
implication

(21.59) 𝑦 ∈ 𝐶, 𝑦 ∈ 𝑉𝜔 (𝑟 ′1 ) =⇒ 𝑦 ∉ 𝑈′1.

Suppose the contrary. The same ideas as in the sketch of the proof of assertion (i)
lead to the construction of a sequence of open 𝐺𝑥-invariant sets 𝑋 ⊇ 𝑊0 ⊇ 𝑊1 ⊇
𝑊2 ⊇ · · · ⊇ {𝑥} with

⋂
𝑛≥0𝑊𝑛 = {𝑥}. Fix 𝑛 ∈ N. Since (21.59) does not hold for

𝑈′1 = 𝑊𝑛, 𝑉𝑚 ⊆ 𝑉𝑛 holds for 𝑚 ≥ 𝑛, and lim𝑛→∞ 𝜔(𝑛) = ∞, we can find an element
𝑦𝑛 in 𝑋 satisfying 𝑦𝑛 ∈ 𝐶, 𝑦𝑛 ∈ 𝑉𝑛, and 𝑦𝑛 ∈ 𝑊𝑛. Since 𝐶 is compact, there is a
strictly monotone increasing function 𝑢 : N→ N and 𝑦 ∈ 𝐶 with lim𝑛→∞ 𝑦𝑢(𝑛) = 𝑦.
This implies 𝑦 ∈ ⋂

𝑛≥0𝑉𝑢(𝑛) = 𝐴 and 𝑦 ∈ ⋂
𝑛≥0𝑊𝑢(𝑛) = {𝑥}, a contradiction. This

finishes the proof of the implication (21.59).
Now we define the desired open 𝐺𝑥-invariant neighborhood 𝑈′ of 𝑥 in 𝑋 by

𝑈′0 ∩𝑈
′
1 and the desired natural number 𝑟 ′ = max{𝑟 ′0, 𝑟

′
1, 𝑤}. We get for 𝑠 ∈ 𝑆𝜔,𝑤

�̂�(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′

=⇒ 𝜋(𝑠) ∈ 𝐶, �̂�(𝑠) ∈ 𝑈′0, 𝜂(𝑠) ≥ 𝑤, 𝜂(𝑠) ≥ 𝑟
′
0

=⇒ 𝜋(𝑠) ∈ 𝐶, 𝜌 ◦ 𝜋(𝑠) ∈ 𝑈′0, 𝜋(𝑠) ∈ 𝑊𝜔◦𝜂 (𝑠) , 𝜂(𝑠) ≥ 𝑟 ′0
=⇒ 𝜋(𝑠) ∈ 𝐶, 𝜌 ◦ 𝜋(𝑠) ∈ 𝑈′0, 𝜋(𝑠) ∈ 𝑊𝜔 (𝑟 ′0 )

(21.58)
=⇒ 𝜋𝜔,𝑤 (𝑠) = 𝜋(𝑠) ∈ 𝑈.

Moreover, we have for 𝑠 ∈ 𝑆𝜔,𝑤

𝜂𝜔,𝑤 (𝑠) ≥ 𝑟 ′ =⇒ 𝜋(𝑠) ∈ 𝐶, 𝜂(𝑠) ≥ 𝑤, 𝜂(𝑠) ≥ 𝑟 ′1
=⇒ 𝜋(𝑠) ∈ 𝐶, 𝜋(𝑠) ∈ 𝑉𝜔◦𝜂 (𝑠) , 𝜂(𝑠) ≥ 𝑟 ′1
=⇒ 𝜋(𝑠) ∈ 𝐶, 𝜋(𝑠) ∈ 𝑉𝑟 ′1

(21.59)
=⇒ 𝜋(𝑠) ∉ 𝑈′1
=⇒ 𝜋𝜔,𝑤 (𝑠) = 𝜋(𝑠) ∉ 𝑈′.

Hence there is no 𝑠 ∈ 𝑆𝜔,𝑤 satisfying 𝜋𝜔,𝑤 (𝑠) ∈ 𝑈′, 𝜂𝜔,𝑤 (𝑠) ≥ 𝑟 ′ and hence the
implication

𝜋𝜔,𝑤 (𝑠) ∈ 𝑈′, 𝜂𝜔,𝑤 (𝑠) ≥ 𝑟 ′ =⇒ �̂�(𝑠) ∈ 𝑈

obviously holds. This finishes the proof of assertion (iii) in the case that 𝑥 ∉ 𝐴.
It remains to treat the case 𝑥 ∈ 𝐴. Then define the desired open 𝐺𝑥-invariant

neighborhood 𝑈′ of 𝑥 in 𝑋 by 𝑈′0 ∩ 𝜌
−1 (𝑈) and the desired natural number

𝑟 ′ = max{𝑟 ′0, 𝑤}. Then we get analogously to the argument above

�̂�(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ 𝜋𝜔,𝑤 (𝑠) ∈ 𝑈
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and

𝜋𝜔,𝑤 (𝑠) ∈ 𝑈′, 𝜂𝜔,𝑤 (𝑠) ≥ 𝑟 ′ =⇒ 𝜋(𝑠) ∈ 𝜌−1 (𝑈), 𝜂(𝑠) ≥ 𝑤
=⇒ 𝜌 ◦ 𝜋(𝑠) ∈ 𝑈, 𝜂(𝑠) ≥ 𝑤
=⇒ �̂�(𝑠) = 𝜌 ◦ 𝜋(𝑠) ∈ 𝑈.

This finishes the proof of assertion (iii).
(iv) Choose a compact subset 𝐶 ⊆ 𝐴 satisfying im(𝜋′) ⊆ 𝐶 and a finite subset
𝐹 ⊆ 𝐺 such that supp𝐺 (𝜙𝑠′ ,𝑠) ⊆ 𝐹 holds for all 𝑠′ ∈ 𝑆′ and 𝑠 ∈ 𝑆. Fix 𝑛 ∈ N.
Consider 𝑎 ∈ 𝐹 ·𝐶. Then𝑉𝑛 is an open𝐺𝑎-invariant neighborhood of 𝑎 in 𝑋 . Since 𝜙
satisfies continuous control, we can find an open𝐺𝑎-invariant neighbourhood𝑈𝑛 (𝑎)
of 𝑎 in 𝑋 and a natural number 𝑟𝑛 (𝑎) such for 𝑠′ ∈ 𝑆′, 𝑠 ∈ 𝑆, and 𝑔 ∈ supp𝐺 (𝜙𝑠′ ,𝑠)
the implication

(21.60) 𝑔 · 𝜋′ (𝑠′) ∈ 𝑈𝑛 (𝑎), 𝜂′ (𝑠′) ≥ 𝑟𝑛 (𝑎) =⇒ 𝜋(𝑠) ∈ 𝑉𝑛

holds. Since 𝐹 · 𝐶 is compact and contained in
⋃
𝑎∈𝐹 ·𝐶 𝑈𝑛 (𝑎), we can find a finite

subset {𝑎1, 𝑎2, . . . , 𝑎𝑘} ⊆ 𝐹 · 𝐶 satisfying 𝐹 · 𝐶 ⊆ ⋃𝑘
𝑖=1𝑈𝑛 (𝑎𝑘). Define a natural

number
𝑟𝑛 := max{𝑟𝑛 (𝑎𝑖) | 𝑖 = 1, 2, . . . , 𝑘}.

Consider 𝑠′ ∈ 𝑆′ and 𝑠 ∈ 𝑆 with 𝜙𝑠′ ,𝑠 ≠ 0. Then we get the implication

(21.61) 𝜂′ (𝑠′) ≥ 𝑟𝑛 =⇒ 𝜋(𝑠) ∈ 𝑉𝑛

by the following argument. Suppose 𝜂′ (𝑠′) ≥ 𝑟𝑛. Since 𝜙𝑠′ ,𝑠 ≠ 0, we can choose
𝑔 ∈ supp𝐺 (𝜙𝑠′ ,𝑠). Because of 𝑔 · 𝜋′ (𝑠′) ∈ 𝐹 · 𝐶 we can find 𝑖 ∈ {1, 2, . . . , 𝑘} with
𝑔 · 𝜋′ (𝑠) ∈ 𝑈𝑛 (𝑎𝑖). Since 𝑟𝑛 ≥ 𝑟𝑛 (𝑎𝑖), we conclude from the implication (21.60)
that 𝜋(𝑠) ∈ 𝑉𝑛 holds.

We can additionally arrange that 𝑟𝑛 < 𝑟𝑛+1 holds for 𝑛 ∈ N. Since 𝜙 satisfies
bounded control over N, we can find a natural number 𝑁 such that |𝜂(𝑠′) −𝜂(𝑠) | ≤ 𝑁
holds for all 𝑠′ ∈ 𝑆′ and 𝑠 ∈ 𝑆 with 𝜙𝑠′ ,𝑠 ≠ 0.

Now define a function
𝜔 : N→ N

by requiring that for 𝑚, 𝑛 ∈ N with 𝑟𝑛 + 𝑁 ≤ 𝑚 < 𝑟𝑛+1 + 𝑁 we have 𝜔(𝑚) = 𝑛 and
𝜔(𝑚) = 0 for 𝑚 < 𝑟0 + 𝑁 . Then 𝜔 is a non-decreasing function with lim𝑚→∞ = ∞.
Put 𝑤 = 𝑟0 + 𝑁 .

Consider any 𝑠 ∈ 𝑆 such that there exists an 𝑠′ ∈ 𝑆′ with 𝜙𝑠′ ,𝑠 ≠ 0. Next we want
to show 𝑠 ∈ 𝑆𝜔,𝑤 , or, equivalently, the implication

𝜂(𝑠) ≥ 𝑤 =⇒ 𝜋(𝑠) ∈ 𝑉𝜔◦𝜂 (𝑠) .

Suppose 𝜂(𝑠) ≥ 𝑤. Then we can choose 𝑛 ∈ N such that 𝑟𝑛 + 𝑁 ≤ 𝜂(𝑠) < 𝑟𝑛+1 + 𝑁
holds. Then 𝜔 ◦ 𝜂(𝑠) = 𝑛 and 𝜂′ (𝑠′) ≥ 𝑟𝑛. We conclude 𝜋(𝑠) ∈ 𝑉𝜔◦𝜂 (𝑠) from
implication (21.61). Hence 𝜙 induces the desired morphism 𝜙′ : B′ → B𝜔 by putting
𝜙′
𝑠′ ,𝑠 = 𝜙𝑠′ ,𝑠 for 𝑠′ ∈ 𝑆′ and 𝑠 ∈ 𝑆𝜔,𝑤 . This finishes the proof of Lemma 21.57. ⊓⊔
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Lemma 21.62. Let 𝑋 be𝐺-𝐶𝑊-complex with sub𝐺-𝐶𝑊-complexes 𝑋0, 𝑋1, and 𝑋2
satisfying 𝑋 = 𝑋1 ∪ 𝑋2 and 𝑋0 = 𝑋1 ∩ 𝑋2.

(i) The inclusion 𝑖 : (𝑋2, 𝑋0) → (𝑋, 𝑋1) induces an equivalence of additive cate-
gories

D𝐺 (𝑖) : D𝐺 (𝑋2, 𝑋0)
≃−→ D𝐺 (𝑋, 𝑋1);

(ii) The square induced by the various inclusions

K(D𝐺 (𝑋0)) //

��

K(D𝐺 (𝑋1))

��
K(D𝐺 (𝑋2)) // K(D𝐺 (𝑋))

is weakly homotopy cocartesian.

Proof. (i) Consider an object B in O𝐺 (𝑋). We get from Lemma 21.57 (ii) and (iii)
applied to the pair (𝑋, 𝑋1) and the object B the decomposition B = B𝜔,𝑤 ⊕ B⊥
such that B𝜔,𝑤 is isomorphic to an object in O𝐺 (𝑋1) and im(𝜋⊥) ⊆ 𝑋 \ 𝑋1 holds.
Therefore the inclusion B⊥ → B yields an isomorphism in D𝐺 (𝑋, 𝑋1). The ob-
ject B⊥ is in the image of D𝐺 (𝑖), since the inclusion 𝑋2 \ 𝑋0 → 𝑋 \ 𝑋1 is a
𝐺-homeomorphism. We conclude that D𝐺 (𝑖) is surjective on the set of isomor-
phism classes of objects.

Consider a morphism 𝜙 : B → B′ in O𝐺 (𝑋). It can be written in terms of the
decomposition of Lemma 21.57 (ii) applied to the pair (𝑋, 𝑋1) and the objects B
and B′ as

𝜙 =

(
𝑎 𝑏

𝑐 𝑑

)
: B𝜔,𝑤 ⊕ B⊥ → B′𝜔,𝑤 ⊕ B′⊥.

Define a morphism in O𝐺 (𝑋) by the composite

𝜓 : B𝜔,𝑤 ⊕ B⊥

(
id 0
0 𝑏

)
−−−−−→ B𝜔,𝑤 ⊕ B′𝜔,𝑤

(
𝑎 id
𝑐 0

)
−−−−−→ B′𝜔,𝑤 ⊕ B′⊥.

Then B𝜔,𝑤 ⊕ B′𝜔,𝑤 is isomorphic to an object in the image of O𝐺 (𝑋1) → O𝐺 (𝑋)
by Lemma 21.57 (iii), the morphism 𝜙 − 𝜓 : B𝜔,𝑤 ⊕ B⊥ → B′𝜔,𝑤 ⊕ B′𝐵 is of

the shape
(
0 0
0 𝑑

)
, and 𝑑 : B⊥ → B′⊥ is in the image of O𝐺 (𝑋2) → O𝐺 (𝑋), since

im(𝜋⊥) and im(𝜋′⊥) are contained in 𝑋 \ 𝑋1 ⊆ 𝑋2. This implies that the morphism
in D𝐺 (𝑋, 𝑋1) represented by 𝜙 is in the image of D𝐺 (𝑖). Hence D𝐺 (𝑖) is full.

In order to show that D𝐺 (𝑖) is an equivalence, it remains to show that D𝐺 (𝑖) is
faithful. This is done as follows.

Consider a morphism 𝜙 : B → B′ in O𝐺 (𝑋2). Suppose that its class [𝜙] in
D𝐺 (𝑋2, 𝑋0) is sent under D𝐺 (𝑖) to zero. Hence there is an object B0 in O𝐺 (𝑋1),
an object B1 in T𝐺 (𝑋), morphisms 𝜓 : B → B0, 𝜓′ : B0 → B, 𝜇 : B → B1, and
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𝜇′ : B1 → B′ such that 𝜙 − 𝜓′ ◦ 𝜓 factorizes as

(𝜙 − 𝜓′ ◦ 𝜓) : B
𝜇
−→ B1

𝜇′

−−→ B′.

Because of Lemma 21.22 the object B1 is isomorphic to an object in T𝐺 (𝑋0).
Therefore we can replace 𝜙 by 𝜙 − 𝜇′ ◦ 𝜇 without changing the element it represents
in O𝐺 (𝑋2, 𝑋0). Hence we can assume without loss of generality that 𝜙 factorizes as

𝜙 : B
𝜓
−→ B0

𝜓′

−−→ B′.

We conclude from Lemma 21.57 (iii) and (iv) applied to the pair (𝑋, 𝑋2) and 𝜓 that
for appropriate (𝜔, 𝑤) 𝜓 : B → B0 factorizes as in D𝐺 (𝑋) as

𝜓 : B 𝜈−→ B𝜔,𝑤0
𝑖𝜔,𝑤−−−−→ B0

and there is an object B̂0 in O𝐺 (𝑋2) and an isomorphism 𝜁 : B𝜔,𝑤0
�−→ B̂0 in O𝐺 (𝑋).

In the construction of B̂0 an element 𝑎 ∈ 𝑋2 and a retraction 𝜌 : 𝑉0 → 𝑋2 occurs.
One easily checks by going through the constructions appearing in Lemma 21.57 (i)
and (iii) that we can pick 𝑎 ∈ 𝑋0 and can arrange that 𝜌(𝑉0 ∩ 𝑋1) ⊆ 𝑋0 holds. Since
B0 belongs to 𝑋1, the object B̂0 is actually an object in O𝐺 (𝑋0). Hence we obtain
the factorization in O𝐺 (𝑋)

𝜙 : B
𝜁 ◦𝜈
−−−→ B̂0

𝜙′◦𝑖𝜔,𝑤◦𝜁 −1

−−−−−−−−−−→ B′.

Since O𝐺 (𝑋2) → O𝐺 (𝑋) is faithful, the factorization above can be viewed as a
factorization in O𝐺 (𝑋2). Hence the class [𝜙] in D𝐺 (𝑋2, 𝑋0) represented by 𝜙 is
trivial.
(ii) This is a direct consequence of assertion (ii) and Proposition 21.27. This finishes
the proof of Lemma 21.62 ⊓⊔

Lemma 21.63. The inclusion 𝑖 : (𝑋, 𝐴) → (𝑋, 𝐴)×[0, 1] sending 𝑥 to (𝑥, 0) induces
a weak homotopy equivalence

K(D𝐺 (𝑖)) : K(D𝐺 (𝑋, 𝐴)) ≃−→ K(D𝐺 ((𝑋, 𝐴) × [0, 1])).

Proof. Because of the Five Lemma and Proposition 21.27 it suffices to treat the case
𝐴 = ∅.

Since we can apply Lemma 21.62 (ii) to the𝐺-𝐶𝑊-complex cone(𝑋)∪𝑋𝑋×[0, 1]
with the subcomplexes cone(𝑋), 𝑋 × [0, 1], and 𝑋 , it suffices to show that the map
induced by the obvious inclusion

K(D𝐺 (cone(𝑋))) ≃−→ K(D𝐺 (cone(𝑋) ∪𝑋 𝑋 × [0, 1]))

is a weak homotopy equivalence. Because of Lemma 21.17, Lemma 21.22, and
Theorem 8.46 (i), it suffices to show that the map induced by the obvious inclusion
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K(O𝐺 (cone(𝑋))) ≃−→ K(O𝐺 (cone(𝑋) ∪𝑋 𝑋 × [0, 1]))

is a weak homotopy equivalence. Since cone(𝑋) and cone(𝑋) ∪𝑋 𝑋 × [0, 1]
are 𝐺-homeomorphic, both its source and its target are weakly contractible by
Lemma 21.30. This finishes the proof of Lemma 21.63. ⊓⊔

Proposition 21.64. Let 𝑓0, 𝑓1 : (𝑋, 𝐴) → (𝑌, 𝐵) be 𝐺-maps of 𝐺-𝐶𝑊-pairs which
are 𝐺-homotopic. Then for every 𝑛 ∈ Z the homomorphism 𝐾𝑛 (D𝐺 ( 𝑓0)) and
𝐾𝑛 (D𝐺 ( 𝑓1)) from 𝐾𝑛 (D𝐺 (𝑋, 𝐴)) to 𝐾𝑛 (D𝐺 (𝑌, 𝐵)) agree.

Proof. Let 𝑖𝑘 : (𝑋; 𝐴) → (𝑋, 𝐴) × [0, 1] be the map sending 𝑥 to (𝑥, 𝑘) for 𝑘 = 0, 1
and let pr : (𝑋, 𝐴) × [0, 1] → (𝑋, 𝐴) be the projection. Since pr ◦𝑖𝑘 = id(𝑋,𝐴)
holds for 𝑘 = 0, 1, we conclude from Lemma 21.63 that the two homomorphisms
𝐾𝑛 (D𝐺 (𝑖0)) and 𝐾𝑛 (D𝐺 (𝑖1)) from 𝐾𝑛 (D𝐺 (𝑋, 𝐴)) to 𝐾𝑛 (D𝐺 ((𝑋, 𝐴) × [0, 1]))
agree. Let ℎ : (𝑋; 𝐴) × [0, 1] → (𝑌, 𝐵) be a 𝐺-homotopy between 𝑓0 and 𝑓1. Now
the claim follows from the equality 𝐾𝑛 (D𝐺 ( 𝑓𝑘)) = 𝐾𝑛 (D𝐺 (ℎ)) ◦ 𝐾𝑛 (D𝐺 (𝑖𝑘)) for
𝑘 = 0, 1. ⊓⊔

Proposition 21.65. Consider a 𝐺-𝐶𝑊-pair (𝑋, 𝐴), a 𝐺-𝐶𝑊-complex 𝐵, and a cel-
lular 𝐺-map 𝑓 : 𝐴→ 𝐵. Put 𝑌 = 𝑋 ∪ 𝑓 𝐵. Then:

(i) The pair (𝑌, 𝐵) is a 𝐺-𝐶𝑊-pair and the canonical map (𝐹, 𝑓 ) : (𝑋, 𝐴) →
(𝑌, 𝐵) is a cellular 𝐺-map;

(ii) The functor D𝐺 (𝐹, 𝑓 ) : D𝐺 (𝑋, 𝐴) ≃−→ D𝐺 (𝑌, 𝐵) is an equivalence of additive
categories and induces for all 𝑛 ∈ Z an isomorphism

𝐾𝑛 (D𝐺 (𝐹, 𝑓 )) : 𝐾𝑛 (D𝐺 (𝑋, 𝐴))
≃−→ 𝐾𝑛 (D𝐺 (𝑌, 𝐵));

(iii) Let 𝑖 : 𝐴→ 𝑋 and 𝑗 : 𝐵→ 𝑌 be the inclusions. We obtain a long exact Mayer-
Vietoris sequence, infinite to both sides and natural in (𝑋, 𝐴) and 𝑓 : 𝐴→ 𝐵,

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (D𝐺 (𝐴))
−𝐾𝑛 (D𝐺 (𝑖) )×𝐾𝑛 (D𝐺 ( 𝑓 ) )−−−−−−−−−−−−−−−−−−−−−−→

𝐾𝑛 (𝑋) ⊕ 𝐾𝑛 (𝐵)
𝐾𝑛 (𝐹 )⊕𝐾𝑛 ( 𝑗 )−−−−−−−−−−−→ 𝐾𝑛 (D𝐺 (𝑌 ))

𝜕𝑛−−→ 𝐾𝑛−1 (D𝐺 (𝐴))
−𝐾𝑛−1 (D𝐺 (𝑖) )×𝐾𝑛−1 (D𝐺 ( 𝑓 ) )−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (𝑋) ⊕ 𝐾𝑛−1 (𝐵)

𝐾𝑛−1 (𝐹 )⊕𝐾𝑛−1 ( 𝑗 )−−−−−−−−−−−−−−−→ 𝐾𝑛−1 (D𝐺 (𝑌 ))
𝜕𝑛−1−−−→ · · · .

Proof. (i) This is obvious.
(ii) Apply Lemma 21.62 (i) to 𝑋∪𝐴cyl( 𝑓 ) and the𝐺-subcomplexes 𝑋 , cyl( 𝑓 ), and 𝐴
and then Proposition 21.64 to the obvious𝐺-homotopy equivalences 𝑋∪𝐴cyl( 𝑓 ) ≃−→
𝑌 and cyl( 𝑓 ) ≃−→ 𝐵.
(iii) This follows from assertion (ii) and Proposition 21.27. ⊓⊔
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21.7.4 The Disjoint Union Axiom

Proposition 21.66. Let {𝑋𝑖 | 𝑖 ∈ 𝐼} be a collection of 𝐺-𝐶𝑊-complexes. Let
𝑗𝑖 : 𝑋𝑖 →

∐
𝑖∈𝐼 𝑋𝑖 be the obvious inclusion for 𝑖 ∈ 𝐼.

(i) The obvious map of additive categories⊕
𝑖∈𝐼
D𝐺 ( 𝑗𝑖) :

⊕
𝑖∈𝐼
D𝐺 (𝑋𝑖) → D𝐺

(∐
𝑖∈𝐼

𝑋𝑖

)
is an equivalence;

(ii) The obvious map of abelian groups⊕
𝑖∈𝐼

𝐾𝑛 (D𝐺 ( 𝑗𝑖)) :
⊕
𝑖∈𝐼

𝐾𝑛 (D𝐺 (𝑋𝑖)) → 𝐾𝑛

(
D𝐺

(∐
𝑖∈𝐼

𝑋𝑖

))
is an isomorphism for every 𝑛 ∈ Z.

Proof. (i) In the sequel we put 𝑌 =
∐
𝑖∈𝐼 𝑋𝑖 . Consider an object B = (𝑆, 𝜋, 𝜂,B) in

D𝐺 (𝑌 ). Since it satisfies compact support over𝑌 , there is a finite subset 𝐼0 ⊆ 𝐼 such
that im(𝜋) ⊆ ∐

𝑖∈𝐼0 𝑌𝑖 . For 𝑖 ∈ 𝐼0 define B𝑖 = (𝑆𝑖 , 𝜋𝑖 , 𝜂𝑖 ,B𝑖) where 𝑆𝑖 = 𝜋−1 (𝑋𝑖)
and 𝜋𝑖 , 𝜂𝑖 , and B𝑖 are obtained from 𝜋, 𝜂, and B by restriction. Then B is the finite
sum

⊕
𝑖∈𝐼0 B𝑖 and B𝑖 is in the image of D𝐺 ( 𝑗𝑖) : D𝐺 (𝑋𝑖) → D𝐺 (𝑌 ) for 𝑖 ∈ 𝐼0.

We leave it to the reader to check that this implies that the functor
⊕

𝑖∈𝐼 D𝐺 ( 𝑗𝑖) is
surjective on objects, full, and faithful. Hence

⊕
𝑖∈𝐼 D𝐺 ( 𝑗𝑖) is an equivalence of

additive categories.
(ii) This follows from assertion (i) and fact that 𝐾𝑛 commutes with finite products,
or, equivalently, with finite direct sums and is compatible with colimits over direct
systems, see for instance [684, Corollary 7.2]. ⊓⊔

Now Theorem 21.26 follows from Propositions 21.27, 21.64, 21.65, and 21.66.

21.8 The Computation of 𝑲𝒏(D
𝑮 (𝑮/𝑯))

In this section we analyze the coefficients𝐾𝑛 (D𝐺 (𝐺/𝐻)) of the𝐺-homology theory
appearing in Theorem 21.26.

21.8.1 Reduction to 𝑲𝒏 (B(𝑮/𝑯))

Consider a category with 𝐺-support B in the sense of Definition 21.1. Given a
𝐺-set 𝑇 , define a Z-category B(𝑇) as follows. Objects are pairs (𝑡, 𝐵) for 𝑡 ∈ 𝑇
and 𝐵 ∈ ob(B). A morphism 𝜙 : (𝑡, 𝐵) → (𝑡′, 𝐵′) is a morphism 𝜙 : 𝐵 → 𝐵′ in
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B satisfying supp𝐺 (𝜙) ⊆ 𝐺𝑡 ,𝑡 ′ for 𝐺𝑡 ,𝑡 ′ := {𝑔 ∈ 𝐺 | 𝑡′ = 𝑔𝑡}. Composition in
B(𝑆) comes from the composition in B. The identity on (𝑡, 𝐵) is given by id𝐵.
The structure of a Z-category on B(𝑇) comes from the one on B. Given a map
𝑓 : 𝑇 → 𝑇 ′, we get a functor of Z-categories B( 𝑓 ) : B(𝑇) → B(𝑇 ′) by sending an
object (𝑡, 𝐵) to the object ( 𝑓 (𝑡), 𝐵) and a morphism 𝜙 : (𝑡, 𝐵) → (𝑡′, 𝐵′) given by
the morphism 𝜙 : 𝐵 → 𝐵′ in B to the morphism ( 𝑓 (𝑠), 𝐵) → ( 𝑓 (𝑠′), 𝐵′) in B(𝑆′)
given by 𝜙 : 𝐵→ 𝐵′ again. This definition makes sense as𝐺𝑡 ,𝑡 ′ ⊆ 𝐺 𝑓 (𝑡 ) , 𝑓 (𝑡 ′ ) holds.
Thus we obtain a covariant functor

(21.67) B(?) : 𝐺-SETS→ Z-CAT

from the category of 𝐺-sets to the category of Z-categories by sending 𝑇 to B(𝑇).
It induces a covariant Or(𝐺)-spectrum

(21.68) K(B(?)⊕) : Or(𝐺) → SPECTRA, 𝐺/𝐻 ↦→ K(B(𝐺/𝐻)⊕).

We obtain another covariant Or(𝐺)-spectrum by

(21.69) K(D𝐺 (?;B)) : Or(𝐺) → SPECTRA, 𝐺/𝐻 ↦→ K(D𝐺 (𝐺/𝐻;B)).

Proposition 21.70. There is a weak homotopy equivalence of covariant Or(𝐺)-
spectra

K(B(?)⊕)
≃−→ ΩK(D𝐺 (?);B).

In particular, we get for 𝑛 ∈ Z an isomorphism, natural in 𝐺/𝐻,

𝐾𝑛 (B(𝐺/𝐻)⊕)
�−→ 𝐾𝑛+1 (D𝐺 (𝐺/𝐻;B)).

Proof. Any Z-category can be viewed as a category with 𝐺-support over the triv-
ial group {1}. Hence we can consider for any 𝐺-set 𝑇 the additive categories
T {1} ({•};B(𝑇)), O {1} ({•};B(𝑇)), andD {1} ({•};B(𝑇)). Next we define a functor
of additive categories

𝐹 (𝑇) : O {1} ({•};B(𝑇)) → O𝐺 (𝑇 ;B).

It sends an object B = (𝑆, 𝜋, 𝜂,B) to the object B′ = (𝑆′, 𝜋′, 𝜂′,B′), where 𝑆′ = 𝑆,
𝜂′ = 𝜂, and B′ and 𝜋′ are determined by the equality B(𝑠) = (𝜋′ (𝑠),B′ (𝑠)). It
induces a functor of additive categories

𝐹 (𝑇) : D {1} ({•};B(𝑇)) → D {1} (𝑇 ;B).

Next we show that 𝐹 (𝑇) is full. Consider any morphism in D {1} (𝑇 ;B) from B =

(𝑆, 𝜋, 𝜂,B) to B′ = (𝑆′, 𝜋′, 𝜂′,B′). Choose a morphism 𝜙 : B→ B′ in O {1} (𝑇, ;B)
representing it. Since 𝑇 is discrete and 𝜙 satisfies continuous control, we can find
for every 𝑡 ∈ 𝑇 a natural number 𝑟 (𝑡) such that for all 𝑠 ∈ 𝑆, 𝑆′ ∈ 𝑆′, and 𝑔 ∈
supp𝐺 (𝜙𝑠,𝑠′ ) the implication
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𝑔 · 𝜋(𝑠) = 𝑡, 𝜂(𝑠) ≥ 𝑟 (𝑡) =⇒ 𝜋′ (𝑠) = 𝑡

holds. Since the object B satisfies compact support over 𝑇 , 𝜙 satisfies finite
𝐺-support, and 𝑇 is discrete, there is a finite subset 𝑇0 ⊆ 𝑇 satisfying 𝑔 · 𝜋(𝑠) ∈ 𝑇0
for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ). Define 𝑟 := max{𝑟 (𝑡) | 𝑡 ∈ 𝑇0}. Then
for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠‘) the implication

𝜂(𝑠) ≥ 𝑟 =⇒ 𝑔𝜋(𝑠) = 𝜋′ (𝑠′)

is true. Since 𝜙 satisfies bounded control over N, we can change 𝜙 such that 𝜙𝑠,𝑠′ = 0
holds for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′ satisfying 𝜂(𝑠) < 𝑟 and that the class represented by 𝜙
in D {1} (𝑇 ;B) is unchanged. Hence we can assume without loss of generality that
𝑔 ∈ 𝐺 𝜋 (𝑠) , 𝜋′ (𝑠′ ) holds for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ).

Define objects B̂ = (𝑆, �̂�, 𝜂, B̂) and B̂′ = (𝑆′, 𝜋′, 𝜂′, B̂′) in O {1} ({•};B(𝑇)) by
requiring that 𝑆 = 𝑆, 𝑆′ = 𝑆′, 𝜂 = 𝜂, and 𝜂′ = 𝜂′ hold and we have B̂(𝑠) =

(𝜋(𝑠),B(𝑠)) for 𝑠 ∈ 𝑆 and B̂′ (𝑠) = (𝜋′ (𝑠′),B(𝑠′)) for 𝑠′ ∈ 𝑆. Then 𝐹 (B̂) = B
and 𝐹 (B̂′) = B′. Define a morphism 𝜓 : B̂ → B̂′ in O {1} ({•};B(𝑇)) by defining
the morphisms 𝜓𝑠,𝑠′ : (𝜋(𝑠),B(𝑠)) → (𝜋′ (𝑠′),B(𝑠′)) in B(𝑇) by the morphism
𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) in B. One easily checks that 𝜓 is well-defined and sent under
𝐹 (𝑇) to 𝜙. Hence the class represented by 𝜓 in D {1} ({•};B(𝑇)) is sent by 𝐹 (𝑇) to
the class represented by 𝜙 in D {1} (𝑇 ;B). This finishes the proof that 𝐹 (𝑇) is full.

Since 𝐹 (𝑇) is faithful, one easily checks that 𝐹 (𝑇) is faithful. As 𝐹 (𝑇) is bijective
on objects,𝐹 (𝑇) is bijective on objects. We conclude that𝐹 (𝑇) : D {1} ({•};B(𝑇)) →
D {1} (𝑇 ;B) is an equivalence of additive categories. In particular, we see that the
(natural in 𝑇) map

(21.71) K(𝐹 (𝑇)) : K(D {1} ({•};B(𝑇))) ≃−→ K(D {1} (𝑇 ;B))

is a weak homotopy equivalence of spectra.
The canonical map

K(T {1} ({•};B(𝑇))) ≃−→ hofib
(
K(O {1} ({•};B(𝑇))) → K(D {1} ({•};B(𝑇)))

)
is natural in 𝑇 and is a weak homotopy equivalence by Lemma 21.17 and Theo-
rem 8.46 (i). The projection from K(O {1} ({•};B(𝑇))) to the trivial spectrum is
a weak homotopy equivalence by Lemma 21.29. It induces a (natural in 𝑇) weak
homotopy equivalence

hofib
(
K(O {1} ({•};B(𝑇))) → K(D {1} ({•};B(𝑇)))

) ≃−→ ΩK(D {1} ({•};B(𝑇))).

The composite of the two maps above gives a weak homotopy equivalence of spectra,
natural in 𝑇 ,

(21.72) K(T {1} ({•};B(𝑇))) ≃−→ ΩK(D {1} ({•};B(𝑇))).
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Define the inclusion of Z-categories 𝐼 : B(𝑇) → T {1} ({•};B(𝑇)) by sending
an object (𝑡, 𝐵) to the object ({∗}, 𝜋, 𝜂,B) given by 𝜋(∗) = {•}, 𝜂(∗) = 0, and
𝜋(∗) = 𝑡. It induces a functor of additive categories 𝐼⊕ : B(𝑇)⊕ → T {1} ({•};B(𝑇)).
Obviously 𝐼⊕ is full and faithful. We leave it to the reader to show that any object
in T {1} ({•};B(𝑇)) is isomorphic to an object in the image of 𝐼⊕ . Hence 𝐼⊕ is
an equivalence of additive categories and induces a weak homotopy equivalence,
natural in 𝑇 ,

(21.73) K(𝐼⊕) : K(B(𝑇)⊕)
≃−→ K(T {1} ({•};B(𝑇))).

Now the desired weak homotopy equivalence of covariant Or(𝐺)-spectra from
K(B(?)⊕) to ΩK(D𝐺 (?);B) comes from the maps (21.71), (21.72), and (21.73).

⊓⊔

We have proved in Lemma 21.29 that O𝐺 (𝐺/𝐺) is flasque. The next exercise
shows that this is not true in general for O𝐺 (𝐺/𝐻) if 𝐻 ≠ 𝐺.

Exercise 21.74. Suppose that the category O𝐺 (𝐺/𝐻) is flasque. Show that then the
map 𝐾𝑛 (B(𝐺/𝐻)⊕) → 𝐾𝑛 (B⊕) induced by the projection 𝐺/𝐻 → 𝐺/𝐺 and the
obvious identification B(𝐺/𝐺) = B is bijective for all 𝑛 ∈ Z.

21.8.2 Assembly and Controlled 𝑮-homology

We have the 𝐺-homology theory 𝐾∗ (D𝐺 (−;B)), see Theorem 21.26. The co-
variant Or(𝐺)-spectrum K(B(?))⊕ of (21.68) determines a 𝐺-homology theory
𝐻𝐺∗ (−; K(B(?))), see Theorem 12.27.

Proposition 21.75. There is an equivalence of 𝐺-homology theories

𝑇 (−) : 𝐾∗+1 (D𝐺 (−;B)) �−→ 𝐻𝐺∗ (−; K(B(?)⊕)).

Proof. This follows from Corollary 18.16 and Proposition 21.70. ⊓⊔

Lemma 21.76. Let B be a category with 𝐺-support and let F be a family of sub-
groups. Let pr : 𝐸F (𝐺) → 𝐺/𝐺 be the projection.

(i) The assembly map appearing in the Meta-Isomorphism Conjecture 15.2 for the
𝐺-homology theory 𝐻𝐺∗ (−; K(B(?)⊕)) and the family F

𝐻𝐺𝑛 (𝐸F (𝐺); K(B(?)⊕)) → 𝐻𝐺𝑛 (𝐺/𝐺; K(B(?)⊕)) = 𝐾𝑛 (B⊕)

can be identified for every 𝑛 ∈ Z with the homomorphism induced by the projec-
tion 𝐸F (𝐺) → 𝐺/𝐺

𝐾𝑛+1 (D𝐺 (𝐸F (𝐺);B)) → 𝐾𝑛+1 (D𝐺 (𝐺/𝐺;B)) = 𝐾𝑛 (B⊕);



644 21 Controlled Topology Methods

(ii) The Meta-Isomorphisms Conjecture 15.2 for the 𝐺-homology theory
𝐻𝐺∗ (−; K(B(?))) and the family F is true if and only if the spectrum
K(O𝐺 (𝐸F (𝐺);B)) is weakly contractible.

Proof. (i) This follows from Proposition 21.75.
(ii) This follows from assertion (i), Lemma 21.22, Lemma 21.29, and the commuta-
tive diagram of spectra

T𝐺 (𝐸F (𝐺)) //

T𝐺 (pr)
��

O𝐺 (𝐸F (𝐺)) //

O𝐺 (pr)
��

D𝐺 (𝐸F (𝐺))

D𝐺 (pr)
��

T𝐺 (𝐺/𝐺) // O𝐺 (𝐺/𝐺) // D𝐺 (𝐺/𝐺)

whose rows are weak homotopy fibrations by Theorem 21.19. ⊓⊔

Remark 21.77. The benefit of Lemma 21.76 (ii) is that the proof of the Meta-
Isomorphism Conjecture is reduced to the proof of the weak contractibility of the
𝐾-theory of the specific category O𝐺 (𝐸F (𝐺);B) defined in terms of controlled
topology and not just to the weak contractibility of some abstract homotopy fiber.
This will allow us to use geometric tools for a proof of the Farrell-Jones Conjecture,
as described in Chapter 19.

21.8.3 The Definition of a Strong Category with 𝑮-Support

In this subsection we will upgrade the notion of a category with 𝐺-support of
Definition 21.1 to the notion of a strong category with 𝐺-support by additionally
implementing a 𝐺-action on B and a homotopy trivialization for it.

Definition 21.78 (Strong category with 𝐺-support). A strong category with
𝐺-support over 𝐺 is a triple B = (B, supp𝐺 ,Ω) consisting of:

• A 𝐺-Z-category B;
• A map called the support function

supp𝐺 : mor(B) → {finite subsets of 𝐺};

• A homotopy trivialization of the 𝐺-action on B, i.e., a collection
Ω = {Ω𝑔 | 𝑔 ∈ 𝐺}, where Ω𝑔 is a natural equivalence of functors of Z-categories
B → B

Ω𝑔 : idB
�−→ Λ𝑔,

for Λ𝑔 : B → B the functor given by multiplication by 𝑔 such that conditions (vii)
and (viii) below are satisfied.
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We require that the following axioms are satisfied for all objects 𝐵 in B, all
morphisms 𝑢, 𝑢′ : 𝐵1 → 𝐵2, 𝑣 : 𝐵2 → 𝐵3 in B, and all 𝑔, 𝑔′ ∈ 𝐺:

(i) supp𝐺 (𝑢) = ∅ ⇐⇒ 𝑢 = 0;
(ii) supp𝐺 (𝑣 ◦ 𝑢) ⊆ supp𝐺 (𝑣) · supp𝐺 (𝑢);

(iii) supp𝐺 (𝑢 + 𝑢′) ⊆ supp𝐺 (𝑢) ∪ supp𝐺 (𝑢′);
(iv) supp𝐺 (−𝑢) = supp𝐺 (𝑢);
(v) supp𝐺 (𝐵) = {𝑒};

(vi) supp𝐺 (𝑔𝑢) = 𝑔 supp𝐺 (𝑢)𝑔−1;
(vii) Ω𝑔′ (𝑔𝐵) ◦Ω𝑔 (𝐵) = Ω𝑔′𝑔 (𝐵);

(viii) Ω𝑒 (𝐵) = id𝐵;
(ix) supp𝐺 (Ω𝑔 (𝐵)) = {𝑔}.

Remark 21.79. In Example 21.2 we actually get the structure of a strong category
with 𝐺-support. Namely, for 𝑔0 ∈ 𝐺 and object 𝐴 in A[𝐺] which is given by an
object 𝐴 in A, we define Λ𝑔0 (𝐴) to be 𝑔0𝐴 by using the given 𝐺-action on the
objects of A. For a morphism 𝜙 =

∑
𝑔∈𝐺 𝜙𝑔 · 𝑔 : 𝐴 → 𝐴′ in A[𝐺], we define

Λ𝑔0 (𝜙) : 𝑔0𝐴 → 𝑔′0𝐴
′ by (𝑔0𝜙)𝑔 = 𝑔0 · 𝜙𝑔−1

0 𝑔. The desired homotopy trivialization

Ω is given by assigning to 𝑔0 ∈ 𝐺 the isomorphism Ω𝑔0 (𝐴) : 𝐴
�−→ Λ𝑔0 (𝐴) inA[𝐺]

given by Ω𝑔0 (𝐴)𝑔0 = id𝑔0𝐴 and Ω𝑔0 (𝐴)𝑔1 = 0 for 𝑔0 ≠ 𝑔1.

21.8.4 Reduction to 𝑲𝒏 (B⟨𝑯⟩)

Let B be a strong category with 𝐺-support in the sense of Definition 21.78.

Definition 21.80 (B⟨𝐻⟩). For a subgroup 𝐻 ⊆ 𝐺 define B⟨𝐻⟩ to be the
Z-subcategory of B which has the same set of objects and for which a morphism
𝜙 : B → B′ of B belongs to B⟨𝐻⟩ if supp𝐺 (𝜙) ⊆ 𝐻 holds.

Define a functor 𝐼 : B⟨𝐻⟩ → B(𝐺/𝐻) of Z-categories by sending an object 𝐵 to
the object (𝑒𝐻, 𝐵) and a morphism 𝜙 : 𝐵→ 𝐵′ to the morphism (𝑒𝐻, 𝐵) → (𝑒𝐻, 𝐵′)
given by 𝜙.

Proposition 21.81. The functor 𝐼 : B⟨𝐻⟩ → B(𝐺/𝐻) is an equivalence of
Z-categories. In particular, the homomorphism

𝐾𝑛 (𝐼⊕) : 𝐾𝑛 (B⟨𝐻⟩⊕) → 𝐾𝑛 (B(𝐺/𝐻)⊕)

is bijective for all 𝑛 ∈ N.

Proof. Obviously 𝐼 is full and faithful. Consider an object (𝑔𝐻, 𝐵) inB(𝐺/𝐻). Then
Ω𝑔 (𝑔−1𝐵) : 𝑔−1𝐵

�−→ 𝐵 is an isomorphism in B with supp(Ω𝑔 (𝑔−1𝐵)) = {𝑔} and
hence induces an isomorphism (𝑒, 𝑔−1𝐵) �−→ (𝑔, 𝐵) in B(𝐺/𝐻). This shows that
any object in B(𝐺/𝐻) is isomorphic to an object in the image of 𝐼. Hence 𝐼 is an
equivalence. ⊓⊔
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Remark 21.82. Let A be a 𝐺-Z-category. Recall from Example 21.2 and
Remark 21.79 that the additive categoryA[𝐺] is a strong category with 𝐺-support.
One easily checks for any subgroup 𝐻 ⊆ 𝐺,

A[𝐻] = A[𝐺]⟨𝐻⟩.

Hence we get from Proposition 21.70 and Proposition 21.81 for every 𝑛 ∈ Z an
isomorphism

𝐾𝑛 (A[𝐻]⊕)
�−→ 𝐾𝑛+1 (D𝐺 (𝐺/𝐻;A[𝐺])).

Example 21.83. Let 𝑅 be a ring and let 𝜌 : 𝐺 → aut(𝑅) be a group homomorphism.
We have defined the 𝐺-Z-category 𝑅 in Example 21.3. Denote by 𝑅𝜌 |𝐻 [𝐻] the
twisted group ring of 𝐻 ⊂ 𝐺 with respect to 𝜌 |𝐻 : 𝐻 → aut(𝑅)

We conclude from Example 21.3 and Remark 21.82 that there is for every 𝑛 ∈ Z
an isomorphism

𝐾𝑛 (𝑅𝜌 |𝐻 [𝐻])
�−→ 𝐾𝑛+1 (D𝐺 (𝐺/𝐻; 𝑅[𝐺])).

Exercise 21.84. Let 𝑅 be a ring. Let B be the Z-linear category with one object
whose endomorphism ring is the group ring 𝑅[Z/2]. Let 𝑡 be the generator of Z/2.
We define the support of an endomorphism 𝑎𝑡0 + 𝑏𝑡1 to be the subset of Z

suppZ (𝑎𝑡0 + 𝑏𝑡1) =

∅ if 𝑎 = 𝑏 = 0;
{0} if 𝑎 ≠ 0, 𝑏 = 0;
{0, 1} otherwise.

Show that the axioms of a category withZ-support are satisfied, we get isomorphisms

𝐻Z
𝑛 (𝐸Z; KB) � 𝐾𝑛 (𝑅);

𝐻Z
𝑛 (Z/Z; KB) � 𝐾𝑛 (𝑅[Z/2]),

and under this identification the assembly map 𝐻Z
𝑛 (𝐸Z; KB) → 𝐻Z

𝑛 (Z/Z; KB)
agrees with the map 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑅[Z/2]) induced by the inclusion 𝑅 → 𝑅[Z/2].

Remark 21.85 (Morphism Additivity). The version of the Farrell Jones Conjecture
with categories with 𝐺-support is too general to expect that the Farrell-Jones Con-
jecture holds with them as coefficients, as Exercise 21.84 illustrates. It may hold for
strong categories with 𝐺-support in the sense of Definition 21.78 if one additionally
assumes

• Morphism Additivity
Let 𝑢 : 𝐵 → 𝐵′ be a morphism. Suppose that supp𝐺 (𝑢) = 𝐿1 ⊔ 𝐿2 is a disjoint
union. Then we require the existence of morphisms 𝑢𝑖 : 𝐵 → 𝐵′ for 𝑖 = 1, 2
satisfying 𝑢 = 𝑢1 + 𝑢2 and supp𝐺 (𝑢𝑖) = 𝐿𝑖 for 𝑖 = 1, 2.

But then B is already of the shape A[𝐺], see Exercise 21.88.
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Exercise 21.86. Show that the two morphisms 𝑢1 and 𝑢2 appearing in the axiom
Morphism Additivity stated in Remark 21.85 are unique.

Exercise 21.87. LetA be a𝐺-Z-category. Show thatA[𝐺] defined in Example 21.2
is a strong category with 𝐺-support in the sense of Definition 21.78 satisfying
Morphism Additivity.

Exercise 21.88. Consider a strong category B with 𝐺-support satisfying Morphism
Additivity. Let A the 𝐺-Z-subcategory of B which has the same set of objects and
for which a morphism 𝑢 : 𝐵→ 𝐵′ in B belongs toA if and only if supp𝐺 (𝑢) ⊆ {𝑒}
holds for the unit element 𝑒 ∈ 𝐺. Construct an isomorphism of 𝐺-Z-categories

𝐹 : A[𝐺] �−→ B

which is compatible with the support functions.

In view of the last exercise it is superfluous to consider strong categories with
𝐺-support satisfying the axiom Morphism Additivity for discrete groups. This is
different when one considers totally disconnected groups, see [81, Definition 3.2],
where also a new condition Support Cofinality enters which is void for discrete
groups.

Exercise 21.89. Show that the structure of a category with Z-support on the category
B of Exercise 21.84 does not extend to the structure of a strong category with Z-
support.

21.9 Induction

Let 𝐻 ⊆ 𝐺 be a subgroup of 𝐺. Let B be a strong category with 𝐺-support in the
sense of Definition 21.78. We have defined the Z-categoryB⟨𝐻⟩ in Definition 21.80.
Obviously it inherits fromB the structure of a strong category with𝐻-support. Given
an 𝐻-space 𝑋 , we have denoted by ind 𝜄 𝑋 = 𝐺 ×𝐻 𝑋 the𝐺-space given by induction
with the inclusion 𝜄 : 𝐻 → 𝐺, see (12.8).

Next we construct a functor of additive categories, natural in 𝑋 ,

(21.90) ind 𝜄 : O𝐻 (𝑋;B⟨𝐻⟩) → O𝐺 (ind 𝜄 𝑋;B).

Let 𝑗 : 𝑋 → ind 𝜄 𝑋 be the 𝜄-equivariant map sending 𝑥 to (𝑒′, 𝑥). An object
B = (𝑆, 𝜋, 𝜂,B) of O𝐻 (𝑋;B⟨𝐻⟩) is sent to the object ind 𝜄 B = (𝑆, 𝑗 ◦ 𝜋, 𝜂,B) of
O𝐺 (ind 𝜄 𝑋;B). Obviously ind 𝜄 (B) satisfies compact support over ind 𝜄 𝑋 and local
finiteness overN, since B satisfies compact support over 𝑋 and local finiteness overN.
For two objects B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋′, 𝜂′,B′) and a morphism 𝜙 : B→ B′
given by the collection {𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′} of O𝐻 (𝑋;B⟨𝐻⟩),
define the morphism ind 𝜄 (𝜙) : ind 𝜄 (B) → ind 𝜄 (B′) of O𝐺 (ind 𝜄 𝑋;B) by the same
collection {𝜙𝑠,𝑠′ : B(𝑠) → B′ (𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′}. Obviously the conditions fi-
nite 𝐺-support and bounded control over N are satisfied for ind 𝜄 (𝜙). Next we give
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the proof of continuous control. We only deal with condition (21.5), the proof for
condition (21.6) is analogous and left to the reader.

Consider a point (𝑔, 𝑥) in ind 𝜄 𝑋 and an open 𝐺 (𝑔,𝑥 ) -invariant neighborhood 𝑈
of (𝑔, 𝑥) in ind 𝜄 𝑋 . Note for the sequel that 𝐺 (𝑔,𝑥 ) = 𝑔′𝐻𝑥𝑔−1 holds and the map
𝑗 : 𝑋 → ind 𝜄 𝑋 is an open 𝜄-equivariant embedding. We have to find an open𝐺 (𝑔,𝑥 ) -
invariant neighborhood𝑈′ of (𝑔, 𝑥) in ind 𝜄 𝑋 satisfying𝑈′ ⊆ 𝑈 and a natural number
𝑟 ′ such that for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 ((ind 𝜄 𝜙)𝑠,𝑠′ ) = supp𝐻 (𝜙𝑠,𝑠′ ) the
implication

(21.91) 𝑔 · 𝑗 ◦ 𝜋(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ 𝑗 ◦ 𝜋′ (𝑠′) ∈ 𝑈′

holds.
Suppose that (𝑔, 𝑥) ∉ im( 𝑗). Then 𝑈′ = 𝑔 · im( 𝑗) is an open 𝐺 (𝑔,𝑥 ) -invariant

neighborhood of (𝑔, 𝑥) satisfying 𝑈′ ∩ im( 𝑗) = ∅. Then the implication (21.91) is
satisfied for trivial reasons since supp𝐺 ((ind 𝜄 𝜙)𝑠,𝑠′ ) = supp𝐻 (𝜙𝑠,𝑠′ ) ⊆ 𝐻 holds and
ℎ · 𝑗 ◦ 𝜋(𝑠) belongs to im( 𝑗) and hence never belongs to𝑈′ for ℎ ∈ 𝐻.

Next we treat the case (𝑔, 𝑥) ∈ im( 𝑗), or, equivalently, the case 𝑔 = 𝑒. Since 𝜙
satisfies continuous control and 𝑗−1 (𝑈) is an open 𝐻𝑥-invariant neighborhood of 𝑥,
we can find an open 𝐻𝑥-invariant neighborhood𝑉 ′ of 𝑥 in 𝑋 with𝑉 ′ ⊆ 𝑗−1 (𝑈) such
that for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and ℎ ∈ supp𝐻 (𝜙𝑠,𝑠′ ) the implication

ℎ · 𝜋(𝑠) ∈ 𝑈′, 𝜂(𝑠) ≥ 𝑟 ′ =⇒ 𝜋′ (𝑠′) ∈ 𝑗−1 (𝑈)

holds. Put 𝑈′ = 𝑗 (𝑉). Then (21.91) is satisfied for the open 𝐺 𝑗 (𝑥 ) -invariant neigh-
borhood𝑈′ of 𝑗 (𝑥) in ind 𝜄 𝑋 and the number 𝑟 ′ above.

One easily checks that the functor ind 𝜄 of (21.90) induces for every 𝐻-𝐶𝑊-pair
(𝑋, 𝐴) functors of additive categories

ind 𝜄 : O𝐻 (𝑋, 𝐴;B⟨𝐻⟩) → O𝐺 (ind 𝜄 𝑋, ind 𝜄 𝐴;B);(21.92)
ind 𝜄 : T 𝐻 (𝑋, 𝐴;B⟨𝐻⟩) → O𝐺 (ind 𝜄 𝑋, ind 𝜄 𝐴;B);(21.93)
ind 𝜄 : D𝐻 (𝑋, 𝐴;B⟨𝐻⟩) → D𝐺 (ind 𝜄 𝑋, ind 𝜄 𝐴;B).(21.94)

Proposition 21.95. For every 𝐻-𝐶𝑊-pair (𝑋, 𝐴) and every strong category with
𝐺-support B over 𝐺, the functor ind 𝜄 of (21.94) induces a weak homotopy equiva-
lence

K(ind 𝜄) : K(D𝐻 (𝑋, 𝐴;B⟨𝐻⟩)) ≃−→ K(D𝐺 (ind 𝜄 𝑋, ind 𝜄 𝐴;B)).

Proof. We offer two proofs, a short one using basic facts about𝐺-homology theories,
and one direct proof which illustrates the role of the condition continuous control.

We can view the functors sending an 𝐻-𝐶𝑊-pair to the Z-graded abelian groups
𝐾∗ (D𝐻 (𝑋, 𝐴;B⟨𝐻⟩)) and 𝐾∗ (D𝐺 (ind 𝜄 𝑋, ind 𝜄 𝐴;B)) as 𝐻-homology theories.
Then we get a natural transformation of 𝐻-homology theories by

K∗ (ind 𝜄) : 𝐾∗ (D𝐻 (𝑋, 𝐴;B⟨𝐻⟩)) → 𝐾∗ (D𝐺 (ind 𝜄 𝑋, ind 𝜄 𝐴;B)).
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In order to show that this is an isomorphism for every 𝐶𝑊-pair (𝑋, 𝐴), it suffices
to do this in the special case 𝑋 = 𝐻/𝐾 and 𝐴 = ∅ for every subgroup 𝐾 ⊆ 𝐻, see
Theorem 12.6. We have already constructed isomorphisms, see Proposition 21.70
and Proposition 21.81,

𝐾∗ (D𝐻 (𝐻/𝐾;B⟨𝐻⟩)) �−→ 𝐾∗−1
(
((B⟨𝐻⟩)⟨𝐾⟩)⊕

)
= 𝐾∗−1 (B⟨𝐾⟩⊕),

and
𝐾∗ (D𝐺 (ind 𝜄 𝐻/𝐾;B)) = 𝐾∗ (D𝐺 (𝐺/𝐾;B)) �−→ 𝐾∗−1 (B⟨𝐾⟩⊕).

Under these identifications

K∗ (ind 𝜄) : 𝐾∗ (D𝐻 (𝐻/𝐾;B⟨𝐻⟩)) → 𝐾∗ (D𝐺 (ind 𝜄 𝐻/𝐾;B))

becomes the identity on 𝐾∗−1 (B⟨𝐾⟩⊕). This finishes the first proof of Proposi-
tion 21.95.

Next we present the second proof. Because of Proposition 21.27 we can assume
without loss of generality 𝐴 = ∅. It suffices to show that the functor of (21.94)

ind 𝜄 : D𝐻 (𝑋;B⟨𝐻⟩) → D𝐺 (ind 𝜄 𝑋;B).

is an equivalence of additive categories.
We first show that ind 𝜄 is full and faithful, in other words, that for two objects

B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋, 𝜂′,B′) in D𝐻 (𝑋;B⟨𝐻⟩) the map induced by ind 𝜄

(21.96) morD𝐻 (𝑋;B⟨𝐻 ⟩) (B,B′) → morD𝐺 (ind𝜄 𝑋;B) (ind 𝜄 (B), ind 𝜄 (B′))

is bijective. The elementary proof of injectivity is left to the reader. Surjectivity is
proved a follows.

Recall ind 𝜄 (B) = (𝑆, 𝑗 ◦ 𝜋, 𝜂,B). Consider any element in the target of (21.96).
Choose a morphism 𝜙′ : (𝑆, 𝑗 ◦ 𝜋, 𝜂,B) → (𝑆′, 𝑗 ◦ 𝜋′, 𝜂′,B′) in O𝐺 (ind 𝜄 𝑋;B)
representing it. Next we show that we can assume without loss of generality

(21.97) supp𝐺 (𝜙′𝑠,𝑠′ ) ⊆ 𝐻 for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′.

Consider 𝑥 ∈ 𝑋 . Since 𝜙′ satisfies continuous control and im( 𝑗) is an open 𝐺 𝑗 (𝑥 ) -
invariant neighborhood of 𝑗 (𝑥) in ind 𝜄 𝑋 , we conclude from Lemma 21.10 (ii) that
there are an open 𝐺 𝑗 (𝑥 ) -invariant neighborhood 𝑈′𝑥 of 𝑗 (𝑥) in ind 𝜄 𝑋 with 𝑈′𝑥 ⊆
im( 𝑗) and a natural number 𝑟 ′𝑥 such that for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ supp𝐺 (𝜙′𝑠,𝑠′ )
the implication

(21.98) 𝑗 ◦ 𝜋′ (𝑠) ∈ 𝑈′𝑥 , 𝜂′ (𝑠′) ≥ 𝑟 ′𝑥 =⇒ 𝑔 · 𝑗 ◦ 𝜋(𝑠) ∈ im( 𝑗)

holds. Since B′ satisfies compact support over 𝑋 , there is a compact subset 𝐶 ⊆ 𝑋
with im(𝜋) ⊆ 𝐶. Since 𝑗 (𝐶) ⊆ ⋃

𝑥∈𝐶 𝑈
′
𝑥 and 𝑗 (𝐶) ⊆ ind 𝜄 𝑋 is compact, there is

a finite subset {𝑥1, 𝑥2, . . . , 𝑥𝑚} ⊆ 𝐶 satisfying 𝑗 (𝐶) ⊆ ⋃𝑚
𝑖=1𝑈

′
𝑥𝑖

. Define a natural
number 𝑟 ′ := max{𝑟 ′𝑥𝑖 | 𝑖 = 1, 2, . . . , 𝑚}. Then we get for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and
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𝑔 ∈ supp𝐺 (𝜙′𝑠,𝑠′ ) the implication

(21.99) 𝜂′ (𝑠′) ≥ 𝑟 ′ =⇒ 𝑔 · 𝑗 ◦ 𝜋(𝑠) ∈ im( 𝑗)

since for any 𝑠′ ∈ 𝑆′ there exists an 𝑖 ∈ {1, 2, . . . , 𝑚} with 𝑗 ◦𝜋(𝑠′) ∈ 𝑈′𝑥𝑖 and 𝑟 ′ ≥ 𝑟 ′
𝑖

and we can apply the implication (21.98). Since 𝜙′ satisfies bounded control over N,
we can modify 𝜙′ without changing the class which it represent in O𝐺′ (ind 𝜄 𝑋;B′)
such that for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑠′, and 𝑔 ∈ supp𝐺′ (𝜙′𝑠,𝑠′ ) we have 𝑔 · 𝑗 ◦ 𝜋(𝑠) ∈ im( 𝑗).
Now (21.97) follows since 𝑔 · 𝑗 ◦ 𝜋(𝑠) ∈ im( 𝑗) =⇒ 𝑔 ∈ 𝐻.

We conclude from (21.97) that 𝜙′
𝑠,𝑠′ belongs to B⟨𝐻⟩. Define a morphism

𝜙 : B → B′ in O𝐻 (𝑋;B⟨𝐻⟩) by 𝜙𝑠,𝑠′ = 𝜙′
𝑠,𝑠′ for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′. One easily

checks that 𝜙 satisfies finite support over 𝐻, bounded control over N, and contin-
uous control since 𝜙′ satisfies finite support over 𝐺, bounded control over N, and
continuous control. Hence 𝜙 is well-defined. Its class in D𝐻 (𝑋;B⟨𝐻⟩) is mapped
by construction under the map (21.96) to the class inD𝐺 (ind 𝜄 𝑋;B) represented by
𝜙′. This shows that the map (21.96) is bijective.

It remains to show that for every object B′ = (𝑆′, 𝜋′, 𝜂′,B′) in O𝐺 (ind 𝜄 𝑋;B)
there is an object B = (𝑆, 𝜋, 𝜂,B) in O𝐻 (𝑋;B⟨𝐻⟩) and an isomorphism
𝜙 : ind 𝜄 (B)

�−→ B′ in O𝐺 (ind 𝜄 𝑋;B). We put 𝑆 = 𝑆′ and 𝜂 = 𝜂′. Choose func-
tions 𝛾 : 𝑆 → 𝐺 and 𝜋 : 𝑆 → 𝑋 such that 𝛾(𝑠) · 𝑗 ◦ 𝜋(𝑠) = 𝜋′ (𝑠) holds for all
𝑠 ∈ 𝑆. Define B : 𝑆 → ob(B) by sending 𝑠 to 𝛾(𝑠)−1 · B′ (𝑠). Then we can define
the desired isomorphism 𝜙 by putting 𝜙𝑠,𝑠′ = 0 for 𝑠, 𝑠′ ∈ 𝑆 with 𝑠 ≠ 𝑠′ and by
𝜙𝑠,𝑠 = Ω𝛾 (𝑠) (B(𝑠)) : B(𝑠)

�−→ B′ (𝑠) for 𝑠 ∈ 𝑆. The proof that 𝜙 is well-defined is a
mild generalization of the proof of Lemma 21.14. This finishes the second proof of
Proposition 21.95. ⊓⊔

21.10 The Version with Zero Control over N

Next we deal with a version D𝐺0 (𝑋;B) of D𝐺 (𝑋;B) where we have zero-control
over N.

21.10.1 Control Categories with Zero Control in the N-Direction

Definition 21.100 (D𝐺0 (𝑋;B)). Define O𝐺0 (𝑋) to be the additive subcategory of
O𝐺 (𝑋), which has the same set of objects and for which a morphism
𝜙 : B = (𝑆, 𝜋, 𝜂,B) → B′ = (𝑆′, 𝜋′, 𝜂′,B′) in O𝐺 (𝑋) belongs to O𝐺0 (𝑋) if and
only if the implication

𝜙𝑠,𝑠′ ≠ 0 =⇒ 𝜂(𝑠) = 𝜂(𝑠′)

holds for all 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′.
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Let T𝐺0 (𝑋;B) be the full subcategory of O0
𝐺
(𝑋) consisting of those objects

B = (𝑆, 𝜋, 𝜂,B) for which there exists a natural number 𝑛 such that B(𝑠) = 0 holds
for 𝑠 ∈ 𝑆 with 𝜂(𝑠) ≥ 𝑛.

Define D𝐺0 (𝑋) to be the quotient category O𝐺0 (𝑋)/T
𝐺

0 (𝑋) in the sense of Defi-
nition 8.42.

Lemma 21.101. The inclusion T𝐺0 (𝑋) → O𝐺0 (𝑋) is a Karoubi filtration in the
sense of Definition 8.43. In particular, we get a weak homotopy fibration sequence

T𝐺0 (𝑋) → O
𝐺
0 (𝑋) → D

𝐺
0 (𝑋).

Proof. The proof of Lemma 21.17 carries over directly. Now apply Theorem 8.46 (i).
⊓⊔

Exercise 21.102. Show for 𝑚 ∈ Z

𝐾𝑚 (D {1}0 ({•})) �
( ∞∏
𝑛=0

𝐾𝑚 (B⊕)
)/ ( ∞⊕

𝑛=0
𝐾𝑚 (B⊕)

)
.

Let 𝜌 : N → N be a function which is finite-to-one, i.e., the preimage of every
element in N under 𝜌 is finite. Next we construct a functor of additive categories

𝑉 ′𝜌 (𝑋) : O𝐺0 (𝑋) → O
𝐺
0 (𝑋)

which is essentially given by moving an object at the position 𝑛 to the position
𝜌(𝑛) and leaving the position in 𝑋 fixed. More precisely, 𝑉𝜌 sends an object B =

(𝑆, 𝜋, 𝜂,B) to the object 𝑉𝜌 (𝑋) (B) = (𝑆, �̂�, 𝜂, B̂) given by

𝑆 = 𝑆;
�̂� = 𝜋;
𝜂 = 𝜌 ◦ 𝜂;
B̂ = B.

Its definition on morphisms is the tautological one, i.e., a morphism
𝜙 : B = (𝑆, 𝜋, 𝜂,B) → B = (𝑆′, 𝜋′, 𝜂′,B′) is sent to the morphism 𝑉 ′𝜌 (𝜙) given
by 𝑉 ′𝜌 (𝑋) (𝜙)𝑠,𝑠′ = 𝜙𝑠,𝑠′ for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆.

We have to check that this is well-defined. Since 𝜌 is finite-to-one, the new object
𝑉 ′𝜌 (𝑋) (B) satisfies the conditions compact support over 𝑋 and local finiteness over
N as B does. For every natural number 𝑁 , there exists a natural number 𝑁 ′ such that
the implication 𝜌(𝑛) ≥ 𝑁 ′ =⇒ 𝑛 ≥ 𝑁 holds for every 𝑛 ∈ N, since 𝜌 is finite-to-
one. Hence the new morphism 𝑉 ′𝜌 (𝑋) (𝜙) satisfies finite 𝐺-support and continuous
control as 𝜙 does. Obviously we have for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′

𝑉 ′𝜌 (𝑋) (𝜙)𝑠,𝑠′ ≠ 0 =⇒ 𝜙𝑠,𝑠′ ≠ 0 =⇒ 𝜂(𝑠) = 𝜂′ (𝑠′)
=⇒ 𝜌 ◦ 𝜂(𝑠) = 𝜌 ◦ 𝜂′ (𝑠′) =⇒ 𝜂(𝑠) = 𝜂′ (𝑠′).
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Since 𝑉 ′𝜌 (𝑋) maps T𝐺0 (𝑋) to T𝐺0 (𝑋;B), it induces a functor of additive cate-
gories

𝑉𝜌 (𝑋) : D𝐺0 (𝑋) → D
𝐺
0 (𝑋).(21.103)

21.10.2 Relating the 𝑲-Theory of D𝑮 and D𝑮
0

We have explained in Section 21.4 that D𝐺 (𝑋;B) yields a covariant functor
D𝐺 : 𝐺-CW-COM → ADDCAT . One easily checks that the same construction
yields a covariant functor

(21.104) D𝐺0 : 𝐺-CW-COM→ ADDCAT .

Composition with the functor non-connective 𝐾-theory yields the covariant functors

K ◦ D𝐺 : CW-COM→ SPECTRA;(21.105)
K ◦ D𝐺0 : CW-COM→ SPECTRA.(21.106)

By precomposing with the inclusion Or(𝐺) → CW-COM, we get covariant
Or(𝐺)-spectra

KD
𝐺

: Or(𝐺) → SPECTRA;(21.107)
KD

𝐺
0 : Or(𝐺) → SPECTRA.(21.108)

The main result of this section is

Theorem 21.109 (Relating the 𝐾-theory of D𝐺 (𝑋) and D𝐺0 ). Define two func-
tions 𝜌𝑂, 𝜌𝐸 : N→ N by

𝜌𝑂 (𝑛) =
{
𝑛+2

2 if 𝑛 is even;
𝑛+1

2 if 𝑛 is odd;

𝜌𝐸 (𝑛) =
{
𝑛
2 if 𝑛 is even;
𝑛+1

2 if 𝑛 is odd.

Let HPO be the covariant functor 𝐺-CW-COM→ SPECTRA given for a 𝐺-𝐶𝑊-
complex 𝑋 by the homotopy pushout
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K(D𝐺0 (𝑋))
K(𝑉𝜌𝐸 (𝑋) ) //

K(𝑉𝜌𝑂 (𝑋) )
��

K(D𝐺0 (𝑋))

��
K(D𝐺0 (𝑋)) // HPO(𝑋).

Then there exists a zigzag of weak homotopy equivalences of covariant functors
𝐺-CW-COM→ SPECTRA from HPO to K ◦ D𝐺 .

The remainder of this section is devoted to the proof of Theorem 21.109. This
needs some preparation.

For a subset 𝐽 ⊆ N define

O𝐺𝐽 (𝑋) ⊆ O
𝐺 (𝑋);(21.110)

D𝐺𝐽 (𝑋) ⊆ D
𝐺 (𝑋),(21.111)

to be the full subcategory of O𝐺 (𝑋) and D𝐺 (𝑋) respectively consisting of those
objects B = (𝑆, 𝜋, 𝜂,B) for which im(𝜂) ⊆ 𝐽 holds.

Fix a sequence of natural numbers 0 = 𝑖0 < 𝑖1 < 𝑖2 < 𝑖3 < · · · such that
lim→∞ (𝑖 𝑗 − 𝑖 𝑗−1) = ∞ holds, for instance we can take 𝑖 𝑗 = 𝑗 ( 𝑗+1)

2 , since then 𝑖0 = 0
and 𝑖 𝑗 − 𝑖 𝑗−1 = 𝑗 holds for 𝑗 ≥ 1. Define N 𝑗 := {𝑖 ∈ N | 𝑖 𝑗 ≤ 𝑖 ≤ 𝑖 𝑗+1}. Put

𝐸 :=
∞⋃
𝑗=0

N2 𝑗 ;

𝑂 :=
∞⋃
𝑗=0

N2 𝑗+1;

𝐼 := {𝑖1, 𝑖2, . . .};
𝐼𝐸 := {𝑖2, 𝑖4, . . .};
𝐼𝑂 := {𝑖1, 𝑖3, 𝑖5, . . .}.

Note thatD𝐺N (𝑋) = D
𝐺 (𝑋), N = 𝐸 ∪𝑂, 𝐸 ∩𝑂 = 𝐼, 𝐼 = 𝐼𝑂 ∪ 𝐼𝐸 , and 𝐼𝑂 ∩ 𝐼𝐸 = ∅

hold.
Consider the following commutative diagram of additive categories

(21.112) D𝐺
𝐼
(𝑋) //

��

D𝐺
𝐸
(𝑋)

��
D𝐺
𝑂
(𝑋) // D𝐺 (𝑋)

whose arrows are all inclusions of full additive subcategories and which is natural
in 𝑋 .
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Lemma 21.113.

(i) The following inclusions are Karoubi filtrations

D𝐺𝐼 (𝑋) → D
𝐺
𝐸 (𝑋);

D𝐺𝐼𝐸 (𝑋) → D
𝐺
𝑂 (𝑋);

D𝐺𝐼𝑂 (𝑋) → D
𝐺
𝐸 (𝑋);

D𝐺𝑂 (𝑋) → D
𝐺 (𝑋);

(ii) The functor induced on the Karoubi quotients

D𝐺𝐸 (𝑋)/D
𝐺
𝐼 (𝑋) → D

𝐺 (𝑋)/D𝐺𝑂 (𝑋)

is an equivalence of additive categories;
(iii) The diagram (21.112) is weakly homotopy cocartesian.

Proof. (i) We only show that the inclusionD𝐺
𝐼
(𝑋) → D𝐺

𝐸
(𝑋) is a Karoubi filtration,

the proof for the other inclusions is an obvious variation. Consider an object B =

(𝑆, 𝜋, 𝜂,B) in O𝐺
𝐸
(𝑋), objects U = (𝑆U, 𝜋U, 𝜂U,BU) and V = (𝑆V, 𝜋V, 𝜂V,BV) in

O𝐺 (𝑋)𝐼 , and morphisms 𝜙 : B→ U and 𝜓 : V→ B in D𝐺
𝐸
(𝑋). Let the morphisms

𝜙 : B→ U and𝜓 : V→ B inO𝐺
𝐸
(𝑋) be representatives of 𝜙 and𝜓. Choose a number

𝑙 such that 𝜙𝑠,𝑡 = 0 holds for 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆U with |𝜂(𝑠) − 𝜂U (𝑡) | ≥ 𝑙, and 𝜓𝑟 ,𝑠 = 0
holds for 𝑟 ∈ 𝑆V and 𝑠 ∈ 𝑆 with |𝜂(𝑠) − 𝜂V (𝑟) | ≥ 𝑙. Since lim 𝑗→∞ (𝑖 𝑗 − 𝑖 𝑗−1) = ∞,
we can find a natural number 𝑗0 ≥ 1 such that (𝑖 𝑗 − 𝑖 𝑗−1) > 2𝑙 + 1 for 𝑗 ≥ 𝑗0 holds.
We can change the representatives 𝜙 and 𝜓 such that 𝜙𝑠,𝑡 = 𝜓𝑟 ,𝑠 = 0 holds for 𝑠 ∈ 𝑆,
𝑡 ∈ 𝑆U, and 𝑟 ∈ 𝑆V, provided that 𝜋N (𝑠) ≤ 𝑖 𝑗0 is true. Hence we get for every natural
number 𝑗 the following implications for 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑆U, and 𝑟 ∈ 𝑆V

𝜂(𝑠) ∈ N𝑖2 𝑗 , 𝜋U
N (𝑡) ∈ 𝐼, 𝜙𝑠,𝑡 ≠ 0

=⇒ 𝑖2 𝑗 ≤ 𝜂(𝑠) ≤ 𝑖2 𝑗 + 𝑙 or 𝑖2 𝑗+1 − 𝑙 ≤ 𝜂(𝑠) ≤ 𝑖2 𝑗+1;

𝜂(𝑠) ∈ N𝑖2 𝑗 , 𝜋V
N (𝑟) ∈ 𝐼, 𝜓𝑟 ,𝑠 ≠ 0

=⇒ 𝑖2 𝑗 ≤ 𝜂(𝑠) ≤ 𝑖2 𝑗 + 𝑙 or 𝑖2 𝑗+1 − 𝑙 ≤ 𝜂(𝑠) ≤ 𝑖2 𝑗+1.

Define new objects B⊥ = (𝑆⊥, 𝜋⊥, 𝜂⊥,B⊥) and B′ = (𝑆′, 𝜋′, 𝜂′,B′) in O𝐺
𝐸
(𝑋) by

putting

𝑆⊥ = {𝑠 ∈ 𝑆 | 𝜂(𝑠) < 𝑖2 𝑗0 }
⨿ {𝑠 ∈ 𝑆 | 𝑖2 𝑗 + 𝑙 < 𝜂(𝑠) < 𝑖2 𝑗+1 − 𝑙, for some 𝑗 ∈ N with 2 𝑗 ≥ 𝑗0};

𝜋⊥ = 𝜋 |𝑆⊥ ;
𝜂⊥ = 𝜂 |𝑆⊥ ;
B⊥ = B|𝑆⊥ ;
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𝑆′ = {𝑠 ∈ 𝑆 | 𝑖2 𝑗 ≤ 𝜂(𝑠) ≤ 𝑖2 𝑗 + 𝑙 or 𝑖2 𝑗+1 − 𝑙 ≤ 𝜂(𝑠) ≤ 𝑖2 𝑗+1

for some 𝑗 ∈ N with 2 𝑗 ≥ 𝑗0};
𝜋′ = 𝜋 |𝑆′ ;
𝜂′ = 𝜂 |𝑆′ ;
B′ = B|𝑆′ .

Since 𝑆 = 𝑆′ ⨿ 𝑆⊥, there are obvious morphisms 𝑖′ : B′ → B and 𝑖⊥ : B⊥ → B
in O𝐺

𝐸
(𝑋) given by the morphisms idB′ (𝑠′ ) and idB⊥ (𝑠⊥ ) for 𝑠′ ∈ 𝑆′ and 𝑠⊥ ∈ 𝑆⊥

such that 𝑖 ⊕ 𝑖⊥ : B′ ⊕ B⊥ → B is an isomorphism. Moreover, there are morphisms
𝜙′ : B′ → U and 𝜓′ : U → B′ in O𝐺

𝐸
(𝑋) such that 𝜙 ◦ (𝑖 ⊕ 𝑖⊥) = 𝜙′ ◦ pr′ and

𝑖′ ◦ 𝜓′ = 𝜓 holds, where pr′ : B′ ⊕ B⊥ → B′ is the canonical projection.
Define the object BU = (𝑆U , 𝜋U , 𝜂U ,BU) in O𝐺 (𝑋)𝐼 by putting for 𝑠′ ∈ 𝑆′

𝑆U = 𝑆′

𝜋U = 𝜋′;

𝜂U (𝑠′) =
{
𝑖2 𝑗 if 𝑖2 𝑗 ≤ 𝜂(𝑠′) ≤ 𝑖2 𝑗 + 𝑙;
𝑖2 𝑗+1 if 𝑖2 𝑗+1 − 𝑙 ≤ 𝜂(𝑠′) ≤ 𝑖2 𝑗+1;

BU = B′.

We can consider BU also as an object in O𝐺
𝐸
(𝑋). Since 𝑆U = 𝑆′ and BU = B′,

one easily checks that taking for 𝑠 ∈ 𝑆′ the identity idB′ (𝑠) yields well-defined
mutually inverse isomorphisms 𝑢 : BU → B′ and 𝑣 : B′ → BU in O𝐺

𝐸
(𝑋). Define

morphisms in O𝐺
𝐸
(𝑋)

𝑖U := 𝑖′ ◦ 𝑢 : BU → B;
prU := 𝑣 ◦ pr′ : B → BU ;
𝜙U := 𝜙′ ◦ 𝑢 : BU → U;
𝜓U := 𝑣 ◦ 𝜓′ : V → BU .

One easily checks that the images of 𝑖U , 𝑖⊥, prU , 𝜙U , and 𝜓U under the projection
O𝐺
𝐸
(𝑋) → D𝐺

𝐸
(𝑋) yield the data required for a Karoubi filtration.

(ii) Next we show that for two objects B = (𝑆, 𝜋, 𝜂,B) and B′ = (𝑆′, 𝜋′, 𝜂′,B′) in
O𝐺
𝐸
(𝑋) the obvious map

(21.114) morD𝐺
𝐸
(𝑋)/D𝐺

𝐼
(𝑋) (B,B′) → morD𝐺 (𝑋)/D𝐺

𝑂
(𝑋) (B,B′)

is bijective.
We begin with the proof of surjectivity. It is based on the following construction.

Consider a morphism 𝜙 : B → B′ in O𝐺 (𝑋). Since N = 𝐸 ∪ 𝑂, one can construct
objects B𝐸 and B′𝐸 in O𝐺

𝐸
(𝑋) and B𝑂 and B′𝑂 in O𝐺

𝑂
(𝑋) such that we get in O𝐺 (𝑋)

identifications B𝑂 ⊕ B𝐸 = B and B′𝑂 ⊕ B′𝐸 = B′. Then 𝜙 can be written as
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𝜙 =

(
𝑎 𝑏

𝑐 𝑑

)
: B𝑂 ⊕ B𝐸 → B′𝑂 ⊕ B′𝐸 .

Define a morphism in O𝐺 (𝑋) by the composite

𝜓 : B𝑂 ⊕ B𝐸

(
id 0
0 𝑏

)
−−−−−→ B𝑂 ⊕ B′𝑂

(
𝑎 id
𝑐 0

)
−−−−−→ B′𝑂 ⊕ B′𝐸 .

Then B𝑂 ⊕ B′𝑂 is an object in D𝐺
𝑂
(𝑋), the difference 𝜙 − 𝜓 is of the shape

(
0 0
0 𝑑

)
,

and 𝑑 : B𝐸 → B′𝐸 belongs to O𝐺
𝐸
(𝑋).

It remains to prove injectivity. Consider a morphism [𝜙] : B → B′ in
D𝐺
𝐸
(𝑋)/D𝐺

𝐼
(𝑋) whose image under (21.114) is zero. We have to show that [𝜙]

itself is zero. Choose a representative 𝜙 in D𝐺
𝐸
(𝑋) of [𝜙]. By assumption there is

an object U = (𝑆U, 𝜋U𝜂U,BU) in O𝐺
𝑂
(𝑋) such that 𝜈 ◦ 𝜇 = 𝜙 holds in D𝐺 (𝑋) for

appropriate morphisms 𝜇 : B → U and 𝜈 : U → B′. Choose a representative 𝜙 in
O𝐺
𝐸
(𝑋) of 𝜙, and representatives 𝜇 and 𝜈 in O𝐺 (𝑋) of 𝜇 and 𝜈 respectively. Fix a

number 𝑙 such that for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑡 ∈ 𝑆U the implications

𝜙𝑠,𝑠′ ≠ 0 =⇒ |𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑙;
𝜇𝑠,𝑡 ≠ 0 =⇒ |𝜂(𝑠) − 𝜂U (𝑡) | ≤ 𝑙;
𝜈𝑡 ,𝑠′ ≠ 0 =⇒ |𝜂U (𝑡) − 𝜂′ (𝑠′) | ≤ 𝑙,

hold. Since lim 𝑗→∞ (𝑖 𝑗 − 𝑖 𝑗−1) = ∞, we can find a natural number 𝑗0 ≥ 1 such that
(𝑖 𝑗 − 𝑖 𝑗−1) > 2𝑙 + 1 holds for 𝑗 ≥ 𝑗0. By possibly enlarging 𝑗0 we can additionally
arrange that 𝜙𝑠,𝑠′ =

∑
𝑡∈𝑆U 𝜈𝑡 ,𝑠′ ◦𝜇𝑠,𝑡 holds for 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′ with 𝜂(𝑠), 𝜋′N (𝑠

′) ≥ 𝑖 𝑗0 .
Define an object 𝑉 = (𝑆V, 𝜋V, 𝜂V,BV) in D𝐺

𝐼
(𝑋) by putting

𝑆V = {𝑡 ∈ 𝑆U | 𝜂(𝑡) ≥ 𝑖 𝑗0 and ∃𝑛 ∈ 𝐼 with |𝑛 − 𝜂U (𝑡) | ≤ 𝑙};
𝜋V = 𝜋U |𝑆V ;

𝜂V (𝑡) = 𝑛 for 𝑡 ∈ 𝑆V and 𝑛 ∈ 𝐼 with |𝑛 − 𝜂U (𝑡) | ≤ 𝑙;
BV = BU |𝑆V .

Define morphisms 𝛼 : B → V and 𝛽 : V → B′ in O𝐺
𝐸
(𝑋) by putting for 𝑠 ∈ 𝑆,

𝑠′ ∈ 𝑆′, and 𝑡 ∈ 𝑆V

𝛼𝑠,𝑡 = 𝜇𝑠,𝑡 ;
𝛽𝑡 ,𝑠′ = 𝜈𝑡 ,𝑠′ .

Then 𝜙𝑠,𝑠′ =
∑
𝑡∈𝑆U 𝛽𝑡 ,𝑠′ ◦ 𝛼𝑠,𝑡 holds for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ with 𝜂(𝑠), 𝜂(𝑠′) ≥ 𝑖 𝑗0 .

Hence we get 𝜙 = 𝛽 ◦ 𝛼 in D𝐺
𝐸
(𝑋). Since V belongs to D𝐺

𝐼
(𝑋), we get [𝜙] = 0 in

D𝐺
𝐸
(𝑋)/D𝐺

𝐼
(𝑋). Hence (21.114) is bijective.
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It remains to construct for an object B = (𝑆, 𝜋, 𝜂,B) in O𝐺 (𝑋) an object B′ in
O𝐺
𝐸
(𝑋) and morphisms 𝑖 : B′ → B and 𝑟 : B→ B′ inO𝐺 (𝑋) such that [𝑟]◦[𝑖] = idB′

and [𝑖] ◦ [𝑟] = idB hold in D𝐺 (𝑋)/D𝐺
𝑂
(𝑋). We define B′ = (𝑆′, 𝜋′, 𝜂′,B′) by

𝑆′ = {𝑠 ∈ 𝑆 | 𝜂(𝑠) ∈ 𝐸};
𝜋′ = 𝜋 |𝑆′ ;
𝜂′ = 𝜂 |𝑆′ ;
B′ = B|𝑆′ ,

and the morphisms 𝑖 and 𝑟 for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ by

𝑖𝑠′ ,𝑠 = 𝑟𝑠,𝑠′ =

{
idB(𝑠′ ) if 𝑠 = 𝑠′;
0 otherwise.

Obviously 𝑟 ◦ 𝑖 = idB′ holds already in O𝐺 (𝑋), which implies [𝑟] ◦ [𝑖] = id𝐵′ in
D𝐺 (𝑋)/D𝐺

𝑂
(𝑋). Define an object U = (𝑆U, 𝜋U, 𝜂U,BU) in O𝐺

𝑂
(𝑋) by

𝑆U = {𝑠 ∈ 𝑆 | 𝜂(𝑠) ∉ 𝐸};
𝜋U = 𝜋 |𝑠U ;
𝜂U = 𝜂 |𝑠U ;
B′ = B|𝑠U .

Obviously 𝑖 ◦ 𝑟 − idB = idU holds in O𝐺 (𝑋). This implies [𝑖] ◦ [𝑟] = idB in
D𝐺 (𝑋)/D𝐺

𝑂
(𝑋).

(iii) This follows from assertions (i) and (ii) and Theorem 8.46. This finishes the
proof of Lemma 21.113. ⊓⊔

Lemma 21.115. The inclusions D𝐺
𝐼𝑂
(𝑋) → D𝐺

𝐸
(𝑋) and D𝐺

𝐼𝐸
(𝑋) → D𝐺

𝑂
(𝑋)

induce weak equivalences

K(D𝐺𝐼𝑂 (𝑋))
≃−→ K(D𝐺𝐸 (𝑋));

K(D𝐺𝐼𝐸 (𝑋))
≃−→ K(D𝐺𝑂 (𝑋)).

Proof. We give the proof only for the first map, the one for the second is com-
pletely analogous. We have already shown in Lemma 21.113 (i) that the inclu-
sion D𝐺

𝐼𝑂
(𝑋) → D𝐺

𝐸
(𝑋) is a Karoubi filtration. Hence it suffices to show that

K
(
D𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋)

)
is weakly contractible. This we will do by constructing an

Eilenberg swindle as follows.
We define a functor of additive categories

(21.116) SH: D𝐺𝐸 (𝑋)/D
𝐺
𝐼𝑂
(𝑋) → D𝐺𝐸 (𝑋)/D

𝐺
𝐼𝑂
(𝑋).
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The idea is to move the objects one position to the right in the N-direction, discarding
the objects sitting at right endpoints of the intervals N2 𝑗 since they would be moved
outside the set 𝐸 , and leaving the position in the 𝑋-direction fixed. Since the union
of the right endpoints of the intervals N2 𝑗 for 𝑗 ≥ 0 is 𝐼𝑂, this gives a well-defined
functor. Here are more details.

An object B = (𝑆, 𝜋, 𝜂,B) ofD𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋), which is the same as an object in

O𝐺
𝐸
(𝑋), is sent to the object SH(B) = (𝑆SH, 𝜋SH, 𝜂SH,BSH) in O𝐺

𝐸
(𝑋) given by

𝑆SH = {𝑠 ∈ 𝑆 | 𝜂(𝑠) ∈ 𝐸 \ 𝐼𝑂};
𝜋SH = 𝜋 |𝑆SH ;

𝜂SH (𝑠) = 𝜂(𝑠) + 1 for 𝑠 ∈ 𝑆SH;
BSH = B|𝑆SH .

Consider a morphism [𝜙] : B = (𝑆, 𝜋, 𝜂,B) → B′ = (𝑆′, 𝜋′, 𝜂′,B′) in
D𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋). Let 𝜙 : B → B′ be a morphism in O𝐺

𝐸
(𝑋) representing [𝜙].

Define a morphism SH(𝜙) in O𝐺
𝐸
(𝑋) by

SH(𝜙)𝑠,𝑠′ = 𝜙𝑠,𝑠′ for 𝑠 ∈ 𝑆SH, 𝑠′ ∈ (𝑆′)SH.

Define SH(𝜙) to be the class [SH(𝜙)] of SH(𝜙). Note that SH(𝜙) depends on the
choice of 𝜙 ∈ [𝜙]. We leave it to the reader to check that [SH(𝜙)] depends only
on [𝜙]. Moreover, let [𝜙] : B→ B′ and [𝜓] : B′ → B′′ be composable morphisms
in D𝐺

𝐸
(𝑋). Choose representatives 𝜙 ∈ [𝜙] and 𝜓 ∈ [𝜓]. Then it is not true

that SH(𝜓) ◦ SH(𝜙) and SH(𝜓 ◦ 𝜙) agree, but one easily checks that the classes
[SH(𝜓) ◦ SH(𝜙)] = [SH(𝜓 ◦ 𝜙)] in D𝐺

𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋) agree. Therefore the functor

announced in (21.116) is well-defined.
Next we construct a natural equivalence

(21.117) 𝑅1 : idD𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋)

�−→ SH

of functors D𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋) → D𝐺

𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋) of additive categories.

We specify for every object B in O𝐺
𝐸
(𝑋) morphisms 𝜙 : B = (𝑆, 𝜋, 𝜂,B) →

SH(B) = (𝑆SH, 𝜋SH, 𝜂SH,BSH) and 𝜓 : SH(B) → B in O𝐺
𝐸
(𝑋) by putting for 𝑠 ∈ 𝑆

and 𝑠SH ∈ 𝑆SH

𝜙𝑠,𝑠SH =

{
idB(𝑠) if 𝑠SH = 𝑠;
0 otherwise;

𝜓𝑠SH ,𝑠 =

{
idB(𝑠) if 𝑠 = 𝑠SH;
0 otherwise.

We have 𝜙 ◦ 𝜓 = idSH(B) in O𝐺
𝐸
(𝑋). We do not have 𝜓 ◦ 𝜙 = idB in O𝐺

𝐸
(𝑋) but

[𝜓 ◦ 𝜙] = [idB] holds in O𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋). Now one easily checks that the natural

equivalence 𝑅1 announced in (21.117) is well-defined.
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Next we define another functor

(21.118) 𝑍 : D𝐺𝐸 (𝑋)/D
𝐺
𝐼𝑂
(𝑋) → D𝐺𝐸 (𝑋)/D

𝐺
𝐼𝑂
(𝑋).

The informal definition is 𝑍 (B) =
⊕∞

𝑚=0 SH𝑚 (B) and analogously for morphisms,
where SH𝑚 is the 𝑚-fold composite of SH. This makes sense since over a given
element in N this direct sum is finite. Here are more details of this definition.

An object B = (𝑆, 𝜋, 𝜂,B) inD𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋), which is the same as an object in

D𝐺
𝐸
(𝑋), is sent to the object 𝑍 (B) = (𝑆𝑍 , 𝜋𝑍 , 𝜂𝑍 ,B𝑍 ) in D𝐺

𝐸
(𝑋) given by

𝑆𝑍 =
∐
𝑗∈N

∐
𝑛∈N2 𝑗

𝑛∐
𝑘=𝑖2 𝑗

𝜂−1 (𝑘);

𝜋𝑍 = 𝜋 |𝑆𝑍 ;

𝜂𝑍 (𝑠) = 𝑛 for 𝑠 ∈
𝑛∐

𝑘=𝑖2 𝑗

𝜂−1 (𝑘);

B𝑍 = B|𝑆𝑍 .

Consider a morphism [𝜙] : B → B′ in D𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋). Let the morphism

𝜙 : B = (𝑆, 𝜋, 𝜂,B) → B′ = (𝑆′, 𝜋′, 𝜂′,B′) in O𝐺
𝐸
(𝑋) be a representative of [𝜙].

Define a morphism 𝑍 (𝜙) in O𝐺
𝐸
(𝑋) by putting for 𝑠 ∈ 𝑆𝑍 and 𝑠′ ∈ (𝑆′)𝑍

𝑍 (𝑠)𝑠,𝑠′ =

𝜙𝑠,𝑠′ if ∃ 𝑗 ∈ N, 𝑛, 𝑛′ ∈ N2 𝑗 with 𝑖2 𝑗 ≤ 𝜂(𝑠) ≤ 𝑛, 𝑖2 𝑗 ≤ 𝜋′ (𝑠′) ≤ 𝑛′

and 𝑛 − 𝜂(𝑠) = 𝑛′ − 𝜂′ (𝑠′);
0 otherwise.

Now define 𝑍 ( [𝜙]) to be [𝑍 (𝜙)].
Next we construct a natural equivalence

(21.119) 𝑅2 : idO𝐺
𝐸
(𝑋) ⊕(SH ◦𝑍) �−→ 𝑍

of functors O𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋) → O𝐺

𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋) of additive categories. The idea

comes from the formula

B ⊕ SH(𝑍 (B)) = B ⊕ SH
( ∞⊕
𝑚=0

SH𝑚 (B)
)

= B ⊕
∞⊕
𝑚=1

SH𝑚 (B) =
∞⊕
𝑚=0

SH𝑚 (B) = 𝑍 (B).

Here are some details of the construction. Note that for an object B = (𝑆, 𝜋, 𝜂,B) in
O𝐺
𝐸
(𝑋) the source of 𝑅2 (B) is given by the quadruple (𝑆′, 𝜋′, 𝜂′,B′) and the target

by the quadruple (𝑆𝑍 , 𝜋𝑍 , 𝜂𝑍 ,B𝑍 ) such that
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𝑆′ = 𝑆 ⨿ (𝑆𝑍 )SH

= 𝑆 ⨿ {𝑠 ∈ 𝑆𝑍 | 𝜂𝑍 (𝑠) ∈ 𝐸 \ 𝐼0}

=
©«
∐
𝑗∈N

𝑖2 𝑗+1∐
𝑛=𝑖2 𝑗

𝜂−1 (𝑛)ª®¬ ⨿
 𝑠 ∈

∐
𝑗∈N

∐
𝑛∈N2 𝑗

𝑛∐
𝑘=𝑖2 𝑗

𝜂−1 (𝑘)

������ 𝜂𝑍 (𝑠) ∈ 𝐸 \ 𝐼𝑂


=
©«
∐
𝑗∈N

𝑖2 𝑗+1∐
𝑛=𝑖2 𝑗

𝜂−1 (𝑛)ª®¬ ⨿
©«
∐
𝑗∈N

∐
𝑛∈N2 𝑗 ,
𝑛≠𝑖2 𝑗+1

𝑛∐
𝑘=𝑖2 𝑗

𝜋−1
N (𝑘)

ª®®®¬
=

©«
∐
𝑗∈N

𝑖2 𝑗+1∐
𝑛=𝑖2 𝑗

𝜂−1 (𝑛)ª®¬ ⨿
©«
∐
𝑗∈N

∐
𝑛∈N2 𝑗 ,
𝑛≠𝑖2 𝑗

𝑛−1∐
𝑘=𝑖2 𝑗

𝜋−1
N (𝑘)

ª®®®¬
=

∐
𝑗∈N

∐
𝑛∈N2 𝑗

𝑛∐
𝑘=𝑖2 𝑗

𝜂−1 (𝑘)

= 𝑆𝑍 .

Note that any element 𝑠 ∈ 𝑆′ belongs to 𝑆. Moreover, under the identification
𝑆′ = 𝑆𝑍 above we have B′ (𝑠) = B𝑍 (𝑠) = B(𝑠) for 𝑠 ∈ 𝑆′. So we can define an
isomorphism in O𝐺

𝐸
(𝑋)

𝑅′2 (B) : B ⊕ (SH ◦𝑍) (B) = (𝑆′, 𝜋′, 𝜂′,B′) → 𝑍 (B) = (𝑆𝑍 , 𝜋𝑍 , 𝜂𝑍 ,B𝑍 )

by putting 𝑅′2 (B)𝑠0 ,𝑠1 = idB(𝑠0 ) if 𝑠0 = 𝑠1 and 𝑅2 (B)𝑠0 ,𝑠1 = 0 if 𝑠0 ≠ 𝑠1 for 𝑠0 ∈ 𝑆′
and 𝑠1 ∈ 𝑆𝑍 . Now define 𝑅2 (B) by [𝑅′2 (B)]. We leave it to the reader to check that
the natural equivalence announced in (21.119) is well-defined.

Putting 𝑅1 and 𝑅2 together yields a natural equivalence of functors of additive
categories D𝐺

𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋) → D𝐺

𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋)

𝑅 : idD𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋) ⊕ 𝑍

≃−→ 𝑍.

Theorem 6.37 (iii) implies that the spectrum K
(
D𝐺
𝐸
(𝑋)/D𝐺

𝐼𝑂
(𝑋)

)
is weakly con-

tractible. This finishes the proof of Lemma 21.115. ⊓⊔

Define injective functions 𝜌𝐼 , 𝜌𝐼𝑂 , 𝜌𝐼𝐸 : N→ N

𝜌𝐼 ( 𝑗) = 𝑖 𝑗+1;
𝜌𝐼𝐸 ( 𝑗) = 𝑖2 𝑗+2.

𝜌𝐼𝑂 ( 𝑗) = 𝑖2 𝑗+1.

By construction they induce bijections from N to 𝐼, 𝐼𝐸 , and 𝐼𝑂 respectively.
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Lemma 21.120. Let 𝐽 be 𝐼, 𝐼𝑂, or 𝐼𝐸 . Then the functor𝑉𝜌𝐽 (𝑋) : D𝐺0 (𝑋) → D
𝐺
0 (𝑋)

of (21.103) induces an isomorphism of additive categories

𝑉𝐽 (𝑋) : D𝐺0 (𝑋)
�−→ D𝐺𝐽 (𝑋).

Proof. We only treat the case 𝐽 = 𝐼, the other cases are completely analogous. The
functor 𝑉𝐼 (𝑋) is bijective on the set of objects, since the function N→ 𝐼 sending 𝑗
to 𝑖 𝑗+1 is a bijection. Hence it remains to show for two objects B = (𝑆, 𝜋, 𝜂,B) and
B′ = (𝑆′, 𝜋′, 𝜂′,B′) in O𝐺0 (𝑋) that the map induced by 𝑉𝐼 (𝑋)

morD𝐺0 (𝑋) (B,B
′) → morD𝐺 (𝑋)𝐼 (𝑉𝐼 (𝑋) (B), 𝑉𝐼 (𝑋) (B′)), [𝜙] ↦→ 𝑉𝐼 (𝑋) ( [𝜙])

is bijective. It is obvious that it is injective. Hence we only give more details for
the proof of surjectivity. Consider a morphism [𝜓] : 𝑉𝐼 (𝑋)(B) → 𝑉𝐼 (𝑋) (B′) in
D𝐺
𝐼
(𝑋). Choose a representative 𝜓 : 𝑉𝐼 (𝑋) (B) → 𝑉𝐼 (𝑋) (B′) in O𝐺

𝐼
(𝑋). There is a

natural number 𝑙 such that 𝜓𝑠,𝑠′ ≠ 0 =⇒ |𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑙 holds for 𝑠 ∈ 𝑆 and
𝑠′ ∈ 𝑆′. Choose a natural number 𝑗0 ≥ 1 such that 𝑖 𝑗 − 𝑖 𝑗−1 > 𝑙 holds for 𝑗 ≥ 𝑗0.
Then the implication 𝜓𝑠,𝑠′ ≠ 0 =⇒ 𝜂(𝑠) = 𝜂′ (𝑠′) holds for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′
with 𝜂(𝑠), 𝜂′ (𝑠′) ≥ 𝑖 𝑗0 . We can additionally arrange without changing [𝜓] that
𝜓𝑠,𝑠′ = 0 holds for 𝜂(𝑠) ≤ 𝑖 𝑗0 + 𝑙. Then the implication 𝜓𝑠,𝑠′ ≠ 0 =⇒ 𝜂(𝑠) = 𝜂(𝑠′)
holds for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′. Since 𝜂(𝑠) = 𝜂(𝑠′) =⇒ 𝜂(𝑠) = 𝜂′ (𝑠′), we can
construct a morphism 𝜙 : B→ B′ in O𝐺0 (𝑋) satisfying 𝐹′

𝐼
(𝑋) (𝜙) = 𝜓. Note that 𝜙

satisfies continuous control as 𝜓 satisfies continuous control and for every natural
number 𝑁 there is a natural number 𝑁 ′ such that for all 𝑗 ∈ N the implication
𝑗 ≥ 𝑁 ′ =⇒ 𝑖 𝑗 ≥ 𝑁 holds. This implies that [𝜓] is in the image of the map above.
This finishes the proof of Lemma 21.120. ⊓⊔

Next we define functors of additive categories, natural in 𝑋 ,

𝑅𝑂 (𝑋) : D𝐺𝑂 (𝑋) → D
𝐺
𝐼𝐸
(𝑋);(21.121)

𝑅𝐸 (𝑋) : D𝐺𝐸 (𝑋) → D
𝐺
𝐼𝑂
(𝑋),(21.122)

satisfying

𝑅𝑂 (𝑋) |D𝐺
𝐼𝐸
(𝑋) = idD𝐺

𝐼𝐸
(𝑋) ;(21.123)

𝑅𝐸 (𝑋) |D𝐺
𝐼𝑂
(𝑋) = idD𝐺

𝐼𝑂
(𝑋) .(21.124)

We only explain the construction of 𝑅𝑂 (𝑋), the one for 𝑅𝐸 (𝑋) is completely anal-
ogous. It will be induced by the following functor of additive categories

𝑅′𝑂 (𝑋) : O
𝐺
𝑂 (𝑋) → O

𝐺
𝐼𝐸
(𝑋)

whose definition we describe next. An object B = (𝑆, 𝜋, 𝜂,B) is sent by 𝑅′
𝑂
(𝑋) to

the object B̂ = (𝑆, �̂�, 𝜂, B̂) given by
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𝑆 = 𝑆;
�̂� = 𝜋;

𝜂(𝑠) = 𝑖2 𝑗+2 if 𝜂(𝑠) ∈ N2 𝑗+1;

B̂ = B.

The idea is to move an object with position in N2 𝑗+1 to the right endpoint of N2 𝑗+1,
namely to 𝑖2 𝑗+2, whereas nothing is changed concerning the 𝑋-direction. Obviously
B̂ satisfies the conditions compact support over 𝑋 and local finiteness over N, since
B does and N2 𝑗+1 is finite. The definition on morphisms is the tautological one.
If 𝜙 : B = (𝑆, 𝜋, 𝜂,B) → B′ = (𝑆′, 𝜋′, 𝜂′,B′) is given by the collection {𝜙𝑠,𝑠′ |
𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′}, define 𝑅′

𝑂
(𝜙) by the same collection. Obviously 𝑅𝑂 (𝜙) satisfies

finite 𝐺-support as 𝜙 does. Since 𝜙 satisfies bounded control over N, we can find
a natural number 𝑛 such that for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ the implication 𝜙𝑠,𝑠′ ≠ 0 =⇒
|𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑛 holds. Choose a natural number 𝑚 such that 𝑖2 𝑗+1 − 𝑖2 𝑗 > 𝑛

holds for 𝑗 ≥ 𝑚. If 𝜂(𝑠) ∈ N2 𝑗+1 for 𝑗 ≥ 𝑚, we conclude 𝜂′ (𝑠′) ∈ N2 𝑗+1 and hence
𝜂(𝑠) = 𝜂′ (𝑠′). Put 𝑙 = 𝑖2𝑚 + 𝑛. Then we have for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ the implication
𝜙𝑠,𝑠′ ≠ 0 =⇒ |𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑙. This shows that 𝑅′

𝑂
(𝜙) satisfies bounded control

over N. Since 𝜙 satisfies continuous control and for every natural number 𝑁 there
exists a natural number 𝑁 ′ satisfying 𝜂(𝑠) ≥ 𝑁 ′ =⇒ 𝜂(𝑠) ≥ 𝑁 for 𝑠 ∈ 𝑆 and
𝜂′ (𝑠′) ≥ 𝑁 ′ =⇒ 𝜂′ (𝑠) ≥ 𝑁 for 𝑠′ ∈ 𝑆′, continuous control holds also for 𝑅𝑂 (𝜙).

Obviously 𝑅′
𝑂
(𝑋) induces the identity on O𝐺

𝐼𝐸
(𝑋) and sends T𝐺

𝑂
(𝑋) to T𝐺

𝐼𝐸
(𝑋).

Hence 𝑅′
𝑂
(𝑋) induces the desired functor 𝑅𝑂 (𝑋) announced in (21.121) and satis-

fying (21.123).

Lemma 21.125. The functors 𝑅𝑂 (𝑋) of (21.121) and 𝑅𝐸 (𝑋) of (21.122) induces
weak equivalences, natural in 𝑋 ,

K(𝑅𝑂 (𝑋)) : K(D𝐺𝑂 (𝑋))
≃−→ K(D𝐺𝐼𝐸 (𝑋));

K(𝑅𝐸 (𝑋)) : K(D𝐺𝐸 (𝑋))
≃−→ K(D𝐺𝐼𝑂 (𝑋)).

Proof. Because of (21.123) and (21.124) it suffices to show that the inclusions
D𝐺
𝐼𝐸
(𝑋) → D𝐺

𝑂
(𝑋) and D𝐺

𝐼𝑂
(𝑋) → D𝐺

𝐸
(𝑋) induce weak homotopy equivalences

on 𝐾-theory. This has already been done, see Lemma 21.115. ⊓⊔

Proof of Theorem 21.109. Consider the following diagram of additive categories,
natural in 𝑋 ,

D𝐺
𝑂
(𝑋)

𝑉𝐼𝐸 (𝑋)
−1◦𝑅𝑂 (𝑋)

��

D𝐺
𝐼
(𝑋)

𝑉𝐼 (𝑋)−1

��

oo // D𝐺
𝐸
(𝑋)

𝑉𝐼𝑂 (𝑋)
−1◦𝑅𝐸 (𝑋)

��
D𝐺0 (𝑋) D𝐺0 (𝑋)𝑉𝜌𝑂 (𝑋)

oo
𝑉𝜌𝐸 (𝑋)

// D𝐺0 (𝑋)
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where the upper two horizontal arrows are the inclusions, the functors 𝑉𝜌𝑂 (𝑋) and
𝑉𝜌𝐸 (𝑋) have been defined in (21.103), the isomorphisms of additive categories
𝑉𝐼𝐸 (𝑋), 𝑉𝐼 , and 𝑉𝐼𝑂 (𝑋) come from Lemma 21.120, and the functors 𝑅𝑂 (𝑋) and
𝑅𝐸 (𝑋) have been defined in (21.121) and (21.122). If we apply the 𝐾-theory functor,
we obtain a commutative diagram of spectra, natural in 𝑋 ,

K(D𝐺
𝑂
(𝑋))

≃
��

K(D𝐺
𝐼
(𝑋))

≃
��

oo // K(D𝐺
𝐸
(𝑋))

≃
��

K(D𝐺0 (𝑋)) K(D𝐺0 (𝑋))K(𝑉𝜌𝑂 (𝑋) )
oo

K(𝑉𝜌𝐸 (𝑋) )
// K(D𝐺0 (𝑋))

whose vertical arrows are weak homotopy equivalences by Lemma 21.125. It induces
a weak homotopy equivalence from the homotopy pushout of the upper row to
the homotopy pushout HPO(𝑋) of the lower row, natural in 𝑋 . We have already
constructed a weak homotopy equivalences from homotopy pushout of the upper
row to K(D𝐺 (𝑋)), natural in 𝑋 , in Lemma 21.113 (iii). This finishes the proof of
Theorem 21.109. ⊓⊔

21.11 The Proof of the Axioms of a 𝑮-Homology Theory for D𝑮
0

Next we state the main result of this section.

Theorem 21.126 (The algebraic 𝐾-groups ofD𝐺0 (𝑋, 𝐴) yield a𝐺-homology the-
ory). Let B be a control coefficient category in the sense of Definition 21.1.

Then we obtain a 𝐺-homology theory with values in Z-modules in the sense of
Definition 12.1 by the covariant functor from the category of 𝐺-𝐶𝑊-pairs to the
category of Z-graded abelian groups sending (𝑋, 𝐴) to 𝐾∗ (D𝐺0 (𝑋, 𝐴;B)).

First we start with𝐺-homotopy invariance. Here the proof forD𝐺 of Lemma 21.30
does not carry over, since there we are shifting in the N-direction and the construc-
tion of the natural equivalence in the relevant Eilenberg swindle cannot be done with
zero-control in the N-direction. Therefore we have to construct a different Eilenberg
swindle where we do not move the objects in the N-direction.

Proposition 21.127. The inclusion 𝑋 × {0} → 𝑋 × [0, 1] induces a weak homotopy
equivalence

K(D𝐺0 (𝑋 × {0})) → K(D𝐺0 (𝑋 × [0, 1])).

Proof. We define a functor of additive categories

(21.128) SH: O𝐺0 (𝑋 × [0, 1]) → O
𝐺
0 (𝑋 × [0, 1])

as follows.



664 21 Controlled Topology Methods

Consider an object B = (𝑆, 𝜋, 𝜂,B) inO𝐺0 (𝑋×[0, 1]). In the sequel let 𝜋𝑋 : 𝑆 → 𝑋

and 𝜋[0,1] : 𝑆 → [0, 1] be the maps for which 𝜋 = 𝜋𝑋 × 𝜋[0,1] . We define SH(B) to
be the object (SH(𝑆), SH(𝜋), SH(𝜂), SH(B)) given by

SH(𝑆) = {(𝑠, 𝑛) ∈ 𝑆 × N | 𝑛 ≤ 𝜂(𝑠) · 𝜋[0,1] (𝑠)};

SH(𝜋) (𝑠, 𝑛) =
{
𝜋(𝑠) if 𝜂(𝑠) = 0;(
𝜋𝑋 (𝑠), 𝜋[0,1] (𝑠) − 𝑛

𝜂 (𝑠)
)

if 𝜂(𝑠) ≥ 1;
SH(𝜂) (𝑠, 𝑛) = 𝜂(𝑠);
SH(B) (𝑠, 𝑛) = B(𝑠).

The idea is to shift an objectB(𝑠) from position 𝜋[0,1] (𝑠) to position 𝜋[0,1] (𝑠)− 1
𝜂 (𝑠) if

𝜂(𝑠) ≥ 1 and 𝜋[0,1] (𝑠)− 1
𝜂 (𝑠) ≥ 0 hold, to forget it if 𝜂(𝑠) ≥ 1 and 𝜋[0,1] (𝑠)− 1

𝜂 (𝑠) < 0
hold, and to leave it at 𝜋[0,1] (𝑠) if 𝜂(𝑠) = 0 holds, whereas 𝜋𝑋 (𝑠) and 𝜂(𝑠) are
unchanged. Then take the infinite direct sum over 𝑘 ∈ N for the 𝑘-fold composition.
So here we are shifting in the direction of [0, 1] and not in the direction of N.

We have to check that this is well-defined. Since im(SH(𝜋)) ⊆ im(𝜋𝑋) × [0, 1]
and B satisfies compact support over 𝑋 × [0, 1], SH(B) satisfies compact support
over 𝑋 × [0, 1]. Since B satisfies local finiteness over N, the same is true for SH(B),
as we get for 𝑚 ∈ N

SH(𝜂)−1 (𝑚) = {(𝑠, 𝑛) | 𝜂(𝑠) = 𝑚, 𝑛 ≤ 𝜂(𝑠) · 𝜋[0,1] (𝑠)}

⊆
⋃

𝑠∈𝜂−1 (𝑚)
{𝑚 ∈ N | 𝑛 ≤ 𝑚}.

The definition on morphisms is the tautological one. If the morphism
𝜙 : B = (𝑆, 𝜋, 𝜂,B) → B′ = (𝑆′, 𝜋′, 𝜂′,B′) is given by the collection
{𝜙𝑠,𝑠′ : B(𝑠) → B(𝑠′) | 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′}, then define SH(𝜙) by the collection
{SH(𝜙 (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ) | (𝑠, 𝑛) ∈ SH(𝑆), (𝑠′, 𝑛′) ∈ SH(𝑆′)} where

SH(𝜙 (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ) =
{
𝜙𝑠,𝑠′ if 𝑛 = 𝑛′;
0 otherwise.

We have to check that this is well-defined. Since 𝜙 satisfies finite 𝐺-support
and SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) is zero or 𝜙𝑠,𝑠′ , SH(𝜙) satisfies finite 𝐺-support. If
SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ≠ 0 holds, then 𝜙𝑠,𝑠′ ≠ 0 and hence we get SH(𝜂) (𝑠, 𝑛) = 𝜂(𝑠) =
𝜂′ (𝑠′) = SH(𝜂′) (𝑠′, 𝑛′). The more complicated part is to show that SH(𝜙) satisfies
continuous control, which we do next. We only deal with the implication (21.5). The
proof for the other implication (21.6) is completely analogous.

Consider (𝑥, 𝑡) ∈ 𝑋×[0, 1] and an open𝐺 (𝑥,𝑡 ) -invariant neighborhood𝑈 of (𝑥, 𝑡)
in 𝑋 × [0, 1]. Choose an open 𝐺𝑥-invariant neighborhood 𝑉 of 𝑥 in 𝑋 and 𝜖 > 0
such that𝑉 × 𝐼3𝜖 (𝑡) ⊆ 𝑈 holds where 𝐼𝜖 (𝑡) = (𝑡 − 𝜖, 𝑡 + 𝜖) ∩ [0, 1]. Since 𝜙 satisfies
continuous control, we can find 𝛿(𝑥, 𝑡, 𝜖) > 0 with 𝛿(𝑥, 𝑡, 𝜖) ≤ 𝜖 , 𝑟 ′ (𝑥, 𝑡, 𝜖) ∈ N, and
an open𝐺𝑥-invariant neighborhood𝑉 ′ (𝑥, 𝑡, 𝜖) of 𝑥 in 𝑋 such that𝑉 (𝑥, 𝑡, 𝜖) ⊆ 𝑉 and
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𝛿(𝑥, 𝑡, 𝜖) ≤ 𝜖 hold and we have for every 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆′, and 𝑔 ∈ 𝐺 the implication

(21.129) 𝑔𝜋𝑋 (𝑠) ∈ 𝑉 ′ (𝑥, 𝑡, 𝜖), 𝜋[0,1] (𝑠) ∈ 𝐼𝛿 (𝑥,𝑡 , 𝜖 ) (𝑡), 𝜂(𝑠) ≥ 𝑟 ′ (𝑥, 𝑡, 𝜖)
=⇒ 𝜋′𝑋 (𝑠′) ∈ 𝑉, 𝜋′[0,1] (𝑠

′) ∈ 𝐼𝜖 (𝑡).

Since [0, 1] is compact, we can find a finite subset {𝑡1, 𝑡2, . . . , 𝑡𝑙} ⊆ [0, 1] satisfying⋃𝑙
𝑖=1 𝐼𝛿 (𝑥,𝑡𝑖 , 𝜖 ) (𝑡𝑖) = [0, 1]. Put

𝑟 ′ = max{𝑟 ′ (𝑥, 𝑡𝑖 , 𝜖) | 𝑖 = 1, 2, . . . , 𝑙};

𝑉 ′ =
𝑙⋂
𝑖=1
𝑉 ′ (𝑥, 𝑡𝑖 , 𝜖).

Then 𝑟 ′ is a natural number and 𝑉 ′ is an open 𝐺𝑥-invariant neighborhood of 𝑥 in 𝑋 .
Now we are ready to prove the implication (21.5) for SH(𝜙). Consider (𝑠, 𝑛) ∈

SH(𝑆), (𝑠′, 𝑛′) ∈ SH(𝑆′), and 𝑔 ∈ supp𝐺 (SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ). We want to show

𝑔 SH(𝜋) (𝑠, 𝑛) ∈ 𝑉 ′ × 𝐼𝜖 (𝑡), SH(𝜂) (𝑠, 𝑛) ≥ 𝑟 ′ =⇒ SH(𝜋′) (𝑠′, 𝑛′) ∈ 𝑈.

As SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) = 𝜙𝑠,𝑠′ , we get 𝑔 ∈ supp𝐺 (𝜙𝑠,𝑠′ ) and SH(𝜙) (𝑛,𝑛) , (𝑛′ ,𝑠′ ) ≠ 0.
Choose 𝑖 ∈ {1, 2, . . . , 𝑙} with 𝜋[0,1] (𝑠) ∈ 𝐼𝛿 (𝑥,𝑡𝑖 , 𝜖 ) (𝑡𝑖). As 𝑉 ′ ⊆ 𝑉 ′ (𝑥, 𝑡𝑖 , 𝜖) and
𝑟 ′ (𝑥, 𝑡𝑖 , 𝜖) ≤ 𝑟 ′ hold, we obtain 𝜋′

𝑋
(𝑠′) ∈ 𝑉 and 𝜋′[0,1] (𝑠

′) ∈ 𝐼𝜖 (𝑡𝑖) from (21.129).
Since
𝛿′ ≤ 𝛿(𝑥, 𝑡𝑖 , 𝜖) ≤ 𝜖 holds and we have 𝜋[0,1] (𝑠) ∈ 𝐼𝛿 (𝑥,𝑡𝑖 , 𝜖 ) (𝑡𝑖) and 𝜋′[0,1] (𝑠

′) ∈
𝐼𝜖 (𝑡𝑖), we conclude from the triangle inequality |𝜋[0,1] (𝑠) − 𝜋′[0,1] (𝑠

′) | ≤ 2𝜖 . Since
SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) = 𝜙𝑠,𝑠′ ≠ 0, we have 𝑛 = 𝑛′ and 𝜂(𝑠) = 𝜂′ (𝑠′). Hence we get for
𝜂(𝑛) ≥ 1

| SH(𝜋)[0,1] (𝑠, 𝑛) − SH(𝜋′)[0,1] (𝑠′, 𝑛′) |

=
�� (𝜋[0,1] (𝑠) − 𝑛

𝜂(𝑠)
)
−

(
𝜋′[0,1] (𝑠

′) − 𝑛′

𝜂′ (𝑠′)
) ��

= |𝜋[0,1] (𝑠) − 𝜋′[0,1] (𝑠
′) |

≤ 2𝜖 .

If 𝜂(𝑠) = 0, we get | SH(𝜋)[0,1] (𝑠, 𝑛)−SH(𝜋′)[0,1] (𝑠′, 𝑛′) | = |𝜋[0,1] (𝑠)−𝜋′[0,1] (𝑠
′) | ≤

2𝜖 . Hence for (𝑠, 𝑛) ∈ SH(𝑆), (𝑠′, 𝑛′) ∈ SH(𝑆′), and 𝑔 ∈ supp𝐺 (SH(𝜙) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) )
satisfying 𝑔 SH(𝜋) (𝑠, 𝑛) ∈ 𝑉 ′ × 𝐼𝛿′ (𝑡) and SH(𝜂) (𝑠, 𝑛) ≥ 𝑟 ′ we get

SH(𝜋′)𝑋 (𝑠, 𝑛′) ∈ 𝑉 ;
| SH(𝜋)[0,1] (𝑠, 𝑛) − SH(𝜋′)[0,1] (𝑠′, 𝑛′) | ≤ 2𝜖 .

The latter implies using SH(𝜋)[0,1] (𝑠, 𝑛) ∈ 𝐼𝜖 (𝑡) and the triangle inequality
SH(𝜋′)[0,1] (𝑠′, 𝑛′) ∈ 𝐼3𝜖 (𝑡). Hence we get

SH(𝜋′) (𝑠′, 𝑛′) ∈ 𝑉 × 𝐼3𝜖 (𝑡) ⊆ 𝑈.
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This finishes the proof that SH(𝜙) is a well-defined morphism. One easily checks
that SH is a functor of additive categories.

Consider an object B = (𝑆, 𝜋, 𝜂,B) in O𝐺0 (𝑋 × [0, 1]). Next we define two
morphisms in O𝐺0 (𝑋 × [0, 1])

𝑇0 (B) : B ⊕ SH(B) → SH(B);
𝑇1 (B) : SH(B) → B ⊕ SH(B).

Recall that B⊕SH(B) = (𝑆⨿SH(𝑆), 𝜋⨿SH(𝜋), 𝜂⨿SH(𝜂),B⨿SH(B)). For 𝑠 ∈ 𝑆
and (𝑠′, 𝑛′) ∈ SH(𝑆) we define

𝑇0 (B)𝑠, (𝑠′ ,𝑛′ ) =
{

idB(𝑠) if 𝑠′ = 𝑠 and 𝑛′ = 0;
0 otherwise.

For (𝑠, 𝑛) ∈ SH(B) and (𝑠′, 𝑛′) ∈ SH(B) we define

𝑇0 (B) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) =
{

idB(𝑠) if 𝑠′ = 𝑠 and 𝑛′ = 𝑛 + 1;
0 otherwise.

We have to check that this is well-defined. Note that supp𝐺 (𝑇0 (B)) is either empty
or {𝑒}. In particular, the condition finite 𝐺-support is satisfied. For 𝑠 ∈ 𝑆 and
(𝑠′, 𝑛′) ∈ SH(𝑆) we have 𝑇0 (B)𝑠, (𝑠′ ,𝑛′ ) ≠ 0 =⇒ 𝑠 = 𝑠′ and hence 𝜂(𝑠) = 𝜂(𝑠′) =
SH(𝜂′) (𝑠′, 𝑛′). For (𝑠, 𝑛) ∈ 𝑆 and (𝑠′, 𝑛′) ∈ SH(𝑆) we have 𝑇0 (B) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ≠

0 =⇒ 𝑠 = 𝑠′ and hence SH(𝜂) (𝑠, 𝑛) = 𝜂(𝑠) = 𝜂(𝑠′) = SH(𝜂′) (𝑠′, 𝑛′). It remains
to show continuous control. We only deal with the implication (21.5). The proof for
the other implication (21.6) is completely analogous.

Consider (𝑥, 𝑡) ∈ 𝑋×[0, 1] and an open𝐺 (𝑥,𝑡 ) -invariant neighborhood𝑈 of (𝑥, 𝑡)
in 𝑋 × [0, 1]. Choose an open𝐺𝑥-invariant neighborhood𝑉 of 𝑥 in 𝑋 and 𝜖 > 0 such
that 𝑉 × 𝐼2𝜖 (𝑡) ⊆ 𝑈 holds. Choose a natural number 𝑟 ′ satisfying 𝑟 ′ ≥ 1/𝜖 . Then
𝑈′ := 𝑉 × 𝐼𝜖 (𝑡) is an open𝐺 (𝑥,𝑡 ) -invariant open neighborhood of (𝑥, 𝑡) in 𝑋 × [0, 1]
with 𝑈′ ⊆ 𝑈. Consider 𝑠 ∈ 𝑆, (𝑠′, 𝑛′) ∈ SH(𝑆), and 𝑔 ∈ supp𝐺 (𝑇0 (B))𝑠, (𝑠′ ,𝑛′ )
such that 𝑔𝜋(𝑠) ∈ 𝑈′. Then 𝑔 = 𝑒 and 𝑇0 (B)𝑠, (𝑠′ ,𝑛′ ) ≠ 0. This implies 𝑠′ = 𝑠 and
𝑛′ = 0 and hence 𝜋(𝑠) = SH(𝜋) (𝑠′, 𝑛′). We conclude SH(𝜋) (𝑠′, 𝑛′) ∈ 𝑈′ ⊆ 𝑈.
Consider (𝑠, 𝑛) ∈ 𝑆, (𝑠′, 𝑛′) ∈ SH(𝑆), and 𝑔 ∈ supp𝐺 (𝑇0 (B) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ) such that
𝑔 SH(𝜋) (𝑠) ∈ 𝑈′ and SH(𝜂) (𝑆, 𝑛) ≥ 𝑟 ′ hold. Then 𝑔 = 𝑒 and 𝑇0 (B) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) ≠ 0.
This implies 𝑠′ = 𝑠 and 𝑛′ = 𝑛 + 1. We get SH(𝜋)𝑋 (𝑠, 𝑛) = 𝜋𝑋 (𝑠) = 𝜋𝑋 (𝑠′) =
SH(𝜋)𝑋 (𝑠′, 𝑛′) and hence SH(𝜋)𝑋 (𝑠′, 𝑛′) ∈ 𝑉 . Moreover

| SH(𝜋)[0,1] (𝑠, 𝑛) − SH(𝜋′)[0,1] (𝑠′, 𝑛′) |

=
�� (𝜋[0,1] (𝑠) − 𝑛

𝜂(𝑠)
)
−

(
𝜋[0,1] (𝑠′) −

𝑛′

𝜂(𝑠′)
)

=
�� (𝜋[0,1] (𝑠) − 𝑛

𝜂(𝑠)
)
−

(
𝜋[0,1] (𝑠) −

𝑛 + 1
𝜂(𝑠)

)
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=
1
𝜂(𝑠)

≤ 1
𝑟 ′

≤ 𝜖 .

Since SH(𝜋)[0,1] (𝑠, 𝑛) ∈ 𝐼𝜖 (𝑡), we get SH(𝜋)[0,1] (𝑠′, 𝑛′) ∈ 𝐼2𝜖 (𝑡) from the triangle
inequality. Hence SH(𝜋) (𝑠′, 𝑛′) ⊆ 𝑉 × 𝐼2𝜖 (𝑡) ⊆ 𝑈′. This finishes the proof that
𝑇0 (B) is well-defined.

Next we define 𝑇1 (B). For (𝑠, 𝑛) ∈ SH(𝑆) and 𝑠′ ∈ 𝑆 we define

𝑇1 (B) (𝑠,𝑛) ,𝑠′ =
{

idB(𝑠) if 𝑠′ = 𝑠 and 𝑛 = 0;
0 otherwise.

For (𝑠, 𝑛) ∈ SH(B) and (𝑠′, 𝑛′) ∈ SH(B) define

𝑇1 (B) (𝑠,𝑛) , (𝑠′ ,𝑛′ ) =
{

idB(𝑠) if 𝑠′ = 𝑠, 𝑛 ≥ 1, and 𝑛′ = 𝑛 − 1;
0 otherwise.

We omit the proof that 𝑇1 (B) is well-defined, since it is very similar to the one for
𝑇0 (B). Roughly speaking, 𝑇0 (B) shifts to the right in [0, 1], whereas 𝑇1 (B) shifts to
the left.

Obviously 𝑇0 (B) ◦𝑇1 (B) = idSH(B) . It is not true that 𝑇1 (B) ◦𝑇0 (B) = idB⊕SH(B) .
At least we can show that idB⊕SH(B) −𝑇1 (B) ◦ 𝑇0 (B) factorizes as a composite

(21.130) idB⊕SH(B) −𝑇1 (B) ◦ 𝑇0 (B) : B ⊕ SH(B) → B′0 → B ⊕ SH(B)

for an object B′0 in O𝐺0 (𝑋 × {0}) as follows.
We define a kind of subobject B0 = (𝑆0, 𝜋0, 𝜂0.B0) of SH(B) by

𝑆0 = {(𝑠, 𝑛) ∈ 𝑆 × N | 𝜂(𝑠) ≥ 1, 𝑛 ≤ 𝜂(𝑠) · 𝜋[0,1] (𝑠) < 𝑛 + 1};

𝜋0 (𝑠, 𝑛) =
(
𝜋𝑋 (𝑠), 𝜋[0,1] (𝑠) −

𝑛

𝜂(𝑠)
)
;

𝜂0 (𝑠, 𝑛) = 𝜂(𝑠);
SH(B) (𝑠, 𝑛) = B(𝑠).

Note that 𝑆0 ⊆ SH(B). Actually, for a given 𝑠 ∈ 𝑆 with 𝜂(𝑠) ≥ 1 the element of the
shape (𝑠, 𝑛) ∈ SH(𝑆) belongs to 𝑆0 if and only if (𝑠, 𝑛+1) does not belong to SH(𝑆)
anymore. The maps 𝜂0 and B0 are obtained by restricting SH(𝜋), SH(𝜂), and SH(B)
to 𝑆0. There is an obvious subobject B⊥ of SH(P) such that B0 ⊕ B⊥ = SH(B).
Moreover, there is an obvious factorization

idB⊕SH(B) −𝑇1 (B) ◦ 𝑇0 (B) : B ⊕ SH(B) → B0 → B ⊕ SH(B).
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Hence it suffices to show that B0 is isomorphic in O𝐺0 (𝑋 × [0, 1]) to an object
B′0 = (𝑆′0, 𝜋

′
0, 𝜂
′
0,B

′
0) which belongs to O𝐺0 (𝑋 × {0}). We define B′0 by 𝑆′0 = 𝑆0,

𝜂′0 = 𝜂0, and B′0 = B0 and by putting 𝜋′0 (𝑠, 𝑛) = (𝜋𝑋 (𝑠), 0). In order to show that
B0 and B′0 are isomorphic in O𝐺0 (𝑋 × [0, 1]), we verify the criterion occurring in
Lemma 21.14.

Consider (𝑥, 𝑡) ∈ 𝑋 × [0, 1] and an open 𝐺 (𝑥,𝑡 ) -invariant neighborhood 𝑈 of
(𝑥, 𝑡) in 𝑋 × [0, 1]. Choose an open 𝐺𝑥-invariant neighborhood 𝑉 of 𝑥 in 𝑋 and
𝜖 > 0 such that 𝑉 × 𝐼2𝜖 (𝑡) ⊆ 𝑈 holds. Choose a natural number 𝑟 ′ with 𝑟 ′ ≥ 1

𝜖
. Put

𝑈′ = 𝑉 × 𝐼𝜖 (𝑡). Next we prove the implication for 𝑠 ∈ 𝑆0 = 𝑆′0

(21.131) 𝜋0 (𝑠) ∈ 𝑈′, 𝜂0 (𝑠) ≥ 𝑟 ′ =⇒ 𝜋′0 (𝑠) ∈ 𝑈.

From 𝜋0 (𝑠) ∈ 𝑈′ we get (𝜋0)𝑋 (𝑠) ∈ 𝑉 and (𝜋0)[0,1] (𝑠) ∈ 𝐼𝜖 (𝑡). By definition we
have

(𝜋0)[0,1] (𝑠) = 𝜋[0,1] (𝑠) −
𝑛

𝜂(𝑠) > 0 = (𝜋′0)[0,1] (𝑠) > 𝜋[0,1] (𝑠) −
𝑛 + 1
𝜂(𝑠) .

This implies

| (𝜋0)[0,1] (𝑠) − (𝜋′0)[0,1] (𝑠) | ≤
1
𝜂(𝑠) =

1
𝜂0 (𝑠)

≤ 1
𝑟 ′
≤ 𝜖 .

Since (𝜋0)[0,1] (𝑠) ∈ 𝐼𝜖 (𝑡), the triangle inequality implies (𝜋′0)[0,1] (𝑠) ∈ 𝐼2𝜖 (𝑡).
Since (𝜋0)𝑋 (𝑠) ∈ 𝑉 and (𝜋0)𝑋 (𝑠) = (𝜋′0)𝑋 (𝑠), we get (𝜋′0)𝑋 (𝑠) ∈ 𝑉 . This implies
(𝜋′0) (𝑠) ∈ 𝑉 × 𝐼2𝜖 (𝑡) ⊆ 𝑈. This finishes the proof of (21.131). The proof of the other
implication

𝜋′0 (𝑠) ∈ 𝑈
′, 𝜂0 (𝑠) ≥ 𝑟 ′ =⇒ 𝜋0 (𝑠) ∈ 𝑈

is completely analogous. Thus we obtain the desired factorization (21.130).
One easily checks that SH induces a functor of additive categories

SH: D𝐺0 (𝑋 × [0, 1], 𝑋 × {0}) → D
𝐺
0 (𝑋 × [0, 1], 𝑋 × {0})

and 𝑇0 (B) and 𝑇1 (B) induces mutually inverse isomorphisms 𝑇0 (B) : B⊕ SH(B) �−→
SH(B) and 𝑇1 (B) : SH(B) �−→ B ⊕ SH(B). The collection of the 𝑇0 (B) defines a
natural equivalence of functors of additive categories

T0 : idD𝐺0 (𝑋×[0,1],𝑋×{0}) ⊕SH �−→ SH.

We conclude from Theorem 6.37 (iii) and Proposition 21.27 that the inclusion
𝑋 × {0} → 𝑋 × [0, 1] induces a weak homotopy equivalence

K(D𝐺0 (𝑋 × {0})) → K(D𝐺0 (𝑋 × [0, 1])).

This finishes the proof of Proposition 21.127. ⊓⊔
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Exercise 21.132. Show that the proof of Proposition 21.127 about the homotopy in-
variance of K(D𝐺0 (−)) can be modified to a new proof of the𝐺-homotopy invariance
for K(D𝐺 (−)).

Proof of Theorem 21.126. The rest of the proof of Theorem 21.126 is completely
analogous to the proof of Theorem 21.26, one just has to check that all constructions
respect the zero-control condition appearing in the definition of D𝐺0 . ⊓⊔

21.12 Notes

We have formulated the control conditions in Definition 21.4 concretely to keep
some of the arguments simple. One can also give an axiomatic approach to control
conditions in terms of coarse structures, as defined by Higson-Pedersen-Roe [488,
Definition 2.1], by specifying subsets of 𝑋 and 𝑋 × 𝑋 in which the supports of
objects and of morphism have to take values in. This is explained for continuous
control in [74, Section 2.3]. There are various modifications of this idea, see for
instance [183, Definition 3.1], [81, Definition 4.8], and [185, Section 2.2].





Chapter 22
Coverings and Flow Spaces

22.1 Introduction

In this chapter we want to give more details concerning the discussion in Sec-
tion 19.5. Essentially we want to show that hyperbolic and finite-dimensional
CAT(0)-groups satisfy the condition strongly transfer VCY-reducible in the sense
of Definition 20.38, which implies that they satisfy the Full Farrell-Jones Con-
jecture 13.30. Note that this concerns only input from geometric group theory;
𝐾-theory does not play a role at this stage. 𝐾-theory will enter when we show,
for instance, that a strongly VCY-transfer reducible group or, more generally, a
Dress-Farrell-Hsiang-Jones group satisfies the Full Farrell-Jones Conjecture 13.30,
see Remark 20.3, Theorem 20.39, and Theorem 20.62. The proof of Theorem 20.62
will be discussed in Chapter 23 and Chapter 24.

The basic strategy is as follows.

• Consider an appropriate metric space 𝑋 associated to a hyperbolic group or a
finite-dimensional CAT(0)-group reflecting its geometry;
• Assign to 𝑋 a flow space FS(𝑋);
• Prove for the flow space appropriate flow estimates which reflect the negative

curvature or non-positive curvature condition associated to hyperbolic or CAT(0)-
groups;
• Construct specific covers of the flow space, namely long and thin VCY-covers

with finite dimension;
• Construct an appropriate map 𝜄 : 𝐺 × 𝑋 → FS(𝑋) and pull back the long and thin
VCY-covers of FS(𝑋) to 𝐺 × 𝑋 using 𝜄;
• The flow estimates will ensure that these covers on𝐺×𝑋 are good enough to show

that 𝐺 is stronglyVCY-transfer reducible.

The basic ideas are carried out for closed Riemannian manifolds with negative
or non-positive sectional curvature and their fundamental groups in the seminal
papers of Farrell-Jones [359, 360, 367]. The papers by Bartels-Lück [78, 80] and
Bartels-Lück-Reich [86, 87] transferred these ideas to more general situations such as
hyperbolic or CAT(0)-spaces and hyperbolic or finite-dimensional CAT(0)-groups,
going considerably beyond the world of Riemannian manifolds and diving into
geometric group theory and the theory and geometry of metric spaces. Kasprowski
and Rüping [571, Theorem 6.1] simplified and unified some of the arguments, see
Remark 22.46.

671
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22.2 Flow Spaces

Definition 22.1 (Flow space). A flow space𝑌 is a metric space (𝑌, 𝑑𝑌 ) together with
a continuous R-action Φ : 𝑌 × R→ 𝑌 .

Notation 22.2. We will often write Φ𝑡 : 𝑌 → 𝑌 for the homeomorphism sending
𝑦 ∈ 𝑌 to Φ(𝑡, 𝑦).

For a subset 𝐼 ⊆ R and 𝑦 ∈ 𝑌 we put Φ𝐼 (𝑦) = {Φ𝑡 (𝑦) | 𝑡 ∈ 𝐼}.

Note that we do not demand in Definition 22.1 that Φ𝑡 : 𝑌 → 𝑌 is isometric.

Definition 22.3 (Flow 𝐺-space for 𝐺). A flow 𝐺-space is a flow space (𝑌, 𝑑𝑌 ,Φ)
in the sense of Definition 22.1 coming with an isometric and proper 𝐺-action
𝜌 : 𝐺 × 𝑌 → 𝑌 such that 𝜌 and Φ commute, i.e., we have Φ𝑡 (𝑔𝑦) = 𝑔Φ𝑡 (𝑦)
for all 𝑦 ∈ 𝑌 , 𝑔 ∈ 𝐺, and 𝑡 ∈ R.

Obviously a flow 𝐺-space is the same as a metric space 𝑌 with a continuous
𝐺 ×R-action such that the induced action of𝐺 = 𝐺 × {0} ⊆ 𝐺 ×R on𝑌 is isometric
and proper.

22.3 The Flow Space Associated to a Metric Space

In this section we introduce the flow space FS(𝑋) for arbitrary metric spaces follow-
ing [80, Section 1]. This is the one used in the proof of the Farrell-Jones Conjecture
for CAT(0)-groups, see [78, 80, 992].

Definition 22.4. Let 𝑋 be a metric space. A continuous map 𝑐 : R → 𝑋 is called a
generalized geodesic if there are 𝑐− , 𝑐+ ∈ R := R

∐{−∞,∞} satisfying

𝑐− ≤ 𝑐+, 𝑐− ≠ ∞, 𝑐+ ≠ −∞,

such that 𝑐 is locally constant on the complement of the interval 𝐼𝑐 := (𝑐− , 𝑐+) and
restricts to an isometry on 𝐼𝑐.

The numbers 𝑐− and 𝑐+ are uniquely determined by 𝑐, provided that 𝑐 is not
constant.

Definition 22.5. Let (𝑋, 𝑑𝑋) be a metric space. Let FS = FS(𝑋) be the set of all
generalized geodesics in 𝑋 . We define a metric on FS(𝑋) by

𝑑FS(𝑋) (𝑐, 𝑑) :=
∫
R

𝑑𝑋 (𝑐(𝑡), 𝑑 (𝑡))
2e |𝑡 |

d𝑡.

Define a flow
Φ : FS(𝑋) × R→ FS(𝑋)

by Φ𝜏 (𝑐) (𝑡) = 𝑐(𝑡 + 𝜏) for 𝜏 ∈ R, 𝑐 ∈ FS(𝑋), and 𝑡 ∈ R.
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The integral
∫ +∞
−∞

𝑑𝑋 (𝑐 (𝑡 ) ,𝑑 (𝑡 ) )
2e|𝑡 | d𝑡 exists as 𝑑𝑋 (𝑐(𝑡), 𝑑 (𝑡)) ≤ 2|𝑡 | + 𝑑𝑋 (𝑐(0), 𝑑 (0))

holds by the triangle inequality. Obviously Φ𝜏 (𝑐) is a generalized geodesic with

Φ𝜏 (𝑐)− = 𝑐− − 𝜏;
Φ𝜏 (𝑐)+ = 𝑐+ − 𝜏,

where −∞ − 𝜏 := −∞ and∞− 𝜏 := ∞.
We note that any isometry (𝑋, 𝑑𝑋) → (𝑌, 𝑑𝑌 ) induces an isometry FS(𝑋) →

FS(𝑌 ) by composition. In particular, the isometry group of (𝑋, 𝑑𝑋) acts canonically
on FS(𝑋). Moreover, this action commutes with the flow.

For a general metric space 𝑋 all generalized geodesics may be constant. In the
remainder of this section we will state some properties of FS(𝑋) so that the reader
can get some intuition.

Lemma 22.6. Let (𝑋, 𝑑𝑋) be a metric space. The map Φ is a continuous flow and
we have for 𝑐, 𝑑 ∈ FS(𝑋) and 𝜏, 𝜎 ∈ R

𝑑FS(𝑋)
(
Φ𝜏 (𝑐),Φ𝜎 (𝑑)

)
≤ e |𝜏 | · 𝑑FS(𝑋) (𝑐, 𝑑) + |𝜎 − 𝜏 |.

Exercise 22.7. Give the proof of Lemma 22.6.

The following lemma relates distance in 𝑋 to distance in FS(𝑋).

Lemma 22.8. Let 𝑐, 𝑑 : R→ 𝑋 be generalized geodesics. Consider 𝑡0 ∈ R.

(i) 𝑑𝑋
(
𝑐(𝑡0), 𝑑 (𝑡0)

)
≤ e |𝑡0 | · 𝑑FS (𝑐, 𝑑) + 2;

(ii) If 𝑑FS(𝑋) (𝑐, 𝑑) ≤ 2e−|𝑡0 |−1, then

𝑑𝑋
(
𝑐(𝑡0), 𝑑 (𝑡0)

)
≤

√︁
4e |𝑡0 |+1 ·

√︃
𝑑FS(𝑋) (𝑐, 𝑑).

In particular, 𝑐 ↦→ 𝑐(𝑡0) defines a uniform continuous map FS(𝑋) → 𝑋 .

Proof. See [80, Lemma 1.4]. ⊓⊔

Lemma 22.9. Let (𝑋, 𝑑𝑋) be a metric space. The maps

𝐹𝑆(𝑋) \ FS(𝑋)R → R, 𝑐 ↦→ 𝑐−;
𝐹𝑆(𝑋) \ FS(𝑋)R → R, 𝑐 ↦→ 𝑐+,

are continuous.

Proof. See [80, Lemma 1.6]. ⊓⊔

Proposition 22.10. Let (𝑋, 𝑑𝑋) be a metric space. Let (𝑐𝑛)𝑛∈N be a sequence in
FS(𝑋). Then it converges uniformly on compact subsets to 𝑐 ∈ FS(𝑋) if and only if
it converges to 𝑐 with respect to 𝑑FS(𝑋) .

Proof. See [80, Proposition 1.7]. ⊓⊔
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Lemma 22.11. Let (𝑋, 𝑑𝑋) be a metric space. The flow space FS(𝑋) is sequentially
closed in the space of all maps R → 𝑋 with respect to the topology of uniform
convergence on compact subsets.

Proof. See [80, Lemma 1.8]. ⊓⊔

Proposition 22.12. Let (𝑋, 𝑑𝑋) be a metric space which is proper, i.e., every closed
ball is compact,

Then (FS(𝑋), 𝑑FS(𝑋) ) is a proper metric space.

Proof. See [80, Proposition 1.9]. ⊓⊔

Lemma 22.13. Let (𝑋, 𝑑𝑋) be a proper metric space and 𝑡0 ∈ R. Then the evaluation
map FS(𝑋) → 𝑋 defined by 𝑐 ↦→ 𝑐(𝑡0) is uniformly continuous and proper.

Proof. See [80, Lemma 1.10]. ⊓⊔

Proposition 22.14. Let 𝐺 act isometrically and properly on the proper metric space
(𝑋, 𝑑𝑋). Then the action of 𝐺 on (FS(𝑋), 𝑑FS(𝑋) ) is also isometric and proper. If
the action of 𝐺 on 𝑋 is in addition cocompact, then the 𝐺-action on FS(𝑋) is also
cocompact.

Proof. See [80, Proposition 1.11]. ⊓⊔

Lemma 22.15. Let (𝑋, 𝑑𝑋) be a metric space. Then FS(𝑋)R is closed in FS(𝑋).

Exercise 22.16. Give the proof of Lemma 22.15.

Notation 22.17. Let 𝑋 be a metric space. For 𝑐 ∈ FS(𝑋) and 𝑇 ∈ [0,∞], define
𝑐 | [−𝑇,𝑇 ] ∈ FS(𝑋) by

𝑐 | [−𝑇,𝑇 ] (𝑡) :=


𝑐(−𝑇) if 𝑡 ≤ −𝑇 ;
𝑐(𝑡) if − 𝑇 ≤ 𝑡 ≤ 𝑇 ;
𝑐(𝑇) if 𝑡 ≥ 𝑇.

Obviously 𝑐 | [−∞,∞] = 𝑐 and if 𝑐 ∉ FS(𝑋)R and (−𝑇,𝑇) ∩ (𝑐− , 𝑐+) ≠ ∅ then(
𝑐 | [−𝑇,𝑇 ]

)
− = max{𝑐− ,−𝑇} and

(
𝑐 | [−𝑇,𝑇 ]

)
+ = min{𝑐+, 𝑇}.

We denote by

FS(𝑋) 𝑓 :=
{
𝑐 ∈ FS(𝑋) \ FS(𝑋)R

�� 𝑐− > −∞, 𝑐+ < ∞}
∪ FS(𝑋)R

the subspace of finite geodesics.

Lemma 22.18. Let (𝑋, 𝑑𝑋) be a metric space. The map𝐻 : FS(𝑋)×[0, 1] → FS(𝑋)
defined by 𝐻𝜏 (𝑐) := 𝑐 | [ln(𝜏 ) ,− ln(𝜏 ) ] is continuous and satisfies 𝐻0 = idFS(𝑋) and
𝐻𝜏 (𝑐) ∈ FS(𝑋) 𝑓 for 𝜏 > 0.

Proof. See [80, Lemma 1.14]. ⊓⊔
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22.4 The Flow Space Associated to a CAT(0)-Space

In this section we study FS(𝑋) further in the case where 𝑋 is a CAT(0)-space.
For the definition of a CAT(0)-space we refer to [165, Definition 1.1 in Chap-

ter II.1 on page 158], namely, it is a geodesic space all of whose geodesic triangles
satisfy the CAT(0)-inequality. We will follow the notation and the description of the
bordification 𝑋 = 𝑋 ∪ 𝜕𝑋 of a CAT(0)-space 𝑋 given in [165, Chapter II.8]. The
definition of the topology of this bordification is briefly reviewed in Remark 22.20.
In this section we will use the following convention.

• Let 𝑋 be a complete CAT(0)-space;
• Let 𝑋 := 𝑋 ∪ 𝜕𝑋 be the bordification of 𝑋 , see [165, Chapter II.8].

22.4.1 Evaluation of Generalized Geodesics at Infinity

Definition 22.19. For 𝑐 ∈ FS(𝑋) we set 𝑐(±∞) := lim𝑡→±∞ 𝑐(𝑡), where the limit is
taken in 𝑋 .

Since 𝑋 is by assumption a CAT(0)-space, we can find for 𝑥− ∈ 𝑋 and 𝑥+ ∈ 𝑋
a generalized geodesic 𝑐 : R → 𝑋 with 𝑐(±∞) = 𝑥±, see [165, Proposition 8.2 in
Chapter II.8 on page 261]. It is not true in general that for two different points 𝑥−
and 𝑥+ in 𝜕𝑋 there is a geodesic 𝑐 with 𝑐(−∞) = 𝑥− and 𝑐(∞) = 𝑥+.

Remark 22.20 (Cone topology on 𝑋 .). A generalized geodesic ray is a generalized
geodesic 𝑐 that is either a constant generalized geodesic or a non-constant generalized
geodesic with 𝑐− = 0. Fix a base point 𝑥0 ∈ 𝑋 . For every 𝑥 ∈ 𝑋 , there is a
unique generalized geodesic ray 𝑐𝑥 such that 𝑐(0) = 𝑥0 and 𝑐(∞) = 𝑥, see [165,
Proposition 8.2 in Chapter II.8 on page 261]. Define for 𝑟 > 0

𝜌𝑟 = 𝜌𝑟 ,𝑥0 : 𝑋 → 𝐵𝑟 (𝑥0)

by 𝜌𝑟 (𝑥) := 𝑐𝑥 (𝑟). The sets (𝜌𝑟 )−1 (𝑉) with 𝑟 > 0, 𝑉 an open subset of 𝐵𝑟 (𝑥0)
are a basis for the cone topology on 𝑋 , see [165, Definition 8.6 in Chapter II.8 on
page 263]. A map 𝑓 whose target is 𝑋 is continuous if and only if 𝜌𝑟 ◦ 𝑓 is continuous
for all 𝑟 > 0. The cone topology is independent of the choice of base point, see [165,
Proposition 8.8 in Chapter II.8 on page 264].

Lemma 22.21. The maps

𝐹𝑆(𝑋) \ FS(𝑋)R → 𝑋, 𝑐 ↦→ 𝑐(−∞);
𝐹𝑆(𝑋) \ FS(𝑋)R → 𝑋, 𝑐 ↦→ 𝑐(∞),

are continuous.

Proof. See [80, Lemma 2.4]. ⊓⊔
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Proposition 22.22. If 𝑋 is proper as a metric space, then the map

𝐸 : FS(𝑋) \ FS(𝑋)R → 𝑅 × 𝑋 × 𝑋 × 𝑋 × 𝑅

defined by 𝐸 (𝑐) := (𝑐− , 𝑐(−∞), 𝑐(0), 𝑐(∞), 𝑐+) is injective and continuous. It is a
homeomorphism onto its image.

Proof. See [80, Proposition 2.6]. ⊓⊔

Recall that FS(𝑋) 𝑓 is the subspace of finite geodesics, see Notation 22.17.

Proposition 22.23. Assume that 𝑋 is proper as a metric space. Then the map

𝐸 𝑓 : FS(𝑋) 𝑓 \ FS(𝑋)R → R × 𝑋 × 𝑋

defined by 𝐸 𝑓 (𝑐) =
(
𝑐− , 𝑐(−∞), 𝑐(∞)

)
is a homeomorphism onto its image

im 𝐸 𝑓 = {(𝑟, 𝑥, 𝑦) | 𝑥 ≠ 𝑦}.

In particular, FS(𝑋) 𝑓 \ FS(𝑋)R is locally path connected.

Proof. See [80, Proposition 2.7]. ⊓⊔

22.4.2 Dimension of the Flow Space

Lemma 22.24. If 𝑋 is proper as a metric space and its dimension dim 𝑋 is ≤ 𝑁 ,
then dim 𝑋 ≤ 𝑁 .

Proof. See [80, Lemma 2.8]. ⊓⊔

Proposition 22.25. Assume that 𝑋 is proper and that dim 𝑋 ≤ 𝑁 . Then

dim
(
FS(𝑋) \ FS(𝑋)R

)
≤ 3𝑁 + 2.

Proof. See [80, Proposition 2.9]. ⊓⊔

22.4.3 The Example of a Complete Riemannian Manifold with Non-Positive
Sectional Curvature

Let 𝑀 be a simply connected complete Riemannian manifold with non-positive
sectional curvature. It is a CAT(0)-space with respect to the metric coming from
the Riemannian metric, see [165, Theorem I.A.6 on page 173]. Let 𝑆𝑇𝑀 be its
sphere tangent bundle. For every 𝑥 ∈ 𝑀 and 𝑣 ∈ 𝑆𝑇𝑥𝑀 there is precisely one
geodesic 𝑐𝑣 : R → 𝑀 for which 𝑐𝑣 (0) = 𝑥 and 𝑐′𝑣 (0) = 𝑣 holds. Given a geodesic
𝑐 : R → 𝑀 in 𝑀 and 𝑎− , 𝑎+ ∈ R with 𝑎− ≤ 𝑎+, define the generalized geodesic
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𝑐 [𝑎− ,𝑎+ ] : R → 𝑀 by sending 𝑡 to 𝑐(𝑎−) if 𝑡 ≤ 𝑎− , to 𝑐(𝑡) if 𝑎− ≤ 𝑡 ≤ 𝑎+, and to
𝑐(𝑎+) if 𝑡 ≥ 𝑎+. Obviously 𝑐 [−∞,∞] = 𝑐. Let 𝑑 : R → 𝑀 be a generalized geodesic
with 𝑑− < 𝑑+. Then there is precisely one geodesic 𝑑 : R→ 𝑀 with 𝑑[𝑑− ,𝑑+ ] = 𝑑.

Define maps

𝛼 : 𝑆𝑇𝑀 ×
{
(𝑎𝑖 , 𝑎+) ∈ R × R | 𝑎− < 𝑎+

}
→ FS(𝑀), (𝑣, 𝑎𝑖 , 𝑎+) ↦→ 𝑐𝑣 | [𝑎− ,𝑎+ ] ;

𝛽 : FS(𝑀) → 𝑆𝑇𝑀 ×
{
(𝑎𝑖 , 𝑎+) ∈ R × R | 𝑎− < 𝑎+

}
, 𝑐 ↦→ (�̂� ′ (0), 𝑐− , 𝑐+).

Then 𝛼 and 𝛽 are mutually inverse homeomorphisms. They are compatible with the
flow on FS(𝑀) of Definition 22.5, if one uses on 𝑆𝑇𝑀×

{
(𝑎𝑖 , 𝑎+) ∈ R×R | 𝑎− < 𝑎+

}
the product flow given by the geodesic flow on 𝑆𝑇𝑀 and the flow on 𝑅 which is at
time 𝑡 given by the homeomorphism R→ R sending 𝑠 ∈ R to 𝑠 − 𝑡, −∞ to −∞, and
∞ to∞.

22.5 The Dynamical Properties of the Flow Space Associated to a
CAT(0)-Space

In Definition 22.27 we introduce the homotopy action that we will use to show
that CAT(0)-groups are strongly transfer reducible overVCY. It will act on a large
closed ball in 𝑋 . (The action of𝐺 on the bordification 𝑋 is not suitable, because it has
too large isotropy groups.) In Theorem 22.31, which is based on Proposition 22.30,
we study the dynamics of the flow with respect to the homotopy action. The analog
of Proposition 22.30 in the hyperbolic case is Theorem 22.34.

Throughout this section we fix the following convention:

• Let (𝑋, 𝑑𝑋) be a CAT(0)-space which is proper as a metric space;
• Let 𝑥0 ∈ 𝑋 be a fixed base point;
• Let 𝐺 be a group with a proper isometric action on (𝑋, 𝑑𝑋).

For 𝑥, 𝑦 ∈ 𝑋 and 𝑡 ∈ [0, 1] we will denote by 𝑡 ·𝑥+ (1− 𝑡) · 𝑦 the unique point 𝑧 on the
geodesic from 𝑥 to 𝑦 such that 𝑑𝑋 (𝑥, 𝑧) = 𝑡𝑑𝑋 (𝑥, 𝑦) and 𝑑𝑋 (𝑧, 𝑦) = (1 − 𝑡)𝑑𝑋 (𝑥, 𝑦).
For 𝑥, 𝑦 ∈ 𝑋 we will denote by 𝑐𝑥,𝑦 the generalized geodesic determined by (𝑐𝑥,𝑦)− =

0, 𝑐(−∞) = 𝑥 and 𝑐(∞) = 𝑦. By [165, Proposition 1.4 (1) in Chapter II.1 on page 160]
and Proposition 22.10, (𝑥, 𝑦) ↦→ 𝑐𝑥,𝑦 defines a continuous map 𝑋 × 𝑋 → FS(𝑋).
Note that 𝑔 · 𝑐𝑥,𝑦 = 𝑐𝑔𝑥,𝑔𝑦 .

22.5.1 The Homotopy Action on 𝑩𝑹 (𝒙)

The next definition is a variation of some of the notions appearing in Section 20.5

Definition 22.26 (Homotopy 𝑆-action). Let 𝑆 be a finite subset of a group 𝐺.
Assume that 𝑆 contains the trivial element 𝑒 ∈ 𝐺. Let 𝑋 be a space.
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(i) A homotopy 𝑆-action (𝜑, 𝐻) on 𝑋 consists of continuous maps 𝜑𝑔 : 𝑋 → 𝑋 for
𝑔 ∈ 𝑆 and homotopies 𝐻𝑔,ℎ : 𝑋 × [0, 1] → 𝑋 for 𝑔, ℎ ∈ 𝑆 with 𝑔ℎ ∈ 𝑆 such that
𝐻𝑔,ℎ (−, 0) = 𝜑𝑔 ◦ 𝜑ℎ and 𝐻𝑔,ℎ (−, 1) = 𝜑𝑔ℎ holds for 𝑔, ℎ ∈ 𝑆 with 𝑔ℎ ∈ 𝑆.
Moreover, we require that 𝐻𝑒,𝑒 (−, 𝑡) = 𝜑𝑒 = id𝑋 for all 𝑡 ∈ [0, 1];

(ii) Let (𝜑, 𝐻) be a homotopy 𝑆-action on 𝑋 . For 𝑔 ∈ 𝑆 let 𝐹𝑔 (𝜑, 𝐻) be the set of
all maps 𝑋 → 𝑋 of the form 𝑥 ↦→ 𝐻𝑟 ,𝑠 (𝑥, 𝑡) where 𝑡 ∈ [0, 1] and 𝑟, 𝑠 ∈ 𝑆 with
𝑟𝑠 = 𝑔;

(iii) Let (𝜑, 𝐻) be a homotopy 𝑆-action on 𝑋 . For (𝑔, 𝑥) ∈ 𝐺 × 𝑋 and 𝑛 ∈ N, let
𝑆𝑛
𝜑,𝐻
(𝑔, 𝑥) be the subset of𝐺×𝑋 consisting of all (ℎ, 𝑦) with the following prop-

erty: There are 𝑥0, . . . , 𝑥𝑛 ∈ 𝑋 , 𝑎1, 𝑏1, . . . , 𝑎𝑛, 𝑏𝑛 ∈ 𝑆, 𝑓1, 𝑓1, . . . , 𝑓𝑛, 𝑓𝑛 : 𝑋 →
𝑋 , such that 𝑥0 = 𝑥, 𝑥𝑛 = 𝑦, 𝑓𝑖 ∈ 𝐹𝑎𝑖 (𝜑, 𝐻), 𝑓𝑖 ∈ 𝐹𝑏𝑖 (𝜑, 𝐻), 𝑓𝑖 (𝑥𝑖−1) = 𝑓𝑖 (𝑥𝑖)
and ℎ = 𝑔𝑎−1

1 𝑏1 · · · 𝑎−1
𝑛 𝑏𝑛;

(iv) Let (𝜑, 𝐻) be a homotopy 𝑆-action on 𝑋 andU be an open cover of 𝐺 × 𝑋 . We
say thatU is 𝑆-long with respect to (𝜑, 𝐻) if for every (𝑔, 𝑥) ∈ 𝐺 × 𝑋 there is
a𝑈 ∈ U containing 𝑆 |𝑆 |

𝜑,𝐻
(𝑔, 𝑥), where |𝑆 | is the cardinality of 𝑆.

Recall that for 𝑟 > 0 and 𝑧 ∈ 𝑋 we denote by 𝜌𝑟 ,𝑧 : 𝑋 → 𝐵𝑟 (𝑧) the canonical
projection along geodesics, i.e., 𝜌𝑟 ,𝑧 (𝑥) = 𝑐𝑧,𝑥 (𝑟), see also Remark 22.20. Note that
𝑔 · 𝜌𝑟 ,𝑧 (𝑥) = 𝜌𝑟 ,𝑔𝑧 (𝑔𝑥) for 𝑥, 𝑧 ∈ 𝑋 and 𝑔 ∈ 𝐺.

Definition 22.27 (The homotopy 𝑆-action on 𝐵𝑅 (𝑥0)). Let 𝑆 ⊆ 𝐺 be a finite subset
of 𝐺 with 𝑒 ∈ 𝐺 and 𝑅 > 0. Define a homotopy 𝑆-action (𝜑𝑅, 𝐻𝑅) on 𝐵𝑅 (𝑥) in the
sense of Definition 22.26 (i) as follows. For 𝑔 ∈ 𝑆, we define the map

𝜑𝑅𝑔 : 𝐵𝑅 (𝑥0) → 𝐵𝑅 (𝑥0)

by 𝜑𝑅𝑔 (𝑥) := 𝜌𝑅,𝑥0 (𝑔𝑥).
For 𝑔, ℎ ∈ 𝑆 with 𝑔ℎ ∈ 𝑆 we define the homotopy

𝐻𝑅𝑔,ℎ : 𝜑𝑅𝑔 ◦ 𝜑𝑅ℎ ≃ 𝜑
𝑅
𝑔ℎ

by 𝐻𝑅
𝑔,ℎ
(𝑥, 𝑡) := 𝜌𝑅,𝑥0

(
𝑡 · (𝑔ℎ𝑥) + (1 − 𝑡) · (𝑔 · 𝜌𝑅,𝑥0 (ℎ𝑥))

)
.

Remark 22.28. Note that 𝐻𝑅
𝑔,ℎ

is indeed a homotopy from 𝜑𝑅𝑔 ◦ 𝜑𝑅ℎ to 𝜑𝑔ℎ because
of

𝐻𝑅𝑔,ℎ (𝑥, 0) = 𝜌𝑅,𝑥0

(
0 · (𝑔ℎ𝑥) + 1 · (𝑔 · 𝜌𝑅,𝑥0 (ℎ𝑥))

)
= 𝜌𝑅,𝑥0

(
𝑔 · 𝜌𝑅,𝑥0 (ℎ𝑥)

)
= 𝜑𝑅𝑔 ◦ 𝜑𝑅ℎ (𝑥),

and

𝐻𝑅𝑔,ℎ (𝑥, 1) = 𝜌𝑅,𝑥0

(
1 · (𝑔ℎ𝑥) + 0 · (𝑔 · 𝜌𝑅,𝑥0 (ℎ𝑥)

)
= 𝜌𝑅,𝑥0 (𝑔ℎ𝑥)
= 𝜑𝑅𝑔ℎ (𝑥).
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It turns out that the more obvious homotopy given by convex combination (𝑥, 𝑡) ↦→
𝑡 · 𝜑𝑅

𝑔ℎ
(𝑥) + (1 − 𝑡) · 𝜑𝑅𝑔 ◦ 𝜑𝑅ℎ (𝑥) is not appropriate for our purposes.

Definition 22.29 (The map 𝜄). Define the map

𝜄 : 𝐺 × 𝑋 → FS(𝑋)

as follows. For (𝑔, 𝑥) ∈ 𝐺 × 𝑋 let 𝜄(𝑔, 𝑥) := 𝑐𝑔𝑥0 ,𝑔𝑥 .

The map 𝜄 is𝐺-equivariant for the𝐺-action on𝐺×𝑋 defined by 𝑔·(ℎ, 𝑥) = (𝑔ℎ, 𝑥).

22.5.2 The Flow Estimate

Proposition 22.30. Let 𝛽, 𝐿 > 0. For all 𝛿 > 0, there are 𝑇, 𝑟 > 0 such that for
𝑥1, 𝑥2 ∈ 𝑋 with 𝑑𝑋 (𝑥1, 𝑥2) ≤ 𝛽, 𝑥 ∈ 𝐵𝑟+𝐿 (𝑥1) there is a 𝜏 ∈ [−𝛽, 𝛽] satisfying

𝑑FS(𝑋)
(
Φ𝑇 (𝑐𝑥1 ,𝜌𝑟,𝑥1 (𝑥 ) ),Φ𝑇+𝜏 (𝑐𝑥2 ,𝜌𝑟,𝑥2 (𝑥 ) )

)
≤ 𝛿.

Proof. See [80, Proposition 3.5]. ⊓⊔

Theorem 22.31 (Flow estimates in the CAT(0)-case). Let 𝑆 be a finite subset of 𝐺
(containing 𝑒). Then there is a 𝛽 > 0 such that the following holds:

For all 𝛿 > 0, there are 𝑇, 𝑅 > 0 such that for every (𝑎, 𝑥) ∈ 𝐺 × 𝐵𝑅 (𝑋), 𝑠 ∈ 𝑆,
and 𝑓 ∈ 𝐹𝑠 (𝜑𝑅, 𝐻𝑅) there is 𝜏 ∈ [−𝛽, 𝛽] satisfying

𝑑FS(𝑋)
(
Φ𝑇 (𝜄(𝑎, 𝑥)),Φ𝑇+𝜏 (𝜄(𝑎𝑠−1, 𝑓 (𝑥)))

)
≤ 𝛿.

Proof. See [80, Proposition 3.8]. ⊓⊔

22.6 The Flow Space Associated to a Hyperbolic Metric Complex

In the proofs of the Farrell-Jones Conjecture for hyperbolic groups, see [86, 87],
a construction of a flow space FS(𝑋) based on a construction of Mineyev [731]
is used. (Note that a mistake in [731] was fixed by Mole [749].) Although one no
longer needs Mineyev’s construction in the proofs and one can get along with the
construction presented in Section 22.3, we still briefly recall what happens in the
original proofs for hyperbolic groups as an illustration for the reader and a hint how
the techniques have changed over time.

If 𝑋 is hyperbolic metric space with compactification 𝑋 and 𝑥0 ∈ 𝑋 a base point,
there is a specific map, see [87, (8.1)],

(22.32) 𝜄𝑥0 : 𝑋 × 𝑋 → FS(𝑋)

such that the following flow estimate holds.
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Lemma 22.33. The map 𝜄𝑥0 : 𝑋 × 𝑋 → FS(𝑋) from (22.32) is continuous. It is
Isom(𝑋)-equivariant with respect to the diagonal Isom(𝑋)-action on the source
where Isom(𝑋) is the group of isometric self-homeomorphisms of 𝑋 . For 𝑥 ∈ 𝑋 the
map 𝜄𝑥0 (𝑥,−) : 𝑋 → FS(𝑋), 𝑦 ↦→ 𝜄𝑥0 (𝑥, 𝑦) is injective.

Proof. See [86, Lemma 8.4]. ⊓⊔

Theorem 22.34 (Flow estimate in the hyperbolic case). Let 𝜆 ∈ (e−1, 1) and
𝑇 ∈ [0,∞) be the constants depending only on 𝑋 which appear in [86, Proposi-
tion 6.4]. Consider 𝑎, 𝑏 ∈ 𝑋 and 𝑐 ∈ 𝑋 . Put

𝑁 = 2 + 2
𝜆𝑇 · (− ln(𝜆)) .

Then there exists a real number 𝜏0 such that

|𝜏0 | ≤ 2 · 𝑑 (𝑎, 𝑏) + 5

holds for the new metric 𝑑 on 𝑋 defined in [731, Lemma 2.7 on page 449 and
Theorem 32 on page 446] and we get for all 𝜏 ∈ R

𝑑FS,𝑥0 (𝜙𝜏 ◦ 𝜄𝑥0 (𝑎, 𝑐), 𝜙𝜏+𝜏0 ◦ 𝜄𝑥0 (𝑏, 𝑐)) ≤
𝑁

1 − ln(𝜆)2
· 𝜆−𝑑 (𝑎,𝑏) · 𝜆𝜏 .

Proof. See [86, Theorem 8.6]. ⊓⊔

We recommend the reader to compare Theorem 22.34 with Proposition 22.30.
The baby version of these two results was already discussed in Lemma 19.14.

22.7 Topological Dimension

Let 𝑋 be a topological space. Let U be an open cover. Its dimension dim(U) ∈
{0, 1, 2, . . .} ⨿ {∞}, sometimes also called its order, is the infimum over all integers
𝑑 ≥ 0 such that for any collection𝑈0,𝑈1, . . . ,𝑈𝑑+1 of pairwise distinct elements in
U the intersection

⋂𝑑+1
𝑖=0 𝑈𝑖 is empty. An open covering V is a refinement of U if

for every 𝑉 ∈ V there is a𝑈 ∈ U with 𝑉 ⊆ 𝑈.

Definition 22.35 ((Topological) dimension). The dimension (sometimes also called
the topological dimension or covering dimension) of a topological space 𝑋

dim(𝑋) ∈ {0, 1, 2, . . .} ⨿ {∞}

is the infimum over all integers 𝑑 ≥ 0 such that any open covering U possesses a
refinementV with dim(V) ≤ 𝑑.
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We state some basic properties of the dimension.

Lemma 22.36. If 𝐴 is a closed subset of 𝑋 , then dim(𝐴) ≤ dim(𝑋).

Exercise 22.37. Give the proof of Lemma 22.36.

Lemma 22.38. Let 𝑋 be the union 𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑘 of closed subspaces 𝐴𝑖 ⊆ 𝑋 .
Then

dim(𝑋) = max{dim(𝐴𝑖) | 𝑖 = 1, 2, . . . , 𝑘}.

Proof. See [754, Corollary 9.3 on page 304]. ⊓⊔

Lemma 22.39. Let 𝑍 be a proper metric space. Suppose that 𝐺 acts on 𝑍 isometri-
cally and properly. Then we get for the topological dimensions of 𝑍 and 𝐺\𝑍

dim(𝐺\𝑍) ≤ dim(𝑍).

Proof. See [658, Lemma 3.2]. ⊓⊔

Theorem 22.40. Let 𝑋 be a locally compact Hausdorff space having a countable
basis for its topology. Suppose that every point of 𝑋 has a neighborhood whose
closure has topological dimension at most 𝑚. Then 𝑋 has topological dimension at
most 𝑚.

Proof. See [754, Exercise 9 on page 315]. ⊓⊔

A locally compact 𝐶𝑊-complex which is second countable, i.e., has a countable
basis for its topology, has the property that its topological dimension dim(𝑋) is the
same as its dimension as a 𝐶𝑊-complex. This follows from Theorem 22.40. Note
that for a connected 𝐶𝑊-complex, locally compact, metrizable, first countable, and
locally finite are equivalent conditions, see [408, Theorem B and Proposition 2.4].

Again by Theorem 22.40, a topological 𝑚-dimensional manifold 𝑀 has topolo-
gical dimension 𝑚.

Lemma 22.41. Let 𝑛 be an integer with 𝑛 ≥ 0. Let 𝑋 be a proper metric space
whose topological dimension satisfies dim(𝑋) ≤ 𝑛. Suppose that 𝐺 acts properly
and isometrically on 𝑋 .

Then there exists a proper 𝑛-dimensional 𝐺-𝐶𝑊-complex 𝑌 together with a 𝐺-
map 𝑓 : 𝑋 → 𝑌 .

Proof. See [658, Lemma 3.7]. ⊓⊔

There is also the notion of a small inductive limit, see [342, Definition 1.1] or [572,
Definition 3.1] which agrees with the notion of the topological dimension for second
countable metric spaces, see [342, Theorem 1.7.7].
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22.8 Long and Thin Covers

The next result is proved in [572, Theorem 1.1] based on ideas from [86, Theorem 1.4]
and [80, Theorem 5.6] which in turn are motivated by [359, Proposition 7.2].

Notation 22.42. Let (𝑋, 𝑑𝑋) be a metric space. For a subset 𝐴 ⊆ 𝑋 and 𝛿 > 0, we
define

𝐵𝛿 (𝐴) := {𝑦 ∈ 𝑋 | ∃𝑎 ∈ 𝐴 with 𝑑𝑋 (𝑦, 𝑎) < 𝛿};
𝐵𝛿 (𝐴) := {𝑥 ∈ 𝑋 | ∃𝑎 ∈ 𝐴 with 𝑑𝑋 (𝑎, 𝑦) ≤ 𝛿}.

Given 𝑥 ∈ 𝑋 , we write

𝐵𝛿 (𝑥) := 𝐵𝛿{𝑥}) = {𝑦 ∈ 𝑋 | 𝑑𝑋 (𝑦, 𝑥) < 𝛿};
𝐵𝛿 (𝑥) := 𝐵𝛿 ({𝑥}) = {𝑦 ∈ 𝑋 | 𝑑𝑋 (𝑦, 𝑥) ≤ 𝛿}.

We call 𝐵𝛿 (𝑥) the open and 𝐵𝛿 (𝑥) the closed ball around 𝑥 of radius 𝛿.

Note that the open ball 𝐵𝛿 (𝑥) is an open subset of 𝑋 , the closed ball 𝐵𝛿 (𝑥) is
a closed subset of 𝑋 , and 𝐵𝛿 (𝐴) contains the closure 𝐵𝛿 (𝐴) of 𝐵𝛿 (𝐴) in 𝑋 , but
𝐵𝛿 (𝐴) and 𝐵𝛿 (𝐴) are not equal in general.

Theorem 22.43 (Long and thin covers). Let𝐺 be a countable discrete group. Let 𝑋
be a flow𝐺-space such that the underlying topological space 𝑋 is finite-dimensional,
locally compact, and second countable. Let 𝛼 > 0 and 𝛿 > 0 be real numbers.

Then there exists an openVCY-coverU of 𝑋 in the sense of Definition 20.18 of
dimension at most 7 dim(𝑋) + 7 which is long and thin in the following sense:

• (Long) For every point 𝑥 ∈ 𝑋 there is a𝑈 ∈ U with Φ[−𝛼,𝛼] (𝑥) ⊆ 𝑈;
• (Thin) For every𝑈 ∈ U there is a point 𝑥 ∈ 𝑋 with𝑈 ⊆ 𝐵𝛿 (ΦR (𝑥)).

The long and thin covers are generalizations of the long and thin cells from [359,
Proposition 7.2].

A basic strategy of the proof of Theorem 22.43 presented in [572, Theorem 1.1]
consists of decomposing the flow space into three parts, a part without a short
𝐺-period, a non-periodic part with short 𝐺-period, and the periodic part with short
𝐺-period, constructing for each part an appropriate 𝑉𝑐𝑦𝑐-cover, and finally taking
the union of these covers.

Definition 22.44 (Strong contracting transfers). A flow 𝐺-space 𝑌 admits strong
contracting transfers if there is a natural number 𝑁 such that, for every finite subset
𝑆 ⊆ 𝐺 and every natural number 𝑘 , there is a real number 𝛽 > 0 such that for every
𝛿 > 0 there is a real number 𝑇 > 0 such that there exists:

• An 𝑁-transfer space 𝑋 in the sense of Definition 20.9;
• A strong homotopy action Γ on 𝑋 in the sense of Definition 20.32;
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• A 𝐺-equivariant map 𝜄 : 𝐺 × 𝑋 → 𝑌 , where the 𝐺-action on 𝐺 × 𝑋 is given by
𝑔′ · (𝑔, 𝑥) = (𝑔′𝑔, 𝑥), with the property that for every (𝑔, 𝑥) ∈ 𝐺 × 𝑋 , every 𝑠 ∈ 𝑆,
and every 𝑓 ∈ 𝐹𝑔 (Γ, 𝑆, 𝑘) there exists a 𝜏 ∈ [−𝛽, 𝛽] satisfying

𝑑𝑌 (Φ𝑇 ◦ 𝜄(𝑔, 𝑥),Φ𝜏+𝑇 ◦ 𝜄(𝑔𝑠−1, 𝑓 (𝑥))) ≤ 𝛿.

The next result follows from [572, Corollary 1.2] and Theorem 20.39.

Theorem 22.45. Let 𝑋 be a flow 𝐺-space whose underlying space 𝑋 is finite-
dimensional and the 𝐺-action on 𝑋 is cocompact. Suppose that 𝑋 admits strong
contracting transfers.

Then 𝐺 is strongly transfer VCY-reducible in the sense of Definition 20.38. In
particular, 𝐺 satisfies the Full Farrell-Jones Conjecture 13.30.

A key ingredient in the proof that for a hyperbolic or a CAT(0)-group Theo-
rem 22.45 applies, i.e., that the flow spaces admit strong contracting transfers, are
the flow estimates as they appear for instance in Theorem 22.31 and Theorem 22.34.
The basic idea of the proof of Theorem 22.45 is to pull back an appropriate F -cover
of the flow space 𝑌 coming from Theorem 22.43 back to 𝐺 × 𝑋 using the map 𝜄.

Remark 22.46. Kasprowski and Rüping [571, Theorem 6.1] show using Theo-
rem 22.45 that the 𝐾-theoretic Farrell-Jones Conjecture with coefficients in additive
𝐺-categories with finite wreath products, see Conjecture 13.27, and the 𝐿-theoretic
Farrell-Jones Conjecture with coefficients in additive 𝐺-categories with involution
with finite wreath products, see Conjecture 13.28, hold for a class of group 𝐺 which
encompasses all hyperbolic and CAT(0)-groups. It contains for instance all groups
𝐺 which acts properly and cocompactly on a finite product of hyperbolic graphs,
see [571, Theorem 1.1] Their proof also applies to the Full Farrell-Conjecture 13.30
because of Remark 20.3 and Theorem 20.62. There are groups which are nei-
ther hyperbolic nor CAT(0)-groups and belong to the class of groups appearing in
Kasprowski and Rüping [571, Theorem 6.1], e.g., the fundamental group 𝜋1 (𝑆𝑇𝐹)
of the sphere tangent bundle of a hyperbolic closed surface 𝐹, see [571, Section 3].
(Note that it is well-known that 𝜋1 (𝑆𝑇𝐹) satisfies the Full Farrell-Conjecture 13.30,
see Theorem 16.1 (ie).)

22.9 Notes

Bartels developed coarse flow spaces in [68] when he was dealing with the Farrell-
Jones Conjecture for relative hyperbolic groups. One advantage of his approach is
that one no longer needs Mineyev’s flow space, see [731]. Moreover, this point of
view was essential in the proof of the Full Farrell-Jones Conjecture for mapping class
groups due to Bartels-Bestvina [70], as in this setting no flow space is available. The
coarse flow space still allows the construction of long and thin covers.
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The case of a reductive 𝑝-adic group acting on the CAT(0)-space given by its
Bruhat-Tits building is analyzed in Bartels-Lück [82]. Completed Kac-Moody groups
are treated in Bartels-Lück-Witzel [91].



Chapter 23
Transfer

23.1 Introduction

In this chapter we give more information about the transfer which we have already
mentioned in Section 19.5 and which plays a prominent role in nearly all proofs of
the Farrell-Jones Conjecture. For simplicity we refine ourselves to the Whitehead
group. Nevertheless, we will convey all the basic ideas which will enter in the proof
of the general case.

In Section 23.2 we will consider the classical geometric transfer associated to
an appropriate fibration 𝐹 → 𝐸 → 𝐵 of connected finite 𝐶𝑊-complexes. It is a
homomorphism 𝑝∗ : Wh(𝜋1 (𝐵)) → Wh(𝜋1 (𝐸)) which is given by the pullback
construction with 𝑝 applied to homotopy equivalences from finite𝐶𝑊-complexes to
𝐵 and the notion of Whitehead torsion. We will explain its algebraic description in
Section 23.3.

Section 23.4 is devoted to the down-up-formula which computes the composite
Wh(𝜋1 (𝐵))

𝑝∗

−−→ Wh(𝜋1 (𝐸))
𝑝∗−−→ Wh(𝜋1 (𝐵)) for 𝑝∗ the map induced by the group

homomorphism 𝜋1 (𝑝) : 𝜋1 (𝐸) → 𝜋1 (𝐵). It is given in terms of the 𝜋1 (𝐵)-operation
on the homology of the fiber. It implies that 𝑝∗ ◦ 𝑝∗ is given by multiplication by
the Euler characteristic 𝜒(𝐹), if 𝑝 is orientable in the sense that its fiber transport is
trivial. In particular, 𝑝∗ is bijective if 𝐹 is contractible.

In Sections 23.5 and 23.6 we will consider transfer maps in more general situa-
tions, which will be needed in the proofs of the Farrell-Jones Conjecture.

In Section 23.7 we consider a finitely generated group𝐺 and a family of subgroups
F such that 𝐺 is strictly F -transfer reducible in the sense of Definition 20.11 and
show that the assembly map

𝐻𝐺1 (pr; KZ) : 𝐻𝐺1 (𝐸F (𝐺); KZ) → 𝐻𝐺1 (𝐺/𝐺; KZ) = 𝐾1 (Z𝐺)

is surjective. This is a special case of Theorem 20.12 and will illustrate the methods
of proof for the Farrell-Jones Conjecture. Reducing to this special case avoids some
formidable purely technical input, which will make the exposition much harder, but
will be discussed later in Chapter 24.

We discuss a general strategy how to prove the Farrell-Jones Conjecture using
transfers in Section 23.8.

685
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23.2 The Geometric Transfer

Let 𝐹 → 𝐸
𝑝
−→ 𝐵 be a fibration such that 𝐹 and 𝐵 have the homotopy type of a

connected finite 𝐶𝑊-complex. Then 𝐸 also has the homotopy type of a connected
finite 𝐶𝑊-complex, see for instance [373, Section 3], [640], [682, Section 1].

A simple structure 𝜉 on a space 𝑌 of the homotopy type of a connected finite
𝐶𝑊-complex is an equivalence class of homotopy equivalences 𝑢0 : 𝑍 ≃−→ 𝑌 with
some connected finite 𝐶𝑊-complex 𝑍 as source, where we call two such homotopy
equivalences 𝑢𝑘 : 𝑍𝑘

≃−→ 𝑌 for 𝑘 = 0, 1 equivalent if there is a simple homotopy
equivalence 𝑣 : 𝑍0

≃𝑠−−→ 𝑍1 such that 𝑢1 ◦ 𝑣 and 𝑢0 are homotopic. Of course a
connected finite 𝐶𝑊-complex 𝑌 has a preferred simple structure given by id𝑌 .

Given a homotopy equivalence 𝑓 : (𝑌0, 𝜉0)
≃−→ (𝑌1, 𝜉1) of spaces coming with

simple structures, we define its Whitehead torsion 𝜏( 𝑓 ) ∈ Wh(𝜋1 (𝑌1)) to be the
image of the Whitehead torsion 𝜏(𝑤) ∈ Wh(𝜋1 (𝑍1)) of a homotopy equivalence
𝑤 : 𝑍0

≃−→ 𝑍1 under the isomorphism (𝑢1)∗ : Wh(𝜋1 (𝑍1))
�−→ Wh(𝜋1 (𝑌1)), where

we have chosen representatives 𝑢𝑘 : 𝑍𝑘
≃−→ 𝑌𝑘 of the simple structures 𝜉𝑘 for 𝑘 = 0, 1

and require 𝑢1 ◦ 𝑤 ≃ 𝑓 ◦ 𝑢0. One easily checks that this is independent of all the
choices using Theorem 3.37.

Next we define a class 𝜃 (𝑝) ∈ 𝐻1 (𝐵; Wh(𝜋1 (𝐸))). It is given after a choice
of a base point 𝑏 ∈ 𝐵 and a simple structure on the fiber 𝐹𝑏 = 𝑝−1 (𝑏) by the
homomorphism 𝜋1 (𝐵, 𝑏) →Wh(𝜋1 (𝐸)) which sends 𝑤 ∈ 𝜋1 (𝐵, 𝑏) to the image of
Whitehead torsion of the homotopy equivalence 𝐹𝑏 → 𝐹𝑏 given by the fiber transport
along 𝑤 under the homomorphism Wh(𝜋1 (𝐹𝑏)) → Wh(𝜋1 (𝐸)) coming from the
inclusion 𝐹𝑏 → 𝐸 . Recall that the fiber transport is a homomorphism of monoids
𝜋1 (𝐵, 𝑏) → [𝐹𝑏, 𝐹𝑏], see for instance [943, 15.12 on page 343], [1006, page 186].
One easily checks that this is well-defined, in particular that it is independent of the
choice of base points and the simple structure on 𝐹𝑏.

If 𝜃 (𝑝) ∈ 𝐻1 (𝐵; Wh(𝜋1 (𝐸))) vanishes and we have fixed simple structures 𝜉𝐹
and 𝜉𝐵 on 𝐹 and 𝐵, then there is a preferred simple structure on 𝜉𝐸 on 𝐸 , see [373,
Section 3], [640], [682, Section 1]. In the sequel we will assume that the characteristic
class 𝜃 (𝑝) ∈ 𝐻1 (𝐵; Wh(𝜋1 (𝐹))) vanishes, which is the case if 𝑝 satisfies one of the
following conditions:

• the fibration is orientable, i.e., the fiber transport 𝜋1 (𝐵) → [𝐹, 𝐹] is trivial;
• The map 𝜋1 (𝐹) → 𝜋1 (𝐸) is zero, or, equivalently, 𝜋1 (𝑝) : 𝜋1 (𝐸) → 𝜋1 (𝐵) is

bijective;
• 𝑝 is a locally trivial topological bundle with a connected finite 𝐶𝑊-complex 𝐹 as

fiber;
• Wh(𝜋1 (𝐹)) or Wh(𝜋1 (𝐸)) vanishes.

Let 𝑀 be a closed topological manifold. Then, by Kirby-Siebenmann [579, Es-
say III, Theorem 4.1 on page 118], there is a preferred simple structure

𝜉 top (𝑀) on 𝑀,(23.1)
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which is defined by considering any triangulation of an embedding of a closed disk
bundle over 𝑀 as a codimension zero submanifold into Euclidean space. The simple
structure on the disk bundle obtained from the triangulation induces the preferred
simple structure on 𝑀 via the homotopy equivalence given by the inclusion of 𝑀
into the disk bundle. This simple structure agrees with the one obtained by any
triangulation or by any handlebody decomposition (more generally what they call
TOP s-decomposition) of 𝑀 , whenever they exist, see [579, Essay III, Theorem 5.10
on page 131 and Theorem 5.11 on page 132]. Let 𝐹 → 𝑀 → 𝐵 be a locally trivial
bundle of connected closed topological manifolds. Then Θ(𝑝) is trivial. If we equip
𝐵 and 𝐹 with the simple structures 𝜉 top (𝑀) of (23.1), then the induced simple
structure on the total space 𝜉𝑀 agrees with 𝜉 top (𝑀), see [373, Lemma 3.16].

Consider 𝛼 ∈ Wh(𝜋1 (𝐵)). Let 𝑓 : 𝑋 → 𝐵 be a homotopy equivalence with a
connected finite𝐶𝑊-complex as source satisfying 𝜏( 𝑓 ) = 𝛼. Consider the following
pullback

𝑋
𝑓 //

𝑝

��

𝐸

𝑝

��
𝑋

𝑓
// 𝐵.

We conclude Θ(𝑝) = 0 from our assumption Θ(𝑝) = 0. Hence there is a preferred
simple structure on both 𝑋 and 𝐸 and the Whitehead torsion 𝜏( 𝑓 ) ∈ Wh(𝜋1 (𝐸)) is
defined. The geometric transfer

(23.2) 𝑝∗ : Wh(𝜋1 (𝐵)) →Wh(𝜋1 (𝐸))

is defined by the equality 𝑝∗ (𝛼) = 𝜏( 𝑓 ). The proof that this construction is well-
defined can be found in Anderson [28, 29] for locally trivial PL-bundles and in the
more general setting above in [640], [373, Section 3]. The equivariant version of this
construction is presented in detail in [644, Section 15].

Example 23.3. Let 𝐹 → 𝑀 → 𝐵 be a locally trivial bundle of connected closed
topological manifolds. Let𝑊 = (𝑊, 𝐵, 𝐵′, 𝑓 , 𝑓 ′) be a topological ℎ-cobordism over
𝐵. Choose a retraction 𝑟 of the homotopy equivalence 𝐵

𝑓
−→ 𝜕0𝑊 → 𝑊 . Consider

the pullback

𝑊
𝑟 //

𝑝

��

𝐸

𝑝

��
𝑊

𝑟
// 𝐵.

Then 𝑊 is a topological ℎ-cobordism over 𝐸 and the transfer homomorphism
𝑝∗ : Wh(𝜋1 (𝐵)) → Wh(𝜋1 (𝐸)) of (23.2) sends the Whitehead torsion of 𝑊 ,
see (3.48), to the Whitehead torsion of𝑊 .



688 23 Transfer

23.3 The Algebraic Transfer

Next we describe the algebraic version of the geometric transfer. Let 𝑅 and 𝑆 be
rings.

Definition 23.4 (Chain homotopy representation). A chain homotopy represen-
tation (𝐶∗,𝑈) consists of an 𝑆-chain complex 𝐶∗ and a ring homomorphism
𝑈∗ : 𝑅 → [𝐶∗, 𝐶∗]𝑆 to the ring of 𝑆-chain homotopy classes of 𝑆-self-chain ho-
motopy equivalences 𝐶∗ → 𝐶∗, where the multiplicative structure comes from
composition.

For a matrix 𝐴 = (𝑎𝑖, 𝑗 ) in GL𝑛 (𝑅), we get a well-defined 𝑆-chain homotopy
class of 𝑆-chain homotopy equivalences𝑈∗ (𝐴) :

⊕𝑛

𝑖=1 𝐶∗
≃−→

⊕𝑛

𝑖=1 𝐶∗ by the (𝑛, 𝑛)-
matrix (𝑈 (𝑎𝑖, 𝑗 ))𝑖, 𝑗 of 𝑆-chain homotopy classes of 𝑆-chain maps𝑈 (𝑎𝑖, 𝑗 ) : 𝐶∗ → 𝐶∗.
Suppose that𝐶∗ is a finite free 𝑆-chain complex. Choose a basis for𝐶∗. Then

⊕𝑛

𝑖=1 𝐶∗
is a finite free 𝑆-chain complex which comes with a basis, and hence the Whitehead
torsion 𝜏(𝑈∗ (𝐴)) ∈ 𝐾1 (𝑆) of 𝑈∗ (𝐴) :

⊕𝑛

𝑖=1 𝐶∗
≃−→

⊕𝑛

𝑖=1 𝐶∗ is defined, see (3.33).
One easily checks that 𝜏(𝑈∗ (𝐴)) is independent of the choice of the basis on 𝐶∗. We
obtain a well-defined homomorphism of abelian groups

(23.5) 𝑝∗𝑈 : 𝐾1 (𝑅) → 𝐾1 (𝑆)

by sending the class of [𝐴] of 𝐴 to 𝜏(𝑈∗ (𝐴)). Although it is not relevant for us
here, we mention that using the self-torsion of Subsection 23.7.3 one can define a
map 𝑝∗

𝑈
: 𝐾1 (𝑅) → 𝐾1 (𝑆) which induces the map (23.5) and is defined in the more

general case where𝐶∗ is a finitely dominated projective 𝑆-chain complex. All of this
is explained in [641, Section 4].

Given a fibration 𝐹 → 𝐸
𝑝
−→ 𝐵 such that 𝐹 is a connected finite 𝐶𝑊-

complex and 𝐵 is path connected, one can assign to it using the fiber transport
a chain homotopy representation 𝑈 (𝑝) for 𝑅 = Z[𝜋1 (𝐵)] and 𝑆 = Z[𝜋1 (𝐸)]
whose underlying Z[𝜋1 (𝐸)]-chain complex is finite free. In the special case when
𝜋1 (𝑝) : 𝜋1 (𝐸)

�−→ 𝜋1 (𝐵) is bijective, it is defined as follows. Take 𝐶∗ (𝐹) to be the
cellular Z-chain complex of 𝐹. Put 𝐶∗ = Z[𝜋1 (𝐸)] ⊗Z 𝐶∗ (𝐹). This is obviously
a finite free Z[𝜋1 (𝐸)]-chain complex. For 𝑤 ∈ 𝜋1 (𝐵) the fiber transport defines a
Z-chain map 𝑡 (𝑤)∗ : 𝐶∗ → 𝐶∗ which is well-defined up toZ-chain homotopy. Choose
𝑤 ∈ 𝜋1 (𝐸) whose image under 𝜋1 (𝑝) is 𝑤. Define𝑈 (𝑤)∗ : 𝐶∗ → 𝐶∗ by

(23.6) 𝑈 (𝑤)∗ (𝑣 ⊗ 𝑥) = 𝑣𝑤−1 ⊗ 𝑡 (𝑤)∗ (𝑥).

This extends to a ring homomorphism 𝑈∗ : Z[𝜋1 (𝐵)] → [𝐶∗, 𝐶∗]Z[𝜋1 (𝐸 ) ] by
Z-linearity. So the transfer of (23.5) is defined. It induces a homomorphism of
abelian groups

(23.7) 𝑝∗
𝑈 (𝑝) : Wh(Z[𝜋1 (𝐵)]) →Wh(Z[𝜋1 (𝐸)]),

provided that Θ(𝑝) = 0 holds. The next theorem is taken from [641, Theorem 5.4].
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Theorem 23.8 (The geometric and algebraic transfer agree). In the situation
where the geometric transfer 𝑝∗ of (23.2) is defined, the algebraic transfer 𝑝∗

𝑈 (𝑝)
of (23.7) is defined and 𝑝∗ and 𝑝∗

𝑈 (𝑝) agree.

In view of Theorem 23.8 we abbreviate 𝑝∗
𝑈 (𝑝) by 𝑝∗ in the sequel.

23.4 The Down-Up Formula

Consider a fibration 𝐹 → 𝐸
𝑝
−→ 𝐵 such that 𝐹 is a connected finite𝐶𝑊-complex and

𝐵 is path connected. The group homomorphism 𝜋1 (𝑝) : 𝜋1 (𝐸) → 𝜋1 (𝐵) induces
a map 𝑝∗ : Wh(Z[𝜋1 (𝐸)]) → Wh(Z[𝜋1 (𝐵)]). Next we investigate the composite
𝑝∗ ◦ 𝑝∗ : Wh(Z[𝜋1 (𝐵)]) →Wh(Z[𝜋1 (𝐵)]).

For a group𝐺 let Sw𝑝 (𝐺) be the Grothendieck groups of Z𝐺-modules 𝑀 that are
finitely generated free as an abelian groups, see Definition 12.65. There is a pairing,
see (12.69)

(23.9) 𝑠 : Sw𝑝 (𝐺) ⊗ 𝐾1 (Z𝐺) → 𝐾1 (Z𝐺).

It induces a pairing

(23.10) 𝑠 : Sw𝑝 (𝐺) ⊗Wh(𝐺) →Wh(𝐺).

Exercise 23.11. Show that the pairing (23.9) induces a well-defined pairing (23.10).
The fiber transport induces a homotopy 𝜋1 (𝐵)-action on 𝐹. So𝐻𝑛 (𝐹;Z) becomes

a Z[𝜋1 (𝐵)]-module. Thus we obtain a Z[𝜋1 (𝐵)]-module 𝐻𝑛 (𝐹;Z) that is finitely
generated as an abelian group. Define the element

(23.12) ℎ(𝑝) =
∑︁
𝑛≥0
(−1)𝑛 · [𝐻1 (𝐹;Z)] ∈ Sw(𝜋1 (𝐵))

for the Swan ring Sw(𝐺) given by Z𝐺-modules that are finitely generated as abelian
groups, see Definition 12.65.

Theorem 23.13 (Down-up formula).

(i) The composite

𝑝∗ ◦ 𝑝∗ : Wh(Z[𝜋1 (𝐵)]) →Wh(Z[𝜋1 (𝐵)])

agrees with 𝑠(𝑒−1 (ℎ(𝑝)),−) for the pairing 𝑠 defined in (23.10), the element
ℎ(𝑝) defined in (23.12), and the isomorphism 𝑒 : Sw𝑝 (𝜋1 (𝐵))

�−→ Sw(𝜋1 (𝐵))
from Lemma 12.66;

(ii) If 𝑝 is orientable, i.e., its fiber transport is trivial, then the composite
𝑝∗ ◦ 𝑝∗ : Wh(Z[𝜋1 (𝐵)]) → Wh(Z[𝜋1 (𝐵)]) is multiplication with the Euler
characteristic 𝜒(𝐹);
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(iii) If the fiber 𝐹 is contractible, then 𝑝∗ : Wh(Z[𝜋1 (𝐸)]) →Wh(Z[𝜋1 (𝐵)]) is an
isomorphism whose inverse is 𝑝∗ : Wh(Z[𝜋1 (𝐵)]) →Wh(Z[𝜋1 (𝐸)]).

Proof. (i) See [643, Corollary 6.4].
(ii) This follows from assertion (i).
(iii) This follows from assertion (ii). ⊓⊔

Example 23.14. Let 𝑀 be a connected closed smooth manifold of dimension 𝑑 ≥ 5.
Then we have the locally trivial bundle 𝑝 : 𝑆𝑇𝑀 → 𝑀 given by the sphere bundle
associated to the tangent bundle. For it the transfer 𝑝∗ : Wh(𝜋1 (𝐵)) →Wh(𝜋1 (𝐸))
above is defined. Let 𝑊 = (𝑊, 𝐵, 𝐵′, 𝑓 , 𝑓 ′) be an ℎ-cobordism over 𝐵. Choose
a retraction 𝑟 of the homotopy equivalence 𝐵

𝑓
−→ 𝜕0𝑊 → 𝑊 . As explained in

Example 23.3, the pullback construction associated to 𝑟 yields an ℎ-cobordism 𝑊

over 𝐸 and we have the equality

𝑝∗ (𝜏(𝑊)) = 𝜏(𝑊).

The map 𝑝∗ : Wh(Z[𝜋1 (𝐵)]) → Wh(Z[𝜋1 (𝐸)]) is bijective. The composite
𝑝∗ ◦ 𝑝∗ : Wh(Z[𝜋1 (𝐵)]) →Wh(Z[𝜋1 (𝐵)]) is multiplication by (1+ (−1)𝑑−1) pro-
vided that 𝑀 is orientable. If 𝑝+ : 𝑆+𝑇𝑀 → 𝑀 is the hemisphere bundle appearing
in Section 19.5, then the transfer map

(𝑝+)∗ : Wh(Z[𝜋1 (𝐵)]) →Wh(Z[𝜋1 (𝑆+𝑇𝑀)])

is an isomorphism with inverse (𝑝+)∗ : Wh(Z[𝜋1 (𝑆+𝑇𝑀)]) →Wh(Z[𝜋1 (𝐵)]). All
these claims follow from Theorem 23.13

There is also a more complicated up-down-formula in favorite cases, which com-
putes the composite 𝑝∗◦ 𝑝∗ : Wh(𝜋1 (𝐸)) →Wh(𝜋1 (𝐸)), see [643, Theorem 8.2]. It
leads to interesting computations of the transfer map 𝑝∗, see [643, Sections 8 and 9],
but these are not needed for the purposes of this book.

23.5 Transfer for Finitely Dominated Z-Chain Complexes with
Homotopy 𝑮-Action

Let𝐺 be a group and𝐶∗ be aZ-chain complex𝐶∗ together with a homotopy𝐺-action,
i.e., a group homomorphism 𝜌 : 𝐺 → [𝐶∗, 𝐶∗]Z to the group of Z-chain homotopy
classes of self-Z-chain maps 𝐶∗ → 𝐶∗. It induces a Z𝐺-Z𝐺 chain homotopy re-
presentation 𝑈∗ : Z𝐺 → [Z𝐺 ⊗Z 𝐶∗,Z𝐺 ⊗Z 𝐶∗]Z𝐺 in the sense of Definition 23.4
by

(23.15) 𝑈 (𝑔0)∗ (𝑔 ⊗ 𝑥) = 𝑔𝑔−1
0 ⊗ 𝜌(𝑔0)∗ (𝑥).
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Suppose additionally that 𝐶∗ is a finite free Z-chain complex. So the transfer ho-
momorphism of (23.5) is defined. Since Wh({1}) is trivial, it induces a transfer
homomorphism

(23.16) 𝑝∗𝐶∗ ,𝜌 : Wh(𝐺) →Wh(𝐺).

An 𝑅-chain complex 𝐶∗ is called finitely dominated, if there exists a finite free
𝑅 chain complex 𝐷∗ together with 𝑅-chain maps 𝑖∗ : 𝐶∗ → 𝐷∗ and 𝑟∗ : 𝐷∗ → 𝐶∗
satisfying 𝑟∗ ◦ 𝑖∗ ≃𝑅 id𝐶∗ .
Lemma 23.17. The definition of the transfer (23.16) extends to the case where we
weaken the condition that 𝐶∗ is a finite free Z-chain complex to the condition that
𝐶∗ is finitely dominated.

Proof. First we consider two finite free Z-chain complexes𝐶∗ and𝐶′∗, two homotopy
𝐺-actions 𝜌 : 𝐺 → [𝐶∗, 𝐶∗]Z and 𝜌′ : 𝐺 → [𝐶′∗, 𝐶′∗]Z, and a Z-chain homotopy
equivalence 𝑓∗ : 𝐶∗ → 𝐶′∗ such that 𝜌′ (𝑔) ◦ 𝑓∗ ≃Z 𝑓∗ ◦ 𝜌(𝑔) holds for all 𝑔 ∈ 𝐺 and
then prove

(23.18) 𝑝∗𝐶∗ ,𝜌 = 𝑝∗𝐶′∗ ,𝜌′

Let𝑈∗ and𝑈′∗ be theZ𝐺-Z𝐺-chain representations associated to (𝐶∗, 𝜌) and (𝐶′∗, 𝜌′),
see (23.15). From 𝑓∗ we obtain a Z𝐺-chain homotopy equivalence

𝑢∗ :=
𝑛⊕
𝑖=1

idZ𝐺 ⊗Z 𝑓∗ :
𝑛⊕
𝑖=1

Z𝐺 ⊗Z 𝐶∗
≃−→

𝑛⊕
𝑖=1

Z𝐺 ⊗Z 𝐶′∗

Given any 𝐴 in GL𝑛 (𝑅), we get a diagram of finite free Z𝐺-chain complexes⊕𝑛

𝑖=1 Z𝐺 ⊗Z 𝐶∗
𝑈∗ (𝐴) //

𝑢∗

��

⊕𝑛

𝑖=1 Z𝐺 ⊗Z 𝐶∗

𝑢∗

��⊕𝑛

𝑖=1 Z𝐺 ⊗Z 𝐶′∗ 𝑈′∗ (𝐴)
//⊕𝑛

𝑖=1 Z𝐺 ⊗Z 𝐶′∗

which commutes up to Z𝐺-chain homotopy and where all arrows are Z𝐺-chain
homotopy equivalences. Equip 𝐶∗ and 𝐶′∗ with some Z-basis and use in the sequel
the induced Z𝐺-basis on the Z𝐺-chain complexes appearing in the diagram above.
We get for the Whitehead torsion in Wh(𝐺)

𝜏(𝑈∗ (𝐴)) = 𝜏(𝑢) + 𝜏(𝑈∗ (𝐴)) − 𝜏(𝑢) = 𝜏(𝑢 ◦𝑈∗ (𝐴)) − 𝜏(𝑢)
= 𝜏(𝑈′∗ (𝐴) ◦ 𝑢) − 𝜏(𝑢) = 𝜏(𝑈′∗ (𝐴)) + 𝜏(𝑢) − 𝜏(𝑢) = 𝜏(𝑈′∗ (𝐴)).

Now (23.18) follows from the definitions.
Next we define for a Z-chain complex 𝐶∗ which is Z-chain homotopy equiv-

alent to some finite free Z-chain complex and comes with a homotopy 𝐺-action
its transfer map (23.16). Choose a finite free Z-chain complex 𝐶′∗ together with a
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Z-chain homotopy equivalence 𝑓∗ : 𝐶′∗
≃−→ 𝐶∗. Then there is precisely one homotopy

𝐺-action 𝜌′ : 𝐺 → [𝐶′∗, 𝐶′∗]Z such that 𝑓∗ ◦ 𝜌(𝑔) ≃ 𝜌′ (𝑔) ◦ 𝑓∗ holds for every 𝑔 ∈ 𝐺.
Now define

𝑝∗𝐶∗ ,𝜌 := 𝑝∗𝐶′∗ ,𝜌′

This is independent of the choice of 𝐶′∗ and 𝑓∗ by (23.18).
Finally we mention that any finitely dominated Z-complex 𝐶∗ is Z-chain ho-

motopy equivalent to a finite projective Z-chain complex, see for instance [644,
Proposition 11.11 on page 222], and hence to a finite free Z-chain complex, since Z
is a principal ideal domain. ⊓⊔

23.6 Transfer for Finitely Dominated Spaces with Homotopy
𝑮-Action

Let 𝑋 be a finitely dominated space, i.e., there is a finite 𝐶𝑊-complex 𝑌 and maps
𝑖 : 𝑋 → 𝑌 and 𝑟 : 𝑌 → 𝑋 such that 𝑟 ◦ 𝑖 is homotopic to the identity on 𝑋 .
Suppose that 𝑋 comes with a homotopy 𝐺-action 𝜌 : 𝐺 → [𝑋, 𝑋] in the sense
of Definition 20.27. Then we obtain by passing to the singular Z-chain complex
𝐶

sing
∗ (𝑋) a homotopy𝐺-action 𝜌sing : 𝐺 → [𝐶sing

∗ (𝑋), 𝐶
sing
∗ (𝑋)]Z. Since 𝑋 is finitely

dominated and the singular chain complex of a finite 𝐶𝑊-complex 𝑌 is Z-chain
homotopy equivalent to the finite free cellular Z-chain complex 𝐶𝑐∗ (𝑌 ), see for
instance [644, Proposition 13.10 on page 264] the Z-chain complex 𝐶sing

∗ (𝑋) is
finitely dominated. Hence we get from Lemma 23.17 a transfer map

(23.19) 𝑝∗𝑋,𝜌 : Wh(𝐺) →Wh(𝐺)

Remark 23.20. One easily checks that it still satisfies the Down-Up Formula 23.13
taking into account that 𝐻𝑛 (𝐶sing

∗ (𝑋)) is finitely generated as abelian group, since
𝑋 is finitely dominated. More precisely, we get an element

(23.21) ℎ(𝑋; 𝜌) =
∑︁
𝑛≥0
(−1)𝑛 · [𝐻𝑛 (𝑋;Z)] ∈ Sw(𝐺)

and the equality in Wh(𝐺)

(23.22) 𝑝∗𝑋,𝜌 (𝑢) = 𝑠(𝑒−1 (ℎ(𝑋; 𝜌)), 𝑢)

for the pairing 𝑠 defined in (23.10), the element ℎ(𝑋; 𝜌) defined in (23.21), and the
isomorphism 𝑒 : Sw𝑝 (𝐺) �−→ Sw(𝐺) from Lemma 12.66.

Suppose additionally that 𝑋 is contractible, Then 𝐻𝑛 (𝑋;Z) = 0 for 𝑛 ≥ 1
and 𝐻0 (𝑋;Z) is the Z𝐺-module given by Z with the trivial 𝐺-action. Since
[Z] = 𝑒−1 (ℎ(𝑋; 𝜌)) is the unit in Sw𝑝 (𝐺), the down up formula implies that
𝑝∗
𝑋,𝜌

: Wh(𝐺) →Wh(𝐺) is the identity.
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Example 23.23. Let 𝐺 be a hyperbolic group in the sense of Gromov, see for in-
stance [159, 165, 424, 440]. Let 𝑋 = 𝑃𝑑 (𝐺) be the associated Rips complex for
some number 𝑑 > 16𝛿 + 8 if 𝐺 is 𝛿-hyperbolic space with respect to some choice 𝑆
of a finite set of generators, see Subsection 11.6.7. Such 𝛿 > 0 exists by the defini-
tion of hyperbolic. The obvious simplicial 𝐺-action on 𝑋 is cocompact and proper.
The barycentric subdivision of 𝑋 is a cocompact model for the classifying space
𝐸FIN (𝐺), see Theorem 11.29. Now take 𝑋 = 𝑋 ∪ 𝜕𝑋 to be the compactification of
𝑋 in the sense of Gromov, see [440], [165, Section 3 in Chapter III.H]. Then 𝑋 is a
contractible compact metrizable 𝐺-space.

Now the transfer map (23.19) is defined and yields an isomorphism

𝑝∗ : Wh(𝐺) �−→Wh(𝐺).

A controlled version of this transfer, which works for the 𝐾-groups in all dimen-
sions and is described in [87, Section 6], is a key ingredient in the proof of the
𝐾-theoretic Farrell-Jones Conjecture 13.11 with coefficients in additive𝐺-categories
for a hyperbolic group in [87, Main Theorem].

Analogously a controlled version of the transfer map above described in [78,
Section 7] is a key ingredient in the proof of the 𝐾-theoretic Farrell-Jones Con-
jecture 13.11 with coefficients in additive 𝐺-categories for a finite-dimensional
CAT(0)-group 𝐺 in [78, Theorem B]. Here 𝑋 is a bordification defined in Bridson-
Haefliger [165, Chapter II.8] of a finite-dimensional CAT(0)-space 𝑋 on which the
CAT(0)-group 𝐺 acts properly, cocompactly, and isometrically.

23.7 Proof of Surjectivity of the Assembly Map in Dimension 1

In this section we give the proof of a special case of Theorem 20.12 as an illustration
of the methods and results described so far. Reducing to this special case avoids
some formidable purely technical input which will make the exposition much harder
but will be discussed later in Chapter 24.

Proposition 23.24. Let 𝐺 be a finitely generated group. Let F be a family of sub-
groups such that 𝐺 is strictly F -transfer reducible in the sense of Definition 20.11.

Then the assembly map

𝐻𝐺1 (pr; KZ) : 𝐻𝐺1 (𝐸F (𝐺); KZ) → 𝐻𝐺1 (𝐺/𝐺; KZ) = 𝐾1 (Z𝐺)

is surjective.

The rest of this section is devoted to the proof of Proposition 23.24. In this section
𝑅 will always be Z for simplicity.
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23.7.1 Basic Strategy of the Proof of Proposition 23.24

For the remainder of this section fix an element

𝑢 ∈ 𝐾1 (Z𝐺).

We want to show that 𝑢 is in the image of 𝐻𝐺1 (pr; KZ).
For an element 𝑎 =

∑
𝑔∈𝑔 𝜆𝑔 · 𝑔 ∈ Z𝐺, define the Z𝐺-homomorphism

𝑉 (𝑎) : Z𝐺 → Z𝐺 by sending 𝑥 to
∑
𝑔∈𝐺 𝜆𝑔 · 𝑥𝑔−1. Given a matrix 𝐴 = (𝑎𝑖, 𝑗 )𝑖, 𝑗 in

𝑀𝑚,𝑛 (Z𝐺), define a Z𝐺-homomorphism

(23.25) 𝑉 (𝐴) : Z𝐺𝑚 → Z𝐺𝑛, (𝑥1, 𝑥2, . . . , 𝑥𝑚) ↦→
( 𝑚∑︁
𝑖=1

𝑉 (𝑎𝑖, 𝑗 ) (𝑥𝑖)
)
𝑗=1,...,𝑛

.

One easily checks that 𝑉 (𝐴𝐵) = 𝑉 (𝐴) ◦ 𝑉 (𝐵) holds for 𝐴 ∈ M𝑚,𝑛 (Z𝐺) and
𝐵 ∈ M𝑛,𝑜 (Z𝐺) and 𝑉 (𝐼𝑛) = idZ𝐺𝑛 holds for the identity matrix 𝐼𝑛 ∈ GL𝑛 (Z𝐺).

Choose a natural number 𝑛 and an element 𝐴 = (𝑎𝑖, 𝑗 ) ∈ GL𝑛 (Z𝐺) such that 𝑢 is
represented by the Z𝐺-automorphism 𝑉 (𝐴) : Z𝐺𝑛 �−→ Z𝐺𝑛 given by right multipli-
cation with 𝐴. Choose a finite subset 𝑇 ⊆ 𝐺 such that for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} the
elements 𝑎𝑖, 𝑗 , 𝑏𝑖, 𝑗 ∈ Z𝐺 are of the form

∑
𝑔∈𝑇 𝜆𝑔 · 𝑔 and 𝑒 ∈ 𝑇 holds. By possibly

enlarging 𝑇 we can additionally arrange that 𝑇 is a finite set of generators of 𝐺.
Next let us recall what we get from the assumption that 𝐺 is strictly F -transfer

reducible. Let 𝑁 be the number appearing Definition 20.11. Then the following holds
by assumption:

• We have an 𝑁-transfer space 𝑋 in the sense of Definition 20.9, that is, a compact
contractible metric space (𝑋, 𝑑𝑋) with the property that for any 𝛿 > 0 there exists
an 𝑁-dimensional simplicial complex 𝐾 , maps 𝑖 : 𝑋 → |𝐾 | and 𝑟 : |𝐾 | → 𝑋 , and
a homotopy ℎ : 𝑋 × [0, 1] → 𝑋 from 𝑝 ◦ 𝑖 to id𝑋 which is 𝛿-controlled, i.e., for
every 𝑥 ∈ 𝑋 the diameter of the subset ℎ({𝑥} × [0, 1]) of 𝑋 is smaller than 𝛿;
• The 𝑁-transfer space 𝑋 comes with a 𝐺-action;
• For every 𝜖 > 0 there exists:

– an abstract simplicial (𝐺, F )-complex Σ of dimension ≤ 𝑁;
– a map 𝑣 : 𝑋 → |Σ | that is (𝜖, 𝑇)-almost 𝐺-equivariant, i.e., we have
𝑑𝐿1 (𝑣(𝑔𝑥), 𝑔𝑣(𝑥)) ≤ 𝜖 for every 𝑔 ∈ 𝑇 and every 𝑥 ∈ 𝑋 .

Next we formulate what we need to prove Proposition 23.24. In view of the
Algebraic Thin ℎ-Cobordism Theorem 19.8 we have to construct for the number 𝜖𝑁
appearing in Theorem 19.8 and the element 𝑢 ∈ 𝐾1 (Z𝐺)

• An abstract simplicial (𝐺, F )-complex 𝑍 of dimension ≤ 𝑁;
• A free 𝐺-space 𝑌 together with a 𝐺-map 𝑤 : 𝑌 → |𝑍 |;
• An 𝜖𝑁 automorphism 𝑎 : 𝑀 → 𝑀 inGM𝐺 (𝑌 ), i.e., an automorphism 𝑎 : 𝑀 → 𝑀

in GM𝐺 (𝑌 ) such that both 𝑎 and 𝑎−1 are 𝜖𝑁 -controlled with respect to 𝑤 and the
𝐿1-metric 𝑑𝐿1 on |𝑍 |. Recall that a morphism
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𝑓 = { 𝑓𝑥,𝑦 : 𝑀𝑥 → 𝑁𝑦 | 𝑥, 𝑦 ∈ 𝑋} : 𝑀 → 𝑁

in GM𝐺 (𝑌 ) is 𝜖𝑁 -controlled with respect to 𝑤 and the 𝐿1-metric 𝑑𝐿1 on |𝑍 | if the
implication 𝑥, 𝑦 ∈ 𝑋, 𝑓𝑥,𝑦 ≠ 0 =⇒ 𝑑𝐿1 (𝑤(𝑥), 𝑤(𝑦)) ≤ 𝜖𝑁 holds;
• The class [𝐹 𝑓 (𝑎)] ∈ 𝐾1 (Z𝐺) of the 𝑅𝐺-automorphism 𝐹 𝑓 (𝑎) : 𝐹 𝑓 (𝑀) �−→
𝐹 𝑓 (𝑀) of the finitely generated free 𝑅𝐺-module 𝐹 𝑓 (𝑀) for the functor 𝐹 𝑓
defined in (19.6) is 𝑢.

Put

𝜖 =
𝜖𝑁

5(72𝑁 + 181) .(23.26)

Now make the choice of the data (𝑋, 𝑑), Σ, and 𝑣 described above for this choice
of 𝜖 , which exist by assumption.

Next we construct the desired data mentioned above. We will take for 𝑌 the
𝐺-space 𝐺 × 𝑋 where the 𝐺-action is given by 𝑔′ · (𝑔, 𝑥) = (𝑔′𝑔, 𝑥) for 𝑔′ ∈ 𝐺 and
(𝑔, 𝑥) ∈ 𝑌 . We take 𝑍 = Σ. Define the 𝐺-map 𝑤 : 𝑌 → |Σ | by sending (𝑔, 𝑥) to
𝑔𝑣(𝑥).

So for the rest of this section we have fixed 𝑢 ∈ 𝐾1 (Z𝐺), 𝐴 ∈ GL𝑛 (Z𝐺), the
finite subset 𝑇 ⊂ 𝐺, numbers 𝑁 and 𝜖𝑁 , the abstract simplicial 𝐺-complex 𝑍 , the
𝐺-spaces 𝑋 and 𝑌 , metrics 𝑑 on 𝑋 and 𝑑𝐿1 on |𝑍 |, the map 𝑣, and the 𝐺-map
𝑤 : 𝑌 → |𝑍 |, and we will only consider 𝑅 = Z. Recall that the 𝐺-action on 𝑋 is
not necessarily isometric, whereas the 𝐺-action on |𝑍 | is isometric, and that 𝑣 is
(𝜖, 𝑇)-almost 𝐺-equivariant.

Note that so far we have not used the 𝐺-action on 𝑋 which will enter in the
construction of the desired 𝜖𝑁 -controlled automorphism 𝑎 : 𝑀 → 𝑀 in GM𝐺 (𝑌 )
satisfying 𝑢 = [𝐹 𝑓 (𝑎)]. The only thing that remains to be done is the construction
of 𝑎, which will occupy the rest of this section.

23.7.2 The Width Function

Definition 23.27 (Width function). LetA be an additive category. A width function
wd = wdA on A is a function

wd: mor(A) → R≥0 ⨿ {−∞,∞}

satisfying the following axioms.

(i) Consider finitely many objects 𝐴1, . . . , 𝐴𝑚 and 𝐵1, . . . , 𝐵𝑛 and morphisms
𝑓𝑖, 𝑗 : 𝐴𝑖 → 𝐵 𝑗 for 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛 in A. Let 𝑓 :

⊕𝑚

𝑖=1 𝐴𝑖 →⊕𝑛

𝑗=1 𝐵 𝑗 be the morphism given by the collection of the 𝑓𝑖, 𝑗 -s. Then

wd( 𝑓 ) ≤ max{wd( 𝑓𝑖, 𝑗 ) | 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛};
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(ii) Consider morphisms 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶 in A. Then we get

wd(𝑔 ◦ 𝑓 ) ≤ wd( 𝑓 ) + wd(𝑔);

(iii) Consider morphisms 𝑓 , 𝑔 : 𝐴→ 𝐵 and 𝜆, 𝜇 ∈ Z. Then

wd(𝜆 · 𝑓 + 𝜇 · 𝑔) ≤ max{wd( 𝑓 ),wd(𝑔)};

(iv) We have 𝑓 = 0⇐⇒ wd( 𝑓 ) = −∞ for every morphism 𝑓 : 𝑀 → 𝑁 in A.

We define the width wd(𝐴) of an object to be the width wd(id𝐴) of the identity
on 𝐴.

We call wd trivial on objects if for every object 𝐴 we have wd(𝐴) = 0.

Remark 23.28 (Passage to idempotent completion). LetA be an additive category
with width function wd. Then its idempotent completion inherits a width function
ŵd which assigns to a morphism 𝑓 : (𝐴, 𝑝) → (𝐵, 𝑞) in Idem(A) the width wdA ( 𝑓 )
of the underlying morphism 𝑓 : 𝐴 → 𝐵 in A. Note that the identity of an object
(𝐴, 𝑃) in Idem(A) is given by 𝑝 : 𝐴 → 𝐴 and hence ŵd(𝐴, 𝑝) = wd(𝑝). So, even
if wd is trivial on objects, ŵd is not necessarily trivial on objects.

Next we present our main example of a width function.

Example 23.29 (Width function on GM𝐺 (𝑌 )). We define a width function on the
additive category GM𝐺 (𝑌 ) from Definition 19.4 as follows, where we use the data
fixed in Subsection 23.7.1.

Given two objects 𝑀 = {𝑀𝑥 | 𝑥 ∈ 𝑌 } and 𝑁 = {𝑁𝑦 | 𝑦 ∈ 𝑌 } and a mor-
phism 𝑓 : 𝑀 → 𝑁 in GM𝐺 (𝑌 ) which consists of a collection of morphisms
𝑓 = { 𝑓𝑥,𝑦 : 𝑀𝑥 → 𝑁𝑦 | 𝑥, 𝑦 ∈ 𝑌 } in F 𝜅 (Z), we define the width

wd𝑍 ( 𝑓 ) ∈ R≥0 ⨿ {−∞}

to be the supremum of the set {𝑑𝐿1 (𝑤(𝑥), 𝑤(𝑦)) | 𝑥, 𝑦 ∈ 𝑋, 𝑓𝑥,𝑦 ≠ 0} if 𝑓 is not the
zero homomorphism and to be −∞ otherwise. Note that this width function is trivial
on objects.

Note that for 𝜖 ≥ 0 a morphism 𝑓 : 𝑀 → 𝑁 in GM𝐺 (𝑌 ) is 𝜖-controlled in the
sense of Subsection 19.4.3 if and only if wd𝑍 ( 𝑓 ) ≤ 𝜖 holds.

Exercise 23.30. Show that the axioms of a width function which is trivial on objects
are satisfied in Example 23.29.

Example 23.31 (Width function on GM(𝑋)). Let (𝑋, 𝑑) be any metric space. Let
GM(𝑋) be GM𝐺 (𝑋) for 𝐺 = {1}. We will equip it the following width function
wd𝑋.

Given two objects 𝑀 = {𝑀𝑥 | 𝑥 ∈ 𝑋} and 𝑁 = {𝑁𝑦 | 𝑦 ∈ 𝑋} and a
morphism 𝑓 : 𝑀 → 𝑁 in GM(𝑋), which consists of a collection of morphisms
𝑓 = { 𝑓𝑥,𝑦 : 𝑀𝑥 → 𝑁𝑦 | 𝑥, 𝑦 ∈ 𝑋} in F 𝜅 (Z), we define the width
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wd( 𝑓 ) ∈ R≥0 ⨿ {−∞}

to be the supremum of the set {𝑑 (𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝑋, 𝑓𝑥,𝑦 ≠ 0} if 𝑓 is not the zero
homomorphism and to be −∞ otherwise. Note that this width function is trivial on
objects.

23.7.3 Self-Torsion

Let A be an additive category. Let 𝐶∗ = (𝐶∗, 𝑐∗) be a bounded A-chain complex
i.e., a sequence of morphisms in A

· · · 𝑐𝑛+2−−−→ 𝐶𝑛+2
𝑐𝑛+1−−−→ 𝐶𝑛+1

𝑐𝑛−−→ 𝐶𝑛
𝑐𝑛−1−−−→ 𝐶𝑛−1

𝑐𝑛−2−−−→

such that 𝑐𝑛+1 ◦ 𝑐𝑛 = 0 holds for 𝑛 ∈ Z and there exists a natural number 𝑁 with
𝐶𝑛 = 0 for 𝑛 ∈ Z with |𝑛| ≥ 𝑁 . There are obvious notions of a chain map, a
chain homotopy, and a chain contraction. Let 𝑓∗ : 𝐶∗

≃−→ 𝐷∗ be a chain homotopy
equivalence of bounded A-chain complexes. Denote by cone( 𝑓∗) its mapping cone
whose 𝑛-th differential 𝑒𝑛 is given by

(23.32) 𝑒𝑛 : 𝐶𝑛−1 ⊕ 𝐷𝑛

(−𝑐𝑛−1 0
𝑓𝑛−1 𝑑𝑛

)
−−−−−−−−−−−→ 𝐶𝑛−2 ⊕ 𝐷𝑛−1.

Given an A-chain map 𝑔∗ : 𝐷∗ → 𝐶∗ and A-chain homotopies ℎ∗ : 𝑔∗ ◦ 𝑓∗ ≃ id𝐶∗
and 𝑘∗ : 𝑓∗ ◦ 𝑔∗ ≃ id𝐷∗ , define an A-chain isomorphism 𝑢∗ : cone( 𝑓∗)

�−→ cone( 𝑓∗)

by 𝑢𝑛 =

(
id𝐶𝑛−1 0

𝑓𝑛 ◦ ℎ𝑛−1 − 𝑘𝑛−1 ◦ 𝑓𝑛−1 id𝐷𝑛

)
and an A-chain homotopy 𝛿∗ : 𝑢∗ ≃ 0∗ by

𝛿𝑛 =

(
ℎ𝑛−1 𝑔𝑛

0 −𝑘𝑛

)
. Then we obtain a chain contraction 𝛾∗ of cone( 𝑓∗) by

(23.33) 𝛾𝑛 = 𝑢
−1
𝑛+1 ◦ 𝛿𝑛.

Now consider a self-chain homotopy equivalence 𝑓∗ : 𝐶∗
≃−→ 𝐶∗ of the bounded

A-chain complex 𝐶∗. Define objects in A by

𝐶all =
⊕
𝑛∈Z

𝐶𝑛;

cone( 𝑓 )odd =
⊕
𝑛∈Z

cone( 𝑓∗)2𝑛+1;

cone( 𝑓 )ev =
⊕
𝑛∈Z

cone( 𝑓∗)2𝑛.
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We obtain isomorphisms

(𝑒 + 𝛾)odd : cone( 𝑓∗)odd
�−→ cone( 𝑓∗)ev;(23.34)

(𝑒 + 𝛾)ev : cone( 𝑓∗)ev
�−→ cone( 𝑓∗)odd,(23.35)

satisfying

(𝑒 + 𝛾)ev ◦ (𝑒 + 𝛾)odd = (id+𝛾 ◦ 𝛾);(23.36)
(𝑒 + 𝛾)odd ◦ (𝑒 + 𝛾)ev = (id+𝛾 ◦ 𝛾).(23.37)

Let

𝐼odd : cone( 𝑓∗)odd
�−→ 𝐶all;

𝐼ev : cone( 𝑓∗)ev
�−→ 𝐶all,

be the obvious isomorphisms coming from cone( 𝑓∗)𝑛 = 𝐶𝑛−1 ⊕ 𝐶𝑛.
Thus we obtain an automorphism

𝐼ev ◦ (𝑒 + 𝛾) ◦ 𝐼−1
odd : 𝐶all

�−→ 𝐶all.

Its class

(23.38) 𝑡 ( 𝑓∗) := [𝐼ev ◦ (𝑒 + 𝛾) ◦ 𝐼−1
odd] ∈ 𝐾1 (A)

is called the self-torsion of 𝑓∗. The proof that this element is well-defined and has
the following properties in [644, Section 12] for 𝑅Γ-modules carries directly over to
additive categories.

Lemma 23.39.

(i) Let 𝑓∗, 𝑔∗ : 𝐶∗
≃−→ 𝐶∗ be self-chain homotopy equivalences of the bounded

A-chain complex 𝐶∗. If they are chain homotopic, then

𝑡 (𝑔∗) = 𝑡 ( 𝑓∗);

(ii) Consider a commutative diagram of boundedA-chain complexes with self-chain
homotopy equivalences as vertical arrows

0 // 𝐶∗
𝑖∗
≃
//

𝑓∗≃
��

𝐷∗
𝑝∗ //

𝑔∗≃
��

𝐸∗ //

ℎ∗≃
��

0

0 // 𝐶∗
𝑖∗ // 𝐷∗

𝑝∗ // 𝐸∗ // 0
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where for each 𝑛 ∈ Z the sequence 0→ 𝐶𝑛
𝑖𝑛−→ 𝐷𝑛

𝑝𝑛−−→ 𝐸𝑛 → 0 is split exact,
i.e., there exists a morphism 𝑠𝑛 : 𝐸𝑛 → 𝐷𝑛 such that 𝑝𝑛 ◦ 𝑠𝑛 = id𝐸𝑛 holds and
𝑖𝑛 ⊕ 𝑠𝑛 : 𝐶𝑛 ⊕ 𝐸𝑛

�−→ 𝐷𝑛 is an isomorphism. Then we get

𝑡 (𝑔∗) = 𝑡 ( 𝑓∗) + 𝑡 (ℎ∗);

(iii) Let 𝑓∗, 𝑔∗ : 𝐶∗
≃−→ 𝐶∗ be self-chain homotopy equivalences of the bounded

A-chain complex 𝐶∗. Then we get

𝑡 (𝑔∗ ◦ 𝑓∗) = 𝑡 ( 𝑓∗) + 𝑡 (𝑔∗).

Exercise 23.40. Let 𝑓∗ : 𝐶∗
�−→ 𝐶∗ be a chain automorphism of a bounded A-chain

complex. Show
𝑡 ( 𝑓∗) =

∑︁
𝑛∈Z
(−1)𝑛 · [ 𝑓𝑛] ∈ 𝐾1 (A).

23.7.4 Self-Torsion and Width Functions

Let A be an additive category coming with a width function wd in the sense
of Definition 23.27. We define the width wd(𝐶∗) of a bounded A-chain complex
𝐶∗ = (𝐶∗, 𝑐∗) to be

(23.41) wd(𝐶∗) = max{wd(𝐶𝑛),wd(𝑐𝑛) | 𝑛 ∈ Z}.

We define the width wd( 𝑓∗) of an A-chain map 𝑓∗ : 𝐶∗ → 𝐷∗ of bounded A-chain
complexes to be

(23.42) wd( 𝑓∗) = max{wd( 𝑓𝑛) | 𝑛 ∈ Z},

and the width wd(ℎ∗) of anA-chain homotopy ℎ∗ : 𝐶∗ → 𝐷∗+1 of boundedA-chain
complexes to be

(23.43) wd(ℎ∗) = max{wd(ℎ𝑛) | 𝑛 ∈ Z}.

Notation 23.44. For 𝜖 > 0 and two A-chain maps 𝑓∗, 𝑔∗ : 𝐶∗ → 𝐷∗, we write

𝑓∗ ≃𝜖 𝑔∗

if there exists an A-chain homotopy ℎ∗ : 𝑓∗ ≃ 𝑔∗ with wd(ℎ∗) ≤ 𝜖 .



700 23 Transfer

Definition 23.45 (𝜖-controlled isomorphism). An 𝜖-controlled isomorphism
𝑓 : 𝐴 �−→ 𝐵 in A is an isomorphism 𝑓 : 𝐴 �−→ 𝐵 satisfying

wd(𝐴),wd(𝐵),wd( 𝑓 ),wd( 𝑓 −1) ≤ 𝜖 .

If 𝐴 = 𝐵, we talk of an 𝜖-controlled automorphism.

Exercise 23.46. Let 𝑓 : 𝐴 → 𝐵 be an 𝜖-controlled A-isomorphism and 𝑔 : 𝐵 → 𝐶

be a 𝛿-controlled A-isomorphism.
Show that 𝑔 ◦ 𝑓 : 𝐴→ 𝐶 is an (𝜖 + 𝛿)-controlled A-isomorphism.

Definition 23.47 (𝜖-controlled chain homotopy equivalence). Consider 𝜖 > 0 and
an A-chain map 𝑓∗ : 𝐶∗ → 𝐷∗. We call 𝑓∗ an 𝜖-controlled A-chain homotopy
equivalence if there is an A-chain map 𝑔∗ : 𝐷∗ → 𝐶∗ satisfying

wd(𝐶∗),wd(𝐷∗),wd( 𝑓∗),wd(𝑔∗) ≤ 𝜖

and

𝑔∗ ◦ 𝑓∗ ≃𝜖 id𝐶∗ ;
𝑓∗ ◦ 𝑔∗ ≃𝜖 id𝐷∗ .

If 𝐶∗ = 𝐷∗, we talk of an 𝜖-controlled A-self-chain homotopy equivalence.

The next lemma is a direct consequence of the axioms appearing in Defini-
tion 23.27.

Lemma 23.48. Consider 𝛿, 𝜖 > 0.

(i) Let 𝑓∗, 𝑔∗, ℎ∗ : 𝐶∗ → 𝐷∗ be A-chain maps of bounded A-chain complexes and
𝜆, 𝜇 ∈ Z. Then

wd(𝜆 · 𝑓∗ + 𝜇 · 𝑔∗) ≤ max{wd( 𝑓∗),wd(𝑔∗)}

and
𝑓∗ ≃𝜖 𝑔∗, 𝑔∗ ≃𝜖 ℎ∗ =⇒ 𝑓∗ ≃𝜖 ℎ∗;

(ii) Let 𝑓∗, 𝑓 ′∗ : 𝐷∗ → 𝐸∗, 𝑢∗ : 𝐶∗ → 𝐷∗, and 𝑣∗ : 𝐸∗ → 𝐹∗ be A-chain maps of
boundedA-chain complexes satisfying 𝑓∗ ≃𝜖 𝑓 ′∗ , wd(𝑢∗) ≤ 𝛿, and wd(𝑣∗) ≤ 𝛿.
Then

𝑣∗ ◦ 𝑓∗ ≃𝛿+𝜖 𝑣∗ ◦ 𝑓 ′∗ ;
𝑓∗ ◦ 𝑢∗ ≃𝛿+𝜖 𝑓 ′∗ ◦ 𝑢∗;

(iii) Let 𝑓∗ : 𝐶∗ → 𝐷∗ and 𝑔∗ : 𝐷∗ → 𝐸∗ be 𝜖-controlled A-chain homotopy equiv-
alences of bounded A-chain complexes.
Then 𝑔∗ ◦ 𝑓∗ : 𝐶∗ → 𝐸∗ is a 3𝜖-controlled A-chain homotopy equivalence of
bounded A-chain complexes.
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Exercise 23.49. Give the proof of Lemma 23.48.

Proposition 23.50. LetA be an additive category coming with a width function wd.
Consider 𝜖 > 0. Let 𝑓∗ : 𝐶∗

≃−→ 𝐶∗ be an Idem(A)-self-chain homotopy equivalence
which is 𝜖-controlled.

Then there is a 5𝜖-controlled A-automorphism 𝑎 : 𝐴 �−→ 𝐴 such that the self-
torsion 𝑡 (𝐹∗) ∈ 𝐾1 (A) = 𝐾1 (Idem(A)) satisfies

𝑡 ( 𝑓∗) = [𝑎] .

Proof. Recall that we have defined a width function ŵd on Idem(A) in Remark 23.28.
By assumption we have Idem(A)-chain homotopy equivalences 𝑓∗ : 𝐶∗ → 𝐶∗ and
𝑔∗ : 𝐶∗ → 𝐶∗ and Idem(A)-chain homotopies ℎ∗ : 𝑓∗ ◦ 𝑔∗ ≃ id𝐶∗ and 𝑘∗ : 𝑔∗ ◦ 𝑓∗ ≃
id𝐶∗ such that ŵd(𝐶∗), ŵd( 𝑓∗), ŵd(𝑔∗), ŵd(ℎ∗), and ŵd(𝑘∗) are less than or equal
to 𝜖 . Let cone( 𝑓∗) be the mapping cone of 𝑓∗, see (23.32). In the sequel we will
apply over and over again the axioms appearing Definition 23.27 and Lemma 23.48.
One easily checks ŵd(cone( 𝑓∗)) ≤ 𝜖 . We have constructed a chain contraction 𝛾 for
cone( 𝑓∗) in (23.33). We get ŵd(𝛾∗) ≤ 3𝜖 . We conclude from (23.36) and (23.37)
that the Idem(A)-automorphism 𝐼ev ◦ (𝑒 + 𝛾) ◦ 𝐼−1

odd : 𝐶all
�−→ 𝐶all is 3𝜖-controlled.

Its class in 𝐾1 (Idem(A)) is by definition 𝑡 ( 𝑓∗).
For each object 𝐶𝑛 = (𝐴𝑛, 𝑝𝑛) in Idem(A) we can consider the object 𝐶⊥𝑛 =

(𝐴𝑛, id−𝑝𝑛) in Idem(A). Obviously we have ŵd(𝐶𝑛) = ŵd(𝐶⊥𝑛 ) = ŵd(𝑝𝑛) =
ŵd(id𝐴𝑛 −𝑝𝑛). The Idem(A)-isomorphisms

𝑎𝑛 = 𝑝𝑛 ⊕ (id𝐴𝑛 −𝑝𝑛) : 𝐶𝑛 ⊕ 𝐶⊥𝑛
�−→ 𝐴𝑛 = (𝐴𝑛, id𝐴𝑛 )

and
𝑏𝑛 = (𝑝𝑛 ⊕ (id𝐴𝑛 −𝑝𝑛)) : 𝐴𝑛 = (𝐴𝑛, id𝐴𝑛 )

�−→ 𝐶𝑛 ⊕ 𝐶⊥𝑛
are inverse to one another and satisfy ŵd(𝑎𝑛), ŵd(𝑏𝑛) ≤ 𝜖 . Put 𝐴all =

⊕
𝑛∈Z 𝐴𝑛 and

𝐶⊥all =
⊕

𝑛∈Z 𝐶
⊥
𝑛 . The collection of the isomorphisms 𝑎𝑛-s and 𝑏𝑛-s yields mutually

inverse Idem(A)-isomorphisms 𝑎all : 𝐶all ⊕ 𝐶⊥all
�−→ 𝐴all and 𝑏all : 𝐴all

�−→ 𝐶all ⊕ 𝐶⊥all
with ŵd(𝑎all), ŵd(𝑏all) ≤ 𝜖 . Define the A-automorphism

𝑎 : 𝐴all
𝑏all−−→ 𝐶all ⊕ 𝐶⊥all

(𝐼ev◦(𝑒+𝛾)◦𝐼−1
odd )⊕id𝐶⊥all−−−−−−−−−−−−−−−−−−→ 𝐶all ⊕ 𝐶⊥all

𝑎all−−→ 𝐴all.

One easily checks that 𝑡 ( 𝑓∗) = [𝑎] in 𝐾1 (A) and 𝑎 is a 5𝜖-controlled
A-automorphism. ⊓⊔
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23.7.5 Finite Domination

Consider a full and faithful inclusion A → B of additive categories, e.g., the
inclusion of the category of finitely generated free 𝑅-modules into the category of
free 𝑅-modules for a ring 𝑅. Let𝐶∗ be a (not necessarily finite-dimensional) positive
B-chain complex. Consider a finite domination (𝐷∗, 𝑖∗, 𝑟∗.ℎ∗) of 𝐶∗ over A, i.e., a
finite-dimensional positive A-chain complex 𝐷∗, B-chain maps 𝑖∗ : 𝐶∗ → 𝐷∗ and
𝑟∗ : 𝐷∗ → 𝐶∗, and a B-chain homotopy ℎ∗ : 𝑟∗ ◦ 𝑖∗ ≃ id𝐷∗ . From these data we
construct an explicit finite-dimensional positive chain complex 𝑃∗ over Idem(A)
with dim(𝑃∗) = dim(𝐷∗) together with Idem(B)-chain homotopy equivalences
𝑓∗ : 𝐶∗ → 𝑃∗ and 𝑔∗ : 𝑃∗ → 𝐶∗ and Idem(B)-chain homotopies 𝑘∗ : 𝑓∗ ◦ 𝑔∗ ≃ id𝑃∗
and 𝑙∗ : 𝑔∗ ◦ 𝑓∗ ≃ id𝐶∗ following [838] and [78, Remark 8.3].

Define the chain complex 𝐶′ over A by defining its 𝑚-th chain object to be

𝐶′𝑚 =

𝑚⊕
𝑗=0

𝐷 𝑗

and its 𝑚-th differential to be

𝑐′𝑚 : 𝐶′𝑚 =

𝑚⊕
𝑗=0

𝐷 𝑗 → 𝐶′𝑚−1 =

𝑚−1⊕
𝑘=0

𝐷𝑘

where the ( 𝑗 , 𝑘)-entry (𝑐′𝑚) 𝑗 ,𝑘 : 𝐷 𝑗 → 𝐷𝑘 for 𝑗 ∈ {0, 1, 2, . . . , 𝑚} and 𝑘 ∈
{0, 1, 2, . . . , 𝑚 − 1} is given by

(𝑐′𝑚) 𝑗 ,𝑘 :=



0 if 𝑗 ≥ 𝑘 + 2;
(−1)𝑚+𝑘 · 𝑑 𝑗 if 𝑗 = 𝑘 + 1;
id−𝑟 𝑗 ◦ 𝑖 𝑗 if 𝑗 = 𝑘, 𝑗 ≡ 𝑚 mod 2;
𝑟 𝑗 ◦ 𝑖 𝑗 if 𝑗 = 𝑘, 𝑗 ≡ 𝑚 + 1 mod 2;
(−1)𝑚+𝑘+1 · 𝑖𝑘 ◦ ℎ𝑘−1 ◦ . . . ◦ ℎ 𝑗 ◦ 𝑟 𝑗 if 𝑗 ≤ 𝑘 − 1.

Define chain maps 𝑓 ′∗ : 𝐶∗ → 𝐶′∗ and 𝑔′∗ : 𝐶′∗ → 𝐶∗ by

𝑓 ′𝑚 : 𝐶𝑚 → 𝐶′𝑚 = 𝐷0 ⊕ 𝐷1 ⊕ · · · ⊕ 𝐷𝑚, 𝑥 ↦→ (0, 0, . . . , 𝑖𝑚 (𝑥))

and

𝑔′𝑚 : 𝐶′𝑚 = 𝐷0 ⊕ · · · ⊕𝐷𝑚 → 𝐶𝑚, (𝑥0, 𝑥1, . . . , 𝑥𝑚) ↦→
𝑚∑︁
𝑗=0

ℎ𝑚−1 ◦ · · · ◦ ℎ 𝑗 ◦𝑟 𝑗 (𝑥 𝑗 ).

We have 𝑔′∗ ◦ 𝑓 ′∗ = 𝑟∗ ◦ 𝑖∗ and hence ℎ∗ is a chain homotopy 𝑔′∗ ◦ 𝑓 ′∗ ≃ id𝐶∗ . We obtain
a chain homotopy 𝑘 ′∗ : 𝑓 ′∗ ◦ 𝑔′∗ ≃ id𝐶′∗ if we define
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𝑘 ′𝑚 : 𝐶′𝑚 = 𝐷0 ⊕ 𝐷1 ⊕ · · · ⊕ 𝐷𝑚 → 𝐶′𝑚+1 = 𝐷0 ⊕ 𝐷1 ⊕ · · · ⊕ 𝐷𝑚 ⊕ 𝐷𝑚+1

to be the obvious inclusion.
Let 𝑁 be the dimension of 𝐷∗. Thus we get 𝐶′𝑚 = 𝐶′

𝑁
for 𝑚 ≥ 𝑁 and 𝑐′

𝑚+1 =

id−𝑐′𝑚 for𝑚 ≥ 𝑁+1. Since 𝑐′
𝑚+1◦𝑐

′
𝑚 = 0 holds for all𝑚, we conclude 𝑐′𝑚◦𝑐′𝑚 = 𝑐′𝑚

for 𝑚 ≥ 𝑁 + 1. Hence 𝐶′ has the form

· · · → 𝐶′𝑁
𝑐′
𝑁+1−−−−→ 𝐶′𝑁

id −𝑐′
𝑁+1−−−−−−−→ 𝐶′𝑁

𝑐′
𝑁+1−−−−→ 𝐶′𝑁

𝑐′
𝑁−−→ 𝐶′𝑁−1
𝑐′
𝑁−1−−−−→ · · ·

𝑐′1−→ 𝐶′0 → 0→ · · · .

Define the desired 𝑁-dimensional chain complex 𝑃∗ over Idem(A) by

0→ 0→ (𝐶′𝑁 , id−𝑐′𝑁+1)
𝑐′
𝑁
◦𝑖

−−−−→ 𝐶′𝑁−1
𝑐′
𝑁−1−−−−→ · · ·

𝑐′1−→ 𝐶′0 → 0→ · · ·

where 𝑖 : (𝐶′
𝑁
, id−𝑐′

𝑁+1) → 𝐶′
𝑁

is the morphism in Idem(A) given by
id−𝑐′

𝑁+1 : 𝐶′
𝑁
→ 𝐶′

𝑁
. Let

𝑢∗ : 𝑃∗ → 𝐶′

be the Idem(A)-chain map for which 𝑢𝑚 is the identity for 𝑚 ≤ 𝑁 − 1, 𝑢𝑁 is
𝑖 : (𝐶′

𝑁
, id−𝑐′

𝑁+1) → 𝐶′
𝑁

, and 𝑢𝑚 : 0 → 𝐶𝑚 is the canonical map for 𝑚 ≥ 𝑁 + 1.
Let

𝑣∗ : 𝐶′∗ → 𝑃∗

be the Idem(A)-chain map which is given by the identity for 𝑚 ≤ 𝑁 − 1, by the
canonical projection 𝐶′𝑚 → 0 for 𝑚 ≥ 𝑁 + 1 and for 𝑚 = 𝑁 by the morphism 𝐶𝑁 →
(𝐶′
𝑁
, id−𝑐′

𝑁+1) defined by id−𝑐′
𝑁+1 : 𝐶′

𝑁
→ 𝐶′

𝑁
. Obviously 𝑣∗ ◦ 𝑢∗ = id𝑃∗ . We

obtain a chain homotopy 𝑙′∗ : id𝐶′∗ ∼ 𝑢∗ ◦ 𝑣∗ if we take 𝑙′𝑚 = 0 for 𝑚 ≤ 𝑁 , 𝑙′𝑚 = 𝑐′
𝑁+1

for 𝑚 ≥ 𝑁, 𝑚 − 𝑁 ≡ 0 mod 2, and 𝑙′𝑚 = 1 − 𝑐′
𝑁+1 for 𝑚 ≥ 𝑁, 𝑚 − 𝑁 ≡ 1 mod 2.

Define the desired Idem(B)-chain map

𝑓∗ : 𝐶∗ → 𝑃∗

to be the composite 𝑣∗ ◦ 𝑓 ′∗ and the desired Idem(B)-chain map

𝑔∗ : 𝑃∗ → 𝐶∗

to be the composite 𝑔′∗ ◦ 𝑢∗. We obtain the desired Idem(B)-chain homotopies by
putting

𝑘∗ = 𝑣∗ ◦ ℎ∗ ◦ 𝑢∗ : 𝑓∗ ◦ 𝑔∗ ≃ id𝑃∗
and

𝑙∗ = −𝑔′∗ ◦ 𝑙′∗ ◦ 𝑓 ′∗ + ℎ∗ : 𝑔∗ ◦ 𝑓∗ ≃ id𝐶∗ .
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23.7.6 Finite Domination and Width Functions

Consider a full and faithful inclusion A → B of additive categories. Suppose that
B comes with a width function wd. Consider a B-chain complex 𝐶∗ together with
a finite domination (𝐷∗, 𝑖∗, 𝑟∗.ℎ∗) of 𝐶∗ over A. For 𝜖 > 0 we call it 𝜖-controlled if
wd(𝑖∗),wd(𝑟∗),wd(ℎ∗) ≤ 𝜖 hold.

Proposition 23.51. Fix a natural number 𝑁 .
Then, for every 𝜖 > 0 and every 𝜖-controlled domination of (𝐷∗, 𝑖∗, 𝑟∗.ℎ∗) of a

B-chain complex 𝐶∗ over A with dim(𝐷∗) ≤ 𝑁 and wd(𝐶∗),wd(𝐷∗) ≤ 𝜖 , there is
an 𝑁-dimensional Idem(A)-chain complex 𝑃∗ with wd(𝑃∗) ≤ (𝑁 + 2)𝜖 together
with an (2𝑁 + 5)𝜖-controlled Idem(B)-chain homotopy equivalence 𝑓∗ : 𝑃∗ → 𝐶∗.

Proof. This follows from the explicit constructions of the 𝑁-dimensional A-chain
complex 𝑃∗, the Idem(B)-chain maps 𝑓∗ : 𝐶∗ → 𝑃∗ and 𝑔∗ : 𝑃∗ → 𝐶∗ and the
Idem(B)-chain homotopies 𝑘∗ : 𝑓∗ ◦ 𝑔∗ ≃ id𝑃∗ and 𝑙∗ : 𝑔∗ ◦ 𝑓∗ ≃ id𝐶∗ of Subsec-
tion 23.7.5, the axioms appearing Definition 23.27, and Lemma 23.48. ⊓⊔

23.7.7 Comparing Singular and Simplicial Chain Complexes

Let 𝑋 = (𝑋, 𝑑) be a metric space. As before we denote the singular chain complex
of 𝑋 by 𝐶sing

∗ (𝑋). For 𝛿 > 0 we define

𝐶
sing, 𝛿
∗ (𝑋) ⊂ 𝐶sing

∗ (𝑋)

to be the chain subcomplex generated by all singular 𝑛-simplices 𝜎 : Δ𝑛 → 𝑋 for
𝑛 ≥ 0 for which the diameter of 𝜎(Δ𝑛) is less than or equal to 𝛿, i.e., for all 𝑦, 𝑧 ∈ Δ𝑛
we have 𝑑 (𝜎(𝑦), 𝜎(𝑧)) ≤ 𝛿.

We have defined the additive category GM(𝑋) and its width function wd𝑋 in
Example 23.31. The Z-chain complex 𝐶sing, 𝛿

∗ (𝑋) can be considered as a GM(𝑋)-
chain complex, denoted again by 𝐶sing, 𝛿

∗ (𝑋), via the barycenter map, i.e., for 𝑥 ∈ 𝑋
the module 𝐶sing, 𝛿

𝑛 (𝑋)𝑥 is generated by all singular 𝑛-simplices which satisfy the
condition above and map the barycenter of Δ𝑛 to 𝑥. Obviously wd𝑋 (𝐶sing, 𝛿

∗ (𝑋)) ≤ 𝛿
holds. Note that the image of the GM(𝑋)-chain complex 𝐶

sing, 𝛿
∗ (𝑋) under the

functor 𝐹 of (19.5) can be identified with the Z-chain complex 𝐶sing, 𝛿
∗ (𝑋).

The proof of the next result can be found in [87, Lemma 6.7].

Lemma 23.52. Let 𝑋 = (𝑋, 𝑑) be a metric space.

(i) For 𝛿′ > 𝛿 > 0 the inclusion

inc𝛿, 𝛿
′

∗ : 𝐶sing, 𝛿
∗ (𝑋, 𝑑) → 𝐶

sing, 𝛿′
∗ (𝑋, 𝑑)

is a 𝛿′-controlled GM(𝑋)-chain homotopy equivalence;
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(ii) For every 𝛿 > 0 the inclusion

𝑖 : 𝐶sing, 𝛿
∗ (𝑋, 𝑑) → 𝐶

sing
∗ (𝑋)

is a GM(𝑋)-chain homotopy equivalence;
(iii) Suppose 𝑋 = |𝐿 | for the geometric realization |𝐿 | of an abstract simplicial

complex 𝐿. Let 𝐶∗ (𝐿) denote the simplicial chain complex considered as a
GM(𝑋)-chain complex via the barycenters. Suppose all simplices of 𝐿 have
diameter smaller than 𝛿 with respect to the metric 𝑑 on 𝑋 .
Then wd𝑋 (𝐶∗ (𝐿)) ≤ 𝛿 and realization defines a GM(𝑋)-chain map

𝐶∗ (𝐿) → 𝐶
sing, 𝛿
∗ (𝑋)

which is a 𝛿-controlled GM(𝑋)-chain homotopy equivalence.

The next result is proved in [78, Lemma 8.5].

Lemma 23.53. Let 𝑋 = (𝑋, 𝑑) be a metric space. Consider 𝜇, 𝜈 > 0. Let
𝜑, 𝜑′ : 𝑋 → 𝑋 be maps satisfying

𝑑 (𝑥, 𝑦) ≤ 𝜇 =⇒ 𝑑 (𝜑(𝑥), 𝜑(𝑦)), 𝑑 (𝜑′ (𝑥), 𝜑′ (𝑦)) ≤ 𝜈

for all 𝑥, 𝑦 ∈ 𝑋 . Let ℎ : 𝜑 ≃ 𝜑′ be a homotopy.
Then there is a GM(𝑋)-chain homotopy 𝐻∗ : 𝐶sing,𝜇,𝜈

∗ (𝜑)∗ ≃ 𝐶sing,𝜇,𝜈
∗ (𝜑′)∗ of

GM(𝑋)-chain maps 𝐶sing,𝜇
∗ (𝑋) → 𝐶

sing,𝜈
∗ (𝑋) satisfying

supp𝐻∗ ⊆ {(ℎ𝑡 (𝑥), 𝑦) | 𝑡 ∈ [0, 1], 𝑑 (𝑥, 𝑦) ≤ 𝜇}.

Proposition 23.54. Consider a natural number 𝑁 and an 𝑁-transfer space
𝑋 = (𝑋, 𝑑) in the sense of Definition 20.9.

Then for every 𝜖 > 0 there is an 𝑁-dimensional Idem(GM(𝑋) 𝑓 )-chain com-
plex 𝑃∗ with wd𝑋 (𝑃∗) ≤ (12𝑁 + 24)𝜖 together with a (24𝑁 + 60)𝜖-controlled
Idem(GM(𝑋))-chain homotopy equivalence 𝑓∗ : 𝑃∗ → 𝐶

sing, 𝜖
∗ (𝑋).

Proof. Fix 𝜖 > 0. We can choose an 𝑁-dimensional abstract simplicial complex 𝐾 ,
maps 𝑖 : 𝑋 → |𝐾 | and 𝑟 : |𝐾 | → 𝑋 , and a homotopy ℎ : 𝑋 × [0, 1] → 𝑋 from
𝑟 ◦ 𝑖 to id𝑋 which is 𝜖-controlled, i.e., for every 𝑥 ∈ 𝑋 the diameter of the subset
ℎ({𝑥} × [0, 1]) of 𝑋 is smaller than 𝜖 . By subdividing 𝐾 we can arrange that for
any simplex 𝜎 ∈ 𝐾 the diameter of the subset 𝑟 ( |𝜎 |) of 𝑋 is less or equal to 𝜖 . This
implies wd𝑋 (𝐶∗ (𝐾)) ≤ 𝜖 , where we consider 𝐶∗ (𝐾) as a 𝐺𝑀 (𝑋)-chain complex
using the image of the barycenters of simplices under 𝑟. Analogously we can consider
𝐶

sing,3𝜖
∗ ( |𝐾 |) as a GM(𝑋)-chain complex with wd𝑋 (𝐶sing,3𝜖

∗ ( |𝐾 |)) ≤ 3𝜖 . We get for
any 𝑥, 𝑦 ∈ 𝑋

𝑑 (𝑟 ◦ 𝑖(𝑥), 𝑟 ◦ 𝑖(𝑦)) = 𝑑 (ℎ0 (𝑥), ℎ0 (𝑦))
≤ 𝑑 (ℎ0 (𝑥), ℎ1 (𝑥)) + 𝑑 (ℎ1 (𝑥), ℎ1 (𝑦)) + 𝑑 (ℎ1 (𝑦), ℎ0 (𝑦))

≤ 𝜖 + 𝑑 (𝑥, 𝑦) + 𝜖 = 2𝜖 + 𝑑 (𝑥, 𝑦).
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Hence 𝑖 : 𝑋 → 𝐾 induces a GM(𝑋)-chain map

𝐶
sing, 𝜖 ,3𝜖
∗ (𝑖) : 𝐶sing, 𝜖

∗ (𝑋) → 𝐶
sing,3𝜖
∗ ( |𝐾 |).

Obviously 𝑟 induces a GM(𝑋)-chain map

𝐶
sing,3𝜖
∗ (𝑟) : 𝐶sing,3𝜖

∗ ( |𝐾 |) → 𝐶
sing,3𝜖
∗ (𝑋).

Let
inc𝜖 ,3𝜖 : 𝐶sing, 𝜖

∗ (𝑋) → 𝐶
sing,3𝜖
∗ (𝑋)

be the inclusion. We conclude from Lemma 23.53 applied in the case 𝜇 = 𝜖 and
𝜈 = 3𝜖 to ℎ : 𝑟 ◦ 𝑖 ≃ id𝑋 that there is a GM(𝑋)-chain homotopy of GM(𝑋)-chain
maps from 𝐶

sing, 𝜖
∗ (𝑋) to 𝐶sing,3𝜖

∗ (𝑋)

𝐻∗ : 𝐶sing, 𝜖
∗ (𝑟) ◦ 𝐶sing, 𝜖 ,3𝜖

∗ (𝑖) ≃ inc𝜖 ,3𝜖

with wd𝑋 (𝐻∗) ≤ 2𝜖 , since for 𝑡 ∈ [0, 1] and 𝑥, 𝑦 ∈ 𝑋 with 𝑑 (𝑥, 𝑦) ≤ 𝜖 we get

𝑑 (ℎ𝑡 (𝑥), 𝑦) ≤ 𝑑 (ℎ𝑡 (𝑥), ℎ1 (𝑥)) + 𝑑 (ℎ1 (𝑥), 𝑦)
= 𝑑 (ℎ𝑡 (𝑥), ℎ1 (𝑥)) + 𝑑 (𝑥, 𝑦) ≤ 𝜖 + 𝜖 = 2𝜖 .

Hence we get
𝐶

sing, 𝜖
∗ (𝑟) ◦ 𝐶sing, 𝜖 ,3𝜖

∗ (𝑖) ≃3𝜖 inc𝜖 ,3𝜖 .

From Lemma 23.52 (iii) we get 3𝜖-controlledGM(𝑋)-chain homotopy equivalences

𝑎∗ : 𝐶∗ (𝐾) → 𝐶
sing,3𝜖
∗ ( |𝐾 |);

𝑏∗ : 𝐶sing,3𝜖
∗ ( |𝐾 |) → 𝐶∗ (𝐾),

satisfying

𝑏∗ ◦ 𝑎∗ ≃3𝜖 id𝐶∗ (𝐾 ) ;
𝑎∗ ◦ 𝑏∗ ≃3𝜖 id

𝐶
sing,3𝜖
∗ ( |𝐾 | ) .

We conclude from Lemma 23.52 (i) that inc𝜖 ,3𝜖 : 𝐶sing, 𝜖
∗ (𝑋) → 𝐶

sing,3𝜖
∗ (𝑋) is a 3𝜖-

controlled GM(𝑋)-chain homotopy equivalence and we can choose a 3𝜖-controlled
GM(𝑋)-chain homotopy equivalence inc−1

𝜖 ,3𝜖 : 𝐶sing,3𝜖
∗ (𝑋) → 𝐶

sing, 𝜖
∗ (𝑋) satisfying

inc−1
𝜖 ,3𝜖 ◦ inc𝜖 ,3𝜖 ≃3𝜖 id

𝐶
sing, 𝜖
∗ (𝑋) ;

inc−1
𝜖 ,3𝜖 ◦ inc−1

𝜖 ,3𝜖 ≃3𝜖 id
𝐶

sing,3𝜖
∗ (𝑋) .

Now define GM(𝑋)-chain maps

𝑗∗ = 𝑏∗ ◦ 𝐶sing, 𝜖 ,3𝜖
∗ (𝑖) : 𝐶sing, 𝜖

∗ (𝑋) → 𝐶∗ (𝐾)
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and
𝑝∗ = inc−1

𝜖 ,3𝜖 ◦𝐶
sing,3𝜖
∗ (𝑟) ◦ 𝑎∗ : 𝐶∗ (𝐾) → 𝐶

sing, 𝜖
∗ (𝑋).

We conclude using Lemma 23.48

𝑝∗ ◦ 𝑗∗ ≃12𝜖 id
𝐶

sing, 𝜖
∗ (𝑋) .

Now we get from Proposition 23.51 applied to the inclusion Idem(GM(𝑋) 𝑓 ) →
Idem(GM(𝑋)) and the domination of the Idem(GM(𝑋))-chain complex𝐶sing, 𝜖

∗ (𝑋)
by the GM(𝑋) 𝑓 -chain complex 𝐶∗ (𝐾) above an 𝑁-dimensional Idem(GM(𝑋)) 𝑓 -
chain complex 𝑃∗ with wd𝑋 (𝑃∗) ≤ (12𝑁 + 16)𝜖 together with a (16𝑁 + 40)𝜖-
controlled Idem(GM(𝑋))-chain homotopy equivalence 𝑓∗ : 𝑃∗ → 𝐶

sing, 𝜖
∗ (𝑋). ⊓⊔

23.7.8 Taking the Group Action on 𝑿 into Account

Consider a natural number 𝑁 and an 𝑁-transfer space 𝑋 = (𝑋, 𝑑) in the sense of
Definition 20.9. Suppose that 𝑋 comes with a (not necessarily isometric) 𝐺-action.
Let 𝑇 ⊆ 𝐺 be a finite subset. Fix 𝜖 > 0.

Since 𝑇 is finite and 𝑋 is compact, there exists a real number 𝛿 with 0 < 𝛿 < 𝜖
such that the implication 𝑑 (𝑥, 𝑦) ≤ 𝛿 =⇒ 𝑑 (𝑔𝑥, 𝑔𝑦) ≤ 𝜖 holds for all 𝑔 ∈ 𝑇 , 𝑥 ∈ 𝑋
and 𝑦 ∈ 𝑋 . By the same argument applied to 𝛿 instead of 𝜖 there exists a real number
𝛾 with 0 < 𝛾 < 𝛿 such that the implication 𝑑 (𝑥, 𝑦) ≤ 𝛾 =⇒ 𝑑 (𝑔𝑥, 𝑔𝑦) ≤ 𝛿 holds for
all 𝑔 ∈ 𝑇 , 𝑥 ∈ 𝑋 , and 𝑦 ∈ 𝑋 . Now we get from Proposition 23.54 an 𝑁-dimensional
Idem(GM(𝑋) 𝑓 )-chain complex 𝑃∗ together with Idem(GM(𝑋))-chain homotopy
equivalences 𝑓∗ : 𝑃∗ → 𝐶

sing,𝛾
∗ (𝑋) and 𝑔∗ : 𝐶sing,𝛾

∗ (𝑋) → 𝑃∗ and Idem(GM(𝑋))-
chain homotopies ℎ∗ : 𝑔∗◦ 𝑓∗ ≃ id𝑃∗ and 𝑘∗ : 𝑓∗◦𝑔∗ ≃ id

𝐶
sing,𝛾
∗ (𝑋) such that wd𝑋 (𝑃∗),

wd𝑋 ( 𝑓∗), wd𝑋 (𝑔∗), wd𝑋 (ℎ∗), and wd𝑋 (𝑘∗) are less than or equal to 24(𝑁 + 60)𝛾.
Define the finite subset 𝑇2 of 𝐺 by

𝑇2 = {𝑔 ∈ 𝐺 | ∃𝑔1, 𝑔2 ∈ 𝑇, 𝑔 = 𝑔1, 𝑔2}.

Since every 𝑔 ∈ 𝑇2 satisfies 𝑑 (𝑥, 𝑦) ≤ 𝛾 =⇒ 𝑑 (𝑔𝑥, 𝑔𝑦) ≤ 𝜖 , the map 𝑙𝑔 : 𝑋 → 𝑋

sending 𝑥 to 𝑔𝑥 induces a GM(𝑋)-chain map

𝐶
sing,𝛾, 𝜖
∗ (𝑙𝑔) : 𝐶sing,𝛾

∗ (𝑋) → 𝐶
sing, 𝜖
∗ (𝑋).

Now define for 𝑔 ∈ 𝑇2 an Idem(GM(𝑋) 𝑓 )-chain homotopy equivalence

(23.55) 𝜑[𝑔]∗ : 𝑃∗ → 𝑃∗

by the composite

𝑃∗
𝑓∗−→ 𝐶

sing,𝛾
∗ (𝑋)

𝐶
sing,𝛾,𝜖
∗ (𝑙𝑔 )−−−−−−−−−−→ 𝐶

sing, 𝜖
∗ (𝑋)

inc−1
𝛾,𝜖−−−−→ 𝐶

sing,𝛾
∗ (𝑋)

𝑔∗−→ 𝑃∗
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where inc−1
𝛾,𝜖 is an 𝜖-controlled GM(𝑋)-chain homotopy equivalence coming from

Lemma 23.52 (i) which is up to 𝜖-controlled homotopy an chain homotopy inverse
of the 𝜖-controlled GM(𝑋)-chain homotopy equivalence inc𝛾,𝜖 .

Recall that inc𝛾∗ : 𝐶sing,𝛾
∗ → 𝐶

sing
∗ (𝑋) is the inclusion of Idem(GM(𝑋))-chain

complexes.

Proposition 23.56. We get with the choices above:

(i) We obtain for every 𝑔 ∈ 𝑇2

(𝑥, 𝑦) ∈ supp(𝜑𝑔) =⇒ 𝑑 (𝑔𝑥, 𝑦) ≤ (48𝑁 + 121)𝜖 ;

(ii) For 𝑔, ℎ ∈ 𝑇 there exists an Idem(GM(𝑋))-chain homotopy

Φ[𝑔, ℎ]∗ : 𝜑[𝑔ℎ]∗ ≃ 𝜑[𝑔]∗ ◦ 𝜑[ℎ]∗

satisfying

(𝑥, 𝑦) ∈ supp(𝜑𝑔) =⇒ 𝑑 (𝑔ℎ𝑥, 𝑦) ≤ (72𝑁 + 181)𝜖 ;

(iii) We obtain for every 𝑔 ∈ 𝑇2 an up to Idem(GM(𝑋))-chain homotopy com-
mutative diagram whose vertical arrows are Idem(GM(𝑋))-chain homotopy
equivalences

𝑃∗
inc𝛾∗ ◦ 𝑓∗
≃

//

𝜑 [𝑔]∗
��

𝐶
sing
∗ (𝑋)

𝐶
sing
∗ (𝑙𝑔 )
��

𝑃∗
inc𝛾∗ ◦ 𝑓∗
≃

// 𝐶sing
∗ (𝑋).

Proof. (i) We get wd𝑋 ( 𝑓∗) ≤ (24𝑁 + 60)𝛾 and wd𝑋 (𝑔∗) ≤ (24𝑁 + 60)𝛾 from
Proposition 23.54 and wd𝑋 (inc−1

𝛾,𝜖 ) ≤ 𝜖 from Lemma 23.52 (i). Obviously we have

(23.57) (𝑥, 𝑦) ∈ supp(𝐶sing,𝛾, 𝜖
∗ (𝑙𝑔)) =⇒ 𝑦 = 𝑔𝑥.

One easily checks for (𝑥, 𝑦) ∈ supp(𝜑[𝑔])

𝑑 (𝑔𝑥, 𝑦) ≤ wd𝑋 ( 𝑓∗) + wd𝑋 (inc−1
𝛾,𝜖 ) + wd𝑋 (𝑔∗)

≤ (24𝑁 + 60)𝛾 + 𝜖 + (24𝑁 + 60)𝛾
≤ (24𝑁 + 60)𝜖 + 𝜖 + (24𝑁 + 60)𝛾𝜖
= (48𝑁 + 121)𝜖 .

(ii) The desired homotopy Φ[𝑔ℎ]∗ is given by the composite of the following homo-
topies and identities
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𝜑[𝑔ℎ]
= 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖

∗ (𝑙𝑔ℎ) ◦ 𝑓∗
= 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing, 𝛿, 𝜖

∗ (𝑙𝑔) ◦ 𝐶sing,𝛾, 𝛿
∗ (𝑙ℎ) ◦ 𝑓∗

(1)
≃ 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing, 𝛿, 𝜖

∗ (𝑙𝑔) ◦ inc𝛾, 𝛿 ◦(inc𝛾, 𝛿)−1 ◦ 𝐶sing,𝛾, 𝛿
∗ (𝑙ℎ) ◦ 𝑓∗

= 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖
∗ (𝑙𝑔) ◦ (inc𝛾, 𝛿)−1 ◦ 𝐶sing,𝛾, 𝛿

∗ (𝑙ℎ) ◦ 𝑓∗
(2)
≃ 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖

∗ (𝑙𝑔) ◦ (inc𝛾, 𝛿)−1 ◦ (inc𝛿,𝜖 )−1 ◦ inc𝛿,𝜖

◦ 𝐶sing,𝛾, 𝛿
∗ (𝑙ℎ) ◦ 𝑓∗

= 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖
∗ (𝑙𝑔) ◦ (inc𝛾, 𝛿)−1 ◦ (inc𝛿,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖

∗ (𝑙ℎ) ◦ 𝑓∗
(3)
≃ 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖

∗ (𝑙𝑔) ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖
∗ (𝑙ℎ) ◦ 𝑓∗

(4)
≃ 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖

∗ (𝑙𝑔) ◦ 𝑓∗ ◦ 𝑔∗ ◦ (inc𝛾,𝜖 )−1 ◦ 𝐶sing,𝛾, 𝜖
∗ (𝑙ℎ) ◦ 𝑓∗

= 𝜑[𝑔] ◦ 𝜑[ℎ] .

In the sequel we will apply (an obvious variation of) Lemma 23.48 (ii) over
and over again. Here the homotopy (1) comes from the 𝛿-controlled homotopy
id ≃ inc𝛾, 𝛿 ◦(inc𝛾, 𝛿)−1 of Lemma 23.52 (i). The homotopy (2) comes from the
𝜖-controlled homotopy id ≃ inc𝛿,𝜖 ◦(inc𝛿,𝜖 )−1 of Lemma 23.52 (i). The homotopy
(3) comes from the sequence homotopies each of which comes from Lemma 23.52 (i)

(inc𝛾, 𝛿)−1 ◦ (inc𝛿,𝜖 )−1

≃ (inc𝛾, 𝛿)−1 ◦ (inc𝛿,𝜖 )−1 ◦ inc𝛾,𝜖 ◦(inc𝛾,𝜖 )−1

= (inc𝛾, 𝛿)−1 ◦ (inc𝛿,𝜖 )−1 ◦ inc𝛿,𝜖 ◦ inc𝛾, 𝛿 ◦(inc𝛾,𝜖 )−1

≃ (inc𝛾, 𝛿)−1 ◦ inc𝛾, 𝛿 ◦(inc𝛾,𝜖 )−1

≃ (inc𝛾,𝜖 )−1.

One easily checks that the latter chain homotopy from (inc𝛾, 𝛿)−1 ◦ (inc𝛿,𝜖 )−1 to
(inc𝛾,𝜖 )−1 is 9𝜖-controlled. The homotopy (4) comes from Proposition 23.54. We
get wd𝑋 ( 𝑓∗) ≤ (24𝑁 + 60)𝛾 and wd𝑋 (𝑔∗) ≤ (24𝑁 + 60)𝛾 from Proposition 23.54
and wd𝑋 (inc𝛾,𝜖 )−1 ≤ 𝜖 , wd𝑋 ((inc𝛾, 𝛿)−1) ≤ 𝛿, and wd𝑋 ((inc𝜖 , 𝛿)−1) ≤ 𝛿 from
Lemma 23.52 (i). We have 𝛾 ≤ 𝛿 ≤ 𝜖 . Recall the implication (23.57), which we can
apply to 𝑙𝑔 and 𝑙ℎ and 𝑙𝑔ℎ. One easily checks that for all (𝑥, 𝑦) ∈ supp(Φ[𝑔, ℎ]) we
have

𝑑 (𝑔ℎ𝑥, 𝑦) ≤ (72𝑁 + 181)𝜖 .

(iii). The chain map inc𝛾∗ : 𝐶sing,𝛾
∗ → 𝐶

sing
∗ (𝑋) is a GM(𝑋)-chain homotopy

equivalence by Lemma 23.52 (ii). The GM(𝑋)-chain maps 𝑓∗ : 𝑃∗ → 𝐶
sing,𝛾
∗ (𝑋)

and 𝑔∗ : 𝑃∗ → 𝐶
sing,𝛾
∗ (𝑋) are chain homotopy inverses of one another. We have

inc𝛾,𝜖∗ ◦ inc𝜖∗ = inc𝛾∗ and (inc𝛾,𝜖 )−1 is a GM(𝑋) chain homotopy inverse of inc𝛾,𝜖 .
Obviously inc𝜖∗ ◦𝐶

sing,𝛾, 𝜖
∗ (𝑙𝑔) and𝐶sing

∗ (𝑙𝑔) ◦ inc𝛾∗ agree. Now assertion (iii) follows.
This finishes the proof of Proposition 23.56. ⊓⊔
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23.7.9 Passing to 𝒀 = 𝑮 × 𝑿

Now we consider the data we have fixed in Subsection 23.7.1. Recall that𝑌 = 𝐺 × 𝑋
with the 𝐺-action given by 𝑔′ (𝑔, 𝑥) = (𝑔′𝑔, 𝑥). We define a functor of additive
categories

(23.58) ind : GM(𝑋) → GM𝐺 (𝑌 )

as follows. An object 𝑀 = {𝑀𝑥 | 𝑥 ∈ 𝑋} is sent to the object

ind(𝑀) = {ind(𝑀) (𝑔,𝑥 ) | (𝑔, 𝑥) ∈ 𝑌 }

given by ind(𝑀) (𝑔,𝑥 ) = 𝑀𝑥 . A morphism 𝑓 = { 𝑓𝑥,𝑦 : 𝑀𝑥 → 𝑁𝑦 | 𝑥, 𝑦 ∈ 𝑋} from
𝑀 = {𝑀𝑥 | 𝑥 ∈ 𝑋} to 𝑁 = {𝑁𝑦 | 𝑦 ∈ 𝑋} is sent to the morphism

ind( 𝑓 ) = {ind( 𝑓 ) (𝑔,𝑥 ) , (ℎ,𝑦) : 𝑀𝑥 → 𝑁𝑦 | (𝑔, 𝑥), (ℎ, 𝑦) ∈ 𝑌 }

given by ind( 𝑓 ) (𝑔,𝑥 ) , (ℎ,𝑦) = 𝑓𝑥,𝑦 if 𝑔 = ℎ and by ind( 𝑓 ) (𝑔,𝑥 ) , (ℎ,𝑦) = 0 if 𝑔 ≠ ℎ.
In the sequel we consider on GM𝐺 (𝑌 ) the width function wd𝑍 of Example 23.29
with respect to the map 𝑤 : 𝐺 × 𝑋 → 𝑍 that we have defined by 𝑤(𝑔, 𝑥) = 𝑔𝑣(𝑥) for
the given (𝜖, 𝑇)-almost 𝐺-equivariant map 𝑣 : 𝑋 → 𝑍 = |Σ | in Subsection 23.7.1.
Obviously ind induces a functor of additive categories

(23.59) Idem(ind) : Idem(GM(𝑋)) → Idem(GM𝐺 (𝑌 )).

Fix 𝜖 > 0. Since 𝑣 : 𝑋 → |𝑍 | has a compact metric space as source, we can find
a real number 𝜉 > 0 such that the implication

𝑑 (𝑥, 𝑦) ≤ (12𝑁 + 24)𝜉 =⇒ 𝑑𝐿1 (𝑣(𝑥), 𝑣(𝑦)) ≤ 𝜖

holds for 𝑥, 𝑦 ∈ 𝑋 . From Proposition 23.54 we get Idem(GM(𝑋))-chain maps
𝑓∗ : 𝑃∗ → 𝐶

sing, 𝜉
∗ (𝑋) and 𝑔∗ : 𝐶sing, 𝜉

∗ (𝑋) → 𝑃∗, and Idem(GM(𝑋))-chain homo-
topies ℎ∗ : 𝑔∗ ◦ 𝑓∗ ≃ id𝑃∗ and 𝑘∗ : 𝑓∗ ◦ 𝑔∗ ≃ id

𝐶
sing, 𝜉
∗ (𝑋) such that

wd𝑋 (𝑃∗),wd𝑋 ( 𝑓∗),wd𝑋 (𝑔∗),wd𝑋 (ℎ∗),wd𝑋 (𝑘∗) ≤ (12𝑁 + 24)𝜉

holds, where wd𝑋 is understood to be over the metric space 𝑋 . They induce
Idem(GM(𝑋))-chain maps

Idem(ind) ( 𝑓∗) : Idem(ind) (𝑃∗) → Idem(ind) (𝐶 𝜖∗ (𝑋));
Idem(ind) (𝑔∗) : Idem(ind) (𝐶 𝜖∗ (𝑋)) → Idem(ind) (𝑃∗),

and Idem(GM(𝑋))-chain homotopies

Idem(ind) (ℎ∗) : Idem(ind) (𝑔∗) ◦ Idem(ind) ( 𝑓∗) ≃ idIdem(ind) (𝑃∗ ) ;
Idem(ind) (𝑘∗) : Idem(ind) ( 𝑓∗) ◦ Idem(ind) (𝑔∗) ≃ idIdem(ind) (𝐶sing, 𝜖

∗ (𝑋) ) ,
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such that

wd(Idem(ind) (𝑃∗)),wd(Idem(ind) ( 𝑓∗)),wd(Idem(ind) (𝑔∗)),
wd(Idem(ind) (ℎ∗)),wd(Idem(ind) (𝑘∗)) ≤ 𝜖

holds. We give the proof for the width of Idem(ind) ( 𝑓∗), the proofs for the other
terms are analogous. Consider (𝑔, 𝑥), (ℎ, 𝑦) ∈ supp(Idem(ind) ( 𝑓∗)). Then we have
𝑔 = ℎ and 𝑥, 𝑦 ∈ supp( 𝑓∗). The latter implies 𝑑 (𝑥, 𝑦) ≤ (12𝑁 + 24)𝜉 and hence
𝑑𝐿1 (𝑣(𝑥), 𝑣(𝑦)) ≤ 𝜖 . We compute

𝑑𝐿1 (𝑤(𝑔, 𝑥), 𝑤(ℎ, 𝑦)) = 𝑑𝐿1 (𝑤(𝑔, 𝑥), 𝑤(𝑔, 𝑦)) = 𝑑𝐿1 (𝑔𝑣(𝑥), 𝑔𝑣(𝑦))
= 𝑑𝐿1 (𝑣(𝑥), 𝑣(𝑦)) ≤ 𝜖 .

Given 𝑔 ∈ 𝑇 , we define an Idem(GM𝐺 (𝑌 ))-chain map

𝑈 [𝑔]∗ : Idem(ind) (𝑃∗) → Idem(ind) (𝑃∗)

by putting (𝑈 (𝑔)𝑛) (𝑔1 ,𝑥1 ) , (𝑔1 ,𝑥2 ) : (𝑃𝑛)𝑥1 → (𝑃𝑛)𝑥2 to be equal to (𝜑[𝑔]𝑛)𝑥1 ,𝑥2 if
𝑔2 = 𝑔1𝑔

−1 and zero otherwise, where 𝜑[𝑔]∗ has been introduced in (23.55). For
𝑔, ℎ ∈ 𝑇 we define Idem(GM𝐺 (𝐺 × 𝑋))-chain homotopies

𝐻 [𝑔, ℎ]∗ : 𝑈 (𝑔ℎ) ≃ 𝑈 (𝑔) ◦𝑈 (ℎ)

by putting (𝐻 [𝑔, ℎ]𝑛) (𝑔1 ,𝑥1 ,𝑔2 ,𝑥2 ) : Idem(ind) (𝑃𝑛)𝑥1 → Idem(ind) (𝑃𝑛+1)𝑥2 to be
equal to (Φ[𝑔, ℎ]𝑛)𝑥1 ,𝑥2 if 𝑔2 = 𝑔1 (𝑔ℎ)−1 and zero otherwise, where Φ[𝑔, ℎ] has
been defined in the proof Proposition 23.56 (ii). Proposition 23.56 implies for 𝑔, ℎ ∈
𝑇

wd(𝑈 [𝑔]∗) ≤ (48𝑁 + 121)𝜖 ;(23.60)
wd(𝐻 [𝑔, ℎ]) ≤ (72𝑁 + 181)𝜖 .(23.61)

For 𝑎 =
∑
𝑔∈𝑇 𝜆𝑔 · 𝑔 ∈ Z𝐺, we define an Idem(GM𝐺 (𝐺 × 𝑋))-chain map

𝑈 [𝑎]∗ =
∑︁
𝑔∈𝑇

𝜆𝑔 ·𝑈 [𝑔]∗ : Idem(ind) (𝑃∗) → Idem(ind) (𝑃∗).

For elements 𝑎 =
∑
𝑔∈𝑇 𝜆𝑔 · 𝑔 and 𝑏 =

∑
𝑔∈𝑇 𝜇ℎ · ℎ in 𝑅𝐺, we define a

Idem(GM𝐺 (𝑌 ))-chain homotopy

𝐻 [𝑎.𝑏]∗ : 𝑈 [𝑎𝑏]∗ ≃ 𝑈 [𝑎]∗ ◦𝑈 [𝑏]∗

by 𝐻 [𝑎.𝑏]∗ =
∑
𝑔,ℎ∈𝑇 𝜆𝑔𝜇ℎ · Φ[𝑔, ℎ]∗ : Idem(ind) (𝑃∗) → Idem(ind) (𝑃∗+1). For

the matrix 𝐴 = (𝑎𝑖, 𝑗 ) ∈ GL𝑛 (Z𝐺) and its inverse 𝐵 = (𝑏𝑖, 𝑗 ), we define
Idem(GM𝐺 (𝑌 ))-chain maps for Idem(ind) (𝑃∗)𝑛 =

⊕𝑛

𝑖=1 Idem(ind) (𝑃∗)
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𝑈 [𝐴]∗ = (𝑈 (𝑎𝑖, 𝑗 ))𝑖, 𝑗 : Idem(ind) (𝑃∗)𝑛 → Idem(ind) (𝑃∗)𝑛;
𝑈 [𝐵]∗ = (𝑈 (𝑎𝑖, 𝑗 ))𝑖, 𝑗 : Idem(ind) (𝑃∗)𝑛 → Idem(ind) (𝑃∗)𝑛.

Define Idem(GM𝐺 (𝑌 ))-chain homotopies

𝐾∗ : 𝑈 (𝐴)∗ ◦𝑈 (𝐵)∗ ≃ idIdem(ind) (𝑃∗ )𝑛 ;
𝐿∗ : 𝑈 (𝐵)∗ ◦𝑈 (𝐴)∗ ≃ idIdem(ind) (𝑃∗ )𝑛 ,

by (𝐾𝑛)𝑖,𝑘 =
∑𝑛
𝑗=1 𝐻 (𝑎𝑖, 𝑗𝑏 𝑗 ,𝑘) and (𝐿𝑛)𝑖,𝑘 =

∑𝑛
𝑗=1 𝐻 (𝑏𝑖, 𝑗𝑎 𝑗 ,𝑘) for 𝑖, 𝑘 ∈

{1, 2, . . . , 𝑛}. We conclude from the axioms appearing in Definition 23.27 and the
inequalities (23.60) and (23.61)

wd(𝑈 [𝐴]∗) ≤ (48𝑁 + 121)𝜖 ;(23.62)
wd(𝑈 [𝐵]∗) ≤ (48𝑁 + 121)𝜖 ;(23.63)

wd(𝐾) ≤ (72𝑁 + 181)𝜖 ;(23.64)
wd(𝐿) ≤ (72𝑁 + 181)𝜖 .(23.65)

There is an obvious identification of GM𝐺 (𝑌 )-chain complexes

ind(𝐶sing
∗ (𝑋)) = 𝐶

sing
∗ (𝑌 )

since 𝐺 is discrete. Under this identification the two GM𝐺 (𝑌 )-chain maps
ind(𝐶sing

∗ (𝑙𝑔)) and 𝐶sing
∗ (𝐿𝑔) agree, where 𝐿𝑔 : 𝑌 → 𝑌 sends (ℎ, 𝑥) to (ℎ𝑔−1, 𝑔𝑥).

Under this identification we conclude from Proposition 23.56 (iii) that we obtain
an up to chain homotopy commutative diagram of chain homotopy equivalences of
Idem(GM𝐺 (𝑋))-chain complexes

ind(𝑃∗)
ind(inc𝜖∗ ◦ 𝑓∗ )

≃
//

𝑈 [𝑔]∗
��

𝐶
sing
∗ (𝑌 )

𝐶
sing
∗ (𝐿𝑔 )
��

ind(𝑃∗)
ind(inc𝜖∗ ◦ 𝑓∗ )

≃
// 𝐶sing
∗ (𝑌 ).

If we apply the functor 𝐹 of (19.5) to the diagram above and use the identification of
𝐹 (𝐶sing

∗ (𝐺 × 𝑋)) with the singular Z-chain complex 𝐶sing
∗ (𝐺 × 𝑋), we obtain an up

to Z𝐺-chain homotopy commutative diagram of Z𝐺-chain homotopy equivalences

𝐹 (ind(𝑃∗))
𝐹 (ind(inc𝜖∗ ◦ 𝑓∗ ) )

≃
//

𝐹 (𝑈 [𝑔]∗ )
��

𝐶
sing
∗ (𝑌 )

𝐶
sing
∗ (𝐿𝑔 )
��

𝐹 (ind(𝑃∗))
𝐹 (ind(inc𝜖∗ ◦ 𝑓∗ ) )

≃
// 𝐶sing
∗ (𝑌 ).
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Since 𝑋 is contractible and 𝑌 = 𝐺 × 𝑋 is equipped with the 𝐺-action 𝑔′ · (𝑔, 𝑥) =
(𝑔′𝑔, 𝑥), the projection pr : 𝑌 = 𝐺 × 𝑋 → 𝐺 is a 𝐺-homotopy equivalence and
induces a Z𝐺-chain homotopy equivalence 𝐶sing

∗ (𝑌 ) → 𝐶
sing
∗ (𝐺). There is an ob-

vious Z𝐺-chain homotopy equivalence 𝑎∗ : 𝐶sing
∗ (𝐺) → 0[Z𝐺]∗ onto the Z-chain

complex concentrated in dimension 0 whose 0-th chain module is Z𝐺. We obtain a
Z𝐺-chain homotopy equivalence

𝑏∗ : ind(𝑃∗)
ind(inc𝜖∗ ◦ 𝑓∗ )−−−−−−−−−−→ 𝐶

sing
∗ (𝑌 )

𝐶
sing
∗ (pr)
−−−−−−−→ 𝐶

sing
∗ (𝐺)

𝑎∗−−→ 0[Z𝐺]∗

such that the following diagram of finite free Z𝐺-chain complexes commutes up to
Z𝐺-chain homotopy for every 𝑔 ∈ 𝑇 , where 𝑟𝑔−1 : 𝐺 → 𝐺 sends 𝑔′ to 𝑔′𝑔−1

𝐹 (ind(𝑃∗))
𝑏∗
≃

//

𝐹 (𝑈 [𝑔]∗ )
��

0[Z𝐺]∗
0[𝑟

𝑔−1 ]∗
��

𝐹 (ind(𝑃∗))
𝑏∗
≃

// 0[Z𝐺]∗.

One easily checks that following diagram of finite free Z𝐺-chain complexes com-
mutes up to Z𝐺-chain homotopy, where 𝑉 (𝐴) has been defined in (23.25)

𝐹 (ind(𝑃∗))𝑛
𝑏∗
≃

//

𝐹 (𝑈 [𝐴]∗ )
��

0[Z𝐺𝑛]∗
0[𝑉 (𝐴) ]∗
��

𝐹 (ind(𝑃∗))𝑛
𝑏∗
≃

// 0[Z𝐺𝑛]∗.

We conclude from Lemma 23.48

(23.66) 𝑢 = [𝑉 (𝐴)] = 𝑡 (0[𝑉 (𝐴)]∗) = 𝑡 (𝐹 (𝑈 (𝐴)∗)) ∈ 𝐾1 (Z𝐺).

(Note that (23.66) is closely related to up-down-formula, see Remark 23.20.) Recall
that 𝑈 (𝐴)∗ is a (72𝑁 + 181)𝜖-controlled Idem(GM𝐺 (𝑌 ))-chain homotopy equiva-
lence, see (23.62), (23.63), (23.64), and (23.65). Hence Proposition 23.50 together
with (23.66) implies

𝑢 = [𝐹 𝑓 (𝑎)] ∈ 𝐾1 (Z𝐺)

for some 5(72𝑁 + 181)𝜖-controlled automorphism 𝑎 in GM𝐺 (𝑌 ). By our choice
𝜖 =

𝜖𝑁
5(48𝑁+181) , see (23.26), we have 5(72𝑁 + 181)𝜖 = 𝜖𝑁 . This finishes the proof

of Proposition 23.24.
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23.8 The Strategy Theorem

Consider a covariant functor

E : 𝐺-CW-COM→ SPECTRA.

Given a 𝐺-𝐶𝑊-complex space 𝑍 , we obtain from E a new covariant functor

(23.67) E𝑍 : 𝐺-CW-COM→ SPECTRA, 𝑋 ↦→ E(𝑋 × 𝑍).

The canonical projection 𝑞 : 𝑋×𝑍 → 𝑋 yields a transformation of covariant functors
𝐺-CW-COM→ SPECTRA.

(23.68) pr : E𝑍 → E.

Let 𝐿 : Or(𝐺) → 𝐺-CW-COM be the obvious inclusion.

Theorem 23.69 (Strategy Theorem). Suppose that the following conditions hold:

(i) The covariant functor

E : 𝐺-CW-COM→ SPECTRA

is excisive;
(ii) There exists a map of covariant Or(𝐺)-spectra

trf : 𝐿∗E→ 𝐿∗E𝑍

such that the composite 𝐿∗pr◦trf : 𝐿∗E→ 𝐿∗E is a weak homotopy equivalence
of covariant Or(𝐺)-spectra;

(iii) The projection onto the second factor pr2 : 𝑍×𝑍 → 𝑍 is a homotopy equivalence
of 𝐺-𝐶𝑊-complexes.

Then
𝐻𝐺𝑛 (pr; 𝐿∗E) : 𝐻𝐺𝑛 (𝑍; 𝐿∗E) → 𝐻𝐺𝑛 ({•}, 𝐿∗E)

is bijective for all 𝑛 ∈ Z, where pr : 𝑍 → {•} is the projection. Moreover, we obtain
for all 𝑛 ∈ Z a commutative diagram of isomorphisms

𝐻𝐺𝑛 (𝑍; 𝐿∗E)
𝐻𝐺𝑛 (pr;𝐿∗E)

�
//

�

��

𝐻𝐺𝑛 ({•}; 𝐿∗E)

�

��
𝜋𝑛 (E(𝑍))

�

E(pr)
// 𝜋𝑛 (E({•})).
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Proof. The desired commutative diagram appearing in assertion (iii) comes from
Theorem 18.11 applied to E. Moreover, by Theorem 18.11 the vertical arrows
are bijective for all 𝑛 ∈ Z. It remains to prove the bijectivity of 𝐻𝐺𝑛 (pr; 𝐿∗E) :
𝐻𝐺𝑛 (𝑍; 𝐿∗E) → 𝐻𝐺𝑛 ({•}, 𝐿∗E) for all 𝑛 ∈ Z.

We have the following commutative diagram

𝐻𝐺𝑛 (𝑍; 𝐿∗E)
𝐻𝐺𝑛 (pr;𝐿∗E) //

𝐻𝑛 (𝑍 ;trf )
��

𝐻𝐺𝑛 ({•}; 𝐿∗E)

𝐻𝑛 ({•};trf )
��

𝐻𝐺𝑛 (𝑍; 𝐿∗E𝑍 )
𝐻𝐺𝑛 (pr;𝐿∗E𝑍 ) //

𝐻𝑛 (𝑍 ;𝐿∗pr)
��

𝐻𝐺𝑛 ({•}; 𝐿∗E𝑍 )

𝐻𝑛 ({•};𝐿∗pr)
��

𝐻𝐺𝑛 (𝑍; 𝐿∗E)
𝐻𝐺𝑛 (pr;𝐿∗E) // 𝐻𝐺𝑛 ({•}; 𝐿∗E)

for which the composites of the vertical arrows are in both cases isomorphisms by
Lemma 12.6. Hence it suffices to show that 𝐻𝐺𝑛 (pr; 𝐿∗E𝑍 ) is bijective for all 𝑛 ∈ Z.
From Theorem 18.11 applied to E𝑍 , we obtain a commutative diagram

𝐻𝐺𝑛 (𝑍; 𝐿∗E𝑍 )
𝐻𝐺𝑛 (pr;𝐿∗E𝑍 ) //

�

��

𝐻𝐺𝑛 ({•}, 𝐿∗E𝑍 )

�

��
𝜋𝑛 (E(𝑍 × 𝑍))

𝜋𝑛 (E(pr2 ) ) // 𝜋𝑛 (E(𝑍))

whose vertical arrows are bijective. Since pr2 is by assumption a𝐺-homotopy equiv-
alence, 𝐻𝐺𝑛 (pr; 𝐿∗E𝑍 ) is bijective for all 𝑛 ∈ Z. ⊓⊔

Let A be any additive 𝐺-category. We have defined the additive category A[𝐺]
in Example 21.2 and explained in Remark 21.79 that it comes with the structure
of a strong category with 𝐺-support in the sense of Definition 21.78. So we can
consider the covariant Or(𝐺)-spectra KD𝐺 of (21.107) and KD𝐺0 of (21.108). We
get another covariant Or(𝐺)-spectrum KD

𝐺
0

𝐸VCY (𝐺)
by sending an object 𝐺/𝐻 to

K(D𝐺0 (𝐺/𝐻 × 𝐸VCY (𝐺))), see (23.67).

Theorem 23.70 (Transfer criterion for the Farrell-Jones Conjecture). Suppose
that there is a map of covariant Or(𝐺)-spectra

trf : KD
𝐺
0 → KD

𝐺
0

𝐸VCY (𝐺)

such that pr◦trf is a weak homotopy equivalence of covariantOr(𝐺)-spectra, where
pr has been defined in (23.68). Then the 𝐾-theoretic Farrell-Jones Conjecture with
coefficients in additive 𝐺-categories 13.11 holds for 𝐺.

The analogous statement holds for the 𝐿-theoretic Farrell-Jones Conjecture with
coefficients in additive 𝐺-categories with involution 13.19.
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Proof. We give the proof for 𝐾-theory only, the one for 𝐿-theory is completely
analogous.

The projection onto the second factor pr2 : 𝐸VCY (𝐺)×𝐸VCY (𝐺) → 𝐸VCY (𝐺)
is a𝐺-homotopy equivalence by Theorem 11.19. The functor K◦D𝐺0 : CW-COM→
SPECTRA of (21.106) is excisive by Theorem 21.126. We conclude from Theo-
rem 23.69 applied to it that

𝐻𝐺𝑛 (pr; KD
𝐺
0 ) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KD

𝐺
0 ) → 𝐻𝐺𝑛 ({•},KD

𝐺
0 )

is bijective for all 𝑛 ∈ Z. Now Theorem 21.109 using Mayer-Vietoris sequences and
the Five Lemma implies that

𝐻𝐺𝑛 (pr; KD
𝐺 ) : 𝐻𝐺𝑛 (𝐸VCY (𝐺); KD

𝐺 ) → 𝐻𝐺𝑛 ({•},KD
𝐺 )

is bijective for all 𝑛 ∈ Z. We conclude from Lemma 21.76 (i), Remark 21.82,
and Lemma 12.6 that the assembly map appearing in the 𝐾-theoretic Farrell-Jones
Conjecture with coefficients in additive 𝐺-categories 13.11 is bijective for all 𝑛 ∈
Z. ⊓⊔

The benefit of Theorem 23.70 is that it suffices to construct the transfer only on
homogeneous spaces and for the functor D𝐺0 which has the pleasant feature that it
is defined with zero-control in the N-direction. This has for instance been exploited
in [81, Remarks 6.14 and 7.17].

23.9 Notes

There seems to be no construction of a transfer in the Baum-Connes setting. That is
the reason why some of the spectacular results about the validity of the Farrell-Jones
Conjecture for certain groups, for instance all lattices in second countable locally
compact Hausdorff groups, do not carry over to the Baum-Connes Conjecture. This
might be different if one replaces the group𝐶∗-algebra by the group Fréchet algebra.



Chapter 24
Higher Categories as Coefficients

24.1 Introduction

In this chapter we give more information and details about the proofs of Theo-
rem 20.61 and Theorem 20.62 following [185]. We have already seen in Lemma 20.2
that these are the most general results about the (𝐾-theoretic) Farrell-Jones Conjec-
ture, which imply and unify all the ones proved so far. Some basic strategies and
some of the history of their proofs have already been discussed in special cases in
Chapter 19 and Chapter 23. Roughly speaking, the main achievement in [185] is to
generalize the formulations and proofs of the𝐾-theoretic Farrell-Jones Conjecture as
they appear for additive categories, for instance in [72, 78, 79, 86, 543, 992, 993], to
higher categories, where a first step in this direction was already taken for 𝐴-theory
in [344, 960].

Recall the general setup for assembly maps with higher categories as coefficients
from Section 8.5. Starting with a right-exact 𝐺-∞-category C : 𝐼 (𝐺) → CATREX,
left Kan extension along the fully faithful functor 𝐼 (𝐺) → Or(𝐺) yields a functor
𝐸C ◦ 𝑂 : Or(𝐺) → CATREX which sends 𝐺/𝐻 to colim𝐼 (𝐻 ) C, see also Propo-
sition 8.37. As explained in Sections 8.5.3, 8.5.4, and 8.5.5, this is the appropriate
analog of the formation of group rings in this setting. Composing this functor with
any finitary localizing invariant 𝐹 (e.g., algebraic 𝐾-theory), we obtain a spectrum-
valued functor

(24.1) 𝐹C := 𝐹 ◦ 𝐸C ◦𝑂 : Or(𝐺) → Sp.

Applying the construction from Section 8.5.2, we obtain a 𝐺-homology theory in
the guise of a colimit-preserving functor

H𝐺 (−; 𝐹C) : Fun(Or(𝐺)op, Spc) → Sp,

and thus also an assembly map associated to any family F of subgroups.
We are going to give an argument why this assembly map is an equivalence for

Dress-Farrell-Hsiang-Jones groups over F . There is a slightly more general version
of this argument which allows 𝐹 to take values in an arbitrary stable ∞-category.
For the sake of concreteness and to avoid some ultimately irrelevant technicalities,
we will focus on the case of spectrum-valued localizing invariants. See [185] for the
general version.

717
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24.2 Strategy of the Proof

In the following, we will refer to objects of Fun(Or(𝐺)op, Spc) as 𝐺-spaces. The
reader may prefer to think of these as𝐺-𝐶𝑊-complexes, see Section 8.5.2 for further
explanations.

The general strategy of proof is very close to the argument explained in Sec-
tion 23.8: we want to use some sort of “transfer” to exhibit the assembly map as a
retract of another assembly map whose “coefficients” have a form which makes it
more feasible to prove that it is an equivalence. However, the concrete implementa-
tion of this idea is somewhat different.

The “new” assembly map does not come about by considering products with
another topological space. Instead, we introduce a new variable to the homology
theory H𝐺 (−; 𝐹C) which digests the more geometric input data provided by the
Dress-Farrell-Hsiang-Jones condition. Since that condition does not provide us with
a single space, but rather with a sequence (𝑀𝑛)𝑛 of spaces, (think of the spaces 𝑍𝑛,𝐷
or Σ𝑛,𝐷 in the Definition 20.60 of a Dress-Farrell-Hsiang-Jones group), the new
variable will come in the form of a sequence of spaces. In order to retain symmetry,
the extended functor also takes sequences of 𝐺-spaces as input in the first variable.
Let us write H̃𝐺 (−; 𝐹C) for this extended functor. For the sake of brevity, we are
intentionally vague about the type of the second input variable. Precise statements
can be found in Section 24.3 below.

For this extended functor, it becomes unlikely to find a retraction back to the
original assembly map. As a replacement, we will consider the functor Δ : Sp→ Sp
which sends a spectrum E to Δ(E) := cofib

(⊕
N E → ∏

N E
)
. This functor comes

equipped with a natural transformation 𝛿 : id⇒ Δ which is objectwise given by the
composite

E
diag.
−−−→

∏
N

E→ Δ(E).

That is, we will produce a commutative diagram of the following shape:
(24.2)

H𝐺 (𝐸F (𝐺); 𝐹C)
H𝐺 (pr;𝐹C ) //

𝑡

��
𝛿

))

H𝐺 (𝐺/𝐺; 𝐹C)

𝑡

��
𝛿

uu

H̃𝐺 ((𝐸F (𝐺))𝑛, (𝑀𝑛)𝑛; 𝐹C) //

��

H̃𝐺 ((𝐺/𝐺)𝑛, (𝑀𝑛)𝑛; 𝐹C)

��
Δ(H𝐺 (𝐸F (𝐺); 𝐹C))

Δ(H𝐺 (pr;𝐹C ) ) // Δ(H𝐺 (𝐺/𝐺; 𝐹C)).

Assuming the middle horizontal arrow is an equivalence, it is a matter of diagram
chasing to see that the assembly map at the top is an equivalence as well, since
𝜋𝑛 (Δ(E)) �

∏
N 𝜋𝑛 (E)

/⊕
N 𝜋𝑛 (E) holds. This presents us with the following

tasks:
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• Task 1
We have to explain what the new geometric variable is and how we extend
H𝐺 (−; 𝐹C) to a functor H̃𝐺 (−; 𝐹C) in two variables. Moreover, we have to identify
a class of inputs (Σ𝑛)𝑛 for the second variable which ensures that the associated
assembly map

H̃𝐺 ((𝐸F (𝐺))𝑛, (Σ𝑛)𝑛; 𝐹C) → H̃𝐺 ((𝐺/𝐺)𝑛, (Σ𝑛)𝑛; 𝐹C)

is an equivalence, where (𝐸F (𝐺))𝑛 and (𝐺/𝐺)𝑛 indicate the constant sequence on
𝐸F (𝐺) and 𝐺/𝐺, respectively. This is the subject of Section 24.3. The punchline
is that we may plug in any sequence (Σ𝑛)𝑛 of 𝐺-simplicial complexes whose
dimension is uniformly bounded and whose stabilizers lie in the family F .
• Task 2

We have to factor the transformation 𝛿 as shown in the above diagram. It will turn
out that the lower vertical maps in diagram 24.2 are always defined, while the
existence of the maps labeled 𝑡 will rely on the data provided by the Dress-Farrell-
Hsiang-Jones condition. This will be explained in Section 24.4.

In general, we will only give an outline of the arguments, focusing rather on ideas
and heuristics. The reader interested in full details is referred to [185].

24.3 Introducing the Geometric Variable

Before giving the construction of the extended functor H̃𝐺 (−; 𝐹C), let us formulate
a number of desiderata this extension is supposed to satisfy. Generalizing the functor
Δ, let us define for any sequence (E𝑛)𝑛 of spectra their reduced product as

(24.3)
red∏
𝑛∈N

E𝑛 := cofib
(⊕
𝑛∈N

E𝑛 →
∏
𝑛∈N

E𝑛
)
.

(i) Since 𝛿 is supposed to factor over the extension H̃𝐺 (−; 𝐹C), it appears sensible
to require for every sequence of 𝐺-spaces (𝑋𝑛)𝑛 that there are natural maps

H̃𝐺 ((𝑋𝑛)𝑛, (∗)𝑛; 𝐹C) →
red∏
𝑛∈N

H𝐺 (𝑋𝑛; 𝐹C)

if we plug in the constant sequence on the point in the second variable. These
maps should feature in constructing the lower vertical maps in (24.2);

(ii) We have to identify a reason why the map induced by the projection 𝐸F (𝐺) →
𝐺/𝐺

(24.4) H̃𝐺 ((𝐸F (𝐺))𝑛, (Σ𝑛)𝑛; 𝐹C) → H̃𝐺 ((𝐺/𝐺)𝑛, (Σ𝑛)𝑛; 𝐹C)
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is an equivalence for a sequence (Σ𝑛)𝑛 of 𝐺-simplicial complexes whose di-
mension is uniformly bounded and whose stabilizers are contained in F . If the
second variable is suitably excisive, the pushout squares describing the attach-
ment of the top-dimensional equivariant simplices should induce a pullback
square of spectra

H̃𝐺 ((𝐸F (𝐺))𝑛, (𝑆𝑛 × 𝜕Δ𝑑)𝑛; 𝐹C) //

��

H̃𝐺 ((𝐸F (𝐺))𝑛, (Σ (𝑑−1)
𝑛 )𝑛; 𝐹C)

��
H̃𝐺 ((𝐸F (𝐺))𝑛, (𝑆𝑛 × Δ𝑑)𝑛; 𝐹C) // H̃𝐺 ((𝐸F (𝐺))𝑛, (Σ𝑛)𝑛; 𝐹C).

The projection map 𝐸F (𝐺) → 𝐺/𝐺 induces a transformation from this square
to the analogous square with𝐺/𝐺 replacing 𝐸F𝐺. By induction, we can assume
that this transformation is an equivalence on the upper two corners of the square.
If the second variable of the extended functor is also equivariantly homotopy
invariant, the map between the bottom left corners simplifies to

(24.5) H̃𝐺 ((𝐸F (𝐺))𝑛, (𝑆𝑛)𝑛; 𝐹C) → H̃𝐺 ((𝐺/𝐺)𝑛, (𝑆𝑛)𝑛; 𝐹C).

It remains to explain why this map (24.5) is an equivalence, since then the
map (24.4) is an equivalence.

(iii) We would like to arrange things so that there are natural equivalences

H̃𝐺 ((𝑋𝑛)𝑛, (𝑆𝑛)𝑛; 𝐹C)
≃−→ H̃𝐺 ((𝑋𝑛 × 𝑆𝑛)𝑛, (∗)𝑛; 𝐹C).

Hence the map (24.5) is an equivalence if and only if the map

(24.6) H̃𝐺 ((𝐸F (𝐺) × 𝑆𝑛)𝑛, (∗)𝑛; 𝐹C) → H̃𝐺 ((𝐺/𝐺 × 𝑆𝑛)𝑛, (∗)𝑛; 𝐹C)

is an equivalence.
The projection maps 𝐸F (𝐺) × 𝑆𝑛 → 𝑆𝑛 are 𝐺-homotopy equivalences because
each 𝑆𝑛 is a 𝐺-set with isotropy in F , i.e., these maps are equivalences in
Fun(Or(𝐺)op, Spc). Hence the map (24.4) is an equivalence. This will take
care of Task 1 appearing in Section 24.2.
This argument simultaneously takes care of the 0-dimensional case, providing
the start of the inductive argument, see Theorem 24.13 (iv).

These desiderata alone do not tell us what the “correct” construction of the exten-
sion H̃𝐺 (−; 𝐹C) is. Ultimately, we want to be able to make use of certain distance
estimates in metric spaces like those that appear in the Dress-Farrell-Hsiang-Jones
condition 20.60, so the extension should make substantial use of geometric informa-
tion. This prompts us to take a cue from Chapter 21, which shows that the methods of
controlled algebra allow us to construct a homology theory by considering controlled
modules with continuous control, or, more generally controlled objects over additive
categories. Obviously, we will have to generalize these methods to work for right-
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exact∞-categories instead of additive categories. Our treatment here constitutes an
attempt to work as much in analogy to Chapter 21 as possible. In particular, we will
only concern ourselves with objects satisfying a version of continuous control. This
allows us to avoid introducing a slew of additional terminology at the expense of
somewhat ad-hoc looking definitions. For a more systematic treatment of controlled
methods over right-exact∞-categories, see [180] and [185], which use the language
of equivariant bornological coarse spaces developed in [181].

For the reader who is trying to keep track of the parallels between the definitions
we are about to present and the treatment in Chapter 21, let us point out that the
definitions in this chapter are analogous to the version of continuous control with
zero control over N from Section 21.10.

In what follows, let (𝑀𝑛)𝑛 be a sequence of metric spaces.
One central example of a right-exact ∞-category is the ∞-category of pointed

finite spaces Spcf
∗. This ∞-category can be characterized as the smallest full sub-

category of Spc∗ which contains the 0-sphere 𝑆0 and is closed under finite colimits.
A more concrete description of Spcf

∗ is as the Dwyer-Kan localization of the cate-
gory of pointed finite 𝐶𝑊-complexes CWf

∗ at the collection of (pointed) homotopy
equivalences. In order to provide some motivation for our definition of controlled
objects, we will first introduce a category of controlled 𝐶𝑊-complexes, which gives
a 1-categorical model for the category of controlled objects over Spcf

∗, and then
proceed to the general construction from there. Such categories originate in the
work of Vogell [967], but our concrete implementation is closer to the treatment by
Weiss [1000].

The definition of a controlled 𝐶𝑊-complex is relatively straightforward if one
keeps in mind that passage from the𝐶𝑊-complex to its cellular chain complex should
yield a chain complex of controlled abelian groups: each chain group should be a
geometric module, and the differentials should be controlled morphisms. Moreover,
a morphism of controlled𝐶𝑊-complexes is expected to induce a morphism of chain
complexes of controlled abelian groups.

Definition 24.7. Let 𝑄 be a pointed 𝐶𝑊-complex, i.e., a relative 𝐶𝑊-complex with
(−1)-skeleton 𝑄 (−1) = ∗.

(i) Denote by
𝑐𝑑 (𝑄) := 𝜋0 (𝑄 (𝑑) \𝑄 (𝑑−1) )

the set of open 𝑑-cells of 𝑄 and set 𝑐(𝑄) :=
⋃
𝑑≥0 𝑐𝑑 (𝑄);

(ii) A labeling on 𝑄 is a function

ℓ : 𝑐(𝑄) →
∐
𝑛∈N

𝑀𝑛.

We call the pair (𝑄, ℓ) a labeled 𝐶𝑊-complex.
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For any subset 𝐴 ⊆ 𝑄 of a𝐶𝑊-complex𝑄, denote by ⟨𝐴⟩ the smallest subcomplex
of 𝑄 containing 𝐴. In the following, set

𝑀 :=
∐
𝑛∈N

𝑀𝑛,

where we use the convention that the distance of two points in different 𝑀𝑛-s is∞.

Definition 24.8. Let (𝑄, ℓ) and (𝑄′, ℓ′) be labeled 𝐶𝑊-complexes and let 𝑓 : 𝑄 →
𝑄′ be a cellular map.

(i) We call (𝑄, ℓ) locally finite if ℓ−1 (𝐵) is finite for every metrically bounded
subset 𝐵 of 𝑀;

(ii) We call 𝑓 continuously controlled if the following conditions are satisfied:

(a) if ℓ(𝑧) ∈ 𝑀𝑛, then ℓ(𝑐(⟨ 𝑓 (𝑧)⟩)) ⊆ 𝑀𝑛;
(b) sup

{
𝑑 (ℓ(𝑧), ℓ(𝑧′)) | ℓ(𝑧) ∈ 𝑀𝑛, 𝑧′ ∈ 𝑐(⟨ 𝑓 (𝑧)⟩)

} 𝑛→∞−−−−→ 0;

(iii) We call (𝑄, ℓ) continuously controlled if the identity map on 𝑄 is continuously
controlled.

Denote the category of locally finite, continuously controlled 𝐶𝑊-complexes and
continuously controlled cellular maps by CWlf ((𝑀𝑛)𝑛).

Definition 24.8 is basically dictated by the requirement that taking cellular chain
complexes should define a functor from controlled 𝐶𝑊-complexes to chain com-
plexes of geometric modules. If this definition is indicative of what controlled objects
over a right-exact∞-category are, we have to find a way to express the data encoded
in a locally finite, continuously controlled 𝐶𝑊-complex (𝑄, ℓ) without referring to
the cells of 𝑄. Thinking of Spc∗ as a localization of the category of pointed 𝐶𝑊-
complexes, we can try to describe (𝑄, ℓ) in terms of its subcomplexes: the labeling
of 𝑄 induces a functor

𝐶𝑄 : P(𝑀) → CW∗
from the power set of 𝑀 , considered as a poset, to the category of pointed 𝐶𝑊-
complexes sending a subset 𝐵 to the maximal subcomplex 𝑄𝐵 ⊆ 𝑄 which satisfies
ℓ(𝑐(𝑄𝐵)) ⊆ 𝐵.

The data encoded in the functor 𝐶𝑄 are quite redundant. To make this more
precise, observe that 𝐶𝑄 admits a filtration

𝐶
(−1)
𝑄
⊆ 𝐶 (0)

𝑄
⊆ 𝐶 (1)

𝑄
⊆ · · · ⊆ 𝐶𝑄,

where 𝐶 (𝑑)
𝑄
(𝐵) := 𝐶𝑄 (𝐵) (𝑑) . Note that colim𝑑 𝐶

(𝑑)
𝑄
� 𝐶𝑄. This filtration exhibits

𝐶𝑄 as a cell complex over its indexing category P(𝑀) in the sense that for each 𝑑
there exists a pushout
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𝑧∈𝑐𝑑 (𝑄)

(
𝑆𝑑−1 ×morP(𝑀 ) (ℓ(⟨𝑧⟩),−)

)
+

//

��

𝐶
(𝑑−1)
𝑄

��∨
𝑧∈𝑐𝑑 (𝑄)

(
𝐷𝑑 ×morP(𝑀 ) (ℓ(⟨𝑧⟩),−)

)
+

// 𝐶 (𝑑)
𝑄
.

In particular, 𝐶𝑄 is a cofibrant object in the projective model structure on
Fun(P(𝑀),Top∗).

This observation can be refined. Consider the collection U of subsets 𝑈 ⊆∐
𝑛∈N (𝑀𝑛 × 𝑀𝑛) satisfying

sup
{
𝑑 (𝑥, 𝑥′) | (𝑥, 𝑥′) ∈ 𝑈 ∩ (𝑀𝑛 × 𝑀𝑛)

} 𝑛→∞−−−−→ 0,

so the continuous control condition on (𝑄, ℓ) translates into{
𝑑 (ℓ(𝑧), ℓ(𝑧′)) | 𝑧 ∈ 𝑐(𝑄), 𝑧′ ∈ 𝑐(⟨𝑧⟩)

}
∈ U.

In particular, there exists some𝑈 ∈ U such that for all 𝑧 ∈ 𝑐(𝐾) we have

ℓ(⟨𝑧⟩) × ℓ(⟨𝑧⟩) ⊆ 𝑈.

Then a relative version of our observation about the cell structure on𝐶𝑄 implies that
the functor 𝐿 ◦ 𝐶𝑄 : P(𝑀) → Spc∗ obtained by composing with the localization
functor 𝐿 : Top∗ → Spc∗ (which is the pointed version of the localization functor
in (8.1)) is left Kan extended from the sub-poset

P𝑈,𝑇 (𝑀) := {𝐵 ∈ P(𝑆) | 𝐵 × 𝐵 ⊆ 𝑈, 𝐵 ⊆ 𝑇}

for some 𝑈 ∈ U and some locally finite subset 𝑇 ⊆ 𝑀 , i.e., a subset 𝑇 whose
intersection with each metrically bounded subset of 𝑀 is finite. See [185, Proposi-
tion 4.8] for a detailed argument. Moreover, every element ofP𝑈,𝑇 (𝑀) is a metrically
bounded subset of 𝑀 , so 𝑄𝐵 is a finite complex for every 𝐵 ∈ P𝑈,𝑇 (𝑀). Hence
(𝐿 ◦ 𝐶𝑄) (𝐵) ∈ Spcf

∗ for such subsets.
Our new description of controlled 𝐶𝑊-complexes is entirely in terms of (finite)

𝐶𝑊-complexes. This prompts the following definition, in which Ind(C) denotes the
free filtered colimit-completion of a right-exact∞-category C.

Definition 24.9. Let C be a right-exact∞-category. A functor 𝐶 : P(𝑀) → Ind(C)
is aU-controlled object if there exist𝑈 ∈ U and a locally finite subset 𝑇 ⊆ 𝑀 such
that the following holds:

(i) the functor 𝐶 is left Kan extended from P𝑈,𝑇 (𝑀);
(ii) for every 𝐵 ∈ P𝑈,𝑇 (𝑀), the value 𝐶 (𝐵) lies in C.

While we have succeeded in describing controlled 𝐶𝑊-complexes without any
mention of cells, the full subcategory ofU-controlled objects in Fun(P(𝑀), Spcf

∗)
fails to capture the notion of a controlled morphism because a continuously controlled
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morphism 𝑓 : (𝑄, ℓ) → (𝑄′, ℓ′) does not induce a natural transformation 𝐶𝑄 ⇒
𝐶𝑄′ .

This can be remedied as follows. For any𝑈 ∈ U and subset 𝐵 of 𝑀 , there exists
the𝑈-thickening

𝑈 [𝐵] := {𝑥 ∈ 𝑀 | ∃ 𝑏 ∈ 𝐵 satisfying (𝑥, 𝑏) ∈ 𝑈}.

This construction defines a functor 𝑈 [−] : P(𝑀) → P(𝑀). While a continuously
controlled morphism 𝑓 : (𝑄, ℓ) → (𝑄′, ℓ′) does not induce a natural transformation
𝐹𝑄 ⇒ 𝐹𝑄′ , it does induce a natural transformation𝐶𝑄 ⇒ 𝐶𝑄′ ◦𝑈 [−] for sufficiently
large𝑈 ∈ U.

One problem with the functor 𝐶𝑄′ ◦ 𝑈 [−] is that it is not a U-controlled ob-
ject anymore. However, the functor 𝑈 [−] admits a right adjoint functor 𝑈 (−), so
natural transformations 𝐶𝑄 ⇒ 𝐶𝑄′ ◦𝑈 [−] are the same as natural transformations
𝐶𝑄 ◦ 𝑈 (−) ⇒ 𝐶𝑄′ , and one can check that precomposition with 𝑈 (−) preserves
U-controlled objects, see [180, Corollary 3.3.29]. The choice of 𝑈 ∈ U is not
canonical, and replacing 𝑈 by a larger set 𝑈′ ∈ U should determine the same map,
so we are looking for a category whose objects areU-controlled objects and whose
mapping spaces are given by

mor(𝐶,𝐶′) ≃ colim𝑈∈U nat(𝐶 ◦𝑈 (−), 𝐶′).

If we were working with ordinary categories, such a category could be constructed
by hand, but it is also determined by a universal property: using the methods of [412],
one can identify the result as the localization of the category ofU-controlled objects
at the collection of morphisms 𝐶 ◦𝑈 (−) ⇒ 𝐶. As long as 𝑈 contains the diagonal
of 𝑀 , such a comparison map exists, since then 𝑈 (𝐵) ⊆ 𝐵 for all subsets 𝐵 of 𝑀 .
The sub-poset ofU given by the sets containing the diagonal is cofinal inU, so the
above colimit does not change if we restrict to this sub-poset.

There are analogous tools to understand localizations of ∞-categories, see for
example [242, Chapter 7.2]. Letting C̃((𝑀𝑛)𝑛) denote the full subcategory of
Fun(P(𝑀), Ind(C)) spanned by theU-controlled objects, define

C((𝑀𝑛)𝑛) := C̃((𝑀𝑛)𝑛) [{𝐶 ◦𝑈 (−) ⇒ 𝐶}−1
𝐶,𝑈∈U] .

Then one can show that mapping spaces in this localization are precisely given by
the desired colimit formula, and C((𝑀𝑛)𝑛) is a right-exact ∞-category, see [180,
Proposition 3.5.9]. With a bit of additional effort, see [185, Corollary 4.9], it also
follows that the assignment (𝑄, ℓ) ↦→ 𝐶𝑄 refines to a functor

(24.10) CWlf ((𝑀𝑛)𝑛) → Spcf
∗ ((𝑀𝑛)𝑛).

We obtain a version of the ∞-category C((𝑀𝑛)𝑛) for a sequence of metric spaces
(𝑀𝑛)𝑛 with isometric 𝐺-action by very formal means. The construction of the
∞-category C((𝑀𝑛)𝑛) is sufficiently functorial to carry an induced𝐺-action. In fact,
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we can also allow for a 𝐺-action on C; then the 𝐺-action is induced by conjugation
on the functor category Fun(P(𝑀), C).

Definition 24.11. For a sequence (𝑀𝑛)𝑛 of metric spaces with isometric 𝐺-action,
define

C((𝑀𝑛)𝑛)𝐺 := colim𝐼 (𝐺) C((𝑀𝑛)𝑛).

Taking stock of what we have accomplished so far, the ∞-category C((𝑀𝑛)𝑛)𝐺
is an analog of the additive category O𝐺0 (𝑋) from Section 21.10, where instead of a
product 𝑋 × N we are considering the space 𝑀 =

∐
𝑛∈N 𝑀𝑛.

Up to this point, we have only considered the “geometric” input variable, and our
constructions have no relation to the homology theory H𝐺 (−; 𝐹C) yet. To address
this point, let Met𝐺 denote the category whose objects are sequences of metric
spaces (𝑀𝑛)𝑛 with isometric 𝐺-action, and whose morphisms are sequences of
𝐺-equivariant functions ( 𝑓𝑛 : 𝑀𝑛 → 𝑀 ′𝑛)𝑛 such that there exist 𝑎, 𝑏 > 0 with the
property that 𝑑𝑀′𝑛 ( 𝑓𝑛 (𝑥), 𝑓𝑛 (𝑦)) ≤ 𝑎 ·𝑑𝑀𝑛 (𝑥, 𝑦) +𝑏 for all 𝑛 and all 𝑥, 𝑦 ∈ 𝑀𝑛. If 𝑆 is
a𝐺-set, we can artificially turn it into a metric space with𝐺-action by declaring each
pair of distinct points to have distance 1. The precise value of the distance function is
irrelevant, but we do want the underlying space to be discrete and metrically bounded
(so any finite, positive number will do). This allows us to define the functor∏

N

𝐺-SETS ×Met𝐺 → Met𝐺 , ((𝑆𝑛)𝑛, (𝑀𝑛)𝑛) ↦→ (𝑆𝑛 × 𝑀𝑛)𝑛,

where we equip each product 𝑆𝑛 × 𝑀𝑛 with the sum of the individual metrics.
This functor can be composed with the formation of controlled objects over a fixed
right-exact∞-category with 𝐺-action C to obtain the functor

C
∏

:
∏
N

𝐺-SETS ×Met𝐺 → CATREX, ((𝑆𝑛)𝑛, (𝑀𝑛)𝑛) ↦→ C((𝑆𝑛 × 𝑀𝑛)𝑛)𝐺 .

In turn, this functor can be composed with any finitary localizing invariant
𝐹 : CATREX→ Sp.

Regarding 𝐺-sets as discrete 𝐺-spaces induces a fully faithful functor

𝐺-SETS→ Fun(Or(𝐺)op, Spc).

Therefore, we obtain an extension of 𝐹 ◦ C
∏

to a functor

Ĥ𝐺 (−; 𝐹C) :
∏
N

Fun(Or(𝐺)op, Spc) ×Met𝐺 → Sp

by taking the left Kan extension along the fully faithful functor∏
N

𝐺-SETS ×Met𝐺 →
∏
N

Fun(Or(𝐺)op, Spc) ×Met𝐺 .
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As the notation indicates, this functor is supposed to be closely related to the extension
of H𝐺 (−; 𝐹C) we are looking for. Note that

Ĥ𝐺 ((𝐺/𝐺)𝑛, (𝑀𝑛)𝑛; 𝐹C) ≃ 𝐹 (C((𝑀𝑛)𝑛)𝐺),

which we identified as an analog of O𝐺0 (𝑋) from Section 21.10. However, it was the
quotient category D𝐺0 (𝑋) of O𝐺0 (𝑋) that gave rise to a homology theory because
the continuous control condition only imposes restrictions for large natural numbers,
and this is what forces excision in the end. Consequently, the extension H̃𝐺 (−; 𝐹C)
we are looking for should be a similar quotient of Ĥ𝐺 (−; 𝐹C).

In fact, for each sequence of metric spaces (𝑀𝑛)𝑛 and each 𝑘 ∈ N, we have the
family 𝛿𝑀𝑘 which is given by 𝑀𝑘 at the 𝑘-th component and by the empty space
at all other components. Then the evident map 𝛿𝑀𝑘 → (𝑀𝑛)𝑛 induces a functor
C

∏
((𝑆𝑛)𝑛, 𝛿𝑀𝑘 ) → C

∏
((𝑆𝑛)𝑛, (𝑀𝑛)𝑛).

Definition 24.12. Define

H̃𝐺 (−; 𝐹C) :
∏
N

Fun(Or(𝐺)op, Spc) ×Met𝐺 → Sp

as the evident functor which satisfies

H̃𝐺 ((𝑆𝑛)𝑛, (𝑀𝑛)𝑛; 𝐹C)

≃ cofib
(⊕
𝑛

Ĥ𝐺 ((𝑆𝑛)𝑛, 𝛿𝑀𝑛 ; 𝐹C) → Ĥ𝐺 ((𝑆𝑛)𝑛, (𝑀𝑛)𝑛; 𝐹C)
)
.

We claim that this functor satisfies the first two desiderata formulated at the
beginning of this section.

Theorem 24.13 (Properties of H̃𝐺 (−; 𝐹C)). Let (𝑋𝑛)𝑛 be a sequence of objects in
Fun(Or(𝐺)op, Spc).

(i) If (Σ𝑛)𝑛 is a sequence of 𝑑-dimensional 𝐺-simplicial complexes equipped with
the 𝐿1-metric, then the attaching squares for the equivariant 𝑑-simplices induce
a pullback square

H̃𝐺 ((𝑋𝑛)𝑛, (𝑆𝑛 × 𝜕Δ𝑑)𝑛; 𝐹C) //

��

H̃𝐺 ((𝑋𝑛)𝑛, (Σ (𝑑−1)
𝑛 )𝑛; 𝐹C)

��
H̃𝐺 ((𝑋𝑛)𝑛, (𝑆𝑛 × Δ𝑑)𝑛; 𝐹C) // H̃𝐺 ((𝑋𝑛)𝑛, (Σ𝑛)𝑛; 𝐹C);

(ii) The projection Δ𝑑 → ∗ induces an equivalence

H̃𝐺 ((𝑋𝑛)𝑛, (𝑆𝑛 × Δ𝑑)𝑛; 𝐹C)
∼−→ H̃𝐺 ((𝑋𝑛)𝑛, (𝑆𝑛)𝑛; 𝐹C);
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(iii) There are natural equivalences

H̃𝐺 ((𝑋𝑛)𝑛, (𝑆𝑛)𝑛; 𝐹C) ≃ H̃𝐺 ((𝑋𝑛 × 𝑆𝑛)𝑛, (∗)𝑛; 𝐹C)

for every sequence of 𝐺-sets (𝑆𝑛)𝑛;
(iv) In particular, the map

H̃𝐺 ((𝐸F (𝐺))𝑛, (Σ𝑛)𝑛; 𝐹C) → H̃𝐺 ((∗)𝑛, (Σ𝑛)𝑛; 𝐹C)

is an equivalence for every sequence of 𝐺-simplicial complexes (Σ𝑛)𝑛 with
uniformly bounded dimension and stabilizers in F .

Idea of proof. We have stressed the analogy between H̃𝐺 ((𝑋𝑛)𝑛, (M𝑛)𝑛; 𝐹C) and
K(D𝐺0 (𝑋)) from Chapter 21. Hopefully, this lends some credibility to the claim that
the arguments presented in Section 21.11 can be adapted to prove the excision and
homotopy invariance statements of the theorem. See [185, Section 2.5] for detailed
arguments.

For the third point, it is easy to see that the functors on both sides are left
Kan extended along

∏
N𝐺-SETS → ∏

N Fun(Or(𝐺)op, Spc). If (𝑇𝑛)𝑛 is another
sequence of 𝐺-sets, we have a natural identification

H̃𝐺 ((𝑇𝑛)𝑛, (𝑆𝑛)𝑛; 𝐹C) ≃ H̃𝐺 ((𝑇𝑛 × 𝑆𝑛)𝑛, (∗)𝑛; 𝐹C)

by definition.
As explained at the beginning of the section, assertion (iv) follows by induction

on the dimension bound for the sequence (Σ𝑛)𝑛. ⊓⊔

Theorem 24.13 indicates that we are on the right track to carry out the proof of
the isomorphism conjecture sketched out at the beginning of this section. What we
have not talked about yet is the construction of the vertical maps in diagram (24.2).
The construction of the upper vertical maps (the “transfer maps”) is the subject of
the next section.

For the lower vertical maps, we proceed as follows. If each metric space 𝑀𝑛 is
bounded, i.e., there exists a number 𝐶 such that the distance between any two points
is bounded by 𝐶, (which happens for example in the case when 𝑀𝑛 is a simplicial
complex equipped with the 𝐿1-metric), the projection maps 𝑀𝑛 → ∗ induce a map

H̃𝐺 ((𝑋𝑛)𝑛, (𝑀𝑛)𝑛; 𝐹C) → H̃𝐺 ((𝑋𝑛)𝑛, (∗)𝑛; 𝐹C).

As explained in our list of desiderata, we want to show that the right-hand term admits
a transformation to

∏red
𝑛∈N H𝐺 (𝑋𝑛; 𝐹C). Since H̃𝐺 (−; 𝐹C) is left Kan extended, it

suffices to construct this transformation in the case when each 𝑋𝑛 is a 𝐺-set.
Recall the collectionU of subsets of

∐
𝑛∈N 𝑆𝑛×𝑆𝑛 which encodes the continuous

control condition. Fix an element 𝑈 ∈ U, and suppose additionally that 𝑈 contains
the diagonal and is 𝐺-invariant as a set (the collection of such sets is a cofinal sub-
poset of U). Interpreting 𝑈 as a relation on

∐
𝑛∈N 𝑆𝑛, it makes sense to compose

𝑈 with itself. In particular, all powers 𝑈𝑘 by natural numbers are defined. Then we
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can define a variant C𝑈 ((𝑆𝑛)𝑛) of C((𝑆𝑛)𝑛) in which we consider only objects that
are 𝑈𝑘-controlled for some 𝑘 ≥ 0 and localize these at the collection of morphisms
𝐶 ◦𝑈 (−) ⇒ 𝐶. Through some straightforward cofinality arguments, one finds that

C((𝑆𝑛)𝑛) ≃ colim𝑈∈U C𝑈 ((𝑆𝑛)𝑛).

This colimit is filtered, so we can commute it past any application of a finitary
localizing invariant.

For a given 𝑈 ∈ U, the continuous control condition forces that the intersection
𝑈 ∩ (𝑆𝑛 × 𝑆𝑛) is simply the diagonal of 𝑆𝑛 × 𝑆𝑛 for sufficiently large 𝑛. Together
with the condition that objects in C𝑈 ((𝑆𝑛)𝑛) are left Kan extended from locally finite
subsets, we obtain a splitting

C𝑈 ((𝑆𝑛)𝑛) ≃ D ⊕
∏
𝑛≥𝑁

⊕
𝑆𝑛

C.

After taking 𝐺-orbits (i.e., applying colim𝐼 (𝐺) ), we obtain a map

colim
𝐼 (𝐺)

C𝑈 ((𝑆𝑛)𝑛) ≃ (colim
𝐼 (𝐺)

D) ⊕ colim
𝐼 (𝐺)

(∏
𝑛≥𝑁

⊕
𝑆𝑛

C
)
→

red∏
𝑛

colim
𝐼 (𝐺)

⊕
𝑆𝑛

C.

Decomposing each 𝑆𝑛 into its orbits, we have

colim
𝐼 (𝐺)

⊕
𝑆𝑛

C ≃
⊕

𝑇∈𝐺\𝑆𝑛

colim
𝐼 (𝐺)

⊕
𝑇

C.

These identifications can be performed in a way that allows us to identify
colim𝐼 (𝐺)

⊕
𝑇 C with the value of the Kan extension of C along 𝐼 (𝐺) → Or(𝐺)

at 𝑇 : for intuition, 𝐺 acts by permutation on
⊕

𝑇 C, so after a choice of base-
point in 𝑇 , we can think of

⊕
𝑇 C as the induction of the ∞-category with

𝐻-action C to an ∞-category with 𝐺-action
⊕

𝐺/𝐻 C; taking the colimit then
yields colim𝐼 (𝐺)

⊕
𝐺/𝐻 C ≃ colim𝐼 (𝐻 ) C. In particular, it follows that

𝐹

( ⊕
𝑇∈𝐺\𝑆𝑛

colim
𝐼 (𝐺)

⊕
𝑇

C
)
≃

⊕
𝑇∈𝐺\𝑆𝑛

H𝐺 (𝑇 ; 𝐹C) ≃ H𝐺 (𝑆𝑛; 𝐹C).

In total, this provides us with a transformation

𝐹

(
colim
𝐼 (𝐺)

C𝑈 ((𝑆𝑛)𝑛)
)
→

red∏
𝑛∈N

H𝐺 (𝑆𝑛; 𝐹C),

which can be checked to induce a transformation

Ĥ𝐺 ((𝑆𝑛)𝑛, (∗)𝑛; 𝐹C)
≃−→ 𝐹

(
C((𝑆𝑛)𝑛)𝐺

)
→

red∏
𝑛∈N

H𝐺 (𝑆𝑛; 𝐹C)
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by taking the filtered colimit over all𝑈. Since we are mapping to the reduced product,
this map further factors via a map

H̃𝐺 ((𝑆𝑛)𝑛, (∗)𝑛; 𝐹C) →
red∏
𝑛∈N

H𝐺 (𝑆𝑛; 𝐹C),

and this is the transformation we were looking for.

24.4 The Transfer Map

In this section, we explain the final ingredient for the construction of diagram (24.2),
namely the maps labeled 𝑡. These are variants of the transfer maps introduced
in Chapter 23, in particular of the transfer for geometric modules discussed in
Section 23.7. In the ∞-categorical setting, it is not feasible to construct such maps
by hand, so we will have to rely on suitable machinery.

Section 23.4 interpreted the transfer in terms of the Swan group action on
𝐾-theory. This is the line of thought we are going to continue in our construc-
tion of the transformation 𝑡. We should begin by characterizing the involved terms
in ∞-categorically meaningful terms. For modules over the group ring of 𝐺, we
have already done this in terms of the homotopy orbit construction, and we ex-
ploited this in the definition of H̃𝐺 (−; 𝐹C) in the preceding section. We have intro-
duced the Swan ring Sw𝑝 (𝐺) in terms of of 𝐺-representations on finitely generated
projective Z-modules and the abelian group Sw(𝐺) in terms of finitely generated
Z-modules in Definition 12.65 and constructed an isomorphism of abelian groups
Sw𝑝 (𝐺) �−→ Sw(𝐺) in Lemma 12.66. Equivalently, Sw𝑝 (𝐺) is 𝐾0 of the exact cate-
gory Fun(𝐼 (𝐺),Z-MODfgp) in which exactness is detected by the forgetful functor
to Z-MODfgp. Example 12.67 exhibited an action of Sw𝑝 (𝐺) on the 𝐾-theory of
any group ring 𝑅𝐺.

On the level of the associated exact categories, this action admits the following
description. Every additive category A admits a canonical action by the symmetric
monoidal category Z-MODfgp; this essentially boils down to the fact that there is
a sensible interpretation of the term Z𝑘 ⊗ 𝐴 for every object 𝐴 ∈ A because A
has direct sums. Now one observes that Fun(𝐼 (𝐺),Z-MODfgp) is a model for the
𝐺-fixed points of the trivial 𝐺-action on Z-MODfgp (in the 2-categorical sense),
while the “group ring” of A is given by the 𝐺-orbits (in the 2-categorical sense) of
whichever action we are considering onA. In ordinary algebra, it is a straightforward
observation that a𝐺-action on a module 𝑀 over an algebra 𝑅 (with𝐺 acting on both
𝑀 and 𝑅) induces an 𝑅𝐺-module structure on the coinvariants 𝑀𝐺 . This observation
categorifies, and in the case at hand it yields an action of the symmetric monoidal
exact category Fun(𝐼 (𝐺),Z-MODfgp) on the coinvariants Ah𝐺 . Since 𝐾-theory
refines to a lax symmetric monoidal functor (we will say more about this later), this
action finally induces the action of the Swan group via the map
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Sw(𝐺) ⊗ 𝐾𝑛 (Ah𝐺) � 𝐾0 (Fun(𝐼 (𝐺),Z-MODfgp)) ⊗ 𝐾𝑛 (Ah𝐺)
→ 𝐾𝑛 (Fun(𝐼 (𝐺),Z-MODfgp) ⊗ Ah𝐺)
act−−→ 𝐾𝑛 (Ah𝐺).

This discussion adapts to the setting of right-exact ∞-categories in relatively direct
fashion. The first important ingredient is the existence of a tensor product for right-
exact ∞-categories. We have silently pretended in the preceding paragraph that
something like this exists for exact categories; since all of that was merely to motivate
what follows next, we choose not to elaborate on this issue.

Proposition 24.14. The ∞-category CATREX admits a symmetric monoidal struc-
ture such that the following holds:

(i) the unit object of CATREX is the∞-category Spcf
∗ of pointed finite spaces;

(ii) the tensor product C ⊗ C′ of two right-exact∞-categories comes equipped with
a functor 𝑚 : C × C′ → C ⊗ C′ which preserves finite colimits in each variable
separately such that for every right-exact∞-category D the restriction functor

𝑚∗ : Funex (C ⊗ C′,D) → Fun(C × C′,D)

is an equivalence onto the full subcategory of functors which preserve finite
colimits in each variable separately; i.e. right-exact functors out of the tensor
product classify biexact functors.

Proof. This follows from the universal property of Spcf
∗ and [689, Corollary 4.8.1.4]

by unwinding [689, Corollary 4.8.1.2]. ⊓⊔

From the symmetric monoidal structure on CATREX, one obtains an induced
symmetric monoidal structure on CATST in the following way.

Proposition 24.15. The Spanier-Whitehead stabilization SW of 8.24 is naturally
equivalent to the functor − ⊗ Sp𝜔 . It follows that CATST carries a symmetric
monoidal structure with the following properties:

(i) the unit object of CATST is the∞-category Sp𝜔 of compact spectra;
(ii) the tensor product C ⊗st C′ of two stable ∞-categories comes equipped with a

functor 𝑚 : C × C′ → C ⊗st C′ which is exact in each variable separately such
that for every stable∞-category D the restriction functor

𝑚∗ : Funex (C ⊗st C′,D) → Fun(C × C′,D)

is an equivalence onto the full subcategory of functors which are exact in each
variable separately;

(iii) the functor SW: CATREX→ CATST admits a symmetric monoidal refinement;
(iv) the inclusion functor CATST → CATREX admits a lax symmetric monoidal

refinement; the functor Spf
∗ → Sp𝜔 is the unit of the adjunction, while the

structure maps C ⊗ C′ → C ⊗st C′ are equivalences for any two stable ∞-
categories C and C′.
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Proof. This is explained for example in [195, Construction 5.1.1]. ⊓⊔

These results allow one to find statements analogous to the fact that Z-MODfgp
acts on every additive category.

Corollary 24.16.

(i) The∞-category Spcf
∗ admits a symmetric monoidal structure refining the smash

product of pointed spaces, and every right-exact ∞-category carries an action
by the symmetric monoidal∞-category Spcf

∗;
(ii) the ∞-category Sp𝜔 admits a symmetric monoidal structure, and every stable
∞-category carries an action by the symmetric monoidal∞-category Sp𝜔 .

Proof. The tensor unit in a symmetric monoidal ∞-category refines uniquely to
a commutative algebra object by [689, Corollary 3.2.1.9], and every object in a
symmetric monoidal ∞-category carries a module structure over this commutative
algebra [689, Proposition 3.4.2.1]. Note that a commutative algebra structure on a
right-exact ∞-category C is precisely a symmetric monoidal structure on C whose
tensor product preserves finite colimits in each variable.

The category of pointed finite𝐶𝑊-complexes CWf
∗ carries a symmetric monoidal

structure given by the smash product. Localizing at the pointed homotopy equiva-
lences, one obtains a symmetric monoidal structure on Spcf

∗ which turns it into a
commutative algebra object in CATREX. We have just argued that there exists only
one such commutative algebra structure. ⊓⊔

Corollary 24.17.

(i) The right-exact ∞-category Fun(𝐼 (𝐺), Spcf
∗) admits a symmetric monoidal

structure such that the forgetful functor Fun(𝐼 (𝐺), Spcf
∗) → Spcf

∗ is symmetric
monoidal;

(ii) Let C be a right-exact𝐺-∞-category. Then colim𝐼 (𝐺) C carries an action by the
symmetric monoidal right-exact∞-category Fun(𝐼 (𝐺), Spcf

∗).

Proof. The first statement is merely the assertion that there exists a pointwise sym-
metric monoidal structure on functor categories, see [689, Remark 2.1.3.4]. The
second assertion follows for example from the arguments in [185, Section 3.4]. ⊓⊔

Remark 24.18. Corollary 24.17 remains true if we replace Spcf
∗ by Sp𝜔 and assume

that C is stable.

This provides almost all ingredients for an analog of the Swan group action on
𝐾-theory in this setting. The final input is the following.

Theorem 24.19 (Properties of Funfloc (CATST , Sp)). The ∞-category
Funfloc (CATST , Sp) of finitary localizing invariants admits a symmetric monoi-
dal structure such that commutative algebras in this ∞-category are identified with
lax symmetric monoidal finitary localizing invariants CATST → Sp.

Moreover, the tensor unit in Funfloc (CATST , Sp) is the non-connective algebraic
𝐾-theory functor K. In particular, K admits a unique lax symmetric monoidal
refinement, and every Sp-valued, finitary localizing invariant is a module over K.
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Proof. See [144, Theorem 1.5 & Corollary 1.7]. ⊓⊔

As in the proof of Corollary 24.16, the fact that K is the tensor unit in the
∞-category of finitary localizing invariants implies that every finitary localizing
invariant 𝐹 refines to a module over the lax symmetric monoidal functor K. So
𝐹 (colim𝐼 (𝐺) C) becomes a module over the ring spectrum

Sw(𝐺) := K(Fun(𝐼 (𝐺), Spcf
∗))

for every right-exact𝐺-∞-category C. In particular, this structure includes the action
maps

Sw(𝐺) ⊗ 𝐹 (colim𝐼 (𝐺) C) → 𝐹
(
Fun(𝐼 (𝐺), Spcf

∗) ⊗ (colim𝐼 (𝐺) C)
)

→ 𝐹 (colim𝐼 (𝐺) C)

coming from Corollary 24.17.

Remark 24.20. Recall that Spcf
∗ is the Dwyer-Kan localization of the category of

pointed finite𝐶𝑊-complexes CWf
∗ at the pointed homotopy equivalences. The local-

ization functor has the property that it sends pushouts along subcomplex inclusions
to pushouts in Spcf

∗. In particular, the localization functor induces a ring homomor-
phism

Sw𝐴(𝐺) → 𝜋0Sw(𝐺),

where Sw𝐴(𝐺) denotes the 𝐴-theoretic Swan group from 20.55.

Before we proceed to generalize this discussion to categories of controlled objects
and relate it to the construction of diagram (24.2), let us briefly return to the induction
statement for the 𝐴-theoretic Swan group mentioned in Section 20.9.

If 𝐻 is a finite index subgroup of 𝐺, the restriction functor

res𝐺𝐻 : Fun(𝐼 (𝐺), Spcf
∗) → Fun(𝐼 (𝐻), Spcf

∗)

admits a left adjoint

ind𝐺𝐻 : Fun(𝐼 (𝐻), Spcf
∗) → Fun(𝐼 (𝐺), Spcf

∗),

because the colimit appearing in the formula for the left Kan extension is indexed
by a category equivalent to 𝐺/𝐻, considered as a discrete category. As a left adjoint
functor, ind𝐺𝐻 preserves colimits, so it induces a map on 𝐾-theory which we denote
by ind𝐺𝐻 as well.

Proposition 24.21. Let 𝐺 be a finite group. Then the image of the sum of induction
maps ∑︁

𝐻∈D(𝐺)
ind𝐺𝐻 :

⊕
𝐻∈D(𝐺)

𝜋0Sw(𝐻) → 𝜋0Sw(𝐺)

contains the unit element, whereD(𝐺) denotes the family of Dress subgroups of 𝐺,
see Definition 20.50.
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Proof. As explained in Section 20.9, the results of [770] imply that the sum of
induction maps ∑︁

𝐻∈D(𝐺)
ind𝐺𝐻 :

⊕
𝐻∈D(𝐺)

Sw𝐴(𝐻) → Sw𝐴(𝐺)

is surjective. We claim that for each subgroup 𝐻 of 𝐺 there exists a commutative
square

Fun(𝐼 (𝐻),CWf
∗)

ind𝐺
𝐻 //

𝑙𝐻

��

Fun(𝐼 (𝐺),CWf
∗)

𝑙𝐺

��
Fun(𝐼 (𝐻), Spcf

∗) ind𝐺
𝐻

// Fun(𝐼 (𝐺), Spcf
∗)

in which the vertical maps are those described in Remark 24.20. If we replace
the horizontal functors in this square by their right adjoints, the resulting square
obviously commutes. Then the respective unit and counit transformation induce the
associated Beck-Chevalley transformation

ind𝐺𝐻 ◦𝑙𝐻 → ind𝐺𝐻 ◦𝑙𝐻 ◦ res𝐺𝐻 ◦ ind𝐺𝐻
≃−→ ind𝐺𝐻 ◦ res𝐺𝐻 ◦𝑙𝐺 ◦ ind𝐺𝐻 → 𝑙𝐺 ◦ ind𝐺𝐻 .

This transformation can be checked to be an equivalence using the pointwise formula
for the left Kan extension and the fact that the localization functor CWf

∗ → Spcf
∗

preserves finite coproducts.
The unit element in 𝜋0Sw(𝐺) is represented by 𝑆0 equipped with the trivial 𝐺-

action, which lies in the image of 𝑙𝐺 . Therefore, the image of the sum of induction
maps for 𝜋0Sw contains the unit element. ⊓⊔

Remark 24.22. With very small additional effort, one can prove the projection for-
mula

ind𝐺𝐻 (𝑥) · 𝑦 = ind𝐺𝐻 (𝑥 · res𝐺𝐻 (𝑦))

for all 𝑥 ∈ 𝜋0Sw(𝐻) and 𝑦 ∈ Sw(𝐺). It then follows that the sum of induction maps
in Proposition 24.21 is surjective.

Remark 24.23. Let 𝐺 be a finite group. It is possible to upgrade the association
𝐻 ↦→ Sw(𝐻) to a Sp-valued Green functor 𝑆. Similarly, the association 𝐻 ↦→
K(colim𝐼 (𝐻 ) C) can be upgraded to a Sp-valued Mackey functor 𝑀 which becomes
a module over 𝑆; see [100, 101, 244] for details on how to make these statements
precise.

The general theory of Mackey functors implies that the assembly map

colimOrD(𝐺) (𝐺) 𝑀 → 𝑀 (𝐺) ≃ K(colim𝐼 (𝐺) C)
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is an equivalence for every finite group 𝐺. We omit the details of this argument
since the assertion about the assembly map also follows from Theorem 20.61: a
finite group 𝐺 can been seen to be a Dress-Farrell-Hsiang-Jones group over D(𝐺)
by setting 𝛼𝑛 := id𝐺 and 𝑍𝑛,𝐷 := ∗ =: Σ𝑛,𝐷 for all 𝑛 and 𝐷 in Definition 20.60.

After this digression, we return to the question of how the maps 𝑡 in diagram (24.2)
are constructed. The short answer is that they arise through a many-objects version
of the action of the Swan group. Note that the category Met𝐺 admits a symmetric
monoidal structure in which (𝑀𝑛)𝑛 ⊗ (𝑀 ′𝑛)𝑛 := (𝑀𝑛 × 𝑀 ′𝑛)𝑛.

Proposition 24.24. The functor

Met𝐺 × Fun(𝐼 (𝐺),CATREX) → Fun(𝐼 (𝐺),CATREX)
((𝑀𝑛)𝑛, C) ↦→ C((𝑀𝑛)𝑛)

admits a lax symmetric monoidal refinement.

Proof. This is shown in [185, Section 3.3]. The basic idea is that if 𝐶 ∈ C((𝑀𝑛)𝑛)
and 𝐶′ ∈ C′ ((𝑀 ′𝑛)𝑛) are controlled objects, one obtains a controlled object in
(C ⊗ C′) ((𝑀𝑛 × 𝑀 ′𝑛)𝑛) by left Kan extending the composite functor

P(𝑀) × P(𝑀 ′) 𝐶×𝐶
′

−−−−−→ Ind(C) × Ind(C′) → Ind(C ⊗ C′)

along the functor P(𝑀) × P(𝑀 ′) → P(∐𝑛∈N 𝑀𝑛 × 𝑀 ′𝑛) taking the fiberwise
product. In other words, the lax symmetric monoidal structure is given by a version
of the Day convolution product. ⊓⊔

Proposition 24.24 allows us to introduce a controlled version of Swan 𝐾-theory.
Since Spcf

∗ refines to a commutative algebra object inCATREX by Proposition 24.14
and since lim𝐼 (𝐺) is canonically a lax symmetric monoidal functor (being right
adjoint to a symmetric monoidal functor), we obtain a lax symmetric monoidal
functor

Met𝐺 → CATREX, (𝑀𝑛)𝑛 ↦→ Spcf
∗ ((𝑀𝑛)𝑛)𝐺 := lim

𝐼 (𝐺)

(
Spcf

∗ ((𝑀𝑛)𝑛)
)

whose 𝐾-theory is our version of controlled Swan theory. Generalizing Corol-
lary 24.17, the arguments in [185, Section 3.4] show that the functorC(−)𝐺 from Def-
inition 24.11 becomes a module over the lax symmetric monoidal functor Spcf

∗ (−)𝐺
for every right-exact 𝐺-∞-category C. To see that this is a many-objects version of
Corollary 24.17, it is helpful to remember that lax symmetric monoidal functors from
one symmetric monoidal category to another can be identified with commutative al-
gebra objects with respect to the Day convolution symmetric monoidal structure on
the functor category, see [425].

More explicitly, this module structure encodes in particular for any two sequences
(𝑀𝑛)𝑛 and (𝑁𝑛)𝑛 of metric spaces with isometric 𝐺-action multiplication maps

Spcf
∗ ((𝑀𝑛)𝑛)𝐺 ⊗ C((𝑁𝑛)𝑛)𝐺 → C((𝑀𝑛 × 𝑁𝑛)𝑛)𝐺 .
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These multiplication maps are of particular interest to us when some sequences are
the constant sequence on a point.

In the case that 𝑁𝑛 = ∗ for all 𝑛, we obtain multiplication maps

Spcf
∗ ((𝑀𝑛)𝑛)𝐺 ⊗ C

∏
((𝑆𝑛)𝑛, (∗)𝑛)𝐺 → C

∏
((𝑆𝑛)𝑛, (𝑀𝑛)𝑛)𝐺 .

After left Kan extending from sequences of 𝐺-sets to sequences of 𝐺-spaces and
composing with 𝐾-theory, it follows that each object in Spcf

∗ ((𝑀𝑛)𝑛)𝐺 induces a
transformation

Ĥ𝐺 (−, (∗)𝑛; 𝐹C) → Ĥ𝐺 (−, (𝑀𝑛)𝑛; 𝐹C)

for any finitary localizing invariant 𝐹, and consequently also a transformation

H̃𝐺 (−, (∗)𝑛; 𝐹C) → H̃𝐺 (−, (𝑀𝑛)𝑛; 𝐹C)

between the “reduced” versions of these functors. As a functor on
∏

N𝐺-SETS, the
left-hand side is given on a sequence of 𝐺-sets (𝑆𝑛)𝑛 by

𝐹

(
colim𝑁

∏
𝑛≥𝑁

⊕
𝑇∈𝐺\𝑆𝑛

colim
G𝐺 (𝑇 )

C
)
,

where the first colimit is taken along the obvious projection maps, see the discussion
at the end of Section 24.3. Specializing to a constant sequence (𝑆)𝑛, this functor
receives a natural map

H𝐺 (𝑆; 𝐹C) ≃ 𝐹
( ⊕
𝑇∈𝐺\𝑆

colim
G𝐺 (𝑇 )

C
)
→ 𝐹

(
colim𝑁

∏
𝑛≥𝑁

⊕
𝑇∈𝐺\𝑆𝑛

colim
G𝐺 (𝑇 )

C
)

induced by the diagonal functor. Left Kan extending again, this induces natural maps

𝑡 : H𝐺 (𝑋; KC) → H̃𝐺 ((𝑋)𝑛, (∗)𝑛; 𝐹C) → H̃𝐺 ((𝑋)𝑛, (𝑀𝑛)𝑛; 𝐹C),

which define the transformation 𝑡 appearing in diagram (24.2).
Note that

Spcf
∗ ((∗)𝑛)𝐺 ≃

∏
𝑛∈N

Fun(𝐼 (𝐺), Spcf
∗),

so we can consider an object 𝑇 in this category as a sequence of objects (𝑇𝑛)𝑛. The
following proposition summarizes the important properties of the transformation 𝑡.

Proposition 24.25. Let (𝑀𝑛)𝑛 be a sequence of metric spaces with isometric
𝐺-action and consider an object

𝑇 ∈ Spcf
∗ ((𝑀𝑛)𝑛)𝐺 .

(i) Multiplication by the 𝐾-theory class determined by 𝑇 induces a natural trans-
formation

𝑡 : H𝐺 (−; 𝐹C) → H̃𝐺 (−, (𝑀𝑛)𝑛; 𝐹C);
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(ii) Suppose that 𝑀𝑛 is bounded for all 𝑛 and denote by (𝑇𝑛)𝑛 the sequence of
objects corresponding to the image of𝑇 under the maps induced by the projection
(𝑀𝑛)𝑛 → (∗)𝑛.
If [𝑇𝑛] = [𝑆0] ∈ 𝐾0 (Fun(𝐼 (𝐺), Spcf

∗)) for all 𝑛, then the composite map

H𝐺 (−; 𝐹C)
𝑡−→ H̃𝐺 (−, (𝑀𝑛)𝑛; 𝐹C) → Δ(H𝐺 (−; 𝐹C))

is equivalent to the map

𝛿 : H𝐺 (−; 𝐹C) → Δ(H𝐺 (−; 𝐹C)).

Proof. This follows from the arguments in [185, Section 2.4]. While loc. cit. only
considers lax symmetric monoidal finitary localizing invariants, this can be easily
generalized using that 𝐹 is a module over K by Theorem 24.19.

See also the comments in Section 24.5. ⊓⊔

Proposition 24.25 is our tool to obtain the maps 𝑡 in diagram (24.2) and to prove
that the resulting diagram commutes. Explicitly, this means that we have to produce
suitable objects 𝑇 such that

[𝑇𝑛] = [𝑆0] ∈ 𝐾0 (Fun(𝐼 (𝐺), Spcf
∗)).

What makes the construction of such objects possible is the existence of the trans-
formation

CWlf ((𝑀𝑛)𝑛) → Spcf
∗ ((𝑀𝑛)𝑛)

from (24.10), which allows us to import point-set data into the ∞-categorical set-
ting. However, we still have to enhance this transformation in a way which actually
produces objects in the fixed point∞-categorySpcf

∗ ((𝑀𝑛)𝑛). Since everything is suf-
ficiently functorial, it is enough to construct objects in lim𝐼 (𝐺) CWlf ((𝑀𝑛)𝑛), where
the limit still has to be interpreted in the ∞-categorical sense. Since CWlf ((𝑀𝑛)𝑛)
itself is an ordinary category with a strict 𝐺-action, it is still possible to write down
an explicit model for this limit.

Definition 24.26. Let X be an ordinary category with a strict 𝐺-action. Define its
homotopy fixed points Xh𝐺 as the following category:

(i) objects in Xh𝐺 are objects 𝑋 ∈ X together with a collection of isomorphisms
{𝜂𝑔 : 𝑋 �−→ 𝑔𝑋}𝑔∈𝐺 such that 𝜂ℎ𝑔 = 𝑔𝜂ℎ ◦ 𝜂𝑔 for all 𝑔, ℎ ∈ 𝐺;

(ii) morphisms 𝑓 : (𝑋, {𝜂𝑔}𝑔) → (𝑋 ′, {𝜂′𝑔}𝑔) are morphisms 𝑓 : 𝑋 → 𝑋 ′ inX such
that the square

𝑋
𝑓 //

𝜂𝑔

��

𝑋 ′

𝜂′𝑔
��

𝑔𝑋
𝑔 𝑓
// 𝑔𝑋 ′

commutes for all 𝑔 ∈ 𝐺.
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Lemma 24.27. Let X be an ordinary category with a strict 𝐺-action. Then

Xh𝐺 ≃ lim
𝐼 (𝐺)
X.

Proof. This follows directly from the existence of the Rezk model structure on
ordinary categories. See [185, Lemma 5.7] for an argument. ⊓⊔

24.4.1 Discrete Transfer Spaces

Let us first consider the case of Dress-Farrell-Hsiang groups. This is the instance of
the Dress-Farrell-Hsiang-Jones condition in which 𝑍𝑛,𝐷 = ∗ for all 𝑛 and 𝐷. For
convenience, let us repeat what the given data are, see Definition 20.52. For a fixed
family F , we have

(i) A sequence {𝐹𝑛}𝑛∈N of finite groups;
(ii) A sequence {𝛼𝑛}𝑛∈N of surjective group homomorphisms 𝛼𝑛 : 𝐺 → 𝐹𝑛;

(iii) A collection {(Σ𝑛,𝐷) | 𝑛 ∈ N, 𝐷 ∈ D(𝐹𝑛)}, where Σ𝑛 is an abstract simplicial
complex with a simplicial 𝛼−1

𝑛 (𝐷)-action;
(iv) A collection { 𝑓𝑛 | 𝑛 ∈ N, 𝐷 ∈ D(𝐹𝑛)} of maps of sets 𝑓𝑛,𝐷 : 𝐺 → Σ𝑛,𝐷 ,

such that the following holds:

(a) For every 𝑛 ∈ N and 𝐷 ∈ F (𝐹𝑛), the 𝛼−1
𝑛 (𝐷)-isotropy groups of |Σ𝑛,𝐷 | belong

to the family F |𝛼−1
𝑛 (𝐷) = {𝐻 ∩ 𝛼

−1
𝑛 (𝐷) | 𝐻 ∈ F };

(b) There exists a natural number 𝑁 with dim(Σ𝑛,𝐷) ≤ 𝑁 for all 𝑛 ∈ N and
𝐷 ∈ D(𝐹𝑛);

(c) For every 𝑛 ∈ N and 𝐷 ∈ F (𝐹𝑛), the map 𝑓𝑛,𝐷 is 𝛼−1
𝑛 (𝐷)-equivariant, where

𝛼−1
𝑛 (𝐷) acts on 𝐺 from the left;

(d) For every 𝑔 ∈ 𝐺 we have

lim
𝑛→∞

sup
𝐷∈D(𝐹𝑛 ) ,𝛾∈𝐺

𝑑
Σ𝑛,𝐷

𝐿1

(
𝑓𝑛,𝐷 (𝛾𝑔), 𝑓𝑛,𝐷 (𝛾)

)
= 0.

From these data, we want to construct an object in the category

CWlf ((
∐

𝐷∈D(𝐹𝑛 )
𝐺 ×𝛼−1

𝑛 (𝐷) Σ𝑛,𝐷)𝑛)
h𝐺 .

Let us write 𝐷 := 𝛼−1
𝑛 (𝐷) in the sequel. To understand the construction of this

object, let us work our way backwards. After projecting to the constant sequence on
a point, each component of the resulting object in

CWlf ((∗)𝑛)h𝐺 ≃
∏
N

Fun(𝐼 (𝐺),CWf
∗)
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should represent the multiplicative unit in Sw𝐴(𝐺). By an induction along the
skeletal filtration of a representative, we see that any element in Sw𝐴(𝐺) is a sum
of suspensions of 𝐺-sets. Proposition 24.21 shows that for each 𝑛, we may represent
the multiplicative unit of Sw𝐴(𝐺) by

𝑟𝑛∑︁
𝑖=1

[
𝑆𝑑𝑖 ∧ (𝐺/𝐻𝑖)+

]
=

[ 𝑟𝑛∨
𝑖=1

𝑆𝑑𝑖 ∧ (𝐺/𝐻𝑖)+
]

such that each 𝐻𝑖 is of the form 𝐷 for some 𝐷 ∈ D(𝐹𝑛). Hence, our goal is to turn

𝑄 :=
∨
𝑛∈N

𝑟𝑛∨
𝑖=1

𝑆𝑑𝑖 ∧ (𝐺/𝐻𝑖)+

into a controlled 𝐶𝑊-complex over (∐𝐷∈D(𝐹𝑛 ) 𝐺 ×𝐷 Σ𝑛,𝐷)𝑛. For simplicity, we
equip each sphere with the based CW-structure containing exactly one cell. Define
a labeling on 𝑄 as the following composite:

ℓ : 𝑐(𝑄) �
∐
𝑛∈N

𝑟𝑛∐
𝑖=1

𝑐(𝑆𝑑𝑖 ∧ (𝐺/𝐻𝑖)+) �
∐
𝑛∈N

𝑟𝑛∐
𝑖=1

𝐺/𝐻𝑖(24.28)

→
∐
𝑛∈N

∐
𝐷∈D(𝐹𝑛 )

𝐺 × 𝐺/𝐷

→
∐
𝑛∈N

∐
𝐷∈D(𝐹𝑛 )

𝐺 ×
𝐷
Σ𝑛,𝐷 .

The first map comes from the fact that each𝐻𝑖 is of the form 𝐷 for some 𝐷 ∈ D(𝐹𝑛),
and the map includes 𝐺/𝐻𝑖 as the component {𝑒} ×𝐺/𝐻𝑖 . The second map is given
on each summand by

𝐺 × 𝐺/𝐷 → 𝐺 ×
𝐷
Σ𝑛,𝐷 , (𝑔, 𝛾𝐷 ↦→ (𝛾, 𝑓𝑛,𝐷 (𝛾−1𝑔)).

Lemma 24.29. The labeled 𝐶𝑊-complex (𝑄, ℓ) is an object in the category
CWlf ((∐𝐷∈D(𝐹𝑛 ) 𝐺 ×𝐷 Σ𝑛,𝐷)𝑛).

Proof. The 𝑛-th summand 𝑄𝑛 :=
∨𝑟𝑛
𝑖=1 𝑆

𝑑𝑖 ∧ (𝐺/𝐻𝑖)+ of 𝑄 is a finite 𝐶𝑊-complex,
so (𝑄, ℓ) is locally finite. Since these summands are themselves wedge sums of
suspensions, we find that

sup
{
𝑑 (ℓ(𝑧), ℓ(𝑧′)) | 𝑧 ∈ 𝑐(𝑄𝑛), 𝑧′ ∈ 𝑐(⟨𝑧⟩)

}
= 0

for all 𝑛. So (𝑄, ℓ) is continuously controlled as well. ⊓⊔

In the next step, we have to promote (𝑄, ℓ) to an object in the homotopy fixed
point category CWlf ((∐𝐷∈D(𝐹𝑛 ) 𝐺×𝐷Σ𝑛,𝐷)𝑛)h𝐺 . Note that𝑄 is a𝐺-𝐶𝑊-complex.
Since the action of the group 𝐺 on the category only changes the labeling of a 𝐶𝑊-
complex, it makes sense to claim that the action by an element 𝑔 ∈ 𝐺 on 𝑄 induces
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an isomorphism
𝑔· : (𝑄, ℓ) → 𝑔(𝑄, ℓ) = (𝑄, (𝑔 · −) · ℓ).

Suppose that 𝛾𝐷 represents an open cell in 𝑄𝑛 under the bijections in (24.28). Then

𝑔 · ℓ(𝛾𝐷) = (𝑔𝛾, 𝑔 𝑓𝑛,𝐷 (𝛾−1)),

while
ℓ(𝑔𝛾𝐷) = (𝑔𝛾, 𝑓𝑛,𝐷 (𝛾−1𝑔)).

These are not equal, but assumption (d) from above implies that the multiplication
map by 𝑔 does define an isomorphism in the category of continuously controlled
𝐶𝑊-complexes. It is straightforward to check that these multiplication maps compose
in the required fashion, so we finally have an object(

(𝑄, ℓ), {𝑔 · −}𝑔∈𝐺
)
∈ CWlf

(( ∐
𝐷∈D(𝐹𝑛 )

𝐺 ×
𝐷
Σ𝑛,𝐷

)
𝑛

)h𝐺
.

Remark 24.30. This step profits crucially from the use of controlled methods. Note
that (ignoring the question which metrics to choose) any 𝐺-𝐶𝑊-complex can be
considered as a labeled complex over itself by picking a point in each equivariant open
cell. Such a labeling is an equivariant function, so the multiplication maps induced by
group elements are isomorphisms of labeled complexes, and no mention of control
is required. What the preceding argument witnesses is that the controlled categories
we are considering enjoy some functoriality with respect to non-equivariant maps,
as long as the failure to be equivariant becomes asymptotically zero (in the sense of
condition (d)).

Lemma 24.27 combined with the transformation from (24.10) allows us to inter-
pret this object as an object of

𝑇 ∈ Spcf
∗

(( ∐
𝐷∈D(𝐹𝑛 )

𝐺 ×
𝐷
Σ𝑛,𝐷

)
𝑛

)𝐺
.

Proposition 24.25 implies that we obtain a commutative diagram as in (24.2), and
from the existence of this diagram we conclude that the assembly map

colimOrF (𝐺) 𝐹C → 𝐹 (colim𝐼 (𝐺) C)

is an equivalence for every finitary localizing invariant 𝐹.

24.4.2 Transfer Spaces with Homotopy Coherent Actions

In this section, we sketch the construction of the transfer for finitely homotopy
F -amenable groups, see Definition 20.48, which is the special case of the Dress-
Farrell-Hsiang-Jones condition in which all the finite groups 𝐹𝑛 are trivial. The
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actual proof requires a rather significant amount of notation and bookkeeping which
we sweep under the rug in favor of spelling out the overarching ideas. As before, let
us remind ourselves of the available data. There exist:

(i) A sequence {Γ𝑛, 𝑍𝑛}𝑛∈N of homotopy coherent 𝐺-actions in the sense of Defi-
nition 20.32;

(ii) A sequence {Σ𝑛}𝑛∈N of abstract simplicial complexes with a simplicial
𝐺-action;

(iii) A sequence { 𝑓𝑛}𝑛∈N of continuous maps 𝑓𝑛 : 𝑍𝑛 → |Σ𝑛 |,

such that the following holds:

(a) For every 𝑛 ∈ N the space 𝑍𝑛 is a compact contractible AR;
(b) For every 𝑛 ∈ N the isotropy groups of |Σ𝑛 | belong to F ;
(c) There exists a natural number 𝑁 with dim(Σ𝑛) ≤ 𝑁 for all 𝑛 ∈ N;
(d) For every 𝑘 ∈ N and elements 𝑔0, 𝑔1, . . . , 𝑔𝑘 in G we have

lim
𝑛→∞

sup
(𝑡1 ,...,𝑡𝑘 ) ∈ [0,1]𝑘 ,

𝑧∈𝑍𝑛

𝑑
Σ𝑛

𝐿1

(
𝑓𝑛 (Γ𝑛 (𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔1, 𝑡1, 𝑔0, 𝑧)), 𝑔𝑘 . . . 𝑔0 𝑓𝑛 (𝑧)

)
= 0.

Conditions (b) and (c) are required for the arguments from Section 24.3. We
want to see how conditions (a) and (d) allow us to construct a suitable object in
Spcf

∗ (( |Σ𝑛 |)𝑛)𝐺 . Morally, this object should be given by considering the sequence
(𝑍𝑛)𝑛 as a controlled object over ( |Σ𝑛 |)𝑛, but there are at least two reasons why this
does not work directly:

(i) We only have a way to convert controlled 𝐶𝑊-complexes into objects in
Spcf

∗ (( |Σ𝑛 |)𝑛), and 𝑍𝑛 is not a 𝐶𝑊-complex;
(ii) Our approach to constructing objects in Spcf

∗ (( |Σ𝑛 |)𝑛)𝐺 is to build objects in
the homotopy fixed points CWlf (( |Σ𝑛 |)𝑛)h𝐺 , but the definition of the homotopy
fixed points involves only strict 𝐺-actions, not homotopy coherent ones.

We address these problems in reverse order.
A construction by Vogt [969] provides strictifications of the homotopy coherent

𝐺-actions Γ𝑛: by systematic gluing of mapping cylinders, one can define a space
𝑋𝑛 with a strict 𝐺-action which contains 𝑍𝑛 as a deformation retract such that,
for example, the action by 𝑔 ∈ 𝐺 on 𝑋𝑛 is homotopic to the map Γ𝑛 (𝑔) through
a preferred choice of deformation retraction. We denote the preferred choice of
retraction by 𝑟𝑛 : 𝑋𝑛 → 𝑍𝑛. The resulting topological spaces 𝑋𝑛 are still not 𝐶𝑊-
complexes, but this can now be fixed by a functorial CW-approximation. We decide
to replace each 𝑋𝑛 by the realization |Sing(𝑋𝑛) | of its singular complex.

Each 𝐶𝑊-complex |Sing(𝑋𝑛) |+ can now be equipped with a labeling
ℓ𝑛 : 𝑐( |Sing(𝑋𝑛) |+) → |Σ𝑛 |. Recalling that each cell 𝑧 corresponds to a singular
simplex Δdim(𝑧) 𝑧−→ 𝑋𝑛, the labeling is given by

ℓ𝑛 (𝑧) := 𝑓𝑛 (𝑟𝑛 (𝑧(𝑏dim(𝑧) )),

where 𝑏dim(𝑧) denotes the barycenter of the standard dim(𝑧)-simplex.
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Since we allow arbitrary singular simplices, the induced labeled 𝐶𝑊-complex
(𝑄 :=

∨
𝑛 |Sing(𝑋𝑛) |+,

∐
𝑛∈N ℓ𝑛) has no chance of being continuously controlled.

However, we can identify continuously controlled subcomplexes of 𝑄. Let (𝛿𝑛)𝑛 be
a sequence of positive real numbers converging to zero. Letting Sing𝛿𝑛 (𝑋𝑛) denote
the subcomplex consisting of simplices 𝑧 in 𝑋𝑛 such that the diameter of 𝑓𝑛 ◦ 𝑟𝑛 ◦ 𝑧
is smaller than 𝛿𝑛, the subcomplex

𝑄((𝛿𝑛)𝑛) :=
∨
𝑛

( |Sing𝛿𝑛 (𝑋𝑛)) |+

is continuously controlled. Remembering that the only global property of
(Sing𝛿𝑛 (𝑋𝑛))+ that we actually care about is that |Sing𝛿𝑛 (𝑋𝑛) | is contractible. This
is unproblematic: the simplicial set Sing𝛿𝑛 (𝑋𝑛) is the subcomplex of Sing(𝑋) of
those simplices whose image is contained in a member of the open cover of 𝑋𝑛
obtained by pulling back the open cover of 𝛿𝑛-balls via 𝑓𝑛 ◦ 𝑟𝑛; it follows from
excision that this does not change the homotopy type.

By putting a restriction on the size of simplices, we have introduced a new issue:
the 𝐶𝑊-complexes |Sing𝛿𝑛 (𝑋𝑛) | do not carry a 𝐺-action anymore. Nevertheless, if
we let an individual element 𝑔 ∈ 𝐺 act on𝑄((𝛿𝑛)𝑛) through the action on the ambient
complex𝑄, one can find another sequence (𝛿′𝑛)𝑛 of positive reals converging to zero
such that 𝛿′𝑛 > 𝛿𝑛 and multiplication by 𝑔 defines a map 𝑔·− : 𝑄((𝛿𝑛)𝑛) → 𝑄((𝛿′𝑛)𝑛).
One can show that the inclusion map𝑄((𝛿𝑛)𝑛) → 𝑄((𝛿′𝑛)𝑛) is sent to an equivalence
in Spcf

∗ (( |Σ𝑛 |)𝑛) [185, Lemma 4.14 & 4.25], so through the eyes of the target
category this multiplication map is just as good as an automorphism.

This prompts the following definition. Consider the category C̃W
lf (( |Σ𝑛 |)𝑛) in

which objects are sequential diagrams

(𝑄1, ℓ1) → (𝑄2, ℓ2) → · · ·

in CWlf (( |Σ𝑛 |)𝑛) such that each connecting map is sent to an equivalence by the
functor CWlf (( |Σ𝑛 |)𝑛) → Spcf

∗ (( |Σ𝑛 |)𝑛), and whose morphisms are natural trans-
formations of the form

(𝑄1, ℓ1) //

��

(𝑄2, ℓ2) //

��

· · ·

(𝑄′1+𝑠 , ℓ
′
1+𝑠) // (𝑄′2+𝑠 , ℓ

′
2+𝑠) // · · ·

for some 𝑠 which depends on the morphism. Through some careful estimates, which
rely crucially on the precise definition of the strictification and condition (d) on the
sizes of the traces of the homotopy coherent 𝐺-actions, one can show that there is
a choice of positive real numbers (𝛿𝑘𝑛)𝑘,𝑛, with 𝛿𝑘𝑛 < 𝛿𝑘+1

𝑛 and (𝛿𝑘𝑛)𝑛 converging to
zero for each 𝑘 , such that the sequence of inclusion maps

𝑄((𝛿1
𝑛)𝑛) → 𝑄((𝛿2

𝑛)𝑛) → · · ·
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refines to an object in C̃W
lf (( |Σ𝑛 |)𝑛)h𝐺 . The action map associated to 𝑔 ∈ 𝐺 on this

object is induced by the 𝐺-action on 𝑄.
A final stumbling block that we have tacitly ignored up to this point is that the

labeled 𝐶𝑊-complex (𝑄(𝛿𝑛)𝑛), ℓ) is not locally finite (so we have actually been
lying by considering it as an object of CWlf (( |Σ𝑛 |)𝑛)). This is where the assumption
on 𝑋𝑛 being a compact ANR enters the picture. It is essentially a characterization
of compact ANRs that these are retracts up to homotopy of finite 𝐶𝑊-complexes
in such a way that the traces of the witnessing homotopy can be made arbitrarily
small [505, Corollary IV.6.2]. This can be used to show that, despite not being
locally finite, the labeled 𝐶𝑊-complex (𝑄(𝛿𝑛)𝑛), ℓ) does represent an object in the
idempotent completion of Spcf

∗ (( |Σ𝑛 |)𝑛) [185, Proposition 4.17 & Lemma 5.16].
Since localizing invariants are invariant under passage to idempotent completions,
this does not cause any further problems.

24.4.3 The General Transfer

The construction of the transfer in the case of a general Dress-Farrell-Hsiang-Jones
group is even heavier on notation, but does not require any new ideas beyond the
input provided by Sections 24.4.1 and 24.4.2. One first considers a 𝐺-𝐶𝑊-complex
𝑄 as in 24.4.1. As we saw in (24.28), this complex admits a labeling over the 𝐺-set∐
𝑛∈N

∐
𝐷∈D(𝐹𝑛 ) 𝐺 × 𝐺/𝐷. Then one performs a fiberwise version of the transfer

construction from Section 24.4.2 to obtain the actual transfer object 𝑇 . Combining
the arguments presented in the preceding two subsections, this again allows for the
construction of a diagram as in (24.2), which then proves Theorem 20.61. See [185,
Section 7] for details.

24.5 Notes

We have sketched an argument which proves the isomorphism conjecture for
Dress-Farrell-Hsiang-Jones groups with respect to any finitary localizing invari-
ant with values in Sp. Using that the ∞-category Sp acts on any presentable, stable
∞-category, this argument generalizes to the case of an arbitrary finitary localizing
invariant with values in a presentable, stable∞-category. The main theorem of [185]
asserts the isomorphism conjecture only for lax symmetric monoidal finitary local-
izing invariants, but the proof can be easily modified, following the outline given
here, by letting controlled Swan 𝐾-theory act to define the transfer.

An alternative argument to derive the case of arbitrary finitary localizing invari-
ants which uses the theory of localizing motives has been given by Reis [850].



Chapter 25
Analytic Methods

25.1 Introduction

The methods of proofs for the Farrell-Jones Conjecture and the Baum-Conjecture
are rather different. But both use controlled methods, see Section 19.4, Chapter 21,
and [488]. In the Farrell-Jones setting transfers were a key ingredient, see Section 19.5
and Chapter 23, which do not seem to exist in the Baum-Connes setting. In the Baum-
Connes setting 𝐾𝐾-theory, see Section 10.5, is the main tool, which does not work
out in the Farrell-Jones setting. This has for instance the consequence that the Full
Farrell-Jones Conjecture is known for all (not necessarily cocompact) lattices in
path connected second countable locally compact Hausdorff groups, whereas the
Baum-Connes Conjecture is not known for SL𝑛 (Z) for 𝑛 ≥ 3. On the other hand
the Baum-Connes Conjecture with coefficients is known for a-T-menable groups,
whereas the Farrell-Jones Conjecture has not been proved for elementary amenable
groups. We have given status reports for the Farrell-Jones Conjecture and the Baum-
Conjecture in Sections 16.2 and 16.4 and discussed open cases in Section 16.9. We
have linked these two conjectures in Subsection 15.14.4.

We give only a very brief survey of the methods used in the Baum-Connes
Conjecture. More information can be found for instance in the survey articles [426,
742, 963].

25.2 The Dirac-Dual Dirac Method

Next we briefly discuss the Dirac-dual Dirac method, which is the key strategy
in many of the proofs of the Baum-Connes Conjecture 14.9 or the Baum-Connes
Conjecture 14.11 with coefficients, see for instance [486, Theorem 7.1].

A 𝐺-𝐶∗-algebra 𝐴 is called proper if there exists a locally compact proper
𝐺-space 𝑋 and a 𝐺-homomorphism 𝜎 : 𝐶0 (𝑋) → B(𝐴), 𝑓 ↦→ 𝜎 𝑓 satisfying
𝜎 𝑓 (𝑎𝑏) = 𝑎𝜎 𝑓 (𝑏) = 𝜎 𝑓 (𝑎)𝑏 for 𝑓 ∈ 𝐶0 (𝑋), 𝑎, 𝑏 ∈ 𝐴, and for every net
{ 𝑓𝑖 | 𝑖 ∈ 𝐼}, which converges to 1 uniformly on compact subsets of 𝑋 , we have
lim𝑖∈𝐼 ∥ 𝜎 𝑓𝑖 (𝑎) − 𝑎 ∥= 0 for all 𝑎 ∈ 𝐴. A locally compact 𝐺-space 𝑋 is proper if
and only if 𝐶0 (𝑋) is proper as a 𝐺-𝐶∗-algebra.

The following result is proved in Tu [956], extending results of Kasparov-
Skandalis [565, 557].
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Theorem 25.1 (The Baum-Connes Conjecture with coefficients for proper
𝐺-𝐶∗-algebras). The Baum-Connes Conjecture 14.11 with coefficients holds for
proper 𝐺-𝐶∗-algebras.

Theorem 25.2 (Dirac-dual Dirac method). Let𝐺 be a countable (discrete) group.
Let 𝐹 be R or C. Suppose that there exist a proper 𝐺-𝐶∗-algebra 𝐴, elements
𝛼 ∈ 𝐾𝐾𝐺

𝑖
(𝐴, 𝐹), called the Dirac element, and 𝛽 ∈ 𝐾𝐾𝐺

𝑖
(𝐹, 𝐴), called the dual

Dirac element, satisfying

𝛽 ⊗𝐴 𝛼 = 1 ∈ 𝐾𝐾𝐺0 (𝐹, 𝐹).

Then the Baum-Connes Conjecture 14.9 over 𝐹 is true for 𝐺.

Proof. We only treat the case 𝐹 = C and the case of trivial coefficients. The as-
sembly map appearing in Theorem 14.9 is a retract of the bijective assembly map
from Theorem 25.1. This follows from the following commutative diagram for any
cocompact 𝐺-𝐶𝑊-subcomplex 𝐶 ⊆ 𝐸𝐺

𝐾𝐺∗ (𝐶)

asmb𝐺,C (𝐶 )∗
��

−⊗̂C𝛽 // 𝐾𝐺∗ (𝐶; 𝐴)

asmb𝐺,C
𝐴
(𝐶 )∗

��

−⊗̂𝐴𝛼 // 𝐾𝐺∗ (𝐶)

asmb𝐺,C (𝐶 )∗
��

𝐾∗ (𝐶∗𝑟 (𝐺)) −⊗̂𝐶∗𝑟 (𝐺) 𝑗𝐺 (𝛽)
// 𝐾∗ (𝐴 ⋊𝑟 𝐺)

−⊗̂𝐴⋊𝑟 𝑗𝐺 (𝛼)
// 𝐾∗ (𝐶∗𝑟 (𝐺))

and the fact that the composition of both the top upper horizontal arrows and lower
upper horizontal arrows are bijective. ⊓⊔

The reader should note the formal similarity between the proof of Theorem 25.2
and the proof of the Strategy Theorem 23.69.

In order to give a glimpse of the basic ideas from operator theory, we briefly
describe how to define the Dirac element 𝛼 in the case where 𝐺 acts on a complete
Riemannian manifold 𝑀 . Let 𝑇C𝑀 be the complexified tangent bundle and let
Cliff (𝑇C𝑀) be the associated Clifford bundle. Let 𝐴 be the proper 𝐺-𝐶∗-algebra
given by the sections of Cliff (𝑇C𝑀) which vanish at infinity. Let 𝐻 be the Hilbert
space 𝐿2 (∧∗𝑇∗C𝑀) of 𝐿2-integrable differential forms on 𝑇C𝑀 with the obvious Z/2-
grading coming from even and odd forms. Let 𝑈 be the obvious 𝐺-representation
on 𝐻 coming from the 𝐺-action on 𝑀 . For a 1-form 𝜔 on 𝑀 and 𝑢 ∈ 𝐻, define a
homomorphism of 𝐶∗-algebras 𝜌 : 𝐴→ B(𝐻) by

𝜌𝜔 (𝑢) := 𝜔 ∧ 𝑢 + 𝑖𝜔 (𝑢).

Now 𝐷 = (𝑑 + 𝑑∗) is a symmetric densely defined operator 𝐻 → 𝐻 and defines
a bounded self-adjoint operator 𝐹 : 𝐻 → 𝐻 by putting 𝐹 = 𝐷√

1+𝐷2 . Then (𝑈, 𝜌, 𝐹)
is an even cocycle and defines an element 𝛼 ∈ 𝐾𝐺0 (𝑀) = 𝐾𝐾𝐺0 (𝐶0 (𝑀),C). More
details of this construction and the construction of the dual Dirac element 𝛽, under
the assumption that 𝑀 has non-positive curvature and is simply connected, can be
found for instance in [963, Chapter 9].
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25.3 Banach KK-Theory

Skandalis [917] showed that the Dirac-dual Dirac method cannot work for all groups
as long as one works with 𝐾𝐾-theory in the unitary setting. The problem is that for a
group with property (T) the trivial and the regular unitary representation cannot be
connected by a continuous path in the space of unitary representations, compare also
the discussion in [536]. This problem can be circumvented if one drops the condition
unitary and works with a variant of 𝐾𝐾-theory for Banach algebras, as worked out
by Lafforgue [599, 601, 603].

25.4 Notes

Nishikawa [760] describes a variation of the Dirac-dual-Dirac method which was
used by Brodzki-Guentner-Higson-Nishikawa [168] to give a new proof the Baum-
Connes Conjecture for groups which act properly and cocompactly on a finite-
dimensional CAT(0)-cubical complex with bounded geometry.





Chapter 26
Solutions of the Exercises

Chapter 2

2.7. Check that the homomorphism 𝜓 : 𝐾0 (𝑅) → 𝐾 ′0 (𝑅), [𝑃] → [𝑃] is well-
defined using the fact that every exact sequence 0 → 𝑃0 → 𝑃1 → 𝑃2 → 0 of
finitely generated projective 𝑅-modules splits. Obviously 𝜓 is the inverse of 𝜙.

2.11. Show that the 𝑅-𝑅-bimodule
(
𝑅𝑅

𝑛
M𝑛 (𝑅)

)
⊗M𝑛 (𝑅)

(
M𝑛 (𝑅)𝑅

𝑛
𝑅

)
is isomorphic

as an 𝑅-𝑅-bimodule to 𝑅 and that the M𝑛 (𝑅)-M𝑛 (𝑅)-bimodule
(
M𝑛 (𝑅)𝑅

𝑛
𝑅

)
⊗𝑅(

𝑅𝑅
𝑛

M𝑛 (𝑅)
)

is isomorphic as an M𝑛 (𝑅)-M𝑛 (𝑅)-bimodule to M𝑛 (𝑅).

2.16. See [860, Theorem 1.2.3 on page 8].

2.29. There exists a nowhere vanishing vector field on 𝑆𝑛 if and only if there exist
𝐹-subbundles 𝜉 and 𝜂 in 𝑇𝑆𝑛 such that 𝑇𝑆𝑛 = 𝜉 ⊕ 𝜂 and 𝜉 is a 1-dimensional trivial
𝐹-vector bundle. Now apply Theorem 2.27.

2.32. Let 𝜉 be a vector bundle over 𝑌 . It suffices to construct a 𝐶0 (𝑋)-isomorphism

𝛼(𝜉) : 𝐶0 (𝑋) ⊗𝐶0 (𝑌 ) 𝐶
0 (𝜉) �−→ 𝐶0 ( 𝑓 ∗𝜉).

Given 𝜙 ∈ 𝐶0 (𝑋) and 𝑠 ∈ 𝐶0 (𝜉), define 𝛼(𝜉) (𝜙 ⊗ 𝑠) to be the section of 𝑓 ∗𝜉 which
sends 𝑥 ∈ 𝑋 to 𝜙(𝑥) · 𝑠 ◦ 𝑓 (𝑥) ∈ 𝜉 𝑓 (𝑥 ) = ( 𝑓 ∗𝜉)𝑥 . Since 𝛼(𝜉 ⊕ 𝜂) can be identified
with 𝛼(𝜉) ⊕ 𝛼(𝜂) and 𝛼(𝐹) is obviously bijective, 𝛼(𝜉) is bijective for all 𝐹-vector
bundles 𝜉 over 𝑌 .

2.33. Because of the identification (2.31) and the homotopy invariance of the functor
𝐾0 (𝑋) we get

𝐾0 (𝐶 (𝐷𝑛)) � 𝐾0 (𝐷𝑛) � 𝐾0 ({•}) � Z.

2.40. This follows from the fact thatZ⊗Z𝜋𝐶∗ (𝑋) is isomorphic as aZ-chain complex
to 𝐶∗ (𝑋).

2.49. We can assume without loss of generality that 𝑋 is connected, otherwise
treat any component of 𝑋 separately. Put 𝜋 = 𝜋1 (𝑋). For 𝑖 = 0, 1, 2 let 𝑋𝑖 → 𝑋𝑖
be the 𝜋-covering obtained from the universal covering 𝑋 → 𝑋 by the pull back
construction associated to 𝑗𝑖 : 𝑋𝑖 → 𝑋 . Since 𝑋𝑖 is finitely dominated, we conclude
from Lemma 2.48 that 𝐶∗ (𝑋𝑖) is finitely dominated as a Z𝜋-chain complex and
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directly from the definitions that ( 𝑗𝑖)∗ (𝑜(𝑋𝑖)) = 𝑜(𝐶∗ (𝑋𝑖)) holds in 𝐾0 (Z[𝜋]) for
𝑖 = 0, 1, 2. There is an exact sequence of Z𝜋-chain complexes

0→ 𝐶∗ (𝑋0) → 𝐶∗ (𝑋1) ⊕ 𝐶∗ (𝑋2) → 𝐶∗ (𝑋) → 0.

Since 𝜋1 (𝐶) is finitely presented for each 𝐶 ∈ 𝜋0 (𝑋𝑖) and 𝑖 ∈ {0, 1, 2}, 𝜋1 (𝑋) is
finitely presented. This follows essentially from the Seifert-van Kampen Theorem.
We conclude from Lemma 2.36 (ii) and Lemma 2.48 that𝐶∗ (𝑋) is finitely dominated
and hence 𝑋 is finitely dominated and that we get in 𝐾0 (Z[𝜋])

𝑜(𝑋) = 𝑜(𝐶∗ (𝑋)) = 𝑜(𝐶∗ (𝑋1)) + 𝑜(𝐶∗ (𝑋2)) − 𝑜(𝐶∗ (𝑋0))
= ( 𝑗1)∗ (𝑜(𝑋1)) + ( 𝑗2)∗ (𝑜(𝑋2)) − ( 𝑗0)∗ (𝑜(𝑋1)).

2.50. Recall that we have chosen a finite domination (𝑍, 𝑖, 𝑟) of 𝑋 . Construct
an extension 𝑔 : cyl(𝑟) ∪𝑍 cyl(𝑖) ∪𝑋 cyl(𝑖) → 𝑋 of id𝑋

∐
𝐹 ∪𝑋 𝐹 : 𝑋

∐
cyl(𝑖) ∪𝑋

cyl(𝑖) → 𝑋 and a homotopy equivalence ℎ : 𝑍 → cyl(𝑟) ∪𝑍 cyl(𝑖) ∪𝑋 cyl(𝑖). Now
the claim follows from the commutative diagram

𝑋
∐ (cyl(𝑖) ∪𝑋 cyl(𝑖))

𝑗 //

𝑓
∐
𝑓 ′

''

cyl(𝑟) ∪𝑍 cyl(𝑖) ∪𝑋 cyl(𝑖)

𝑓 ◦𝑔

��

𝑍
ℎoo

𝑓 ◦𝑔◦ℎ

||

∅oo

xx
𝑌

where 𝑗 is the inclusion.

2.56. Let (𝐵, 𝑏) be a functorial additive invariant for finite𝐶𝑊-complexes. Define a
natural transformation 𝑇 (𝑋) :

⊕
𝐶∈𝜋0 (𝐶 ) Z→ 𝐵(𝑋) by sending {𝑛𝐶 | 𝐶 ∈ 𝜋0 (𝑋)}

to
∑
𝐶∈𝜋0 (𝑋) 𝑛𝑐 · 𝐴(𝑖𝐶 ) (𝑎({•})), where 𝑖𝐶 : {•} → 𝑋 is any map whose image is

contained in 𝐶. Obviously it is the only possible natural transformation satisfying
𝑇 ({•})(𝜒({•})) = 𝑏({•}). Using additivity and homotopy invariance one proves by
induction over the number of cells for a finite 𝐶𝑊-complex 𝑋 that

𝑇 (𝑋) ({𝜒(𝐶) | 𝐶 ∈ 𝜋0 (𝑋)}) = 𝑏(𝑋)

holds. More details can be found in [642, Theorem 4.1].

2.58. (i) Fix a finitely dominated 𝐶𝑊-complex 𝑌 . Define a functor 𝐴 from
finitely dominated 𝐶𝑊-complexes to abelian groups by 𝐴(𝑋) := 𝑈 (𝑋 × 𝑌 ). Define
𝑎(𝑋) ∈ 𝐴(𝑋) to be 𝑢(𝑋 × 𝑌 ). Check that (𝐴, 𝑎) is a functorial additive invariant
for finitely dominated 𝐶𝑊-complexes. Hence there exists a unique transformation
𝑇𝑌 : 𝑈 (?) → 𝑈 (?×𝑌 ) sending 𝑢(𝑋) to 𝑢(𝑋×𝑌 ). Define 𝐵(𝑌 ) as the abelian group of
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transformations 𝑈 (?) → 𝑈 (? × 𝑌 ) and 𝑏(𝑌 ) := 𝑇𝑌 . Show that (𝐵, 𝑏) is a functorial
additive invariant for finitely dominated 𝐶𝑊-complexes. Hence there is a natural
transformation 𝑆 : 𝑈 → 𝐵 satisfying 𝑆(𝑌 ) (𝑢(𝑌 )) = 𝑏(𝑌 ) for all finitely dominated
𝐶𝑊-complexes 𝑌 . This 𝑆 gives the desired natural bilinear pairing 𝑃(𝑋,𝑌 ).

(ii) If 𝑌 is a finite 𝐶𝑊-complex with 𝜒(𝐶) = 0 for all 𝐶 ∈ 𝜋0 (𝑌 ), then 𝑜(𝐶) = 0
for every 𝐶 ∈ 𝜋0 (𝐶) by Lemma 2.18 and Theorem 2.39. Theorem 2.57 implies
𝑢(𝑌 ) = 0. We conclude from (i)

𝑢(𝑋 × 𝑌 ) = 𝑃(𝑋,𝑌 ) (𝑢(𝑋), 𝑢(𝑌 )) = 𝑃(𝑋,𝑌 ) (𝑢(𝑋), 0) = 0.

Hence 𝑋 × 𝑌 is homotopy equivalent to a finite 𝐶𝑊-complex by Theorem 2.39 and
Theorem 2.57.

2.66. We define a functor 𝐹 : OrF (𝐺) → SubF (𝐺) as follows. It sends an object
𝐺/𝐻 to the subgroup 𝐻. Consider a 𝐺-map 𝑓 : 𝐺/𝐻 → 𝐺/𝐾 . Choose 𝑔 ∈ 𝐺 with
𝑓 (1𝐻) = 𝑔𝐾 . Since 𝑓 is a𝐺-map, we get ℎ𝑔𝐾 = ℎ 𝑓 (1𝐻) = 𝑓 (ℎ𝐻) = 𝑓 (1𝐻) = 𝑔𝐾
and hence 𝑔−1ℎ𝑔 ∈ 𝐾 for all ℎ ∈ 𝐻. Hence we can define 𝐹 ( 𝑓 ) to be the class of
the homomorphism 𝑐(𝑔−1) : 𝐻 → 𝐾, ℎ ↦→ 𝑔−1ℎ𝑔. The morphism 𝐹 ( 𝑓 ) does not
depend on the choice of 𝑔, since any other choice of 𝑔 is of the form 𝑔𝑘 for some
𝑘 ∈ 𝐾 and we have 𝑐((𝑔𝑘)−1) = 𝑐(𝑘−1) ◦ 𝑐(𝑔−1) and 𝑐(𝑘−1) ∈ inn(𝐾).

Obviously 𝐹 is bijective on objects and surjective on morphisms.

2.76. Let 𝑡 ∈ Z/2 be the generator. Let 𝑎 + 𝑏𝑡 ∈ 𝑅[Z/2] be an idempotent. Since
(𝑎+ 𝑏𝑡)2 = (𝑎2 + 𝑏2) + (𝑎𝑏+ 𝑏𝑎)𝑡 holds, we conclude 𝑎2 + 𝑏2 = 𝑎 and 𝑎𝑏+ 𝑏𝑎 = 𝑏.
This implies

(𝑎 + 𝑏)2 = 𝑎2 + 𝑎𝑏 + 𝑏𝑎 + 𝑏2 = 𝑎2 + 𝑏2 + 𝑎𝑏 + 𝑏𝑎 = 𝑎 + 𝑏.

Since by assumption 0 and 1 are the only idempotents in 𝑅, we get 𝑎 + 𝑏 = 0 or
𝑎 + 𝑏 = 1.

Suppose that 𝑏 = −𝑎. Then we get

(2𝑎)2 = 4𝑎2 = 2(𝑎2 + (−𝑎)2) = 2(𝑎2 + 𝑏2) = 2𝑎.

Hence 2𝑎 = 0 or 2𝑎 = 1. Since 2 is not a unit in 𝑅 we conclude 2𝑎 = 0. Hence we
get

𝑎 = 𝑎2 + 𝑏2 = 𝑎2 + 𝑎2 = 2𝑎2 = (2𝑎)𝑎 = 0𝑎 = 0.

This implies 𝑎 + 𝑏𝑡 = 0.
It remains to treat the case 𝑏 = 1 − 𝑎. Then we get

(𝑎 − 1) · (2𝑎 − 1) = 2𝑎2 − 3𝑎 + 1 = 𝑎2 + (1 − 𝑎)2 − 𝑎 = 𝑎2 + 𝑏2 − 𝑎 = 𝑎 − 𝑎 = 0.

Because 𝑅 is an integral domain, we get either (𝑎 − 1) = 0 or (2𝑎 − 1) = 0. Since 2
is not invertible in 𝑅, the case (2𝑎 − 1) = 0 cannot occur and hence 𝑎 + 𝑏𝑡 = 1.



750 26 Solutions of the Exercises

2.77. (i) The ring homomorphism 𝜖 : Z[𝑥] → Z sending 𝑥 to 1 induces a ring
homomorphism 𝜖 : 𝑅 → Z. Since 2 = 𝜖 (2) is not a unit in Z, the element 2 = 2 · 1
is not invertible in 𝑅.
(ii) Let 𝑢 ∈ Z[𝑥] be an element such that 𝑢 ∈ 𝑅 is a non-trivial idempotent. We
can write 𝑢 =

∑
𝑖=0 𝑎𝑖 · 𝑥𝑖 for some natural number 𝑛 and integers 𝑎0, 𝑎1, . . . , 𝑎𝑛

satisfying 𝑎𝑛 ≠ 0.
Next we show that 𝑛 ≤ 1 holds. Suppose the contrary. We can arrange without

changing 𝑢 that 𝑎𝑛 = ±1 holds. The leading coefficient of 𝑢2 is in degree 2𝑛 and
given by 𝑎2

𝑛. Since 𝑢2 = 𝑢, the difference 𝑢2 − 𝑢 must be in the ideal generated by
2𝑥2 − 3𝑥 + 1. Since 2𝑛 ≥ 3, the leading coefficient of 𝑢2 − 𝑢 is in degree 𝑛 and given
by 𝑎2

𝑛. This implies that 𝑎2
𝑛 is a multiple of 2. This contradicts 𝑎𝑛 = ±1. Hence 𝑢

must be of the form 𝑎0 + 𝑎1𝑥 for 𝑎0, 𝑎1 ∈ Z.
The image of 𝑢 under the ring homomorphism 𝜖 : 𝑅 → Z is 𝑎0 + 𝑎1. The

image 𝑢 under the ring homomorphism 𝛿 : 𝑅 → Z, which is induced by the ring
homomorphism 𝛿 : Z[𝑥] → Z[1/2] sending 𝑥 to 1/2, is 𝑎0 + 𝑎1/2. Since 0 and 1 are
the only idempotents in Z and Z[1/2], we get (𝑎0 + 𝑎1), (𝑎0 + 𝑎1/2) ∈ {0, 1}. From
𝑎0 = (𝑎0+2𝑎1) − (𝑎0+𝑎1) we conclude 𝑎0 ∈ {−1, 0, 1, 2}. Hence only the following
four cases can occur for (𝑎0, 𝑎1), namely (0, 0), (1, 0), (2,−2), and (−1, 2). Since
𝑢 is supposed to be a non-trivial idempotent, we must have (𝑎0, 𝑎1) = (2,−2) or
(𝑎0, 𝑎1) = (−1, 2). The elements 𝑣1 = 2 − 2𝑥 and 𝑣2 = −1 + 2𝑥 in 𝑅 are different and
indeed non-trivial idempotents, since we get in both cases 𝑣2

𝑖
− 𝑣𝑖 = 2 − 6𝑥 + 4𝑥2 =

2 · (𝑥2 − 3𝑥 + 1) = 0.
(iii) The element 𝑥+(1−𝑥)·𝑡 in 𝑅[Z/2] is an idempotent by the following computation

(𝑥 + (1 − 𝑥) · 𝑡)2 = 𝑥2 + (1 − 𝑥)2 + 2 · (𝑥 · (1 − 𝑥)) · 𝑡
= 𝑥2 + (1 − 𝑥)2 + 2 · (𝑥 · (1 − 𝑥)) · 𝑡
= 2𝑥2 − 2𝑥 + 1 + −2𝑥2 + 2𝑥 · 𝑡
= 𝑥 + (1 − 𝑥) · 𝑡.

2.91. Choose an integer 𝑛 ≥ 0 and a matrix 𝐴 ∈ M𝑛 (𝐹𝐻) such that 𝐴2 = 𝐴 and
im(𝑟𝐴 : 𝐹𝐻𝑛 → 𝐹𝐻𝑛) �𝐹𝐻 𝑉 . We compute for ℎ ∈ 𝐺 if 𝑙ℎ : 𝑉 → 𝑉 is given by
left multiplication by ℎ

𝜒𝐹 (𝑉) (ℎ−1) = tr𝐹 (𝑙ℎ−1 : 𝑉 → 𝑉)
= tr𝐹

(
𝑙ℎ−1 ◦ 𝑟𝐴 : 𝐹𝐻𝑛 → 𝐹𝐻𝑛

)
=

𝑛∑︁
𝑖=1

tr𝐹
(
𝐹𝐻 → 𝐹𝐻, 𝑢 ↦→ ℎ−1𝑢𝑎𝑖,𝑖

)
= tr𝐹

(
𝐹𝐻 → 𝐹𝐻, 𝑢 ↦→ ℎ−1𝑢

( 𝑛∑︁
𝑖=1

𝑎𝑖,𝑖

))
.
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Write
∑𝑛
𝑖=1 𝑎𝑖,𝑖 =

∑
𝑘∈𝐻 𝜆𝑘 · 𝑘 . Then we get

𝜒𝐹 (𝑉) (ℎ−1) := tr𝐹
(
𝐹𝐻 → 𝐹𝐻, 𝑢 ↦→ ℎ−1𝑢

(∑︁
𝑘∈𝐻

𝜆𝑘 · 𝑘
))

=
∑︁
𝑘∈𝐻

𝜆𝑘 · tr𝐹
(
𝐹𝐻 → 𝐹𝐻, 𝑢 ↦→ ℎ−1𝑢𝑘

)
=

∑︁
𝑘∈𝐻

𝜆𝑘 ·
��{𝑢 ∈ 𝐻 | 𝑢 = ℎ−1𝑢𝑘}

��
=

∑︁
𝑘∈ (ℎ)

𝜆𝑘 ·
��{𝑢 ∈ 𝐻 | ℎ = 𝑢𝑘𝑢−1}

��
=

∑︁
𝑘∈ (ℎ)

𝜆𝑘 · |𝐶𝐻 ⟨ℎ⟩|

= |𝐶𝐻 ⟨ℎ⟩| ·
∑︁
𝑘∈ (ℎ)

𝜆𝑘

= |𝐶𝐻 ⟨ℎ⟩| · HS𝐹𝐻 (𝑉) (ℎ).

2.95. Suppose that𝐾0 (𝐹𝐺) is a torsion group. This is equivalent to the statement that
𝐾0 (𝐹𝐺) ⊗Z 𝐹 is trivial. Lemma 2.18 and Lemma 2.93 imply that class𝐹 (𝐺) 𝑓 �𝐹 𝐹
and hence con𝐹 (𝐺) 𝑓 consists only of one element. Hence every element in 𝐺 of
finite order is trivial.

2.97. Because of the commutative diagram appearing in the proof of Lemma 2.93,
it suffices to prove the claim in the case when 𝐺 is finite. In this case one computes
that HS(𝑃) evaluated at the unit 𝑒 ∈ 𝐺 is dim𝐹 (𝑃)

|𝐻 | .

2.100. Show
∑
𝑔∈𝐺 HSZ𝐺 (𝑃) (𝑔) = HSZ (Z ⊗Z𝐺 𝑃) = dimZ (Z ⊗Z𝐺 𝑃).

2.114. The list of finite groups of order ≤ 9 consists of the cyclic groups Z/𝑛
for 𝑛 = 1, 2, 3, . . . , 9, the abelian non-cyclic groups Z/2 × Z/2, Z/2 × Z/2 × Z/2,
Z/2 × Z/4, and Z/3 × Z/3, and the following non-abelian groups 𝑆3 = 𝐷6, 𝐷8, and
𝑄8. Now inspecting Theorem 2.113 gives the answer:

Z/2 × Z/2 × Z/2, Z/3 × Z/3, 𝑄8.

2.116. Theorem 2.115 implies that 𝐾0 (𝐹𝐷8) is Z𝑛 for some 𝑛. We conclude from
Theorem 2.89 that 𝑛 = | con𝐹 (𝐷8) 𝑓 |. A presentation for 𝐷8 is ⟨𝑥, 𝑦 | 𝑥4 = 1, 𝑦2 =

1, 𝑦𝑥𝑦−1 = 𝑥−1⟩. In particular, 𝐷8 is a semidirect product Z/4 ⋊ Z/2 if Z/4 is the
group generated by 𝑥 and Z/2 the subgroup generated by 𝑦. The elements 𝑥2, 𝑦, 𝑥𝑦,
𝑥2𝑦, and 𝑥3𝑦 have order 2, the elements 𝑥 and 𝑥−1 have order four. We have one
conjugacy class of elements of order 4, namely (𝑥) and three conjugacy classes of
elements of order two, namely (𝑥2), (𝑦), and (𝑦𝑥). As we also have the conjugacy
class of the unit, we see | conC (𝐷8) 𝑓 | = 5. Since 𝑥 is conjugate to 𝑥−1, we conclude
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| conR (𝐷8) 𝑓 | = 5. Since every cyclic subgroup of order 4 is conjugate to ⟨𝑥⟩, we get
| conQ (𝐷8) 𝑓 | = 5. This shows

𝐾0 (𝐹𝐷8) � Z5 for 𝐹 = Q,R,C.

2.119. Recall that a hyperbolic group does not contain Z2 as a subgroup. Because of
Remark 2.118 it suffices to show for a torsionfree hyperbolic group𝐺 that it is cyclic if
there exists an element 𝑔 different from the unit element with finite (𝑔). The finiteness
of (𝑔) is equivalent to the condition that the centralizer 𝐶𝑔⟨𝑔⟩ = {ℎ ∈ 𝐺 | ℎ𝑔 = 𝑔ℎ}
has finite index in 𝐺. Since ⟨𝑔⟩ is infinite, hyperbolic implies that 𝐶𝐺 ⟨𝑔⟩ is virtually
cyclic. Hence 𝐺 is a torsionfree virtually cyclic group and therefore cyclic.

2.124. Write 𝑛 = 𝑝
𝑛1
1 𝑝

𝑛2
2 . . . 𝑝

𝑛𝑟
𝑟 for distinct primes 𝑝1, 𝑝2, . . . , 𝑝𝑟 and integers

𝑛𝑖 ≥ 1. Then Lemma 2.12 implies

𝐾0 (Z/𝑛) =
𝑟∏
𝑖=1

𝐾0 (Z/𝑝𝑛𝑖𝑖 ).

Since Z/𝑝𝑛𝑖
𝑖

is local, the claim follows from Theorem 2.123.

2.127. A counterexample is given by 𝐺1 = 𝐺2 = Z/3, since 𝐾0 (Z[Z/3]) = {0} and
𝐾0 (Z[Z/3 × Z/3]) ≠ {0} by Theorem 2.113.

Chapter 3

3.3. Let 𝑓 : 𝑅𝑛 → 𝑅𝑛 be an 𝑅-automorphism. This is the same as a 𝐾-linear
isomorphism𝑉𝑛 → 𝑉𝑛. Since𝑉 is a 𝐾-vector space with infinite countable basis, we
can choose a 𝐾-isomorphism 𝛼 :

⊕∞
𝑘=0𝑉

𝑛 �−→ 𝑉 . Let 𝑎 :
⊕∞

𝑘=0𝑉
𝑛 �−→

⊕∞
𝑘=0𝑉

𝑛

be the 𝐾-isomorphism given by
⊕∞

𝑘=0 𝑓 . Let 𝛾 : 𝑉𝑛 ⊕
⊕∞

𝑘=0𝑉
𝑛 �−→

⊕∞
𝑘=0𝑉

𝑛

be the 𝐾-isomorphism which sends 𝑣 ⊕ (𝑣0, 𝑣1, 𝑣2, . . .) to (𝑣, 𝑣0, 𝑣1, 𝑣2, . . .). One
easily checks 𝛾−1 ◦ 𝑎 ◦ 𝛾 = 𝑓 ⊕ 𝑎 Define an 𝐾-automorphism 𝑏 : 𝑉 → 𝑉 by
𝛼 ◦ 𝑎 ◦ 𝛼−1. This is the same as an 𝑅-automorphism 𝑏 : 𝑅 → 𝑅. Now one computes
[ 𝑓 ] + [𝑏] = [ 𝑓 ⊕ 𝑏] = [𝑏] in 𝐾1 (𝑅) using the fact that conjugate automorphisms
define the same element in 𝐾1 (𝑅). This implies [ 𝑓 ] = 0.

3.7. We get from Theorem 3.6 an isomorphism 𝑖 : H×/[H× ,H×] �−→ 𝐾1 (H).
Obviously the collection of maps 𝜇𝑛 defines a homomorphism 𝜇 : 𝐾1 (H) → R. The
norm of a quaternion 𝑧 = 𝑎+ 𝑏𝑖+ 𝑐 𝑗 + 𝑑𝑘 is defined by 𝑁 (𝑧) :=

√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.

Let 𝑁 : H×/[H× ,H×] → R>0 be the induced homomorphism of abelian groups.
Its restriction to R>0 ⊆ H is the identity. Since 𝜇1 (𝑧) = |𝑧 |4 for 𝑧 ∈ H, it remains to
prove 𝑁−1 (1) ⊆ [H× ,H×].
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Since 𝑖e 𝑗 𝜃 𝑖−1 = e− 𝑗 𝜃 holds for 𝜃 ∈ R and similarly with 𝑖, 𝑗 , and 𝑘 cycli-
cally permuted, e2𝑖 𝜃1 , e2 𝑗 𝜃2 , and e2𝑘𝜃3 are all commutators. These generate an open
neighborhood of 1 in 𝑆3 = 𝑁−1 (1). Since 𝑆3 is connected, the claim follows.

3.18. Take the norm on Z[𝑖] sending 𝑎 + 𝑏𝑖 to
√
𝑎2 + 𝑏2. It yields a Euclidean algo-

rithm. A direct calculation shows Z[𝑖]× = {1,−1, 𝑖,−𝑖}. Now apply Theorem 3.17.

3.22. This follows from Theorem 3.20 and Theorem 3.21.

3.25. The map 𝜙 is induced by the composite

𝐾1 (Z[Z/5])
𝑓∗−→ 𝐾1 (C)

det−−→ C×
| |
−→ R>0.

Since (1− 𝑡 − 𝑡−1) · (1− 𝑡2 − 𝑡3) = 1, the element 1− 𝑡 − 𝑡−1 is a unit in Z[Z/5] and
defines an element in Wh(Z/5). Its image under 𝜙 is (1 − 2 · cos(2𝜋/5)) and hence
different from 1.

3.36. Let 𝜖∗ be a chain contraction for 𝐸∗. Choose for any 𝑛 ∈ Z an 𝑅-
homomorphism 𝜎𝑛 : 𝐸𝑛 → 𝐷𝑛 satisfying 𝑝𝑛 ◦ 𝜎𝑛 = id𝐸𝑛 . Define 𝑠𝑛 : 𝐸𝑛 → 𝐷𝑛 by
𝑑𝑛+1 ◦ 𝜎𝑛+1 ◦ 𝜖𝑛 + 𝜎𝑛 ◦ 𝜖𝑛−1 ◦ 𝑒𝑛.

There are examples of short exact sequences of 𝑅-chain complexes whose bound-
ary operator in the associated long homology sequence is not trivial and hence for
which 𝐻𝑛 (𝑝∗) is not surjective for all 𝑛 ∈ Z.

3.41. This is done by the following sequence of elementary collapses. We describe
the simplicial complexes obtained after each step:

(i) The standard 2-simplex spanned by 𝑣0, 𝑣1, 𝑣2;
(ii) Three vertices 𝑣0, 𝑣1, 𝑣2 and two edges {𝑣0, 𝑣1} and {𝑣0, 𝑣2};

(iii) The standard 1-simplex spanned by 𝑣0, 𝑣1;
(iv) The standard 0-simplex given by 𝑣0.

3.46. This follows from 𝐾0 (Z) = 0, see Example 2.4, and Wh({1}) = 0, see
Theorem 3.17, together with Theorem 2.39 and Theorem 3.45.

3.49. Choose a non-trivial element in Wh(Z/5), see Exercise 3.25. By Theorem 3.47
we can find an ℎ-cobordism (𝑊, 𝑀0, 𝑀1) whose Whitehead torsion is 𝑥. Hence it is
non-trivial. In order to show that (𝑊×𝑆3;𝑀0×𝑆3, 𝑀1×𝑆3) is trivial, we have to show
𝜏(𝑖0× id𝑆3 ) = 0 for 𝑖0 : 𝑀0 → 𝑊 the inclusion. This follows from Theorem 3.37 (iv),
since both 𝜏(id𝑆3 ) and 𝜒(𝑆3) vanish.

3.57. By definition RP3 is the lens space 𝐿 (𝑉) for the cyclic group Z/2, where𝑉 has
as underlying unitary vector space C2 and the generator 𝑠 of Z/2 acts on 𝑉 by − id.
The cellular Z[Z/2]-chain complex 𝐶∗ (𝑆𝑉) is concentrated in dimensions 0, 1, 2, 3
and is given by
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· · · → 0→ Z[Z/2] 𝑠−1−−−→ Z[Z/2] 𝑠+1−−−→ Z[Z/2] 𝑠−1−−−→ Z[Z/2] → 0→ · · · .

Hence R− ⊗Z[Z/2] 𝐶∗ (𝑆𝑉) is the R-chain complex

· · · → 0→ R
2·id−−−→ R

0−→ R
2·id−−−→ R→ 0→ · · · .

It is contractible, a chain contraction 𝛾∗ is given by 𝛾0 = 𝛾2 = 1/2 · id and 𝛾𝑛 = 0 for
𝑛 ≠ 0, 2. Hence (𝑐 + 𝛾)odd : R− ⊗Z[Z/2] 𝐶odd (𝑆𝑉) → R− ⊗Z[Z/2] 𝐶odd (𝑆𝑉) is given
by (

2 1/2
0 2

)
: R2 → R2.

This implies 𝜌(RP3;𝑉) = 4.

3.77. We use induction over 𝑛 ≥ 0. The case 𝑛 = 0, i.e., the trivial group, follows
from Example 2.4. The induction step from 𝑛 to 𝑛 + 1 is a direct consequence of
Theorem 3.76 (i), since 𝑅[Z𝑛] [Z] is isomorphic to 𝑅[Z𝑛+1].

3.82. Because of Theorem 3.80 (ii) the ring Z[Z𝑛] is regular. Hence we get from
Exercise 3.77 and Lemma 3.85 that 𝐾0 (Z[Z𝑛]) = 0.

To show Wh(Z𝑛) = 0, we use induction over 𝑛 ≥ 0. The case 𝑛 = 0, i.e., the
trivial group, follows from Example 2.4 and Theorem 3.17. The induction step from
𝑛 to 𝑛 + 1 follows from Theorem 3.81, since Z[Z𝑛] [Z] is isomorphic to Z[Z𝑛+1].

3.92. Obviously (2) �−→ (𝑁Z/2) sending 2 to 𝑁Z/2 is an isomorphism of rings without
unit.

Theorem 3.89 together with Lemma 3.91 yields exact sequences

𝐾1 (Z) → 𝐾1 (Z/𝑛) → 𝐾0 ((𝑛)) → 𝐾0 (Z) → 𝐾0 (Z/𝑛);
𝐾1 (Z[Z/2]) → 𝐾1 (Z) → 𝐾0 ((𝑁Z/2)) → 𝐾0 (Z[Z/2]) → 𝐾0 (Z),

since the ring homomorphism Z[Z/2] → Z sending 𝑎 + 𝑏𝑡 to 𝑎 − 𝑏 induces an iso-
morphism of rings Z[Z/2]/(𝑁Z/2)

�−→ Z. Because of Theorem 3.6 and Theorem 3.17
the determinant induces isomorphisms

det : 𝐾1 (Z)
�−→ {±1};

det : 𝐾1 (Z/𝑛)
�−→ Z/𝑛× .

The map 𝐾𝑘 (Z[Z/2]) → 𝐾𝑘 (Z) is surjective for 𝑘 = 0, 1, as its composite with
𝐾𝑘 (Z) → 𝐾𝑘 (Z[Z/2]) is the identity. The map 𝐾0 (Z) → 𝐾0 (Z/𝑛) is injective, since
its composite with the map 𝐾0 (Z/𝑛) → Z, [𝑃] ↦→ |𝑃 | is injective by Theorem 2.4.
This implies
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𝐾0 ((𝑛)) �
{

0 if 𝑛 = 2;
(Z/𝑛)×/{±1} if 𝑛 ≥ 3;

𝐾0 ((𝑁Z/2)) = {0};
𝐾0 (Z[Z/2]) = {0}.

3.96. Because of Remark 3.95 it suffices to show for each two-sided ideal 𝐼 ⊆ 𝐹 that
E(𝐹, 𝐼) = SL(𝐹, 𝐼). This is trivial if 𝐼 = 0. If 𝐼 = 𝐹, this follows from Theorem 3.17.

3.101. Consider 𝑘 ∈ Z with (𝑘, |𝐺 |) = 1. Choose 𝑙 ∈ Z with 𝑘𝑙 = 1 mod |𝐺 |.
Choose a generator 𝑡 ∈ 𝐺. Define elements 𝑢, 𝑣 ∈ Z𝐺.

𝑢 = 1 + 𝑡 + 𝑡2 + · · · + 𝑡𝑘−1;
𝑣 = 1 + 𝑡𝑘 + 𝑡2𝑘 + · · · + 𝑡 (𝑙−1)𝑘 .

Then (𝑡 − 1) · (𝑡𝑘 − 1) · (𝑢𝑣 − 1) = 0 holds in Z𝐺. One easily checks that (𝑡 − 1) ·
(𝑡𝑘 − 1) · 𝑤 = 0 ⇐⇒ 𝑤 ∈ (𝑁𝐺) for 𝑤 ∈ Z𝐺. Hence 𝑢 ∈ Z𝐺/(𝑁𝐺) is a unit and
maps to 𝑘 under the map 𝑗1 : Z𝐺/(𝑁𝐺) → Z/|𝐺 |. Now the claim follows from the
Mayer-Vietoris sequence associated to the diagram (3.97).

3.103. Since 𝐾0 (Z[Z/2]) = 0, see Theorem 2.113 (i), we can assume without loss
of generality |𝐺 | ≥ 3.

Suppose 𝑑 = 1. Then 𝐺\𝑋 is a connected finitely dominated 1-dimensional
𝐶𝑊-complex. Its homology is finitely generated and it is homotopy equivalent to a
1-dimensional 𝐶𝑊-complex 𝑌 with precisely one 0-cell. Hence the 𝐶𝑊-complex 𝑌
is finite.

Suppose that 𝑑 ≥ 2. Then 𝑑 is odd by Theorem 3.102 (i). The unit sphere 𝑆
in C(𝑑+1)/2 with the 𝐺-action for which the generator acts by multiplication by
exp(2𝜋𝑖/|𝐺 |) is a free 𝑑-dimensional 𝐺-homotopy representation such that 𝐺\𝑆 is
compact and hence finite. By elementary obstruction theory there exists a 𝐺-map
𝑋 → 𝑆. Now apply Theorem 2.39 (i), Lemma 3.102 (ii), and Exercise 3.101.

3.111. Obviously the image of the map

colim𝐻∈SubFIN (𝐺×Z) 𝐾1 (𝑅𝐻) → 𝐾1 (𝑅[𝐺 × Z])

is contained in the image of the map 𝐾1 (𝑅𝐺) → 𝐾1 (𝑅[𝐺 × Z]). Theorem 3.72
implies 𝐾0 (Z𝐺) = {0} if 𝐾1 (𝑅𝐺) → 𝐾1 (𝑅[𝐺 × Z]) is surjective.

If 𝑅 is a commutative integral domain, 𝐾0 (𝑅) and hence 𝐾0 (𝑅𝐺) cannot be zero.
Namely, if 𝐹 is its quotient field, the homomorphism

𝐾0 (𝑅) → Z, [𝑃] ↦→ dim𝐹 (𝐹 ⊗𝑅 𝑃)

is a well-defined surjective map.
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3.118. This follows from Theorem 3.115 and Theorem 3.116 (iv).

3.119. Theorem 3.115 implies for a finite group 𝐺 that Wh(𝐺) is non-trivial and
finite if and only if 𝑆𝐾1 (Z𝐺) is non-trivial and 𝑟R (𝐺) = 𝑟Q (𝐺) holds. Because of
Theorem 3.116 (ii) the smallest order abelian group 𝐺 with-non-trivial 𝑆𝐾1 (Z𝐺) is
𝐺 = Z/3×Z/3×Z/3. One easily checks 𝑟R (𝐺) = 𝑟Q (𝐺) for 𝐺 = Z/3×Z/3×Z/3.

3.124. A counterexample is given by 𝐺1 = 𝐺2 = Z/3, since Wh(Z/3) = {0} and
Wh(Z/3 × Z/3) ≠ {0} by Theorem 3.116.

Chapter 4

4.5. Apply Remark 4.4 to the obvious pullback of rings

𝑅 × 𝑆
pr𝑅 //

pr𝑆
��

𝑅

��
𝑆 // {0}

Or, if one does not like the ring {0} consisting of one element, use Lemma 3.9 and
the Bass-Heller-Swan decomposition 4.3.

4.9. This follows by induction over 𝑘 using Theorem 4.7.

4.11. It suffices to show 𝐾0 (Z[Z/3 × Z𝑘]) = 0 for 𝑘 ≥ 0 since then all other claims
follow from Theorem 4.7.

The exact Mayer-Vietoris sequence appearing in Example 4.10 yields for a prime
𝑝 the exact sequence

𝐾1 (Z[Z𝑘]) ⊕ 𝐾1 (Z[exp(2𝜋𝑖/𝑝)] [Z𝑘]) → 𝐾1 (F𝑝 [Z𝑘])
→ 𝐾0 (Z[Z/𝑝 × Z𝑘]) → 𝐾0 (Z[exp(2𝜋𝑖/𝑝)]) → 0.

We have 𝐾0 (Z[exp(2𝜋𝑖/3)]) = {0} by Theorem 2.106 and Example 2.107. Hence it
suffices to show that the map 𝐾1 (Z[exp(2𝜋𝑖/3)] [Z𝑘]) → 𝐾1 (F3 [Z𝑘]) is surjective.
Because of Theorem 2.23, Theorem 3.80, and the Bass-Heller-Swan decomposition
for lower and middle 𝐾-theory for regular rings, see Theorem 4.7, it suffices to
prove the surjectivity of 𝐾𝑖 (Z[exp(2𝜋𝑖/3)]) → 𝐾𝑖 (F3) for 𝑖 = 0, 1. The case 𝑖 = 0
follows from the fact that 𝐾0 (F3) is generated by [F3]. It remains to treat 𝑖 =

1. Let 𝑓 : Z[exp(2𝜋𝑖/3)] → F3 be the ring homomorphism which is uniquely
determined by the property that it sends exp(2𝜋𝑖/3) to 1. Because of Theorem 3.17
it suffices to show that for every unit 𝑢 in F3 we can find a unit 𝑢′ in Z[exp(2𝜋𝑖/3)]
which is mapped to 𝑢 under 𝑓 . Since ± exp(2𝜋𝑖/3) is a unit in Z[exp(2𝜋𝑖/3)] and
𝑓 (± exp(2𝜋𝑖/3)) = ±1, we conclude 𝐾0 (Z[Z/3 × Z𝑘]) = 0 for 𝑘 ≥ 0.
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4.13. The pullback of rings appearing in Example 4.12 yields a pullback of rings

Z[Z/6 × Z𝑘] 𝑖1 //

𝑖2
��

Z[Z/3 × Z𝑘]

𝑗1

��
Z[Z/3 × Z𝑘]

𝑗2
// (F2 × F4) [Z𝑘]

where 𝑗2 = 𝑗1. Put 𝑗 := 𝑗1 = 𝑗2. We obtain from Remark 4.4 the exact sequence

𝐾1 (Z[Z/3 × Z𝑘]) ⊕ 𝐾1 (Z[Z/3 × Z𝑘])
𝑗∗⊕ 𝑗∗−−−−→ 𝐾1 ((F2 × F4) [Z𝑘])

→ 𝐾0 (Z[Z/6 × Z𝑘]) → 𝐾0 (Z[Z/3] × Z𝑘) ⊕ 𝐾0 (Z[Z/3 × Z𝑘])
𝑗∗⊕ 𝑗∗−−−−→ 𝐾0 ((F2 × F4) [Z𝑘]) → 𝐾−1 (Z[Z/6 × Z𝑘]) → · · · .

The following facts are consequences of Theorem 3.80 (i), Exercise 4.5, Exer-
cise 4.11, and Theorem 4.7. We have 𝐾𝑛 (Z[Z/3×Z𝑘]) = 𝐾𝑛 ((F2 ×F4) [Z𝑘]) = {0}
for 𝑛 ≤ −1 and 𝐾0 (Z[Z/3 × Z𝑘]) = {0}. We can identify the map

𝑗∗ ⊕ 𝑗∗ : 𝐾0 (Z[Z/3 × Z𝑘]) ⊕ 𝐾0 (Z[Z/3 × Z𝑘]) → 𝐾0 ((F2 × F4) [Z𝑘])

with the map 𝑗∗ ⊕ 𝑗∗ : 𝐾0 (Z[Z/3]) ⊕ 𝐾0 (Z[Z/3]) → 𝐾0 (F2 × F4) which in turn can
be identified the map Z ⊕ Z→ Z ⊕ Z sending (𝑎, 𝑏) to (𝑎 + 𝑏, 𝑎 + 𝑏). The map

𝑗∗ ⊕ 𝑗∗ : 𝐾1 (Z[Z/3 × Z𝑘]) ⊕ 𝐾1 (Z[Z/3 × Z𝑘]) → 𝐾1 ((F2 × F4) [Z𝑘])

can be identified with the direct sum of the map 𝑗∗⊕ 𝑗∗ : 𝐾1 (Z[Z/3])⊕𝐾1 (Z[Z/3]) →
𝐾1 (F2 × F4) with the 𝑘-fold direct sum of copies of the map 𝑗∗ ⊕ 𝑗∗ : 𝐾0 (Z[Z/3]) ⊕
𝐾0 (Z[Z/3]) → 𝐾0 (F2 × F4). In order to prove

𝐾𝑛 (Z[Z𝑘 × Z/6]) �

Z𝑘+1 for 𝑛 = 0;
Z for 𝑛 = −1;
0 for 𝑛 ≤ −2,

it remains to show that the map 𝑗∗ : 𝐾1 (Z[Z/3 × Z𝑘]) → 𝐾1 ((F2 × F4) [Z𝑘]) is
surjective.

Recall that we established an identification of rings F2 ⊗Z Z[Z/3] � F2 × F4 in
Example 4.12. Because of Lemma 3.9 and Theorem 3.17 the determinant induces an
isomorphism 𝐾1 (F2 ⊗Z Z[Z/3])

�−→ (F2 ⊗Z Z[Z/3])× . Hence it suffices to show that
for every unit 𝑢 in F2 ⊗Z Z[Z/3] we can find a unit 𝑢′ in Z[Z/3] which is mapped
under the obvious projection pr : Z[Z/3] → F2 ⊗ZZ[Z/3] to 𝑢. There are three units
in F2 ⊗Z Z[Z/3] � F2 × F4, namely, 1 ⊗ 1, 1 ⊗ 𝑡, and 1 ⊗ 𝑡2. Obviously they are
images of units under pr.
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We conclude 𝑁 𝑝𝐾𝑛 (Z[Z/6×Z𝑘]) for 𝑛 ≤ 0, 𝑝 ≥ 1, and 𝑘 ≥ 0 from Theorem 4.3,
since 𝐾0 (Z[Z/6]) ⊕ 𝐾−1 (Z[Z/6])𝑘−1 � Z𝑘 � 𝐾0 (Z[Z𝑘 × Z/6]), 𝐾−1 (Z[Z/6]) �
𝐾−1 (Z[Z𝑘 × Z/6]), and 𝐾𝑛 (Z[Z𝑘 × Z/6]) = {0} for 𝑛 ≤ −1 holds.

4.15. This follows from Lemma 4.14, since the assumptions imply that 𝐾𝑚 (𝑅) →
𝐾𝑚 (𝑅[Z𝑛]) induced by the inclusion 𝑅 → 𝑅[Z𝑛] is bijective.

4.19. Because of Theorem 4.7. it suffices to prove that 𝑅𝐺 is regular, provided
that 𝑅 is regular, 𝐺 is a finite group, and the order |𝐺 | of 𝐺 is invertible in 𝑅.
Since 𝑅 is Noetherian and 𝐺 is finite, 𝑅𝐺 is Noetherian. Let 𝑀 be any finitely
generated 𝑅𝐺-module. Then the 𝑅𝐺-module 𝑀 is a direct summand in the 𝑅𝐺-
module 𝑀 ′ := 𝑅𝐺 ⊗𝑅 𝑀 , where 𝑔 acts on 𝑥 ⊗ 𝑚 by 𝑔𝑥 ⊗ 𝑚. So 𝑀 ′ does not see the
𝐺-action on 𝑀 . The injection 𝑀 → 𝑀 ′ is given by 𝑚 ↦→ 1

|𝐺 | ·
∑
𝑔∈𝐺 𝑔 ⊗ 𝑔−1𝑚 and

the retraction 𝑀 ′ → 𝑀 by 𝑔⊗𝑚 ↦→ 𝑔𝑚. Let 𝑃∗ be a finite projective 𝑅-resolution of
the finitely generated 𝑅-module 𝑀 . Then 𝑃′∗ is a finite 𝑅𝐺-resolution of 𝑀 ′. Since
𝑀 is a direct 𝑅𝐺-summand in 𝑀 ′, it possesses a finite projective 𝑅𝐺-resolution as
well.

Chapter 5

5.6. This follows from Lemma 3.11, Theorem 3.12, and Definition 5.1.

5.8. This follows from Theorem 5.7 and the fact that 𝐻2 (E(𝑅)) is the kernel of the
universal central extensions 𝜙𝑅 : St(𝑅) → E(𝑅) of the perfect group E(𝑅).

5.17. Obviously the matrices 𝑑1,2 (𝑢) and 𝑑1,3 (𝑣) represent the trivial element
in 𝐾1 (𝑅). Hence they belong to E(𝑅) by Lemma 3.11 and Theorem 3.12. Let
𝑑1,2 (𝑢) and 𝑑1,3 (𝑣) be fixed preimages of 𝑑1,2 (𝑢) and 𝑑1,3 (𝑣) under the canonical
map 𝜙𝑅 : St(𝑅) → E(𝑅). Then any other lifts are of the form 𝑑1,2 (𝑢) · 𝑥 and
𝑑1,3 (𝑣) · 𝑦 for elements in the center of St(𝑅). One easily checks [𝑑1,2 (𝑢), 𝑑1,3 (𝑣)] =
[𝑑1,2 (𝑢) · 𝑥, 𝑑1,3 (𝑣) · 𝑦].

5.20. We get 𝐾2 (Z) � Z/2 with generator {−1,−1} from Theorem 5.18 (vi).

5.23. We obtain Wh2 (Z/𝑛) = 0 for 𝑛 = 1, 2, 3, 4 from Section 5.8. By Theo-
rem 3.115 the Whitehead group Wh(Z/𝑛) vanishes if and only if 𝑛 = 1, 2, 3, 4, 6.
Theorem 2.113 (i) implies 𝐾0 (Z[Z/𝑛]) = 0 for 𝑛 = 1, 2, 3, 4. We conclude
𝐾𝑖 (Z[Z/𝑛]) = 0 for 𝑛 = 1, 2, 3, 4 and all 𝑖 ≤ −1 from Theorem 4.22 (i) and (v) We
conclude 𝐾−1 (Z[Z/6]) ≠ 0 from Example 4.12. Hence the answer is 𝑛 = 1, 2, 3, 4.
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Chapter 6

6.1. Let 𝑍 be acyclic. Since 𝐻0 (𝑍) is the free abelian group with 𝜋0 (𝑍) as
Z-basis, 𝑍 is path connected. Since the classifying map 𝑓 : 𝑍 → 𝐵𝜋 for 𝜋 = 𝜋1 (𝑍) is
2-connected, it induces by the Hurewicz Theorem an isomorphism 𝐻1 (𝑍) → 𝐻1 (𝜋)
and an epimorphism 𝐻2 (𝑍) → 𝐻2 (𝜋).

6.7. If 𝑃1 and 𝑃2 are two perfect subgroups of 𝐺, then the subgroup ⟨𝑃1, 𝑃2⟩
generated by 𝑃1 ∪ 𝑃2 is again a perfect subgroup of 𝐺.

6.8. Recall that E(𝑅) = [GL(𝑅),GL(𝑅)] by Lemma 3.11. We know already because
of Theorem 5.7 that E(𝑅) = [GL(𝑅),GL(𝑅)] is perfect, since only a perfect group
possesses a universal central extension. Since the image of a perfect subgroup under
an epimorphism of groups is perfect and the only perfect subgroup of the abelian
group GL(𝑅)/[GL(𝑅),GL(𝑅)] is the trivial group, every perfect subgroup of GL(𝑅)
is contained in E(𝑅).

6.10. Since 𝐵GL(𝑅) and hence 𝐵GL(𝑅)+ is path connected, this follows directly
from the definitions in the case 𝑛 = 0. If 𝑛 = 1, this follows from Theorem 3.12,
Theorem 6.5 (iv), and Exercise 6.8.

6.22. This follows by induction over 𝑘 from Theorem 4.3, Theorem 4.22 (i), and
Theorem 6.21.

6.26. We conclude from Example 2.4 and Theorem 3.17 that the sequence looks
like

{±1}
𝑗1−→ Q×

𝜕1−−→
⊕
𝑝

Z
𝑖0−→ Z

𝑗0−→ Z→ 0

where 𝑝 runs through all prime numbers, 𝑗1 is the inclusion, and 𝑗0 is the identity.
Hence the map 𝑖0 is the zero map. The map 𝜕1 sends a rational number of the shape
±𝑝𝑛1

1 · 𝑝
𝑛2
2 · · · · · 𝑝

𝑛𝑘
𝑘

for pairwise distinct primes 𝑝1, 𝑝2, . . . , 𝑝𝑘 and integers 𝑛1, 𝑛2,
. . . , 𝑛𝑘 to the element (𝑛𝑝)𝑝 , whose entry for 𝑝 = 𝑝𝑖 is 𝑛𝑖 for 𝑖 = 1, 2, . . . , 𝑘 and is
0 for any prime 𝑝 which is not contained in {𝑝1, 𝑝2, . . . , 𝑝𝑘}.

6.27. We get from Corollary 6.25 the exact sequence for 𝑛 ≥ 1,⊕
𝑝

𝐾𝑛 (F𝑝) → 𝐾𝑛 (Z) → 𝐾𝑛 (Q) →
⊕
𝑝

𝐾𝑛−1 (F𝑝).

By Theorem 6.23 𝐾𝑛 (F𝑝) = 0 holds for 𝑛 = 2𝑘 for 𝑘 ≥ 1, and 𝐾𝑛 (F𝑝) ⊗Z Q = 0
holds for all 𝑛 ≥ 1.
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6.31. From the analog of the sequence (6.28) for 𝐾TOP and the assumption that 𝑘
is odd, we conclude

𝐾TOP
𝑛 (R;Z/𝑘) �

{
Z/𝑘 𝑛 ≡ 0 mod 4;
{0} 𝑛 = 1, 2, 3 mod 4.

We know 𝐾𝑛 (R) = {0} for 𝑛 ≤ −1 from Theorem 4.7. Now the sequence (6.28) and
Theorem 6.30 imply

𝐾𝑛 (R;Z/𝑘) �

Z/𝑘 𝑛 ≥ 0 and 𝑛 ≡ 0 mod 4;
{0} 𝑛 ≥ 0 and 𝑛 = 1, 2, 3 mod 4;
{0} 𝑛 ≤ −1.

6.38. Generators for 𝐾0 (A) are isomorphism classes of objects. Relations are
[𝑃1] + [𝑃2] = [𝑃1 ⊕ 𝑃2] for any objects 𝑃1, 𝑃2.

The generators of 𝐾1 (A) are conjugacy classes of automorphisms of objects of
A. Relations are [𝑔 ◦ 𝑓 ] = [𝑔] + [ 𝑓 ] for any automorphisms 𝑓 , 𝑔 of the same object

and
[(
𝑓1 𝑓0
0 𝑓2

)]
= [ 𝑓1] + [ 𝑓2] for any automorphisms 𝑓𝑖 : 𝑃𝑖 → 𝑃𝑖 for 𝑖 = 1, 2 and

any morphism 𝑓0 : 𝑃2 → 𝑃1.
The functor 𝑆 induces homomorphisms 𝑆𝑖 : 𝐾𝑖 (A) → 𝐾𝑖 (A) for 𝑖 = 1, 2. The

existence of the natural transformation 𝑇 implies that the two homomorphisms
𝑆𝑖 + id𝐾𝑖 (A) and 𝑆𝑖 coincide. Hence id𝐾𝑖 (A) is the zero-homomorphism, which
means 𝐾𝑖 (A) = 0.

6.39. Let A be the additive category of countably generated projective 𝑅-modules.
Let 𝑆 be the functor sending an object 𝑃 to (𝑃 ⊕ 𝑃 ⊕ · · · ). Then we obtain a natural
transformation𝑇 : id ⊕𝑆 → 𝑆 by rebracketing, i.e. (𝑃⊕𝑃⊕· · · ) = 𝑃⊕ (𝑃⊕𝑃⊕· · · ).
Hence A is flasque and we can apply Theorem 6.37 (iii).

6.46. This follows directly from the Resolution Theorem 6.45.

6.51. Since the rings Z, Z[1/𝑝], and F𝑝 are regular, this follows from Example 6.50
using Theorem 4.7 and Exercise 6.46.

6.55. Because of Conjecture 6.53 it suffices to construct the corresponding sequence
for 𝐻∗ (−; K)

· · · → 𝐻𝑛 (𝐵𝐺0; K(𝑅)) → 𝐻𝑛 (𝐵𝐺1; K(𝑅)) ⊕ 𝐻𝑛 (𝐵𝐺2; K(𝑅))
→ 𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐻𝑛−1 (𝐵𝐺0; K(𝑅))

→ 𝐻𝑛−1 (𝐵𝐺1; K(𝑅)) ⊕ 𝐻𝑛−1 (𝐵𝐺2; K(𝑅)) → · · · .
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One can arrange that 𝐵𝐺𝑖 is a sub 𝐶𝑊-complex of 𝐵𝐺 and 𝐵𝐺 = 𝐵𝐺1 ∪ 𝐵𝐺2 and
𝐵𝐺0 = 𝐵𝐺1∩𝐵𝐺2. Now the desired sequence above is the associated Mayer-Vietoris
sequence.

6.56. Because of Conjecture 6.53 it suffices to construct the corresponding sequence
for 𝐻∗ (−; K)

· · · → 𝐻𝑛 (𝐵𝐺; K(𝑅))
id −𝜙∗−−−−−→ 𝐻𝑛 (𝐵𝐺; K(𝑅)) → 𝐻𝑛 (𝐵(𝐺 ⋊𝜙 Z); K(𝑅))

→ 𝐻𝑛−1 (𝐵𝐺; K(𝑅))
id −𝜙∗−−−−−→ 𝐻𝑛−1 (𝐵𝐺; K(𝑅)) → · · · .

The automorphism 𝜙 induces a homotopy equivalence 𝐵𝜙 : 𝐵𝐺 → 𝐵𝐺. The map-
ping torus of 𝐵𝜙 is a model for 𝐵(𝐺 ⋊𝜙 Z). Now the desired long exact sequence
comes from the Wang sequence associated to the fibration 𝐵𝐺 → 𝐵(𝐺 ⋊𝜙 Z) → 𝑆1.

6.60. If 𝑅 is regular, then 𝑅[𝑡] is regular. There is an obvious identification (𝑅[𝑡])𝐺 =

(𝑅𝐺) [𝑡]. Hence we obtain a commutative diagram

𝐻𝑛 (𝐵𝐺; K(𝑅)) � //

��

𝐾𝑛 (𝑅𝐺)

��
𝐻𝑛 (𝐵𝐺; K(𝑅[𝑡]))

�
// 𝐾𝑛 ((𝑅𝐺) [𝑡])

where the vertical arrows are induced by the canonical inclusions 𝑅 → 𝑅[𝑡] and
𝑅𝐺 → (𝑅𝐺) [𝑡]. The horizontal arrows are bijective by assumption. Since 𝑅 is
regular, the left vertical arrow is bijective because of Theorem 6.16 (ii) and the
Atiyah-Hirzebruch spectral sequence. Hence also the right vertical arrow is bijective.
This implies 𝑁𝐾𝑛 (𝑅𝐺) = 0 for all 𝑛 ∈ Z.

6.63. Consider the following commutative diagram, where Nil𝑛 stands for the
𝑛-homotopy group of Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2), 𝑁𝐾𝑛 stands for 𝑁𝐾𝑛 (𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2),
and the letters 𝜄 and 𝜋 denote obvious inclusions or projections. The maps 𝑖∗, 𝑙∗, and
𝑓∗ are induced by the map of spectra i, l, and f. The middle column is the long exact
sequence associated to the homotopy cartesian square appearing in Theorem 6.61 (i)
with boundary operator 𝜕𝑛. Theorem 6.61 implies that the two horizontal short
sequences are (split) exact and the diagram (without the dashed arrows) commutes.
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Nil𝑛

𝑖𝑛⊕𝑙𝑛
��

𝐾𝑛 (𝑅𝐺0) ⊕ 𝐾𝑛 (𝑅𝐺1) ⊕ 𝐾𝑛 (𝑅𝐺2)

𝐾𝑛 (𝑖0 )⊕𝐾𝑛 (𝑖1 )⊕𝐾𝑛 (𝑖2 )
��

𝛼
ww

0 // ker(𝑝𝑛)
𝜄 //

𝛽

��

𝐾𝑛 (𝑅𝐺)

𝜕𝑛

��

𝑝𝑛 // 𝑁𝐾𝑛 //

0⊕id
��

0

0 // 𝐾𝑛−1 (𝑅𝐺0)
𝑓𝑛−1◦(1,−1)//

0⊕𝐾𝑛−1 ( 𝑗1 )⊕−𝐾𝑛−1 ( 𝑗2 ) ''

Nil𝑛−1

𝑖𝑛−1⊕𝑙𝑛−1
��

𝑖𝑛−1⊕𝜋// 𝐾𝑛−1 (𝑅𝐺0) ⊕ 𝑁𝐾𝑛 // 0

𝐾𝑛−1 (𝑅𝐺0) ⊕ 𝐾𝑛−1 (𝑅𝐺1) ⊕ 𝐾𝑛−1 (𝑅𝐺2)

𝐾𝑛−1 (𝑖0 )⊕𝐾𝑛−1 (𝑖1 )⊕𝐾𝑛−1 (𝑖2 )
��

𝐾𝑛−1 (𝑅𝐺).

Now an easy diagram chase shows that there exist the dotted arrows uniquely
determined by the property that the diagram remains commutative.

Define the desired long exact Mayer-Vietoris sequence by the homomorphism
𝛼′ : 𝐾0 (𝑅𝐺1) ⊕ 𝐾𝑛 (𝑅𝐺2) → ker(𝑝𝑛) which is the restriction of 𝛼, the homomor-
phism 𝛽, and the homomorphism ( 𝑗1)∗ ⊕ ( 𝑗2)∗ : 𝐾𝑛 (𝑅𝐺) → 𝐾𝑛 (𝑅𝐺1) ⊕ 𝐾𝑛 (𝑅𝐺2).
We leave it to the reader to check using the diagram above that this sequence is
indeed exact.

6.73. There is an obvious projection pr : 𝑅 → 𝑅0. Since pr ◦𝑖 = id𝑅0 for the inclusion
𝑖 : 𝑅0 → 𝑅, it suffices to prove that 𝐾𝐻𝑛 (𝑖) ◦ 𝐾𝐻𝑛 (pr) : 𝐾𝐻𝑛 (𝑅) → 𝐾𝐻𝑛 (𝑅) is
surjective. Define a map 𝜑 : 𝑅 → 𝑅[𝑡] by sending 𝑟𝑛 ∈ 𝑅𝑛 to 𝑟𝑛 · 𝑡𝑛. For 𝑘 = 0, 1
let ev𝑘 : 𝑅[𝑡] → 𝑅 be the ring homomorphism given by putting 𝑡 = 0 for 𝑘 = 0
and 𝑡 = 1 for 𝑘 = 1. Then ev1 ◦𝜑 = id𝑅 and 𝐾𝐻𝑛 (ev𝑘) is bijective for 𝑘 = 0, 1 and
𝑛 ∈ Z by homotopy invariance. Hence 𝐾𝐻𝑛 (ev0) and 𝐾𝐻𝑛 (𝜑) are isomorphisms.
Since ev0 ◦𝜑 agrees with 𝑖 ◦ pr, the claim follows.

Chapter 7

7.7. The composite of two cofibrations is again a cofibration. The same is true for
weak equivalences. Hence 𝑐𝑜C and 𝑤C are indeed subcategories of C.

Axioms (i), (ii) and (iv) appearing in Definition 7.5 are obviously satisfied.
Consider chain maps 𝑖∗ : 𝐴∗ → 𝐵∗ and 𝑓∗ : 𝐴∗ → 𝐶∗ of finite projective 𝑅-chain

complexes such that 𝑖𝑛 : 𝐴𝑛 → 𝐵𝑛 is split injective for all 𝑛 ∈ Z. Define 𝐷∗ to be
the cokernel of the chain map 𝑖∗ ⊕ 𝑓∗ : 𝐴∗ → 𝐵∗ ⊕ 𝐶∗. Then we obtain a short exact
sequence of finite projective 𝑅-chain complexes 0→ 𝐴∗

𝑖∗⊕ 𝑓∗−−−−→ 𝐵∗⊕𝐶∗
pr∗−−→ 𝐷∗ → 0,
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since for every 𝑛 ≥ 0 the map 𝑖𝑛 is split injective and hence the sequence of
𝑅-modules 0 → 𝐴𝑛

𝑖𝑛⊕ 𝑓𝑛−−−−−→ 𝐵𝑛 ⊕ 𝐶𝑛
pr𝑛−−→ 𝐷𝑛 → 0 is split exact. One easily checks

that we obtain a pushout of finite projective 𝑅-chain complexes

𝐴∗
𝑖∗ //

𝑓∗
��

𝐵∗

pr∗ |𝐵∗
��

𝐶∗ pr∗ |𝐶∗
// 𝐷

such that the lower horizontal arrow is a cofibration. Hence axiom (iii) is satisfied.
Axiom (v) follows from the long exact homology sequences associated to a short

exact sequence of 𝑅-chain complexes and the Five Lemma.

7.19. This follows from the property of the map i of (7.14) that 𝜋𝑛 (i) is bijective for
𝑛 ≥ 1, from Remark 7.15, and from Theorem 7.18, since 𝐾𝑛 (Z) vanishes for 𝑛 ≤ −1
and is Z for 𝑛 = 0.

7.23. Since Wh2 (Z) is trivial, one easily checks that under the isomorphism (7.22)
the kernel of 𝐿2 (𝑆1) is isomorphic to 𝑁𝐴2 ({•}) ⊕ 𝑁𝐴2 ({•}) and hence non-trivial.

7.28. We obtain from the fibration (7.24) the exact sequence

𝜋1 (𝐵𝐺+ ∧ 𝐴({•})) → 𝜋1 (𝐴(𝐵𝐺)) → 𝜋1 (Wh(𝐵𝐺))
→ 𝜋0 (𝐵𝐺+ ∧ 𝐴({•})) → 𝜋0 (𝐴(𝐵𝐺)).

Since 𝐴({•}) is connected, the Atiyah-Hirzebruch spectral sequence shows that
𝜋0 ({•}+ ∧ 𝐴({•})) → 𝜋0 (𝐵𝐺+ ∧ 𝐴({•})) is bijective. Since the homomorphism
𝜋0 ({•}+ ∧ 𝐴({•})) → 𝜋0 (𝐵𝐺+ ∧ 𝐴({•})) is split injective, the map

𝜋0 (𝐵𝐺+ ∧ 𝐴({•})) → 𝜋0 (𝐴(𝐵𝐺))

is injective. Using diagram (7.25), we obtain a short exact sequence

𝐻1 (𝐵𝜋1 (𝐵𝐺); K(Z)) → 𝐾1 (Z𝜋1 (𝐵𝐺)) → 𝜋1 (Wh(𝐵𝐺)) → 0.

Again by the Atiyah-Hirzebruch spectral sequence we obtain an isomorphism
𝐻1 (𝐵𝜋1 (𝐵𝐺); K(Z)) � 𝐺/[𝐺,𝐺] × {±1}. Hence the image of the map

𝐻1 (𝐵𝜋1 (𝐵𝐺); K(Z)) → 𝐾1 (Z𝜋1 (𝐵𝐺))

is the subgroup of 𝐾1 (Z𝐺) = 𝐾1 (Z𝜋1 (𝐵𝐺)) given by the trivial units {±𝑔 | 𝑔 ∈ 𝐺}.
This implies Wh(𝐺) � 𝜋1 (Wh(𝐵𝐺)).
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7.33. Suppose such 𝑀 exists. The long exact homotopy sequence of the fibra-
tion (7.24) looks like

· → 𝜋𝑛 (𝑀+ ∧ 𝐴({•})) → 𝐴𝑛 (𝑀) →Wh𝑛 (𝑀) → · · · .

The splitting (7.31) yields isomorphisms

𝐴𝑛 (𝑀) � WhDIFF
𝑛 (𝑀) ⊕ 𝜋𝑛 (Σ∞𝑀).

Rationally the Atiyah-Hirzebruch sequence always collapses. Hence we obtain from
Theorem 6.24 and Theorem 7.18 isomorphisms

𝜋𝑛 (𝑀+ ∧ 𝐴({•})) ⊗Z Q � 𝐻𝑛 (𝑀;Q) ⊕
⊕
𝑘≥1

𝐻𝑛−4𝑘−1 (𝑀;Q).

Hence we obtain the long exact sequence of Q-modules

· · · →Wh𝑛+1 (𝑀) ⊗Z Q→ 𝐻𝑛 (𝑀;Q) ⊕
⊕
𝑘≥1

𝐻𝑛−4𝑘−1(𝑀;Q)

→ 𝐻𝑛 (𝑀;Q) ⊕WhDIFF
𝑛 (𝑀) ⊗Z Q→Wh𝑛 (𝑀) ⊗Z Q→ · · · .

Since by assumption the map WhDIFF
𝑛 (𝑀) ⊗Z Q→ Wh𝑛 (𝑀) ⊗Z Q is bijective for

𝑛 ≥ 0, we obtain for every 𝑛 ≥ 0 isomorphisms

𝐻𝑛 (𝑀;Q) ⊕
⊕
𝑘≥1

𝐻𝑛−4𝑘−1(𝑀;Q) � 𝐻𝑛 (𝑀;Q).

This implies for every 𝑛 ≥ 0 and 𝑘 ≥ 1 that 𝐻𝑛−4𝑘−1(𝑀;Q) = 0, a contradiction to
𝐻0 (𝑀;Q) = Q.

Chapter 9

9.6. It is straightforward to check that 𝑒(𝑃) is a well-defined 𝑅-homomorphism,
compatible with direct sums and natural. It remains to show that it is bijective for
a finitely generated projective 𝑅-module 𝑃. Let 𝑄 be another finitely generated
projective 𝑅-module. Since 𝑒(𝑃 ⊕ 𝑄) is up to isomorphism 𝑒(𝑃) ⊕ 𝑒(𝑄), the map
𝑒(𝑃 ⊕ 𝑄) is bijective if and only if both 𝑒(𝑃) and 𝑒(𝑄) are bijective. Since we can
find 𝑄 such that 𝑃 ⊕ 𝑄 � 𝑅𝑛, it suffices to consider the case 𝑃 = 𝑅, which follows
from a direct computation.

9.14. Let 𝑏𝑖 (𝑀) := dimR (𝐻𝑖 (𝑀;R)) be the 𝑖-th-Betti number. Poincaré duality
implies 𝑏𝑖 (𝑀) = 𝑏4𝑘−𝑖 (𝑀) for all 𝑖 ≥ 0. We conclude directly from the definition
of the signature that sign(𝑀) ≡ 𝑏2𝑘 (𝑀) mod 2. We get modulo 2
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𝜒(𝑀) ≡
4𝑘∑︁
𝑖=0
(−1)𝑖 · 𝑏𝑖 (𝑀)

≡
2𝑘−1∑︁
𝑖=0
(−1)𝑖 · 𝑏𝑖 (𝑀) + 𝑏2𝑘 (𝑀) +

4𝑘∑︁
𝑖=2𝑘+1

(−1)𝑖 · 𝑏𝑖 (𝑀)

≡
2𝑘−1∑︁
𝑖=0
(−1)𝑖 · 𝑏𝑖 (𝑀) + 𝑏2𝑘 (𝑀) +

4𝑘∑︁
𝑖=2𝑘+1

(−1)𝑖 · 𝑏4𝑘−𝑖 (𝑀)

≡
2𝑘−1∑︁
𝑖=0
(−1)𝑖 · 𝑏𝑖 (𝑀) + 𝑏2𝑘 (𝑀) +

2𝑘−1∑︁
𝑖=0
(−1)𝑖 · 𝑏𝑖 (𝑀)

≡ 𝑏2𝑘 (𝑀)
≡ sign(𝑀).

9.16.

(i) If 𝑛 is odd, then dim(CP𝑛) is not divisible by four and hence sign(CP𝑛) = 0. If 𝑛
is even, then the intersection pairing of CP𝑛 looks like Z× Z→ Z (𝑎, 𝑏) ↦→ 𝑎𝑏

and hence sign(CP𝑛) = 1.
(ii) Since 𝑆𝑇𝑀 is the boundary of the total space 𝐷𝑇𝑀 of the disk tangent bundle,

Theorem 9.15 (i) implies sign(𝑆𝑇𝑀) = 0.
(iii) We get sign(𝑀) = 0 from assertions (v) and (vi) of Theorem 9.15.

9.23. Note in the situation under consideration that 𝜖 = 1 and the involution on Z
is the trivial involution. Hence the projection pr : 𝑅 → 𝑄 𝜖 (𝑅) is the identity. We
conclude from Remark 9.21 that (𝑃, 𝜆) admits a quadratic refinement if and only if
there exists a map 𝜇 : 𝑃→ Z such that 𝜇(𝑛𝑥) = 𝑛2𝜇(𝑥) holds for all 𝑛 ∈ Z and 𝑥 ∈ 𝑃,
𝜇(𝑥 + 𝑦) − 𝜇(𝑥) − 𝜇(𝑦) = 𝜆(𝑥, 𝑦) is true for all 𝑥, 𝑦 ∈ 𝑃, and 𝜆(𝑥, 𝑥) = 2 · 𝜇(𝑥) is
valid for all 𝑥 ∈ 𝑃. Obviously the existence of 𝜇 implies 𝜆(𝑥, 𝑥) is even for all 𝑥 ∈ 𝑃.
Suppose that 𝜆(𝑥, 𝑥) is even for all 𝑥 ∈ 𝑃. Then we can define 𝜇(𝑥) := 𝜆(𝑥, 𝑥)/2 and
𝜇 has all the desired properties.

9.27. Show that the diagonal in 𝑃 ⊕ 𝑃 is a Lagrangian for the non-degenerate
𝜖-quadratic form (𝑃 ⊕ 𝑃, 𝜓 ⊕ −𝜓) and then apply Lemma 9.26.

9.28. This follows from Lemma 9.11, Remark 9.24, and Lemma 9.26.

9.31. A non-degenerate quadratic form on 𝑉 is a map 𝜇 : 𝑉 → F2 such that
𝜇(0) = 0 holds, we get a non-degenerate symmetric pairing 𝜆 : 𝑉 × 𝑉 → F2 by
𝜆(𝑝, 𝑞) = 𝜇(𝑝 + 𝑞) + 𝜇(𝑝) + 𝜇(𝑞) and 𝜆(𝑝, 𝑝) = 0 holds for all 𝑝 ∈ 𝑉 , see
Remark 9.21. Fix a basis {𝑒1, 𝑒2} for 𝑉 . Then 𝜆(𝑒𝑖 , 𝑒 𝑗 ) = 1 for 𝑖 ≠ 𝑗 , since 𝜆 is non-
degenerate and we already know 𝜆(𝑒1, 𝑒1) = 𝜆(𝑒2, 𝑒2) = 𝜆(𝑒1 + 𝑒2, 𝑒1 + 𝑒2) = 0 and
𝜆(𝑒1, 𝑒2) = 𝜆(𝑒2, 𝑒1). This implies that either 𝜇(𝑒1) = 𝜇(𝑒2) = 𝜇(𝑒1 + 𝑒2) = 1 or
that precisely one of the elements 𝜇(𝑒1), 𝜇(𝑒2), 𝜇(𝑒1+𝑒2) is 1. By possibly replacing



766 26 Solutions of the Exercises

the basis {𝑒1, 𝑒2} by the basis {𝑒1, 𝑒1+𝑒2} or {𝑒2, 𝑒1+𝑒2}, we can arrange that either
𝜇(𝑒1) = 𝜇(𝑒2) = 𝜇(𝑒1 + 𝑒2) = 1 or that 𝜇(𝑒1) = 𝜇(𝑒2) = 0 and 𝜇(𝑒1 + 𝑒2) = 1.
The first one has Arf invariant 1, the second 0. Hence there are up to isomorphism
precisely two non-degenerate quadratic forms on 𝑉 .

9.44. By the definition of the self-intersection number it suffices to show 𝜇( 𝑓 ) ≠ 0
in 𝑄 𝜖 (Z𝜋). The map Z𝜋 → Z/2 sending

∑
𝑔∈𝜋 𝑛𝑔 · 𝑔 to

∑
𝑔∈𝐺 𝑛𝑔 induces a map of

abelian groups 𝑄 𝜖 (Z𝜋) → Z/2. Since the set of double points consists of precisely
one element, it sends 𝜇( 𝑓 ) to 1 and hence 𝜇( 𝑓 ) ≠ 0.

9.45. Consider the inclusion 𝑖 : 𝑆1 → 𝑆1 × 𝑆1 onto the first factor. One easily
changes it locally to an immersion 𝑗 : 𝑆1 → 𝑆1 × 𝑆1 in general position with exactly
one double point such that 𝑖 and 𝑗 are homotopic. We conclude from Exercise 9.44
that 𝑖 and 𝑗 are not regularly homotopic.

9.52. Denote by 𝐶𝑛−∗ (𝑋)untw the Z𝜋-chain complex which is analogously defined
as 𝐶𝑛−∗ (𝑋), but now with respect to the untwisted involution. Its 𝑛-th homology
𝐻𝑛 (𝐶𝑛−∗ (𝑋)untw) depends only on the homotopy type of 𝑋 . If 𝑋 carries the structure
of a Poincaré complex with respect to 𝑤 : 𝜋1 (𝑋) → {±1}, then the Poincaré Z𝜋-
chain homotopy equivalence induces a Z𝜋-isomorphism 𝐻𝑛 (𝐶𝑛−∗ (𝑋)untw) � Z𝑤 .
Thus we rediscover 𝑤 from 𝐻𝑛 (𝐶𝑛−∗ (𝑋)untw).

9.60. This follows from the fact that two embeddings 𝑀 → R𝑛+𝑚 for large enough
𝑚 are diffeotopic.

9.69. It suffices to show that 𝑓 is 𝑙-connected for 𝑙 = 𝑘 +1, 𝑘 +2, . . .. By assumption
this holds for 𝑙 = 𝑘 + 1. In the induction step 𝑓 is 𝑙-connected for some 𝑙 ≥ 𝑘 + 1 and
we have to show that 𝑓 is (𝑙 + 1)-connected, i.e., 𝜋𝑙+1 ( 𝑓 ) = 0. By Lemma 9.64 (ii),
which applies also to the case where 𝑀 is only a finite Poincaré complex, it suffices
to show that 𝐾𝑙 (𝑀) = 0. By Lemma 9.64 (i), which applies also to the case where
𝑀 is only a finite Poincaré complex, it suffices to show 𝐾𝑛−𝑙 (𝑀) = 0. Since 𝑓 is
(𝑘 + 1)-connected and 𝑛 − 𝑙 ≤ 𝑘 , 𝐾𝑛−𝑙 (𝑀) = 0 vanishes by Lemma 9.64 (ii).

9.75. Let 𝑓 : 𝑀 → 𝑆4𝑘+2 be any map of degree one. Choose an embedding 𝑖 : 𝑀 →
R4𝑘+2+𝑚 for large enough 𝑚. Then the given stable trivialization of the tangent
bundle defines a trivialization of the normal bundle. It can be viewed as bundle map
𝑓 : 𝜇(𝑖) → R𝑚 covering 𝑓 . Thus we obtain a normal map of degree one ( 𝑓 , 𝑓 ). It
defines a surgery obstruction 𝜎( 𝑓 , 𝑓 ) ∈ 𝐿4𝑘+2 (Z). Since 𝐿4𝑘+2 (Z) is isomorphic to
Z/2, this is the same as an element 𝛼(𝑀) ∈ Z/2. It is independent by the choice
of 𝑓 and 𝑓 and depends only on the stably framed bordism class of 𝑀 , since by a
theorem due to Hopf the homotopy class of 𝑓 is uniquely determined by its degree
and the surgery obstruction is an invariant under normal bordism.
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9.100. Because of Theorem 9.99 (ii) we can assume that 𝐹 : 𝑊 → 𝑋 × [0, 1] is
a simple homotopy equivalence. We conclude from Theorem 3.37 (iii) that both
inclusions 𝑀 → 𝑊 and 𝑁 → 𝑊 are simple homotopy equivalences. By Theo-
rem 3.47 there exists a diffeomorphism 𝑊 → 𝑀 × [0, 1]. Hence the restriction of
this diffeomorphism to 𝑁 is a diffeomorphism 𝑁 → 𝑀 × {1} = 𝑀 .

9.107. This follows from the various Rothenberg sequences, since the Z/2-Tate
cohomology of any Z[Z/2]-module is annihilated by multiplication with 2.

9.112. Since Wh(Z), 𝐾0 (Z[Z]), and 𝐾𝑛 (Z[Z]) for 𝑛 ≤ −1 vanish, see Example 2.4,
Theorem 3.17, and Theorem 4.7, the decoration does not matter by Theorem 9.106.
We conclude from (9.109) and the computations of 𝐿𝑛 (Z) in Theorem 9.29, Theo-
rem 9.32, and Theorem 9.82:

𝐿𝑛 (Z[Z]) � 𝐿𝑛−1 (Z) ⊕ 𝐿𝑛 (Z) �
{
Z 𝑛 ≡ 0, 1 mod 4;
Z/2 𝑛 ≡ 2, 3 mod 4.

9.115. We conclude from Conjectures 3.110, 4.18, and 9.114 and from Theo-
rem 9.106 that the decoration does not matter. If 𝑔 = 0, 𝜋1 (𝐹𝑔) is trivial and hence
𝐿
⟨−∞⟩
𝑛 (Z[𝜋1 (𝐹𝑔)]) = 𝐿

⟨−∞⟩
𝑛 (Z). Suppose 𝑔 ≥ 1. Then 𝐹𝑔 itself is a model for

𝐵𝜋1 (𝐹𝑔). Because of Conjecture 9.114 we get

𝐻𝑛 (𝐹𝑔; L⟨−∞⟩ (Z)) � 𝐿 ⟨−∞⟩𝑛 (Z[𝜋1 (𝐹𝑔)]).

Next we compute𝐻𝑛 (𝐹𝑔; L⟨−∞⟩ (Z)) using the Atiyah-Hirzebruch spectral sequence.
This is easy, since 𝐹𝑔 is 2-dimensional, the edge homomorphism which describes
𝐻𝑛 ({•}; L⟨−∞⟩) → 𝐻𝑛 (𝐹𝑔; L⟨−∞⟩) is split injective, and 𝐿

⟨−∞⟩
𝑛 (Z) is Z if 𝑛 ≡

0 mod 4, Z/2 if 𝑛 ≡ 0 mod 4, and {0} otherwise. The result is

𝐿
⟨−∞⟩
𝑛 (Z[𝜋1 (𝐹𝑔)]) �


Z ⊕ Z/2 𝑛 ≡ 0 mod 4;
Z2𝑔 𝑛 ≡ 1 mod 4;
Z ⊕ Z/2 𝑛 ≡ 2 mod 4;
(Z/2)2𝑔 𝑛 ≡ 3 mod 4.

9.142. By of Poincaré duality it suffices to show 𝑓∗ (L(𝑀)∩ [𝑀]Q) = L(𝑁)∩ [𝑁]Q.
But this follows from the Novikov Conjecture 9.137 because of Remark 9.141, since
we can put 𝑁 = 𝐵𝐺.

9.149. This follows from the long exact homotopy sequence associated to a fibration.

9.150. Let 𝐶 ⊆ 𝜋1 (𝑋) be any finite cyclic subgroup. Since the universal covering 𝑋
is a model for 𝐸𝜋1 (𝑋), it is also a model for 𝐸𝐶 after restricting the group action.
Hence 𝐶\𝑋 is a finite-dimensional 𝐶𝑊-model for 𝐵𝐶. This implies that the group
homology 𝐻𝑛 (𝐶) of 𝐶 is trivial in dimensions 𝑛 > dim(𝑋). It is known that the
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homology of 𝐶 is 𝐶 in all odd dimensions. Hence 𝐶 must be trivial. This shows that
𝜋1 (𝑋) is torsionfree.

9.152. The top homology group 𝐻𝑛 (𝑀; F2) with F2-coefficients of any closed
𝑛-dimensional manifold𝑀 is known to be isomorphic to F2. If𝑀 is simply connected
and aspherical it is homotopy equivalent to the one-point-space {•}. This implies
𝑛 = 0 and hence 𝑀 = {•} for a simply connected aspherical manifold.

9.153. See [660, Lemma 3.2].

9.166. See Example 3.62.

9.167. Let 𝑘 and 𝑛 be natural numbers such at least one of them is even. Then 𝑆𝑘
and 𝑆𝑛 are topologically rigid but 𝑆𝑘 × 𝑆𝑛 is not. See Remark 9.165.

9.178. Let 𝐺𝑘 be an 𝑛𝑘-dimensional Poincaré duality group for 𝑘 = 0, 1. Let 𝑃𝑘∗ be
an 𝑛𝑘-dimensional finite projective Z[𝐺𝑘]-resolution of the trivial Z[𝐺𝑘]-module Z.
Then 𝑃0

∗ ⊗Z 𝑃1
∗ is an (𝑛0 + 𝑛1)-dimensional finite projective Z[𝐺0 ×𝐺1]-resolution

of the trivial Z[𝐺0 × 𝐺1]-module Z. The obvious chain map given by the tensor
product over Z and the obvious identification Z[𝐺0] ⊗Z Z[𝐺1] = Z[𝐺0 × 𝐺1]

homZ[𝐺0 ] (𝑃0
∗ ,Z[𝐺0]) ⊗Z homZ[𝐺1 ] (𝑃1

∗ ,Z[𝐺1])
�−→ homZ[𝐺0×𝐺1 ]

(
𝑃0
∗ ⊗Z 𝑃1

∗ ,Z[𝐺0 × 𝐺1]
)

is an isomorphism of Z-cochain complexes. Since homZ[𝐺0 ] (𝑃0
∗ ,Z[𝐺0]) is a free

Z-cochain complex whose cohomology is concentrated in dimension 𝑛𝑘 and given
there by Z, there exists a Z-chain homotopy equivalence from [𝑛𝑘] (Z), which is the
Z-chain complex concentrated in dimension 𝑛𝑘 and having Z as 𝑛𝑘-th chain module,
to homZ[𝐺0 ] (𝑃0

∗ ,Z[𝐺0]). Hence homZ[𝐺0 ] (𝑃0
∗ ,Z[𝐺0]) ⊗Z homZ[𝐺1 ] (𝑃1

∗ ,Z[𝐺1]) is
Z-chain homotopy equivalent to [𝑛0] (Z) ⊗ [𝑛1] (Z) � [𝑛0+𝑛1] (Z). This implies that
𝐻𝑛

(
homZ[𝐺0×𝐺1 ] (𝑃0

∗ ⊗Z 𝑃1
∗ ,Z[𝐺0 × 𝐺1])

)
is Z in dimension (𝑛0 + 𝑛1) and trivial

otherwise. Hence 𝐺0 × 𝐺1 is an (𝑛0 + 𝑛1)-dimensional Poincaré duality group.

9.193. This follows from Theorem 9.171, Theorem 13.32 (iv), and Theorem 16.1 (ia).

9.200. The map 𝛼0 : 𝜋0 (𝐺 (𝑀)) → Out(𝜋) is bijective by Remark 9.147. The map
𝜋0 (Top(𝑀)) → 𝜋0 (𝐺 (𝑀)) is surjective as 𝑀 is topologically rigid.

Chapter 10
10.3. Since

𝜒(𝑋) =
∑︁
𝑛≥0
(−1)𝑛 · dimQ (𝐻𝑛 (𝑋;Q)) =

∑︁
𝑛≥0
(−1)𝑛 · dimQ (𝐻𝑛 (𝑋;Q))

holds, this follows directly from (10.1) and (10.2).
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10.17. We obtain from (10.16) an isomorphism

𝐾∗𝐺 (𝑋) ⊗Z Q �
∏

𝐶∈C(𝐺)
𝐻∗ (𝑋𝐶/𝐺;Q(𝜁𝐶 )).

Now use the fact dimQ (Q(𝜁𝐶 )) = 𝜑( |𝐶 |).

10.21. Without loss of generality we can assume that 𝐾𝐻
𝑗
(𝑌, 𝐵) is torsionfree for all

𝑗 ∈ Z. Now check that we obtain two 𝐺-homology theories on pairs of finite proper
𝐺-𝐶𝑊-complexes (𝑋, 𝐴) by putting

H ∗𝐺 (𝑋, 𝐴) :=
⊕
𝑖+ 𝑗=𝑛

𝐾𝐺𝑖 (𝑋, 𝐴) ⊗Z 𝐾𝐻𝑗 (𝑌, 𝐵);

K∗𝐻 (𝑋, 𝐴) := 𝐾∗𝐺×𝐻 ((𝑋, 𝐴) × (𝑌, 𝐵)).

(When one wants to check the exactness of the long exact sequence of a pair for
H ∗
𝐺

, we need the assumption that 𝐾𝐻
𝑖
(𝑌, 𝐵) is torsionfree and hence the functor

− ⊗Z 𝐾𝐻𝑗 (𝑌, 𝐵) is exact for all 𝑗 ∈ Z.) The external multiplication defines a natural
transformation 𝑇∗

𝐺
: H ∗

𝐺
→ K∗

𝐺
of 𝐺-cohomology theories for pairs of finite proper

𝐺-𝐶𝑊-complexes. One checks that 𝑇∗
𝐺
(𝐺/𝐻) : H ∗

𝐺
(𝐺/𝐻) → K∗

𝐺
(𝐺/𝐻) is bijec-

tive for all finite subgroups 𝐻 ⊆ 𝐺. Now prove by induction over the number of
equivariant cells using the Five Lemma, the long exact sequence of a pair, excision,
and 𝐺-homotopy invariance that 𝑇𝑛

𝐺
(𝑋, 𝐴) is bijective for all pairs of finite proper

𝐺-𝐶𝑊-complexes (𝑋, 𝐴) and all 𝑛 ∈ Z.

10.23. This follows from the long exact sequence of the pair (𝐷𝐸, 𝑆𝐸), the Thom
isomorphisms (10.22), and the commutativity of the following diagram, which is a
consequence of the naturality of the product

𝐾∗
𝐺
(𝑋)

𝐾∗
𝐺
(𝑝𝐷𝐸 ) �

��

−∪𝑒 (𝑝) // 𝐾∗
𝐺
(𝑋)

𝐾∗
𝐺
(𝑝𝐷𝐸 )�

��
𝐾∗
𝐺
(𝐷𝐸)

−∪𝐾0
𝐺
( 𝑗 ) (𝜆𝐸 ) // 𝐾∗

𝐺
(𝐷𝐸)

𝐾∗
𝐺
(𝐷𝐸) −∪𝜆𝐸

�
//

id �

OO

𝐾∗
𝐺
(𝐷𝐸, 𝑆𝐸)

𝐾∗
𝐺
( 𝑗 )

OO

10.29. If 𝐺 contains an element 𝑔 of order ≥ 3, then show | |𝑥𝑥∗ | | ≠ | |𝑥 | |2 for
𝑥 = 𝑔 + 1− 𝑔−1. If 𝐺 contains an element 𝑔 of order 2, then show | |𝑥𝑥∗ | | ≠ | |𝑥 | |2 for
𝑥 = 𝑔 + 𝑖 ∈ 𝐿1 (𝐺,C). Finally one checks directly that 𝐿1 (𝐺, 𝐹) is a 𝐶∗-algebra if 𝐺
is trivial or if 𝐺 has order 2 and 𝐹 = R.
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10.35. Since K is the colimit colim𝑛→∞M𝑛 (C), we conclude from Morita equiv-
alence and the compatibility with colimits over directed systems that the obvious
inclusion of 𝐶∗-algebras C → K, induces an isomorphism 𝐾𝑛 (C)

�−→ 𝐾∗ (K). To
finish the calculation, one directly proves that 𝐾𝑛 (C) is Z for 𝑛 = 0 and trivial for
𝑛 = 1 and applies Bott periodicity.

10.45. Since𝐺 is by assumption finite, 𝐻𝑛 (𝐵𝐺;Q) is Q if 𝑛 = 0 and is trivial for 𝑛 ≠
0. We conclude from the Chern characters (10.1) and (10.7) that dimQ (𝐾0 (𝐵𝐺) ⊗Z
Q) = dimQ (𝐾𝑂0 (𝐵𝐺) ⊗Z Q) = 1. We have 𝐾0 (𝐶∗𝑟 (𝐺)) � RepC (𝐺) and
𝐾𝑂0 (𝐶∗𝑟 (𝐺)) � RepR (𝐺). Now use the obvious fact that dimQ (RepC (𝐺) ⊗Z Q) =
1⇐⇒ 𝐺 = {1} holds.

10.47. Let 𝑐 : 𝑆1 → 𝑆1 be the automorphism of 𝑆1 sending 𝑧 ∈ 𝑆1 to 𝑧−1. Let 𝑇𝑐
be the mapping torus. One easily checks that 𝑇𝑐 is a model for 𝐵𝐺. Elementary
considerations about homology theories lead to the so-called Wang sequence

· · · 𝜕𝑛+1−−−→ 𝐾𝑛 (𝑆1)
id −𝐾𝑛 (𝑐)−−−−−−−−→ 𝐾𝑛 (𝑆1)

𝐾𝑛 (𝑖)−−−−→ 𝐾𝑛 (𝑇𝑐)
𝜕𝑛−−→ 𝐾𝑛−1 (𝑆1)

id −𝐾𝑛−1 (𝑐)−−−−−−−−−→ 𝐾𝑛−1 (𝑆1)
𝐾𝑛−1 (𝑖)−−−−−−→ · · · .

We know that 𝐾𝑛 (𝑆1) � Z for all 𝑛 ∈ Z. Elementary considerations about homology
theories imply that 𝐾𝑛 (𝑐) = − id𝐾𝑛 (𝑆1 ) for odd 𝑛 and 𝐾𝑛 (𝑐) = id𝐾0 (𝑆1 ) for even 𝑛.
Hence the Wang sequence reduces to

· · · → Z
2·id−−−→ Z

𝐾1 (𝑖)−−−−→ 𝐾1 (𝑇𝑐)
𝜕1−−→ Z

0−→ Z
𝐾0 (𝑖)−−−−→ 𝐾0 (𝑇𝑐) → Z

2·id−−−→ Z→ · · · .

This implies

𝐾𝑛 (𝐶∗𝑟 (𝐺)) � 𝐾𝑛 (𝑇𝑐) �
{
Z if 𝑛 is even;
Z ⊕ Z/2 if 𝑛 is odd.

10.62. Obviously hom{1} (𝐹, 𝑖∗𝐹) � 𝐹. Since 𝑖∗𝐹 = 𝐶0 (𝐺, 𝐹), all homomorphisms
of 𝐺-𝐶∗-algebras from 𝑖∗𝐹 to 𝐹 are zero and hence hom𝐺 (𝑖∗𝐹, 𝐹) vanishes.

10.71. Put 𝐺 = Z/𝑝. Since 𝑝 is an odd prime, we have dimR (𝑉) = dimR (𝑉𝐺) ≡
0 mod 2 and hence dim(𝑆𝑉) = dim(𝑆𝑉𝐺) ≡ 0 mod 2. Since dim(𝑆𝑉) = 𝑑 − 1, we
get 𝐾𝑛 (𝑆𝑉) = 𝐾𝑛 (𝑆𝑉𝐺) = 𝐾𝑛 (𝑆𝑑−1) for all 𝑛 ∈ Z. Since RepC (𝐺) � Z𝑝 , we get
im(𝜃𝐺) = Z[1/𝑝] and im(𝜃{1}) � Z[1/𝑝] 𝑝−1. We conclude from Theorem 10.69

Z[1/𝑝] ⊗Z 𝐾Z/𝑝
𝑛 (𝑆𝑉)

� Z[1/𝑝] ⊗Z 𝐾𝑛
(
𝑆𝑉𝐺/𝐶𝐺𝐺

)
⊕ Z[1/𝑝] 𝑝−1 ⊗Z 𝐾𝑛 (𝑆𝑉/𝐶𝐺{1})

� Z[1/𝑝] ⊗Z 𝐾𝑛 (𝑆𝑑−1) ⊕ Z[1/𝑝] 𝑝−1 ⊗Z 𝐾𝑛 (𝑆𝑉/𝐺).
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The Atiyah-Hirzebruch spectral sequence converges to 𝐾𝑛 (𝑆𝑉/𝐺) and has as
𝐸2-term 𝐸2

𝑟 ,𝑠 = 𝐻𝑟 (𝑆𝑉/𝐺;𝐾𝑠 ({•})). Since |𝐺 | is a 𝑝-power, we get a Z[1/𝑝]-
isomorphism Z[1/𝑝] ⊗Z 𝐻𝑟 (𝑆𝑉/𝐺) � Z[1/𝑝] ⊗Z[1/𝑝]𝐺 𝐻𝑟 (𝑆𝑉). Since 𝑝 is odd,
the 𝐺-operation on 𝐻𝑖 (𝑆𝑉) is trivial. Hence we get a Z[1/𝑝]-isomorphism

Z[1/𝑝] ⊗Z 𝐸2
𝑟 ,𝑠 � Z[1/𝑝] ⊗Z 𝐻𝑟 (𝑆𝑉 ;𝐾𝑠 ({•}))

�

{
Z[1/𝑝] if 𝑟 = 0, 𝑑 − 1 and 𝑠 is even;
0 otherwise.

Hence Z[1/𝑝] ⊗Z 𝐸2
𝑟 ,𝑠 is a finitely generated free Z[1/𝑝]-module for each (𝑟, 𝑠) and

we conclude from the isomorphism (10.1) for each 𝑛 ∈ Z∑︁
𝑟+𝑠=𝑛

rkZ[1/𝑝]
(
Z[1/𝑝] ⊗Z 𝐸2

𝑟 ,𝑠

)
= rkZ[1/𝑝]

(
Z[1/𝑝] ⊗Z 𝐾𝑛 (𝑆𝑉/𝐺)

)
.

This implies that all differentials in the Atiyah-Hirzebruch spectral sequence are
trivial after inverting 𝑝 and we get

Z[1/𝑝] ⊗Z 𝐾𝑛 (𝑆𝑉/𝐺) �

Z[1/𝑝] if 𝑑 is even;
Z[1/𝑝]2 if 𝑑 is odd and 𝑛 is even;
0 if 𝑑 is odd and 𝑛 is odd.

� Z[1/𝑝] ⊗Z 𝐾𝑛 (𝑆𝑑−1).

Now the claim follows from

Z[1/𝑝] ⊗Z 𝐾Z/𝑝
𝑛 (𝑆𝑉) � Z[1/𝑝] ⊗Z 𝐾𝑛 (𝑆𝑑−1) ⊕ Z[1/𝑝] 𝑝−1 ⊗Z 𝐾𝑛 (𝑆𝑉/𝐺)

� Z[1/𝑝] ⊗Z 𝐾𝑛 (𝑆𝑑−1) ⊕ Z[1/𝑝] 𝑝−1 ⊗Z 𝐾𝑛 (𝑆𝑑−1)
� Z[1/𝑝] 𝑝 ⊗Z 𝐾𝑛 (𝑆𝑑−1).

10.74. The abelian group 𝐾ALG
1 (𝐶 (𝑋, 𝐹)) is not finitely generated because of

Theorem 3.121, whereas 𝐾TOP
1 (𝐶 (𝑋, 𝐹)), which is 𝐾1 (𝑋) or 𝐾𝑂1 (𝑋), is finitely

generated.

Chapter 11

11.6. Define the 𝑛-skeleton of 𝑋 to be 𝑝−1 (𝑋𝑛). Use the facts that a covering over a
contractible space such as 𝐷𝑛 is trivial and a covering is a local homeomorphism.

11.7. The Euler characteristic of a compact 𝐶𝑊-complex can be computed by
counting cells. Each equivariant cell in 𝑋 − 𝑋Z/𝑝 contributes 𝑝 (non-equivariant)
cells.
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11.12. Choose an irrational number 𝜃. Let 𝜙 : 𝑆1 → 𝑆1 be the homeomorphism
given by multiplication by the complex number exp(2𝜋𝑖𝜃). The space 𝑆1 with the
associated Z-action is free but not proper.

11.14. Suppose that there is a free smooth Z/𝑝-action on 𝑆2𝑛. By Remark 11.13
we obtain a free Z/𝑝-𝐶𝑊-structure on 𝑆2𝑛. By a previous exercise we get the
contradiction

0 ≡ 𝜒(∅) ≡ 𝜒
(
(𝑆2𝑛)Z/𝑝

)
≡ 𝜒(𝑆2𝑛) ≡ 2 mod 𝑝.

11.17. This follows from Theorem 11.16 (i).

11.20. Suppose that 𝐸F (𝐺) has a zero-dimensional model. Hence it is a disjoint
union of spaces of the shape 𝐺/𝐻. Since 𝐸F (𝐺) is path connected, it must be 𝐺/𝐺.
This implies 𝐺 ∈ F .

If 𝐺 ∈ F holds, 𝐺/𝐺 is a 0-dimensional 𝐺-𝐶𝑊-model for 𝐸F (𝐺).
An example for 𝐿 is R.

11.35. We obtain from Subsection 11.6.13 that there is a𝐺-𝐶𝑊-model for 𝐸𝐺 which
is obtained from𝐺/𝑀 by attaching free cells of dimensions ≤ 2. Let 𝑖 : 𝐺/𝑀 → 𝐸𝐺

be the inclusion. Consider the map

𝑗 = id𝐸𝐺 ×𝐺𝑖 : 𝐸𝐺 ×𝐺 𝐺/𝑀 → 𝐸𝐺 ×𝐺 𝐸𝐺.

Since for a space 𝑌 the canonical projection 𝐸𝐺 ×𝐺 (𝐺 × 𝑌 ) → 𝑌 is a homotopy
equivalence, we conclude by a Mayer-Vietoris argument that 𝐻𝑛 ( 𝑗) is bijective for
𝑛 ≥ 3. The canonical projections 𝐸𝐺×𝐺𝐺/𝑀 → 𝐸𝐺/𝑀 = 𝐵𝑀 and 𝐸𝐺×𝐺 𝐸𝐺 →
𝐸𝐺×𝐺 {•} = 𝐵𝐺 are homotopy equivalences, since 𝐸𝐺 is (after forgetting the group
action) contractible.

11.36. Since hyperbolic groups, arithmetic groups, mapping class groups, Out(𝐹𝑛),
and one-relator groups have a finite-dimensional model for 𝐸𝐺 by Subsections
11.6.7, 11.6.8, 11.6.9, 11.6.10, and 11.6.13, it suffices to show for a group 𝐺 with a
𝑑-dimensional model for 𝐸𝐺 that 𝐻𝑘 (𝐵𝐺;Q) = 0 holds for 𝑘 > 𝑑.

The cellular Q-chain complex 𝐶∗ (𝑋) of a proper 𝐺-𝐶𝑊-complex 𝑋 consists
of projective Q𝐺-modules, since for any finite subgroup 𝐻 ⊆ 𝐺 the Q𝐺-module
Q[𝐺/𝐻] is projective. Since 𝐸𝐺 is contractible (after forgetting the group action), its
cellular Q-chain complex yields a dim(𝐸𝐺)-dimensional projective Q𝐺-resolution
of the trivial Q𝐺-module Q.

11.48. Since𝐻 is infinite and countable, its cardinality isℵ0. We conclude gd(𝐻) = 1
from Remark 11.47. Theorem 11.46 implies that gd(𝐻 ⋊ Z) ≤ 2. Since 𝐻 ⋊ Z is
finitely generated and does not contain a finitely generated free group of finite index,
we cannot have gd(𝐻 ⋊ Z) ≤ 1.
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11.55. The universal covering on 𝑀 is the hyperbolic space and hence contractible.
Therefore 𝑀 is a model for 𝐵𝐺. Since 𝐻𝑛 (𝐵𝐺;Z𝑤) � Z for 𝑤 : 𝐺 = 𝜋1 (𝑁) → {±}
given by the first Stiefel-Whitney class of 𝑁 , we conclude cd(𝐺) = dim(𝑁) =

gd(𝐺). As 𝑆1 is not hyperbolic, we have dim(𝑀) ≥ 2. Since 𝐺 is hyperbolic
and hence satisfies conditions (M) and (NM), we conclude gd(𝐺) = gd(𝐺) from
Theorem 11.54 (iii).

11.61. This follows from Theorem 11.60.

11.64. Apply Theorem 11.63 to 𝑋 and take 𝑌 = 𝐻\𝐸𝐺 for a torsionfree subgroup
𝐻 of 𝐺 with [𝐺 : 𝐻] = 2.

Chapter 12

12.4. The desired Z/2-pushout for the 1-skeleton is obvious and for the 2-skeleton
given by

Z/2 × 𝑆1 pr //

��

𝑆1

��
Z/2 × 𝐷2 // 𝑆2

where pr is the projection. Now one easily checks that 𝐶∗ (𝑆2) ⊗Or(Z/2) 𝑅C is given
by the Z-chain complex concentrated in dimensions 0,1, and 2

· · · → {0} → {0} → 𝑅C ({1})
𝑐2−→ 𝑅C (Z/2)

0−→ 𝑅C (Z/2) → {0} → · · ·

where 𝑐2 is induction with the inclusion {1} → Z/2. This implies

𝐻
Z/2
𝑛 (𝑆2; 𝑅C) �


Z2 𝑛 = 0;
Z 𝑛 = 1;
{0} otherwise.

12.7. By applying Lemma 12.5 to the skeletal filtration 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ · · · ⊆ 𝑋 =⋃
𝑛≥0 𝑋𝑛, the claim can be reduced to finite-dimensional pairs. Using the axioms

of a 𝐺-homology theory, the Five Lemma, and induction over the dimension, one
reduces the proof to the special case (𝑋, 𝐴) = (𝐺/𝐻, ∅).

12.11. This follows directly from the axiom about the compatibility with conjugation
applied in the case 𝑋 = {•}.

12.16. The real line R with the obvious action of 𝐷∞ = Z/2 ∗ Z/2 = Z ⋊ Z/2
is a 𝐷∞-𝐶𝑊-model for 𝐸𝐷∞, see Theorem 11.25. Up to conjugacy there are two
subgroups 𝐻0 and 𝐻1 of order two in 𝐷∞. One obtains a 𝐷∞-pushout
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𝐷∞ × 𝑆0 = 𝐷∞ ⨿ 𝐷∞
pr0 ⨿ pr1 //

𝑖

��

𝐷∞/𝐻0 ⨿ 𝐷∞/𝐻1

��
𝐷∞ × 𝐷1 // 𝐸𝐷∞

where pr0 and pr1 are the obvious projections and 𝑖 is the obvious inclusion. Hence
the associated long exact Mayer-Vietoris sequence reduces to

0→ 𝐾
𝐷∞
1 (𝐸𝐷∞) → 𝑅C ({1}) ⊕ 𝑅C ({1})

𝑓
−→ 𝑅C ({1}) ⊕ 𝑅C (Z/2) ⊕ 𝑅C (Z/2) → 𝐾

𝐷∞
0 (𝐸𝐷∞) → 0

where 𝑓 sends (𝑣, 𝑤) to (𝑣+𝑤, 𝑖∗ (𝑣),−𝑖∗ (𝑤)) for 𝑖∗ the map induced by the inclusion
𝑖 : {1} → Z/2. This implies

𝐾𝐷∞𝑛 (𝐸𝐷∞) �
{
Z3 𝑛 even;
{0} 𝑛 odd.

12.36. One easily checks that for a given group 𝐺 and every subgroup 𝐻 ⊆ 𝐺 and
every 𝑛 ∈ Z the map 𝐻𝐺𝑛 (𝐺/𝐻; t) : 𝐻𝐺𝑛 (𝐺/𝐻; E) → 𝐻𝐺𝑛 (𝐺/𝐻; F) can be identi-
fied with 𝜋𝑛 (t(𝑡𝐺 (𝐺/𝐻))) : 𝜋𝑛 (E(𝑡𝐺 (𝐺/𝐻))) → 𝜋𝑛 (F(𝑡𝐺 (𝐺/𝐻))) and hence is
bijective by assumption. Now apply Lemma 12.6.

12.47. The argument appearing in the solution of Exercise 12.16 yields a long exact
Mayer- Vietoris sequence

· · · → 𝐾0 (𝑅) ⊕ 𝐾0 (𝑅) → 𝐾0 (𝑅) ⊕ 𝐾0 (𝑅[Z/2]) ⊕ 𝐾0 (𝑅[Z/2])
→ 𝐻

𝐷∞
0 (𝐸𝐷∞; K𝑅) → 𝐾−1 (𝑅) ⊕ 𝐾−1 (𝑅)
→ 𝐾−1 (𝑅) ⊕ 𝐾−1 (𝑅[Z/2]) ⊕ 𝐾−1 (𝑅[Z/2]) → · · · .

Since the obvious map 𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑅[Z/2]) is split injective, we obtain for 𝑛 ∈ Z
isomorphisms

𝐾𝑛 (𝑅[Z/2]) ⊕ coker (𝐾𝑛 (𝑅) → 𝐾𝑛 (𝑅[Z/2])) � 𝐻𝐷∞𝑛 (𝐸𝐷∞; K𝑅).

If 𝑛 ≤ −1, then 𝐾𝑛 (𝑅[Z/2]) = 0 for 𝑅 = Z,C by Theorem 4.16 and Theorem 4.22.
Hence

𝐻𝐷∞𝑛 (𝐸𝐷∞; K𝑅) � {0} for 𝑛 ≤ −1.

The map 𝐾0 (Z) → 𝐾0 (Z[Z/2]) is bijective by Example 2.107 and 𝐾0 (Z) = Z by
Example 2.4. Hence

𝐻
𝐷∞
0 (𝐸𝐷∞; KZ) � Z.
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Since 𝐾0 (C𝐻) � 𝑅C (𝐻) for a finite group 𝐻, one easily checks

𝐻
𝐷∞
0 (𝐸𝐷∞; KC) � Z3.

12.49. Since 𝑋/𝐺 has no odd-dimensional cells, 𝑋 has no odd-dimensional equiva-
riant cells. Moreover, if 𝑋/𝐺 is finite, then 𝑋 has only finitely many equivariant cells.
We conclude for any coefficient system 𝑀 that the Bredon homology𝐻𝑝 (𝑋;𝑀) van-
ishes if 𝑝 is odd or if 𝑝 is larger than the dimension of 𝑋 . If 𝑋 has only finitely many
equivariant cells and 𝑀 (𝐺/𝐻) is a finitely generated free abelian group for any finite
subgroup 𝐻 ⊆ 𝐺, then 𝐻𝑝 (𝑋;𝑀) is finitely generated free abelian for all 𝑝 ∈ Z.
Since 𝐾𝐺𝑞 (𝐺/𝐻) = 0 for odd 𝑞 and is a finitely generated free abelian group for even
𝑞 for every finite subgroup 𝐻 ⊆ 𝐺, and all isotropy groups of 𝑋 are by assumption
finite, we conclude for the 𝐸2-terms of the equivariant Atiyah-Hirzebruch spectral
sequence of Theorem 12.48 that 𝐸2

𝑝,𝑞 = 0 if 𝑝+ 𝑞 is odd. If 𝑋 has only finitely many
equivariant cells, then 𝐸2

𝑝,𝑞 is finitely generated free if 𝑝 + 𝑞 is even and vanishes
for large enough 𝑞. Now the claim follows from this spectral sequence.

12.54. Consider the long exact sequence of the pair (𝐸𝐺 ×𝐺 𝑋, 𝐸𝐺 ×𝐺 𝑋𝐺) and
of the pair (𝑋/𝐺, 𝑋𝐺/𝐺) = (𝑋/𝐺, 𝑋𝐺) and the map between them induced by the
projection (𝐸𝐺 ×𝐺 𝑋, 𝐸𝐺 ×𝐺 𝑋𝐺) → (𝑋/𝐺, 𝑋𝐺/𝐺), and use the fact that (𝑋, 𝑋𝐺)
is relatively free and hence H𝑛 (𝐸𝐺 ×𝐺 𝑋, 𝐸𝐺 ×𝐺 𝑋𝐺) → H𝑛 (𝑋/𝐺, 𝑋𝐺/𝐺) is
bijective.

12.59. From Theorem 12.58 we get a natural isomorphism of spectral sequences
from the equivariant Atiyah-Hirzebruch spectral sequence converging to BH𝐺 (𝑋)
to the equivariant Atiyah-Hirzebruch spectral sequence converging toH𝐺

∗ (𝑋). One
easily checks that all the differentials in the equivariant Atiyah-Hirzebruch spectral
sequence converging to BH𝐺 (𝑋) vanish.

12.60. For every finite group 𝐻 ⊆ 𝐺 the group 𝑁𝐺𝐻/𝐻 · 𝐶𝐺𝐻 is finite and hence
Q[𝑁𝐺𝐻/𝐻 · 𝐶𝐺𝐻] is semisimple. Therefore every Q[𝑁𝐺𝐻/𝐻 · 𝐶𝐺𝐻]-module is
flat. Because of Theorem 12.58 it suffices to show that for every finite subgroup
𝐻 ⊆ 𝐺 and every 𝑛 ∈ Z the map

𝐻𝑝 (𝐶𝐺𝐻\𝜄𝐻F⊆G ;Q) : 𝐻𝑝 (𝐶𝐺𝐻\𝐸F (𝐺)𝐻 ;Q) → 𝐻𝑝 (𝐶𝐺𝐻\𝐸G (𝐺)𝐻 ;Q)

is bijective. This is obviously true if 𝐻 ∉ F . Suppose 𝐻 ∈ F . Then the claim
follows from fact that both𝐶∗ (𝐸F (𝐺)𝐻 ) ⊗ZQ and𝐶∗ (𝐸G (𝐺)𝐻 ) ⊗ZQ are projective
Q[𝐶𝐺𝐻]-resolutions of the trivial Q[𝐶𝐺𝐻]-module Q, which implies that

𝐶∗ (𝜄𝐻F⊆G) ⊗Z Q→ 𝐶∗ (𝐸F (𝐺)𝐻 ) ⊗Z Q→ 𝐶∗ (𝐸G (𝐺)𝐻 ) ⊗Z Q

is a Q[𝐶𝐺𝐻]-chain homotopy equivalence and hence induces after applying
Q ⊗Q[𝐶𝐺𝐻 ] − a Q-chain homotopy equivalence.
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12.64. The desired pairing is given by

𝐴(𝐺) × 𝑀 (𝐺) → 𝑀 (𝐺), ( [𝐺/𝐻], 𝑥) ↦→ ind𝐺𝐻 ◦ res𝐻𝐺 (𝑥).

12.81. This follows from Remark 12.80 using [910, Chapter IV, §4], as explained
in [793].

12.88. Every subgroup 𝐹 ⊆ SL2 (Z) is conjugate to one of the groups Z2,Z3,Z4,Z6
with generators given by the matrices(

−1 0
0 −1

) (
−1 −1
1 0

) (
0 −1
1 0

)
and

(
0 −1
1 1

)
.

So we shall restrict from now on to the study of the actions of Z2,Z3,Z4,Z6 given
by the actions of the above described generators. The case Z/4 has been carried out
in Example 12.87. The computations for the other cases is analogous. We get in all
cases that 𝐺\𝐸𝐺 is homeomorphic to 𝑆2. There are up to conjugacy four non-trivial
finite subgroups in 𝐺 in the case 𝐹 = Z/2. These are all isomorphic to Z/2. There
are up to conjugacy three non-trivial finite subgroups in 𝐺 in the case 𝐹 = Z/3.
These are all isomorphic to Z/3. In the case 𝐹 = Z/6 there are up to conjugacy three
non-trivial finite subgroups. The first is isomorphic to Z/2, the second to Z/3, and
the third to Z/6. Hence we get in all cases 𝐾𝐺1 (𝐸𝐺) = 0 and

𝐾
Z2⋊Z/2
0 (𝐸Z2 ⋊ Z2) � Z6;

𝐾
Z2⋊Z/3
0 (𝐸Z2 ⋊ Z3) � Z8;

𝐾
Z2⋊Z/4
0 (𝐸Z2 ⋊ Z4) � Z9;

𝐾
Z2⋊Z/6
0 (𝐸Z2 ⋊ Z6) � Z10.

12.96. Since 𝐺 is finite, an easy spectral sequence argument shows that there is an
isomorphism 𝑢 : Q ⊗Z𝐺 𝐾𝑛 (𝑅)

�−→ Q ⊗Z H𝐺,𝜉
𝑛 (𝐸𝐺; K𝑅), where 𝐺 acts on 𝐾𝑛 (𝑅)

via 𝛼 ◦ 𝜉 and trivially on Q. Moreover, there is a commutative diagram

Q ⊗Z H𝐺,𝜉
𝑛 (𝐸𝐺; K𝑅) //

𝑢−1�

��

Q ⊗Z H𝐺,𝜉
𝑛 (𝐸𝐺; K𝑅) = Q ⊗Z 𝐾𝑛 (𝑅𝛼◦𝜉𝐺)

res
��

Q ⊗Z𝐺 𝐾𝑛 (𝑅)
𝑁

// Q ⊗Z 𝐾𝑛 (𝑅)𝐺

where the lower horizontal arrow 𝑁 is the norm map and the right vertical arrow res
is restriction with the inclusion 𝑅 → 𝑅𝛼◦𝜉𝐺. Since the lower vertical arrow 𝑁 is an
isomorphism, the upper horizontal arrow is injective.
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Chapter 13

13.3. If we replace in Conjecture 13.1 the familyVCY by FIN , then the Conjec-
ture 13.2 for Z reduces to the statement that for any ring 𝑅 the map induced by the
projection 𝐸Z→ Z/Z

𝐻Z
𝑛 (𝐸Z; K𝑅) → 𝐻𝐺𝑛 (Z/Z; K𝑅) = 𝐾𝑛 (𝑅Z)

is an isomorphism. SinceZ acts freely onZ and (𝐸Z)/Z = 𝑆1, we get an identification

𝐻Z
𝑛 (𝐸Z; K𝑅) = 𝐻 {1} (𝑆1; K𝑅) = 𝐾𝑛 (𝑅) ⊕ 𝐾𝑛−1 (𝑅).

Under this identification the assembly map above becomes the restriction of the
Bass-Heller-Swan isomorphism of Theorem 6.16

𝐾𝑛 (𝑅) ⊕ 𝐾𝑛−1 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅) ⊕ 𝑁𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (𝑅Z)

to 𝐾𝑛 (𝑅𝐺) ⊕ 𝐾𝑛−1 (𝑅𝐺). This implies that 𝑁𝐾𝑛 (𝑅) vanishes for all 𝑛 ∈ Z and all
rings 𝑅, a contradiction by Example 3.69.

13.5. If we replace in Conjecture 13.4 the family VCY by FIN , then Conjec-
ture 13.7 for Z reduces to the statement that for any ring 𝑅 with involution the map
induced by the projection 𝐸Z→ Z/Z

𝐻Z
𝑛 (𝐸Z; L⟨−∞⟩

𝑅
) → 𝐻𝐺𝑛 (Z/Z; L⟨−∞⟩

𝑅
) = 𝐿

⟨−∞⟩
𝑛 (𝑅Z)

is an isomorphism. SinceZ acts freely onZ and (𝐸Z)/Z = 𝑆1, we get an identification

𝐻Z
𝑛 (𝐸Z; L⟨−∞⟩

𝑅
) = 𝐿

⟨−∞⟩
𝑛 (𝑅Z) ⊕ 𝐿 ⟨−∞⟩

𝑛−1 (𝑅Z).

Under this identification the assembly map above can be identified with the isomor-
phism appearing in the Shaneson splitting (9.109).

13.15. Let 𝐺 = Z, 𝑅 = Q[Z/3], and 𝛼 : 𝐺 → aut(𝑅) be the group homomorphism
which sends the generator of𝐺 to the automorphism ofQ[Z/3] induced by the group
automorphism − id : Z/3 �−→ Z/3.

13.16. The structure of an abelian group on each set of morphisms comes from
the obvious structure of an abelian group on 𝑀𝑚,𝑛 (𝑅). The direct sum of [𝑚] and
[𝑛] is [𝑚 + 𝑛]. The direct sum on morphisms is given by taking block matrices.
The zero object is [0]. We obtain a natural equivalence from 𝑅⊕ to the additive
category of finitely generated free 𝑅-modules by sending [𝑚] to 𝑅𝑚 and a morphism
[𝑚] → [𝑛] given by a (𝑚, 𝑛)-matrix 𝐴 to the 𝑅-linear map 𝑅𝑚 → 𝑅𝑛 given by right
multiplication by 𝐴.
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13.21. We only present the proof of the harder implication. Suppose that for every
two objects 𝐴 and 𝐵 inA the induced map morA (𝐴0, 𝐴1) → morB (𝐹 (𝐴0), 𝐹 (𝐴1))
sending 𝑓 to 𝐹 ( 𝑓 ) is bijective and for each object 𝐵 in B there exists an object 𝐴
in A such that 𝐹 (𝐴) and 𝐵 are isomorphic in B. Choose for any object 𝐵 ∈ B an
object 𝐴(𝐵) ∈ A and an isomorphism 𝑢(𝐵) : 𝐵 �−→ 𝐹 (𝐴(𝐵)) in B. Next we define a
functor 𝐹′ : B → A of additive categories. It sends an object 𝐵 to 𝐴(𝐵). A morphism
𝑓 : 𝐵0 → 𝐵1 is sent to the morphism 𝐹′ ( 𝑓 ) : 𝐴(𝐵0) → 𝐴(𝐵1) which is uniquely
determined by the property that 𝐹 (𝐹′ ( 𝑓 )) = 𝑢(𝐵1) ◦ 𝑓 ◦𝑢(𝐵0)−1. One easily checks
that 𝐹′ (𝑔◦ 𝑓 ) = 𝐹′ (𝑔)◦𝐹′ ( 𝑓 ) and 𝐹′ ( 𝑓0+ 𝑓1) = 𝐹′ ( 𝑓0)+𝐹′ ( 𝑓1) holds. Consider two
objects 𝐵0 and 𝐵1. We have to show that for the natural inclusions 𝑗𝑖 : 𝐵𝑖 → 𝐵0 ⊕ 𝐵1
for 𝑖 = 0, 1 the morphism 𝐹′ ( 𝑗0) ⊕ 𝐹′ ( 𝑗1) : 𝐹′ (𝐵0) ⊕ 𝐹′ (𝐵1) → 𝐹 (𝐵0 ⊕ 𝐵1) is
an isomorphism. This follows from the diagram below, which commutes by the
definition of 𝐹′ and whose lower left vertical arrow is an isomorphism, since 𝐹 is
compatible with direct sums:

𝐵0 ⊕ 𝐵1
𝑗0⊕ 𝑗1=id
�

//

𝑢(𝐵0 )⊕𝑢(𝐵1 )�

��

𝐵0 ⊕ 𝐵1

𝑢(𝐵0⊕𝐵1 ) �
��

𝐹 (𝐴(𝐵0)) ⊕ 𝐹 (𝐴(𝐵1))
𝐹 (𝐹′ ( 𝑗0 ) )⊕𝐹 (𝐹′ ( 𝑗1 ) ) //

�

��

𝐹 (𝐴(𝐵0 ⊕ 𝐵1))

id �

��
𝐹 (𝐴(𝐵0) ⊕ 𝐴(𝐵1))

𝐹 (𝐹′ ( 𝑗0 )⊕𝐹′ ( 𝑗1 ) ) // 𝐹 (𝐴(𝐵0 ⊕ 𝐵1)).

Hence 𝐹′ is a functor of additive categories. Natural transformations of functors
of additive categories 𝑆 : 𝐹 ◦ 𝐹′ → idB and 𝑇 : 𝐹′ ◦ 𝐹 → idA are determined by
𝑆(𝐵) = 𝑢(𝐵) and 𝐹 (𝑇 (𝐴)) = 𝑢(𝐹 (𝐴)).

13.33. This follows from Theorem 13.32 (v), since 𝐺 is virtually cyclic if 𝑄 is
virtually cyclic.

13.34. Let 𝐺 be a group. It is the directed union of its finitely generated subgroups.
Hence by Theorem 13.32 (vi) the Full Farrell-Jones Conjecture 13.30 holds for all
groups if and only if it holds for all finitely generated groups. Any finitely generated
group can be written as a colimit over a directed set of finitely presented groups.
Hence by Theorem 13.32 (vi) the Full Farrell-Jones Conjecture 13.30 holds for all
finitely generated groups if and only if holds for all finitely presented groups. Finally
note that a group is finitely presented if and only if it occurs as the fundamental
group of a connected orientable closed 4-manifold.

13.43. This follows from Lemma 13.42 by the following argument. Since𝐾𝑊 is finite
and the image of 𝜙 is by assumption infinite, the composite 𝑝𝑊 ◦ 𝜙 : 𝑉 → 𝑄𝑊 has
infinite image. Since𝑄𝑊 is isomorphic to Z or 𝐷∞, the same is true for the image of
𝑝𝑊 ◦𝜙 : 𝑉 → 𝑄𝑊 . By assertion (v) of Lemma 13.42 the kernel of 𝑝𝑊 ◦𝜙 : 𝑉 → 𝑄𝑊
is 𝐾𝑉 . Hence 𝜙(𝐾𝑉 ) ⊆ 𝐾𝑊 and 𝜙 induces maps 𝜙𝐾 and 𝜙𝑄 making the diagram of
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interest commutative. Since the image of 𝑝𝑊 ◦ 𝜙 : 𝑉 → 𝑄𝑊 is infinite, 𝜙𝑄 (𝑄𝑉 ) is
infinite. This implies that 𝜙𝑄 is injective, since both 𝑄𝑉 and 𝑄𝑊 are isomorphic to
𝐷∞ or Z.

13.44. Suppose that 𝐺 admits a proper cocompact isometric action on R. Since the
action is cocompact and R is not compact, the group 𝐺 must be infinite. Let 𝐾 be
the kernel of the homomorphism 𝜌 : 𝐺 → aut(R) coming from the 𝐺-action. Since
the action is proper, 𝐾 must be finite. Let 𝑄 ⊆ aut(R) be the image of 𝜌. The group
of isometries of R is R⋊Z/2, where Z/2 corresponds to {± id} and R to translations
𝑙𝑟 : R→ R with elements 𝑟 ∈ R. Let 𝑟0 := inf{𝑟 ∈ R | 𝑟 > 0, 𝑙𝑟 ∈ 𝑄}. Since 𝑄 acts
properly, we have 𝑟0 > 0 and 𝑄 ∩R ⊆ R is the infinite cyclic group generated by 𝑟0.
Now one easily checks that 𝑄 is isomorphic to Z or Z ⋊ Z/2. Hence 𝐺 is virtually
cyclic.

If𝐺 is virtually cyclic, then it admits an epimorphism with finite kernel onto Z or
Z⋊Z/2 by Lemma 13.42 (i). These two groups and hence𝐺 admit proper cocompact
isometric actions on R.

13.49. Suppose that 𝐻 is infinite and belongs toHE𝑝∩VCY𝐼 . Then there are exact
sequences 1→ Z→ 𝐻

𝑞
−→ 𝑄 → 1 and 1→ 𝑃

𝑖−→ 𝐻 → Z→ 1 where 𝑖 : 𝑃 → 𝐻 is
the inclusion of a finite normal subgroup 𝑃, and𝑄 is a finite 𝑝-group. The restriction
𝑞 |𝑃 : 𝑃 → 𝑄 is injective, since 𝑃 is a finite subgroup of 𝐻 and the kernel of 𝑞 is
infinite cyclic. Hence 𝑃 is a finite 𝑝-group. Fix an element 𝑡 ∈ 𝐻 whose image under
the epimorphism 𝐻 → Z is a generator. Then 𝑡 ∈ 𝑁𝐺𝑃. Let 𝑝𝑚 be the order of 𝑄.
Consider any 𝑥 ∈ 𝑃. We have 𝑞(𝑡 𝑝𝑚𝑥𝑡−𝑝𝑚 ) = 𝑞(𝑡) 𝑝𝑚𝑞(𝑥)𝑞(𝑡)−𝑝𝑚 = 𝑞(𝑥). Since
𝑞 |𝑃 : 𝑃 → 𝑄 is injective, we get 𝑡 𝑝𝑚𝑥𝑡−𝑝𝑚 = 𝑥. In particular, 𝐻 � 𝑃 ⋊𝜙 Z for the
automorphism 𝜙 : 𝑃 �−→ 𝑃 of 𝑝-power order given by conjugation with 𝑡.

Suppose 𝐻 is isomorphic to 𝑃 ⋊𝜙 Z for some finite 𝑝-group 𝑃 and automorphism
𝜙 : 𝑃→ 𝑃 whose order is 𝑝𝑚 for some natural number𝑚. Then obviously 𝐻 belongs
to VCY𝐼 . The exact sequence 1 → Z

𝑝𝑚 ·id
−−−−→ Z → Z/𝑝𝑚 → 1 induces an exact

sequence 1 → Z → 𝑃 ⋊𝜙 Z → 𝑃 ⋊𝜙 Z/𝑝𝑚 → 1. Since 𝑃 ⋊𝜙 Z/𝑝𝑚 is a finite
𝑝-group, 𝐻 belongs toHE𝑝 .

13.50. Because of Exercise 13.49 there exists a finite 𝑝-group 𝑃 and an automor-
phism 𝜙 : 𝑃 → 𝑃, whose order is a 𝑝-power, such that 𝐺 is isomorphic to 𝑃 ⋊𝜙 Z.
Note that a model for 𝐸FIN (𝐺) is 𝐸Z considered as a 𝐺-𝐶𝑊-complex by restric-
tion with the canonical epimorphism 𝐺 → Z. We conclude from Theorem 6.64 and
Remark 6.65 that

𝐻𝐺𝑛 (𝐸FIN (𝐺); K𝑅) → 𝐻𝐺𝑛 (𝐺/𝐺; K𝑅) = 𝐾𝑛 (𝑅𝐺)

is bijective after applying − ⊗Z Z[1/𝑝] for all 𝑛 ∈ Z if and only if we have
𝑁±𝐾𝑛 (𝑅𝑃; 𝜙) [1/𝑝] = 0 for all 𝑛 ∈ Z. This follows from Theorem 6.66.

13.52. This follows directly from Theorem 13.51, since P(𝐺, 𝑅) is empty if Q ⊆ 𝑅
holds or if 𝐺 is torsionfree.
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13.61. The group 𝐺 satisfies the Full Farrell Jones Conjecture 13.30 by Theo-
rem 13.32 (iv) and (v). Since every virtually cyclic subgroup of 𝐺 is of type 𝐼,
Theorem 13.60 implies that the projection pr induces for every additive 𝐺-category
with involution A and all 𝑛 ∈ Z an isomorphism

𝐻𝐺𝑛
(
pr; L⟨−∞⟩A

)
: 𝐻𝐺𝑛

(
𝐸FIN (𝐺); L⟨−∞⟩A

)
→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩A ) = 𝜋𝑛

(
L⟨−∞⟩A (𝐼 (𝐺))

)
.

Hence we get from Remark 13.20 that the projection pr induces for all 𝑛 ∈ Z an
isomorphism

𝐻𝐺𝑛
(
pr; L⟨−∞⟩Z

)
: 𝐻𝐺𝑛

(
𝐸FIN (𝐺); L⟨−∞⟩Z

)
→ 𝐻𝐺𝑛 (𝐺/𝐺; L⟨−∞⟩Z ) = 𝐿

⟨−∞⟩
𝑛 (Z𝐺).

Recall that we have an extension 1 → 𝐹 → 𝐺
𝑓
−→ Z𝑑 → 1 for a finite

group 𝐹. Hence the restriction 𝑓 ∗𝐸Z𝑑 with 𝑓 of 𝐸Z𝑑 is a model for 𝐸FIN (𝐺).
Hence it suffices to construct for any free Z𝑛-𝐶𝑊-complex 𝑋 an appropriate
spectral sequence converging to 𝐻𝐺𝑛

(
𝑓 ∗𝑋; L⟨−∞⟩Z

)
. Since the assignment send-

ing 𝑋 to 𝐻𝐺𝑛
(
𝑓 ∗𝑋; L⟨−∞⟩Z

)
is a Z𝑑-homology theory in the sense of Defini-

tion 12.1 and 𝑋 is assumed to be a free Z𝑑-𝐶𝑊-complex, the equivariant Atiyah-
Hirzebruch spectral sequence of Theorem 12.48 converges to 𝐻𝐺𝑛

(
𝑓 ∗𝑋; L⟨−∞⟩Z

)
and

has as 𝐸2-term 𝐻𝑝
(
𝐶∗ (𝑋) ⊗Z𝑑 𝐻𝐺𝑞 (𝐺/𝐹; L⟨−∞⟩Z )

)
. Using the induction structure on

𝐻?
∗ (−; L⟨−∞⟩Z ) and Lemma 12.12, one can identify theZ𝑑-modules𝐻𝐺𝑞

(
𝐺/𝐹; L⟨−∞⟩Z

)
and 𝐿 ⟨−∞⟩𝑞 (Z𝐹).

13.69. Induction with 𝑖 : 𝐻 → 𝐺 and restriction with 𝑓 : 𝐻 → Z induces homomor-
phisms 𝑖∗ : 𝐺0 (C𝐻) → 𝐺0 (C𝐺) and 𝑓 ∗ : 𝐺0 (CZ) → 𝐺0 (C𝐻). The class [C] of the
trivial CZ-module C is sent under 𝑖∗ ◦ 𝑓 ∗ to the class of C[𝐺/𝐻]. Since there exists
a short exact sequence 0→ CZ→ CZ→ C→ 0, we have [C] = 0 in 𝐺0 (CZ).

Chapter 14

14.10. Equip R with the 𝐺 = Z × Z/𝑘-action where Z acts by translation and Z/𝑘
acts trivial. There is a 𝐺-pushout

Z × {0, 1}
𝑗 //

𝑖

��

Z

��
Z × [0, 1] // R

where we think of Z as the 𝐺-space 𝐺/(Z/𝑘), the map 𝑖 is the inclusion and 𝑗 sends
(𝑛, 0) to 𝑛 and (𝑛, 1) to 𝑛+1. HenceR is a𝐺-𝐶𝑊-complex whose isotropy groups are
all finite and whose𝐻-fixed point set is contractible for every finite subgroup𝐻 ⊆ 𝐺.
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We conclude that R is a model for 𝐸𝐺. The Mayer-Vietoris sequence associated to
the 𝐺-pushout looks like

· · · → 𝐾𝐺𝑛 (Z) ⊕ 𝐾𝐺𝑛 (Z)

(
1 1
1 1

)
−−−−−→ 𝐾𝐺𝑛 (Z) ⊕ 𝐾𝐺𝑛 (Z) → 𝐾𝐺𝑛 (𝐸𝐺) = 𝐾𝐺𝑛 (R)

→ 𝐾𝐺𝑛−1 (Z) ⊕ 𝐾
𝐺
𝑛−1 (Z)

(
1 1
1 1

)
−−−−−→ 𝐾𝐺𝑛−1 (Z) ⊕ 𝐾

𝐺
𝑛−1 (Z) → · · ·

where we identify 𝐾𝐺𝑛 (Z × [0, 1]) � 𝐾𝐺𝑛 (Z) via the isomorphism induced by the
projection Z × [0, 1] → Z. Since 𝐾𝐺𝑛 (Z) � 𝐾𝐺𝑛 (𝐺/(Z/𝑘)) is RepC (Z/𝑘) for 𝑛 even
and zero for 𝑛 odd, we conclude for all 𝑛 ∈ Z

𝐾𝐺𝑛 (𝐸𝐺) � RepC (Z/𝑘) � Z𝑘 .

14.15. We only treat the case 𝐹 = C, the case 𝐹 = R is analogous. Since 𝐻 and 𝐺
are torsionfree and satisfy the Baum-Connes Conjecture 14.9, they also satisfy the
Baum-Connes Conjecture for torsionfree groups 10.44 by Remark 14.14. Hence it
suffices to show that the homomorphism 𝐾𝑛 (𝐵 𝑓 ) : 𝐾𝑛 (𝐵𝐻) → 𝐾𝑛 (𝐵𝐺) is bijective
for all 𝑛 ∈ Z. This follows from the Atiyah-Hirzebruch spectral sequence converging
to 𝐾𝑛 (𝐵𝐻) and 𝐾𝑛 (𝐵𝐺), since 𝐻𝑛 (𝐵 𝑓 ;Z) : 𝐻𝑛 (𝐵𝐻;Z) → 𝐻𝑛 (𝐵𝐺;Z) is bijec-
tive for all 𝑛 ∈ Z by assumption and hence 𝑓 induces isomorphisms between the
𝐸2-pages.

14.28. Take𝐺 = Z/2. Consider the Atiyah-Hirzebruch spectral sequence converging
to 𝐾𝑝+𝑞 (𝐵𝐺) with 𝐸2-term 𝐸2

𝑝,𝑞 = 𝐻𝑝 (𝐵𝐺;𝐾𝑞 ({•})). Its 𝐸2-term looks like

...
...

...
...

...
...

Z Z/2 0 Z/2 0 Z/2 · · ·

0 0 0 0 0 0 · · ·

Z Z/2 0 Z/2 0 Z/2 · · ·

0 0 0 0 0 0 · · ·

Z Z/2 0 Z/2 0 Z/2 · · ·

0 0 0 0 0 0 · · ·

...
...

...
...

...
...
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Because of the checkerboard pattern and by a standard edge argument applied to
the split injection 𝐾∗ ({•}) → 𝐾𝑛 (𝐵𝐺) coming from the inclusion {•} → 𝐵𝐺, all
differentials are trivial and the 𝐸2-term is the 𝐸∞-term. Hence𝐾1 (𝐵𝐺) is non-trivial.
(Actually it is Z/2∞ � Z[1/2]/Z.) On the other hand 𝐾1 (𝐶∗𝑟 (Z/2)) is trivial.

14.32. Since any group is the directed union of its finitely generated subgroups, it
suffices to consider finitely generated free abelian groups and finitely generated free
groups by Theorem 14.31 (iv). Since a finitely generated abelian group is the direct
product of finitely many copies of Z and of a finite group, Theorem 14.31 (iii), (vi),
and (vi) imply that it suffices to prove the claim for Z and any finite group. The
Baum-Connes Conjecture 14.11 with coefficients obviously holds for finite groups.
It holds for Z by Theorem 14.31 (vii).

14.33. Let 𝐹𝑔 be the surface of genus 𝑔 ≥ 1. Let 𝐹 → 𝐹 be the covering associated
to the epimorphism 𝜋1 (𝐹𝑔) → 𝐻1 (𝐹𝑔). Then 𝐹𝑔 is a non-compact 2-manifold and
hence homotopy equivalent to a 1-dimensional 𝐶𝑊-complex. Hence 𝜋1 (𝐹𝑔) is free,
𝐻1 (𝐹𝑔) is a finitely generated free abelian group and we have the exact sequence
1 → 𝜋1 (𝐹𝑔) → 𝐺 → 𝐻1 (𝐹𝑔) → 1. We conclude from Theorem 14.31 that 𝐺
satisfies the Baum-Connes Conjecture 14.9. Since 𝐹𝑔 itself is a model for 𝐵𝐺,
we get 𝐾𝑛 (𝐹𝑔) � 𝐾𝑛 (𝐶∗𝑟 (𝐺)). Now an easy application of the Atiyah-Hirzebruch
spectral sequence yields the claim.

14.43. Note that 𝐾0 (𝐶∗𝑟 (𝐺)) = 𝑅C (𝐺). One easily checks by inspecting the defini-
tion of (10.48) of the trace for a finite-dimensional complex representation 𝑉 that
tr𝐶∗𝑟 (𝐺) : 𝐾0 (𝐶∗𝑟 (𝐺)) → R sends the class of [𝑉] to |𝐺 |−1 · dimC (𝑉).

14.55. Suppose that 𝐹 is 𝑆2. Since 𝑀 is spin and hence in particular orientable and
any orientation preserving self-diffeomorphism of 𝑆2 is isotopic to the identity, 𝑀
must be 𝑆1 × 𝑆2 and hence carries a Riemannian metric of positive scalar curvature.

Suppose that 𝐹 is not 𝑆2. Then 𝐹 and hence 𝑀 are aspherical. Hence it suffices
to show by Lemma 14.54 that the Baum-Connes Conjecture 14.11 with coefficients
holds for 𝜋1 (𝑀). The Baum-Connes Conjecture 14.11 with coefficients holds for all
finitely generated free groups and forZ by Theorem 14.31 (v). Hence it holds for every
free group and every finitely generated abelian group by Theorem 14.31 (iii) and (iv).
Let 𝐹 → 𝐹 be the covering associated to the epimorphism 𝜋1 (𝐹) → 𝐻1 (𝐹). Then
𝐹 is a non-compact 2-manifold and hence homotopy equivalent to a 1-dimensional
𝐶𝑊-complex. Hence 𝜋1 (𝐹) is free. Now apply Theorem 14.31 (ii) to the short exact
sequences 1 → 𝜋1 (𝐹) → 𝜋1 (𝑀) → 𝜋1 (𝑆1) → 1 and 1 → 𝜋1 (𝐹) → 𝜋1 (𝐹) →
𝐻1 (𝐹) → 1.
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Chapter 15

15.3. Let 𝛼 : 𝐻 → 𝐺 be a group homomorphism. Then 𝛼∗𝐸C(𝐻 ) (𝐻) is a 𝐺-𝐶𝑊-
complex whose𝐺-isotropy groups are of the shape 𝛼(𝐿) for 𝐿 ∈ C(𝐻) and hence all
belong to C(𝐺). This implies that there is up to 𝐺-homotopy precisely one 𝐺-map
𝑓 : 𝛼∗𝐸C(𝐻 ) (𝐻) → 𝐸C(𝐺) (𝐺). The following diagram commutes

𝛼∗𝐸C(𝐻 ) (𝐻)

𝑓

��

𝛼∗ pr // 𝛼∗𝐻/𝐻 = 𝐺/𝛼(𝐻)

pr
��

𝐸C(𝐺) (𝐺) pr
// 𝐺/𝐺.

Now apply H𝐺
∗ to this diagram and combine it with the following commutative

diagram coming from the induction structure applied to 𝛼

H𝐻
𝑛 (𝐸C(𝐻 ) (𝐻))

H𝐻𝑛 (pr) //

��

H𝐻
𝑛 (𝐻/𝐻)

��
H𝐺
𝑛 (𝛼∗𝐸C(𝐻 ) (𝐻)) H𝐺𝑛 (𝛼∗ pr)

// H𝐺 (𝛼∗𝐻/𝐻).

15.7. The restriction of a 𝐺-𝐶𝑊-complex 𝑋 to 𝐾 with 𝜙 is a 𝐾-𝐶𝑊-complex 𝜙∗𝑋
by Remark 11.3. For a point 𝑥 ∈ 𝑋 the 𝐾-isotropy group 𝐾𝑥 of 𝜙∗𝑋 is 𝜙−1 (𝐺𝑥),
where 𝐺𝑥 is the 𝐺-isotropy group of 𝑥. In particular, we get 𝜙(𝐾𝑥) = 𝐺𝑥 and hence
every 𝐾-isotropy group of 𝜙∗𝑋 belongs to 𝜙∗F . Consider a subgroup 𝐻 ⊂ 𝐾 . Then
(𝜙∗𝑋)𝐻 = 𝑋 𝜙 (𝐻 ) . Now apply these assertions to 𝑋 = 𝐸F (𝐺).

15.15. Let 𝐺 be any group. Denote by pr : 𝐺 × Z→ Z the projection. The Fibered
Meta-Isomorphism Conjecture 15.8 predicts that the assembly map

𝐻𝑛 (pr; K𝑅) : 𝐻𝐺×Z𝑛 (𝐸pr∗ FIN (𝐺 × Z); K𝑅)
→ 𝐻𝐺×Z𝑛 (𝐺 × Z/𝐺 × Z; K𝑅) = 𝐾𝑛 (𝑅[𝐺 × Z])

is bijective for all 𝑛 ∈ Z. A model for 𝐸pr∗ FIN (𝐺 ×Z) is pr∗ 𝐸Z. Since Z acts freely
on 𝐸Z and (𝐸Z)/Z = 𝑆1, the left side of the map above can be identified with

𝐻𝐺×Z𝑛 (𝐸pr∗ FIN (𝐺 × Z); K𝑅) = 𝐻𝐺×Z𝑛 (pr∗ 𝐸Z; K𝑅)
= 𝐻𝐺𝑛 (𝐺/𝐺 × 𝑆1)
= 𝐻𝑛 (𝐺/𝐺; K𝑅) ⊕ 𝐻𝑛−1 (𝐺/𝐺; K𝑅)
= 𝐾𝑛 (𝑅𝐺) ⊕ 𝐾𝑛−1 (𝑅𝐺).
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Under this identification the assembly map above becomes the restriction of the
Bass-Heller-Swan isomorphism of Theorem 6.16

𝐾𝑛 (𝑅𝐺) ⊕ 𝐾𝑛−1 (𝑅𝐺) ⊕ 𝑁𝐾𝑛 (𝑅𝐺) ⊕ 𝑁𝐾𝑛 (𝑅𝐺)
�−→ 𝐾𝑛 (𝑅𝐺 [𝑡, 𝑡−1])

to 𝐾𝑛 (𝑅𝐺) ⊕ 𝐾𝑛−1 (𝑅𝐺). Hence the Fibered Meta-Isomorphism Conjecture 15.8
implies that for every group 𝐺 and 𝑛 ∈ Z we have 𝑁𝐾𝑛 (𝑅𝐺) = 0.

15.17. This follows from Lemma 15.16 applied to the inclusion 𝑖 : 𝐻 → 𝐺, since
C(𝐻) = 𝑖∗C(𝐺) holds.

15.35. Put Γ = 𝐺 ×𝜙 Z. The proof is completely analogous to the one in Exam-
ple 15.30 but now applied to a 1-dimensional Γ-𝐶𝑊-complex 𝑇 which is a tree and
whose 1-skeleton is obtained from the 0-skeleton by the Γ-pushout

Γ/𝐺 × 𝑆0 𝑞 //

��

Γ/𝐺

��
Γ/𝐺 × 𝐷1 // 𝑇.

Here 𝑞 is the disjoint union of the identity id : Γ/𝐺 → Γ/𝐺 and the Γ-map
Γ/𝐺 → Γ/𝐺 sending 𝛾𝐺 to 𝛾𝑡𝐺 for 𝑡 ∈ Γ a lift of the generator in Z.

15.42. (i) Put 𝜋 = 𝜋1 (𝑋). Conjecture 15.41 yields a weak homotopy equivalence
𝐸𝜋+∧𝜋 S(𝑋) → S(𝑋) because of the identifications 𝑋 = 𝜋\𝑋 and 𝐸TR (𝜋)+∧Or(𝜋 )
S𝜋
𝑋
= 𝐸𝜋+ ∧𝜋 S(𝑋).

(ii) Suppose that S is of the shape 𝑋 ↦→ 𝑋+ ∧HZ for HZ the Eilenberg-spectrum of
Z. Recall that the homology theory associated to HZ is singular homology 𝐻∗. Then

𝜋𝑛
(
(𝐸𝜋)+ ∧𝜋 S(𝑋)

)
� 𝐻𝑛 (𝐸𝜋 ×𝜋 𝑋);

𝜋𝑛
(
(𝐵𝜋)+ ∧𝜋 S({•})

)
� 𝐻𝑛 (𝐵𝜋),

and 𝐻𝑛 (𝐸𝜋 ×𝜋 𝑋) and 𝐻𝑛 (𝐵𝜋) are not isomorphic in general.
(iii) Suppose that 𝑋 is contractible or S is of the shape 𝑌 ↦→ T(Π(𝑌 )) for some
covariant functor T : GROUPOIDS → SPECTRA. Then the projection 𝑋 → {•}
induces a 𝜋-map f : S(𝑋) → S({•}) such that, after forgetting the group action, f is
a weak homotopy equivalence. Hence we obtain a weak homotopy equivalence

𝐸𝜋+ ∧𝜋 S(𝑋)
(id𝐸𝜋 )+∧𝜋 f
−−−−−−−−−→ 𝐸𝜋+ ∧ S({•}) = 𝐵𝜋+ ∧ S({•}).

15.48. If Conjecture 15.41 is true for (∗𝑖∈𝐼𝐺𝑖 , C(∗𝑖∈𝐼𝐺𝑖)), it is also true for
(𝐺𝑖 , C(𝐺𝑖)) for every 𝑖 ∈ 𝐼 by Theorem 15.47 (i).
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Suppose that Conjecture 15.41 holds for (𝐺𝑖 , C(𝐺𝑖)) for every 𝑖 ∈ 𝐼. We conclude
from the assumptions that for two groups 𝐻1, 𝐻2 ∈ C Conjecture 15.41 holds for
(𝐻1 × 𝐻2, C(𝐻1 × 𝐻2)). Hence Theorem 15.47 (iii) applies. By assumption Theo-
rem 15.47 (iv) also applies. Now we can proceed as in the proof of assertion (vii) of
Theorem 13.32 using Theorem 15.47 (ii), (iii), and (iv) to show that Conjecture 15.41
holds for (∗𝑖∈𝐼𝐺𝑖 , C(∗𝑖∈𝐼𝐺𝑖)).

15.53. The key ingredient is to construct for a group homomorphism 𝜙 : 𝐾 → 𝐺

and a subgroup 𝐻 ⊆ 𝐾 a natural weak homotopy equivalence of spaces

𝐸G𝐾 (𝐾/𝐻) ×G𝐾 (𝐾/𝐻 ) 𝑝∗𝜙∗𝑍
≃−→ 𝐾/𝐻 ×𝐾 (𝐸𝐾 × 𝜙∗𝑍)

where 𝑝 : G𝐾 (𝐾/𝐻) → G𝐾 (𝐾/𝐾) = 𝐼 (𝐾) is induced by the projection 𝐾/𝐻 →
𝐾/𝐾 . Because of the third isomorphism appearing in [280, Lemma 1.9], it suffices
to construct a map

𝑢 : 𝑝∗𝐸G𝐾 (𝐾/𝐻) ×𝐾 𝜙∗𝑍
≃−→ 𝐾/𝐻 ×𝐾 (𝐸𝐾 × 𝜙∗𝑍)

where here and in the sequel we consider a 𝐾-space as a G𝐾 (𝐾/𝐾) = 𝐼 (𝐾)-space
and vice versa in the obvious way. Since (𝐾/𝐻×𝐸𝐾)×𝐾 𝜙∗𝑍 = 𝐾/𝐻×𝐾 (𝐸𝐾×𝜙∗𝑍),
it suffices to construct for every 𝐾-set 𝑆 a natural 𝐾-homotopy equivalence

𝑣 : 𝑝∗𝐸G𝐾 (𝑆)
≃−→ 𝑆 × 𝐸𝐾,

since we then can define 𝑢 = 𝑣 ×𝐾 id𝜙∗𝑍 for 𝑆 = 𝐾/𝐻. Unravelling the definition
we see that the source of 𝑣 is

𝑝∗𝐸G𝐾 (𝑆) =
∐
𝑠∈𝑆

𝐾 × 𝐸G𝐾 (𝑆) (𝑠)/∼

for the equivalence relation ∼ given by

(𝑘, 𝑥) ∼ (𝑘 (𝑘 ′)−1, 𝐸G𝐾 (𝑆) (𝑘 ′ : 𝑠→ 𝑘 ′𝑠) (𝑢)).

Define a 𝐾-map
∐
𝑠∈𝑆 𝐾 × 𝐸G𝐾 (𝑆) (𝑠) → 𝑆 × 𝐸G𝐾 (𝐾/𝐾) by sending the ele-

ment (𝑘, 𝑥) in the summand 𝐾 × 𝐸G𝐾 (𝑆) (𝑠) belonging to 𝑠 ∈ 𝑆 to the element(
𝑘𝑠, 𝐸K𝐾 (𝑘 ·𝐾/𝐾 → 𝐾/𝐾) (𝑢)

)
. One easily checks that it is compatible with ∼ and

induces the desired 𝐾-map

𝑣 : 𝑝∗𝐸G𝐾 (𝑆) =
∐
𝑠∈𝑆

𝐾 × 𝐸G𝐾 (𝑆) (𝑠)/∼ → 𝑆 × 𝐸𝐾.

It remains to show that 𝑣 is a 𝐾-homotopy equivalence. Since the source and target
of 𝑣 are free 𝐾-𝐶𝑊-complexes, it suffices to show that 𝑣 is a homotopy equivalence
(after forgetting the 𝐾-action). We obtain a (non-equivariant) homeomorphism
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𝑠∈𝑆

𝐸G𝐾 (𝑆) (𝑠) �−→
∐
𝑠∈𝑆

𝐾 × 𝐸G𝐾 (𝑆) (𝑠)/∼

by sending the element 𝑥 ∈ 𝐸G𝐾 (𝑆) (𝑠) belonging to the summand of 𝑠 ∈ 𝑆 to the
element represented by (1, 𝑥) ∈ 𝐾 × 𝐸G𝐾 (𝑆) (𝑠). Hence both the source and the
target of 𝑣 have the property that each path component is contractible. Since 𝑣 is a
bijection on the path components, it is a homotopy equivalence.

15.62. We get 𝜋𝑛 (A({•})) � 𝐾𝑛 (Z) � 0 for 𝑛 ≤ −1 and 𝜋0 (A({•})) � 𝐾0 (Z) � Z
from Example 2.4, Theorem 3.17, and Theorem 7.18 (i). Now apply the Atiyah-
Hirzebruch spectral sequence to 𝐻𝑛 (𝐵𝐺; A({•})) for 𝑛 ≤ 0.

15.70. This follows from the 𝑝-chain spectral sequence, see Subsection 12.6.2, and
Theorem 15.69 by an inspection of the resulting long exact sequence. See also [676,
Proposition 1.2].

15.100. Consider the commutative diagram appearing in Remark 15.98. The two
left vertical arrows are bijective, as explained in Remark 15.98. The upper hori-
zontal arrow is bijective by assumption. The lower horizontal arrow is bijective by
Theorem 15.97. Hence the right vertical arrow is bijective.

15.101. Since 𝑅[𝐺 × Z] = 𝑅[Z] [𝐺] and 𝑅[Z] is regular, Conjecture 15.99 is true
for𝐺 and𝐺×Z. We obtain from the Bass-Heller Swan decompositions for 𝐾-theory,
see Theorem 6.16, and homotopy 𝐾-theory, see Theorem 15.76, the commutative
diagram with isomorphisms as horizontal arrows

𝐾𝑛 (𝑅𝐺) ⊕ 𝐾𝑛−1 (𝑅𝐺) ⊕ 𝑁𝐾𝑛 (𝑅𝐺) ⊕ 𝑁𝐾𝑛 (𝑅𝐺) � //(
ℎ 0 0 0
0 ℎ 0 0

)
��

𝐾𝑛 (𝑅[𝐺 × Z])

ℎ

��
𝐾𝐻𝑛 (𝑅𝐺) ⊕ 𝐾𝐻𝑛−1 (𝑅𝐺) � // 𝐾𝐻𝑛 (𝑅[𝐺 × Z])

where the maps denoted by ℎ are induced by the canonical map K → KH and are
bijective.

15.104. (P) =⇒ (I): Let 𝑑 : 𝐺 → ∏
𝑖∈𝐼 𝐺 be the diagonal embedding. Then

(
∏
𝑖∈𝐼 𝐺,

∏
𝑖∈𝐼 F𝑖) satisfies the Fibered Meta Isomorphism Conjecture 15.8 because

of (P). Hence (𝐺, 𝑑∗∏𝑖∈𝐼 F𝑖) satisfies the Fibered Meta Isomorphism Conjec-
ture 15.8 by Lemma 15.16. One easily checks 𝑑∗

∏
𝑖∈𝐼 F𝑖 =

⋂
𝑖∈𝐼 F𝑖 .

(I) =⇒ (P): Consider the projection pr 𝑗 :
∏
𝑖∈𝐼 𝐺𝑖 → 𝐺 𝑗 for 𝑗 ∈ 𝐼. We con-

clude from Lemma 15.16 that (∏𝑖∈𝐼 𝐺𝑖 , pr∗
𝑗
F𝑗 ) satisfies the Fibered Meta Iso-

morphism Conjecture 15.8 for every 𝑗 ∈ 𝐼. Hence (∏𝑖∈𝐼 𝐺𝑖 ,
⋂
𝑗∈𝐼 pr∗

𝑗
F𝑗 ) satisfies

the Fibered Meta Isomorphism Conjecture 15.8 because of (I). One easily checks∏
𝑖∈𝐼 F𝑖 =

⋂
𝑗∈𝐼 pr∗

𝑗
F𝑗 .
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Chapter 16

16.2. We know that 𝐿/𝐾 is a smooth manifold, which is diffeomorphic to Rdim(𝐿/𝐾 ) ,
and, equipped with the obvious left𝐺 action, it is a model for the classifying space for
proper𝐺-actions, see Theorem 11.24. Hence𝐺\𝐿/𝐾 is an aspherical closed smooth
manifold of dimension ≥ 5. Since𝐺 satisfies the Full Farrell-Jones Conjecture 13.30
by Theorem 16.1 (id), the claim follows from Theorem 9.171.

16.3. Let 𝐺 be a group. It is the directed union of its finitely generated subgroups.
Hence by Theorem 16.1 (iif) the Full Farrell-Jones Conjecture 13.30 holds for all
groups if and only if it holds for all finitely generated groups. Any finitely generated
group can be written as a directed colimit of finitely presented groups. Hence by
Theorem 16.1 (iif) the Full Farrell-Jones Conjecture 13.30 holds for all finitely
generated groups if and only if holds for all finitely presented groups. Now the claim
follow from Theorem 16.1 (iia), since every finitely presented group is a subgroup
of𝑈.

16.4. We obtain an embedding of rings 𝑅 → end𝑆 (𝑅) by sending 𝑟 ∈ 𝑅 to the
𝑆-homomorphism of right 𝑆-modules 𝑙𝑟 : 𝑅 → 𝑅, 𝑟 ′ ↦→ 𝑟𝑟 ′. Since 𝑅 is finitely
generated free as a right 𝑆-module, we obtain for some natural number 𝑘 an iden-
tification of rings end𝑆 (𝑅) = M𝑘 (𝑆). The inclusion of rings 𝑅 → M𝑘 (𝑆) yields
an inclusion of rings M𝑛 (𝑅) → M𝑛 (M𝑘 (𝑆)) = M𝑘𝑛 (𝑆). By passing to units we
obtain an inclusion of groups GL𝑛 (𝑅) → GL𝑘𝑛 (𝑆). Now the claim follows from
Theorem 16.1 (iia).

16.6. This follows from the commutative diagram

𝐻𝑛 (𝐵𝐺; K(𝑅)) //

�

��

𝐾𝑛 (𝑅𝐺)

��
𝐻𝑛 (𝐵𝐺; KH(𝑅)) � // 𝐾𝐻𝑛 (𝑅𝐺)

whose horizontal arrows are assembly maps and whose vertical arrows are change of
theory maps. Moreover, the left vertical arrow is bijective, since 𝐾𝑛 (𝑅) → 𝐾𝐻𝑛 (𝑅)
is bijective for all 𝑛 ∈ Z and all regular rings 𝑅, and the lower horizontal arrow is
bijective because of Theorem 16.5 (i).

16.8. This follows directly from Theorem 16.7 (iic).

16.9. This follows from Theorem 2.81, Lemma 10.51, Lemma 10.53, Theorem 13.65,
Theorem 16.1, and Theorem 16.7.
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16.16. By Lemma 15.23 (ii) it suffices to prove the injectivity for any finitely
generated subgroup of 𝐺, since 𝐺 is the directed union of its finitely generated
subgroups. The relevant equivariant homology theories are (strongly) continuous
by [71, Lemma 6.2].

16.22. We have 𝐺/[𝐺,𝐺] = 𝐻1 (𝐺) � Z, and the projection pr : 𝐺 → 𝐻1 (𝐺)
induces an isomorphisms on the group homology 𝐻𝑛 (𝐺) → 𝐻𝑛 (𝐺/[𝐺,𝐺]) for all
𝑛 ∈ Z. This follows from Alexander-Lefschetz duality. The Atiyah-Hirzebruch spec-
tral sequence implies that 𝐻𝑛 (pr; K(𝑅)) : 𝐻𝑛 (𝐺; K(𝑅)) → 𝐻𝑛 (𝐺/[𝐺,𝐺]; K(𝑅))
is bijective for all 𝑛 ∈ Z. Since 𝐺 satisfies the Full Farrell-Jones Conjec-
ture 13.30 by Theorem 16.1 (ie) and hence the 𝐾-theoretic Farrell-Jones Conjec-
ture for torsionfree groups and regular rings 6.53 by Theorem 13.65 (ii), the map
𝐾𝑛 (𝑅𝐺) → 𝐾𝑛 (𝑅[𝐺/[𝐺,𝐺]]) induced by pr is a bijection. Since 𝐺/[𝐺,𝐺] � Z,
we get 𝐾𝑛 (𝑅[𝐺/[𝐺,𝐺]]) � 𝐾𝑛 (𝑅) ⊕ 𝐾𝑛−1 (𝑅) from the Bass-Heller-Swan decom-
position for algebraic 𝐾-theory, see Theorem 6.16.

The 𝐿-theory case is treated analogously, but now replacing Theorem 6.16
by (9.109).

16.23. One shows by induction over 𝑖 = 𝑑, (𝑑 − 1), . . . , 0 that 𝐺/𝐺𝑖 satisfies the
Full Farrell-Jones Conjecture 13.30. The induction beginning 𝑖 = 𝑑 is trivial. The
induction step from 𝑖 to (𝑖 − 1) follows from Theorem 16.1 (iid) and the short exact
sequence 1→ 𝐺𝑖/𝐺𝑖−1 → 𝐺/𝐺𝑖−1 → 𝐺/𝐺𝑖 → 1.

16.26. Show by induction over 𝑖 = 0, 1, 2, . . . , 𝑑 that𝐺𝑖 is torsionfree and satisfies the
Baum-Connes Conjecture 14.11 with coefficients using Theorem 16.7 (if) and (iic).

16.28. We want to apply Theorem 16.1 (iic). So we need to show that 𝐾 satisfies the
Full Farrell-Jones Conjecture 13.30 and that for any extension 1→ 𝐾 → 𝐺 → Z→
1 the group 𝐺 satisfies the Full Farrell-Jones Conjecture 13.30. Since 𝐾 is either
the fundamental group of a closed surface or a countable free group, see [1010,
Lemma 2.1], both 𝐾 and 𝐺 are strongly poly-surface groups or normally poly-free
groups and hence satisfy the Full Farrell-Jones Conjecture 13.30 by Theorem 16.25
or Theorem 16.27.

16.36. We only treat the 𝐾-theory case, the argument for 𝐿-theory is completely
analogous. Let 𝐺 be a group with a finite model for 𝐵𝐺 and let 𝑅 be a regular ring.
Choose 𝑀 , 𝑖, and 𝑟 as they appear in Theorem 16.35. We obtain a commutative
diagram

𝐻𝑛 (𝐵𝐺; K𝑅) //

𝐻𝑛 (𝑖;K(𝑅) )
����

𝐾𝑛 (𝑅𝐺)

𝑖∗
��

𝐻𝑛 (𝑀; K𝑅) //

𝐻𝑛 (𝑝;K(𝑅) )
��

𝐾𝑛 (𝑅[𝜋1 (𝑀)])

𝑝∗

��
𝐻𝑛 (𝐵𝐺; K𝑅) // 𝐾𝑛 (𝑅𝐺)



Solutions of the Exercises 789

The horizontal arrows are assembly maps. The composite of the two vertical arrows
of the left column and the right column are the identity. Since the middle horizontal
arrow is bijective, the same is true for the upper horizontal arrow.

16.40. We conclude from Theorem 3.115 that for a natural number 𝑛 the vanishing
of Q ⊗Z Wh(Z/𝑛) = 0 implies 𝑛 = 1, 2, 3, 4, 6. Now apply Theorem 16.39.

Chapter 17

17.2. This follows from Theorem 12.79 and Theorem 13.36.

17.6. Since 𝐺 is elementary amenable, it satisfies the 𝐿-theoretic Farrell-Jones
Conjecture 13.8 with coefficients in rings with involution after inverting 2, see [475,
Theorem 5.2.1]. So we can apply Theorem 17.5.

For every non-trivial finite cyclic subgroup 𝐶 ⊆ 𝐺 we have 𝐶 ⊆ 𝐶𝐺𝐶 ⊆
⊕

Z 𝐹

and hence 𝐻𝑝 (𝐶𝐺𝐶;Q) = 0 for 𝑝 ≠ 0 and 𝐻0 (𝐶𝐺𝐶;Q) � Q. Hence we get from
Theorem 17.5 for all 𝑛 ∈ Z an isomorphism⊕

𝑝+𝑞=𝑛
𝐻𝑝 (𝐺;Q) ⊗Z 𝐿𝑞 (Z) ⊕

⊕
(𝐶 ) ∈𝐽,𝐶≠{1}

Q⊗Q[𝑁𝐺𝐶/𝐶𝐺𝐶 ] Θ𝐶 ·
(
Q⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝐶)

)
�−→ Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝐺).

We get 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝐶) = 0 for odd 𝑛 from Theorem 9.204 (iv), since 𝐹 and hence 𝐶 has
odd order. From the Lyndon-Serre spectral sequence applied to the group extension
to 1 →

⊕
Z 𝐹 → 𝐺 → Z → 1, we conclude 𝐻∗ (𝐺;Q) � 𝐻∗ (Z;Q). Hence we

obtain for odd 𝑛 an isomorphism

Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛 (Z) ⊕ Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛−1 (Z)
�−→ Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝐺).

This implies

Q ⊗Z 𝐿 ⟨ 𝑗 ⟩𝑛 (Z𝐺) �
{
Q 𝑛 ≡ 1 mod 4;
{0} 𝑛 ≡ 3 mod 4.

17.24. We use the presentation 𝐷∞ = ⟨𝑠, 𝑡 | 𝑠2 = 1, 𝑠𝑡𝑠 = 𝑡−1⟩. Consider the split
exact sequence 1→ Z

𝑖−→ 𝐷∞
𝑝
−→ Z/2→ 1 where 𝑖 sends 1 ∈ Z to 𝑡 and 𝑝 sends 𝑡 to

0 and 𝑠 to the generator 1. The set con(Z/2) consists of Z/2 itself. Note that we view
Z as an Z[Z/2]-module using the action of Z/2 given by − idZ : Z �−→ Z. Obviously
we get:



790 26 Solutions of the Exercises

𝐶Z/2⟨0⟩ = Z/2;
𝐶Z/2⟨1⟩ = {0};

𝐻1 (⟨0⟩;Z) = {0};
𝐶Z/2 (0)\𝐻1 (⟨0⟩;Z) = {0};

𝐻1 (⟨1⟩;Z) = Z/2;
𝐶Z/2 (1)\𝐻1 (⟨1⟩;Z) = Z/2;

Z⟨0⟩ = Z

Z⟨1⟩ = {0}

𝐻𝑚 (Z⟨0⟩ ;Q) =
{
Q if 𝑚 = 0, 1;
{0} otherwise;

𝐻𝑚 (Z⟨1⟩ ;Q) =
{
Q 𝑚 = 0;
{0} otherwise.

(𝐶Z/2⟨0⟩)𝑦 = 𝐶Z/2⟨0⟩ for 𝑦 ∈ 𝐻1 (⟨0⟩;Z);

𝐻𝑚 (Z⟨0⟩ ;Q) (𝐶Z/2 ⟨0⟩)𝑦 =

{
Q if 𝑚 = 0;
{0} if 𝑚 ≠ 0;

for 𝑦 ∈ 𝐻1 (⟨0⟩;Z);

(𝐶Z/2⟨1⟩)𝑧 = 𝐶Z/2⟨1⟩ for 𝑧 ∈ 𝐻1 (⟨1⟩;Z);

𝐻𝑚 (Z⟨1⟩ ;Q) (𝐶Z/2 ⟨1⟩)𝑧 =

{
Q if 𝑚 = 0;
{0} otherwise;

for 𝑧 ∈ 𝐻1 (⟨1⟩;Z).

So we get from Lemma 17.19

con 𝑓 (𝑝)−1 ((0)) = {(𝑒𝐷∞ )};
con 𝑓 (𝑝)−1 ((1)) = {(𝑠), (𝑠𝑡)};

con 𝑓 (𝐷∞) = {(𝑒𝐷∞ ), (𝑠), (𝑠𝑡)}.

Theorem 17.21 implies

rkZ (𝐾𝑛 (𝐶∗𝑟 (𝐷∞))) =
{

3 𝑛 even;
0 𝑛 odd.

17.31. Since 𝐻1 (𝐺) is the abelianization of 𝐺, we obtain a short exact sequence
Z

𝐷−→
⊕𝑛

𝑖=1 Z→ 𝐻1 (𝐺) → 0, where 𝐷 sends 𝑥 ∈ Z to (𝑑1𝑥, 𝑑2𝑥, . . . , 𝑑𝑛𝑥).

17.32. One easily checks that 𝐺 is torsionfree and the word 𝑠1𝑠2𝑠1𝑠
−1
2 𝑠−2

1 ∈ 𝐹 is a
commutator. Put 𝑅 = C[Z/𝑚]. Then 𝑅 �

∏𝑚
𝑖=1 C is semisimple and in particular

regular, and we obtain from Lemma 17.30 (i) an isomorphism for 𝑛 ∈ Z
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𝐾𝑛 (C[Z/𝑚 × 𝐺]) � 𝐾𝑛 (C[Z/𝑚] [𝐺])
� 𝐾𝑛 (C[Z/𝑚]) ⊕ 𝐾𝑛−1 (C[Z/𝑚]) ⊕ 𝐾𝑛−1 (C[Z/𝑚]) ⊕ 𝐾𝑛−2 (C[Z/𝑚]).

We get from Example 2.4, Lemma 2.12, Theorem 3.6, Lemma 3.9, and Theorem 4.7

𝐾𝑛 (C[Z/𝑚]) =

C[Z/𝑚]× 𝑛 = 1;
Z𝑚 𝑛 = 0;
0 𝑛 ≤ −1.

17.33. The group𝐺 is solvable and torsionfree and hence satisfies Conjecture 3.110,
Conjecture 4.18, and the Farrell-Jones Conjecture 9.114 for torsionfree groups for
𝐿-theory. We conclude from Theorem 9.106 that 𝐿𝑠𝑛 (Z[𝐺]) = 𝐿

⟨−∞⟩
𝑛 (Z[𝐺]). The

group 𝐺 is a one-relator group with presentation ⟨𝑠1, 𝑠2 | 𝑠1𝑠2𝑠
−1
1 𝑠2⟩. The word

𝑠1𝑠2𝑠
−1
1 𝑠2 ∈ 𝐹 is not a commutator. Hence we get from Lemma 17.30 (ii) a short

exact sequence

0→ 𝐻1 (𝐵𝐺) ⊗Z 𝐿 ⟨−∞⟩𝑛−1 (Z) → 𝐻𝑛 (𝐵𝐺, {•}; L⟨−∞⟩ (Z))

→ TorZ1 (𝐻1 (𝐵𝐺); 𝐿 ⟨−∞⟩𝑛−2 (Z)) → 0

and an isomorphism

𝐿𝑠𝑛 (Z𝐺) � 𝐿
⟨−∞⟩
𝑛 (Z) ⊕ 𝐻𝑛 (𝐵𝐺, {•}; L⟨−∞⟩ (Z)).

We have 𝐻1 (𝐵𝐺) � Z/2 ⊕ Z and 𝐿 ⟨−∞⟩𝑛 (Z) � Z, 0,Z/2, 0 for 𝑛 ≡ 0, 1, 2, 3 mod 4.
Hence we get

𝐿𝑠𝑛 (Z𝐺) �


Z ⊕ Z/2 𝑛 ≡ 0 mod 4;
Z ⊕ Z/2 𝑛 ≡ 1 mod 4;
Z/2 𝑛 ≡ 2 mod 4;
Z/2 ⊕ Z/2 𝑛 ≡ 3 mod 4.

17.40. This follows from Theorem 3.115, Theorem 3.116 (iv), and Theorem 17.39 (ii).

17.45. This follows from Theorem 9.106 and the Shaneson splitting, see Theo-
rem 9.108, if we can construct an orientable closed aspherical smooth 3-manifold 𝑁
such that 𝐿 ⟨−∞⟩

𝑖
(Z[𝜋1 (𝑀)]) contains 𝑝-torsion for at least one 𝑖 ∈ Z. Namely, then

we can take 𝑀 = 𝑁 × 𝑇𝑛−3.
If 𝑝 = 2, take 𝑁 = 𝑇3. If 𝑝 is odd, use Example 17.44.

17.49. The Z/3-action given by 𝜙 on Z2 is free outside the origin. Now apply
Theorem 17.47 (iii) together with (17.48).
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17.54. We get from Theorem 10.79 (i)

𝐾𝑛 (𝐶∗𝑟 (Z/𝑚,C)) �
{
Z𝑚 𝑛 even;
{0} 𝑛 odd.

Since 𝐾𝑛 (𝐶∗𝑟 (Z/2,C)) → 𝐾𝑛 (𝐶∗𝑟 (Z/6,C)) is split injective, the computation for
𝐾𝑛 (𝐶∗𝑟 (SL2 (Z),C)) follows.

We have𝐶∗𝑟 (Z/2,R) � R×R,𝐶∗𝑟 (Z/3,R) � R×C, and𝐶∗𝑟 (Z/6,R) � R×R×C×C.
We get from Theorem 10.79 (ii)

𝐾𝑂𝑛 (𝐶∗𝑟 (Z/2,R)) � 𝐾𝑂𝑛 (R) ⊕ 𝐾𝑂𝑛 (R);
𝐾𝑂𝑛 (𝐶∗𝑟 (Z/4,R)) � 𝐾𝑂𝑛 (R) ⊕ 𝐾𝑂𝑛 (R) ⊕ 𝐾𝑛 (C);
𝐾𝑂𝑛 (𝐶∗𝑟 (Z/6,R)) � 𝐾𝑂𝑛 (R) ⊕ 𝐾𝑂𝑛 (R) ⊕ 𝐾𝑛 (C) ⊕ 𝐾𝑛 (C).

Since 𝐾𝑂𝑛 (𝐶∗𝑟 (Z/2,R)) → 𝐾𝑛 (𝐶∗𝑟 (Z/6,R)) is split injective, the computation for
𝐾𝑂𝑛 (𝐶∗𝑟 (SL2 (Z),R)) follows by inspecting the values of 𝐾𝑂𝑛 (R) and 𝐾𝑛 (C).

17.55. The group 𝐺 contains a subgroup of finite index which is finitely generated
free. Hence it satisfies the Full Farrell-Jones Conjecture 13.30 by Theorem 16.1. It
satisfies the Baum-Connes 14.11 with coefficients by Theorem 16.7. We conclude
from Theorem 13.51 that the assembly maps

𝐻𝐺0 (𝐸𝐺; KC)
�−→ 𝐾0 (C𝐺);

𝐾𝐺𝑛 (𝐸𝐺)
�−→ 𝐾𝑛 (𝐶𝑟∗ (𝐺)),

are isomorphisms. Since for a finite group 𝐻 we have 𝐾0 (C𝐻) = 𝐾0 (𝐶∗𝑟 (𝐻)) =
RepC (𝐻) and 𝐾−1 (C𝐻) = 𝐾1 (𝐶∗𝑟 (𝐻)) = {0}, we get from Example 15.30 exact
sequences

RepC (𝐶)
𝑖∗⊕𝑖∗−−−−→ RepC (𝐷8) ⊕ RepC (𝐷8) → 𝐾0 (C𝐺) → 0

and

0→ 𝐾1 (𝐶∗𝑟 (𝐺)) → RepC (𝐶)
𝑖∗⊕𝑖∗−−−−→ RepC (𝐷8) ⊕ RepC (𝐷8) → 𝐾0 (𝐶∗𝑟 (𝐺)) → 0,

where 𝑖 : 𝐶 → 𝐷8 is the inclusion. The group 𝐶 has two irreducible complex repre-
sentations, the trivial 1-dimensional complex representation C and the non-trivial
1-dimensional complex representation C− . The group 𝐷8 has four 1-dimensional
irreducible complex representations and one 2-dimensional irreducible complex re-
presentation. The homomorphism 𝑖∗ : RepC (𝐶) → RepC (𝐷8) sends the class of C
to the class of the sum of the four 1-dimensional irreducible representations and C−

to the sum of two copies of the 2-dimensional irreducible representation, see [908,
Subsections 3.3, 5.1 and 5.3]. Hence 𝑖∗ : RepC (𝐶) → RepC (𝐷8) looks like
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©«

1 0
1 0
1 0
1 0
0 2
1 0
1 0
1 0
1 0
0 2

ª®®®®®®®®®®®®®®®¬

: Z2 → Z10.

We conclude that 𝑖∗ is injective and its cokernel is isomorphic to Z8 ⊕ Z/2.

17.61. Note that𝐺 is the right-angled Artin group associated to the simplicial graph
𝑋 consisting of three vertices 𝑒0,𝑒1, and 𝑒2 and two edges [𝑒0, 𝑒1] and [𝑒1, 𝑒2]. Note
that Σ = 𝑋 in this case. Hence we get 𝑟−1 = 1, 𝑟0 = 3, and 𝑟1 = 2. We conclude
from (17.58) and Theorem 17.60

𝐻𝑛 (𝐺) �


Z 𝑛 = 0;
Z3 𝑛 = 1;
Z2 𝑛 = 2;
{0} 𝑛 ≥ 3;

𝐾𝑛 (𝐶∗𝑟 (𝐺)) � Z3 for 𝑛 ∈ Z,

and

𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺,R)) �



Z 𝑛 ≡ 0 mod (8);
Z3 ⊕ Z/2 𝑛 ≡ 1 mod (8);
Z2 ⊕ (Z/2)4 𝑛 ≡ 2 mod (8);
(Z/2)5 𝑛 ≡ 3 mod (8);
Z ⊕ (Z/2)2 𝑛 ≡ 4 mod (8);
Z3 𝑛 ≡ 5 mod (8);
Z2 𝑛 ≡ 6 mod (8);
{0} 𝑛 ≡ 7 mod (8).

17.63. We can arrange without changing the isomorphism type of (Z/2)3∗Z/2 (Z/2)2
that the inclusions of Z/2 into (Z/2)2 and (Z/2)3 are given by sending 𝑥 to (𝑥, 0)
and (𝑥, 0, 0). Hence 𝐺 is isomorphic to the right-angled Coxeter group associated to
the simplicial graph with vertices 𝑒0, 𝑒1, 𝑒2, 𝑒3 and edges [𝑒0, 𝑒1], [𝑒0, 𝑒2], [𝑒1, 𝑒2],
and [𝑒2, 𝑒3]. Then the associated flag complex Σ is obtained from 𝑋 by adding the
2-simplex [𝑒0, 𝑒1, 𝑒2]. Hence the number of the simplices of 𝑋 is 𝑟 = 10. Now apply
Theorem 17.62.
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17.65. Recall from the proof of Theorem 17.64 that 𝑀 is aspherical. In particular
𝜋 is torsionfree and we get for any abelian group 𝐴 using Poincaré duality and the
Universal Coefficient Theorem

𝐻𝑛 (𝐵𝜋; 𝐴) � 𝐻𝑛 (𝑀; 𝐴); for 𝑛 ≥ 0;
𝐻1 (𝐵𝜋; 𝐴) � 𝜋/[𝜋, 𝜋] ⊗Z 𝐴;
𝐻2 (𝐵𝜋; 𝐴) � homZ (𝜋, 𝐴);
𝐻3 (𝐵𝜋; 𝐴) � 𝐴;
𝐻𝑛 (𝐵𝜋; 𝐴) � {0} for 𝑛 ∉ {0, 1, 2, 3}.

The independence of 𝐿 ⟨𝑖⟩𝑛 (Z𝜋) from the decoration follows from Theorem 9.106
and from Conjectures 3.110 and 4.18, which hold for 𝜋 by Theorem 13.65 (xii). We
obtain from Theorem 17.64 (ii) an isomorphism

𝐻𝑛 (𝐵𝜋; L⟨−∞⟩Z ) �−→ 𝐿
⟨−∞⟩
𝑛 (Z𝜋).

Next we apply the Atyiah-Hirzebruch spectral sequence to 𝐻𝑛 (𝐵𝜋; L⟨−∞⟩Z ). Recall
that 𝐿𝑛 (Z) is Z, {0},Z/2, {0} for 𝑛 ≡ 0, 1, 2, 3 mod 4, see Theorem 9.204 (i). Since
the composite 𝐿𝑛 (Z) → 𝐿𝑛 (Z𝜋) → 𝐿𝑛 (Z) is the identity, all differentials in the
Atiyah-Hirzebruch spectral sequence are trivial. Hence we obtain isomorphisms

𝐿0 (Z𝜋) � 𝐻0 (𝐵𝜋; 𝐿0 (Z)) ⊕ 𝐻2 (𝐵𝜋; 𝐿2 (Z/2));
𝐿2 (Z𝜋) � 𝐻0 (𝐵𝜋; 𝐿2 (Z)) ⊕ 𝐻2 (𝐵𝜋; 𝐿0 (Z/2)),

and two short exact sequences

0→ 𝐻1 (𝐵𝜋; 𝐿2 (Z)) → 𝐿3 (Z𝜋) → 𝐻3 (𝐵𝜋; 𝐿0 (Z)) → 0;

0→ 𝐻1 (𝐵𝜋; 𝐿0 (Z)) → 𝐿1 (Z𝜋) → 𝐻3 (𝐵𝜋; 𝐿2 (Z)) → 0.

The first one splits because of 𝐻3 (𝐵𝜋; 𝐿0 (Z)) � Z. In order to show that the
second one splits, it suffices to show that it splits after localization at 2 since
𝐻3 (𝐵𝜋; 𝐿2 (Z)) � Z/2. This follows from Lemma 9.116 (i).

Chapter 18

18.9. This follows from the following facts. We have ∅/𝐺 = ∅. If 𝑓 : 𝑋 → 𝑌 is
a 𝐺-homotopy equivalence, 𝑓 /𝐺 : 𝑋/𝐺 → 𝑌/𝐺 is a homotopy equivalence. If the
𝐺-𝐶𝑊-complex 𝑋 is the union of𝐺-𝐶𝑊-subcomplexes 𝑋1 and 𝑋2 with intersection
𝑋0, then the 𝐶𝑊-complex 𝑋/𝐺 is the union of 𝐶𝑊-subcomplexes 𝑋1/𝐺 and 𝑋2/𝐺
with intersection 𝑋0/𝐺. If {𝑋𝑖 | 𝑖 ∈ 𝐼} is a collection of 𝐺-𝐶𝑊-complexes, then the
canonical map (∐𝑖∈𝐼 𝑋𝑖)/𝐺 →

∐
𝑖∈𝐼 𝑋𝑖/𝐺 is a homeomorphism.
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18.12. Suppose that E is weakly F -excisive. Theorem 18.11 (ii) and (iv) imply that
the assignment sending (𝑋, 𝐴) to coker

(
𝜋𝑛 (∅+) → 𝜋𝑛 (E(𝑋/𝐴))

)
is a 𝐺-homology

theory.
Suppose that the assignment sending (𝑋, 𝐴) to coker

(
𝜋𝑛 (E(∅+)) → 𝜋𝑛 (E(𝑋/𝐴))

)
is a 𝐺-homology theory. Then we get from Theorem 18.11 (ii) and (iv) and from
Lemma 12.6 applied to E% → E that E is weakly F -excisive.

18.13. We use induction over the dimension 𝑑 = dim(𝑋) of 𝑋 . The induction
beginning 𝑑 = 0 follows from the fact that 𝑋 is a finite union of homogenous spaces∐𝑘
𝑖=1 𝐺/𝐻𝑖 and hence we get an isomorphism

⊕𝑘

𝑖=1 𝜋𝑛 (E(𝐺/𝐻𝑖))
�−→ 𝜋𝑛 (E(𝑋)).

The induction step from (𝑑 − 1) to 𝑑 ≥ 1 is done as follows. Choose a 𝐺-pushout∐𝑙
𝑖=1 𝐺/𝐻𝑖 × 𝑆𝑑−1 //

��

𝑋𝑑−1

��∐𝑙
𝑖=1 𝐺/𝐻𝑖 × 𝐷𝑑 // 𝑋.

Because of the associated Mayer-Vietoris sequence, it suffices to show for all 𝑛 ∈ Z
and 𝑖 ∈ {1, 2, . . . , 𝑙} that 𝜋𝑛 (𝐺/𝐻𝑖 × 𝑆𝑑−1), 𝜋𝑛 (𝐺/𝐻𝑖 × 𝐷𝑑), and 𝜋𝑛 (𝑋𝑑−1) are
finitely generated. This follows from the induction hypothesis and the fact that
𝜋𝑛 (𝐺/𝐻𝑖 × 𝐷𝑑) � 𝜋𝑛 (𝐺/𝐻𝑖) holds by weak 𝐺-homotopy invariance.

18.17. Since the projection 𝐸F (𝐺) → 𝐺/𝐺 induces a homotopy equivalence
𝐸𝐺 ×𝐺 𝐸F (𝐺) → 𝐸𝐺 ×𝐺 𝐺/𝐺, the map induced by the projection 𝐸F (𝐺) →
𝐺/𝐺 induces a weak homotopy equivalence E(𝐸F (𝐺))

�−→ E(𝐺/𝐺). Obviously
we get a weak equivalence of Or(𝐺) spectra from K𝑅 ◦ G𝐺 for G𝐺 : Or(𝐺) →
GROUPOIDS defined in (12.29) to E|Or(𝐺) , since there is an equivalence of
groupoids G𝐺 (𝐺/𝐻) ≃−→ Π(𝐸𝐺 ×𝐺 𝐺/𝐻), which is natural in 𝐺/𝐻. Now apply
Lemma 12.6 and Corollary 18.16.

Chapter 19

19.7. One easily checks that 𝐹 and 𝐹 𝑓 are compatible with the structures of an
additive category, is fully faithful, and every object of 𝑅𝐺-MODfgf is isomorphic
to some object in the image of 𝐹.

19.12. Define a functor of additive categories 𝐹 : T (𝑋) → GM{1} (𝑋) by sending
an object 𝑀 = {𝑀(𝑥,𝑠) | (𝑥, 𝑠) ∈ 𝑋 × N} to the object 𝐹 (𝑀) = {𝐹 (𝑀)𝑥 |
𝑥 ∈ 𝑋} given by 𝐹 (𝑀)𝑥 =

⊕
𝑠∈N 𝑀(𝑥,𝑠) and a morphism 𝑓 = { 𝑓(𝑥,𝑠) , (𝑦,𝑡 ) |

(𝑥, 𝑠), (𝑦, 𝑡) ∈ 𝑋 × N} from 𝑀 = {𝑀(𝑥,𝑠) | (𝑥, 𝑠) ∈ 𝑋 × N} to 𝑁 = {𝑁 (𝑦,𝑡 ) |
(𝑦, 𝑡) ∈ 𝑋 × N} to the morphism 𝐹 ( 𝑓 ) : 𝐹 (𝑀) → 𝐹 (𝑁) which is defined for
𝑥, 𝑦 ∈ 𝑋 by the morphism

⊕
𝑠∈N 𝑀(𝑥,𝑠) →

⊕
𝑡∈N 𝑁 (𝑦,𝑡 ) given by the collection of

𝑅-homomorphisms { 𝑓(𝑥,𝑠) , (𝑦,𝑠) : 𝑀(𝑥,𝑠) → 𝑁 (𝑦,𝑡 ) | 𝑠, 𝑡 ∈ N}. Obviously 𝐹 ◦ 𝐼 is



796 26 Solutions of the Exercises

the identity on GM{1} (𝑋). It remains to show that 𝐼 ◦𝐹 is naturally equivalent to the
identity on T (𝑋). For this purpose we have to construct for every object 𝑀 in T (𝑋)
a natural isomorphism 𝑢 : 𝐼 ◦𝐹 (𝑀) �−→ 𝑀 in T (𝑋). For (𝑥, 𝑠) and (𝑦, 𝑡) in 𝑋 ×N we
define 𝑢 (𝑥,𝑠) , (𝑦,𝑡 ) : 𝐼 ◦ 𝐹 (𝑀) (𝑥,𝑠) → 𝑀(𝑦,𝑡 ) to be the projection

⊕
𝑠∈N 𝑀(𝑥,𝑠) →

𝑀(𝑦,𝑡 ) to the summand belonging to (𝑦, 𝑡) if 𝑠 = 0 and 𝑥 = 𝑦, and to be zero otherwise.
For (𝑥, 𝑠) and (𝑦, 𝑡) in 𝑋 × N we define (𝑢−1) (𝑥,𝑠) , (𝑦,𝑡 ) : 𝑀(𝑥,𝑠) → (𝐼 ◦ 𝐹 (𝑀)) (𝑦,𝑡 )
to be the inclusion 𝑀(𝑥,𝑠) →

⊕
𝑡∈N 𝑀(𝑦,𝑡 ) of the summand belonging to (𝑥, 𝑠) if

𝑥 = 𝑦, and to be zero otherwise.

19.13. The hyperbolic metric is given by

𝑑hyp ((𝑥1, 𝑦1), (𝑥2, 𝑦2))

= 2 · ln
(√︁
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 +

√︁
(𝑥2 − 𝑥1)2 + (𝑦2 + 𝑦1)2

2√𝑦1𝑦2

)
.

Hence 𝛾(𝑥𝑘 ,𝑦𝑘 ) : [0,∞) → H2 sends 𝑡 to (𝑥𝑘 , exp(𝑡) · 𝑦𝑘), since for 𝑡, 𝑠 ∈ R we get
𝑑hyp (𝛾(𝑥𝑘 ,𝑦𝑘 ) (𝑡), 𝛾(𝑥𝑘 ,𝑦𝑘 ) (𝑠)) = |𝑡 − 𝑠 |. We compute for 𝑡 ≥ 0

lim
𝑡→∞

𝑑hyp (𝛾(𝑥1 ,𝑦1 ) (𝑡), 𝛾𝑥2 ,𝑦2 (𝑡))

= lim
𝑡→∞

𝑑hyp ((𝑥1, exp(𝑡) · 𝑦1), (𝑥2, exp(𝑡) · 𝑦2))

= lim
𝑡→∞

2 · ln
(√︁
(𝑥2 − 𝑥1)2 + (exp(𝑡) · 𝑦2 − exp(𝑡) · 𝑦1)2

2
√︁

exp(𝑡) · 𝑦1 · exp(𝑡) · 𝑦2

+
√︁
(𝑥2 − 𝑥1)2 + (exp(𝑡) · 𝑦2 + exp(𝑡) · 𝑦1)2

2
√︁

exp(𝑡) · 𝑦1 · exp(𝑡) · 𝑦2

)
= lim
𝑡→∞

2 · ln ©«
√︄

(𝑥2 − 𝑥1)2
4 exp(𝑡) · 𝑦1 · exp(𝑡) · 𝑦2

+ (exp(𝑡) · 𝑦2 − exp(𝑡) · 𝑦1)2
4 exp(𝑡) · 𝑦1 · exp(𝑡) · 𝑦2

+

√︄
(𝑥2 − 𝑥1)2

4 exp(𝑡) · 𝑦1 · exp(𝑡) · 𝑦2
+ (exp(𝑡) · 𝑦2 + exp(𝑡) · 𝑦1)2

4 exp(𝑡) · 𝑦1 · exp(𝑡) · 𝑦2

ª®¬
= lim
𝑡→∞

2 · ln ©«
√︄

(𝑥2 − 𝑥1)2
4𝑦1𝑦2 · exp(2𝑡) +

(𝑦2 − 𝑦1)2
4𝑦1𝑦2

+

√︄
(𝑥2 − 𝑥1)2

4𝑦1𝑦2 · exp(2𝑡) +
(𝑦2 + 𝑦1)2

4𝑦1𝑦2

ª®¬
= 2 · ln ©«

√︄
(𝑦2 − 𝑦1)2

4𝑦1𝑦2
+

√︄
(𝑦2 + 𝑦1)2

4𝑦1𝑦2

ª®¬
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= 2 · ln
(
|𝑦2 − 𝑦1 | + (𝑦2 + 𝑦1)√︁

4𝑦1𝑦2

)
= 2 · ln

(
2 max{𝑦1, 𝑦2}√︁

4𝑦1𝑦2

)
= 2 ·

(
ln(max{𝑦1, 𝑦2}) −

ln(𝑦1)
2
− ln(𝑦2)

2

)
= | ln(𝑦1) − ln(𝑦2) |.

19.15. Let 𝑡 ∈ [𝑇 −𝑟 ′, 𝑇 +𝑟 ′]. We have |𝜏 | ≤ 𝑑 (𝑥1, 𝑥2) ≤ 2𝛽. From𝑇 −𝑟 ′ = 𝑟 ′′ > 2𝛽
we conclude 𝑡, 𝑡 + 𝜏 > 0. If 𝑡 ≥ 𝑑 (𝑥, 𝑥1), then 𝑡 + 𝜏 ≥ 𝑑 (𝑥, 𝑥2) holds and hence
we get 𝑐𝑥1 ,𝑥 (𝑡) = 𝑥 = 𝑐𝑥2 ,𝑥 (𝑡 + 𝜏) so that the assertion follows in this case. Hence
we can assume without loss of generality 0 < 𝑡 < 𝑑 (𝑥, 𝑥1). One easily checks
that 0 < 𝑡 + 𝜏 < 𝑑 (𝑥, 𝑥2) and 𝑑 (𝑐𝑥1 ,𝑥 (𝑡), 𝑥) = 𝑑 (𝑥, 𝑥1) − 𝑡 = 𝑑 (𝑥, 𝑥2) − (𝑡 + 𝜏) =
𝑑 (𝑐𝑥2 ,𝑥 (𝑡+𝜏), 𝑥) hold. We can suppose without loss of generality 𝑑 (𝑥, 𝑥1) ≤ 𝑑 (𝑥, 𝑥2),
the proof in the other case is analogous, interchanging the role of 𝑥1 and 𝑥2. We have
𝑑 (𝑥, 𝑥1) = 𝑑 (𝑥, 𝑐𝑥2 ,𝑥 (𝑑 (𝑥, 𝑥2) − 𝑑 (𝑥, 𝑥1))). The Intercept Theorem implies

𝑑 (𝑐𝑥1 ,𝑥 (𝑡), 𝑐𝑥2 ,𝑥 (𝑡 + 𝜏)) =
𝑑 (𝑥1, 𝑐𝑥2 ,𝑥 (𝑑 (𝑥, 𝑥2) − 𝑑 (𝑥, 𝑥1))) · (𝑑 (𝑥, 𝑥1) − 𝑡)

𝑑 (𝑥, 𝑥1)
.

We have 𝑑 (𝑥2, 𝑐𝑥2 ,𝑥 (𝑑 (𝑥, 𝑥2) − 𝑑 (𝑥, 𝑥1))) = 𝑑 (𝑥, 𝑥1). Hence the triangle inequality
implies

𝑑 (𝑥1, 𝑐𝑥2 ,𝑥 (𝑑 (𝑥, 𝑥2) − 𝑑 (𝑥, 𝑥1))) ≤ 𝑑 (𝑥1, 𝑥2) − 𝑑 (𝑥2, 𝑐𝑥2 ,𝑥 (𝑑 (𝑥, 𝑥2) − 𝑑 (𝑥, 𝑥1)))
= 𝑑 (𝑥1, 𝑥2) − 𝑑 (𝑥, 𝑥1)
≤ 𝑑 (𝑥1, 𝑥2) − (𝑑 (𝑥, 𝑥2) − 𝑑 (𝑥1, 𝑥2))
= 2𝑑 (𝑥1, 𝑥2) − 𝑑 (𝑥, 𝑥2)
≤ 2𝑑 (𝑥1, 𝑥2)
≤ 4𝛽.

Hence we get

𝑑 (𝑐𝑥1 ,𝑥 (𝑡), 𝑐𝑥2 ,𝑥 (𝑡 + 𝜏)) ≤
4 · 𝛽 · (𝑑 (𝑥, 𝑥1) − 𝑡)

𝑑 (𝑥, 𝑥1)
.

Since we have 𝑟 ′′ = 𝑇 − 𝑟 ′ ≤ 𝑡 < 𝑑 (𝑥, 𝑥1) and

𝑑 (𝑥, 𝑥1) − 𝑡 ≤ 𝑑 (𝑥, 𝑥0) + 𝑑 (𝑥0, 𝑥1) − 𝑡 ≤ 𝑟 ′ + 𝑟 ′′ + 𝐿 + 𝛽 − (𝑇 − 𝑟 ′)
= 𝑟 ′ + 𝑟 ′′ + 𝛽 + 𝐿 − 𝑟 ′′ = 𝑟 ′ + 𝛽 + 𝐿,

the asserted inequality 𝑑 (𝑐𝑥1 ,𝑥 (𝑡), 𝑐𝑥2 ,𝑥 (𝑡 + 𝜏)) ≤
4·𝛽 · (𝑟 ′+𝛽+𝐿)

𝑟 ′′ follows.
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We have 𝑡 ≤ 𝑇 + 𝑟 ′ = 2𝑟 ′ + 𝑟 ′′. We have already shown |𝜏 | ≤ 2𝛽 and hence
𝑡 + 𝜏 ≤ 2𝑟 ′ + 𝑟 ′′ + 2𝛽. Since this implies 𝑡, 𝑡 + 𝜏 ∈ [0, 2𝑟 ′ + 𝑟 ′′ + 2𝛽], we get
𝑐𝑥1 ,𝑥 (𝑡) ∈ 𝐵2𝑟 ′+𝑟 ′′+2𝛽 (𝑥1) and 𝑐𝑥1 ,𝑥 (𝑡 + 𝜏) ∈ 𝐵2𝑟 ′+𝑟 ′′+2𝛽 (𝑥2).

Chapter 20

20.14. The assertion follows from Theorem 20.12 applied to 𝑁 = dim(Σ), 𝑋 = |Σ |,
𝑓 = id |Σ | 𝐸 , and any 𝜖 > 0. Since Σ is finite, the group of simplicial automorphisms
of Σ is also finite. Therefore 𝐺 contains a normal subgroup of finite index which
acts trivially on Σ and hence on |Σ |.

20.20. Define a 𝐺-homeomorphism 𝑓 : 𝐺 ×1 𝑋
�−→ 𝐺 ×𝑑 𝑋 by sending (𝑔, 𝑥) to

(𝑔, 𝑔𝑥).

20.37. The assertion for 𝐹𝑔 (Γ, 𝑆, 𝑘) is a consequence of the equality

Γ(𝑔𝑘 , 𝑡𝑘 , . . . , 𝑔1, 𝑡1, 𝑔0, 𝑧) = 𝑔𝑘 · · · 𝑔0𝑧.

The assertion for 𝑆1
Γ,𝑆,𝑘
(𝑔, 𝑥) is proved as follows. Consider (ℎ, 𝑦) ∈ 𝐺 × 𝑋 with

the property that there are 𝑎, 𝑏 ∈ 𝑆, 𝑓 ∈ 𝐹𝑎 (Γ, 𝑆, 𝑘), and 𝑓 ′ ∈ 𝐹𝑏 (Γ, 𝑆, 𝑘) satisfying
both 𝑓 (𝑥) = 𝑓 ′ (𝑦) and ℎ = 𝑔𝑎−1𝑏. We conclude from the assertion for 𝐹𝑔 (Γ, 𝑆, 𝑘)
that this is equivalent to the condition that for some 𝑎, 𝑏 in 𝑆 we have 𝑎𝑥 = 𝑏𝑦 and
ℎ = 𝑔𝑎−1𝑏.

The claim for 𝑆𝑛
Γ,𝑆,𝑘
(𝑔, 𝑥) follows by induction on 𝑛, since 𝑆[𝑘, 𝑛] = {𝑢1 · · · 𝑢𝑛 |

𝑢𝑖 ∈ 𝑆[𝑘, 1]} holds.

20.43. Suppose that the condition is satisfied for 𝑆1 and 𝜖 > 0. Choose a natural
number 𝑘 such that each element in 𝑆2 can be written as a word in the generators
of 𝑆2 consisting of at most 𝑘 elements. Then the conditions is satisfied for 𝑆2 and
𝑘 · 𝜖 > 0, since for an element 𝑔 which can be written as a word in 𝑙-elements of 𝑆1
we conclude from the triangle inequality and the 𝐺-invariance of the 𝐿1-metric that
𝑑𝐿1 ( 𝑓 (𝑔𝑥), 𝑔 𝑓 (𝑥)) ≤ 𝑙 · 𝜖 holds.

20.51. Consider 𝐻 ∈ D(𝐻). Choose a prime 𝑞 and a normal subgroup 𝐻 ⊆ 𝐹 such
that 𝐻 is cyclic and 𝐹/𝐻 is a 𝑞-group. Now take 𝑝 to be any prime, 𝑃 = {1},𝐶 = 𝐻,
and 𝐷 = 𝐹 in the Definition 20.50.

20.54. Because of Theorem 20.53 we have to show for any finite abelian group 𝐺
that it is a Dress group if and only if the set of primes for which the 𝑝-Sylow group is
non-cyclic consists of at most two elements. This follows from the fact that 𝐺 is the
direct product of its 𝑝-Sylow subgroups and 𝐺 is cyclic if and only if all its 𝑝-Sylow
subgroups are cyclic.

20.56. Obviously 𝐶𝑛 (𝑋) is a Z𝐺-module whose underlying abelian group is finitely
generated free. Hence 𝑠(𝑋) is well-defined.
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Suppose that 𝑓 : 𝑋 → 𝑌 is a 𝐺-map which is (after forgetting the 𝐺-action)
a homotopy equivalence. Then we obtain an exact sequence of finite Z𝐺-chain
complexes 0 → 𝐶∗ (𝑌 ) → cone(𝐶∗ ( 𝑓 )) → Σ𝐶∗ (𝑋) → 0 such that each chain
module is finitely generated free as an abelian group and cone(𝐶∗ ( 𝑓 )) has trivial
homology. Define for a finiteZ𝐺-chain complex 𝐸∗, whose chain modules are finitely
generated free as abelian groups, the element 𝑠(𝐸∗) =

∑
𝑛≥0 (−1)𝑛 · [𝐸𝑛] in Sw𝑝 (𝐺).

Now one easily checks

𝑠(𝑋) = 𝑠(𝐶𝑐∗ (𝑋));
𝑠(𝑌 ) = 𝑠(𝐶𝑐∗ (𝑌 ));

𝑠(cone(𝐶∗ ( 𝑓 ))) = 0;
𝑠(Σ𝐶∗ (𝑋)) = −𝑠(𝐶∗ (𝑋));

𝑠(cone(𝐶∗ ( 𝑓 ))) = 𝑠(𝐶∗ (𝑌 )) + 𝑠(Σ𝐶∗ (𝑋)).

This implies 𝑠(𝑋) = 𝑠(𝑌 ).
Suppose that the compact𝐺-𝐶𝑊-complex 𝑋 is the union of sub𝐺-𝐶𝑊-complexes

𝑋1 and 𝑋2 and 𝑋0 is the intersection of 𝑋1 and 𝑋1. Then we conclude from the short
exact sequence of Z𝐺-chain complexes

0→ 𝐶∗ (𝑋0) → 𝐶∗ (𝑋1) ⊕ 𝐶∗ (𝑋2) → 𝐶∗ (𝑋) → 0

that 𝑠(𝑋) = 𝑠(𝑋1) + 𝑠(𝑋2) − 𝑠(𝑋0) holds. Hence the map 𝑠 : Sw𝐴(𝐺) → Sw𝑝 (𝐺)
sending [𝑋] to 𝑠(𝑋) is a well-defined map of abelian groups. It is compatible with the
multiplication, since there is a Z𝐺-chain isomorphism𝐶∗ (𝑋) ⊗𝐶∗ (𝑌 )

�−→ 𝐶∗ (𝑋 ×𝑌 )
for any two compact 𝐺-𝐶𝑊-complexes 𝑋 and 𝑌 .

20.57. Since for two finite 𝐺-sets 𝑆 and 𝑆′ we can view 𝑆 ⨿ 𝑆′ as the 𝐺-pushout of
𝑆 ← ∅ → 𝑆′, we get a well-defined homomorphism of abelian groups 𝑎 : 𝐴(𝐺) →
Sw𝐴(𝐺) by sending [𝑆] to [𝑆]. It is compatible with the multiplication, since it is
defined on 𝐴(𝐺) and Sw𝐴(𝐺) by the cartesian product equipped with the diagonal
𝐺-action.

In order to show that the homomorphism 𝑎 is surjective, we show by induction
over 𝑑 = 0, 1, 2, . . . that for any cocompact finite 𝐺-𝐶𝑊-complex 𝑋 of dimension
≤ 𝑑 the class [𝑋] is in the image of 𝑎. The induction beginning 𝑑 = 0 is obvious
since a cocompact 0-dimension 𝐺-𝐶𝑊-complex is the same as a finite 𝐺-set. The
induction step from (𝑑 − 1) to 𝑑 ≥ 1 is done as follows. We can write 𝑋 as a
𝐺-pushout ∐

𝑖∈𝐼𝑑 𝐺/𝐻𝑖 × 𝑆𝑑−1 𝑞 //

��

𝑋𝑑−1

��∐
𝑖∈𝐼𝑑 𝐺/𝐻𝑖 × 𝐷𝑑 // 𝑋
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for a finite set 𝐼 and subgroups 𝐻𝑖 ⊆ 𝐺 of finite index. Since we can replace 𝑞 by
inclusion of

∐
𝑖∈𝐼𝑑 𝐺/𝐻𝑖×𝑆𝑑−1 into the mapping cylinder cyl(𝑞) and the projections

cyl(𝑞) → 𝑋𝑑−1 and 𝐺/𝐻𝑖 × 𝐷𝑑 → 𝐺/𝐻𝑖 are 𝐺-homotopy equivalences, we obtain
in Sw𝐴(𝐺)

[𝑋] =
∑︁
𝑖∈𝐼𝑑
[𝐺/𝐻𝑖] + [𝑋𝑑−1] −

∑︁
𝑖∈𝐼𝑑
[𝐺/𝐻𝑖 × 𝑆𝑑−1] .

Since by induction hypothesis [𝑋𝑑−1], [𝐺/𝐻𝑖], and [𝐺/𝐻𝑖 × 𝑆𝑑−1] lie in the image
of 𝑎, the same is true for [𝑋].

20.58. The map 𝑢 is obviously well-defined and an isomorphism of abelian groups.
The map 𝑐 is well-defined, since for an exact sequence of Z[Z/𝑝]-modules 0 →
𝑀0 → 𝑀1 → 𝑀2 → 0 the sequence of Q-modules 0 → Q ⊗Z 𝑀Z/𝑝

0 → Q ⊗Z
𝑀

Z/𝑝
1 → Q ⊗Z 𝑀Z/𝑝

2 → 0 is exact. The composite 𝑐 ◦ 𝑠 ◦ 𝑎 ◦ 𝑢 sends (𝑚, 𝑛) to
(𝑚, 𝑚+𝑛) and hence is bijective. This implies that 𝑎 is injective. Since 𝑎 is surjective
by Exercise 20.57, it is bijective. Hence all three maps 𝑢, 𝑎, are 𝑐 ◦ 𝑠 are bijective.

Chapter 21

21.74. Since O𝐺 (𝐺/𝐻) is flasque, we get 𝐾𝑛 (O𝐺 (𝐺/𝐻)) = 0 for all 𝑛 ∈ Z from
Lemma 6.37 (iii). We conclude from the TOD-sequence of Theorem 21.19 that
the canonical map 𝐾𝑛+1 (D𝐺 (𝐺/𝐻))

�−→ 𝐾𝑛 (T𝐺 (𝐺/𝐻)) is an isomorphism for
all 𝑛 ∈ Z. We have already constructed a natural isomorphism 𝐾𝑛 (B(𝐺/𝐻)⊕)

�−→
𝐾𝑛+1 (D𝐺 (𝐺/𝐻)) for every 𝑛 ∈ Z in Proposition 21.70. We get a canonical isomor-
phism 𝐾𝑛 (T𝐺 (𝐺/𝐻))

�−→ 𝐾𝑛 (T𝐺 (𝐺/𝐺)) from Lemma 21.22. These three isomor-
phisms can be combined to an isomorphism 𝐾𝑛 (T𝐺 (𝐺/𝐺))

�−→ 𝐾𝑛 (B(𝐺/𝐻)⊕).
There is an obvious identification T𝐺 (𝐺/𝐺) = B⊕ . Under it we get an isomorphism
𝐾𝑛 (B[𝐺/𝐻]⊕)

�−→ 𝐾𝑛 (B⊕)which comes from the obvious projection𝐺/𝐻 → 𝐺/𝐺
and the obvious identification B(𝐺/𝐺) = B.

21.84. We leave the elementary proof that (B, suppZ) satisfies the axioms appearing
in Definition 21.1 to the reader.

The category B(Z/Z) � B is 𝑅[Z/2] and hence 𝐻Z
𝑛 (Z/Z; KB) � 𝐾𝑛 (𝑅[Z/2]).

The categoryB(Z) can be identified with the category
∐
𝑛∈Z 𝑅. Hence the obvious

functor of additive categories
⊕

𝑛∈Z 𝑅⊕ → B(Z)⊕ is an equivalence. Thus we get
an isomorphism

𝛼 :
⊕
𝑛∈Z

𝐾𝑛 (𝑅)
�−→ 𝐾𝑛 (B(Z))

since the algebraic 𝐾-theory of additive categories is compatible with direct sums
over arbitrary index sets. Let 𝑠 : Z→ Z be the automorphism sending 𝑛 to 𝑛 + 1 and
sh:

⊕
𝑛∈Z 𝐾𝑛 (𝑅) →

⊕
𝑛∈Z 𝐾𝑛 (𝑅) be the shift automorphism sending (𝑥𝑛)𝑛∈N to

(𝑥𝑛−1)𝑛∈N. Then the following diagram commutes
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𝑛∈Z 𝐾𝑛 (𝑅)

sh
��

𝛼

�
// 𝐾𝑛 (B[Z]⊕)

� 𝐾𝑛 (B (𝑠)⊕ )
��⊕

𝑛∈Z 𝐾𝑛 (𝑅) 𝛼

� // 𝐾𝑛 (B(Z)⊕).

The following sequence of abelian group is exact

0→
⊕
𝑛∈Z

𝐾𝑛 (𝑅)
id − sh−−−−−→

⊕
𝑛∈Z

𝐾𝑛 (𝑅)
𝜖−→ 𝐾𝑛 (𝑅) → 0

where 𝜖 sends (𝑥𝑛)𝑛≥0 to
∑
𝑛∈Z 𝑥𝑛. Since a model for 𝐸Z is R with the standard

Z-action, we obtain a long exact sequence

· · · → 𝐾𝑛 (B(Z)⊕)
id −𝐾𝑛 (B (𝑠)⊕ )−−−−−−−−−−−−→ 𝐾𝑛 (B(Z)⊕) → 𝐻Z

𝑛 (𝐸Z; KB)

→ 𝐾𝑛−1 (B(Z)⊕)
id −𝐾𝑛−1 (B (𝑠)⊕ )−−−−−−−−−−−−−→ 𝐾𝑛−1 (B(Z)⊕) → · · · .

Hence we obtain an identification

𝐻Z
𝑛 (𝐸Z; KB) � 𝐾𝑛 (𝑅).

We leave the elementary proof of the claim about the identification of the assembly
map to the reader.

21.86. Suppose that we have two other morphisms 𝑢′
𝑖
: 𝐵→ 𝐵′ for 𝑖 = 1, 2 satisfying

𝑢 = 𝑢′1 + 𝑢
′
2 and supp𝐺 (𝑢′𝑖) = 𝐿𝑖 for 𝑖 = 1, 2. Put 𝑣𝑖 := 𝑢𝑖 − 𝑢′𝑖 for 𝑖 = 1, 2. Then we

have 0 = 𝑣1 + 𝑣2 and hence supp𝐺 (𝑣1 + 𝑣2) = ∅. We conclude

supp𝐺 (𝑣1) = supp𝐺 ((𝑣1 + 𝑣2) + (−𝑣2)) ⊆ supp𝐺 (𝑣1 + 𝑣2) ∪ supp𝐺 (−𝑣2)
= ∅ + supp𝐺 (𝑣2) = supp𝐺 (𝑢2 + (−𝑢′2)) ⊆ supp𝐺 (𝑢2) ∪ supp𝐺 (−𝑢′2)

⊆ supp𝐺 (𝑢2) ∪ supp𝐺 (𝑢′2) ⊆ 𝐿2 ∪ 𝐿2 = 𝐿2

and

supp𝐺 (𝑣1) = supp𝐺 (𝑢1 + (−𝑢′1)) ⊆ supp𝐺 (𝑢1) ∪ supp𝐺 (−𝑢′1)
⊆ supp𝐺 (𝑢1) ∪ supp𝐺 (𝑢′1) ⊆ 𝐿1 ∪ 𝐿1 = 𝐿1.

Since 𝐿1 ∩ 𝐿2 = ∅, we conclude supp𝐺 (𝑣1) = ∅ and hence 𝑣1 = 0. This implies
𝑢1 = 𝑢′1. Analogously one shows 𝑢2 = 𝑢′2.

21.87. Obviously A[𝐺] with the support defined in Example 21.2 is a category
with 𝐺-support. It is a strong category with 𝐺-support, since A comes with a
𝐺-action and we can define the desired homotopy trivialization Ω𝑔 : idB

�−→ Λ𝑔
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by the isomorphisms id𝑔𝐴 ·𝑔 : 𝐴 → 𝑔𝐴 in A[𝐺] for 𝐴 ∈ A. Morphism Additivity
obviously holds.

21.88. Define a functor of 𝐺-Z-categories

𝐹 : A[𝐺] �−→ B

by requiring that 𝐹 is the identity on the set of objects and sends a mor-
phism

∑
𝑔∈𝐺 ( 𝑓𝑔 : 𝑔𝐴 → 𝐴) · 𝑔 from 𝐴 to 𝐴′ in A[𝐺] to the morphism∑

𝑔∈𝐺 ( 𝑓𝑔 ◦Ω𝑔 (𝐴)) from 𝐴 to 𝐴′ in A[𝐺]. Using Exercise 21.86 one easily checks
that 𝐹 is full and faithful and hence an isomorphism of 𝐺-Z-categories. Obviously
𝐹 is compatible with the support functions.

21.89. Suppose such an extension to the structure of a strong category withZ-support
exists. The natural transformation Ω1 for the generator 1 ∈ Z is an isomorphism in B
with support {1}. This is a contradiction since no morphism in B has support {1}.

21.102. Because of Theorem 8.46 (i) and Lemma 21.101 its suffices to show

𝐾𝑚 (T {1}0 ({•})) �
∞⊕
𝑛=0

𝐾𝑚 (B⊕);

𝐾𝑚 (O {1}0 ({•})) �
∞∏
𝑛=0

𝐾𝑚 (B⊕).

Non-connective 𝐾-theory is compatible with infinite direct products of additive
categories, by [212], see also [573, Theorem 1.2]. It is also compatible with directed
unions, see for instance [684, Corollary 7.2], and hence with infinite direct sums.
Since the obvious functors

∞⊕
𝑛=0
B⊕

≃−→ T {1}0 ({•});

O {1}0 ({•})
≃−→
∞∏
𝑛=0
B⊕ ,

are equivalences of additive categories, the claim follows.

21.132. The key observation is the following. Given a morphism 𝜙 : B =

(𝑆, 𝜋, 𝜂,B) → B′ = (𝑆′, 𝜋′, 𝜂′,B′), there exists, because of bounded control
over N, a natural number 𝑛 such that for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ the implication
𝜙𝑠,𝑠′ ≠ 0 =⇒ |𝜂(𝑠) − 𝜂′ (𝑠′) | ≤ 𝑛 holds. Hence for any natural number 𝑟 with 𝑟 > 𝑛
we conclude that ���� 1

𝜂(𝑠) −
1

𝜂′ (𝑠′)

���� = ����𝜂(𝑠) − 𝜂′ (𝑠′)𝜂(𝑠) · 𝜂(𝑠′)

���� ≤ 𝑛

𝑟 · (𝑟 − 𝑛)
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holds for 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑆′ with 𝜙𝑠,𝑠′ ≠ 0, provided that 𝜂(𝑠) ≥ 𝑟 or 𝜂(𝑠′) ≥ 𝑟.
Obviously we have lim𝑟→∞

𝑛
𝑟 · (𝑟−𝑛) = 0.

Chapter 22

22.7. Obviously Φ𝜏 ◦Φ𝜎 = Φ𝜏+𝜎 for 𝜏, 𝜎 ∈ R and Φ0 = idFS(𝑋) . We estimate for
𝑐 ∈ FS(𝑋) and 𝜏 ∈ R

𝑑FS(𝑋)
(
𝑐,Φ𝜏 (𝑐)

)
=

∫
R

𝑑𝑋
(
𝑐(𝑡), 𝑐(𝑡 + 𝜏)

)
2e |𝑡 |

d𝑡

≤
∫
R

|𝜏 |
2e |𝑡 |

d𝑡

= |𝜏 | ·
∫
R

1
2e |𝑡 |

d𝑡

= |𝜏 |.

We estimate for 𝑐, 𝑑 ∈ FS(𝑋) and 𝜏 ∈ R

𝑑FS(𝑋)
(
Φ𝜏 (𝑐),Φ𝜏 (𝑑)

)
=

∫
R

𝑑𝑋
(
𝑐(𝑡 + 𝜏), 𝑑 (𝑡 + 𝜏)

)
2e |𝑡 |

d𝑡

=

∫
R

𝑑𝑋
(
𝑐(𝑡), 𝑑 (𝑡)

)
2e |𝑡−𝜏 |

d𝑡

≤
∫
R

𝑑𝑋
(
𝑐(𝑡), 𝑑 (𝑡)

)
2e |𝑡 |− |𝜏 |

d𝑡

= e |𝜏 | ·
∫
R

𝑑𝑋
(
𝑐(𝑡), 𝑑 (𝑡)

)
2e |𝑡 |

d𝑡

= e |𝜏 | · 𝑑FS(𝑋) (𝑐, 𝑑).

The two inequalities above together with the triangle inequality imply for 𝑐, 𝑑 ∈
FS(𝑋) and 𝜏, 𝜎 ∈ R

𝑑FS(𝑋)
(
Φ𝜏 (𝑐),Φ𝜎 (𝑑)

)
= 𝑑FS(𝑋)

(
Φ𝜏 (𝑐),Φ𝜎−𝜏 ◦Φ𝜏 (𝑑)

)
≤ 𝑑FS(𝑋)

(
Φ𝜏 (𝑐),Φ𝜏 (𝑑)

)
+ 𝑑FS(𝑋)

(
Φ𝜏 (𝑑),Φ𝜎−𝜏 ◦Φ𝜏 (𝑑)

)
≤ e |𝜏 | · 𝑑FS(𝑋) (𝑐, 𝑑) + |𝜎 − 𝜏 |.

This implies that Φ is continuous at (𝑐, 𝜏).

22.16. Note that FS(𝑋)R is the space of constant generalized geodesics. Let 𝑐 ∈
FS(𝑋)−FS(𝑋)R. Pick 𝑡0, 𝑡1 ∈ R such that 𝑐(𝑡0) ≠ 𝑐(𝑡1). Set 𝛿 := 𝑑𝑋 (𝑐(𝑡0), 𝑐(𝑡1))/2.
Consider any 𝑥 ∈ 𝑋 . Then we have 𝑑𝑋 (𝑥, 𝑐(𝑡0)) ≥ 𝛿 or 𝑑𝑋 (𝑥, 𝑐(𝑡1)) ≥ 𝛿. Denote
by 𝑐𝑥 the constant generalized geodesic at 𝑥. Suppose 𝑑𝑋 (𝑥, 𝑐(𝑡0)) ≥ 𝛿. Then
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𝑑𝑋 (𝑥, 𝑐(𝑡)) ≥ 𝛿/2 if 𝑡 ∈ [𝑡0 − 𝛿/2, 𝑡0 + 𝛿/2]. Thus in this case we get

𝑑FS(𝑋) (𝑐𝑥 , 𝑐) ≥
∫ 𝑡0+𝛿/2

𝑡0−𝛿/2

𝛿/2
2e |𝑡 |

d𝑡 =: 𝜖0.

Similarly, we get in the case 𝑑𝑋 (𝑥, 𝑐(𝑡1)) ≥ 𝛿

𝑑FS(𝑋) (𝑐𝑥 , 𝑐) ≥
∫ 𝑡1+𝛿/2

𝑡1−𝛿/2

𝛿/2
2e |𝑡 |

d𝑡 =: 𝜖1.

Hence 𝐵𝜖 (𝑐) ∩ FS(𝑋)R = ∅ if we set 𝜖 := min{𝜖0/2, 𝜖1/2}.

22.37. If dim(𝑋) = ∞, the claim is obviously true. So we can assume in the sequel
that dim(𝑋) is a natural number.

Let U be an open covering of 𝐴. For 𝑈 ∈ U choose an open subset 𝑈′ ⊆ 𝑋

satisfying𝑈 = 𝐴∩𝑈′. ThenU′ = {𝑈′ | 𝑈 ∈ U}⨿{𝑋 \𝐴} is an open covering of 𝑋 .
LetV′ be a refinement ofU′with dim(V) ≤ dim(𝑋). ThenV = {𝑉 ′∩𝐴 | 𝑉 ′ ∈ V′}
is an open covering of 𝐴 with dim(V) ≤ dim(V′) ≤ dim(𝑋) which is a refinement
ofU. This implies dim(𝐴) ≤ dim(𝑋).

Chapter 23

23.11. We have to show for 𝜖 ∈ {±1} and 𝑔 ∈ 𝐺 that, for any Z𝐺-module 𝑀 which
is finitely generated free as an abelian group, 𝑠( [𝑀], (𝜖 · 𝑔)) lies in the kernel of
the projection 𝐾1 (Z𝐺) → Wh(𝐺) for the element (𝜖 · 𝑔) ∈ 𝐾1 (Z𝐺) represented
by the trivial unit 𝜖 · 𝑔 ∈ Z𝐺× and the element [𝑀] ∈ Sw(𝐺) represented by 𝑀 .
It is not hard to check that 𝑠( [𝑀], (𝜖𝑔)) is represented by the composite of the
automorphisms (𝜖 · 𝑙𝑔) ⊗Z idZ𝐺 and id𝑀 ⊗𝑟𝑔 of 𝑀 ⊗2 Z𝐺, where 𝑙𝑔 : 𝑀 → 𝑀 is
left multiplication and 𝑟𝑔 : Z𝐺 → Z𝐺 is right multiplication. One easily checks that
the class of (𝜖 · 𝑙𝑔) ⊗Z idZ𝐺 in 𝐾1 (Z𝐺) lies in the image of 𝐾1 (Z) → 𝐾1 (Z𝐺) and
the class of id𝑀 ⊗𝑟𝑔 in 𝐾1 (Z𝐺) is rkZ (𝑀) · (𝑔).

23.30. (i) For 𝑥, 𝑦 ∈ 𝑍 with 𝑓𝑥,𝑦 ≠ 0 there exist 𝑖 ∈ {1, . . . , 𝑚} and 𝑗 ∈ {1, . . . , 𝑛}
with ( 𝑓𝑖, 𝑗 )𝑥,𝑦 ≠ 0 which implies 𝑑𝐿1 (𝑤(𝑥), 𝑤(𝑦)) ≤ wd( 𝑓𝑖, 𝑗 ).
(ii) For 𝑥, 𝑦 ∈ 𝑍 with (𝑔 ◦ 𝑓 )𝑥,𝑦 ≠ 0 there exists a 𝑧 ∈ 𝑍 with 𝑓𝑥,𝑧 ≠ 0 and 𝑔𝑧,𝑦 ≠ 0
and hence we get

𝑑𝐿
1 (𝑤(𝑥), 𝑤(𝑦)) ≤ 𝑑𝐿1 (𝑤(𝑥), 𝑤(𝑧)) + 𝑑𝐿1 (𝑤(𝑧), 𝑤(𝑦)) ≤ wd( 𝑓 ) + wd(𝑔).

(iii) Suppose that (𝜆 · 𝑓 + 𝜇 · 𝑔)𝑥,𝑦 ≠ 0 holds. Then 𝑓𝑥,𝑦 ≠ 0 or 𝑔𝑥,𝑦 ≠ 0 holds. This
implies 𝑑𝐿1 (𝑤(𝑥), 𝑤(𝑦)) ≤ wd( 𝑓 ) or 𝑑𝐿1 (𝑤(𝑥), 𝑤(𝑦)) ≤ wd(𝑔).
(iv) This follows from the definition of the width.
It is trivial on objects since we have (id𝑀 )𝑥,𝑦 ≠ 0 =⇒ 𝑥 = 𝑦 =⇒
𝑑𝐿

1 (𝑤(𝑥), 𝑤(𝑦)) = 0.
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23.40. Define for a bounded A-chain complex 𝐶∗ the number 𝑑 (𝐶∗) to be the
minimum over those numbers 𝑑 for which there exist integers 𝑎 and 𝑏 such that
𝑎 ≤ 𝑏 holds, we have 𝐶𝑛 = 0 for 𝑛 < 𝑎 and 𝑛 > 𝑏, and 𝑑 = 𝑏 − 𝑎 holds. Then
we use induction over 𝑑 (𝐶∗). In the induction beginning 𝑑 (𝐶∗) = 0 the A-chain
complex 𝐶∗ is concentrated in one dimension and the claim follows directly from
the definition. The induction step follows from Additivity.

23.46. The inverse of 𝑔 ◦ 𝑓 is 𝑓 −1 ◦ 𝑔−1. One easily checks using the axioms
appearing in Definition 23.27 that wd(𝑔 ◦ 𝑓 ),wd((𝑔 ◦ 𝑓 )−1) ≤ 𝜖 + 𝛿 holds.

23.49. In the sequel we will apply the axioms appearing in Definition 23.27 over
and over again.
(i) The equality wd(𝜆 · 𝑓∗ + 𝜇 · 𝑔∗) ≤ max{wd( 𝑓∗),wd(𝑔∗)} follows directly from
these axioms. If ℎ∗ : 𝑓∗ ≃ 𝑔∗ and 𝑘∗ : 𝑔∗ ≃ ℎ∗ areA-chain homotopies, then ℎ∗ + 𝑘∗
is an A-chain homotopy 𝑓∗ ≃ ℎ∗.
(ii) If ℎ∗ : 𝑓∗ ≃ 𝑓 ′∗ is an A-chain homotopy, then we obtain A-chain homotopies
𝑣∗+1 ◦ ℎ∗ : 𝑣∗ ◦ 𝑓∗ ≃ 𝑣∗ ◦ 𝑓 ′∗ and ℎ∗ ◦ 𝑢∗ : 𝑓∗ ◦ 𝑢∗ ≃ 𝑓 ′∗ ◦ 𝑢∗
(iii) Choose A-chain maps 𝑢∗ : 𝐷∗ → 𝐶∗ and 𝑣∗ : 𝐸∗ → 𝐷∗ satisfying

wd(𝑢∗) ≤ 𝜖 ;
wd(𝑣∗) ≤ 𝜖 ;
𝑢∗ ◦ 𝑓∗ ≃𝜖 id𝐶∗ ;
𝑓∗ ◦ 𝑢∗ ≃𝜖 id𝐷∗ ;
𝑣∗ ◦ 𝑔∗ ≃𝜖 id𝐷∗ ;
𝑔∗ ◦ 𝑣∗ ≃𝜖 id𝐸∗ .

Now assertions (i) and (ii) imply

wd(𝑔∗ ◦ 𝑓∗) ≤ 2𝜖 ;
wd(𝑢∗ ◦ 𝑣∗) ≤ 2𝜖 ;

(𝑢∗ ◦ 𝑣∗) ◦ (𝑔∗ ◦ 𝑓∗) ≃3𝜖 id𝐶∗ ;
(𝑔∗ ◦ 𝑓∗) ◦ (𝑢∗ ◦ 𝑣∗) ≃3𝜖 id𝐸∗ .
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With a foreword by Georges Skandalis and Appendix B by E. Germain. 491

27. D. Anderson. Universal coefficient theorems for 𝐾-theory. Mimeographed notes, Berkeley,
1969. 278

28. D. R. Anderson. The Whitehead torsion of the total space of a fiber bundle. Topology,
11:179–194, 1972. 687

29. D. R. Anderson. The Whitehead torsion of a fiber-homotopy equivalence. Michigan Math.
J., 21:171–180, 1974. 687

30. D. R. Anderson and W. C. Hsiang. The functors 𝐾−𝑖 and pseudo-isotopies of polyhedra.
Ann. of Math. (2), 105(2):201–223, 1977. 127

31. N. Andrew, Y. Guerch, and S. Hughes. Automorphisms of relatively hyperbolic groups and
the Farrell–Jones Conjecture. Preprint, arXiv:2311.14036 [math.KT], 2023. 498

32. P. Andrzejewski. Equivariant finiteness obstruction and its geometric applications—a survey.
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of Oberwolfach Seminars. Birkhäuser Verlag, Basel, 2007. 294, 302

271. C. W. Curtis and I. Reiner. Methods of representation theory. Vol. I. John Wiley & Sons
Inc., New York, 1981. With applications to finite groups and orders, Pure and Applied
Mathematics, A Wiley-Interscience Publication. 34, 54, 61, 62, 63

272. C. W. Curtis and I. Reiner. Methods of representation theory. Vol. II. John Wiley & Sons
Inc., New York, 1987. With applications to finite groups and orders, A Wiley-Interscience
Publication. 61, 62

273. X. Dai and H. Fang. Analytic torsion and R-torsion for manifolds with boundary. Asian J.
Math., 4(3):695–714, 2000. 92

274. J.-F. Dat. On the 𝐾0 of a 𝑝-adic group. Invent. Math., 140(1):171–226, 2000. 469
275. R. J. Daverman. Decompositions of manifolds, volume 124 of Pure and Applied Mathematics.

Academic Press Inc., Orlando, FL, 1986. 264
276. K. R. Davidson. 𝐶∗-algebras by example, volume 6 of Fields Institute Monographs. Amer-

ican Mathematical Society, Providence, RI, 1996. 289
277. J. Davis and W. Lück. On Nielsen realization and manifold models for classifying spaces.

Trans. Amer. Math. Soc., 377(11):7557–7600, 2024. 276, 412
278. J. F. Davis. Manifold aspects of the Novikov conjecture. In Surveys on surgery theory, Vol.

1, pages 195–224. Princeton Univ. Press, Princeton, NJ, 2000. 256
279. J. F. Davis. The Borel/Novikov conjectures and stable diffeomorphisms of 4-manifolds. In

Geometry and topology of manifolds, volume 47 of Fields Inst. Commun., pages 63–76.
Amer. Math. Soc., Providence, RI, 2005. 260

280. J. F. Davis and W. Lück. Spaces over a category and assembly maps in isomorphism
conjectures in 𝐾- and 𝐿-theory. 𝐾-Theory, 15(3):201–252, 1998. 318, 348, 349, 351, 354,
355, 398, 417, 451, 455, 456, 457, 458, 477, 478, 563, 564, 566, 571, 785

281. J. F. Davis and W. Lück. The 𝑝-chain spectral sequence. 𝐾-Theory, 30(1):71–104, 2003.
Special issue in honor of Hyman Bass on his seventieth birthday. Part I. 356

282. J. F. Davis and W. Lück. The topological 𝐾-theory of certain crystallographic groups.
Journal of Non-Commutative Geometry, 7:373–431, 2013. 285, 372, 430, 548, 559

283. J. F. Davis and W. Lück. Manifolds homotopy equivalent to certain torus bundles over Lens
spaces. Commun. Pure Appl. Math., 74(11):2348–2397, 2021. 285, 411, 559

284. J. F. Davis and R. Milgram. A survey on the space form problem. Math. reports, 2:223–283,
1985. 38, 275

285. J. F. Davis, F. Quinn, and H. Reich. Algebraic 𝐾-theory over the infinite dihedral group: a
controlled topology approach. J. Topol., 4(3):505–528, 2011. 394

286. M. Davis. Exotic aspherical manifolds. In T. Farrell, L. Göttsche, and W. Lück, editors,
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297. D. Degrijse and C. Martı́nez-Pérez. Dimension invariants for groups admitting a cocompact
model for proper actions. J. Reine Angew. Math., 721:233–249, 2016. 338

298. D. Degrijse and N. Petrosyan. Commensurators and classifying spaces with virtually cyclic
stabilizers. Groups Geom. Dyn., 7(3):543–555, 2013. 338

299. D. Degrijse and N. Petrosyan. Geometric dimension of groups for the family of virtually
cyclic subgroups. J. Topol., 7(3):697–726, 2014. 334, 338

300. P. Deligne. Extensions centrales non résiduellement finies de groupes arithmétiques. C. R.
Acad. Sci. Paris Sér. A-B, 287(4):A203–A208, 1978. 53

301. T. Delzant. Sur l’anneau d’un groupe hyperbolique. C. R. Acad. Sci. Paris Sér. I Math.,
324(4):381–384, 1997. 54

302. R. K. Dennis, M. E. Keating, and M. R. Stein. Lower bounds for the order of 𝐾2 (𭟋𝐺) and
𝑊ℎ2 (𝐺) . Math. Ann., 223(2):97–103, 1976. 136

303. R. K. Dennis and M. I. Krusemeyer. 𝐾2 (𝐴[𝑋, 𝑌 ]/𝑋𝑌 ) , a problem of Swan, and related
computations. J. Pure Appl. Algebra, 15(2):125–148, 1979. 136

304. R. K. Dennis and A. R. Magid. 𝐾2 of von Neumann regular rings. J. Pure Appl. Algebra,
6:49–59, 1975. 136

305. R. K. Dennis and M. R. Stein. A new exact sequence for 𝐾2 and some consequences for
rings of integers. Bull. Amer. Math. Soc., 78:600–603, 1972. 136

306. R. K. Dennis and M. R. Stein. The functor 𝐾2: a survey of computations and problems.
In Algebraic 𝐾-theory, II: “Classical” algebraic 𝐾-theory and connections with arithmetic
(Proc. Conf., Seattle Res. Center, Battelle Memorial Inst., 1972), pages 243–280. Lecture
Notes in Math., Vol. 342. Springer, Berlin, 1973. 136

307. R. K. Dennis and M. R. Stein. 𝐾2 of discrete valuation rings. Advances in Math., 18(2):182–
238, 1975. 134, 136

308. W. Dicks and M. J. Dunwoody. Groups acting on graphs. Cambridge University Press,
Cambridge, 1989. 321

309. W. Dicks, P. H. Kropholler, I. J. Leary, and S. Thomas. Classifying spaces for proper actions
of locally finite groups. J. Group Theory, 5(4):453–480, 2002. 333

310. J. Dixmier. 𝐶∗-algebras. North-Holland Publishing Co., Amsterdam, 1977. Translated from
the French by Francis Jellett, North-Holland Mathematical Library, Vol. 15. 289

311. J. D. Dixon and B. Mortimer. Permutation groups, volume 163 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1996. 386

312. S. K. Donaldson. Irrationality and the ℎ-cobordism conjecture. J. Differential Geom.,
26(1):141–168, 1987. 86

313. A. N. Dranishnikov, S. C. Ferry, and S. Weinberger. Large Riemannian manifolds which are
flexible. Ann. of Math. (2), 157(3):919–938, 2003. 423

314. A. N. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu. Uniform embeddings into Hilbert
space and a question of Gromov. Canad. Math. Bull., 45(1):60–70, 2002. 490

315. A. W. M. Dress. Induction and structure theorems for orthogonal representations of finite
groups. Ann. of Math. (2), 102(2):291–325, 1975. 367, 591

316. B. I. Dundas, T. G. Goodwillie, and R. McCarthy. The local structure of algebraic K-theory,
volume 18 of Algebra and Applications. Springer-Verlag London Ltd., London, 2013. 464,
466

317. M. J. Dunwoody. Relation modules. Bull. London Math. Soc., 4:151–155, 1972. 31



820 References

318. M. J. Dunwoody. 𝐾2 (Z𝜋 ) for 𝜋 a group of order two or three. J. London Math. Soc. (2),
11(4):481–490, 1975. 136

319. M. J. Dunwoody. Accessibility and groups of cohomological dimension one. Proc. London
Math. Soc. (3), 38(2):193–215, 1979. 331

320. M. G. Durham, Y. Minsky, and A. Sisto. Asymptotically CAT(0) metrics, Z-structures, and
the Farrell-Jones Conjecture. Preprint, arXiv:2504.17048 [math.GT], 2025. 497, 507

321. W. Dwyer, T. Schick, and S. Stolz. Remarks on a conjecture of Gromov and Lawson. In
High-dimensional manifold topology, pages 159–176. World Sci. Publ., River Edge, NJ,
2003. 430

322. W. Dwyer, M. Weiss, and B. Williams. A parametrized index theorem for the algebraic
𝐾-theory Euler class. Acta Math., 190(1):1–104, 2003. 171

323. J. Ebert and O. Randal-Williams. Infinite loop spaces and positive scalar curvature in the
presence of a fundamental group. Geom. Topol., 23(3):1549–1610, 2019. 431

324. S. Echterhoff, W. Lück, N. C. Phillips, and S. Walters. The structure of crossed products of
irrational rotation algebras by finite subgroups of SL2 (Z) . J. Reine Angew. Math., 639:173–
221, 2010. 433, 558

325. B. Eckmann. Cyclic homology of groups and the Bass conjecture. Comment. Math. Helv.,
61(2):193–202, 1986. 58
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High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 225–298. Abdus
Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the summer
school “High dimensional manifold theory” in Trieste May/June 2001, Number 1. 272

354. F. T. Farrell and W. C. Hsiang. On the rational homotopy groups of the diffeomorphism
groups of discs, spheres and aspherical manifolds. In Algebraic and geometric topology
(Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos.
Pure Math., XXXII, pages 325–337. Amer. Math. Soc., Providence, R.I., 1978. 272

355. F. T. Farrell and W. C. Hsiang. The topological-Euclidean space form problem. Invent.
Math., 45(2):181–192, 1978. 587

356. F. T. Farrell and W. C. Hsiang. On Novikov’s conjecture for nonpositively curved manifolds.
I. Ann. of Math. (2), 113(1):199–209, 1981. 263

357. F. T. Farrell and W. C. Hsiang. The Whitehead group of poly-(finite or cyclic) groups. J.
London Math. Soc. (2), 24(2):308–324, 1981. 587

358. F. T. Farrell and W. C. Hsiang. Topological characterization of flat and almost flat Riemannian
manifolds 𝑀𝑛 (𝑛 ≠ 3, 4) . Amer. J. Math., 105(3):641–672, 1983. 587

359. F. T. Farrell and L. E. Jones. 𝐾-theory and dynamics. I. Ann. of Math. (2), 124(3):531–569,
1986. 577, 584, 671, 682

360. F. T. Farrell and L. E. Jones. 𝐾-theory and dynamics. II. Ann. of Math. (2), 126(3):451–493,
1987. 577, 584, 671

361. F. T. Farrell and L. E. Jones. The surgery 𝐿-groups of poly-(finite or cyclic) groups. Invent.
Math., 91(3):559–586, 1988. 587

362. F. T. Farrell and L. E. Jones. Negatively curved manifolds with exotic smooth structures. J.
Amer. Math. Soc., 2(4):899–908, 1989. 261

363. F. T. Farrell and L. E. Jones. Rigidity and other topological aspects of compact nonpositively
curved manifolds. Bull. Amer. Math. Soc. (N.S.), 22(1):59–64, 1990. 261

364. F. T. Farrell and L. E. Jones. Rigidity in geometry and topology. In Proceedings of the
International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 653–663, Tokyo,
1991. Math. Soc. Japan. 261, 272

365. F. T. Farrell and L. E. Jones. Stable pseudoisotopy spaces of compact non-positively curved
manifolds. J. Differential Geom., 34(3):769–834, 1991. 586

366. F. T. Farrell and L. E. Jones. Isomorphism conjectures in algebraic 𝐾-theory. J. Amer. Math.
Soc., 6(2):249–297, 1993. 27, 28, 413, 441, 452, 453, 570, 573

367. F. T. Farrell and L. E. Jones. Topological rigidity for compact non-positively curved man-
ifolds. In Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), pages
229–274. Amer. Math. Soc., Providence, RI, 1993. 261, 671

368. F. T. Farrell and L. E. Jones. The lower algebraic 𝐾-theory of virtually infinite cyclic groups.
𝐾-Theory, 9(1):13–30, 1995. 127, 407



822 References

369. F. T. Farrell and L. E. Jones. Compact infrasolvmanifolds are smoothly rigid. In Geometry
from the Pacific Rim (Singapore, 1994), pages 85–97. de Gruyter, Berlin, 1997. 261

370. F. T. Farrell and L. E. Jones. Rigidity for aspherical manifolds with 𝜋1 ⊂ 𝐺𝐿𝑚 (R) . Asian
J. Math., 2(2):215–262, 1998. 261, 499

371. F. T. Farrell, L. E. Jones, and W. Lück. A caveat on the isomorphism conjecture in 𝐿-theory.
Forum Math., 14(3):413–418, 2002. 380

372. F. T. Farrell and P. A. Linnell. Whitehead groups and the Bass conjecture. Math. Ann.,
326(4):723–757, 2003. 58

373. F. T. Farrell, W. Lück, and W. Steimle. Obstructions to fibering a manifold. Geom. Dedicata,
148:35–69, 2010. 686, 687

374. F. T. Farrell and X. Wu. The Farrell–Jones conjecture for some nearly crystallographic
groups. Algebr. Geom. Topol., 15(3):1667–1690, 2015. 483

375. T. Farrell, W. Lück, and W. Steimle. Approximately fibering a manifold over an aspherical
one. Math. Ann., 370(1-2):669–726, 2018. 411

376. T. Farrell and X. Wu. The Farrell-Jones conjecture for the solvable Baumslag-Solitar groups.
Math. Ann., 359(3-4):839–862, 2014. 503

377. S. Ferry, W. Lück, and S. Weinberger. On the stable Cannon Conjecture. J. Topol., 12(3):799–
832, 2019. 269

378. S. C. Ferry. The homeomorphism group of a compact Hilbert cube manifold is an ANR.
Ann. Math. (2), 106(1):101–119, 1977. 575

379. S. C. Ferry. Homotoping 𝜀-maps to homeomorphisms. Amer. J. Math., 101(3):567–582,
1979. 575

380. S. C. Ferry. A simple-homotopy approach to the finiteness obstruction. In Shape theory and
geometric topology (Dubrovnik, 1981), pages 73–81. Springer-Verlag, Berlin, 1981. 41, 115

381. S. C. Ferry and E. K. Pedersen. Epsilon surgery theory. In Novikov conjectures, index
theorems and rigidity, Vol. 2 (Oberwolfach, 1993), pages 167–226. Cambridge Univ. Press,
Cambridge, 1995. 267

382. S. C. Ferry and A. A. Ranicki. A survey of Wall’s finiteness obstruction. In Surveys on
surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 63–79. Princeton Univ.
Press, Princeton, NJ, 2001. 41, 265

383. S. C. Ferry, A. A. Ranicki, and J. Rosenberg. A history and survey of the Novikov conjecture.
In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), pages 7–66.
Cambridge Univ. Press, Cambridge, 1995. 253, 276

384. S. C. Ferry, A. A. Ranicki, and J. Rosenberg, editors. Novikov conjectures, index theorems
and rigidity. Vol. 1. Cambridge University Press, Cambridge, 1995. Including papers from
the conference held at the Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach,
September 6–10, 1993. 256

385. S. C. Ferry, A. A. Ranicki, and J. Rosenberg, editors. Novikov conjectures, index theorems
and rigidity. Vol. 2. Cambridge University Press, Cambridge, 1995. Including papers from
the conference held at the Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach,
September 6–10, 1993. 256

386. S. C. Ferry and S. Weinberger. Curvature, tangentiality, and controlled topology. Invent.
Math., 105(2):401–414, 1991. 492

387. Z. Fiedorowicz. The Quillen-Grothendieck construction and extension of pairings. In
Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), I, pages
163–169. Springer, Berlin, 1978. 354

388. P. A. Fillmore. A user’s guide to operator algebras. Canadian Mathematical Society Series
of Monographs and Advanced Texts. John Wiley & Sons Inc., New York, 1996. A Wiley-
Interscience Publication. 289

389. M. Finn-Sell and N. Wright. Spaces of graphs, boundary groupoids and the coarse Baum-
Connes conjecture. Adv. Math., 259:306–338, 2014. 424

390. T. M. Fiore, W. Lück, and R. Sauer. Euler characteristics of categories and homotopy
colimits. Doc. Math., 16:301–354, 2011. 67

391. T. M. Fiore, W. Lück, and R. Sauer. Finiteness obstructions and Euler characteristics of
categories. Adv. Math., 226(3):2371–2469, 2011. 67



References 823

392. T. Fischer. 𝐾-theory of function rings. J. Pure Appl. Algebra, 69(1):33–50, 1990. 307
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Astérisque, 372:xxi+177, 2015. 261

408. R. Fritsch and R. Piccinini. CW-complexes and Euclidean spaces. In Fourth Conference
on Topology (Italian) (Sorrento, 1988), number 24 in Rendiconti del Circolo Matematico di
Palermo Serie II. Supplemento, pages 79–95. Springer, 1990. 681

409. M. Fuentes. The equivariant K- and KO-theory of certain classifying spaces via an equivariant
Atiyah-Hirzebruch spectral sequence. Preprint, arXiv:1905.02972 [math.KT], 2019. 556

410. T. Fukaya and S.-i. Oguni. The coarse Baum-Connes conjecture for relatively hyperbolic
groups. J. Topol. Anal., 4(1):99–113, 2012. 424

411. T. Fukaya and S.-i. Oguni. Coronae of product spaces and the coarse Baum–Connes conjec-
ture. Adv. Math., 279:201–233, 2015. 424

412. P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Springer-Verlag New
York, Inc., New York, 1967. 724

413. S. Galatius and O. Randal-Williams. Moduli spaces of manifolds: a user’s guide. In Handbook
of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., pages 443–485. CRC
Press, Boca Raton, FL, 2020. 274

414. S. Gallot, D. Hulin, and J. Lafontaine. Riemannian geometry. Springer-Verlag, Berlin, 1987.
258
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572. D. Kasprowski and H. Rüping. Long and thin covers for flow spaces. Groups Geom. Dyn.,
11(4):1201–1229, 2017. 681, 682, 683

573. D. Kasprowski and C. Winges. Shortening binary complexes and commutativity of𝐾-theory
with infinite products. Trans. Amer. Math. Soc. Ser. B, 7:1–23, 2020. 161, 802

574. S. P. Kerckhoff. The Nielsen realization problem. Ann. of Math. (2), 117(2):235–265, 1983.
323
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734. A. S. Miščenko. Homotopy invariants of multiply connected manifolds. I. Rational invariants.
Izv. Akad. Nauk SSSR Ser. Mat., 34:501–514, 1970. 275
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Lafforgue. Astérisque, 276:105–135, 2002. Séminaire Bourbaki, Vol. 1999/2000. 420, 421,
425, 489

919. G. Skandalis, J. L. Tu, and G. Yu. The coarse Baum-Connes conjecture and groupoids.
Topology, 41(4):807–834, 2002. 490, 491

920. S. Smale. On the structure of manifolds. Amer. J. Math., 84:387–399, 1962. 86, 225
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Notation

A, 464
𝐴(𝐺), 362
𝐴𝑛, 27
𝐴(𝑋), 168
𝐴𝑥 (𝑀, 𝑢), 430
𝐴+, 291
𝐴 ⋊𝑚 𝐺, 288
𝐴 ⋊𝑟 𝐺, 288
ADD∞, 186
ADDCAT , 147
ADDCAT∞, 195
ANR, 264
AR, 604
Arf (𝑃, 𝜓), 213
asmb𝐺,C

𝐴
(𝑋)𝑛, 416

asmb𝐺,R
𝐴
(𝑋)𝑛, 416

asmb𝐺,C,𝐿
1 (𝐸𝐺)𝑛, 421

asmb𝐺,R,𝐿
1 (𝐸𝐺)𝑛, 421

asmb𝐺,C,𝑚
𝐴

(𝑋)𝑛, 420
asmb𝐺,R,𝑚

𝐴
(𝑋)𝑛, 420

𝑏
(2)
𝑛 (𝑀), 51
𝐵𝛿 (𝐴), 682
𝐵𝛿 (𝐴), 682
𝐵𝛿 (𝑥), 682
𝐵𝛿 (𝑥), 682
𝐵𝐺, 63
𝐵𝐺, 346
BPL, 249
BTOP, 249

B(𝑇), 640
C, 27
𝑐(𝑄), 721
𝑐𝑑 (𝑄), 721
𝐶𝑄, 722
CAT , 167
CAT cof,weq, 167
CAT∞, 175�CAT∞, 191
CATREX, 183
CATST , 177
cd(𝐺), 329
cd𝑅 (𝐺), 329
cd𝑅 (𝑀), 329
Ch(A), 178
𝐶𝑙 (Λ), 60
Cl1 (Z𝐺), 112
class(𝐺, 𝑅), 55
class(𝐺, 𝑅) 𝑓 , 55
class𝐹 (𝐺), 56
colim𝑖∈𝐼 𝐴𝑖 , 288
colimC 𝐹, 50
colim𝑖∈𝐼 𝑅𝑖 , 65
conhom𝐺 (𝐻, 𝐾), 50
con(𝐺), 55
con(𝐺) 𝑓 , 55
con𝐹 (𝐺) 𝑓 , 56
cone∗ ( 𝑓∗), 76
cone(𝑋), 348
cone(𝐴), 293

849



850 Notation

cyl∗ ( 𝑓∗), 76
𝐶∗ (𝑋), 40
𝐶
Or(𝐺)
∗ (𝑋), 341
𝐶

sing
∗ (𝑋; 𝑅), 580
𝐶∗ (𝑋), 423
𝐶𝑛−∗, 220
𝐶 (𝑋), 35
𝐶 (𝑋, 𝐹), 35
𝐶0 (𝑋), 287
𝐶0 (𝑋, 𝐹), 287
𝐶𝑏 (𝑋, 𝐹), 287
𝐶∗𝑚 (𝐺), 288
𝐶∗𝑚 (𝐺, 𝐹), 288
𝐶∗𝑟 (𝐺), 63, 288
𝐶∗𝑟 (𝐺, 𝐹), 287
𝐶∗-ALGEBRAS, 352
CWf

∗, 721
CWlf ((𝑀𝑛)𝑛), 722
𝑑𝐿1 (𝑏, 𝑏′), 579
𝐷2𝑛, 27
𝐷𝑛, 37
𝐷∞, 27
𝐷 (𝑅, 𝐼), 101
𝐷∗ (𝑋), 423
𝐷 (Z𝐺), 61
Diff (𝑀), 135
dim(𝑋), 680
𝑒(𝑃), 204
𝐸F (𝐺), 318
𝐸𝐺, 285
𝐸𝐺, 318
𝐸𝑛 (𝑖, 𝑗), 71
E(𝑅), 72
ER, 603
𝐹C , 717
F𝑞 , 101
FP, 264
FP𝑛, 329
FP∞, 329
Fun(C,D), 177
Funex (C,D), 177
Funfloc (CATST ,X), 182
( 𝑓 , 𝑤), 214
[ 𝑓 , 𝑤], 214
G, 249

(𝑔), 55
𝐺0 (𝑅), 30
𝐺1 (𝑅), 70
𝐺-CW-COM, 562
gd(𝐺), 331
gd(𝐺), 331
GL(𝐴), 291
GL+𝑛 (𝐴), 291
GL+ (𝐴), 291
GL+ (𝐴)0, 291
GL(𝑅), 32
GL(𝑅, 𝐼), 103
GL𝑛 (𝑅), 32
GM(𝑋), 696
GM𝐺 (𝑋), 577
GM𝐺 (𝑋) 𝑓 , 578
GROUPOIDS, 350
GROUPOIDSinj, 350
GROUPSinj, 353
𝐺-SETS, 641
GW(𝐹), 591
𝐺 ×𝛼 𝑋 , 344
𝐺 ≀𝑄, 112
G/O, 250
G/PL, 249
G/TOP, 249
hdim𝐺 (𝑋), 331
hofib( 𝑓 ), 138
𝐻 (𝑀), 173
𝐻𝐶
⊗𝑘
∗ (𝑅), 160

𝐻𝐻
⊗𝑘
∗ (𝑅), 160

𝐻𝑁
⊗𝑘
∗ (𝑅), 160

𝐻𝑃
⊗𝑘
∗ (𝑅), 160

HS𝑅𝐺 , 55
HS𝑅𝐺 (𝑃), 55
𝐻∗ (𝑋, 𝑅), 63
𝐻𝐺∗ (−; E), 349
𝐻?
∗ (−; E), 350

𝐻𝐺𝑛 (𝑋;𝑀), 341
𝐻 𝜖 (𝑃), 205
𝐻𝜖 (𝑃), 211
H̃𝐺 (−; 𝐹C), 726
HE, 466
HK, 467
Idem(A), 148
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Idem(𝑅), 32
Idem𝑛 (𝑅), 32
ind𝛼 𝑋 , 344
ind 𝜄, 648
inn(𝐾), 50
𝐼𝑛, 71
𝑖∗𝐴, 303
𝑖∗, 303
𝑗𝐺𝑚 , 303
𝑗𝐺𝑟 , 303
𝐾 (𝐴, 𝑖), 252
𝐾 (C), 167
𝐾 (P), 146
𝐾 (𝑅), 139
𝐾0 (𝑅), 30
𝐾0 (𝑅), 31
𝐾0 (𝑋), 37
𝐾1 (𝑅), 69
𝐾
𝑓

1 (𝑅), 71
𝐾1 (𝑅), 75
𝐾2 (𝑅), 130
𝐾𝑘 (𝑀), 225
𝐾𝑘 (𝑀), 225
𝐾𝑛 (𝑅), 139
𝐾𝑛 (𝑅;Z/𝑘), 144
𝐾𝑛 (A), 147
𝐾𝑛 (P), 146, 148
𝐾−𝑛 (𝑅), 117
𝐾𝑛 (𝐶∗𝑟 (𝐺)), 529
𝐾𝐺𝑛 (𝑋, 𝐴; 𝐵), 304
𝐾∗ (𝐴), 289
𝐾∗ (𝐴), 302
𝐾∗ (𝑋, 𝐴), 277
𝐾∗ (𝑋, 𝐴), 278
𝐾𝐻𝑛 (𝑅), 158
𝐾𝑂𝑛 (𝐶∗𝑟 (𝐺;R)), 529
𝐾𝐾∗ (𝐴, 𝐵), 299
𝐾𝐾𝐺∗ (𝐴, 𝐵), 302
𝐾𝑂∗ (𝐴), 290
𝐾𝑂∗ (𝑋, 𝐴), 280
𝐾𝑂∗ (𝑋, 𝐴), 280
𝐾𝑂𝐺∗ (𝑋, 𝐴; 𝐵), 305
𝐾𝑅∗ (𝑋; 𝐴), 281
K(A), 147
K(P), 148

K(𝑅), 149
KA , 381
KC , 192
K𝑅, 353
KTOP

C , 278
KTOP

R , 280
KTOP
𝐹

, 353
KD𝐺 , 652
KD𝐺0 , 652
KH(𝑅), 158
𝑙 (𝐻), 333
𝐿 (𝑉), 89
𝐿 (𝑡; 𝑘1, . . . , 𝑘𝑐), 89
𝐿1 (𝐺), 288
𝐿1 (𝐺, 𝐹), 287
𝐿2 (𝐺), 63, 287
𝐿2 (𝐺, 𝐹), 287
𝐿𝑛 (𝑅), 211, 233
𝐿ℎ𝑛 (𝑅), 241
𝐿
𝑝
𝑛 (𝑅), 241
𝐿𝑈𝑛 (𝑅), 238,239
𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅), 241
𝐿𝑠𝑛 (𝑅𝜋, 𝑤), 239
𝐿
⟨0⟩
𝑛 (𝑅), 241
𝐿
⟨1⟩
𝑛 (𝑅), 241
𝐿
⟨2⟩
𝑛 (𝑅𝜋, 𝑤), 240
𝐿
⟨ 𝑗 ⟩
𝑛 (𝑅𝐺), 529
𝐿
⟨−∞⟩
𝑛 (𝑅), 241
𝐿ℎ𝑛 (Z𝜋, 𝑤), 241
𝐿
𝑝
𝑛 (Z𝜋, 𝑤), 241
𝐿𝑠𝑛 (Z𝜋, 𝑤), 240
𝐿
⟨ 𝑗 ⟩
𝑛 (Z𝜋, 𝑤), 241
𝐿
⟨−∞⟩
𝑛 (Z𝜋, 𝑤), 241
𝐿⊥, 212
L, 176
L⟨ 𝑗 ⟩
𝑅

, 353
L⟨−∞⟩ (A), 384
L⟨−∞⟩A , 383
L⟨−∞⟩ (𝑅), 244
map𝐺 (−, 𝑌 ), 349
M(𝑅), 32
M𝑛 (𝑅), 32
M𝑚,𝑛 (𝑅), 32
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𝑀∗, 204
[𝑀], 207
[𝑀]Q, 253
[𝑀]R, 207
(M), 324
(NM), 324
(M), 327
(NM), 327
Met𝐺 , 725
[𝑛], 167
𝑁𝐺 , 104
𝑁𝐺𝐻, 313
nat, 176
Nerv(U), 595
Nil0 (𝑅), 93
Ñil0 (𝑅), 94
𝑁𝐾𝑛 (𝑅), 92, 141
𝑁𝐾−𝑛 (𝑅), 117
𝑁±𝐾𝑛 (𝑅𝐾, 𝜙), 157
nrQ𝐺 , 111
nrC𝐺 , 111
nrZ𝐺 , 111
Nil(𝑅𝐺0; 𝑅𝐺1, 𝑅𝐺2), 156
O, 249
𝑜(𝐶∗), 38
𝑜(𝐶∗), 39
𝑜(𝑋), 40
𝑜(𝑋), 40
𝑜geo (𝑋), 45
Or(𝐺), 49
OrF (𝐺), 49
{•}, 153
𝑃𝑑 (𝐺, 𝑆), 322
𝑃𝑑 (𝑋), 423
𝑝𝑘 (𝑀,Q), 253
𝑃𝐶0 (𝐺), 320
𝑃(𝑀), 163
𝑃DIFF (𝑀), 135, 163
PL, 249
Proj(𝑅), 31
(𝑃, 𝜙), 205
(𝑃, 𝜓), 209
[𝑃, 𝜓], 211
(𝑃, 𝜓; 𝐹, 𝐺), 231
[𝑃, 𝜓; 𝐹, 𝐺], 233

P(𝑀), 164
PPL (𝑋), 165
PDIFF (𝑀), 164
Q, 27
Q �̂� , 27
𝑄 𝜖 (𝑃), 209
𝑄 𝜖 (𝑃), 209
R, 27
R, 672
𝑅, 614
𝑅⊕ , 614
(𝑟), 30
rad(𝑅), 66
𝑟𝐴, 32
Rep𝐹 (𝐻), 56
𝑅𝐸 (𝑋), 661
𝑟𝐹 (𝐺), 111
𝑅𝐺, 48
𝑅[𝐺], 48
𝑅𝛼𝐺, 380
𝑅𝛼 [𝐺], 380
RINGS, 352
RINGSinv, 352
𝑅𝐾𝑛 (𝑋, 𝐴; 𝐵), 304
𝑅-MOD, 341
𝑅-MODfgf , 149
𝑅-MODfgp, 149
𝑅𝑂 (𝑋), 661
𝑟𝑥 , 70
𝑅× , 65
𝑆𝑛, 27
𝑆+, 102
𝑆𝑛, 37
𝑆𝑛+, 80
𝑆𝑝𝐺, 112
sign(𝑀), 207
sign(𝑠), 206
sign𝑥 (𝑀, 𝑢), 253
𝑆𝐾1 (𝑅), 74
𝑆𝐾1 (Z𝐺), 111
𝑆𝐾1 (Z �̂�𝐺), 112
SL(𝑅), 114
SL(𝑅, 𝐼), 104
SL𝑛 (𝑅), 20
SO, 114
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SO(𝑛), 114
SPACES+, 347
Sp, 176
Spc, 176
Spc∗, 176
Sp≥0, 177
SPECTRA, 348
Spec(𝑅), 66
St(𝑅), 130
St𝑛 (𝑅), 129
SU, 114
SU(𝑛), 114
Sub(𝐺), 50
SubF (𝐺), 50
supp( 𝑓 ), 577
supp(𝑀), 577
supp𝐺 , 613
sw𝐺 , 105
sw𝐺 , 108
Sw(𝐺), 363
Sw(𝐺;Λ), 363
Sw𝐴(𝐺), 606
Sw𝑝 (𝐺), 363
Sw𝑝 (𝐺;Λ), 363
S, 464
S, 176
Sw(𝐺), 732
Sw(𝐺), 732
𝑡 ( 𝑓∗), 698
TOP, 249
Top(𝑀), 163
𝑇 (𝑃), 209
𝑈 (𝐴), 292
𝑈𝑛 (𝐴), 292
{𝑢, 𝑣}, 133
⟨𝑢, 𝑣⟩, 207
𝑈+ (𝐴), 292
Un(𝐹), 191
vcd(𝐺), 331
Vect𝐹 (𝑋), 37
𝑉0
𝜌 , 652

Wa(𝑌 ), 45
wd( 𝑓 ), 696
𝑊𝐺𝐻, 313
Wh(𝐺), 76

Wh𝑅0 (𝐺), 76
Wh𝑅1 (𝐺), 76
Wh2 (𝐺), 134
Wh𝑅𝑛 (𝐺), 239
Wh(𝑋), 170
WhDIFF (𝑋), 171
𝑊U , 184
Wh(𝑋), 172
WhDIFF (𝑋), 172
𝑋𝑛, 313
𝑋+, 347
𝑋+, 138
𝑋 ∧ E, 348
𝑋 ∧ 𝑌 , 348
Z, 27
Z-CAT , 641
Z𝑤 , 220
Z/𝑛, 27
Z �̂� , 27

𝛼∗, 303
Γ𝑠𝑔,𝑟 , 507
Δ, 167
Δ, 718
𝜄F⊆G , 390
𝜆𝐸 ∈ 𝐾+ (𝐷𝐸, 𝑆𝐸), 284
𝜙∗F , 437
Φ𝐼 , 672
Φ𝑡 , 672
𝜋0 (𝑋), 38
𝜋1 (𝑋), 38
𝜋𝑖 (E), 348
𝜂(𝑀), 431
𝜂 (2) (𝑀), 431
𝜌(𝑋;𝑈), 88
𝜌 (2) (𝑀), 431
𝜌𝐺 (𝑋), 109
Σ𝐴, 293
Σ𝑛 (𝐴), 293
Σ𝐶∗, 77
𝜎( 𝑓 , 𝑓 ), 236, 240
𝜏( 𝑓 ), 78
𝜏𝑈 ( 𝑓 ), 237
𝜏( 𝑓∗), 78
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𝜏geo ( 𝑓 ), 84
𝜏 (2) (𝑀), 432
𝜏≥0, 182
Θ𝐺 , 365
𝜃𝐶 , 365
Ω𝐺𝑛 (𝑋, 𝐴), 346

ALL, 49
A[𝐺], 613
AU , 187
Â(𝑀), 430
A𝜙 [𝑡], 466
A⊕ , 614
Ah𝐺 , 729
A/U, 197
B, 287
BH ?

∗ , 359
B(𝑙2 (𝐺)), 63
B⟨𝐻⟩, 645
B(𝑇), 640
C(𝐺), 413
D(𝐹), 605
COM, 311
CYC, 49
C/U, 179
C[𝑊−1

U ], 184
C((𝑀𝑛)𝑛), 724
C((𝑀𝑛)𝑛)𝐺 , 725
D(𝐹), 605
D𝐺 (𝑋), 621
D𝐺 (𝑋, 𝐴), 623
D𝐺0 (𝑋), 651
D𝐺
𝐽
(𝑋), 653

Db (A), 178
E𝑝 , 400
F , 49
F ′, 579
F2, 593
FCY, 49
(F CY), 367
FJ , 388
F |𝐾 , 437
FIN , 49
(FIN), 360

FJ , 481
FJKH , 484
G𝐺 (𝑆), 350
H(𝐺), 468
HE, 393
HE𝐼 , 394
HE𝑝 , 393
H𝐺
𝑛 , 340
H𝐺,𝜉
𝑛 , 372
H ?
𝑛, 344
H ?↓Γ
∗ , 372
K, 287
K(𝑀), 173
Kb (A), 178, 195
L(𝑀), 253
M, 61
N(𝐺), 63
N𝑛 (𝑋, 𝜕𝑋), 247
NPL
𝑛 (𝑋), 249
NTOP
𝑛 (𝑋), 249
O𝐺 (𝑋), 617
O𝐺 (𝑋;B), 614
O𝐺0 (𝑋), 650
O𝐺
𝐽
(𝑋), 653

P(𝑀), 163
PDIFF (𝑀), 163
Pst, 𝑓
Σ

, 186
R(𝑋), 166
R 𝑓 (𝑋), 166
Sℎ𝑛 (𝑋), 246
S𝑠𝑛 (𝑋), 245
S𝑃𝐿,ℎ𝑛 (𝑋), 249
S𝑃𝐿,𝑠𝑛 (𝑋), 249
S𝑇𝑂𝑃,ℎ𝑛 (𝑋), 249
S𝑇𝑂𝑃,𝑠𝑛 (𝑋), 249
T𝐺 (𝑋), 620
T𝐺0 (𝑋), 651
TR, 49
VCY, 49
VCY𝐼 , 393
Xh𝐺 , 736
Z(N(𝐺)), 64

𝜕 (𝑃, 𝜓), 232
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𝑓∗ ≃𝜖 𝑔∗, 699∏red
𝑛∈N, 719





Index

Â-class, 430
𝐴-genus

higher, 430
𝐴-regular, 499
𝐴-theoretic Swan ring, 606
𝐴-theory

(non-connective) 𝐴-theory spectrum, 168
connective 𝐴-theory, 168

absolute
neighborhood retract, 264
retract, 604

abstract
simplicial (𝐺, F)-complex, 579
simplicial complex, 579
simplicial 𝐺-complex, 579

action
amenable group action, 491
finitely F-amenable group action, 603
homotopy action of a finitely presented

group on a space, 598
homotopy action of a group on a Z-chain

complex, 690
homotopy action of a group on a space, 598
homotopy coherent𝐺-action of a group on a

space, 600
homotopy 𝑆-action on a space, 678
𝑁 -F-amenable group action, 603
strong homotopy action of a group on a

space, 600
topologically amenable group action, 491

acyclic
𝑈-acyclic, 88
map, 138
space, 137

additive∞-category, 186
additive category, 146

additive 𝐺-category, 381

additive 𝐺-category with involution, 383
idempotent complete, 148
idempotent completion of an additive

category, 148
AF-algebra, 293
Alexander trick, 87
algebra

Roe algebra, 423
algebraic number field, 35
almost connected, 320
almost equivariant
(𝜖 , 𝑆)-almost 𝐺-equivariant, 591
(𝜖 , ⟨𝑆 | 𝑅⟩)-almost 𝐺-equivariant, 599

almost transfer F-reducible group, 610
𝛼-close maps, 575
𝛼-domination, 575
𝛼-homotopic maps, 575
𝛼-homotopy equivalence, 575
𝛼-homotopy inverse, 575
amenable group action, 491
anima, 176
annihilator of a sublagrangian, 212
Arf invariant, 213
Artinian

module, 52
ring, 52

aspherical, 257
assembly

analytic Baum-Connes assembly map, 416
assembly map for algebraic 𝐾-theory, 403
assembly map for algebraic 𝐾-theory with

coefficients in additive categories, 382
assembly map for algebraic 𝐾-theory with

coefficients in higher categories, 385
assembly map for algebraic 𝐾-theory with

coefficients in rings, 378
assembly map for algebraic 𝐿-theory, 404

857



858 Index

assembly map for algebraic 𝐿-theory for
rings with involution, 379

assembly map for algebraic 𝐿-theory with
coefficients in rings with involution, 379

assembly map for algebraic 𝐿-theory with
coefficients in additive categories with
involution, 384

assembly map for𝐺-homology theories, 436
assembly principle, 561
homotopy theoretic assembly transformation,

566
asymptotic dimension, 492

equivariant, 609
automorphism
𝜖 -controlled automorphism of a geometric

module, 578

balanced product
balanced smash product of pointed C-spaces,

349
of C-spaces, 349
of a pointed C-space with a C-spectrum,

349
ball

closed ball around 𝑥 of radius 𝛿, 682
open ball around 𝑥 of radius 𝛿, 682

Banach algebra, 286
Banach ∗-algebra, 286
unital, 287

barycentric subdivision, 579
basis

cellular, 78
stable basis, 237
stably𝑈-equivalent, 237
𝑈-equivalent, 237

bordism
normal, 222

Bott isomorphism, 37
Bott manifold, 429
Bott periodicity, 277
boundary

boundary amenable group, 492
of a non-singular 𝜖 -quadratic form, 232

bounded
cobordism, 124
control over N, 615
geometry, 423
ℎ-cobordism, 124
map, 124
metric space, 727

Bredon homology, 340
Burnside ring, 362

𝐶∗-algebra, 286

AF-algebra, 293
contractible, 293
Cuntz 𝐶∗-algebra, 293
exact, 492
Kirchberg 𝐶∗-algebra, 293
maximal group 𝐶∗-algebra, 288
nuclear, 288
proper, 743
reduced group 𝐶∗-algebra, 287
separable, 289
stable, 289
unital, 287

𝐶∗-identity, 286
Calkin algebra, 287
CAT(0)-group, 498

finite-dimensional CAT(0)-group, 498
category

additive, 146
additive∞-category, 186
admitting factorizations, 185
category of cofibrations, 165
category of weak equivalences, 165
category with 𝐺-support, 613
category with cofibrations and weak

equivalences, 165
category with the two-out-of-six property,

185
exact, 146
filtered, 65
flasque additive category, 147
full stable subcategory of a small stable
∞-category, 178

homotopical Waldhausen category, 185
of compactly generated spaces, 312
pointed category, 165
pointed∞-category, 177
right-exact∞-category, 183
right-exact 𝐺-∞-category, 190
small, 50, 146
stable∞-category, 177
strong category with 𝐺-support, 644

cell
equivariant closed 𝑛-dimensional cell, 313
equivariant open 𝑛-dimensional cell, 313

cellular
basis, 78
map, 313
pushout, 47

center of a group, 130
central extension, 130

universal, 130
chain complex

bounded, 697
contractible, 77
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dual, 220
elementary, 39
finite, 38
finite based free, 77
finitely dominated, 691
finitely generated, 38
free, 38
positive, 38
projective, 38

chain contraction, 77
chain homotopy representation, 688
change of rings homomorphism, 30
Chern character

equivariant Chern character for an
equivariant proper homology theory, 360

equivariant Chern character for complex
topological 𝐾-cohomology, 283

for complex topological 𝐾-cohomology, 278
for complex topological 𝐾-homology, 278
for real topological 𝐾𝑂-cohomology, 280
for real topological 𝐾𝑂-homology, 280

class group of a Dedekind domain, 34
classifying 𝐺-𝐶𝑊-complex for a family of

subgroups of 𝐺, 318
classifying space

for a family of subgroups of 𝐺, 318
of a group, 63

coarse embedding in a Hilbert space, 490
cobordism, 85

bounded, 124
diffeomorphic relative 𝑀0, 85
ℎ-cobordism, 85
over 𝑀0, 85
𝑠-cobordism, 85
trivial, 85

cocompact, 346
coefficients of an equivariant proper homology

theory extend to a Mackey functor, 359
cohomological dimension

for groups, 329
for modules, 329
virtual, 331

cohomology
complex topological 𝐾-cohomology, 277
real topological 𝐾𝑂-cohomology, 280

colimit
of a functor to abelian groups, 50
of a functor to rings, 50
colimit topology, 312
of 𝐶∗-algebras, 288
of rings, 65

compact operator, 287
compact support over 𝑋, 614
compactly generated space, 312

cone
of a 𝐶∗-algebra, 293
reduced cone, 348

Congruence Subgroup Problem, 104
Conjecture

Aspherical closed manifolds carry no
Riemannian metric with positive scalar
curvature, 431

Atiyah Conjecture, 51, 55
Bass Conjecture for fields of characteristic

zero as coefficients, 56
Bass Conjecture for integral domains as

coefficients, 58
Baum-Connes Conjecture, 418
Baum-Connes Conjecture for torsionfree

groups, 294
Baum-Connes Conjecture with coefficients,

418
Borel Conjecture, 260
Borel Conjecture for a group𝐺 in dimension
𝑛, 260

Bost Conjecture, 421
Cannon Conjecture, 269
Cannon Conjecture in the torsionfree case,

269
Comparing algebraic and topological 𝐾-

theory with coefficients for 𝐶∗-algebras,
306

Comparison of algebraic K-theory and
homotopy 𝐾-theory for torsionfree
groups, 160

Embedding Conjecture, 55
Farrell-Jones Conjecture for (smooth)

pseudoisotopy, 462
Farrell-Jones Conjecture for (smooth)

pseudoisotopy with coefficients, 462
Farrell-Jones Conjecture for (smooth)

Whitehead spectra, 462
Farrell-Jones Conjecture for (smooth)

Whitehead spectra with coefficients, 463
Farrell-Jones Conjecture for 𝐴-theory, 462
Farrell-Jones Conjecture for homotopy
𝐾-theory with coefficients in additive
𝐺-categories, 468

Farrell-Jones Conjecture for homotopy
𝐾-theory with coefficients in additive
𝐺-categories with finite wreath products,
468

Farrell-Jones Conjecture for homotopy
𝐾-theory for torsionfree groups, 159

Farrell-Jones Conjecture for 𝐾-theory for
torsionfree groups and regular rings, 153

Farrell-Jones Conjecture for 𝐾0 (𝑅) for
torsionfree 𝐺 and regular 𝑅, 49
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Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) and
𝐾1 (𝑅𝐺) for regular 𝑅 and torsionfree
𝐺, 110

Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for
regular 𝑅, 50

Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for
regular 𝑅 with Q ⊆ 𝑅, 50

Farrell-Jones Conjecture for 𝐾0 (𝑅𝐺) for an
Artinian ring 𝑅, 52

Farrell-Jones Conjecture for 𝐾0 (Z𝐺) and
Wh(𝐺) for torsionfree 𝐺, 110

Farrell-Jones Conjecture for 𝐿-theory for
torsionfree groups, 244

Farrell-Jones Conjecture for negative
𝐾-theory of the ring of integers in an
algebraic number field, 125

Farrell-Jones Conjecture for negative 𝐾-
theory and Artinian rings as coefficient
rings, 125

Farrell-Jones Conjecture for negative
𝐾-theory and regular coefficient rings,
125

Farrell-Jones Conjecture for the algebraic
𝐾-theory of Hecke-Algebras, 469

Farrell-Jones Conjecture for Wh2 (𝐺) for
torsionfree 𝐺, 135

Fibered Meta Isomorphism Conjecture for
functors from spaces to spectra with
coefficients, 459

Fibered Meta-Isomorphism Conjecture, 438
Fibered Meta-Isomorphism Conjecture with

finite wreath products, 478
Finite Models for 𝐸𝐺, 337
Full Farrell-Jones Conjecture, 387
Gromov-Lawson-Rosenberg Conjecture

Homological Gromov-Lawson-Rosenberg
Conjecture, 430

Stable Gromov-Lawson-Rosenberg
Conjecture, 429

Homotopy invariance of the 𝐿2-Rho-
invariant for torsionfree groups,
431

Idempotent Conjecture, 52
Idempotent Conjecture for prime

characteristic, 52
Integral Novikov Conjecture, 422
𝐾-theoretic Farrell-Jones Conjecture with

coefficients in rings, 379
𝐾-theoretic Farrell-Jones Conjecture with

coefficients in additive 𝐺-categories
with finite wreath products, 386

𝐾-theoretic Farrell-Jones Conjecture with
coefficients in additive𝐺-categories, 382

𝐾-theoretic Farrell-Jones Conjecture with
coefficients in higher 𝐺-categories with
finite wreath products, 387

𝐾-theoretic Farrell-Jones Conjecture with
coefficients in higher 𝐺-categories, 385

𝐾-theoretic Farrell-Jones Conjecture with
coefficients in the ring 𝑅, 378

𝐾-theoretic Novikov Conjecture, 405
𝐾-theory versus homotopy 𝐾-theory for

regular rings, 478
Kadison Conjecture, 297
𝐿-theoretic Farrell-Jones Conjecture with

coefficients in additive 𝐺-categories
with involution, 384

𝐿-theoretic Farrell-Jones Conjecture with
coefficients in additive𝐺-categories with
involution with finite wreath products,
387

𝐿-theoretic Farrell-Jones Conjecture with
coefficients in rings with involution, 380

𝐿-theoretic Farrell-Jones Conjecture with
coefficients in rings with involution after
inverting 2, 380

𝐿-theoretic Farrell-Jones Conjecture with
coefficients in the ring with involution 𝑅,
379

𝐿-theoretic Farrell-Jones Conjecture with
coefficients in the ring with involution 𝑅
after inverting 2, 379

𝐿-theoretic Novikov Conjecture, 405
Manifold structures on aspherical Poincaré

complexes, 266
Meta-Isomorphism Conjecture, 436
Meta-Isomorphism Conjecture for functors

from spaces to spectra, 451
Meta-Isomorphism Conjecture for functors

from spaces to spectra with coefficients,
452

Nil-groups for regular rings and torsionfree
groups, 155

Novikov Conjecture, 253
Passage for 𝐿-theory from Q𝐺 to R𝐺 to
𝐶∗𝑟 (𝐺, R) , 473

Poincaré Conjecture, 86
Rational 𝐾0 (Z𝐺)-to-𝐾0 (Q𝐺)-Conjecture,

59
smooth Borel Conjecture, 260
Strong Bass Conjecture, 58
Strong Novikov Conjecture, 422
Trace Conjecture for torsionfree groups, 297
Trace Conjecture, modified, 428
Unit-Conjecture, 115
Weak Bass Conjecture, 58
Zero-Divisor Conjecture, 55
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Zero-in-the-Spectrum Conjecture, 298
conjugate
𝐹-conjugate, 56

continuous control, 615
control

bounded control over N, 615
continuous control, 615
Control-Strategy, 580
gaining control, 580
gaining relative control, 580

controlled
algebra, 578
𝜖 controlled homotopy equivalence, 576
𝜖 -controlled ℎ-cobordism, 575
𝜖 -controlled morphism of geometric

modules, 578
cover
F-cover, 595
open F-cover, 595

crossed product
maximal crossed product of 𝐶∗-algebras,

288
reduced crossed product of𝐶∗-algebras, 288

crystallographic group of dimension 𝑛, 546
Cuntz 𝐶∗-algebra, 293
𝐶𝑊-complex

finite, 37
finitely dominated, 37
labeled, 721

cyclic homology, 160
cyclotomic trace, 161

Dedekind ring, 34
degree one map, 221
𝛿-hyperbolic

group, 322
metric space, 321

Dennis trace map, 160
descent homomorphisms

for 𝐾𝐾-theory, 303
dimension, 680

covering dimension, 680
minimal homotopy dimension, 331
of a simplex, 579
of a topological space, 680
of an abstract simplicial complex, 579
of an open cover, 680
topological dimension, 680

Dirac element, 744
dual, 744

Dirac-dual Dirac method, 743
direct limit

of a functor to 𝑅-modules, 50
of a functor to abelian groups, 50

of 𝐶∗-algebras, 288
of groups, 65
of modules, 65
of rings, 65

directed set, 65
directed system, 65

of 𝐶∗-algebras, 288
of groups, 65
of modules, 65
of rings, 65

directly finite
module, 53
ring, 53

disk bundle, 284
domination
𝛼-domination, 575
finite domination of a 𝐶𝑊-complex, 37
finite domination of a chain complex, 38

double of a ring along an ideal, 101
Dress group, 605
Dress-Farrell-Hsiang group over F, 606
Dress-Farrell-Hsiang-Jones group over F, 608
dual chain complex, 220
Dwyer-Kan localization, 176

Eilenberg swindle, 147
Eilenberg-MacLane space, 252
elementary
(𝑛, 𝑛)-matrix, 71
chain complex, 39
collapse, 80
expansion, 80

𝜖 -controlled
𝜖 -controlled A-chain homotopy equiva-

lence, 700
automorphism, 700
chain homotopy equivalence, 700
domination, 704
isomorphism, 700
self-chain homotopy equivalence, 700

𝜖 -homotopic maps, 576
equivalence of categories, 350
equivariant

asymptotic dimension, 609
Borel homology, 346
closed 𝑛-dimensional cell, 313
homology theory, 344
homology theory over a group, 372
open 𝑛-dimensional cell, 313
smooth triangulation, 315

essentially unique, 177
eta-invariant, 431
Euclidean retract, 603
Euler class, 284
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exact
category, 146
exact 𝐶∗-algebra, 492
functor, 146

excisive, 564
exotic sphere, 87
extension

central, 130
closed under extensions, 150

external multiplicative structure
for equivariant topological 𝐾-theory, 282

F-cover, 595
open F-cover, 595

factorizations, 185
family of subgroups, 49
Farrell-Hsiang group with respect to F, 591
Farrell-Jones group, 388
fiber transport, 686
filtered
U-filtered, 198
category, 65
left U-filtered, 198
right U-filtered, 197
system, 65

finite
𝐺-support, 614
asymptotic dimension, 492
decomposition complexity, 492
propagation operator, 423
quotient finite decomposition complexity,

493
resolution, 150

finite domination, 702, 704
of a 𝐶𝑊-complex, 37
of a chain complex, 38

finitely
F-amenable group, 603
F-amenable group action, 603
homotopy F-amenable group, 605

finitely dominated, 264
chain complex, 691
space, 13

finiteness obstruction, 40
geometric, 45
unreduced, 40

flasque additive category, 147
flow space, 672

flow 𝐺-space, 672
flow 𝐺-space admitting strong contracting

transfers, 682
form
𝜖 -quadratic, 209
𝜖 -symmetric, 205

non-singular 𝜖 -quadratic, 209
non-singular 𝜖 -symmetric form, 205
stably𝑈-based 𝜖 -quadratic form, 238
standard hyperbolic 𝜖 -quadratic form, 211
standard hyperbolic 𝜖 -symmetric form, 205

formation
𝜖 -quadratic formation, 231
stably isomorphic 𝜖 -quadratic formations,

231
stably𝑈-based 𝜖 -quadratic formation, 238
trivial 𝜖 -quadratic formation, 231

fractional ideal, 34
Franz’ Independence Lemma, 91
Fredholm operator, 279
free

free unitary representation, 89
functor

additive invariant, 180
connective algebraic 𝐾-theory functor on

CATST , 181
exact functor between stable ∞-categories,

177
exact functor of additive categories, 146
finitary, 180
groupoid core functor, 176
localization functor, 176
localizing invariant, 182
non-connective algebraic 𝐾-theory functor

on CATST , 183
of additive categories, 146

functorial additive invariant for finitely
dominated 𝐶𝑊-complexes, 47

universal, 47
fundamental class, 207, 220
Fundamental Lemma of Homological Algebra,

99

𝐺-𝐶𝑊-complex, 312
finite, 314
finite-dimensional, 314
𝑛-dimension, 314
of dimension ≤ 𝑛, 314
of dimension 𝑛, 314
of finite type, 314

𝐺-homology theory, 340
𝐺-support, 613
generalized Swan homomorphism, 108
geometric

finiteness obstruction, 45
module, 577
realization of an abstract simplicial complex,

579
Surgery Exact Sequence, 248
transfer, 687
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Whitehead torsion, 84
graph product, 554
Green functor, 362
Grothendieck group, 30
group

a-T-menable, 502
almost connected topological group, 320
almost transfer F-reducible, 610
alternating group of even permutations of

the set {1, 2, . . . , 𝑛}, 27
amenable, 501
boundary amenable, 492
CAT(0)-group, 498
crystallographic of dimension 𝑛, 546
Dress, 605
Dress-Farrell-Hsiang group over F, 606
Dress-Farrell-Hsiang-Jones group over F,

608
elementary amenable, 501
Farrell-Hsiang group with respect to F, 591
Farrell-Jones group, 388
finite cyclic group of order 𝑛, 27
finite dihedral group of order 2𝑛, 27
finite-dimensional CAT(0)-group, 498
finitely F-amenable group, 603
finitely homotopy F-amenable group, 605
having property (P), 97
having property (RD), 489
having property (T), 502
having the Haagerup property, 502
having virtually property (P), 97
hyperbolic, 322
hyperelementary, 393
infinite cyclic group, 27
infinite dihedral group, 27
infinite special orthogonal group, 114
infinite special unitary group, 114
𝐾-amenable, 420
lacunary hyperbolic, 496
𝑝-elementary, 400
𝑝-hyperelementary, 393
perfect, 130
Poincaré duality group of dimension 𝑛, 264
poly-(P), 97
poly-cyclic, 97
poly-free, 506
poly-Z, 97
regular, 155
regular coherent, 155
sofic, 53
strictly F-transfer reducible, 592
strongly F-transfer reducible, 601
strongly poly-free, 505
strongly transfers reducible over F, 600

symmetric group of permutations of the set
{1, 2, . . . 𝑛}, 27

Thompson’s groups, 508
transfer F-reducible, 599
virtually cyclic, 15
virtually cyclic of type I, 392
virtually cyclic of type II, 392
virtually finitely generated abelian, 97
virtually free group, 97
virtually nilpotent, 97
virtually poly-cyclic, 97

group ring, 48
twisted, 380

groupoid, 350
connected, 350
groupoid core functor, 176
transport groupoid, 350

groupoidification, 176
Gysin sequence, 284

ℎ-cobordism, 85
bounded, 124

Hattori-Stallings homomorphism, 55
Hattori-Stallings rank, 55
Hecke algebra, 468
Heisenberg group

three-dimensional, 294
three-dimensional discrete, 295

higher signature, 253
associated to a homology class, 253

Hochschild homology, 160
homology

Borel homology, 346
Bredon homology, 340
cellular, 63
coefficients of an equivariant proper

homology theory extend to a Mackey
functor, 359

complex topological 𝐾-homology, 278
continuous equivariant homology theory,

444
cyclic homology, 160
equivariant homology theory, 344
equivariant homology theory over a group,

372
𝐺-homology theory, 340
Hochschild homology, 160
negative cyclic homology, 160
periodic cyclic homology, 160
proper equivariant homology theory, 344
proper 𝐺-homology theory, 340
real topological 𝐾𝑂-homology, 280
singular, 63
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strongly continuous equivariant homology
theory, 445

topological cyclic homology, 161
homomorphism of 𝐶∗-algebras, 286

homotopic, 286
homotopic
𝛼-homotopic maps, 575
𝜖 -homotopic maps, 576

homotopical Waldhausen category, 185
homotopy

pointed regular homotopy, 214
regular homotopy, 214

homotopy action
homotopy coherent𝐺-action of a group on a

space, 600
homotopy 𝑆-action on a space, 678
of a finitely presented group on a space, 598
of a group on a Z-chain complex, 690
of a group on a space, 598
strong homotopy action of a group on a

space, 600
homotopy algebraic 𝐾-theory, 158
homotopy coherent 𝐺-action of a group on a

space, 600
homotopy equivalence
𝛼-homotopy equivalences, 575

homotopy fiber, 138
homotopy fixed points of an ordinary category

with a strict 𝐺-action, 736
homotopy invariance of higher signatures, 253
homotopy invariant functor, 564
homotopy inverse
𝛼-homotopy inverse, 575

homotopy 𝐾-theory functor, 467
homotopy representation

free 𝑑-dimensional, 106
homotopy sequence

long exact homotopy sequence of a map, 138
homotopy sphere, 263
homotopy stabilization of a functor from

additive categories to spectra, 466
homotopy theoretic assembly transformation,

566
hyperbolic

group, 322
metric space, 322

ideal
fractional, 34
principal fractional ideal, 34
principal ideal, 30

ideal in a 𝐶∗-algebra, 287
idempotent complete

idempotent complete stable∞-category, 182

idempotent complete additive category, 148
idempotent completion of an additive category,

148
immersion

pointed, 214
index pairing, 302
induction

for equivariant 𝐾𝐾-theory, 303
for equivariant spaces, 344
for equivariant topological 𝐾-theory, 282
of 𝐶∗-algebras, 303
of modules with respect to ring homomor-

phisms, 30
induction structure, 344
inductive limit of 𝐶∗-algebras, 288
integral domain, 30
internal multiplicative structure

for equivariant topological 𝐾-theory, 282
intersection pairing

for immersions, 214
for kernels, 227

involution
𝑤-twisted involution on a group ring, 204
of rings, 204

isotopic, 135

Jacobson radical, 66

𝐾-theory mod 𝑘, 144
𝐾-theory space

of a category with cofibrations and weak
equivalences, 167

of a ring, 139
of an exact category, 146

𝐾-theory spectrum
complex topological 𝐾-theory, 278
non-connective 𝐾-theory spectrum of a ring,

147
non-connective 𝐾-theory spectrum of an

additive category, 147
over groupoids, 353
real topological 𝐾-theory, 280

𝐾0-group of a ring, 30
𝐾1-group of a ring, 69
𝐾2-group of a ring, 130
𝐾𝑛-group of a ring for negative 𝑛, 117
𝐾𝑛-group of a ring for positive 𝑛, 139
𝐾𝑛-group of an additive category, 147
Karoubi filtration, 198

left, 198
right, 197

Kasparov’s intersection product, 301
equivariant, 302

Kazhdan’s property (T), 502
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Kirchberg 𝐶∗-algebras, 293
𝐾𝐾-equivalence, 301
𝐾𝐾-theory of Kasparov, 299

equivariant, 302
𝐾𝑂-orientation of Spin bordism, 280
Kronecker pairing, 207

𝐿-class, 253
𝐿-group

decorated quadratic 𝐿-groups in even
dimensions, 238

decorated quadratic 𝐿-groups in odd
dimensions, 239

projective quadratic 𝐿-group, 241
quadratic 𝐿-groups in even dimensions, 211
quadratic 𝐿-groups in odd dimensions, 233
simple, 240

𝐿-theory spectrum
associated to a ring with decoration ⟨−∞⟩,

244
over groupoids, 353

𝐿1-metric, 579
𝐿2-Betti number, 51
𝐿2-eta-invariant, 431
𝐿2-rho-invariant, 431
labeled 𝐶𝑊-complex, 721
labeling, 721
lagrangian, 212

complementary, 232
sublagrangian, 212

lattice, 500
length function, 488

having property (RD), 489
length of a finite group, 333
lens space, 89
linearization map, 169
local finiteness over N, 614
localizing invariant, 182
locally compact

operator, 423
locally free class group of a Z-order, 60

Mackey functor, 358
manifold

orientable, 221
oriented, 221
𝑤-oriented, 221

manifold parametrized over R𝑘 , 124
map

acyclic, 138
𝛼-close maps, 575
cellular, 313
linearization map, 169
of degree one, 221

mapping class group, 323, 507
mapping cone

of a chain map, 77
of a map of spaces, 81

mapping cylinder
of a chain map, 77
of a map of spaces, 81

marked metric graph, 323
maximal crossed product of 𝐶∗-algebras, 288
maximal group 𝐶∗-algebra, 288
metric
𝐿1-metric, 579

metric space
bounded, 727
hyperbolic, 322
proper, 422
uniformly contractible, 423
with bounded geometry, 423

metrically proper action, 502
minimal homotopy dimension, 331
module

Artinian, 52
geometric, 577
irreducible, 52
simple, 52
stably finitely generated free, 31
stably𝑈-based, 237
𝑈-based, 237

modules
stably isomorphic finitely generated

projective modules, 64
Morita equivalence, 32
Morphism Additivity, 646
Mostow rigidity, 261

𝑁 -F-amenable group action, 603
𝑁 -transfer space, 592
Nakayama’s Lemma, 66
negative cyclic homology, 160
Nil group

reduced zero-th, 94
zero-th, 93

Nil-spectrum
non-connective, 156

nilpotent
endomorphism of a module, 93

norm element of a finite group, 104
normal bordism, 222
normal map, 221

of degree one of manifolds with boundary,
235

of degree one, 221
stabilization of a normal map, 222

normalizer, 313
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normally bordant, 222

object of finite length, 151
object of length ≤ 𝑙, 151
open F-cover, 595
operator

compact, 287
finite propagation operator, 423
locally compact, 423
pseudolocal, 423

orbit category, 49
F-restricted, 49

order
of an open cover, 680

orientable manifold, 221
orientation

of a manifold, 207
orientation homomorphism

of a Poincaré complex, 220
oriented manifold, 221
outer space, 323

spine of outer space, 323

perfect
group, 130
radical, 139

periodic cyclic homology, 160
Pimsner-Voiculescu sequences for 𝐾𝐾-theory,

302
plus-construction, 138
Poincaré duality group of dimension 𝑛, 264
Poincaré complex

finite 𝑛-dimensional, 220
simple finite 𝑛-dimensional, 235
𝑤-oriented, 221

Poincaré pair
finite 𝑛-dimensional, 234
simple finite 𝑛-dimensional, 235

Poincaré Z𝜋-chain homotopy equivalence, 220
pointed category, 165
pointed regular homotopy, 214
poly-cyclic group, 97
poly-Z group, 97
Pontrjagin class

rational, 253
principal fractional ideal, 34
principal ideal domain, 30
principle

assembly principle, 561
separation of variables, 522
Transitivity Principle, 441
Transitivity Principle for equivariant

homology, 441
wait and then flow together, 585

Problem
Brown’s problem about

vcd(𝐺) = dim(𝐸𝐺) , 333
Congruence Subgroup Problem, 104
Identification of analytic Surgery Exact

Sequences, 476
Identification of transformations from the

Surgery Exact Sequence to its analytic
counterpart, 476

Relating the dimension of 𝐸𝐺 and 𝐸𝐺, 334
Space Form Problem, 275
Spherical Space Form Problem, 275

product
reduced product of spectra, 719

product structure
𝜖 -product structure on an ℎ-cobordism, 576

projective class group, 30
reduced, 31

projective quadratic 𝐿-group, 241
projective resolution, 48
𝑑-dimensional, 49
finite, 48
finite-dimensional, 49
finitely generated, 49
free, 49

proper
equivariant homology theory, 344
𝐺-𝐶∗-algebra, 743
𝐺-homology theory, 340
𝐺-space, 315
map, 124
metric space, 422
metrically proper action, 502

pseudoisotopic, 135
pseudoisotopy, 135, 163
pseudoisotopy spectrum, 164

smooth pseudoisotopy spectrum, 164
pseudolocal

operator, 423
pushout

cellular, 47

𝑄-construction, 146
quadratic form

stably isomorphic, 212
quadratic refinement, 210
Question

Amenability and the passage from 𝐾0 (C𝐺)
to 𝐺0 (C𝐺) , 413

Amenability and the vanishing of 𝐺0 (C𝐺) ,
413

Is 𝐾𝑖 (𝐶∗𝑟 (Z𝑛 ⋊ Z/𝑚) ) torsionfree?, 548
Vanishing of the resolution obstruction in

the aspherical case, 267
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quotient category, 197
quotients for additive categories, 197

radical, 66
perfect, 139

reduced
crossed product of 𝐶∗-algebras, 288
group 𝐶∗-algebra, 287
𝐾1-group of a ring, 75
product of spectra, 719

refinement
quadratic, 210

regular coherent
regular coherent group, 155
regular coherent ring, 155

regular homotopy, 214
Reidemeister torsion, 88
resolution

finite, 150
projective, 48

restriction
for equivariant 𝐾𝐾-theory, 303
for equivariant topological 𝐾-theory, 282

retract
absolute neighborhood retract, 264
absolute retract, 604
Euclidean retract, 603

right 𝛼-homotopy inverse, 575
ring

Artinian, 52
Burnside ring, 362
Dedekind ring, 34
directly finite, 53
group ring, 48
hereditary, 34
integral domain, 30
local, 65
Noetherian, 49
obtained by adjoining a unit, 102
of integers, 35
principal ideal domain, 30
regular, 49
regular coherent, 155
semihereditary, 97
semilocal, 66
semisimple, 63
stably finite, 53
Swan ring, 363
twisted group ring, 380
with involution, 204

Rips complex
of a group, 322
of a metric space, 423

Roe algebra, 423

Rothenberg sequence, 242

𝑠-cobordism, 85
self-intersection element, 216
self-torsion, 698
semisimple

object, 151
ring, 63

set of normal maps to a compact manifold, 247
sheering 𝑅𝐺-isomorphism, 363
signature

higher, 253
higher signature associated to a homology

class, 253
homotopy invariance of higher signatures,

253
of a closed oriented manifold, 207
of a non-singular symmetric bilinear pairing,

206
simple

homotopy equivalence, 80
𝐿-group, 240
object, 151
simple Poincaré complex, 235
simple Poincaré pair, 235
structure, 686

simplicial complex
abstract simplicial complex, 579

six-term exact sequence of an ideal, 291
skeleton, 313

skeleton of a category, 146
small category, 146
smash product, 348

of a space with a spectrum, 348
smooth pseudoisotopy spectrum, 164
sofic group, 53
space

acyclic, 137
C-space, 348
finitely dominated, 13
𝐾-theory space of a category with

cofibrations and weak equivalences, 167
𝐾-theory space of a ring, 139
𝐾-theory space of an exact category, 146
𝑁 -transfer space, 592
of parametrized ℎ-cobordisms, 173
of stable parametrized ℎ-cobordisms, 173

Space Form Problem, 275
spectrum, 348
Ω-spectrum, 348
complex topological 𝐾-theory spectrum,

278
homotopy groups of a spectrum, 348
map of spectra, 348
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non-connective 𝐾-theory spectrum of an
additive category, 147

non-connective 𝐾-theory spectrum of a ring,
147

of a commutative ring, 66
real topological 𝐾-theory spectrum, 280
sphere spectrum, 176
structure maps of a spectrum, 348
weak equivalence of spectra, 348

sphere, 284
sphere spectrum, 176
Spherical Space Form Problem, 275
spine of outer space, 323
split Verdier quotient, 179
split Verdier square, 179
stably

stably isomorphic quadratic forms, 212
finite ring, 53
stably finitely generated free module, 31
stably isomorphic finitely generated

projective modules, 64
stably isomorphic 𝜖 -quadratic formations,

231
Steinberg group, 130
𝑛-th Steinberg group, 129

Steinberg symbol, 133
strategy

Control-Strategy, 580
strictly F-transfer reducible group, 592
strong

category with 𝐺-support, 644
contracting transfers, 682
homotopy action of a group on a space, 600

strongly
F-transfer reducible, 600
strongly continuous equivariant homology

theory, 445
transfer F-reducible, 601
transfers reducible over F, 600

structure set, 246
simple, 245

subgroup category, 50
F-restricted, 50

support
𝐺-support, 613
of a geometric module, 577
of morphisms of geometric module, 577
support function, 613

Surgery Exact Sequence
algebraic, 251
analytic, 476
for the PL category, 250
for the topological category, 250
geometric, 248

surgery kernel, 225
surgery obstruction

even-dimensional, 229
for manifolds with boundary, 236
for manifolds with boundary and simple

homotopy equivalences, 240
in odd dimensions, 233

Surgery Program, 88
suspension, 77

of a 𝐶∗-algebra, 293
Swan homomorphism, 105

generalized, 108
Swan ring, 363
𝐴-theoretic, 606

system
directed, 65
filtered, 65

Teichmüller space, 323
tensor product of 𝐶∗-algebras

maximal, 288
minimal, 288
spatial, 288

Theorem
A criterion for 1-dimensional models for
𝐸𝐺, 331

𝐴-theory is a homotopy-invariant functor,
169

Actions on CAT(0)-spaces, 321
Actions on simply connected non-positively

curved manifolds, 320
Actions on trees, 321
Additivity Theorem for categories with

cofibrations and weak equivalences, 173
Additivity Theorem for exact categories, 150
Algebraic 𝐿-theory of Z𝐺 for finite groups,

274
Algebraic and topological 𝐾-theory mod 𝑘

for R and C, 145
Algebraic 𝐾-theory and colimits over

directed sets, 141
Algebraic 𝐾-theory and finite products, 140
Algebraic 𝐾-theory mod 𝑘 of algebraically

closed fields, 144
Algebraic 𝐾-theory of finite fields, 143
Algebraic Thin ℎ-Cobordism Theorem, 579
𝛼-Approximation Theorem, 575
Aspherical closed manifolds with exotic

fundamental groups, 259
Basic properties of Whitehead torsion, 79
Bass-Heller-Swan decomposition

for middle and lower 𝐾-theory, 118
Bass-Heller-Swan decomposition for

Wh(𝐺 × Z) , 95
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Bass-Heller-Swan decomposition for 𝐾1 for
regular rings, 97

Bass-Heller-Swan decomposition for
algebraic 𝐾-theory, 141

Bass-Heller-Swan decomposition for
homotopy 𝐾-theory, 467

Bass-Heller-Swan decomposition for 𝐾1, 95
Bass-Heller-Swan decomposition for lower

and middle 𝐾-theory for regular rings,
119

Bijectivity of the 𝐿-theoretic assembly map
from FIN to VCY after inverting 2,
400

Bijectivity of the assembly map for topolo-
gical cyclic homology for finite groups
and the family of cyclic subgroups, 465

Bökstedt-Hsiang-Madsen Theorem, 509
Bounded ℎ-Cobordism Theorem, 125
Brown’s Problem has a negative answer in

general, 333
Characterization of Dedekind domains, 34
Cocompletion Theorem for the topological

complex 𝐾-homology, 285
Comparing functors from CATST to Sp and

Sp≥0, 182
Completion Theorem for complex and real

K-theory, 285
Computation of the topological 𝐾-theory of

Z𝑛 ⋊ Z/𝑚 for a free conjugation action,
546

Connectivity of the linearization map, 169
Constructing 𝐺-homology theories using

spectra, 349
Constructing equivariant homology theories

over a group using spectra, 373
Constructing equivariant homology theories

using spectra, 350
Criteria for the rational vanishing of middle

and lower 𝐾-theory of integral group
ring, 519

Detection Result for Q and C as coefficients,
161

Devissage, 151
Diffeomorphism classification of lens

spaces, 90
Dimension of 𝐸𝐺 for elementary amenable

groups of finite Hirsch length, 334
Dimension of 𝐸𝐺 and extension, 332
Dimension of 𝐸𝐺 for a discrete subgroup𝐺

of an almost connected Lie group, 332
Dimension of 𝐸𝐺 for countable elementary

amenable groups of finite Hirsch length,
332

Dimensions of 𝐸𝐺 and 𝐸𝐺 for groups
acting on CAT(0)-spaces, 335

Dirac-dual Dirac method, 744
Dirichlet Unit Theorem, 75
Discrete subgroups of almost connected Lie

groups, 320
Down-up formula, 689
Dress-Farrell-Hsiang-Jones groups and the
𝐾-theoretic Farrell-Jones Conjecture
with finite wreath products, 609

Dress-Farrell-Hsiang-Jones groups and the
𝐾-theoretic Farrell-Jones Conjecture,
608

Dual of the Green-Julg Theorem, 304
Equivariant Cellular Approximation

theorem, 315
Equivariant Chern character for equivariant

complex 𝐾-homology, 305
Equivariant homology theories associated to

right exact Γ-∞-categories, 190
Equivariant Whitehead Theorem, 317
Estimate on dim(𝐸𝐺) in terms of vcd(𝐺) ,

333
Eventual injectivity of the rational
𝐾-theoretic assembly map for 𝑅 = Z,
510

Every 𝐶𝑊-complex occurs up to homotopy
as quotient of a classifying space for
proper group actions, 337

Exact sequence of a two-sided ideal for
middle 𝐾-theory, 102

Exact sequence of two-sided ideal for
𝐾-theory in degree ≤ 2, 131

Exotic aspherical closed manifolds with
hyperbolic fundamental group, 258

Exotic universal coverings of aspherical
closed manifolds, 258

External Künneth Theorem for complex
𝐾-theory, 283

Farrell-Jones Conjecture for torsionfree
hyperbolic groups for 𝐾-theory, 542

Finite groups with vanishing Wh(𝐺) or
𝑆𝐾1 (Z𝐺) , 112

Finite groups with vanishing 𝐾0 (Z𝐺) , 62
Finite-dimensional models for 𝐸𝐺 for

discrete subgroup of GL𝑛 (R) , 336
Finitely F-amenable actions and the

Farrell-Jones Conjecture, 603
Finiteness conditions for 𝐵𝐺, 329
Fixed point free smooth actions of finite

groups on disks, 606
Flow estimate in the hyperbolic case, 680
Flow estimates in the CAT(0)-case, 679
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Fundamental exact sequences for groups
satisfying conditions (M) and (NM), 530

Fundamental Theorem of 𝐾-theory in
dimension 1, 96

Geometric and algebraic Whitehead groups,
84

Grothendieck decomposition for𝐺0 and𝐺1,
96

Group completion, 180
Groups in AC(VSOLV) satisfy the Full

Farrell-Jones Conjecture, 604
ℎ-Cobordism theorem, 86
Hilbert Basis Theorem, 97
Homotopy characterization of 𝐸F (𝐺) , 318
Homotopy classification of lens spaces, 90
Homotopy groups of Wh(𝐵𝐺) of a

torsionfree hyperbolic group 𝐺, 172
Homotopy groups of Diff (𝑀 ) rationally for

closed aspherical 𝑀, 271
Homotopy groups of Top(𝑀 ) rationally for

closed aspherical 𝑀, 271
Homotopy groups of Top(𝑀 ) ) for

closed aspherical 𝑀 with hyperbolic
fundamental group, 273

Homotopy groups of Wh(𝐵𝐺) and P(𝐵𝐺)
rationally for torsionfree 𝐺, 171

Homotopy groups of WhDIFF (𝐵𝐺) and
PDIFF (𝐵𝐺) rationally for torsionfree
𝐺, 172

Homotopy Invariance of 𝜌 (2) (𝑀 ) , 432
Hyperbolic groups with Čech-homology

spheres as boundary, 268
Hyperbolic groups with spheres as boundary,

268
Hyperelementary Induction, 393
Identification of non-connective 𝐾-theory

for additive categories in the classical
setting and in the setting of higher
categories, 184

Identifying the finiteness obstruction with its
geometric counterpart, 46

Immersions and Bundle Monomorphisms,
226

Independence of decorations, 242
Inheritance properties of the Meta-

Isomorphism Conjecture for functors
from spaces to spectra with coefficients,
453

Inheritance properties of the Baum-Connes
Conjecture with coefficients, 424

Inheritance properties of the Full
Farrell-Jones Conjecture, 388

Injectivity of the Farrell-Jones assembly
map for FIN for linear groups, 494

Injectivity of the Farrell-Jones assembly
map for FIN for subgroups of almost
connected Lie groups, 493

𝐾- and 𝐿-theory spectra over groupoids,
353

𝐾-and 𝐿-groups of Fuchsian groups, 542
𝐾-theory and directed colimits, 153
𝐾-theory and Verdier quotients, 182
𝐾0 (𝑅) of local rings, 65
𝐾0 (𝑅𝐺) for finite 𝐺 and an Artinian ring
𝑅, 62

𝐾0 (𝑅𝐺) is finite for finite 𝐺 and 𝑅 the ring
of integers in an algebraic number field,
60

𝐾1 (𝐵) of a commutative Banach algebra,
114

𝐾1 (𝐵) of a commutative 𝐶∗-algebra 𝐶 (𝑋) ,
114

𝐾1 (𝐹 ) of skew-fields, 70
𝐾1 (𝑅) = 𝑅× for commutative rings with

Euclidean algorithm, 74
𝐾1 (𝑅) equals GL(𝑅)/[GL(𝑅) ,GL(𝑅) ],

73
𝐾2 (𝑅) and universal central extensions of

E(𝑅) , 130
Künneth Theorem for 𝐾𝐾-theory, 302
Künneth Theorem for finite 𝐶𝑊-complexes

for topological complex 𝐾-cohomology,
279

Künneth Theorem for topological 𝐾-theory
of 𝐶∗-algebras, 293

Karoubi’s Conjecture, 306
𝐿-groups of the integers in dimension 4𝑛,

213
𝐿-groups of the integers in dimension

4𝑛 + 2, 213
𝐿-theory and topological 𝐾-theory of

complex 𝐶∗-algebras, 307
Localization, 152
Localization Theorem for equivariant

topological complex 𝐾-theory, 285
Long and thin covers, 682
Long exact sequence of a two-sided ideal for

higher algebraic 𝐾-theory, 139
Low-dimensional models for 𝐸𝐺 and 𝐸𝐺,

336
Lower and middle 𝐾-theory of the integral

group ring of SL3 (Z) , 554
Mayer-Vietoris sequence for 𝐾-theory in

degree ≤ 2 of a pullback of rings, 131
Mayer-Vietoris sequence for middle
𝐾-theory of a pullback of rings, 99

Mayer-Vietoris sequence of an amalgamated
free product for algebraic 𝐾-theory, 156
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Mayer-Vietoris sequence of an amalgamated
free product for homotopy 𝐾-theory, 158

Models for 𝐸𝐺 of finite type, 331
Morita equivalence for 𝐾0 (𝑅) , 32
Morita equivalence for 𝐾1 (𝑅) , 71
Morita equivalence for algebraic 𝐾-theory,

140
Negative 𝐾-theory of 𝑅𝐺 for a finite

group 𝐺 and a Dedekind domain of
characteristic zero 𝑅, 126

𝑁𝐾𝑛 (𝑅) is trivial or infinitely generated for
𝑛 ≥ 1, 142

𝑁𝐾𝑛 (𝑅) [1/𝑁 ] vanishes for characteristic
𝑁 , 142

Noetherian group rings, 97
Non-connective 𝐾-theory and idempotent

completion, 149
Non-triangulable aspherical closed

manifolds, 258
Operator theoretic model, 320
𝑝-elementary induction for 𝑁𝐾𝑛 (𝑅𝐺) , 142
Passage from FIN to VCY𝐼 for 𝐿-theory,

400
Passage from HE𝐼 to VCY for 𝐾-theory

and additive𝐺-categories as coefficients,
394

Passage fromVCY𝐼 toVCY for 𝐾-theory,
394

Passage from 𝐸𝐺 to 𝐸𝐺, 325, 328
Poincaré duality groups and aspherical

compact homology ANR-manifolds, 266
Product decompositions of aspherical closed

manifolds, 270
Properties of Funfloc (CATST , Sp) , 731
Properties of H̃𝐺 (−;𝐹C ) , 726
Properties of the finiteness obstruction, 40
Properties of the plus-construction, 138
Properties of the signature of oriented

compact manifolds, 207
Pseudoisotopy is a homotopy-invariant

functor, 165
Rational algebraic 𝐾-theory of ring of

integers of number fields, 143
Rational computation of 𝐾∗ (𝐶∗𝑟 (𝐺) ) for a

virtually Z𝑛-group 𝐺, 528
Rational computation of 𝐾∗ (𝐶∗𝑟 (𝐺) ) for a

virtually Z𝑛-group 𝐺 in the split case,
528

Rational computation of algebraic 𝐿-theory,
521

Rational computation of the source of
the assembly maps appearing in
the Farrell-Jones and Baum-Connes
Conjecture, 367

Rational computation of topological
𝐾-theory, 521

Rational computations of 𝐾𝑛 (𝑅𝐺) for
regular 𝑅, 519

Rational injectivity of Z ⊗Z𝐺 Wh(𝐻 ) →
Wh(𝐺) for normal finite 𝐻 ⊆ 𝐺, 515

Rationally injectivity of the colimit map
for finite subgroups for the Whitehead
group, 510

Realizability of the surgery obstruction, 246
Realization Theorem, 43
Reducing the family of subgroups for the

Baum-Connes Conjecture, 426
Reduction to the family FIN for alge-

braic 𝐾-theory with regular rings as
coefficients, 395

Reductions to families contained in FIN
for algebraic 𝐾-theory with rings as
coefficients, 395

Reflection group trick, 514
Regular group rings, 97
Relating the 𝐾-theory of D𝐺 (𝑋) and D𝐺0 ,

652
Relative Whitehead Lemma, 103
Resolution Theorem, 150
Rim’s Theorem, 60
Rips complex, 322
𝑠-Cobordism Theorem, 85
Self-intersections and embeddings, 218
Shaneson splitting, 243
Signature Theorem, 254
Simple surgery obstruction for manifolds

with boundary, 241
𝑆𝐾1 (𝐺) = tors(Wh(𝐺) ) , 112
Slice Theorem for 𝐺-𝐶𝑊-complexes, 314
Split Injectivity of the assembly map

appearing in the 𝐿-theoretic Farrell Jones
Conjecture with coefficients in the ring
Z for fundamental groups of complete
Riemannian manifolds with non-positive
sectional curvature, 492

Split Injectivity of the assembly map ap-
pearing in the Baum-Connes Conjecture
for fundamental groups of complete
Riemannian manifolds with non.-positive
sectional curvature, 490

Split injectivity of the assembly map appear-
ing in the Baum-Connes Conjecture with
coefficient, 490

Splitting the 𝐾-theoretic assembly map from
FIN to VCY, 390

Splitting the 𝐿-theoretic assembly map from
FIN to VCY, 391

Stable Cannon Conjecture, 269



872 Index

Status of the Full Farrell-Jones Conjecture,
481

Status of the Baum-Conjecture with
coefficients, 486

Status of the Baum-Connes Conjecture, 489
Status of the Coarse Baum-Connes

Conjecture, 490
Status of the Farrell-Jones Conjecture for

homotopy 𝐾-theory, 484
Strategy Theorem, 714
Strictly transfer F-reducible groups and the

Farrell-Jones Conjecture, 593
Strongly transfer F-reducible groups and the

Farrell-Jones Conjecture, 601
Strongly transfer VCY-reducible groups

and the Full Farrell-Jones Conjecture,
602

Surgery Exact Sequence, 248
Surgery Exact Sequence for the PL and the

topological category, 250
Surgery Obstruction for Manifolds with

Boundary, 236
Surgery obstruction in even dimensions, 229
Surgery obstruction in odd dimensions, 234
Swan’s Theorem, 36
The 𝐾-theoretic Farrell-Jones Conjecture

implies the Farrell-Jones Conjecture for
homotopy 𝐾-theory, 477

The 𝑝-chain spectral sequence, 356
The algebraic 𝐾-groups of D𝐺 (𝑋, 𝐴) yield

a 𝐺-homology theory, 623
The algebraic 𝐾-groups of D𝐺0 (𝑋, 𝐴) yield

a 𝐺-homology theory, 663
The algebraic 𝐾-theory and 𝐿-theory of

right-angled Artin groups, 555
The Bass Conjecture for integral domains

and elements of finite order, 59
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