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Flashback

We introduced Kn(R) for n ∈ Z.

We discussed the topological relevance of K0(RG) and the
Whitehead group Wh(G), e.g., the finiteness obstruction and the
s-cobordism theorem.

We stated the conjectures that K̃0(ZG) and Wh(G) vanish for
torsion free G.

We presented the Bass-Heller-Swan decomposition and indicated
some similarities between Kn(RG) and group homology.

Cliffhanger

Question (K -theory of group rings and group homology)
Is there a relationship between Kn(RG) and the group homology of G?
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Outline

We introduce spectra and how they yield homology theories.
We state the Farrell-Jones Conjecture and the Baum-Connes
Conjecture for torsion free groups.
We discuss applications of these conjectures, such as the
Kaplansky Conjecture and the Borel Conjecture.
We explain that the formulations for torsion free groups cannot
extend to arbitrary groups.
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Homology theories and spectra

Definition (Spectrum)
A spectrum

E = {(E(n), σ(n)) | n ∈ Z}

is a sequence of pointed spaces {E(n) | n ∈ Z} together with pointed
maps called structure maps

σ(n) : E(n) ∧ S1 −→ E(n + 1).
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Given two pointed spaces X = (X , x0) and Y = (Y , y0), their
one-point-union and their smash product are defined to be the
pointed spaces

X ∨ Y := {(x , y0) | x ∈ X} ∪ {(x0, y) | y ∈ Y} ⊆ X × Y ;

X ∧ Y := (X × Y )/(X ∨ Y ).

If X is a pointed space and E is a spectrum, then we obtain a new
spectrum by X ∧ E.

Exercise
Show Sn+1 ∼= Sn ∧ S1.
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Definition (Homotopy groups of a spectrum)
Given a spectrum E, define for n ∈ Z its n-th homotopy group

πn(E) := colim
k→∞

πk+n(E(k))

to be the abelian group which is given by the colimit over the directed
system indexed by Z

· · · σ(k−1)∗−−−−−→ πk+n(E(k))
σ(k)∗−−−→ πk+n+1(E(k + 1))

σ(k+1)∗−−−−−→ · · · .

Notice that a spectrum, in contrast to a space, can have non-trivial
negative homotopy groups.
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Algebraic K -theory spectrum
For a ring R, there is the algebraic K -theory spectrum KR with the
property

πn(KR) = Kn(R) for n ∈ Z.

Algebraic L-theory spectrum
For a ring with involution R, there is the algebraic L-theory
spectrum L〈−∞〉R with the property

πn(L
〈−∞〉
R ) = L〈−∞〉n (R) for n ∈ Z.
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Definition (Homology theory)

A homology theory H∗ is a covariant functor from the category of
CW -pairs to the category of Z-graded abelian groups together with
natural transformations

∂n(X ,A) : Hn(X ,A)→ Hn−1(A)

for n ∈ Z satisfying the following axioms:

Homotopy invariance;

Long exact sequence of a pair;

Excision;

Disjoint union axiom.
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Theorem (Homology theories and spectra)
Let E be a spectrum.
Then we obtain a homology theory H∗(−;E) by

Hn(X ,A;E) := πn ((X ∪A cone(A)) ∧ E) .

It satisfies
Hn(pt;E) = πn(E).
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The Isomorphism Conjectures for torsion free groups

Conjecture (K -theoretic Farrell-Jones Conjecture for torsion free
groups and regular rings)
The K -theoretic Farrell-Jones Conjecture with coefficients in the
regular ring R for the torsion free group G predicts that the assembly
map

Hn(BG;KR)→ Kn(RG)

is bijective for every n ∈ Z.

Kn(RG) is the algebraic K -theory of the group ring RG;

KR is the (non-connective) algebraic K -theory spectrum of R;

Hn(pt;KR) ∼= πn(KR) ∼= Kn(R) for n ∈ Z.

BG is the classifying space of the group G.
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Conjecture (L-theoretic Farrell-Jones Conjecture for torsion free
groups)
The L-theoretic Farrell-Jones Conjecture with coefficients in the ring
with involution R for the torsion free group G predicts that the
assembly map

Hn(BG;L〈−∞〉R )→ L〈−∞〉n (RG)

is bijective for every n ∈ Z.

L〈−∞〉n (RG) is the algebraic L-theory of RG with decoration 〈−∞〉;

L〈−∞〉R is the algebraic L-theory spectrum of R with decoration
〈−∞〉;

Hn(pt;L〈−∞〉R ) ∼= πn(L
〈−∞〉
R ) ∼= L〈−∞〉n (R) for n ∈ Z.
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Conjecture (Baum-Connes Conjecture for torsion free groups)
The Baum-Connes Conjecture for the torsion free group predicts that
the assembly map

Kn(BG)→ Kn(C∗r (G))

is bijective for every n ∈ Z.

Kn(BG) is the topological K -homology of BG.

Kn(C∗r (G)) is the topological K -theory of the reduced complex
group C∗-algebra C∗r (G) of G.

Exercise
Let G be the fundamental group of a closed orientable 2-manifold.
Compute Kn(BG).
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Conclusions of the Isomorphism Conjectures for
torsion free groups

In order to illustrate the depth of the Farrell-Jones Conjecture and
the Baum-Connes Conjecture, we present some conclusions
which are interesting in their own right.

Let FJ K (R), respectively FJ L(R), be the class of groups that
satisfy the K -theoretic, respectively L-theoretic, Farrell-Jones
Conjecture for the coefficient ring R.

Let BC be the class of groups that satisfy the Baum-Connes
Conjecture.
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Lemma
Let R be a regular ring. Suppose that G is torsion free and
G ∈ FJ K (R). Then

Kn(RG) = 0 for n ≤ −1;

The change of rings map K0(R)→ K0(RG) is bijective. In
particular K̃0(RG) is trivial if and only if K̃0(R) is trivial.

Lemma
Suppose that G is torsion free and G ∈ FJ K (Z). Then the Whitehead
group Wh(G) is trivial.
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Proof.
The idea of the proof is to study the Atiyah-Hirzebruch spectral
sequence converging to Hn(BG;KR) whose E2-term is given by

E2
p,q = Hp(BG,Kq(R)).
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In particular, for a torsion free group G ∈ FJ K (Z) we get:

Kn(ZG) = 0 for n ≤ −1;

K̃0(ZG) = 0;
Wh(G) = 0;

Every finitely dominated CW -complex X with G = π1(X ) is
homotopy equivalent to a finite CW -complex;

Every compact h-cobordism W of dimension ≥ 6 with π1(W ) ∼= G
is trivial;

If G belongs to FJ K (Z), then it is of type FF if and only if it is of
type FP (Serre’s problem).
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Mini-Break

Mathematicians!
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Conjecture (Kaplansky Conjecture)
The Kaplansky Conjecture says that for a torsion free group G and an
integral domain R the elements 0 and 1 are the only idempotents in
RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky
Conjecture)
Let F be a skew-field and let G be a group with G ∈ FJ K (F ). Suppose
that one of the following conditions is satisfied:

F is commutative and has characteristic zero, and G is torsion
free;
G is torsion free and sofic;
The characteristic of F is p, all finite subgroups of G are p-groups
and G is sofic;

Then 0 and 1 are the only idempotents in FG.
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Proof.
We only treat the case of fields of characteristic zero.
Let p be an idempotent in FG. We want to show p ∈ {0,1}.
Denote by ε : FG→ F the augmentation homomorphism sending∑

g∈G rg · g to
∑

g∈G rg . It suffices to show p = 0 under the
assumption that ε(p) = 0.
Let (p) ⊆ FG be the ideal generated by p, which is a finitely
generated projective FG-module.
Since G ∈ FJ K (F ), we can conclude that

i∗ : K0(F )⊗Z Q→ K0(FG)⊗Z Q

is surjective.
Hence we can find a finitely generated projective F -module P and
integers k ,m,n ≥ 0 satisfying

(p)k ⊕ FGm ∼=FG i∗(P)⊕ FGn.
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Proof (continued).

If we now apply i∗ ◦ ε∗ and use ε ◦ i = id, i∗ ◦ ε∗(FGl) ∼= FGl and
ε(p) = 0, then we obtain

FGm ∼= i∗(P)⊕ FGn.

Inserting this in the first equation yields

(p)k ⊕ i∗(P)⊕ FGn ∼= i∗(P)⊕ FGn.

Our assumptions on F and G imply that FG is stably finite, i.e., if A
and B are square matrices over FG with AB = I, then BA = I.
This implies (p)k = 0 and hence p = 0.

Exercise
Let p be a prime. Find all idempotents in R[Z/p] for R = Z, R = C and
R = Fp.
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Conjecture (Borel Conjecture)
The Borel Conjecture for G predicts that for two closed aspherical
manifolds M and N with π1(M) ∼= π1(N) ∼= G any homotopy
equivalence M → N is homotopic to a homeomorphism and in
particular that M and N are homeomorphic.

In particular the Borel Conjecture predicts that two closed
aspherical manifolds are homeomorphic if and only if their
fundamental groups are isomorphic.
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The Borel Conjecture can be viewed as the topological version of
Mostow rigidity.
A special case of Mostow rigidity says that any homotopy
equivalence between closed hyperbolic manifolds of dimension
≥ 3 is homotopic to an isometric diffeomorphism.

The Borel Conjecture is not true in the smooth category by results
of Farrell-Jones.

There are also non-aspherical manifolds that are topologically
rigid in the sense of the Borel Conjecture (see Kreck-L.).
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Theorem (The Farrell-Jones Conjecture and the Borel
Conjecture)
If the K - and L-theoretic Farrell-Jones Conjecture hold for G in the
case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in
dimension 4 if G is good in the sense of Freedman.

Thurston’s Geometrization Conjecture implies the Borel
Conjecture in dimension 3.

Exercise
Prove the Borel Conjecture in dimensions 1 and 2.
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Definition (Structure set)
The structure set Stop(M) of a manifold M consists of equivalence
classes of orientation preserving homotopy equivalences N → M with
a manifold N as source.
Two such homotopy equivalences f0 : N0 → M and f1 : N1 → M are
equivalent if there exists a homeomorphism g : N0 → N1 with
f1 ◦ g ' f0.

Theorem
The Borel Conjecture holds for a closed manifold M if and only if
S top(M) consists of one element.
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Theorem (Ranicki)
There is an exact sequence of abelian groups, called the algebraic
surgery exact sequence, for an n-dimensional closed manifold M

. . .
σn+1−−−→ Hn+1(M;L〈1〉) An+1−−−→ Ln+1(Zπ1(M))

∂n+1−−−→

S top(M)
σn−→ Hn(M;L〈1〉) An−→ Ln(Zπ1(M))

∂n−→ . . .

It can be identified with the classical geometric surgery sequence due
to Sullivan and Wall in high dimensions.

S top(M) consists of one element if and only if An+1 is surjective
and An is injective.

Hk (M;L〈1〉)→ Hk (M;L) is bijective for k ≥ n + 1 and injective for
k = n.
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What happens for groups with torsion?

The versions of the Farrell-Jones Conjecture and the
Baum-Connes Conjecture above are false for finite groups unless
the group is trivial.
For instance the version of the Baum-Connes Conjecture above
would predict that for a finite group G

K0(BG) ∼= K0(C∗r (G)) ∼= RC(G).

However, K0(BG)⊗Z Q ∼=Q K0(pt)⊗Z Q ∼=Q Q and
RC(G)⊗Z Q ∼=Q Q holds if and only if G is trivial.
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If G is torsion free, then the version of the K -theoretic
Farrell-Jones Conjecture predicts

Hn(BZ;KR) = Hn(S1;KR) = Hn(pt;KR)⊕ Hn−1(pt;KR)

= Kn(R)⊕ Kn−1(R) ∼= Kn(RZ).

In view of the Bass-Heller-Swan decomposition this is only
possible if NKn(R) vanishes which is true for regular rings R but
not for general rings R.
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Cliffhanger

Question (Arbitrary groups and rings)
Are there versions of the Farrell-Jones Conjecture for arbitrary groups
and rings and of the Baum-Connes Conjecture for arbitrary groups?
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To be continued
Stay tuned

Next talk: Friday 9:15
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