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Flashback

We have introduced the Farrell-Jones Conjecture and the
Baum-Connes Conjecture for torsionfree groups and discussed
applications of these conjectures such as to the Kaplansky
Conjecture and the Borel Conjecture.
We have explained that the formulations for torsionfree groups
cannot extend to arbitrary groups.
Our goal is to find a formulation which makes sense for all groups
and all rings.
For this purpose we have introduced classifying spaces for
families of subgroups of a group G which we will recall next.
In the sequel group will mean discrete group.
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Definition (Family of subgroups)
A family F of subgroups of G is a set of subgroups of G which is
closed under conjugation and finite intersections.

Examples for F are:
T R = {trivial subgroup};
FIN = {finite subgroups};
FCYC = {finite cyclic subgroups};
VCYC = {virtually cyclic subgroups};
ALL = {all subgroups}.
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Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

A model for EF (G) exists and is unique up to G-homotopy.
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Cliffhanger

Question (Homological computations based on nice models for
EG)
Can nice geometric models for EG be used to compute the group
homology and more general homology and cohomology theories of a
group G?

Question (K -theory of group rings and group homology)
Is there a relation between Kn(RG) and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of
families)
Can classifying spaces of families be used to formulate a version of the
Farrell-Jones Conjecture and the Baum-Connes Conjecture which may
hold for all groups and all rings?
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Outline

We intoduce the notion of an equivariant homology theory.
We present the general formulation of the Farrell-Jones
Conjecture and the Baum-Connes Conjecture.
We discuss equivariant Chern characters.
We present some explicit computations of equivariant topological
K -groups and of homology groups associated to classifying
spaces of groups.
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Equivariant homology theories

Definition (G-homology theory)

A G-homology theory H∗ is a covariant functor from the category of
G-CW -pairs to the category of Z-graded Λ-modules together with
natural transformations

∂n(X , A) : Hn(X , A) → Hn−1(A)

for n ∈ Z satisfying the following axioms:
G-homotopy invariance;
Long exact sequence of a pair;
Excision;
Disjoint union axiom.
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Equivariant homology theories

Definition (G-homology theory)

A G-homology theory HG
∗ is a covariant functor from the category of

G-CW -pairs to the category of Z-graded Λ-modules together with
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Definition (Equivariant homology theory)

An equivariant homology theory H?
∗ assigns to every group G a

G-homology theory HG
∗ . These are linked together with the following

so called induction structure: given a group homomorphism α : H → G
and a H-CW -pair (X , A), there are for all n ∈ Z natural
homomorphisms

indα : HH
n (X , A) → HG

n (indα(X , A))

satisfying
Bijectivity
If ker(α) acts freely on X , then indα is a bijection;
Compatibility with the boundary homomorphisms;
Functoriality in α;
Compatibility with conjugation.
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Example (Equivariant homology theories)
Given a non-equivariant homology theory K∗, put

HG
∗ (X ) := K∗(X/G);

HG
∗ (X ) := K∗(EG ×G X ) (Borel homology).

Equivariant bordism Ω?
∗(X );

Equivariant topological K -theory K ?
∗ (X ).

Theorem (L.-Reich (2005))
Given a functor E : Groupoids → Spectra sending equivalences to
weak equivalences, there exists an equivariant homology theory
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Theorem (Equivariant homology theories associated to K and
L-theory, Davis-L. (1998))
Let R be a ring (with involution). There exist covariant functors

KR : Groupoids → Spectra;

L〈∞〉
R : Groupoids → Spectra;

Ktop : Groupoidsinj → Spectra

with the following properties:

They send equivalences of groupoids to weak equivalences of
spectra;
For every group G and all n ∈ Z we have

πn(KR(G)) ∼= Kn(RG);

πn(L
〈−∞〉
R (G)) ∼= L〈−∞〉

n (RG);

πn(Ktop(G)) ∼= Kn(C∗
r (G)).
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Example (Equivariant homology theories associated to K and
L-theory)
We get equivariant homology theories

H?
∗(−; KR);

H?
∗(−; L〈−∞〉

R );

H?
∗(−; Ktop),

satisfying for H ⊆ G

HG
n (G/H; KR) ∼= HH

n (pt; KR) ∼= Kn(RH);

HG
n (G/H; L〈−∞〉

R ) ∼= HH
n (pt; L〈−∞〉

R ) ∼= L〈−∞〉
n (RH);

HG
n (G/H; Ktop) ∼= HH

n (pt; Ktop) ∼= Kn(C∗
r (H)).
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The general formulation of the Isomorphism
Conjectures

Conjecture (K -theoretic Farrell-Jones-Conjecture)
The K -theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), KR) → HG

n (pt, KR) = Kn(RG)

is bijective for all n ∈ Z.

The assembly map is the map induced by the projection
EVCYC(G) → pt.

Wolfgang Lück (Münster, Germany) Equivariant homology theories Hangzhou, July 2007 12 / 36



The general formulation of the Isomorphism
Conjectures

Conjecture (K -theoretic Farrell-Jones-Conjecture)
The K -theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), KR) → HG

n (pt, KR) = Kn(RG)

is bijective for all n ∈ Z.

The assembly map is the map induced by the projection
EVCYC(G) → pt.

Wolfgang Lück (Münster, Germany) Equivariant homology theories Hangzhou, July 2007 12 / 36



The general formulation of the Isomorphism
Conjectures

Conjecture (K -theoretic Farrell-Jones-Conjecture)
The K -theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), KR) → HG

n (pt, KR) = Kn(RG)

is bijective for all n ∈ Z.

The assembly map is the map induced by the projection
EVCYC(G) → pt.

Wolfgang Lück (Münster, Germany) Equivariant homology theories Hangzhou, July 2007 12 / 36



The general formulation of the Isomorphism
Conjectures

Conjecture (K -theoretic Farrell-Jones-Conjecture)
The K -theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), KR) → HG

n (pt, KR) = Kn(RG)

is bijective for all n ∈ Z.

The assembly map is the map induced by the projection
EVCYC(G) → pt.

Wolfgang Lück (Münster, Germany) Equivariant homology theories Hangzhou, July 2007 12 / 36



Conjecture (L-theoretic Farrell-Jones-Conjecture)
The L-theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), L〈−∞〉

R ) → HG
n (pt, L〈−∞〉

R ) = L〈−∞〉
n (RG)

is bijective for all n ∈ Z.
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Conjecture (Baum-Connes Conjecture)
The Baum-Connes Conjecture predicts that the assembly map

K G
n (EG) = HG

n (EFIN (G), Ktop) → HG
n (pt, Ktop) = Kn(C∗

r (G))

is bijective for all n ∈ Z.

We will discuss these conjectures and their applications in the
next lecture.
We will now continue with equivariant homology theories.
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Equivariant Chern characters

Let H∗ be a (non-equivariant) homology theory. There is the
Atiyah-Hirzebruch spectral sequence which converges to Hp+q(X )
and has as E2-term

E2
p,q = Hp(X ;Hq(pt)).

Rationally it collapses completely. Namely, one has the following
result

Theorem (Non-equivariant Chern character, Dold (1962))
Let H∗ be a homology theory with values in Λ-modules for Q ⊆ Λ.
Then there exists for every n ∈ Z and every CW-complex X a natural
isomorphism ⊕

p+q=n

Hp(X ; Λ)⊗Λ Hq(pt)
∼=−→ Hn(X ).
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Dold’s Chern character for a CW -complex X is given by the following
composite:

chn :
⊕

p+q=n

Hp(X ;Hq(∗)) α−1
−−→

⊕
p+q=n

Hp(X ; Z)⊗Z Hq(∗)

L
p+q=n(hur⊗id)−1

−−−−−−−−−−−→
⊕

p+q=n

πs
p(X+, ∗)⊗Z Hq(∗)

L
p+q=n Dp,q

−−−−−−−−→ Hn(X ),

where Dp,q sends [f : (Sp+k , pt) → (Sk ∧ X+, pt)]⊗ η to the image of η
under the composite

Hq(∗) ∼= Hp+k+q(Sp+k , pt)
Hp+k+q(f )
−−−−−−→ Hp+k+q(Sk∧X+, pt) ∼= Hp+q(X ).
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We want to extend this to the equivariant setting.
This requires an extra structure on the coefficients of an
equivariant homology theory H?

∗.
We define a covariant functor called induction

ind : FGI → Λ- Mod

from the category FGI of finite groups with injective group
homomorphisms as morphisms to the category of Λ-modules as
follows. It sends G to HG

n (pt) and an injection of finite groups
α : H → G to the morphism given by the induction structure

HH
n (pt) indα−−→ HG

n (indα pt)
HG

n (pr)−−−−→ HG
n (pt).
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Definition (Mackey extension)
We say that H?

∗ has a Mackey extension if for every n ∈ Z there is a
contravariant functor called restriction

res : FGI → Λ- Mod

such that these two functors ind and res agree on objects and satisfy
the double coset formula ,i.e., we have for two subgroups H, K ⊂ G of
the finite group G

resK
G ◦ indG

H =
∑

KgH∈K\G/H

indc(g):H∩g−1Kg→K ◦ resH∩g−1Kg
H ,

where c(g) is conjugation with g, i.e., c(g)(h) = ghg−1.
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In every case we will consider such a Mackey extension does exist
and is given by an actual restriction.
For instance for H?

0(−; Ktop) induction is the functor complex
representation ring RC with respect to induction of
representations. The restriction part is given by the restriction of
representations.
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Theorem (Equivariant Chern character, L. (2002))
Let H?

∗ be a equivariant homology theory with values in Λ-modules for
Q ⊆ Λ. Suppose that H?

∗ has a Mackey extension. Let I be the set of
conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and
every n ∈ Z a natural isomorphism called equivariant Chern character

chG
n :

⊕
p+q=n

⊕
(H)∈I

Hp(CGH\X H ; Λ)⊗Λ[WGH] SH

(
HH

q (∗)
) ∼=−→ HG

n (X ).

CGH is the centralizer and NGH the normalizer of H ⊆ G;
WGH := NGH/H · CGH (This is always a finite group);

SH
(
HH

q (∗)
)

:= cok
(⊕

K⊂H
K 6=H

indH
K :
⊕

K⊂H
K 6=H

HK
q (∗) → HH

q (∗)
)

;

ch?
∗ is an equivalence of equivariant homology theories.
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Q ⊆ Λ. Suppose that H?

∗ has a Mackey extension. Let I be the set of
conjugacy classes (H) of finite subgroups H of G.
Then there is for every group G, every proper G-CW-complex X and
every n ∈ Z a natural isomorphism called equivariant Chern character

chG
n :

⊕
p+q=n

⊕
(H)∈I

Hp(CGH\X H ; Λ)⊗Λ[WGH] SH

(
HH

q (∗)
) ∼=−→ HG

n (X ).

CGH is the centralizer and NGH the normalizer of H ⊆ G;
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SH
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HH

q (∗)
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Theorem (Artin’s Theorem)
Let G be finite. Then the map⊕

C⊂G

indG
C :

⊕
C⊂G

RC(C) → RC(G)

is surjective after inverting |G|, where C ⊂ G runs through the cyclic
subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the
map ⊕

D⊂C,D 6=C

indC
D :

⊕
D⊂C,D 6=C

RC(D) → RC(C).

For an appropriate idempotent θC ∈ RQ(C)⊗Z Z
[

1
|C|

]
the Artin defect

is after inverting the order of |C| canonically isomorphic to

θC · RC(C)⊗Z Z
[

1
|C|

]
.
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Let K G
∗ = H?

∗(−; Ktop) be equivariant topological K -theory.
We get for a finite subgroup H ⊆ G

K G
n (G/H) = K H

n (pt) =

{
RC(H) if n is even;
{0} if n is odd.

SH
(
K H

q (∗)
)
⊗Z Q = 0 if H is not cyclic and q is even or if q is odd.

SC
(
K C

q (∗)
)
⊗Z Q = θC · RC(C)⊗Z Q if C is finite cyclic and q is

even.
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Recall

chG
n :

⊕
p+q=n

⊕
(H)∈I

Hp(CGH\X H ; Λ)⊗Λ[WGH] SH

(
HH

q (∗)
) ∼=−→ HG

n (X ).

Example (Improvement of Artin’s Theorem)
Let G be finite, X = {∗} and H?

∗ = K ?
∗ . Then we get an improvement of

Artin’s theorem. Namely, the equivariant Chern character induces an
isomorphism

chG
0 (pt) :

⊕
(C)

Z⊗Z[WGC] θC ·RC(C)⊗Z Z
[

1
|G|

]
∼=−→ RC(G)⊗Z Z

[
1
|G|

]

where (C) runs over the conjugacy classes of finite cyclic subgroups.
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Corollary (Rational computation of K G
∗ (EG))

For every group G and every n ∈ Z we obtain an isomorphism⊕
(C)

⊕
k

Hp+2k (BCGC) ⊗Z[WGC] θC · RC(C) ⊗Z Q
∼=−→ K G

n (EG) ⊗Z Q.

If the Baum-Connes Conjecture holds for G, this gives a
computation of Kn(C∗

r (G))⊗Z Q.
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The last corollary follows from the equivariant Chern character

chG
n :

⊕
p+q=n

⊕
(H)∈I

Hp(CGH\X H ; Λ)⊗Λ[WGH] SH

(
HH

q (∗)
) ∼=−→ HG

n (X )

using the following facts.
EGC is a contractible proper CGC- space. Hence the canonical
map BCGC → CGC\EGC induces an isomorphism

Hp(BCGC)⊗Z Q
∼=−→ Hp(CGC\EGC)⊗Z Q.

SH
(
K H

q (∗)
)
⊗Z Q = 0 if H is not cyclic and q is even or if q is odd.

SC
(
K C

q (∗)
)
⊗Z Q = θC · RC(C)⊗Z Q if C is finite cyclic and q is

even.
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Topological K -theory of classifying spaces

For a prime p denote by r(p) = | conp(G)| the number of
conjugacy classes (g) of elements g 6= 1 in G of p-power order.
IG is the augmentation ideal of RC(G).
Let Ip(G) be the image of the restriction homomorphism
I(G) → I(Gp).

Theorem (Completion Theorem, Atiyah-Segal (1969))
Let G be a finite group.
Then there are isomorphisms of abelian groups

K 0(BG) ∼= RC(G)ÎG

∼= Z×
∏

p prime

Ip(G)⊗Z Zp̂ ∼= Z×
∏

p prime

(Zp̂)r(p);

K 1(BG) ∼= 0.
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Theorem (L. (2005))
Let G be a discrete group. Denote by K ∗(BG) the topological
(complex) K-theory of its classifying space BG. Suppose that there is a
cocompact G-CW-model for the classifying space EG for proper
G-actions.
Then there is a Q-isomorphism

ch
n
G : K n(BG)⊗Z Q

∼=−→(∏
i∈Z

H2i+n(BG; Q)

)
×

∏
p prime

∏
(g)∈conp(G)

(∏
i∈Z

H2i+n(BCG〈g〉; Qp̂)

)
.

The multiplicative structure can also be determined.
There are many groups for which a cocompact G-CW -model for
EG exists, e.g., hyperbolic groups.
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Example (SL3(Z))
It is well-known that its rational cohomology satisfies
H̃n(BSL3(Z); Q) = 0 for all n ∈ Z.
Actually, by a result of Soule (1978) the quotient space
SL3(Z)\ESL3(Z) is contractible and compact.
From the classification of finite subgroups of SL3(Z) we see that
SL3(Z) contains up to conjugacy two elements of order 2, two
elements of order 4 and two elements of order 3 and no further
conjugacy classes of non-trivial elements of prime power order.
The rational homology of each of the centralizers of elements in
con2(G) and con3(G) agrees with the one of the trivial group.
Hence we get

K 0(BSL3(Z))⊗Z Q ∼= Q× (Q2̂)
4 × (Q3̂)

2;

K 1(BSL3(Z))⊗Z Q ∼= 0.
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Example (Continued)

The identification of K 0(BSL3(Z))⊗Z Q above is compatible with
the multiplicative structures.
Actually the computation using Brown-Petersen cohomology and
the Conner-Floyd relation by Tezuka-Yagita (1992) gives the
integral computation

K 0(BSL3(Z)) ∼= Z× (Z2̂)
4 × (Z3̂)

2;

K 1(BSL3(Z)) ∼= 0.

Soule (1978) has computed the integral cohomology of SL3(Z).
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A computation

Let G be a discrete group. Let MFIN be the subset of FIN
consisting of elements in FIN which are maximal in FIN .
Assume that G satisfies the following assertions:
(M) Every non-trivial finite subgroup of G is contained in a unique

maximal finite subgroup;
(NM) M ∈MFIN , M 6= {1} ⇒ NGM = M.
Here are some examples of groups G which satisfy conditions (M)
and (NM):

Extensions 1 → Zn → G → F → 1 for finite F such that the
conjugation action of F on Zn is free outside 0 ∈ Zn;
Fuchsian groups;
One-relator groups G.
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For such a group there is a nice model for EG with as few
non-free cells as possible. Let {(Mi) | i ∈ I} be the set of
conjugacy classes of maximal finite subgroups of Mi ⊆ G. By
attaching free G-cells we get an inclusion of G-CW -complexes
j1 :
∐

i∈I G ×Mi EMi → EG.
Define EG as the G-pushout

∐
i∈I G ×Mi EMi

j1
//

u1
��

EG

f1
��∐

i∈I G/Mi
k1

// EG

where u1 is the obvious G-map obtained by collapsing each EMi
to a point.
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Next we explain why EG is a model for the classifying space for
proper actions of G.
Its isotropy groups are all finite. We have to show for H ⊆ G finite
that EGH contractible.
We begin with the case H 6= {1}. Because of conditions (M) and
(NM) there is precisely one index i0 ∈ I such that H is
subconjugated to Mi0 and is not subconjugated to Mi for i 6= i0. We
get (∐

i∈I

G/Mi

)H

=
(
G/Mi0

)H
= pt.

Hence EGH = pt.
It remains to treat H = {1}. Since u1 is a non-equivariant
homotopy equivalence and j1 is a cofibration, f1 is a
non-equivariant homotopy equivalence. Hence EG is contractible.
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Consider the pushout obtained from the G-pushout above by
dividing the G-action ∐

i∈I BMi //

��

BG

��∐
i∈I pt // G\EG

The associated Mayer-Vietoris sequence yields

. . . → H̃p+1(G\EG) →
⊕
i∈I

H̃p(BMi) → H̃p(BG)

→ H̃p(G\EG) → . . .

In particular we obtain an isomorphism for p ≥ dim(EG) + 2⊕
i∈I

Hp(BMi)
∼=−→ Hp(BG).
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Theorem
Let G be a discrete group which satisfies the conditions (M) and (NM)
above.
Then there is an isomorphism

K G
1 (EG)

∼=−→ K1(G\EG),

and a short exact sequence

0 →
⊕
i∈I

R̃C(Mi) → K0(EG) → K0(G\EG) → 0.

It splits if we invert the orders of all finite subgroups of G.

If the Baum-Connes Conjecture is true for G, then

Kn(C∗
r (G)) ∼= K G

n (EG).
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We see that for computations of group homology or of K - and
L-groups of group rings and group C∗-algebras it is important to
understand the spaces G\EG.
Often geometric input ensures that G\EG is a fairly small
CW -complex.
On the other hand recall the result due to Leary-Nucinkis (2001)
that for any CW -complex X there exists a group G with
X ' G\EG.
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Question (Consequences)
What are the consequences of the Farrell-Jones Conjecture and the
Baum-Connes Conjecture?

To be continued
Stay tuned
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