1.section
Survey over the Casson invariant

We start with describing the Casson invariant axiomatically.

1.1 The Casson invariant assigns to any oriented homology 3-sphere M an integer
ANM)eZ

such that the following conditions are satisfied :
1.) If M and N are oriented homeomorphic, then A\(M) = A(N).
2.) Let K C M be a knot. Suppose that M (K, 1/n) is obtained from M by L-surgery on K.

n

Then M (K, 1/n) is again a homology 3-sphere . Let Ag be the symmetrized and normalized
Alexander-Conway polynomial of K C M. Then :

MK, 1/ (04 1)) = MM(K, 1/n)) = 5 - Ag(1)

3.) A(S%) =0 -

We start with explaining the various terms appearing in the axioms above and then
derive some conclusions and give applications. Finally we indicate the construction of the
Casson invariant.

Definition 1.2 Let R be a commutative associative ring with unit and n a positive integer.
A R-homology n-sphere M is a n-dimensional manifold M satisfying H.(M; R) = H.(S™; R).
We call M a homology sphere or integral homology sphere, if R is Z, and a rational homology
sphere, if R is Q [ ]

Any R-homology n-sphere is a closed orientable manifold. The following result is a
direct consequence of Poincaré duality and the fact that any reducible SO(3)-representation
is in fact a S'-representation and factorizes over m (M) — Hy(M).

Lemma 1.3 Let M be an orientable closed 3-manifold. Then the following assertions are
equivalent :

1. M is a homology sphere.

2. The fundamental group m (M) is perfect.

3. Hi(M) = H(M;Z) is zero.

4. There are no non-trivial reducible SO(3)-representations of m(M). n
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A link K in a 3-manifold M is an oriented closed submanifold of codimension 2. In
other words, it is a disjoint union of embedded 1-dimensional spheres in M. A knot is a
link which has only one component. Consider a knot K in the oriented homology 3-sphere
M. Let N(K) be a closed regular neighbourhood of K. Define M(K) = M — int(N(K)).By
Alexander duality H,(M(K)) = H*(M,K). We derive from the long cohomology sequence
H?*(M,K) =~ H'(K), since M is a homology sphere. Hence H;(M(K)) is isomorphic to
Z. We denote by p resp. A a generator of the kernel of i, : Hi(ON(K)) — H(N(K))
resp. J.: Hi(ON(K)) — H(M(K)), where i and j are the inclusions. These genera-
tors are only unique up to multiplication with 1. They can also be characterized by the
property that they are represented by simple curves in dN(K') such that the linking num-
ber of p resp. A with K is 4+1 resp. 0. The orientation of M induces an orientation
on N(K) and hence an orientation on N using the outward normal and the decomposi-
tion ¥(ON(K), N(K)) ® TON(K) = TN(K) |an(k). We always assume that the intersection
number of A and g in ON is +1. Then there are only two choices for the pair (\, p). Fix
such a choice. We call A the longitudinal and p the meridian of K C M.

1.4 Longitudinal and meridian

Suppose we have fixed integers p and ¢ satisfying (p,q) = (1). Let 0 : S' x 9D? — IN(K)
be a homeomorphism assigning pu + ¢\ to the class of {1} x 9D? € H,(S' x dD?). Then
define M (K, p/q) by the push out



St x D? g M(K,p/q)

Equip M (K,p/q) with the orientation induced from M (K) C M. We claim that the
oriented homeomorphism type of M(K,p/q) depends only on the underlying set of K and
the element p/q € QU {oco} and is independent of the choices of A, pu,p, ¢ and o and the
orientation of the knot. Suppose that we have made different choices X', /', p’, ¢’ and o'
The composition 07! oo’ : S! x 9D?* — S' x D? sends the class of {1} x dD? to itself up
to a possible sign. Isotopy classes of self maps of S' x S! are classified by the induced map on
homology. Hence a homeomorphism f : S' x ' — S! x S! extends to a homeomorphism
F:S'x D? — S!' x D? if and only if there is a homomorphism ¢ making the following
diagram commutative

Hy(f)
H,(S' x §Y) H.(S! x S
n Uy
g
Hl(Sl X DQ) Hl(Sl X DQ)

This implies the existence of an extension ¢ : S' x D? — St x D? of 07! o0’. Now the
desired homeomorphism is induced by ¢, 77! o o and the identity on M(K). Given a knot
K in a homology 3-sphere and an element r € Q U {oo}, we say that M (K,r) is obtained
from M by r-Dehn surgery on K. Notice that M (K, o0) = M holds.

Lemma 1.6 Let K be a knot in the homology 3-sphere M. Let p and q be integers satisfying
(p,q) = (1). Then
H(M(K,p/q)) =Z[p

In particular M(K,1/n) is again a homology 3-sphere .

Proof : This follows from the Mayer-Vietoris-sequence of 1.5 which gives an exact sequence

267N 7207 — H(M(K,p/g) — {0} m
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Let K be a knot in a homology 3-sphere M. Denote by X the knot complement
M — K. We have already shown above using Alexander duality that H;(X) is isomorphic to
Z. Let p: X —» X be the corresponding cyclic covering. Then there is an exact sequence
for some r > 0

—

H,(X)

@, Z|Z)]

®,Z[Z)]

Let det(i) € Z[Z] be the determinant of i. Then there is exactly one finite Laurent series
with integral coefficients p(t) such that p(1) =1, p(t) = p(t~') and p(t) = £t™ - det(i) for
appropiate m € Z holds. This Laurent series denoted by Ag is an invariant of the knot K,
called the (symmetrized and normalized) Alezander polynomial. Now we have defined all
terms in the axiomatic characterization of the Casson invariant 1.1.

1.7 The Casson invariant has also the following properties :

a. ) If M~ denotes the manifold M with orientation reversed, then :
AM) = =A(M~)

b ) If A(M) # 0, then there is a non-trivial representation of 71 (M) in SU(2). In particular
the Casson invariant vanishes for homotopy 3-spheres, i. e. oriented 3-manifolds with the
homotopy type of S3.

c.) Let u(M) € Z/2 be the Rohlin invariant of the homology 3-sphere M. Then :
ANM) = p(M)  mod?2

In particular the Rohlin invariant of a homotopy sphere is zero.

d.) Let MEN be the connected sum of the homology 3-spheres M and N. Then M{N is
again a homology 3-sphere satisfying

A(MEN) = A(M) + \(N)

e.) The Casson invariant is uniquely determined by its axioms 1.1 [ ]

We recall the definition of the Rohlin invariant (M) of a Z/2-homology 3-sphere. For
any such M there is a 4-dimensional PL-manifold W with OW = M and vanishing first and
second Stiefel Whitney classes wi(W) and wy(W). These conditions are equivalent to the
existence of a Spin-structure on W. In particular W is orientable. The Rohlin invariant
(M) € Z/16 is the class represented by the signature o(W). This is well defined by Rohlin’s
Theorem that the signature of an orientable closed 4-dimensional P L-manifold with a Spin-
structure is divisible by 16. Namely, if V' is another such manifold, the closed 4-manifold
W Uy V'~ has trivial first and second Stiefel Whitney class because Stiefel-Whitney classes
are natural and the restriction maps H (W Uy V=3 Z/2) — HY(W;Z/2) ® H(V~;Z/2) are
injective, and the signature is additive : o(W Uy V') = (W) 4+ (V). If M is a Z-homology
3-sphere, the signature of W is always divisible by 8. Then one defines the Rohlin invariant
pu(M) € Z/2 to be the class of o(1W)/8. We will always use the last definition of the Rohlin
invariant for a homology 3-sphere .



Next we make some comments on the properties 1.7 of the Casson invariant listed
above.

1.8 We will later prove that for any oriented homology 3-sphere M there is a sequence of
oriented homology 3-spheres My, My, ... , M, such that M, is obtained from M;_ by 1/n-
surgery on a knot K; 1 C M;_; and M, is S* and M, is M. This implies e.), the uniqueness
of the Casson invariant. |

1.9 Any integer can occur as the value of the Casson invariant. Because the Casson inva-
riant is addititive under connected sum, it suffices to realize the value 1. Consider the trefoil
T in S3 Tts Alexander-Conway polynomial is Ap(t) =¢—1+¢"'. Notice that S*(T,1)
is the so-called Poincaré sphere, which is defined as the quotient of SU(2) by the binary
dodecahedral group Af of order 120. This is the universal central extension of A; by Z/2.
Since A\(S3(T,0)) = A(S?) = 0, we get

AS*(T, 1)) =1 m

1.10 The Casson invariant is not an invariant of the fundamental group. Let M be a

oriented homology 3-sphere with non-trivial Casson invariant . Then the Casson invariant
of MM~ is zero because of

AMEM™) = MM) + A(M™) = A(M) = A\(M) =0

On the other hand A(M§M) is 2- A(M) and hence different from zero. But MgM and
MgM~ have the same fundamental group by the Theorem of Seifert-von Kampen, namely
the amalgam of 7 (M) with itself. n

1.11 The Casson invariant is not invariant under homology bordism. A homology bordism
from M to N is a bordism W from M to N such that the inclusion of both M and N in W is a
homology equivalence. Namely, there is a oriented homology 3-sphere M bounding a smooth
contractible 4-manifold W with non-trivial Casson invariant. Notice that W — int(D?) is a
homology bordism between M and S® for any imbedded D* C W. Recall that the Rohlin

invariant is an invariant under homology bordism. [ ]

1.12 If the oriented homology 3-sphere M possesses an orientation reversing diffeomor-
phism, then its Casson invariant vanishes because of A(M) = A(M ) = —A(M). In particu-
lar the Rohlin invariant of M is zero. ]

This conclusion is important because of the following result

Theorem 1.13 (Galewski-Stern) The following assertions are equivalent :



e Fach topological manifold of dimension > 7 can be triangulated.

e There is a homology 3-sphere H such that HEH bounds a contractible 4-dimensional
PL-manifold and p(H) = 1. n

A strategy to construct such an oriented homology 3-sphere is to construct an oriented
homology 3-sphere H with p(1) =1 carrying an orientation reversing involution. Then
H#H is oriented diffeomorphic to HH . As ((H —int(D?)) x I) — int(D%) is a homology
bordism from H$H~ to 0D* H#H is the boundary of an acyclic 4-dimensional manifold.
But such a H does not exist by 1.12.

We give some explanations of the Theorem 1.13 of Galewski and Stern. A polyhedron
P is a subset P C R"™ such that any point p € P possesses a cone neighbourhood of the
shape N = {p} * K for a compact subset K C P where x denotes the join. We call N a star
and K a link of pin P. A map f: P — () between polyhedra is piecewise linear or PL
for short if each point p € P has a star N = {p} * K such that f(Aa + px) = Af(a) + pf ()
holds. As R™ has a canonical structure of a polyhedron, the notion of a PL-structure on a
topological manifold is obvious. A triangulation (K,t) of a topological space X is a simplical
complex K together with a homeomorphism ¢ :| K |— X. A simplical complex which is
PL-homeomorphic to a PL-manifold is called a combinatorial manifold . 1t is characterized
by the fact that any link of each simplex is PL-homeomorphic to a PL-sphere or PL-ball.
A PL-triangulation of a polyhedron P is a triangulation (K, t) with the property that ¢ is
a PL-homeomorphism. Any polyhedron possesses a P L-triangulation. If f:| K |—| L | is
a PL-homeomorphism of the underlying polyhedra of simplicial complexes K and L, then
there are subdivisions K’ and L’ such that f is induced from a simplicial map from K’ to
L'. A topological manifold M has a PL-structure if and only if it has a triangulation by a
combinatorial manifold. We will see the existence of a non-combinatorial triangulation of
some P L-manifold and of topological manifolds possessing no triangulation. There are also
topological manifolds possessing a triangulation but not a PL-structure.

There are classifying spaces BPL, BT RI and BTOP for PL-manifolds, topological
manifolds with triangulation and topological manifolds and natural maps BPL — BTRI
and BTRI — BTOP. A topological manifold possesses a triangulation if and only if its
classifying map into BTOP has a lift to BT RI and similiar for BPL, provided that the
dimensions are large enough. Let ©F be the abelian group of homology bordism classes of
oriented homology 3-spheres modulo oriented homology 3-spheres which are the boundary
of acyclic 4-dimensional PL-manifolds. The structure of ©% is at the time of writing not
known, at least one knows that it is not finitely generated. The Rohlin invariant defines a
homomorphism y : ©F — Z/2. We get an exact sequence

1.14 0 ——  ker(p) o Z/2 —— 0

There are fibrations



1.15 K(Z/2,3) — BPL —s BTOP
K(©",3) —s BPL —s BTRI
K (ker(n),4) — BTRI —s BTOP

Let A(M) € H*(M;Z/2) be the Kirby-Siebenmann obstruction for the existence of a
PL-structure on a topological manifold M. The short exact sequence 1.14 above defines a
Bockstein homomorphism

1.16 8: HY(M;Z/2) — H>(M;ker(u))

Put V(M) := (A(M)). Then V(M) is the obstruction for the existence of a trian-
gulation of M. The existence of an oriented homology 3-sphere H with the properties that
p(H) =1 and HEH is the boundary of an acyclic 4-dimensional PL-manifold, is equivalent
to the existence of a section for the sequence 1.14. If such a section exists, the Bockstein
homomorphism and hence V(M) vanishes.

A PL-structure on a manifold is more than the existence of a triangulation. For n > 5
there is a triangulation on S™ which is not combinatorial. Namely, let H be a homology
3-sphere which not homotopic to S® such that there is a homeomorphism fromX¥2H to S°.
Such H exists by the Double Suspension Theorem of Edwards. Choose a triangulation on
H. It induces a triangulation on X2H and by the homeomorphism above on S°. We have an
embedding S' C ¥2H coming from suspending () C H twice. If the triangulation on H were
combinatorial, then this embedding would be a PL-embedding. Hence it would be isotopic
to the standard embedding of S* into S°. This would imply S® — S' ~ §3, a contradiction
to X2H — S'~ H

1.17 Maybe the most important application of the Casson invariant is the conclusion that
the Rohlin invariant of a homotopy 3-sphere is zero. A lot of strategies for disproving the
3-dimensional Poincaré conjecture that any homotopy 3-sphere is homeomorphic to S? were
based on finding a homotopy 3-sphere with non-trivial Rohlin invariant (see Mandelbaum
[29]).

Another consequence is the existence of 4-dimensional topological manifolds having no
triangulation. By the celebrated result of Freedman (see Freedman [12]), there is a closed, 1-
connected, almost parallelizable, almost-smooth 4-dimensional topological manifold M with
intersection matrix Fg. ” Almost” means that the property holds for M — {point}. Suppose
that M has a triangulation (K,t). Let S resp. L be the star resp. link of a vertex v.
Then L is homotopy 3-sphere and a homology 3-manifold. This implies already that L is a
3-manifold bounding a smooth 4-manifold M obtained from M by taking out the interior
of S. As M and M have the same intersection form, the signature of M is 8. Since M is
parallelizable, the Rohlin invariant of L is 1. But it must be 0 as L is a homotopy 3-sphere,
a contradiction. |



Next we make some comments on the construction of the Casson invariant . We need
some notation.

Notation 1.18

Let Wy =W be the standard modell of the 3-dimensional handle body of genus g. Namely
W is the g-fold connected sum of S* x D?.

Denote by F' the boundary of W. This is the surface of genus g, or in other words, the g-fold
connected sum of S* x S*.

Let D C F be a fized embedded 2-disk.
Put F* := F — D and S' := 0D.

Fiz a base point v € D [ ]

1.19

The standard orientation of R? induces an orientation on W. Then F', F*, D and S! inherits
orientations by the general agreement that an oriented manifold induces an orientation on
its boundary using the decomposition v(OM, M) & TOM = T M|sps and the outward normal
field.

Definition 1.20 (Heegard modell) Consider an orientation reversing homeomorphism
h:(F,D,x) — (F,D,x). Define the Heegard modell of h by

|(W,H) [=WU,W m



Definition 1.21 (Heegard splitting) Let M be an oriented closed 3-manifold. A Heegard
splitting of M is a pair (W1, W3) consisting of submanifolds Wy, Wy C M of codimension 0
satisfying

W1UW2:M 6W1:W1QW2:8W2 ngWQ |

Any oriented closed 3-manifold has a Heegard-decomposition. For a handle body
decomposition of M with exactly one 0- and one 3-handle put W; resp. W, to be the
union of all 0 and 1-handles resp. all 2- and 3-handles. If (W3, W,) is a Heegard decom-
position of M and f;: W; — W is a homeomorphism to the standard handle body for
i = 1,2 such that the composition f, o f{'' induces an orientation reversing homeomorphism
h:(F,D,z) — (F,D,x), then M and | (W, h) | are oriented homeomorphic. Two Heegard
decomposition of the same manifold are equivalent in the sense that after stabilization they
become isotopic. The stabilization process consists of taking out a so called unknotted handle
in W, and increases the genus by 1. It may happen that two Heegard splittings of the same
genus are not isotopic, although appropiate stabilizations of them are.

Given a Heegard splitting (W7, W3) of M, we obtain a diagram of inclusions of spaces

1.22

oF* —— F* — F M

W

Applying the fundamental group with respect to the base point x gives a diagram of homo-
morphisms of groups

1.23
7T1(W1)
/ N
m(OF*) —— m(F*) —— m(F) 1 (M)
™~ S
7T1(W2)



That all the maps in the diagram 1.23 are epimorphisms except for the first one,
follows from the following presentations of the fundamental groups if M is the Heegard

modell | (W, h) |. The paths a; and b; on F* are indicated in diagram 1.19 and i : F — W
is the inclusion.

1.24 7T1(F*,ZL’) =< a,as, .,ag,bl,bQ, bg >
7T1(F,IL’ =< ap,as, .,ag,bl,bQ, bg | H,ngl al,bl] 1>
T (Wi, ) =< a1, as, o Qg, b1, by, ...bg | by = by = =by=1>
T (Wa, ) =< a1,a9, .oy ag, b1, ba, by | (1oh ™ 1)u(b)) =1 1<j<g>
(M, 2) =< a1,a9, ..., ag,b1,b9, ... 0y | bj =1, (i0oh), (b)) =1 1 <j<g>

Let G be a discrete group. The space of representations of G in SU(2) is defined by
1.25 R(G) := Hom(G,SU(2)) C map(G, SU(2))

The conjugation operation of SU(2) on itself induces an operation of SO(3) =
SU(2)/Z/2 = SU(2)/center(SU(2)) on SU(2) and hence an SO(3)-operation on R(G). If
we apply this functor R(?) to the diagram 1.23 and define :

Notation 1.26 Ry := R(m (0F™))
R* := R(m (F™*))
R := R(m (F))
Q; := R(m (W) fori=1,2 n

we obtain a diagram where all maps except 0 are inclusions:

1.27

Ry <~—— R «~— R R(m (M)

Q2

We derive from the presentation of the fundamental groups 1.24 since 7 (F*) and m(W;)
are free:
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1.28 R* =2, S°

Qi = ?:1 s?
Ry = S*

Hence the intersection number < @), Q2 >g+ of Q1 and )2 in R* is defined. One key
result is the following :

Proposition 1.29 Let M be an oriented 3-manifold. Then :

1. < @Q1,Qo >p~ is different from 0 if and only if M is a rational homology sphere.

2. If M 1s a rational homology sphere, then

|< Q1,Q2 >p-

:| HI(M; Z) |

3. < Q1,Q >p is £1 if and only if M is an integral homology sphere.

4. Q1 and @y intersect at 1 transversely if and only if M is a rational homology sphere.

Next we examine what happens after dividing out the SO(3)-action on the representa-
tion spaces. Recall that a representation is reducible if it contains a proper invariant linear
subspace and irreducible otherwise. Let the map

1.30 0: R* — Ry

be induced from the inclusion i : 9F* — F™*. Denote for a (discrete group) G

1.31 S(G) = {p € R(G) | p is irreducible }

The key result for the construction of the Casson invariant is :

Proposition 1.32

1. The map 0 is surjective.

2. The set of critical points is the set S of reducible representations.
3. S(m(F*, z)) = S(m(F, x))

4. R=071(1)
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5. R — S is an open smooth manifold of dimension 6g — 3 and carries a free proper
SO(3)-action.

We will deal with its proof in a later lecture. As SO(3) is compact, we get smooth,
free and proper SO(3)-actions on R, )7 and Qs.

Notation 1.33 R := (R — S)/SO(3) Qi = (Q; — S)/S0(3) n
This implies
Proposition 1.34

1. R is a smooth open manifold of dimension 6g — 6.
2. Q; is a properly embedded open submanifold of dimension 3g — 3 in R.

3. Ql N QQ s compact.

If one has fixed orientations on R and Qi, then the intersection number < Ql, QQ >p
is defined.

The orientation on M induces an orientation on W; and W, by restriction. Then F
from Wy, F* from F' and OF* from F* inherit orientations by the general conventions for
boundaries of oriented manifolds resp. by restriction. The orientation on 0F* determines a
generator in 7 (OF*) and thus an orientation on Ry. Fix any orientation on R*. As R — S
sits in the preimage of 1 of the map 0 : R* — Ry, the orientations of R* and Ry induce an
orientation on R— 9. This determines also on orientation on R. All in all we have explained,
how an orientation of M induces an orientation on R. Fix any orientations on @Q; and Q.
This induces orientations on Ql and QQ. Now we define

Definition 1.35 (Casson invariant)
Let M be a oriented homology 3-sphere . Define :

(_1)9 < QDQQ >[{

AM) = 2: < Q1,Q2 >k

Obviously this is independent of the choice of orientation of R*, ); and (Qs. If we
reverse the orientation of M, then the orientation of Ry and hence of R is reversed so that
AMM~) = =A(M) holds. Evidently A\(M) vanishes if there are no non-trivial representations
of SO(3) (cf. 1.7). The condition that M is a rational homology 3-sphere guarantees that
< Q1,Q9 >pg- is not zero (see 1.29). We have to divide out this term to ensure that the choice
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of orientation on (); and ()2 do not matter. If we neglect this choice, the Casson invariant
would reduce to a number mod 2 and hence just to the Rohlin invariant. But we even need
that M is an integral homology sphere because then the only reducible SO(3)-representation
of (M) is the trivial one (see Lemma 1.3). This is crucial for the proof that the intersection
of Ql and QQ in R is defined (see Proposition 1.34)
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3.section
The Alexander polynomial

The Alexander polynomial was introduced by Alexander in 1928 [3] and is still one of
the most important invariants in knot theory. We will define it using Seifert surfaces and
then give other tools for its computation.

Let S be an oriented Seifert surface for the ordered oriented link L in the oriented
homology 3-sphere M. Choose a trivilization of the normal bundle v(S, M) compatible with
the orientation of M and S and a Riemannian metric on M. We obtain an embedding
i:F xS —s M. Let the embeddings :

it S — M-S

im:S— M-S
be the restrictions to F' x {+1} and F' x {—1}. Notice that the isotopy classes of i* and i~
are independent of the choice of Riemannian metric on M. The Seifert pairing

3.1 s: Hl(S) X HI(S) — 7

sends (u,v) to the linking number link(u,i*(v)) of u and if (v) in M. Choose an integral
bases by, by, ... b of Hi(S). Define the Seifert matriz A := (s(b;,b;)); j—, 4)- Notice that
Al = (link(bj, i, (6:))) ; j=1 ) and A — A" is the intersection matrix of the Seifert surface.
The polynomial det(t- A —t'- A') is independent of the choice of bases where A’ is the

transposed matrix.

Definition 3.2 Let L be an oriented link in a oriented homology 3-sphere M with Seifert
surface S. If S is not a disk, we define the Alexander polynomial by :

Ap(t) =det(t-A—t 1. A",
If S is a disk, define the Alexander polynomial by
AL(t) =1 |

For a proof that this definition is independent of the choice of Seifert surface we refer
to [25] , page 192 — 200 .

Example 3.3 We illustrate the result above by computing the Alexander polynomial of the
trefoil and the Hopf link again but now using Seifert surfaces. The following picture shows
the Seifert surface of the trefoil together with a standard base a, b of its first homology and
a fixed base «, 3 of the first homology group of the complement of the Seifert surface.
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3.4

One easily checks :
link(a, ) = link(b, ) =1 link(b, &) = link(a,3) =0

The positive push-offs a* and b* look as indicated below

3.5

Hence we obtain :

We obtain for the Alexander polynomial :

Ar(t)y=t? -1+t
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3.6

For the Hopf link we obtain the following picture

The Seifert matrix is (1). Hence we obtain :

Agt)y=t—t" m

The next lemma collects the main properties of this invariant:

Lemma 3.7 1. If K is an oriented knot in an oriented homology 3-sphere M, we get :

Ag(l)=1
If L is an oriented link with r-components in a oriented homology 3-sphere , its Alexan-
der polynomial is (—1)"-symmetric:
Ap(t) = (=1)" - AL(t™)
Let L be an oriented link with two components L, and Lo in an oriented homo-

logy 3-sphere M. If the Alexander polynomial Ay is zero, then the linking number
link(Ly, Ly)is zero. If Ay, is different from zero, we obtain :

1 d
— —A = link(Ly, L
5 di Lt:1 ink(Ly, L)
Ay, = Ak - Ag
Let L be an oriented link and K be a knot in the oriented homology 3-sphere M.

Suppose that there are Seifert surfaces Sy, and Sk such that S NSy = 0 holds. Let q
be an integer. Then :

A(L c M)=A(L Cc M(K,1/q))
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Let Ly, L and L, be links in an oriented 3-manifold M. We call (L., L_, Ly) a skein triple
if there is an embedded ball D3> C M such that L, L_ and Ly are equal in M — int(D?)
and within D? look as follows

3.8 Skein triple of links

L, L Lo

We say that Ly, L and Lo are skein related if (Ly,L_,Ly) is a skein triple. We
call link diagramms L., L_ and Ly skein related if there is a ball D* C R? such that the
diagrams are identical outside D? and are given inside D? be the pictures below.

3.9 Skein triple of link diagrams

L, L Ly

Of course three link diagrams Ly, L_ and Lqy are skein related if and only if the links,
they discribe in S, are skein related.
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Lemma 3.10 Let L,, L_ and Ly be skein related links in an oriented homology 3-sphere

M. Then :
AL+—AL7 —(t—t_l)'ALO :0

Proof : We can find Seifert surfaces Sy, S_ and Sy for Ly, L_ and Lq such that they agree
outside an embedded ball D? and look inside the ball as indicated below :

3.11 Seifert surfaces of the skein triple

> M D¢

S, S S

We obtain S, and S_ from Sy by attaching a 1-handle D' x D' to the boundary. Hence
there is a curve a in Sy NS_ such that H\(Sy) =< a > ®H,(Sy) holds. Let a(Sy)+ and
a(S_)y be the positive push-offs of a for S; and S_. These curves are indicated below :

MM ¢

The curve s C D3 C M satisfies link(s,a) =1 and a(Sy)y —a(S_)y = s. Hence we can

3.12
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find Seifert matrices V..,V and Vi such that the following holds :

1 00 0

000 -0 % %
Vi=V_+ Do e VJF:(O V0>

0 00 0

Now one calculates :
Ap, —Ap_=det(t- Vo —t7'- Vi) —det(t- Vo —t71- V) =
(t—t Y -det(t-Vo—t - VH=(@—-t") Ay, ]

Let L be a link diagram in S®. Denote by c(L) the number of crossings, by r(L) the
number of components and by n(L) the minimal number of crossings which must be changed
in order to get a link diagram describing the trivial link of r(L) components. The last
number is well defined by the following argument. Choose an ordering and orientation of
the components of L. Fori=1,2, ... ,r(L)— 1 do the following : Fiz a point x on L; and
move along L; in the positive direction from x to x and, if necessary, change the crossing
with the components L; for j =14,i+1, ... ,r(L) such that the arc, one is just moving on,
15 the overcrossing arc. The components of the resulting link are stacked one below the other
and are hence unlinked. Moreover, each component bounds an embedded disk and is hence
trivial. We call the pair (¢(L), N(L)) the complexity of a link diagram.

Lemma 3.13 Suppose that the function
A : { isotopy classes of oriented links in oriented homology 3-spheres } — Z[t, t!]
has the following properties :

a.) Let L be a link and K be a knot in the oriented homology 3-sphere M. Suppose that there
are Seifert surfaces Sy, and Sk such that S NSy, = 0 holds. Let q be an integer. Then :

A(LCc M)=A(LC M(K,1/q))
b.) If (L, L_, Ly) is a skein triple of links in an oriented homology 3-sphere M, then :
A(Ly cM)—=A(L_Cc M)—(t—t"")-A(Ly Cc M) =0
c.) A(unknot C S?) =1
Then A is the Alexander polynomial. The Alexander polynomial has these properties
Proof : The Alexander polynomial has the property a.) by lemma 3.7 and b.) by lemma

3.10 and c.) is easily verified. It remains to prove for the difference V of A as above and
the Alexander polynomial that V is identically zero.

We first treat the case where M is S®. Obuviously V applied to the unknot is zero.
Because of the following skein relation
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V of the unlink of two components is zero. Inductively over the number of components one
verifies that ¥V of the unlink is always zero. Given any link L with ¢(L) > 0 and n(L) > 0,
there is a skein triple (L, L_, Ly) containing L such that for the other members ¢(L) or n(L)
is smaller. Hence we can prove by induction over the complexity of L that V(L) vanishes.

Now we come to the general case of a link L in an oriented homology 3-sphere M. We
will later show that there is a sequence of oriented homology 3-spheres My,My, ... ,M, such
that M;,, is obtained from M; by +1 surgery on a knot K; C M; and My is M and M, is
S3. We use induction over r. The induction begin M = S? is done above. Choose Seifert
surfaces Sy, for L and Sy for Koy in M. Since these are surfaces with boundary, there exists
one-dimensional spines Fy, and Fy for Sy, and Sy such that Sy, and Sy are ambient isotopic
to arbitrary small reqular neighbourhoods of the spines. We can find an ambient isotopy of
Ky in M such that Fy, and Fy are disjoint because the sum of the dimensions of the spines
s smaller than the dimension of M. By a second ambient isotopy of Ky we can achieve that
So is disjoint from Fr. By an ambient isotopy of L we obtain that the Seifert surfaces are
disjoint. Notice that these processes may require crossings of K and L but no self crossings
of L and K. But now we derive from property a.) that V(L C M) = V(L C My). Now
apply the induction hypothesis to L C M. [ ]

In the surgery formula for the Casson invariant a term involving the second derivative
of the Alexander polynomial appears. We can characterize this term as follows.

Lemma 3.15 Suppose that the function
v« { isotopy classes of oriented links in oriented homology 3-spheres } — R
has the following properties :

a.) Let L be a link and K be a knot in the oriented homology 3-sphere M. Suppose that there
are Seifert surfaces Sy, and Sk such that S NSy, = 0 holds. Let q be an integer. Then :

(L C M) =~(LC M(K,1/q))

b.) If (Ly,L_, Ly) is a skein triple of links in an oriented homology 3-sphere M such that
L, is a knot. Then L_ is a knot and Ly is a link of two components Ly and Ly and we have:

(L M)~ (L. C M) = link(T}, T4)
c.) y(unknot C S3) =0

Then (L) is 1 - %ALL:f
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Proof : We only show that ;- 4

uniqueness is analogous to the proof mn lemma 3.13. We get properties a.) and c.) directly
from lemma 3.13. Since we have Ar,(t) = —Ar,(t71), we get :

AL‘ has the required properties, the verification of

AL0|t:1 - 0

We derive property b.) from from lemma 3.13, lemma 3.7 and the following calculation :

dt2AL+‘t 1 %AL’L:I - dt2 ((t - ) AL) =1
0 o lro| _ +(+2) fAL,|  +(=2) Al =
4 - lmk(L{), Ly) u

Next we explain how one can compute the Alexander polynomial from the fundamental
group. We start with introducing the differential calculus due to Fox. Let G be a group.
Let € : Z|G] — Z be the augmentation homomorphism sending ¥ ,cq Ag - g 10 Xyeq Ag- A
derivation is a homomorphism ¢ : Z|G] — M into a Z|G]-module M satisfying :

d(u+v) =d(u)+d(v) (linearity)

S(u-v)=06(u)-ev)+u-o(v) (Leibniz rule)
If f: M — N is a homomorphism of Z[G]-modules and ¢ a derivation on M, then fod
is a derivation on N. Hence the set of Z|G]-derivations into a Z|G)| — Z[H]-bimodule M

inherits a right Z[H]|-module structure. The following rules are important for calculations

(9€G):

3.16 6(m)=0form e Z
6(g7") =—g7" (9
0(g")=1+g+g+ ... +9"1)-d(g)
g™ =—(¢g'+g 2%+ ... +g ") -0(g)forn>1 m

If F' is the free group in generators si, Sa, ..., Sp, then for any elements x1, xs, ..., T,
in a Z[F)-bimodule M there is precisely one derivation sending s; to x;. Its construction and
the verification of uniqueness is done by induction over the word length. Let ¢ : FF — G
be a group homomorphism. Then Z[G] becomes a Z[F| — Z|G|-bimodule. The derivations
a% : Z[F| — Z[G] sending sj to 1, if i = j, and to 0, if i # j, are called the partial deri-
vations with respect to ¢. They form a basis for the right Z[G]-module of Z[F]-derivations
into Z|G]. The For derivatives are useful for computing cellular chain complezes of universal
COVETINgs.

Lemma 3.17 Let X be a finite 2-dimensional CW -complex with fundamental group T and
universal covering X. Suppose that X has only one 0-cell. Let

< 81,89, ... ,Sp | Rl,RQ, ,Rm >=T

be a cellular representation of the fundamental group, i.e. the generators s; correspond to
the 1-cells and the relations R; are defining relations for the 2-cells. Let ¢ : ' — w be the
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canonical projection, if F' is the free group in generators sy, Sa, ..., S,. Then the cellular
Z[r]-chain complex of the universal covering with respect to a cellular bases looks like

Z[x]" L Z[r)" £ Z[r]

where the matrices A and B are given as follows :

0s1 0s1 0s1
Oso Oso 0s2
A=
Osn  Osnp 0sn
B:(31—1 So—1 -+ sm—l)

Proof : This is obvious for the matriz B, since the 1-cell corresponding to S; lifts in the
covering to a path from x to s; - & for a fived lift © of the only 0-cell x. Let w be a loop in X
with base point x. Denote by w a lift in X with starting point x. This defines an element in
C1(X), also denoted by w. It depends only on the class of w in w. Hence we can define a map
6 : Zlr] — C1(X) sending Y ex Aw - W 10 Yyer Aw - W. One easily checks that & is linear
and satisfies 6(w - v) = §(w) +w - 6(v). Let §; be the i'"-component of 6, if we identify Cy(X)
with Z[Z™] using the cellular bases $1, Sz ,..., Sm. Then &; is a derivation Z[F] — Z[G]
mapping ¢(s;) to 1, if i = j, and to 0 otherwise. Therefore it has to be a%i. But §(R;) is
just the image of the cellular base element corresponding to the 2-cell with defining relation
R; under the second differential in the cellular chain complex of X. [ ]

The proof of the next lemma is omitted. It is a consequence of lemma 3.17 and the
description of the Alexander polynomial as a torsion invariant by Milnor [32].

Lemma 3.18 Let L be an oriented link in an oriented homology 3-sphere. Let
< 81,82, ... ,Sp | Rl,RQ, ,Rn_l >=T

be a representation of the fundamental group ™ of the link complement with n generators
and n — 1 relations. Let ¢ : F — w be the canonical projection, if F' is the free group in
generators sy, Sa, ..., Sn, and ¢ : 1 — Z be the canonical epimorphism. Denote by A? the
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matriz over Z[r]

0s1 0s1 0s1

0so 0so 0s2
A =

OR1 OR> . ORn_1

Osn  Osn Osn

Let i be any integer 1 < i <n such that ¢(s;) —1#0. Such i always exists. Denote by
A;M) the matriz obtained from A® by deleting the i™-row and then applying the change of
rings map Z[r| — Z[Z] induced by the Hopf map ¢ : 1 — Z which sends a loop w in the
complement of the link to the sum of the linking numbers of w with the components of the
link. Then ApL(t) is different from zero if and only if det(Af’) is non-zero, and we obtain in
this case for some s and some sign =+:

Ap(t) = £t° - det(A?)(1?)

Remark 3.19 The computation above determines Ay, if K is a knot and only up to a sign
+1 if K is not a knot. Namely, let p be a polynomial satisfying Ay (t) = +¢* - p(t) for some
sign + and some s. Since Az (t7') = —(—=1)" - AL (f) holds, we conclude

pt) = (=1)" - > - p(t7")
This determines s. If K is a knot, we can derive the sign in the equation above using the

fact Ag (1) = 1. Notice that both polynomials are independent of the orientations of M and
L, provided that L is knot. ]

Example 3.20 Notice that the lemma ?? and lemma 3.18 give an algorithm to compute
the Alexander polynomial of a link from a link diagram. We carry this out in the case of the
trefoil using the following link diagram

3.21
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The Wirtinger presentation looks like :
7T1(53(T)) =< 81, S92, S3 | S951 = 8183, 5153 = S3S92, 5352 = S251 >

We may omitt the third relation. We obtain the following matrix A

S9 — 52513513f1 1
1 —3153551
~1 Z1 -1
—859251S53 S1 — 515359 S3

We have to put t = s; = sy = s3 since the Hopf map sends s; to t, and obtain

t—1 1

The minors in this matrix are —t> +¢ — 1, > — ¢ + 1 and —> +¢ — 1. Hence the Alexander
polynomial of the trefoil satisfies

Ap =4t (t* =12+ 1)
Hence we get:
Ap=t>—1+4+1t2

Example 3.22 We do the same for the Hopf link

3.23

(@D

S1 59

We obtain the Wirtinger presentation :
71 (S?(H)) =< 51,59 | 515057 's5" >
Then the matrix A looks like :

( 1-— slsgsfl )
-1 -1
S1 — 815281 So
Hence the Alexander polynomial of H satsifies

A =+t°- (- 1)
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This implies:
Sp(t) ==+t —th

These computations are compatible with the previous calculation made using Seifert surfaces.

Finally we mention the curiosity that the term i- %ALL_ 15 related to a homomorphism

k. Denote by Z[Z)y the quotient field of Z[Z]. Let Z[Z]E‘U; be the multiplicative group of
units. We define an homomorphism of abelian groups

3.24 : Z[Z];, /{£t"} — R

with respect to the multiplicative structure on the source and the additive structure on the do-

main as follows. An element in Z[Z]{y /{+t"} is represented by a quotient £ with p, q € z2[Z] — {0}.
As Z[Z] is factorial, there are unique non-negative integers p, and p, satisfyingp = (t — 1)* - p
and q = (t — 1)"a - qo such that po(1) # 0 and qo(1) # 0 holds. We define :

(L) = & po(t) - po(t”") & qo(t) - qo(t™)
q" dt? po(1)-po(1) |_,  dt? qo(1)-qo(1) |,_,

We have to show that this is independent of the various choices and that this is indeed
an homomorphism. Any other representative of the class ofg mn AZ‘O)/A* looks like p"%tn for
somer € A— {0}, e € {£1} and n € Z. Choose ro € A and a non-negative integer i, such
that r =ro - (t — 1)* and ro(1) # 0 holds. Let x;(t) for i = 1,2 be elements in A satisfying

z;(t) = 2;(t7") and x;(1) = 1. Then we get :

d d _ 5 d _
%xi(t) = gxl(t Y= —t 2-£a:l(t D)
This implies :
d
dt |,_,
Hence we get :
d? d? d?
—(@a)| = —o(@)] 4+ —5(22)
dt? iy dt? oy dt? 1

Applying this to % and the corresponding expression for ro shows that the map is well
defined. The verification that it is a homomorphism is similar. We have for a knot K in an
oriented homology 3-sphere M

d2

t=1

and will later see:

AMM(K,1/(n+1))) = MM(K),1/n))) = % -k(Ak)
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Remark 3.25 The Alexander polynomial Ay, of definition 3.2 and the Alexander-Conway
polynomial AY°" is used in Akbulut-McCarthy [1] are related by Ay (t) = A% (#2).

The Alexander polynomial is extensively treated in the textbooks Burde-Zieschang [6]
and Rolfson [40]. For its connection to torsion invariants we refer to Turaev [43] . The
skein invariance is treated in Conway [9] and Kauffman [24].
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4.section
The Jones polynomial

Although we do not need the Jones polynomial for the Casson invariant, we spend some
time on it, as it is a natural extension of the Alexander polynomial and interesting in its
own right. In this sections all links are understood to be oriented links in S®.

Definition 4.1 A skein invariant is a function
v : { isotopy classes of oriented links in S3} — R
into an associative commutative ring R with unit 1 with the following properties :

a.) There exist units ay,a_,ay € R* such that for any skein triple (L, L_, Ly) the following
relation holds :
ay - Y(Ly) +a--y(L-) +ao-v(Lo) =0

b.) y(unknot) =1 u

Example 4.2 The Alexander polynomial is a skein invariant for R = Z[t,#"!] and skein
coefficients 1, —1, —(t — ¢t~!) by lemma 3.10. n

The skein relation is effective for computations. Consider a skein invariant v with
skein coefficients a,a_,ay. Let unlink™ be the unlink of r components, H be the Hopf link
(with linking number +1) and T the trefoil (with positive crossings). Given a link L, denote
by L™ its mirrow image, i.e. the image of L under an orientation reversing homeomorphism
S3 — S3. If L is given by a link diagram, a link diagram for L* is obtained by changing
all crossings. One easily computes from the following skein relations

000000
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4.8 y(unlink?®) = —a,ay' —a_ag

Y(H) =a_ag" +a;'a’ay' —ai'ag

Y(T) = —2a;a_ — a;?a® + a;al

Y(H*) =aray' +aaZlay' —aZlag
Y(T*) = —2a4aZ' — a2aZ? + aZ%ad ]

In particular we get for the Alerxander polynomials the same wvalues as we got before in
example 3.20 and example 3.3.

Lemma 4.9 Let v : { isotopy classes of oriented links in S*} — R be a skein invariant.
1.) 7y is determined by the skein coefficients.

2.) The following assertions are equivalent :

a.) There are skein coefficients ay,a_,ay for v satisfying ay +a_ 4+ ag =0
b.) y(unlink?®) =1
c.) v(L) =1 for all links L.

3.) The following assertions are equivalent :
a.) There are skein coefficients ay,a_,aqg for v satisfying ay +a_ —ag =0
b.) y(unlink?) = —1
c.) y(L) = (—=1)"D*L for all links L where r(L) is the number of components.

4.) The following assertions are equivalent :

a.) v(unlink?) ¢ {£1}
b.) The skein coefficients of v satisfy :

ay - (Y(H) — y(unlink?)) = ag - (y(unlink?®)? — 1)
a_ = —a; — ap - y(unlink®) =0

5.) Suppose that R has no zero divisors. Then the values of v(unlink?) and y(H) determine
v. They also determine the skein coefficients up to multiplication with a common unit,
provided that ~y(unlink?) ¢ {+1} holds.

Proof : We use by induction over the complexity of the link. We get 2.) from the
skein triple 4.3. We derive 3.) from the observation for a skein triple Ly, L_, Ly that
r(Ly) =7r(L_) =r(Ly) £ 1 holds. We conclude 4.) from the skein triples 4.3 and 4.4. Now
5.) is a direct consequence. |

Definition 4.10 A skein invariant

T : { isotopy classes of oriented links in S} — R

s a universal skein invariant , if for any skein invariant
v : { isotopy classes of oriented links in S*} — S

there is a ring homomorphism ® : R — S satisfying y = ® o ]
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It will turn out that there is a universal skein invariant, the two-variable Jones polyno-
mial. Before we construct the universal skein invariant, we derive its main properties from
the universal property. Notice that we do not require that the homomorphism ® appearing
in the definition of a universal skein invariant is unique.

Lemma 4.11 Suppose there is a skein invariant

T : { isotopy classes of oriented links in S*} — Zlay,aT',a_,a=", ag, ay "]
such that ay,a_,ag are skein coefficients. Then :

1.) T is a universal skein invariant.

2.) Let § be a skein invariant taking values in R such that 6(unlink?®) ¢ {+1}. Let ¢ and 1
be homomorphisms from Za,,a*, a_,a”', ag, ag'] to R satisfying po ' =1p ol =§. Then
there is a unit uw € R such that u - ¢ = ) holds.

3.) T'(L) is a homogenous polynomial of total degree zero.

4.) T(L) =T(L") , where L™ is obtained from L by simultaneously reversing the orientations
of the components.

5.) DKL) =T(K)-T(L) - =
6.) T(KtL) = D(K)-T(L
7.) T(L*)(ay,a_,ap) =T

)
(L) (CL_, Q-+, CLO)

Proof: 1.) For a skein invariant v with values in R and skein coefficients oy, a_, v, define
®: Zlay, a]_l,a_,ajl, ag, ay'] — R by sending a,. to ay, a_ to a_, ay to og. By induction
over the complexity of a link one verifies v = ¢oT. 2.) and 3.) are proven by induction

over the complexity of a link using lemma 4.9. The following functions are skein invariants
with values in Zla, ajrl, a_,a”' ag,ay'] and skein coefficients ay,a_,ag.

L—T(L)

L—T(KIIL)-T(K)™" - T'(unlink?)~!

L— T(K{L)-T(K)™!

L—T(L*)(a_,ay,ag)

Now the claims 4.) to 7.) follow from lemma 4.9 [ |

Remark 4.12 If the skein invariant I' exists, we derive from 4.8 that the trefoil and its mir-
row image are not ambient isotopic. Notice that the Alexander polynomial cannot distinguish
a knot from its mirrow image. This follows from remark 3.19 and the obvious fact that the
(not refined) Alexander torsion is independent of the orientation of the knot. u

In view of lemma 4.11 one may expect that there is 2-variable version of I'. This is,
indeed, the case.

Lemma 4.13 Suppose there is a skein invariant
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J : { isotopy classes of oriented links in S3} — Z[I,17',m, m™']

such that 1,17",m are skein coefficients. If L is any link, then (L) is a sum of monomials
Tap - 1" mb for Tap € R such that a + b is even. Hence we can define

T(L) € Zlay,a;'a 0", ag, a5"]

by
D(L)(ay,a-,a0) = J(L)(ay” - a=""% ag - a3'* - aZ'P?)
Then T is a skein invariant with skein coefficients ay,a_, ag. [ ]

We will construct the skein invariant J described in the lemma 4.13 above. Some
preparations are needed.

We begin with introducing the braid group B,. Let P, be a set of n points in D?. Let [n]
denote the set of n elements. A braid with n strings or shortly, a n-braid, is an embedding

B:[n] x[0,1] — D? x [0,1]
sending (k,t) to (B,(t),t) such that [n] x {i} is mapped to P, x {i}. If By is constant, we

obtain the trivial n-braid

4.14 Nontrivial and trivial braid

An isotopy I of two n-braids 3 and v is a map
I:[n]x[0,1] x[0,1] — D? x [0, 1]
such that I, given by the restriction of I to [n] x [0,1] x {s}, is a n-braid for all s € [0, 1].

Let B, be the set of isotopy classes of n-braids. It inherits the structure of a group from the
stacking operation
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4.15 Stacking of braids

The trivial braid represents the unit element. The inverse of a class given by a braid (5 is
represented by [~ which is obtained from (3 by reversing the t-direction

4.16 Inverse braid
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Let 0; € B, for 1 <11 <n be the following n-braid

4.17

Lemma 4.18 The braid group B, has the following presentation :

B, = 01,092,y...,0n_1 .
" e 0i410i0i41 = 0i0;410; for 1 <i<n —2

oioj =0j0; for 1 <i,j<n—1,[i—j[>2 >

A proof of this lemma can be found in Birman [{]. If we add the relation o;0; = 1, we get
a presentation of the symmetric group X, of permutations of [n] = {1,2,...n}. Hence there
s an epimorphism

419 p: B, — %,

The image of a braid under p is the automorphism of P, sending an element x of P, to the
element p(x) which is connected to x by a string of the braid. Consider the epimorphism

4.20 e: B, — 7Z

sending o; to 1. Given a picture of a braid 3 as in /.14, e(f) is the number of crossings
counted with sign. One easily checks, that e is the abelianization of the braid group. There
15 an obvious inclusion

4.21 i: B, — Bui
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given by adding a trivial string.

Links and braids a related by the so called closure of a braid . Namely, any braid 3
defines a link clos(3) by the construction indicated below.

4.22 Closure of a braid

We obtain a map :
4.23 clos : [1,>; B, — { isotopy classes of oriented links in S?}

Theorem 4.24 (Alexander) The map clos is surjective u

Let 3, € B, and ~,, € B,, be braids. We say, that v,, is obtained from (3, by a Markov
operation of type 1, if n = m and there is 6, € B, satisfying Y, = 6,0,0,". If m =n+1
and Y1 = Bnof, for some e € {£1} holds, we say that v,11 is obtained from (3, by a Markov
operation of type 2. Consider a sequence of braids 6,1L1, 522,. .. 0}, such that 67" is obtained
from 6.5 by a Markov operation 1 or 2 or 6,41 is obtained from 6, by a Markov operation
1or2forl1<i<n-—1. Then we say that 571“ and 9, are related by a sequence of Markov
operations.

Theorem 4.25 (Markov) Two braids (3, € B, and v, € By, have the same closure if and
only if they are related by a sequence of Markov operations. [ ]
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Proofs of the theorems of Alexander and Markov can be found in Birman [4]. These two
results allow to translate constructions of invariants for links to the construction of invariants
for braids. The main advantage of braids is that they build a group what is not true for links.
Especially one can investigate representations of the braid group. We will see that this leads
to a construction of the Jones polynomial. Before we go into the details, we explain how
one can construct the Alexander polynomial out of the so called Burau representation of the
braid group.

Let t be the generator of the group Z. The Burau representation is the homomorphism
4.26 1, : B, — Gl(n,Z[Z])

sending the generator o; to the following matriz

E
1—t ¢

A = 1 0
E

where E is the identity matriz and (1 — t) is the (i,i)-entry. This is well defined, because the
matrices above satisfy the relations appearing in the presentation of the braid group given in
lemma 4.18.

There is the following mechanical interpretation of the Burau representation. Suppose
that we let particles travel along the strings of a braid 3. We do not allow at a crossing that
a particle moving along the undercrossing string jumps upwards to the overcrossing string,
but a particle travelling on the overcrossing string has the probability t of falling down to the
undercrossing string. Then the (i,j)-entry in 1p(3) is the pobability that a particle starting
at the i-th point will end up at the j-th point.

Let € : ®,Z[Z] —> Z[Z] be the map sending (1, xs,...,2,) to X x;. The homomor-

phism ©,Z[Z) — ©,Z[Z] mapping v to vA; leaves the kernel of € invariant. Hence there is
an induced representation ¢ on the kernel of €. This gives the reduced Burau representation

4.27 ), : B, — Gl(n —1,Z[Z])
The proof of the following result can be found in Burde-Zieschang [6] proposition 10.20.

Lemma 4.28 Let 3, be a n-braid and L the link in S* given by L = clos(83,). Then :

Ap(t) - (T4t+... ") = det(1 — ¢ (6,)(1))

The theorem of Alexander 4.2/ and Markov 4.25 and the computation of the Alexan-
der polynomial by the Burau representation in lemma 4.28 suggest the following strateqy for
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constructing link invariants. Find representations of the braid groups together with an inva-
riant of a braid constructed out of this representation which is invariant under the Markov
operations. Since the first Markov operation is given by conjugation, it is natural to use
a trace. A natural candidate for such things are Hecke algebras together with a trace as
described below.

Let F be a field and q € F' an element in this field. The Hecke algebra H, = H,(F,q)
associated with F and q for n > 2 is the associative F'-algebra with unit 1, generated by T1,T5
... Ty_1 subject to the following relations.

429  TT, =TT, for1<i,j<n—1land |i—j|>2
TiTi Ty = T, TiTiy, for 1 <i<n
TP =(1—-q)T; +q for1<i<n

If nis 1, we put H(F,q) = F. We see that there is a natural map H, 1 — H,, of F-
algebras. In particular H, becomes a H,,_1-H,_1-bimodule. An important ezample of a Hecke
algebra is the group ring of the symmetric group X, which is the Hecke algebra H,(F,1). The
main technical result is the following

Lemma 4.30 There is an isomorphism of H,-H,-bimodules
d) . Hn @ (Hn ®Hn71 Hn) — Hn+1

sending a + > ;b; ® ¢; to a+ >, b;T,c;. ]

First we show that ¢ is well defined. We have to show for w € H,_y and b,c € H, that
buT,c and bT,uc agree. But u is a linear combination of monomials in Ty, T,,...T,_o and
all these elements commute with T,,.

It is also easy to see by induction on n that ¢ is surjective. It suffices to show by induc-
tion over n that any element x € Hy, 1 can be written as a linear combination of monomials
in the T; such that T, occurs only once in it. We reduce the occurences of T, as follows.
Consider x = 1 T,,y2T,,y3 such that y; does not contain T,. If yo does not contain T,,_1, an
application of the first and third relation in 4.29 reduces the number of occurences of T,. By
induction hypothesis we can assume that T,,_1 occurs precisely one times in ys. Because of
the first relation we can assume ys = T,_1. Now an application of the second relation reduces
the number of occurences of T,,. This shows surjectivity.

Suppose that dimp(H,) = n!. Then the dimensions of the source and target of ¢ are
equal and hence ¢ is an isomorphism. The proof of dimp(H,) = n! can be found in de la
Harpe, Kervaire and Weber [15], section 4. They construct an explicit set B in H, and
an algebra map L : Hy 1 — Endp(F[X,41]) such that its composition with evaluation at 1
defines a F-linear map H, — F[X,1] sending B bijectively to %,,.

There is a natural representation
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4.31 ppy1: By — Hyp o = T;

The idea is to construct a trace on the Hecke algebras and to define an invariant of
braids by applying the trace to the image of the braid under p. This would take care of the
first Markov operation, as a trace is invariant under conjugation. For the second Markov
operation one needs a good control over the trace of aT,, for a € H,. In view of the lemma
4.30 it is reasonable to define inductively over n traces tr, on H, such that tr,1(aT,b) can
be expressed by a,b and the trace tr,. Indeed, the following is true.

Lemma 4.32 Let F be a field and q, z elements in F'. Let H,, be the Hecke algebra H,(F,q).
Then there exists F-linear maps

tr, : H, — F
with the following properties :
1.) trpyq restricted to H,, is tr,.
2.) tr,(1) =1
3.) trp(ab) = tr,(ba)
4.) trop1(aTyb) = ztr,(ab) fora,b € H,
The maps tr,, are uniquely determined by these properties. [ ]

The elementary proof of this lemma can be found in de la Harpe, Kervaire and Weber [15],
section d.

Our first attempt to define an invariant for links is :

j(ﬁn) = trn(p(Bn)) for B € By

We have to check the transformation behaviour under the two Markov operations. The first
one does not change the invariant :

t’l“n(p(ﬁn)) = trn(p(’Ynﬁan;l))

In the second case we obtain for 3, € B, and the generator o, € B, 1,

tTnJrl(anrl (ﬂnan)) =z tTn(p(ﬂn))
trn—l-l(pn-i-l (@sz{l)) =w - try, (p(ﬁn))

where w = %(z +q —1). Notice that T; ! = %(TZ + q — 1) holds because of the third relation
in the definition of a Hecke algebra 4.29. Hence we modify our first attempt as follows. For
not yet defined functions

an : B, — 72
b, : B, — Z

we put

j(ﬂn) = g0 0n) - qpPn(Bn) -t (p( )

Then J is invariant under the Markov mowves, if the following conditions are satisfied :

an('Ynﬁn'Y;l) = an(ﬁn)
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b (Y B ¥ ') = bn(Bn)
an—l—l(ﬁnan) an(ﬁn) —1
n—l—l( nan) - bn(ﬁn)
an—l—l( ) = an(ﬁn)
(Buoy') = ba(Bn) — 1
Our invariant is supposed to assign 1 to the trivial link. Since the trivial link is given by the
braid o1, we also demand :

as(oy) =0
bQ(O'l) = 0

One easily finds out that the following functions have these properties :

an(Bn) = 5 (—e(Bn) —n+1)
bn(Bn) =5 (e(Bn) —n +1

Hence we can define for a be a link L in S? :

n+1

4.33 J(L) = z ¢Bn)nt1 . qpe@B)ntl g (5, (5,))

where (3, is any braid with L as closure.

Now we make a special choice for the field F. Let C(q,z) be the rational field over
C in two independent variables q and z. Let K be the extension obtained by adjoining the
square roots \/q and \/z/w. Now we take H, over K and let q and z be the elements in K
given by the variables g and z.

Lemma 4.34 Let (L, L _,Ly) be a skein triple of oriented links in S3. Define elements [

and m in K by
| = iz 2= /2g /2 m = i(g /2 q—1/2)

Then we get ~ ~ ~
- J(Ly)+ 17" J(L_)+m - J(Ly) =0

Proof : We can find positive integers k and n and braids 3 and v in B, such that k <mn — 1
and the closure of the braids o, = fopy, a- = ﬁak_lv and cg = By is Ly, L_ and Ly. Now
one computes on the level of Hecke algebras :

[ zeloen)ntlgpelar)ntl. () 4171 gelam)ntl gpeles)ntl . () 4m - z—eleo)-ntl,
a0)=n+l . ()

= [ 272 ql/2. pmela) bl e(a0)=n+L. o BV () + S1/2 = 1/2. y—elao)—n+1 ,e(ag)—n+1
P(B)T () +m - zmel@0) =t qel@o)=nt . p(3) p(y )

:p(ﬁ)-(l-z*1/2-w1/2-Tk+l’1-z caw 2t -(Tk-l-q—l)-i—m) p(7)

w

This expression turns out to be zero because of the following easily verified equations :

[ 22 /2 L=t /2 g -1)2 ¢ =0
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l_l.zl/Q.w_l/Q.q_l.(q_1)+m:0

Now apply tr, to the equation above and the claim follows. [ ]

There is an embedding of algebras U : Z[l,17*, m,m '] — K sendingl to | and analo-
gously for I, m and m~'. If two of the elements f(L+), f(L,) and j(Lo) lie in the image
of ¥, then also the third by the lemma 4.3/ above. Since j(unknot) 18 1 by construction,
we show inductively over the complexity of a link that f(L) lies in the image of ¥ for all
oriented links L in S3.

Definition 4.35 Let L be an oriented link in S*. The Jones polynomial
J(L) € Z[I, 1" ,m,m ]
is defined by W(J(L)) = J(L). n

We derive from lemma 4.13 and lemma 4.34.

Theorem 4.36 The Jones polynomial is a skein invariant with skein coefficients [,17',m
and gives a universal skein invariant. [ ]

Originally the Jones polynomials was introduced only in one variable. Namely ,the
Jones polynomial as constructed by Jones [20] is a skein invariant with skein coefficients
t,—t=', ("2 —t7'/2). It came out of the investigation of the possible indices of subfactors
of von Neumann algebras, where certain projections appear whose commuting relations are
similar to the presentation of the braid group (see lemma 4.18). A few months later it was
discovered independently by four different groups, that the one-variable polynomial of Jones
could be generalized to the universal skein invariant as constructed above (see Freyd, P. and
Yetter, D. ; Hoste, J. ; Lickorish, W.B.R. and Millet, K. ; Ocneanu, A. in [13]). The
approach using Hecke algebras is due to Ocneanu. We also explain the construction of the
one-variable Jones polynomial due to Kauffman which allows to compute it directly from a
link diagram in a simple manner.

Let L be an unoriented link diagram. For each crossings there are two choices of so
called markers as indicated below.

4.37
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According to the choosen marker one may dissolve the crossing by connecting the two
regions selected by the marker

4.38

g
N

A state S for L is choice of marker at each crossings. Let a(S) and b(S) be the number
of markers of type A resp. B. If we dissolve the crossings according to the state S as
indicated above, we obtain a bunch of disjoint simple curves. Let | S| be their number.
Define an element

< L>:=Y AR gsi=t € Z[A, B, d]
S

One easily checks :

Lemma 4.39
1.) < unknot >=1

2.) <unknot]]L >=d- < L > , if L is non-empty

3.) If L is an oriented link diagram and X a crossing. Let Ly resp. Lp be the link diagram
obtained from L by dissolving this crossing x according to the choice of marker A resp. B.
Then we have :

<L>=A<Ljs>+B-<Lg> ]

We will abbreviate the equation above by the following

<><>:A<><>+B<><>

Recall that two link diagrams describe the same link if they can be obtained from one another
by a sequence of Reidemeister moves 7.

Lemma 4.40 The invariant < > s invariant under the first and third Reidemeister moves
if that B = A" and d = —A? — A~2 holds.
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Proof : This follows from the following calculations :

<D:>: A<\j:>+B<X>:
A<A<I>+B<§>>+B(A<><>+B<3£>> =

(ABd+ A%+ B*) < X > +AB < )(> =< )(>

and
<‘\+>:A<‘\+>+B<\L>: A<+\.>+B<7X.>:<,_/->
u

It remains to treat the second Reidemeister move. Indeed, the invariant as it stands is
not invariant under the second one.

Definition 4.41 The writh number w(L) of an oriented link diagram is the sum of signs of
the crossings [ ]

Then Kauffman defines an invariant of an oriented link L in S* given by an oriented link
diagram L :

4.42 fr(A) = (—A) D). < [ >¢ Z[A, A7

The writh number is not changed by the first and third Reidemeister move so that the inva-
raint fr, 1s invariant under these moves. Suppose that L is obtained from L by remouving the
loop :

4.43

Then E, ZA and ZB look like
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4.44

We get :

<L>=A<L>+A"< L]Junknot >=
A<L>4A1N(-A2-AH)<L>=(-A)?*<L>

~

Since w(L) = w(L) — 1 holds, we derive f; = fr. The proof for the other loop is similar.
one easily checks using lemma 4.39 that f1, is a skein invariant with values in Z[A, A™'] and

skein coefficients A*, — A~ (A2 — A~2). This shows :

Lemma 4.45 We have for any oriented link L in S* :

Jp(t) = fr(t*)

More details about this invariant and about a new tnvariant which s not a skein invariant
can be found in the book by Kauffman [25], appendiz.

Remark 4.46 The Alexander polynomial does not determine the one-variable Jones polyno-
mial and vice versa. Namely, Conway’s eleven crossings knot 1147, has trivial Alexander but
non-trivial Jones polynomial, whereas the knots 4; and 11333 have the same Jones,but diffe-
rent Alexander polynomials. Moreover, the one-variable Jones polynomial and the Alexander
polynomial together do not determine Jones polynomial defined in 4.35. Namely, 11355 and
its mirrow image have the same Alexander and one variable Jones polynomial, but the Jones
polynomial of 4.35 does distinguish them. ]

One of the striking properties of the Jones polynomial is that it can distinguish a knot
from its mirrow image, what is not true for the Alexander polynomial. Another important
applications are the proofs of Kauffman and Marasugi of the Taite conjectures. Taite is
wviewed as one of the founders of knot theory and he spelled out his conjectures 100 years
ago. A survey about these conjectures is given in de la Harpe, Kervaire and Weber [15],
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section 9. The main point is that the span of the one wvariable Jones polynomial gives a
lower bound for the minimal number of crossings and s equal to it for alternating reduced
link diagrams. This implies one of the Tait conjectures that for a prime alternating knot the
minimal diagrams are exactly the alternating reduced ones. Reduced means that one cannot
decrease the number of crossing by certain elementary moves and a link diagram is minimal
if the number of crossing in any other link diagram presenting the same link is not smaller.
A stronger still unproved versions says that two reduced alternating link diagrams determine
the same link iof and only if they can be obtained from one another by flyping, a special move
indicated below

4.47

N\
X X
/

Another now verified Tait conjecture says that the writh number for alternating reduced
link diagrams depends only on the associated link. In particular the writh number of a
reduced alternating link diagram describing an amphichiral link is zero. A link is called
amphichiral if it is ambient isotopic to its mirror image. We mention the so called Perko
pair of link diagrams which describe the same link, but have different writh numbers. We
refer to Kauffman’s book [25], appendiz, for more information.
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5.section
Quantum Field theory and the Jones polynomial

In this section we introduce the axioms of a quantum field theory in the sense of Segal
and explain how one can construct the Jones polynomial out of a suitable quantum field
theory. Some preparations are needed.

A (symmetric) monoidal category is a 6-tuple C,[1,0,S", S?,S? consisting of

e a category C

e a functor[[:CxC —C (product)
e an object O € C (unit object)
e a natural transformation S'(C,D,E): (CIID)IIE — CLI(DI1E) (associativity)
e a natural transformation S?*(C,D): C1ID — D]IC (commutativity)
e a natural transformation S*(C) : C110) — C (unit element)

such that the obvious compatibility conditions are satisfied. We will often surpress the trans-
formations and the unit element in the sequel. A functor of monoidal categories

(FvTuad)) : (C,]E[) — (D’ H)

consists of

e a functor F':C — D
e a natural transformation Ty1(C, D) : F(C'1le D) — F(C) 1Ip F(D)

e an isomorphism ¢ : F(Dc) — Op

such that the obvious compatibility conditions are satisfied.

An involution (I,S) on a monoidal category C is given by

e a contravariant functor I = (I, TH’ ¢) : C — C of monoidal categories

e a natural transformation S(C) : C — I o I(C)

such that S(I(C)) o I(S(C)) = id holds for all objects C € C and I(p) o S(B) = ¢ is true.
We will often drop the natural transformation S in the notation. A functor of monoidal
categories with involution (F), TH;TI) : (C, e, Ie) — (D, p, Ip) consists of
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e a functor F':C — D
e a natural transformation Ty (C, D) : F(C'lle D) — F(C) 11 F(D)

e a natural transformation T;(C) : F(I(C)) — I(F(C))

such that Tr(Dc) o F(de) = ¢p and (F, Ty = (€, Ue) — (D, 1p) is a functor of monoidal

categories. We will mainly deal with the following examples.

Convention 5.1 Let W be an oriented d 4+ 1-manifold for d > 1. Then the boundary inhe-
rits an orientation using the decomposition TW |sw= v(0W, W) & TOW and the outward
normal. This is consistent with the convention that the positive orientation on S! is given
by the anti-clockwise direction and that the positive orientation on R? is represented by the
ordered bases {(1,0), (0,1)}. An orientation of a 0-dimensional manifold is a choice of + or —
for each component. If W is an oriented 1-dimensional manifold, the induced orientation for
a component of the boundary is + resp. —, if the orientation at this component corresponds
to the outward resp. inward normal. Notice that this means for an oriented path that he
starts at — and ends at +. |

Example 5.2 Let M and N be oriented closed d-manifolds. A bordism from M to N
is a b-tuple (W; Wy, Wi; fo, f1) consisting of an oriented d + 1-dimensional manifold W
with boundary OW and closed and open submanifolds W, and W; of the boundary sa-
tisfying Wy N W, = () and Wy U W, = OW together with orientation preserving diffeomor-
phisms fy: M~ — Wy and f; : Wi — N. The symbol M~ denotes the manifold N with
the reversed orientation. We call two such bordisms (W'; Wy, Wy; fo, f1) and (V5 Vo, Vs go, 91)
from M to N equivalent , if there is an orientation preserving diffeomorphism F': W — V
such that F'o fo = gg and g; o F' |y, = fi holds. If iy denotes the obvious diffecomorphism, the
trivial bordism [0, 1] x M from M to M is represented by ([0, 1] x M; {0} x M, {1} x M;ig, ;).
Notice that the orientation on {0} x M induced by the outward normal is the opposite
of the orientation on M, whereas on {1} x M we get the orientation on M back. Let
(W Wo, Wis fo, f1) resp.(V'; Vo, Vi; g0, 1) be a bordism from L to M resp. M to N. We get
a bordism (W Uyor, V;; Wo, Vi; fo, 1) from L to N by glueing. This is compatible with the
equivalence relation defined above.

Assume d > 1. Let M%%*! be the following monoidal category with involution. Objects
are d-dimensional oriented closed manifolds M. Equivalence classes of bordisms from M to
N build the set of morphisms from M to N. The identity morphism is given by the trivial
bordism and the composition of morphisms given by the glueing process described above.
The monoidal structure [] yqa.a+1 comes from the disjoint union. The unit object is the empty
set. The involution Iyaq+1 assigns to a morphism W := (W; Wy, Wy; fo, f1) from M to N in
M®HT the morphism W = (W; Wi, Wo; fi, f5') from N~ to M~. Notice that () and ()~
are identical and the involution acts by the identity on the set of endomorphisms of ().

Let f: M — N be an orientation preserving diffeomorphism of closed oriented d-
dimensional manifolds. It determines a morphism, denoted by f: M — N, in M®%&+! by
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the bordism ([0, 1] x M;{0} x M, {1} x M;id, f). Two diffecomorphisms fy, f : M — N
are called pseudoisotopic , if there is a diffeomorphism F' : M x [0,1] — N x [0, 1] whose
restriction to M x {i} is f; for i = 0,1. One easily checks that fy and f; define the same
morphism in M%@*1 if and only if they are pseudoisotopic. If W := (W; Wy, Wi; fo, f1) is
a morphism from N to L and f: M — N an orientation preserving diffeomorphism, the
composition W o f is represented by (W; Wy, Wy; fo o f, f1) and similar for f : L — K and
foW. [ |

Example 5.3 Let V be the monoidal category with involution with finitely generated com-
plex vector spaces as objects and linear maps as morphisms. The monoidal structure is
induced by the tensor product. The unit element is given by C. The involution sends V'
to the dual vector space V*. The natural transformation T'(V') : V. — V** sends v to the
homomorphism V* — C mapping f to f(v). Let ¢ : C — C* send z € C to the homo-
morphism C — C sending u to z - u. The inverse of ¢ is evaluation at 1. This definition
makes also sense for finitely generated projective modules over any ring with involution.

Let H be the monoidal category with involution with Hilbert spaces as objects and
bounded linear operators as morphisms. The tensor product and the dual space consisting
of bounded linear operators with C as target yield the product and the involution. The
transformation T(H), the unit element and ¢ are defined as above. Notice that one does not
need a Hilbert structure but the structure of a reflexive Banach space. ]

Definition 5.4 A d-d+ 1-quantum field theory is a functor of monoidal categories with
involution

H:./\/ld’dﬂ—){;_}t m

Let W be an oriented d+ 1-dimensional manifold. Let W : () — OW be the morphism
given by (W;0,0W;id,id). Since H() = C, we have the element 1 € H((). We define :

5.5 Z(W) = HW)(1) € H{OW)

Notice that Z (W) is a complex number, if W is closed. Built into the definition of a quantum
field theory is a kind of glueing formula. Let V and W be d+1-dimensional oriented manifolds
and f : 0V — OW ™ an orientation preserving diffeomorphism. We obtain a pairing

5.6 <,>;: HOV)® H(OW) — C

by the composition
HOV) ® HOow) "5 gow-y e mow) " gowy @ HEW) <% C

We obtain a closed oriented d + 1-dimensional manifold V- Us W by glueing and hence a
complex number Z(V Uy W).
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Lemma 5.7 Z(VUfW) =< Z(V),Z(W) > [ |

Proof : Recall that H(() is C. Consider the following diagram

H(V)® HW)
H(0) ® H(0) H(0V)® H(0W)
id H(f)®id
H(foV)® H(W)
H(0)® H(0) H(OW ) ® H(OW)
Tr(0) ® id T (OW) ® id
, H(Vo f)*® H(W)
H(0)* @ H(0) H(OW)*® H(OW)
, H((V Uy W))
H(0) H(0)

We derive from the definition of a functor of monoidal categories with involution that
the diagram commutes and that Ty (0) : H(0) — H(0)* is just the map ¢ : C — C*. Consi-
der1®1 € H(D) ® H(D). Sending it from the left upper corner to the right lower corner in
the clockwise direction gives < Z(V),Z(W) >; and in the anti-clockwise direction gives
Z(V Uy W) by the definitions. n

Next we give the most elementary non-trivial example of a d-d+ 1-quantum field theory
for d even. Denote by x(W) the Euler characteristic and by o(W) the signature of an
oriented manifold. Recall that the signature is defined to be zero, if the dimension is not
divisible by four, and to be the signature of the intersection pairing in dimensions divisible
by 4. These invariants satisfy the following additivity formulas. Given d + 1- dimensional
manifolds V' and W and an orientation preserving diffeomorphism f: Vi, — Wy between
disjoint unions of components of the boundaries of V- and W, we get :

X(V U, W) =x(V) + x(W) = x(V1)
and

cVUrW)=0o(V)—0a(W)
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Notice for odd d that x(Vy) is zero by Poincaré duality so that we get for odd d :
X(VU, W7) =x(V) +x(W)

We mention the following conclusions o(V =) = —a (V') and x(V~) = x(V). These invariants
are characterized by the following property.

A SK-invariant for closed oriented m-dimensional manifolds is a function p assigning
to any closed oriented m-dimensional manifold W an element
5.8 p(W) e A

in an abelian group A such that the following holds :

o IfV and W are oriented diffeomorphic, then p(V') = p(W)
o p(VIW) = p(V) + p(W)

o Let f,g: OWy — 0Wy be two orientation preserving diffeomorphisms. Then we have
p(Wi Uy Wy') = p(Wr Uy Wy)

For SK-invariants in general and a proof of the following theorem we refer to Karras-
Kreck-Neumann-Ossa [23]. See also Janich [17] and [18]. A SK-group (A, p) is called uni-
versal, if for any SK-group A’, p' there is a homomorphism ¢ : A — A" uniquely determined

by the property p' = ¢op

Lemma 5.9 The universal SK-invariant is given by

(x(W) —o(W))/2,0(W) €€ ZDZ Jif m = 0 mod 4
x(W)/2 € Z Jif m =2 mod 4
and 1s zero for odd m [ ]

Example 5.10 Let d be even. Let r be a positive real number and z be an element in
S! ¢ C. The d-d + 1-dimensional quantum field theory

H(r,z) = H: M™*! — 3

assigns C with the standard Hilbert structure to all objects and the map rX(") . 27(") t¢ g
morphism (W; Wy, Wi; fo, f1). We have to check the axioms. We obtain functoriality from
the additivity formulas. Obviously H is compatible with the involutions. We will later

introduce two further axioms 5.13 and 5.14. Both are satified by H(r, z). n
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Notice for the quantum field theory above that the group Dif f* (M) of self diffeomor-
phisms of the oriented closed d-manifold M acts trivally on H(M). Under this assumption
we cannot expect other invariants Z (W) for closed orientable d + 1-dimensional manifolds

W than the Euler characteristic and the signature. Namely, we get as a corollary of lemma
5.7 and lemma 5.9

Lemma 5.11 Let H be a d-d + 1-quantum field theory such that for any orientable closed
d-manifold the group Dif f*(M) acts trivially on H(M) and Z(W') € C is not zero for all

closed orientable d + 1-manifolds W. Then we get for any closed orientable d + 1-manifold
W :

Z(W) = Z(Sd+1)(x(W)—U(W))/2 ; (Z(CPd+1) . Z(Sd+1)—(d+1)/4)"
if d4+1 =0 mod 4

Z(W) = Z(Sd+1)X(W)/2 ifd+1=2mod4

Z(W)=1 if d+1 is odd n

(W)

Remark 5.12 Notice that a m-braid may be viewed as an automorphism of (5%, m) given
by S? with m points with positive orientation. Hence the braid group B,, embedds into the
group of automorphisms of (S?,m). Thus we obtain a representation of B,,.

There are the following two additional axioms one may or may not require. Both will
be satisfied in the situations we will study, but in particular the second one is not fulfilled in
other interesting cases e.q, the 3-4-quantum field theory given by the Donaldson polynomial
and Floer homology.

5.13 Given three objects M, L and N in M®4*! there is a natural bijection
1, : Mor(MUL,N) — Mor(M,L” UN)

sending (W; War UW5, Ws far U frs fv) to (Wi Was W TW; far, f1 ' 11 fv). Analogous-
ly, for three objects A, B and C in V resp.#, there is a natural bijection

5 : Hom(A® B,C) — Hom(A, B* ® C)
induced from the natural isomorphisms
Hom(A, Hom(B,C)) — Hom(A ® B,C)

and
B*®C — Hom(B,C)

. The axiom says that the functor H is compatible with these maps. In other words, the
following square commutes

TL
Mor(M UL, N) - Mor(M,L~UN)
49
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Hom(H (M) ® H(L), H(N)) Hom(H (M), H(L)* ® H(N))



This axiom says in particular that it suffices to treat morphisms with the empty set as source
only.

_ The map induced by the involution from Mor(M, N) to Mor(N~, M~) sending W to
W is the composition of 7y, S?(M~, N) and 73, and analogously in the category ¥V and H,
so that this axiom is an extension of the axiom that H is compatible with the involutions.

If this axiom holds, there is an obvious extension of lemma 5.7 in the case, where only
a disjoint union of components of the boundaries and not necessarily the whole boundaries
are glued together. [ ]

5.14 This axiom makes sense only if the quantum field theory takes values in the category
H of Hilbert spaces. For a morphism W := (W; Wy, Wy; fo, fi) from M to N in M®bd+
define the morphism W~ : M~ — N~ by W~ := (W —; Wy, W ; fo, f1). Given an object
M, define the isomorphism 7, : H(M~) — H(M) by the composition of the inverse of the
isomorphism H (M) — H(M)* coming from the Hilbert structure and the natural isomor-
phism T7(M) : H(M~) — H(M)*. The axiom requires the commutativity of the following
diagram

H(M™)

™ ™~

Suppose that this axiom is satisfied. Then for any morphism W : M — N the adjoint

of H(W) : H(M) — H(N) is given by H(W ) : H(N) — H(M). In particular we get for
any closed oriented d + 1-dimensional manifold W because of W— =W~
ZW~) = Z(W)

If f: M — N is an orientation preserving diffeomorphism of closed oriented d-manifolds,
we get f~ = f~'. Hence H(f): H(M) — H(N) is an isometry. ]

We will always assume that also these two axioms are satisfied unless explicitely stated
differently.

Example 5.15 We look at all 0-1-quantum field theories H : M%! — H. Let V be the
complex Hilbert space associated to the object p given by a point with a fixed orientation.
Then H(p~) must be V* and we get in general :

(1)1 (1)) =vemever

50



There is precisely one morphism w : p — p~ and the only morphism from p~ topisw = w™.
The induced maps H(w) : H(p) — H(p~) and H(w) : H(p~) — H(p) are to another in-
verse isometries if we equip V* with the Hilbert structure coming from V. We use them as
identifications. Now we get

o ((T0) T (T ) ) = v

and T; becomes trivial. A morphism in M%' is a permutation of the set {1,2,---,n + m}.
The induced map on V®**™ is just given by the permutation itself. Hence a 0-1-quantum
field theory is up to natural equivalence given by a complex Hilbert space V. [ ]

In order to define invariants for links, we have to enlarge our category M+ consi-
derably. We will only consider the dimensions, we are interested in. The generalization to
other dimensions is obvious. In the sequel we denote by R the trivial bundle with fibre R.
Given a framing o of R @ &, we denote by a~ the framing obtained by composition with the
bundle automorphism (—id) ®id of R®E.

5.16 We will consider the following category M.

e An object (P, M, ayyr; i, o) consists of

— an oriented 0-dimensional manifold P
— a 2-dimensional manifold M together with framing a;; of R ® TM

— an embedding i : P — M together with a framing a; of the normal bundle v(i)
such that for all x € P the framings a,; and «; induce the same orientation
on T'M,, if x has the positive orientation, and opposite orientations on 1T M,
otherwise.

We will often abbreviate (P, M, ays; i, ;) by (M, P). We denote by (M, P)~ the ob-
ject obtained from (M, L) by substituting the framing a;; by ap;~ and reversing the
orientation of P. The framing «; is unchanged.

e A morphism (L, W, aw; k, cu; Wo, Wi; fo, f1) from (P, M, a3 4, ;) to
(Q, N,ay;j, ;) is given by :

— a 1-dimensional oriented manifold L

— a 3-dimensional manifold W together with a framing ayy of the tangent bundle

— open and closed submanifolds Wy and W; of OW such that W, U W; = 0W and
Wo N Wy = () holds. Notice that R @ TOW inherits a framing from T'W using the
outward normal.

— open and closed submanifolds Lg and Ly of 0L with Ly U L; = 0L and
LO N L1 = @
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— diffeomorphisms fo : M — Wy and f; : W3 — N such that o, = fjaw, and
aw, = fikOtN holds

— an embedding &k : L — W together with a framing oy, of the normal bundle v(k)
with the following properties: The orientations of TL,, v(k), and TW, given
by assumption or by the framings match up for all x € L. The map f, satisfies
foar = ap and induces an orientation preserving diffeomorphism from i(P) to
k(L) N W, and analogously at the other end W;.

If (L, W, aw; k, ag; Wo, Wi fo, f1) and (L', W', apr; k' cyer; Wi, W5 fi, f1) are two mor-
phisms from (P, M, a3 4, ;) to (Q, N, ans 4, o), they will be identified if the following
exists :

— diffeomorphisms g : L — L' and G: W — W' with Gok =Fk'og, Fo fy = f}
and fi o F |w,= fi

— an ambient isotopy relative boundary ¢ between the embeddings G o k and k' o f.

— an isotopy relative boundary of the framings ay and G*ayp-

— There is an isotopy relative boundary of the framings oy, and t*ay of the embed-
ding k, where (*ays comes from ¢,G and ¢ and the framing oy

We will often write shortly (W, L) for a morphism.

e Composition is given by glueing. The identity morphism of (P, M, aipr; i, o) is defined
by crossing with the unit interval

e the monoidal structure is given by the disjoint union and the involution sending a
morphism (W, L) : (M,P) — (N,Q) to (W, L) : (N,Q)” — (M, P)~ is given by re-
versing the bordism

Notation 5.17 In the sequel a quantum field theory will be a functor of monoidal categories
with involution
HM—H

such that the analogues of the axioms 5.13 and 5.14 are satisfied. ]

Remark 5.18 Our goal is to construct an invariant for oriented links in oriented homology
3-spheres using a quantum field theory so that it is natural to invoke links in the category M.
The choice of an isotopy class of framings for the links is needed in the explicit construction
of a quantum field theory. In the comparitively easy case of an abelian theory certain
integrals appear, which just give the linking number of two disjoint knots (see lemma ?7).
But the self linking number of a knot is only defined, if one has specified an isotopy class of
framings. Since the links have to have isotopy classes of framings, the 3-manifolds appearing
in a morphism should also come with an isotopy class of framings. As composition is given
by glueing, we are forced to put on the objects an actual framing and not only an isotopy
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class. Namely, it is not true for 3 manifolds W and V' with OW = 9V that isotopy classes
of framings on V' and W which restrict to the same isotopy class of stable framings on the
common boundary determine an isotopy class of framings on W U V. The reason is that the
homotopy category of spaces has no push outs. Here is a counterexample. Take V and W
to be the lower and upper hemisphere in S =V U W. There is precisely one isotopy class
of framings on the contractible spaces V' and W, but the isotopy classes of framings on S*
are in bijective correspondence to the set of homotopy classes of maps from S? to GL(3,R)
which is Z x {£1}. u

We will now discuss which properties a quantum field theory has to satisfy in order to
give a skein invaraint. We specify the following objects and morphisms in M. In the sequel
we equip S® and D? with the standard framings. We put on S? = 0D? the induced stable
framing of R & T S2.

We use from now on the following convention. Let k: A — B be an embedding of
an oriented manifold into a framed manifold such that dim(B) = dim(A) + 2 holds. Then a
choice of a non-vanishing section of the normal bundle v(k) determines a framing of it and
vice versa. Given a framing o : R? — v(k), we obtain a section of v(k) by composing the
constant section of R* with value the first element of the standard bases. Given a section s of
v(k), we obtain a second linearly independent section § and hence a framing by the following
construction. The framing on T'B induces an orientation and a Riemannian metric on T B
and by means of the orientation of A also on v(k). Given any vector v in the fibre v(k), at
x, there is precisely one vector v, such that the norm of v is 1, v and v are orthogonal and
{v,0} agrees with the orientation. Now define §(x) for x € A by s(x). This gives a bijective
correspondence between the isotopy classes of non-vanishing sections and isotopy classes of
framings of the normal bundles v(k). We will illustrate framings of points in 2-manifolds
resp. links in 3-manifolds in pictures by drawing a tangent vector resp. a parallel curve which
indicates a non-vanishing section.

Next we define two objects (S?,2) and (S?,4) in M. The underlying stably framed
2-manifold is in both cases the 2-dimensional sphere S?. The embeddings of 0-dimensional
manifolds are given by 2 resp. 4 oriented points on S? together with explicit framings of the
normal bundles. The objects are illustrated by the following pictures using the conventions
above.
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5.19 Objects

(5%2)

Neat we define three morphism D3, D* and D from () to (S?,4) in M. The underlying
framed bordism is D3 in all cases. The embedded 1-dimensional manifolds together with the
framing of their normal bundles is indicated below

5.20 Morphisms

The following observation will be important for the sequel. We define diffeomorphisms

521 w:S5? — §?
Q:D>— D3

satisfying w = Q |g2. The diffeomorphism Q) is height preserving and is given by a rotation
about the angle ¢(t) on the level of height t € [1,1], where ¢(t) is zero for t > 0, is —2nt
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for —1/2 <t <0 and is w for —1 <t < —1/2. The framings of the normal bundles at the
four points specified in the definition of the object S? are respected by the differential of w.
The pull back of the standard framing of T'S? ® R is isotopic to its pull back with w by an
explicit wsotopy induced from the obuvious isotopy between id and w. Such an isotopy may be
viewed as an (unstable) framing on the trivial bordism from S? x [0,1]. These data define a
morphism with the trivial bordism as underlying bordism

5.22 @: (5% 4) — (S5%,4)

One easily checks using the extension € of w

Lemma 5.23 We have the following identities of morphisms from 0 to (S%,4) :

G)oDi:Dg
and
(:)ODS’:D:E | |

Define a diffeomorphism

524 §:5% — §?

by a local Dehn twist at the positive point of the two marked points in S%. This leaves
this point and the complement of a small neighbourhood of it fixred and looks within this
neighbourhood as indicated below

5.25 Local Dehn twist

%)



Notice that the differential of 6 at the positive point is the identity, so that 0 respects
the framing of the normal bundles. Moreover, there is an explicit isotopy relative the positive
point (but not relative to the positive point and the differential at this point) between & and
id. It induces an explicit isotopy between the standard framing of TS? ® R and its pull back
with §. Hence we obtain a morphism

5.26 4 : (52,2) — (S2,2)
There are morphisms from () to (S?,2) fori=0,1
5.27 7;: 0 — (S%,2)

indicated by the pictures below

5.28

Y1 Y2

One easily checks
Lemma 5.29 We have 6 o Y1 =2 ]
Now we make the following assumption on our quantum field theory
Assumption 5.30 dim(H(S?,2)) =1 and dim(H(S?4)) =2 ]

Let L be a link in a framed 3-manifold W together with a framing (of its normal bundle)
meeting the boundary in an appropiate way. Then we obtain a morphism

(W, L) : 0 —> (0W, LN OW)
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and hence an tnvariant 5.5
Z(W,L) € H(OW,LnNoW)

Recall that this is just a complexr number and depends only on the isotopy class of
the framings, provided that W is closed. Now suppose we have three such pairs (W, L),
(W, L_) and (W, Ly) and there is an embedded 3-ball D* in W such that the framed links are
identically outside of D* and look in D? as in the definition 5.20 of D}, D* and Dj.

Lemma 5.31 Let det and trace be the determinant and the trace of the linear endomorphism
H(w) of H(S%4). Then we get :

det - Z(W, L)+ Z(W,L_) — trace - Z(W, Ly) =0 m

Proof : We derive from lemma 5.7, if (W€, L°) is the morphism from () to (S?,4) given by
the complement of D in W :

<Z(We, L), Z(W, Ly) >ia= Z(W, Ly)

< Z(We, L), Z(W, L_) >u= Z(W,L_)

< Z(W*, 1), Z(W, Ly) >ia= Z(W, Ly)

Since the dimension of H(S?%,4) is two by assumption 5.30, we get for the characteristic
polynomial p of the endomorphism H(w)

p(r) = 2? — trace - x + det
We get zero, if we put H(w) into its characteristic polynomial. We derive from lemma 5.23
Z(W,L_) —trace - Z(W, Ly) + det - Z(W, L) =0

and the claim follows. [ ]

Next we have to check the dependency on the framing. Let L be an oriented link in 3-
manifold M with two framings «y, and o such that the orientations of T L,, v(L C M), and
T M, match up for all x € L. The composition a;' o oy is a framing of the trivial bundle R
over L compatible with the standard orientation. Isotopy classes of such framings are in bijec-
tive correspondence with homotopy classes of maps L — GL(2,R)". Since m (GL(2,R)™")
is Z and L is oriented, this can be identified with Z'F), where r(L) is the number of com-
ponents of L. The sum of the components is the total relative framing number and denoted
by :

5.32 d(ay,a}) € Z

Lemma 5.33 Let L be a link with framings ap and o in a closed 3-manifold W with
framing aw . Then the complex number Z (W, L) depends only on the isotopy classes of fra-
mings. Let ¢ be the complex number for which the endomorphism H(6~) of the 1-dimensional
vector space H(S?,2) is given by c-id. Then we get :

Z(W, ey, Ly ay) = @m0 - Z(W, any, L, aup)
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Proof : Suppose that o/ is obtained from ay, in the following way. There is an embedded
disk D3 in W such that the intersection of L and D? looks like v, as indicated in 5.28. Now
oy is obtained from «y, by taking out v and plugging in vo. We get from lemma 5.7:

< Z(We L), Z(m) >= Z(W, L, «ar)

< Z(W€, L), Z(vs) >= Z(W, L, o)

Then we get from lemma 5.29 :
Z(v2) = ¢+ Z(n)

This implies the claim in this particular case. The general case is obtained by an iteration
of this special case, because any two isotopy classes of framings of L can be transformed into
one another by a sequence of operations of the type above. [ ]

Next we consider framed links in a framed oriented homology 3-sphere M. Let S be a
Seifert surface for L. Then the outward normal field of S at the boundary induces a framing
on L. We call such a framing a Seifert framing . We claim that the isotopy class of this
framing is independent of the choice of the Seifert surfaces. Recall that isotopy classes of
framings of L are in bijective correspondence with Z™ . Namely, o framing determines
a non-vanishing section of the normal bundles and hence a push-off LP of the link L into
the link complement. For each component L; we obtain an integer by the linking number
n(L;) := link(L?, L;). Let I(i,7) be the linking number link(L;, L;). Consider the following
linking matrix

5.34
n(1) 1(1,2) 1(1,3) - I(1,r)
L1) n(2) 12.3) - 121)
A= | 1B1) 13,2) n(3) 1(3.7)
1) 1(r,2) 1(r,3) n(r)

Lemma 5.35 The sum of the elements in any column of the linking matriz is zero

Proof : Fiz 1 <i<r. Let S be a Seifert surface for L. Then LY does not meet the Seifert
surface. Hence its linking number with L, i.e. .7 link(L?, L;) vanishes. But link(L?, L;) is
n(i) fori=j andl(i,j) otherwise. u

Let L be an oriented link in S®. Equip S with the standard framing and L with a
Seifert framing. Then we obtain a morphism (S3, L) : ) — (). Define :
5.36 (L) =Z(S%L)e C

Notice that (L) is an invariant of the ambient isotopy class of the link L in S®. We
claim that this is a skein invariant.
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Lemma 5.37 Let det and trace be the determinant and the trace of the linear endomorphism
H(w) of the 2-dimensional vector space H(S? 4). Denote by ¢ the complex number for which

the endomorphism H(8) of the 1-dimensional vector space H(S?,2) is given by c-id. Define

I(H) = c-det'/?
m(H) = —trace - det~"/?

Then ~y defined in 5.36 is a skein invariant with skein coefficients [(H),I(H) ', m(H).

Proof : Consider a skein triple (L, L_, Ly) of oriented links in the oriented homology 3-
sphere M. Equip them with framings o, a_ and oy such that a_ is a Seifert framing and
the assumptions in lemma 5.31 are satisfied, i.e. there is an embedded 3-ball D® in W such
that the framed links are identically outside of D* and look in D? as in the definition 5.20
of D3, D* and Dj. Hence we have :

det - Z(W, L)+ Z(W,L_) — trace - Z(W, Ly) =0

Denote by of, o and af Seifert framings of Ly, L_ and Ly. We want to determine the

total relative framing numbers f(ay, o), f(a_, o) and f(o, of) defined in 5.52. We have
by assumption o = o’ so that f(a_,a®) is zero. We may suppose that we have Seifert
surfaces Sy, S_ and Sy for Ly,L_ and Ly which agree outside the embedded D3. Hence
we can assume that the Seifert framings of the links agree outside D3. By assumption the
framings o, a_ and og agree outside D*. Hence the differences f(ay, o) — f(a—, o) and
flag,af) — f(a_,a®) do not depend on the links outside D3. Therefore we can compute
these numbers for one specific example and get the common answer for all cases. We derive
from

5.38

the relations :

f(aoaa[s]) - f(a,,ai) =1

Hence v is a skein invariant with skein coefficients c? - det, 1, —c - trace by lemma 5.31 and
lemma 5.33. Now the claim follows. [ ]

Theorem 5.39 Suppose that there are quantum field theories H(n, k) indexed by positive
integers n and k such that any complex polynomial p(z,y) in two variables with the property

29



that p(l(H (n, k)),m(H(n, k))) vanishes for all k and n, is zero and assumption 5.30 is sa-
tisfied. Then there is a skein invariant as described in lemma 4.13,namely

J : { isotopy classes of oriented links in S3} — Z[I,17',m, m™']

with 1,17, m as skein coefficients.

Proof : One proves by induction over the complezity of a link in S the unique existence
of a polynomial J(L)(I,m) such that J(L)(I(H(n,k)),m(H(n,k))) = Yamux (L) holds for all
n,k. [ ]
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6.section
The construction of quantum field theories

In this section we sketch the construction of appropiate quantum field theories H(n, k)
which give the Jones polynomial as described in lemma 5.37 and theorem 5.39. The index
k > 2 will be called the level and n will parametrize the underlying family of Lie groups,
namely, the family SU(n).

We have to enlarge our category M defined in 5.16 as follows. Namely, we require
for an object that to each element in the 0-dimensional manifold P we have assigned a
SU (n)-representation V. Similarly we demand for morphism that we have attached to each
component of the link L a representation V' which agrees with the given representation at the
positive end and with the dual of the given representation at the negative end. In all explicite
objects appearing in the last section we require that we have assigned the n-dimensional
canonical representation C™ with the obvious SU(n)-action to points with positive orientation
and the dual representation (C™)* to points with negative orientation. The representations
attached to the components of the links appearing in the explicite morphisms are always C™.
In view of example 5.15 this means that we are coupling a 0-1-quantum field theory and a
2-3-quantum field theory in the sequel.

We start with the construction of the Hilbert space H(M) assigned to an object in the
case, where the 0-dimensional submanifold P is empty. Then the object consists of a closed
2-manifold with a framing of R ® T M. The construction is done in several steps summarized
as follows.

6.1

1. The framing of R & T'M induces a Riemannian metric and an orientation on M.
2. The Riemannian metric on M defines a conformal structure on M.
3. The conformal structure determines an almost complex structure on 7M.

4. The almost complex structure induces a holomorphic structure on M by the theorem
of Nirenberg and Neulander.

5. Given the holomorphic structure on M, there is a moduli space MODB of stable holo-
morphic SU(n) bundles which are topologically trivial. This space turns out to be a
complex Kéahler manifold.

6. There is a family of d-operators parametized by MODB.

7. Associated to such family is the determinant line bundle det(0d) constructed by Quillen.
This is a holomorphic vector bundle over MODB. It possess a Riemannian metric.

8. Define H(M) to be the finite-dimensional vector space of holomorphic sections of

Rk det(a). [ ]
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We make some comments on the items of the list 6.1 :

1.) A framing induces a Riemannian metric and an orientation and a subbundle inhe-
rits a Riemannian metric and an orientation.

2.) A conformal structure on a manifold is an equivalence class of Riemannian metrics.
Two Riemannian metrics (, )' and (, )* are conformally equivalent if there is a function
f: M — R such that for all x € M and v,w € T M, we have :

<Ua w>;; = f(l‘) ) <U7 w)i

Hence two Riemannian metrics give the same conformal structure if and only if they define
the same angles between tangent vectors.

3.) An almost complex structure on TM is a bundle isomorphism J : TM — TM
over id : M — M such that J o J = —id holds and for each v € TM, for x € M the set
{v,J(v)} is a bases consistent with the orientation of M. Given a Riemannian metric ( , )
andv € TM,, forx € M, define J(v) € TM, to be the tangent vector uniquely determined by
the properties that {v, J(v)} is a orthogonal bases of T M, corresponding to the orientation
of M and (v,v) and (J(v), J(v)) agree. Then J is an almost complex structure and depends
only on the conformal structure determined by the Riemannian metric  , ).

Suppose, we are given an almost complex structure J. Fiz a covering U ={U; | i € I}
of M such that T M restricted to any U; is trivial. Choose for any i € I a nowhere-vanishing
section s of TM |y,. Let (, ); be the Riemannian metric on TM |y, for which {s(x), J(s(z))}
is an orthonormal bases of TM, for all x € M. Choose a partition {e; | i € I} of unity
subordinate to the open covering U. Let (, ) be the Riemannian metric Y ;cre;- (, )i. One
easily checks that the conformal class of this Riemannian metric does only depend on .J and
that these two constructions give to another inverse bijections between the set of conformal
structures on M and the set of almost complex structures on M.

4.) Let J be an almost complexr structure on M. Extend J to an automorphism of
TM ® C, also denoted by J. As J? is —id, the eigenspaces of the eigenvalues i and —i of J
give a decomposition
TM@C=TM o&TM"

This decomposition is orthogonal with respect to any unitary Riemannian metric, i.e. a
Riemannian metric for which J is isometric. We obtain a decomposition of the complezified
dual tangent bundle

T"M @ C = A""M @ A" M

and thus a decomposition :
AN'T*M ® C = ®pig—n\"'M

if we put APIM = AP(AY0) @ AY(AYTM) for n > 0. The exterior differental d induces :

P O%(APIM) — C°(APTL9M)
T O (APIM) — O (APIHLN)
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Now suppose that M is holomorphic. In local coordinates z, za, ...z, define for

o _ 1 el el o __ 1 el -0
w=3(2-2) w=5 (2+i2)

For f: M — C we define :

o(f) =i oL - dz

a(f) :Zi%'dzi
Define complex subbundles of T*M ® C :

TM’:span{a%i} TM”:spcm{a%i}

AYOM = span{dz} A M = span{dz;}
Moreover we get operators :

0 :C®(M) — C®(AYM) 0:C®(M) — C®(A"'M)

These bundle maps are invariantly defined and independent of the coordinate charts. An
almost complex structure on T'M 1is given by :

T(55) = 5 T(55) = 55

~ oy T oxy

Notice that the definitions of TM', TM", AYOM, A%'M, 0 : C*(M) — C*(A"'M) and
0 :C®(M) — C®(A"M) for holomorphic M agree with the one for J, if J is the almost
complex structure induced from the holomorphic structure.

Theorem 6.2 (Nirenberg-Neulander) The following assertions are equivalent for an al-
most complex structure J on TM :

1. J arises from a holomorphic structure.
2.d=0+0
3. 0od=0

If M is 2-dimensional, o = 0 holds always for dimension reasons. Hence any almost
complex structure J comes from a holomorphic structure on M. If two holomorphic structures
define the same almost complex structure, they agree. This follows from the fact that a
diffeomorphism f : U — V' of open subsets of C™ is holomorphic if and only if its differential
s compatible with the almost complex structures on U and V' coming from the standard almost
complex structure on C™. Hence for surfaces we get a bijective correspondence between almost
complex structures and holomorphic structures.
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5.) Let M be a surface with holomorphic structure. Let £ be a holomorphic vector
bundle. It is called stable if for any proper subbundles n we have :

rank(§) rank(n)
degree(§) = degree(n)

The degree of € is the evaluation of the first chern class of the line bundle AT ¢ on the
fundamental class of M. Let MODB be the moduli space of stable holomorphic SU (n)-bundles
which are topologically trivial. This space is a projective algebraic variety. In particular it
15 a holomorphic manifold and is Kahler, i.e. there is a unitary metric on M such that the
associated the Kdhler 2-form

Qv,w) = =(v, J(w))

15 closed. We mention that a holomorphic manifold M is Hodge, if and only if it admits a
Kdhler metric such that the Kdhler form Q is ¢i(§) for some line bundle £&. Obviuosly CP™
is Hodge and hence any algebraic variety is Hodge. The converse is also true (see Gilkey [1]]
remark 3.6.3.)

The moduli space MODB can be identified with the moduli space MODC of flat connec-
tions modulo gauge transformations on the trivial SU(n)-bundle over M.

6.) We have introduced the notion of the & operator on a holomorphic manifold M. If
& 18 a holomorphic vector bundle over M, we can consider a &-twisted version :

0:C0%() — C°(A"'TM ® €)

If € s trivial, C®(&) is a direct sum of copies C®(M) and C®(A>'M ®¢&) is a direct
sum of copies of C>®(A™M). Define for trivial & the operator @ by a matriz of operators
0:C®(M) — C®AY M. This generalizes to arbitrary & using local cooodinates.

Hence the moduli space of stable holomorphic topologically trivial vector bundles MODB
of rank n parametrizes a family of operators

91 C®(C") — CX(A%' M @ C)

if C™ denotes in this case the trivial C®-vector bundle over M. The kernel of 0 is just the
vector space of holomorphic sections of the corresponding holomorphic bundle.

7.) Given such an operator
0:C>®(C") — C®(A"'M @ C")
define its determinant line det(d) to be
det(0) = A" ker(0)* @ A™* coker (D)

where NV for V' a finite-dimensional vector space V' is XV . This definition makes
sense as 0 is an Fredholm operator. Thus we get for any element in the moduli space MODB
a complex line. These fit together to the determinant line bundle of the family of det(0)
indezxed by MODB :

det(d) | MODB
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Next we make some comments in the case where the 0-dimensional submanifold P is
non-trivial. Then one has to modify the moduli space in such a way that the holomorphic
vector bundles are related at the marked points to the specified representations. The re-
presentations at the marked points determine so called parabolic structures on the bundles
under consideration and one divides out not the full gauge group, but the group of gauge
transformation respecting these extra structures. The corresponding moduli spaces have been
developed by Seshradi. In terms of representation theory resp. flat connections one studies
representations m (N — {p1,...pr}) —> G whose monodromy around the marked points, i.e.
the image of a small loop around the marked point, lie in a given conjugacy class of elements
of order k in G which are given by the representations attached to the marked points.

The effect one wants to have is the following :

Lemma 6.3 Consider S? with a positively oriented points pi, py, ...p5 and b negatively
oriented points py, py, - ..p, and representations Vi, Vot ... VEand Vo, Vo ...V, Then
the Hilbert space assigned to the object determined by this data is, where for a =0 or b= 0
the tensor product over an empty set is defined to be C:

G
(Vrevte. ViV eV ...V)) -

Lemma 6.4 We obtain for the dimension dim = dim(H (X)) of the Hilbert space assigned
to the following objects :

1. S? with no marked points :
dim =1
2. S? with two marked points p* and p~ and irreducible representations V and W :

dim =1 if Voand W* are linearly isomorphic
dim = 0 otherwise

3. 82 with two positively oriented points and two negatively oriented points and represen-
tation C™ in the positive and (C™)* in the negative case :

dim = 2

Proof : 1.) The moduli space reduces to a point and hence the determinant line bundle
becomes the Hilbert space C over a point.

2.) We get from lemma 6.3 that the Hilbert space is given by :
Homgy () (V, W)

By Schur’s lemma this is zero if V. and W* are not linearly isomorphic, and a skew field
over C and hence C itself if V and W* are linearly isomorphic.
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3.) We get from lemma 6.3 that the Hilbert space is given by :
Homgyrm)(C"@ C",C" @ C")
Now we have the decomposition :
C"®@ C" = Sym(C") @ Alt(C")
As Sym(C™) and Alt(C™) are irreducible and not isomorphic, we get from Schur’s lemma :
Hangy(C"®@ C",C"® C") =
HanSU(n)(Sym(Cn)a Sym(C")) © Hom sy (n) (Alt(Cm), Alt(C")) =Ca C

and the claim follows. [ ]

Now we have shown that the quantum field theory constructed above satisfies the asump-
tion 5.30. Further explicit computations prove that the condition appearing in theorem 5.39
are satisfied.

Next we deal with morphisms in the category M and the maps they induce on the
associated Hilbert spaces. We only consider the case of a morphism from () to (). Hence we
have to assign a complex number to a closed framed 3-manifold W together with a framed
link L. C W together with a choice of representations for each component of the link. Some
preparations are needed.

Let G be a compact Lie group and p: E — B a G-principal bundle over a manifold
B. A connection on p is a 1-form on E with values in the Lie algebra LG of G

0 € AY(E; LG)

with the following properties

e For all x € F we have O, o v, = id, where v, : LG =T'G — T, F is the differential
at 1 of the map G — E sending g to gx.

e R0 = ad(9).0, where ad : G — End(LG) is the adjoint representation.

Notice that we obtain a horizontal subspace H, € T,E for x € E by ker(©,) because of
the first condition. Horizontal means that Typ : T, E — Ty B induces an isomorphism
H, — Tyu)B. The second condition ensures that R;HI = H,, holds for g€ G and x € E.
Thus a connection is the infinitesimal version of parallel transport . Namely, for any path
w: I — B andv € Ey ) the connection defines a lift w : I — E of w satisfying w(0) = v.
Hence we obtain an isomorphism, the parallel transport along w :

tp@(w) : Ew(O) — Ew(l)

The curvature Q) = Qg s the 2-form with values in LG defined by :

1
Q=do + - [0,6]
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It satisfies the Bianchi identity :
dQ = [Q, O]

This form is equivariant and horizontal. It is in particular determined by its values on
horizontal tangent vectors. The curvature can be interpreted as follows. Given two tangent
vectors v and w in T, E, we may project them down to Ty B. Then tv and tw determine
an infinitesimal parallelogram. The parallel transport along this parallelogram determines an
automorphism of E, and thus an element g(t) in G. Consider the path g(t) in G for small t.
It determines an element in LG, which is by definition Q(v,w). A connection is called flat,
if its curvature vanishes. This is equivalent to the statement that the parallel transport along
a path w depends only on the homotopy class relative endpoints of the path. In particular
a flat connection determines a homomorphism m(B) — G. Hence flat connections are in
bijective correspondence to representations of the fundamental group of B into G.

Now consider a closed 3-manifold W and the trivial SU(n)-bundle E | W for n > 2.
Let A be the space of connections A on E | W. The difference of two connections is an
invariant horizontal 1-form on E with coefficients in LG and hence a 1-form on W with
coefficients in LG. Hence A is an affine space modelled on A'(B; LG). In particular it
makes sense to speak of the tangent space of A at ©, it can be identified with A'(B; LG). A
1-form on A is given by a family of linear maps A*(B; LG) — R. parametrized by A. We
get a 1-form curv on A, by the following construction :

curve : A'(B; LG) — R w / tr(w A Qeg)
w

This 1-form turns out to be closed. It turns out that it is exact, i.e. there is a function L

on A satisfying dC = Curv. This function is the so called Chern-Simons functional (see
Chern-Simons [7]) :

L:A—R A!—>i-/ tr(A/\dA+§-A/\A/\A)
M
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Let G be the gauge group of E | W, i.e. the group of bundle automorphisms of E | W over
the identity on W. As E | W is trivial, G is just map(W, G). We will be interested in A/G.
Notice that curv is G-invariant and hence defines also a 1-form on A/G. The function L
is at least invariant under the action of the component of the identity G° of G. As W is
3-dimensional and SU(n) is 2-connected, we get :

m(G) = G/G° = W, SU(N)] = H*(W;m3(SU(n))) = H*(W; Z) = Z

The action of mo(G) = Z on L is given by adding a certain integer to L. Hence L induces a
function :

L:A/G— R/Z

Hence we obtain a well-defined function :
A/G — C A-G— exp(ikL(A))

Now Witten defines a complex number

Z(W) = /A | rPURE(A)) dA/G
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Of couse the real meaning of this integral is not clear, as one is integrating over a very big
space and no explicite measure is known.

Finally, we explain, how one takes links L in W together with representations for V;
for each component L; into account. Given a connection A , let the Wilson line be defined
by :

Wi, (A) = chary,(tpa(Li))
where tpa(L;) € G is the parallel transport along L; given by A and chary, : G — C the
character of the representation V;. Then one defines :

zw,n)= [

" exp(ikL(A)) - 1:[ W, (A) dA/G
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7.section
Basic facts about 3-manifolds

In this section we collect some basic facts about 3-manifolds. We begin with the proof
of the following theorem due to Stiefel.

Theorem 7.1 Any orientable 3-manifold is parallizable, i.e. its tangent bundle is trivial.
[ |

The proof needs some preparation. Let
w(M):=w(TM) e H(M;Z/2)

be the total Stiefel-Whitney class of M. The Stiefel-Whitney classes of a n-dimensional
vector bundle £ | X are defined as follows. The cohomology ring with Z/2-coefficients of the
classifying space BO(n) of such bundles is a free polynomial algebra

H*(BO(n);Z/2) = Z/2[wy, wy, . . . w,]

where the degree of w; is i. Let fe : X — BSO(n) be the classifying map of &, i.e., the
map uniquely determined up to homotopy by the property that fiy" is isomorphic to § where
v 1 BO(n) is the universal bundle. Then the i-th Stiefel-Whitney class w;(£) is defined by
féwi. The total Wu-class

v(M) e H(M;Z/2)

s uniquely defined by the property that for all total cohomology classes x we have :
(z Uo(M),[M]) = (Sq(z),[M])

if Sqt : H*(X) — H**(X) is the cohomology operation given by the Steenrod squares. The
Wu formula says :
w(M) = Sq(v(M))

The Steenrod squares satisfy Sq'(x) = 0 for any j-dimensional cohomology class x if j < i
holds. Hence the Wu class of a n-dimensional manifold satisfies vi,(M) = 0 for k <n — k.
In particular we get for a 3-manifold M :

v(M) =1+ v, (M)

We derive from the Wu formula wy (M) = vi(M). As M is supposed to be orientable, wi(M)
vanishes. Hence we get

Lemma 7.2 The total Wu class and the total Stiefel Whitney class of an orientable 3-
manifold are trivial. [ ]
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Next we deal with the lower homotopy groups of SO(3) and BSO(3). Let H= R be
the Lie group of quaternions. Denote by S® the unit sphere. We obtain an operation by
conjugation :

¢:-H-{0} xH—H (z,y) = zyz™"

The center of H is given by R. Let V' be the orthogonal complement of R in H. We obtain
an induced operation by orientation preserving isometries :

SPxV—V

As V is isometric to R? as real vector space, we obtain an exact sequence of Lie groups :
7.3 Z/2 — S® 25 SO(3)

In particular p is a covering. An alternative description of p is given by the adjoint repre-
sentation of SU(2) and an identification of Euclidean spaces between the Lie algebra LSU(2)
and R3. We derive from elementary homotopy theory :

Lemma 7.4

{0} i=0,1,3
Z 1 =4

Hence the obvious map j : BSO(3) — K(Z/2,2) into the Eilenberg-MacLane space
K(Z/2,2) is 4-connected. As a 3-dimensional manifold M has the homotopy type of a 3-
dimensional CW -complez, we obtain a bijection :

J« 2 [M; BSO(3)] — [M, K(Z/2,2)]
There is a natural isomorphism :

¢ [M,K(2/2,2)] — H*(M;Z/2)
The cohomology ring H*(BSO(n);Z/2) is a free polynomial algebra

H*(BSO(n); Z/2) = Z/2[w, . . . wy] , deg(w;) =i
and for the canonical map q : SO(3) — O(3) we get for 2 < i < n:
Bq'(w;) = w;
This shows for an oriented 3-manifold M :
¢ o Ju(frum) = wa (M)

As ¢poj, is an isomorphism, theorem 7.1 follows from lemma 7.2. More details can be found

in Milnor-Stasheff [34].
Next we deal with Heegaard decompositions of an oriented closed 3-manifold.
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Notation 7.5

Let Wy, =W be the standard modell of the 3-dimensional handle body of genus g. Namely
W is the g-fold connected sum of S* x D?.

Denote by F' the boundary of W. This is the surface of genus g, or in other words, the g-fold
connected sum of S' x S*.

Let D C F be a fired embedded 2-disk.
Put F*:= F — D and S* := 0D.
Fiz a base point x € D [ ]

7.6

The standard orientation of R induces an orientation on W. Then F, F*, D and S* inhe-
rits orientations by the general agreement that an oriented manifold induces an orientation
on its boundary using the decomposition v(OM, M) @& TOM = TM and the outward normal
field.

Definition 7.7 (Heegard modell) If h: (F,D,z) — (F, D, x) is an orientation rever-
sing homeomorphism, define the Heegard modell of h by

((W,h) =W U, W m

Definition 7.8 (Heegard splitting) Let M be an oriented closed 3-manifold. A Heegard
splitting of M is a pair (W1, W3) consisting of submanifolds Wy, Wy C M of codimension 0
satisfying

W1UW2:M 6W1:W1QW2:8W2 ngWQ |
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Lemma 7.9 Any closed 3-manifold admits a Heegard decomposition.

Proof : Choose a handlebody decomposition of M with exactly one 0-handle and one 3-
handle. Let Wy be the union of 0- and 1-handles and Wy the union of all 2- and 3-handles.
Then Wy resp. Wy is diffeomorphic to the standard model of the 3-dimensional handle body
whose genus is the number of 1 resp 3-handles. The number of 1- resp 3-handles has to
agree, as the Euler characteristic of a closed 3-manifold is zero by Poincare duality and
can be computed from a handlebody decomposition by =5 (—1) - h;, where h; denotes the
number of i-dimensional handles. This shows that Wy and W5 are diffeomorphic. Obviously

M =W, UWsy and OM = W, N Wy holds. [

Another proof of lemma 7.9 is done as follows. A triangulation (T, h) of M consists
of a finite simplicial complex T together with a homeomorphism h: | T |— M. Two trin-
gulations (Ty, hy) and (Ty, hy) are compatible , if hy' o hy is piecewise linear. The star of
a simplex o s the subcomplex of T consisting of all simplices of K, which meet o, together
with all their faces. The link is the subcomplex of all simplices which do not meet K, but
which are faces of some simplex of K containing o. A triangulation is called combinatorial
if for each vertex v of T the link link(v) is PL-homeomorphic to an n — 1-simplex or the
boundary of an n-simplex according to h(v) € OM or h(v) € int(M). A PL-structure on M
15 a mazximal, non-empty collection of compatible combinatorial triangulations of M. Define
for a subcomplex L of T':

N(L,T) = Uger star(o,T)

If there are finite subcomplexes K and L of T such that K collapses down to L, then
N = h(K) is a regular neighbourhood of P = h(L) =| L |. Such regular neighbourhoods N
of P are in a certain sense unique, i.e. there is a PL-homeomorphism from Ny to Ny which
is the identity on P, if Ny and Ny are reqular neighbourhoods of P satisfying P C int(N;).
A regular neighbourhood of | L | in | T | is given by N(K",T").

Given a triangulation of M, let T'y be the 1-skeleton and 'y be the dual 1-skeleton, i.e. a
mazximal 1-subcomplez of the barycentric subdivision T' disjoint from T'y. Put V; = N(T';, T").
Then V; turns out to be a regular neighbourhood of T';. Moreover, (Vi,Vs) is a Heegaard
decomposition of M (see Hempel [16], page 17).

Two Heegard decompositions (W1, W) and (V1,V2) of M are called isotopic
(Wla WZ) ~ (‘/17 ‘/2)

if there is an ambient isotopy of M taking Wi to Vi and W5 to V,. Given a Heegard decom-
position (W1, Ws) of genus g, we define a new Heegard decomposition of genus g + 1, the
suspension, (Wy, Ws) as follows. Choose an unknotted handle H in W, i.e. an embedding
of D* x [0,1] in Wy such that H N OW, = D? x 9[0,1] holds and there is an embedded disk
B? in Wy such that the union of B> N OWy and {0} x [0,1] is the boundary of B*. Define
Y (W1, W) to be (Wi U H, clos(Wy — H)). Then the isotopy class of the suspension depends
only on the isotopy class of (W1, Ws). Two Heegard decompositions (W1, W) and (V1,V53)
are called stably equivalent ,
(W1, W) ~ (V1,V3)
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if there are non-negative integers a and b satisfying :
EQ(WI; WZ) ~ Eb(‘/la ‘/2)

It may happen that two Heegard decompositions of the same 3-manifold M are not isotopic.
However, we have :

Theorem 7.10 (Singer) Two Heegard decompositions of the same 3-manifold M are stably
equivalent.

Proof : We give only a sketch of a proof. In the first step one verifies for an arbitrary
Heegard decomposition (W1, Ws) the existence of a triangulation (T, h) such that :

(W1, Ws) ~ (N(T'y), clos(M — (N(T'y)))

We describe at least the triangulation T. Think of W; as a 3-ball with g 1-handles attached.
Now choose a triangulation (Ty, hy) of F = 0W, N OW, such that 0D? x 9]0, 1] for any 1-
handle D? x [0,1] is a subgraph of h(Ty). Extend (Ty, hy) over D? x 9]0, 1] by coning over
the centers yielding (T*, h'). Next extend (T*, h') to (T?, h?) by coning to the center of the
0-handle. Then extend (T2, h?) to the desired triangulation (T, h) by coning to the centers
of the 1-handles. Then Wy is a regular neighbourhood of a certain subgraph T of (T, H) and
their is a sequence of subgraphs T' =Ty, Ty, ...T', = h(T) such that T';; is obtained from
[; by attaching an edge in a specific way. One shows that the Heegard decompositions given
by I'; and I';yy are stably equivalent.

In the second step one verifies that the Heegard decompositions given by a subdivision

of (T,h) and of (T, h) itself are stably equivalent. As two triangulations have a common
subdivision, the claim follows. [ ]

7.11 Let (W, W,) and (V3, V3) be Heegard decompositions of M and N. Choose 3-balls
B and C in M and N such that B N oW, is a 2-disk with boundary 0B N dW; holds and a
similar statement for C'. Taking the boundary connected sums of the handle bodies

(Wi, Wa)g(Vi, Va) = (Wit Vi, WatsVs)

yields a Heegard decomposition of the connected sum M$N. [ ]

7.12
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The genus one Heegard decomposition of S* is given by the Heegard model (S' x S2, f)
where f: 0(S' x S?) — 9(S' x S?) is given by the flip map on S* x S' = 9(S* x D?).

Given a Heegard splitting (W1, Ws) of M, we obtain a diagram of inclusions of spaces

7.13

oF* —— F* — F M

W

Applying the fundamental group with respect to the base point x gives a diagram of groups

7.14
7T1(W1)
/ N
m(OF*) —— m(F*) —— m(F) 1 (M)
~ S
7T1(W2)

That all the maps in the diagram 7.14 are epimorphisms except for the first one, fol-
lows from the following presentations of the fundamental groups if M is the Heegard modell

| (W, h) |. The paths a; and b; on F* are indicated in diagram 7.6 and i : F — W is the
inclusion.

( ) >
m(F,z) =< a1, ag, ..., ag, b1, by ...bg | [TI—1[a;, bi] =1 >
7T1(W1,ZL’) =< ai, a2, ...,0gq, bl, bz, bg |
( |
(

b1: 5 = :bg:1>
™ WQ,QE) =< al,ag,...,ag,bl,bg,...bg (Z.Ohil)* bj) =1 1<53<¢g>
(M, 2) =< a1,a2, ..., ag,b1,b9, ... 0y | by =1,(i0oh), (b)) =1 1 <j<g>



Next we compute the first homology of M from the homeomorphism h appearing in the
Heegard model (W,h) of M. As F is oriented, we have the intersection pairing. Its matriz
with respect to the bases of H\(F;Z) given by {ay,...,a4,b1,...b,} is :

=(40)

Let h: F — F be an orientation reversing diffeomorphism. Then h, = Hy(h;Z) respects
the intersection pairing up to a sign. This is equivalent to

hot=—J thirg

If we write h, with respect to the bases above :
A B
(e b)
B Dtr _Btr
h*l = ( _Ctr Atr )

Because of the presentations of mi (M) in 7.15 we obtain presentation matrices for Hy(M;Z)
by both B and the following matriz P:

tr
7.16P:<0 b )

we get :

I —Ar
In particular we conclude

Lemma 7.17 If we write h, as
b A B
*\C D

we get :

1. H{(M) is different from zero, if and only if det(B) = det(P) is different from zero.
2. Suppose that det(B) is different from zero. Then we get
| det(B) | = | det(P) | = [ Hi(M) | .

Next we want to deal with the Kirby-calculus. For this purpose we recall the basic
notions of surgery along framed links.

A framed link L in an oriented 3-manifold M is a link L together with a framing of its

normal bundle, i.e. an isomorphism of vector bundles R?* x L —s v(L, M) over the identity,
such that the induced orientation on v(L, M) and the given orientations on L and M are
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compatible with the obvious isomorphism v(L, M) @® TL — TM |;. Notice that v(L, M) is
stably trivial and hence for dimension reasons trivial because of theorem 7.1. In an oriented
homology 3-sphere we can describe a framing of a link by an element n € H°(L) = Z""),
where r(L) is the number of components of the link. Define a map

n : {isotopy classes of framings on L} — Z"

as follows. Given a framing f:R?* x L — v(L, M), we obtain from the standard sec-
tion of R? x L given by the first standard basic vector in R? and the exponential map
exp:v(L,M) — N(L) onto an open neighbourhood of L a parallel link L'. Choose an
orientation on L and equip L' with the induced orientation. Let n(L) be given by the se-
quence of integers link(L;, L}), where i runs over the components of the link. Notice that
this is independent of the choice of orientation on L, as a change of the orientation of L;
causes also a change of orientation on L.

Lemma 7.18 Let M be an oriented homology 3-sphere and L C M be an oriented link.
Then
n : {isotopy classes of framings on L} — Z7

18 a bijection.

Proof : The orientations of L and M induce an orientation on v(L, M). Choose a Rie-
mannian metric on v(L, M). Givenv #0 € v(L, M), letv € v(L, M) be the vector uniquely
determined by the property that v and v are orthogonal, © has norm 1 and the bases {v,v}
is compatible with the orientation. If s is a nowhere-vanishing section of v(L, M), we obtain

—

another section § by requiring $(x) := s(x) for x € L. Notice that s,§ determines a framing
of v(L, M), denoted by f(s). Moreover, the isotopy class of f(s) is independent of the choice
of Riemannian metric on v(L, M) and depends only on the isotopy class of the nowhere
vanishing section s. One easily checks that we obtain a bijection

[ : {isotopy classes of nowhere vanishing sections in v(L, M)} —
{isotopy classes of framings of v(L, M)}

As the isotopy classes of framings of nowhere vanishing sections in the trivial bundle R? x L
correspond bijectively to the homotopy classes of maps L — R?* — {0}, the claim follows.
]

7.19 Let L be an oriented link in an oriented homology 3-sphere M. Suppose, we are
given for any component L; an element in r; € QU {oo}. Choose integers p; and ¢; such
that r; = p;/q; holds and p; and ¢; are prime, provided that r; € Q. If r; is co put p = 0
and ¢ = 1. Denote by N(L;) a tubular neighbourhood of L; and by N(L) their union. Let
M(L;) be M —int(N(L;)) and M (L) be M — N(L). Choose classes u; and A; in H;(ON(L;))
such that u; resp. A; lies in the kernel of the homomorphism H;(ON(L;)) — Hi(N(L;))
resp. Hy{(ON(L;)) — Hy(M(L;)) induced from the inclusion and the intersection number
of p; and \; in ON(L;) with respect to the orientation induced from the one on M is 1.
Notice that the pair (p,q) resp. (g, A) is not unique, there is exactly one other choice,
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namely, (—p, —q) resp. (—pu,—A). Since p and ¢ are relatively prime, we can choose a
homeomorphism o; : S* x D?> — N(L;) such that H,(o;) sends the class of {1} x 0D? to
pi+ g\, Let i: ON(L) — M(L) be the inclusion. Then define the result of Dehn surgery
M(L,ry,...7r)) by the push out

1011, 0

II; S* x 9D? M(L)

]_[iSl XD2 M(L,Tl,...TT(L))

We have already indicated in the first section that this construction depends up to oriented
homeomorphism only on the isotopy class of L and the elements 7, ... 7 z). [ ]

7.20 Let L be a framed link in an oriented 3-manifold M. The framing together with

the exponential map induce an homeomorphism ® : [[; S' x D? — N(L) onto a tubular
neighbourhood of L in M. Let M(L) be M — N(L). Let ¢:11;S' x S' — OM(L) be
given by the restriction of ¢ and the inclusion OM (L) — M (L). Now define the result
under surgery along the framed link L by the push out :

¢

II; ' x S M (L) n

[1, D? x S! - My,

7.21 Let V be a an oriented 4-manifold and L be a framed link in 9V. As above the
framing and the exponential map determine an homeomorphism & : [[; S' x D? — N(L)
onto a tubular neighbourhood of L in dV. Now define the oriented 4-manifold V7 by the
push out :
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1St x D? oV n

[1D? x D? - Vi,

These types of surgeries are related as follows :

Lemma 7.22

1. Let L be a framed link in a oriented homology 3-sphere M. Let the integers nq, ...,
n, be given by the framings. Then the result under Dehn surgery M(L,nq, ..., nyz))
defined in 7.19 and the result under surgery My, defined in 7.20 agree.

2. Let V' be an oriented 4-manifold and L be a framed link in M = 0V. Then we get :

O(VL) = ML | |

Let L be a oriented framed link in a oriented homology 3-sphere M. We have defined
its linking matrix in 5.34

n(l) 1(1,2) 1(1,3) --- I(1,7)
I(1,1) n(2) 1(2,3) - 1(2,7)
Ak = 1(3, 1) l(3, 2) n(3) N 1(3, T)

(1) 1(rn2) 1(n3) - n(r)

where [(i, j) denotes the linking number of L; and L.

Lemma 7.23 Let V be an oriented homology 4-ball. Then its boundary M = 0V is an
oriented homology 3-sphere . Let L be an oriented framed link in M. Then :

1. H;(V,) vanishes fori=1,3.

2. Hy(Myp) is a finitely generated free abelian group and their is a canonical bases coming
from the link. With respect to this bases the intersection pairing is described by the
linking matriz A;, of L.

3. Ay is a presentation matriz for Hy(Mp).
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4. My, is a rational 3 homology sphere if and only if det(Ayr) is different from zero.
5. My is a homology 3-sphere if and only if det(Ar) is +1.

Proof : 1.) Vi, has no 1-handles.

2.) Let S; and Sj for 1 <i,5 <r(L), i# j be Seifert surfaces of L; and L; in M. As M
has a collar in V', one may find a surface S; in V' by pushing off S; a little bit, such that
SiN M = L;. Denote by F; and F} the core of the corresponding handle H; and H;. Notice
that F; N OH; = F; N M = L; holds. Hence S; Uy, F; and S;- Ur, Fj are closed embedded sur-
faces in V7, representing the canonical bases. Now the (i, j)-entry in the intersection matriz is
given by counting elements in their intersection with signs. By construction this is the same
as counting the intersection of S; and Lj; in M with signs, what is just the linking number of
L; and Lj. A similar argument shows that the (i,1)-entry in the intersection matriz is just
the framing number n(L;).

3.) The intersection pairing is described by the following composition.:

Ho(Vi) 5 Ho(Vi, o) Y5 52(V,)) 5 Han(H,(Vy; Z)

where i, is induced from the inclusion. Notice that N[V] is the Poincaré isomorphism and
the canonical map p is an isomorphism by the universal coefficient theorem, since Hy (V7)) is
zero. The long homology sequence of the pair (Vi, Mp) gives an exact sequence :

Hy(Vy) -2 Hy(Vy, 0V) — Hy(My,) — {0}

Now the claim 3. follows from 1.
The other assertions are now easy consequences of claim 3. ]

The Kirby calculus deals with the question, when S and S? resp. Dj. and D} for
framed links K and L in S® are oriented homeomorphic. We recall that homeomorphic
implies diffeomorphic for 3-manifolds. We define two so called Kirby moves for framed links
K and L in S®. Recall that the isotopy classes of framings are specified by attaching an
integer to each of the components (see lemma 7.18). We say that L is obtained from K by a
Kirby move of type 1, if L 1s obtained from K by the disjoint union with a trivial knot with
framing +1.

7.24 Kirby move of type 1

+1
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We say that L is obtained from K by a Kirby mowve of type 2, if the following is true. There
are two different components L; and L; and a band w from some arc on L; to some arc on
L% where L} is a parallel curve of Lj corresponding to the framing n(L;) of L;. Recall that
the parallel curve L} is given by the exponential map of the normal bundles and a nowhere
vanishing section of the normal bundle such that link(L;, L}) is n(j). Let LifL} be the
connected sum of L; and L;- along w. Then the link K has the same components as L except
for the component L;, which is substituted by L;fL}.

7.25 Kirby move of type 2

C\BK (XD

L

The framings of K are determined by the following property of the linking matriz.
Choose orientations on each components of L. Let € be 1, if the connecting band is compatible
with the orientations, and —1 otherwise. Then the linking matrices A, and Ag satisfy :

7.26 AK == Ei’j(G)ALEi’j(E)tT

where E; j(a) is the elementary matriz with a as (i, j)-entry. Notice that the framings on K
do not depend on the choice of orientations.

Recall that all entries in E; ;j(a) off the diagonal are zero except the (i,j)-entry which

s a, and all diagonal entries are 1. We mention the behaviour of the linking matriz under
the first Kirby move :

7.27 Ap = ( %L iol >

Now we have :

Theorem 7.28
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1. For any closed oriented 3-manifold M there is a framed link L in S* such that M is
oriented homeomorphic to S}.

2. Let K and L be framed links in S®. Then S% and S} are oriented homeomorphic if
and only if one can obtain K from L by a sequence of Kirby moves of type 1 or 2 or
their inverses. |

A proof of this theorem can be found in Kirby [26]. A corollary of this theorem is that
any oriented closed 3-manifold is the boundary of an oriented 4-manifold.

Lemma 7.29 Let M be an oriented 3-manifold. Then there is an oriented framed link L
in S such that M is oriented homeomorphic to S3 and the linking matriz Ay, is a diagonal
matriz with +£1 as diagonal entries.

Proof : Because of theorem 7.28 we can find a framed link L in S such that M is S3. By
Kirby moves of type 1 we obtain a framed link L' such that M is S, and the linking matriz
of L' looks like :

0 0 1
Ap = 0 -1 0
A, 0 0

Hence Ap is a unimodular, indefinite and odd symmetric bilinear form over Z. Recall that
unimodular means that Ay, is invertible, indefinite means that there are x and y satisfying
zApz™ >0 and yApy™ <0, and odd means that xApx' is odd for some x. By the result
of Milnor and Husemoller [33] there is an invertible matriz U such that UApLUY is diago-
nal. We may suppose that det(U) is 1 otherwise multiply U with an appropiate diagonal
matriz. As Z is a principal domain, U can be written as a product of elementary matries
E; ;(n). Since E; ;(a) - E; ;(b) = E; ;(a + b) holds, we may even suppose that U is a product
of elementary matries E; ;(£1). Now the claim follows from lemma 7.26. [ ]

Corollary 7.30

1. Let M be an oriented homology 3-sphere. Then there is a sequence of oriented homology
3-spheres My, My , ..., M, such that M; is obtained from M;_; by +1-Dehn surgery
on a knot in M;_,, My is M and M,, is S®.

2. The Casson invariant is uniquely determined by the surgery formula and the condition

A(S?) = 1. n

Next we deal with the Kirby calculus for 4-manifolds. The Kirby calculus describing D7,
which we have developed so far, deals only with 2-handles. In order to take 1-handles into
account, we extend our notion of framed link to the notion of extended framed link. Namely,
an extended framed link is a link such that any component either has a framing given by an
integer or is the trivial knot and has a dot on it. In other words, we have framed components
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as before and have additionally unframed trivial components, which are distinguished from
the others by a dot. The latter ones correspond to 1-handles and the framed components to
2-handles. Here is the precise description of D} for an extended framed link L in S3. Attach
for any non-framed component a 1-handles. Call the result V.. Consider the framed link L'
in 'V obtained from L in D* by the following construction. Whenever an arc of a framed
component L; of L runs through the trivial knot representing a 1-handles, let the arc go over
the 1 handle. Now let L' be the union of all framed components of L modified in the above
way. Now the problem is to specify the attached 3-handles by indicating embeddings of S2.
Fortunately, this is not necessary, provided that we deal with closed 4-manifolds. Namely,
we have the result of Montesinos [36] (see also Trace [42]).

Theorem 7.31 Let M be a closed orientable 4-manifold with a handle body decomposition
M = HUaH'" UbH? UcH? U H*. Then the oriented homeomorphism type of M is comple-
tely determined by H° U aH' UbH? and the number c of 3-handles. n

Thus the way the 3- and 4-handles are attached does not matter, provided that M is
closed. Given an extended framed link L in D* and a non-negative integer c, let DE‘L’C) be
the closed 4-manifold obtained from D} by attaching ¢ 3-handles and one 1-handle. It may
happen that we cannot get a closed manifold this way and then DE‘L’C) s not defined. Now we
consider the following third Kirby move on an extended framed link. It consists of introducing

7.32 Kirby move of type 3

D

+ 3-handle

The proof of the following theorem is given in Kirby [26].

Theorem 7.33 Let L and K be exstended framed links in D* and cx and c;, be non-negative
numbers. Suppose that D*(K, ck) and D?L,CL) are defined. Then they are oriented homeo-
morphic if and only if one can obtain (L, cr) from (K, ck) by a sequence of Kirby moves of
type 2 and type 3 or their inverses. [ ]
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There are other kind of more convenient moves which can be used to decide whether
two (extended) framed links describe the same manifold. For example :

7.34

one full twist

(left / right hand)

Here are some examples of closed oriented 3-manifolds and their representations in the
Kirby calculus :

7.35 Lens space L(n,1,1)
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7.36 Lens space L(pg — ¢,p,q) = L(pg — 1,¢,p)

el

7.37 Poincaré sphere

7.38 Poincaré sphere
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7.39 Poincaré sphere

-2
—
-2 -2 -2 -2 -2 -2 -2
7.40 Torus
0
0 0

More information about the Kirby calculus can be found in Fenn-Rourke [10] Kirby [26]
and [27] and Mandelbaum [29].
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8.section
The construction of the Casson invariant

This section is devoted to the construction of the Casson invariant. We have already
explained in section 1 what the main properties and applications of the Casson invariant are.
We are following the expositions of Akbulut and McCarthy [1] and of Marin [30].

Let M be an oriented homology 3-sphere. We use the notation 7.5 and choose a Heegard
splitting (W1, W3) as defined in 7.8. This defines a diagram of spaces 7.13 and by applying the
functor ”fundamental group” a diagram of groups 7.14. If G is a connected compact Lie group
and 7 a discrete group, denote by R(m,G) the space of homorphisms from 7 to G equipped
with the topology induced from the inclusion R(m,G) C map(mw,G), where map(w,G) gets
the compactly generated topology coming from the compact-open topology. If G is SU(2), we
write briefly R(m) instead of R(m, SU(2)). Notice that G acts on R(m,G) by composition with
the congugation homorphism c(g) : G — G which sends h to g *hg. As the center of G acts
trivially, we obtain an induced G /center(G)-action. Thus R(?,G) becomes a contravariant
functor from the category of discrete groups to the category of G/center(G)-spaces. Notice
for G = SU(2) that SU(2) can be identified with the unit sphere S® in the quaternions H by
the Lie group isomorphism,

S8 C?—s SU() (a,b) > ( _‘LB 2)

The center of SU(2) is +id. In particular we get from the exact sequence 7.3 an identification
of SU(2)/center(SU(2)) = SO(3). Hence we obtain a contravariant functor:

8.1 R(7?) : { discrete groups } — { SO(3)-spaces }
There are the following natural maps :

8.2 ¢ : H'(1r) — H3(R(m,R))

given by the following composition :

HY(w) — Hom(7w,Z) — map(R(Z,G), R(r,G)) —

map(G, R(m,G)) — Hom(H,(G), H,(R(m,G))) == H,(R(r,G))

where n is the dimension of G and ev evaluation at the fundamental class [G] € H,(G).
Define

8.3 ¢: T, R(r,G) — H'(m; LG)
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as follows. Consider an element in the tangent space T, R(m,G) of R(m,G) at the trivial
representation py given by a derivation D on the germ of functions on R(w,G) at py. Let
evy : R(m,G) — G be the homomorphism given by evaluation at w € w. Pulling back the
derivation D with ev,, defines a derivation D,, sending a germ f of functions on G at 1 to
D(f o evy,). This defines a homomorphism from m to T\G = LG. Let its class in H'(m; LG)
be the image of D under ¢.

Lemma 8.4

1. The homomorphisms ¢ and ¢ defined in 8.2 and 8.3 are natural in 7.

2. The homomorphisms ¥ and ¢ defined in 8.2 and 8.3 are compatible with amalgamation
of groups.

3. Suppose that 7 is a finitely generated free group and G is S3. Then the homomorphisms
Y and ¢ defined in 8.2 and 8.3 are isomorphisms.

4. Suppose that m is a finitely generated free group and G is S®. Then we obtain an
1somorphism, natural in 7

%

U : H*(R(m, S*) — N\ Hi(m)
Proof : 3.) Choose a bases s, Sy ...s. of m. Then we get a natural identification :
R(m)=][5*
i=1

Because of 2.) the following square commutes

DIYZ(s;)

& H'(Z(s:)) & H3(R(Z(s:)))

(ki Z(si)

H' (x5, Z(s7)) Hs(R(+i21Z(s:)))

where the right vertical arrow comes from the Kinneth formula and is an isomorphism
because H;(S?) is Z fori = 0,3 and zero otherwise. Also the left vertical arrow is a bijection.
Hence it suffices to prove the claim in the special case m = Z what is easily done.

4.) Define U by the following composition of isomorphisms resp. their inverses :

U : H*(R(r)) «— \" H*(R()) +— A" Han(Hy(R()), Z)
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N A Han(H' (x), Z) «— \* H, () .

Recall that a SU(2)- representation is reducible if it contains a proper invariant linear
subspace and irreducible otherwise.

Lemma 8.5 Let M be an orientable closed 3-manifold. Then the following assertions are
equivalent :

1. M s a homology sphere.
2. The fundamental group m (M) is perfect.
3. H(M) = H\(M;Z) is zero.

4. There are no non-trivial reducible SO(3)-representations of m(M). n

Proof: 1.) and 3.) are equivalent by Poincare duality and the universal coefficient theorem.
Since H{(M) is the abelianization of mi (M), the assertions 2.) and 3.) are equivalent. If
H, (M) is not trivial, one easily constructs a non-trivial representation of Hy(M) and hence
of mi(M). It remains to prove that 4.) implies 3.)

Suppose that p is a non-trivial reducible representation of m(M). Hence p is the
direct sum of two 1-dimensional unitary representations p; and ps. But these are given by
homomorphisms from (M) to S'. As p is non-trivial, py or py is non-trivial. Hence there is
a non-trivial homomorphism from m (M) to the abelian group S*. This implies that Hy(M)
1S5 non-trivial. [ ]

Lemma 8.6 A representation p of the discrete group m into SU(n) is irreducible, if and
only if its isotropy group under the SU(n)-operation on R(w,SU(n)) by conjugation is the
center of SU(n).

Proof : Let A be an element of the isotropy group of p, i.e. A-p(w) - A~t = p(w) holds for
all w € . Let X be a complex number and Ey(A) be the eigenspace of A for the eigenvalue ).
As A - p(w) = p(w) - A holds for all w € m, E\(A) is a p-invariant subspace of C". Notice
that A has at least one eigenvalue X. Then E\(A) is a non-trivial subspace of C™. Suppose
that the representation p is irreducible. Then E\(A) is the whole space C™ and A lies in the
center of SU(n). Suppose that p is reducible. If V' is a proper p- invariant subspace in C",
we get a decomposition of p into V@ V=+. Let A be a matriz acting on V by the identity and
on V+ by \-id for some complex number X # 1. Then A belongs to the isotropy group of p,
but not to the center of SU(n). n

If we apply the functor R(?) to the diagram 1.23 and define :
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Notation 8.7 Ry := R(m(0F™))
R* := R(m(F¥))
R := R(m(F))
Q; := R(m (W5)) fori = 0,1 m

we obtain :

8.8
Q1

Ry <~—— R «~— R R(m (M)

Q2

Notice that all maps in this diagram are inclusions except the map 0 : R* — Ry which
s an epimorphism. We derive from the presentation of the fundamental groups 7.15

89 R'=TI7,S°
Qi = §:1 S3

Therefore the intersection number < Q1, Qs >g+ of Q1 and Qs in R* is defined.

Proposition 8.10 Let M be an oriented 3-manifold. Then :

1. < Qy,Qq >pg- 1s different from 0 if and only if M is a rational homology sphere.

2. If M s a rational homology sphere, then
|< Q1, Q2 >r-|=| Hi(M;Z) |

3. < Q1,Qs >p is £1 if and only if M is an integral homology sphere.

4. Q1 and @ intersect at 1 transversely if and only if M is a rational homology sphere.

Proof : Consider the following composition of isomorphisms :

N (Hi (1 (W1)) @ Hy(m(Wa))) — (N (Hy(m1(Wh))) @ (A Hy(m (Wa))) 223
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H*(R(m (Wh))) @ H*(R(m (W) — H*(Q1) ® H*(Q2) — H*(Q1 X Q2)
As i (F*) is free of rank g, there is a Lie group structure on R* =T[?_, S®. Define the map

m:Q1XQ2—>R*

by m(q1,q2) = q1 - g2. Then the intersection number of Q1 and Qy in R* is just the degree of
m. The following square commutes :

A" (Hi (i) @ Hi(i2))

N Hy(mi(F*)) N* (Hy(m(Wh)) ® Hy(mi(Wa)))
(0 (0
H*(m)
H*(R*) H*(Q1 x Q2)

The upper horizontal arrow can be identified with the first arrow in the following sequence,
whose exactness follows from the Mayer-Vietoris sequence :

Hy(Fr) T2 B ) @ Hy (Wh) — Hy (M) — {0}
The cokernel of H,(iy) ® Hy(iy) is finite, if and only if N (Hy(i1) ® Hy(iz)) is different
from zero. If this cokernel is finite, its cardinality is the cardinality of the cokernel of

A¥ (H,(i1) © H,(iy)). Now the assertions 1.),, 2.) and 3.) follow.

It remains to prove 4.). Notice that Q)1 and Qy intersect tranversely at 1, if and only
if the following map is an epimorphism :

T\Q0TiQ, — TV R”
Now the claim follows from lemma 8.4 applied to the map ¢ defined in 8.3. [ ]

Nezt we examine the orbit spaces under the SO(3)-action on the representation spaces.
8.11 S = S(m(F*,x)) :={p € R* = R(m (F*,x)) | pis reducible}

Proposition 8.12

1. The map 0 is surjective.

2. The set of critical points is the set S of reducible representations.
3. S(m(F*,z)) = S(m(F, x))
4. R=071(1)
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5. R — S is an open smooth manifold of dimension 6g — 3 and carries a free proper
SO(3)-action.

Proof: 1.) and j.) The functor R(?,G) turns push outs of groups into pull backs of spaces.
Now apply the theorem of Seifert-von Kampen.

3.) Any reducible SU(2)-representation of w factorizes through the abelianization of w. Hence
any reducible SU(2)-representation of m (F*,x) factorizes through m (F, x).

5.) The action is free by lemma 8.6. Since SO(3) is compact, the action is proper.

We omitt the proof of 2.), as 2.) is not used in the construction of the Casson invariant.
]

Notation 8.13 R := (R — S)/SO(3) Qi = (Q; — S)/S0(3) n
Proposition 8.14

1. R is a smooth open manifold of dimension 6g — 6.
2. Q; is a properly embedded open submanifold of dimension 3g — 3 in R.

3. Ql N QQ 1S compact.

Proof : We derive 1.) and 2.) directly from proposition 8.12. It remains to prove 3.) that
Ql N QQ 1S compact.

Since m (F*,z) — m (M, x) is an epimorphism, we get :
S(m(M,z)) =SNR(m (M, z))

By the theorem of Seifert-von Kampen the square in the diagram of groups 7.14 is a push
out of groups. As the functor R(?,G) turns push outs into pull backs, we conclude :

R(m(M,z)) = Q1N Q,

This implies :
(@ =9)N Q=) ]I{1} =i NQy
Since Q1 and Qy intersect at 1 transversely, {1} is an open subset in Q1 N Q. Since

(@1 — S) N (Q2 — S) is a closed subset of the compact set Q1 N Q2, (Q1 — ) N (Q2 — S) and
hence its quotient under the SO(3)- action Q1 N QQ 15 compact. [ ]

If one has fixed orientations on R and Ql, then the intersection number < Ql, QQ >h
is defined by proposition 8.14. One can find an isotopy of QZ which is constant outside a
compact set containing Q1 N Qs such that the intersection of Qy and Qs consists of finitely
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many points where Ql and QQ meet transversely. Then the intersection number is the sum
of these finitely many intersection points counted with a sign which depends on the local
orientations.

The orientation on M induces an orientation on Wy and Wy by restriction. Then F
from Wy, F* from F and OF* from F* inherit orientations by the general conventions for
boundaries of oriented manifolds resp. by restriction. The orientation on OF* determines a
generator in w (OF*) and thus an orientation on Ry . Fiz any orientation on R*. As R— S
sits in the preimage of 1 of the map 0 : R* — Ry, we obtain a short exact sequence

0—T,(R—S) — T,R* 22 'Ry — 0

Thus the oreintations of R* and Ry induce an orientation on R — S. This determines also
on orientation on R using the exact sequence

0 — T1S0(3) — To(R—S) — TR — 0

All in all we have explained, how an orientation of M induces an orientation on R, if we
have fized an orientation on R*. Choose any orientations on @)1 and Q. This induces
orientations on Q1 and (Qs. Now we define

Definition 8.15 (Casson invariant)

Let M be a oriented homology 3-sphere . Define :

L (_l)g < QlaQQ >h
AM) = 2: < Q1,Q2 >k

Obuviously this is independent of the choice of orientation of R*, Q1 and Qs because a
change of one of these orientations changes the sign in the nominator and denominator in
the fraction defining the Casson invariant simultaneously. The condition that M is a rational
homology 3-sphere guarantees that < Q1,Qa >pg- is not zero (see 8.10). We have to divide
out this term to ensure that the choice of orientation on R*, Q)1 and Qs do not matter. If we
neglect this choice, the Casson invariant would reduce to a number mod 2 and hence just to
the Rohlin invariant. But we even need that M is an integral homology sphere because then
the only reducible SO(3)-representation of m(M; Z) is the trivial one (see Lemma 8.5). This
is crucial for the proof that the intersection of Q1 and Qo in R is defined (see Proposition

8.14).

We have to show that the Casson-invariant is independent of the choice of Heegard-
splitting. We begin with verifying, that we get the same invariant, if we interchange the order
of the Wi-s to (Wo, W1). If we keep all orientations as in (Wi, W), but interchange Q1 and

Q-, we get :

<Q1,Qy > p=(—1)B393)B93). < Qa, Q1 >p
< Q1,Q2 >p=(—1)39 < Qs,Q1 >p-
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This implies :
(1) < @1, Qx> _(=Dr< Q2, Q1 >
2. <Q1,Q2>r 2 <Q2Q1 >p
If we interchange Wy and Wy, F* and hence Ry and R get the reversed orientations, whereas
we can assume that the orientations on QQ1, Q2 and R* are unchanged. Hence the order of

the W;-s does not matter.

In order to show that the choice of Heegard splitting does not matter, it suffices because
of theorem 7.10 to analyse what happens under suspension. Then the genus of the Heegard
decomposition is increased by one and the corresponding diagram of representation spaces
can be identified with :

8.16

a/
R, «—— R*xS*x8 «— I R(m(M))

QQ X {]_} XSg

We compute for the intersection number < @}, QY >g«, where < , > denotes both the
intersection and the Kronecker pairing and | | denotes the images of the fundamental classes
or the Poincar’e duals of them in the homology resp. cohomology of R* resp. R* x S3 x S3 :

<@, Q) >po=

< QxS x{1},Q x {1} x S >pe gsngs=

<[Q1 x 83 x {1}JU[Qa x {1} x S3],[R* x S? x §%] >=

(—1)7 <[] U [@Q] U[S® x {THU[{1} x S°], [RF]U[S® x %] >=
(=19 <[] U[@], [R] > - < [S* x {1} U[{1} x S, [S® x %] >=

(=1)9 < Q1,Q2 >r
We get on the quotient level :
~ ! ~ ! ~ ~
<Qi,Qy >p= (1)1 <Q,Q2 >3

To prove this, one purtubates Q1 x S? x {1} within E*’ to P, relative to a compact subset
such that Py and (Qy x {1} x S®) are transverse in R'. Then Py N R* x {1} x {1} lies in
R and is on the quotient level a pertubation of Q1 which is transverse to QQy in R. Now
the set of intersection points of the two relevant sets agree, but the signs of the intersection
points differ by a sign (—1)97', because the dimension of Qs is 3g — 3. This shows that

suspending the Heegard decomposition does not affect the number appearing in the definition
of the Casson invariant. This shows that the Casson invariant is well-defined.
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