
1.se
tion

Survey over the Casson invariant

We start with des
ribing the Casson invariant axiomati
ally.

1.1 The Casson invariant assigns to any oriented homology 3-sphere M an integer

�(M) 2 Z

su
h that the following 
onditions are satis�ed :

1.) If M and N are oriented homeomorphi
, then �(M) = �(N).

2.) Let K � M be a knot. Suppose that M(K; 1=n) is obtained fromM by

1

n

-surgery on K.

ThenM(K; 1=n) is again a homology 3-sphere . Let �

K

be the symmetrized and normalized

Alexander-Conway polynomial of K � M . Then :

�(M(K; 1=(n+ 1))� �(M(K; 1=n)) =

1

2

��

00

K

(1)

3.) �(S

3

) = 0

We start with explaining the various terms appearing in the axioms above and then

derive some 
on
lusions and give appli
ations. Finally we indi
ate the 
onstru
tion of the

Casson invariant.

De�nition 1.2 Let R be a 
ommutative asso
iative ring with unit and n a positive integer.

A R-homology n-sphereM is a n-dimensional manifoldM satisfying H

�

(M ;R) = H

�

(S

n

;R).

We 
allM a homology sphere or integral homology sphere, if R is Z, and a rational homology

sphere, if R is Q

Any R-homology n-sphere is a 
losed orientable manifold. The following result is a

dire
t 
onsequen
e of Poin
ar�e duality and the fa
t that any redu
ible SO(3)-representation

is in fa
t a S

1

-representation and fa
torizes over �

1

(M) �! H

1

(M).

Lemma 1.3 Let M be an orientable 
losed 3-manifold. Then the following assertions are

equivalent :

1. M is a homology sphere.

2. The fundamental group �

1

(M) is perfe
t.

3. H

1

(M) = H

1

(M ;Z) is zero.

4. There are no non-trivial redu
ible SO(3)-representations of �

1

(M).
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A link K in a 3-manifold M is an oriented 
losed submanifold of 
odimension 2. In

other words, it is a disjoint union of embedded 1-dimensional spheres in M . A knot is a

link whi
h has only one 
omponent. Consider a knot K in the oriented homology 3-sphere

M . Let N(K) be a 
losed regular neighbourhood of K. De�neM(K) =M � int(N(K)).By

Alexander duality H

1

(M(K))

�

=

H

2

(M;K). We derive from the long 
ohomology sequen
e

H

2

(M;K)

�

=

H

1

(K), sin
e M is a homology sphere. Hen
e H

1

(M(K)) is isomorphi
 to

Z. We denote by � resp. � a generator of the kernel of i

�

: H

1

(�N(K)) �! H

1

(N(K))

resp. j

�

: H

1

(�N(K)) �! H

1

(M(K)), where i and j are the in
lusions. These genera-

tors are only unique up to multipli
ation with �1. They 
an also be 
hara
terized by the

property that they are represented by simple 
urves in �N(K) su
h that the linking num-

ber of � resp. � with K is �1 resp. 0. The orientation of M indu
es an orientation

on N(K) and hen
e an orientation on �N using the outward normal and the de
omposi-

tion �(�N(K); N(K)) � T�N(K) = TN(K) j

�N(K)

. We always assume that the interse
tion

number of � and � in �N is +1. Then there are only two 
hoi
es for the pair (�; �). Fix

su
h a 
hoi
e. We 
all � the longitudinal and � the meridian of K �M .

1.4 Longitudinal and meridian

λ

µ

µ

λ

Suppose we have �xed integers p and q satisfying (p; q) = (1). Let � : S

1

� �D

2

�! �N(K)

be a homeomorphism assigning p�+ q� to the 
lass of f1g � �D

2

2 H

1

(S

1

� �D

2

). Then

de�ne M(K; p=q) by the push out
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1.5 S

1

� �D

2

M(K)

-

i Æ �

? ?

S

1

�D

2

M(K; p=q)

-

Equip M(K; p=q) with the orientation indu
ed from M(K) �M . We 
laim that the

oriented homeomorphism type of M(K; p=q) depends only on the underlying set of K and

the element p=q 2 Q [ f1g and is independent of the 
hoi
es of �; �,p, q and � and the

orientation of the knot. Suppose that we have made di�erent 
hoi
es �

0

; �

0

, p

0

, q

0

and �

0

.

The 
omposition �

�1

Æ �

0

: S

1

� �D

2

�! S

1

� �D

2

sends the 
lass of f1g � �D

2

to itself up

to a possible sign. Isotopy 
lasses of self maps of S

1

� S

1

are 
lassi�ed by the indu
ed map on

homology. Hen
e a homeomorphism f : S

1

� S

1

�! S

1

� S

1

extends to a homeomorphism

F : S

1

�D

2

�! S

1

�D

2

if and only if there is a homomorphism g making the following

diagram 
ommutative

H

1

(S

1

� S

1

) H

1

(S

1

� S

1

)

-

H

1

(f)

?

i

�

?

i

�

H

1

(S

1

�D

2

) H

1

(S

1

�D

2

)

-

g

This implies the existen
e of an extension � : S

1

�D

2

�! S

1

�D

2

of �

�1

Æ �

0

. Now the

desired homeomorphism is indu
ed by �, �

�1

Æ � and the identity on M(K). Given a knot

K in a homology 3-sphere and an element r 2 Q [ f1g, we say that M(K; r) is obtained

from M by r-Dehn surgery on K. Noti
e that M(K;1) =M holds.

Lemma 1.6 Let K be a knot in the homology 3-sphereM . Let p and q be integers satisfying

(p; q) = (1). Then

H

1

(M(K; p=q)) = Z=p

In parti
ular M(K; 1=n) is again a homology 3-sphere .

Proof : This follows from the Mayer-Vietoris-sequen
e of 1.5 whi
h gives an exa
t sequen
e

Z� Z

(p;1)

�! Z� Z �! H

1

(M(K; p=q)) �! f0g
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Let K be a knot in a homology 3-sphere M . Denote by X the knot 
omplement

M �K. We have already shown above using Alexander duality that H

1

(X) is isomorphi
 to

Z. Let p :




X �! X be the 
orresponding 
y
li
 
overing. Then there is an exa
t sequen
e

for some r � 0

0

-

�

r

Z[Z℄

-

i

�

r

Z[Z℄

-

H

1

(




X)

-

0

Let det(i) 2 Z[Z℄ be the determinant of i. Then there is exa
tly one �nite Laurent series

with integral 
oeÆ
ients p(t) su
h that p(1) = 1, p(t) = p(t

�1

) and p(t) = �t

m

� det(i) for

appropiate m 2 Z holds. This Laurent series denoted by �

K

is an invariant of the knot K,


alled the (symmetrized and normalized) Alexander polynomial. Now we have de�ned all

terms in the axiomati
 
hara
terization of the Casson invariant 1.1.

1.7 The Casson invariant has also the following properties :

a. ) If M

�

denotes the manifold M with orientation reversed, then :

�(M) = ��(M

�

)

b ) If �(M) 6= 0, then there is a non-trivial representation of �

1

(M) in SU(2). In parti
ular

the Casson invariant vanishes for homotopy 3-spheres, i. e. oriented 3-manifolds with the

homotopy type of S

3

.


.) Let �(M) 2 Z=2 be the Rohlin invariant of the homology 3-sphere M . Then :

�(M) � �(M) mod 2

In parti
ular the Rohlin invariant of a homotopy sphere is zero.

d.) Let M℄N be the 
onne
ted sum of the homology 3-spheres M and N . Then M℄N is

again a homology 3-sphere satisfying

�(M℄N) = �(M) + �(N)

e.) The Casson invariant is uniquely determined by its axioms 1.1

We re
all the de�nition of the Rohlin invariant �(M) of a Z=2-homology 3-sphere. For

any su
h M there is a 4-dimensional PL-manifoldW with �W =M and vanishing �rst and

se
ond Stiefel Whitney 
lasses w

1

(W ) and w

2

(W ). These 
onditions are equivalent to the

existen
e of a Spin-stru
ture on W . In parti
ular W is orientable. The Rohlin invariant

�(M) 2 Z=16 is the 
lass represented by the signature �(W ). This is well de�ned by Rohlin's

Theorem that the signature of an orientable 
losed 4-dimensional PL-manifold with a Spin-

stru
ture is divisible by 16. Namely, if V is another su
h manifold, the 
losed 4-manifold

W [

M

V

�

has trivial �rst and se
ond Stiefel Whitney 
lass be
ause Stiefel-Whitney 
lasses

are natural and the restri
tion mapsH

i

(W [

M

V

�

;Z=2) �! H

i

(W ;Z=2)�H

i

(V

�

;Z=2) are

inje
tive, and the signature is additive : �(W [

M

V ) = �(W ) + �(V ). IfM is a Z-homology

3-sphere, the signature of W is always divisible by 8. Then one de�nes the Rohlin invariant

�(M) 2 Z=2 to be the 
lass of �(W )=8. We will always use the last de�nition of the Rohlin

invariant for a homology 3-sphere .
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Next we make some 
omments on the properties 1.7 of the Casson invariant listed

above.

1.8 We will later prove that for any oriented homology 3-sphere M there is a sequen
e of

oriented homology 3-spheres M

0

, M

1

, ... , M

r

su
h that M

j

is obtained from M

j�1

by 1=n-

surgery on a knot K

j�1

� M

j�1

and M

0

is S

3

and M

r

is M . This implies e.), the uniqueness

of the Casson invariant.

1.9 Any integer 
an o

ur as the value of the Casson invariant. Be
ause the Casson inva-

riant is addititive under 
onne
ted sum, it suÆ
es to realize the value 1. Consider the trefoil

T in S

3

. Its Alexander-Conway polynomial is �

T

(t) = t� 1 + t

�1

. Noti
e that S

3

(T; 1)

is the so-
alled Poin
ar�e sphere, whi
h is de�ned as the quotient of SU(2) by the binary

dode
ahedral group A

�

5

of order 120. This is the universal 
entral extension of A

5

by Z=2.

Sin
e �(S

3

(T; 0)) = �(S

3

) = 0, we get

�(S

3

(T; 1)) = 1

1.10 The Casson invariant is not an invariant of the fundamental group. Let M be a

oriented homology 3-sphere with non-trivial Casson invariant . Then the Casson invariant

of M℄M

�

is zero be
ause of

�(M℄M

�

) = �(M) + �(M

�

) = �(M)� �(M) = 0

On the other hand �(M℄M) is 2 � �(M) and hen
e di�erent from zero. But M℄M and

M℄M

�

have the same fundamental group by the Theorem of Seifert-von Kampen, namely

the amalgam of �

1

(M) with itself.

1.11 The Casson invariant is not invariant under homology bordism. A homology bordism

fromM to N is a bordismW fromM toN su
h that the in
lusion of bothM and N inW is a

homology equivalen
e. Namely, there is a oriented homology 3-sphereM bounding a smooth


ontra
tible 4-manifold W with non-trivial Casson invariant. Noti
e that W � int(D

4

) is a

homology bordism between M and S

3

for any imbedded D

4

� W . Re
all that the Rohlin

invariant is an invariant under homology bordism.

1.12 If the oriented homology 3-sphere M possesses an orientation reversing di�eomor-

phism, then its Casson invariant vanishes be
ause of �(M) = �(M

�

) = ��(M). In parti
u-

lar the Rohlin invariant of M is zero.

This 
on
lusion is important be
ause of the following result

Theorem 1.13 (Galewski-Stern) The following assertions are equivalent :
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� Ea
h topologi
al manifold of dimension � 7 
an be triangulated.

� There is a homology 3-sphere H su
h that H℄H bounds a 
ontra
tible 4-dimensional

PL-manifold and �(H) = 1.

A strategy to 
onstru
t su
h an oriented homology 3-sphere is to 
onstru
t an oriented

homology 3-sphere H with �(1) = 1 
arrying an orientation reversing involution. Then

H℄H is oriented di�eomorphi
 to H℄H

�

. As ((H � int(D

3

))� I)� int(D

4

) is a homology

bordism from H℄H

�

to �D

4

, H℄H is the boundary of an a
y
li
 4-dimensional manifold.

But su
h a H does not exist by 1.12.

We give some explanations of the Theorem 1.13 of Galewski and Stern. A polyhedron

P is a subset P � R

n

su
h that any point p 2 P possesses a 
one neighbourhood of the

shape N = fpg �K for a 
ompa
t subset K � P where � denotes the join. We 
all N a star

and K a link of p in P . A map f : P �! Q between polyhedra is pie
ewise linear or PL

for short if ea
h point p 2 P has a star N = fpg �K su
h that f(�a+ �x) = �f(a) + �f(x)

holds. As R

n

has a 
anoni
al stru
ture of a polyhedron, the notion of a PL-stru
ture on a

topologi
al manifold is obvious. A triangulation (K; t) of a topologi
al spa
e X is a simpli
al


omplex K together with a homeomorphism t :j K j�! X. A simpli
al 
omplex whi
h is

PL-homeomorphi
 to a PL-manifold is 
alled a 
ombinatorial manifold . It is 
hara
terized

by the fa
t that any link of ea
h simplex is PL-homeomorphi
 to a PL-sphere or PL-ball.

A PL-triangulation of a polyhedron P is a triangulation (K; t) with the property that t is

a PL-homeomorphism. Any polyhedron possesses a PL-triangulation. If f :j K j�!j L j is

a PL-homeomorphism of the underlying polyhedra of simpli
ial 
omplexes K and L, then

there are subdivisions K

0

and L

0

su
h that f is indu
ed from a simpli
ial map from K

0

to

L

0

. A topologi
al manifold M has a PL-stru
ture if and only if it has a triangulation by a


ombinatorial manifold. We will see the existen
e of a non-
ombinatorial triangulation of

some PL-manifold and of topologi
al manifolds possessing no triangulation. There are also

topologi
al manifolds possessing a triangulation but not a PL-stru
ture.

There are 
lassifying spa
es BPL, BTRI and BTOP for PL-manifolds, topologi
al

manifolds with triangulation and topologi
al manifolds and natural maps BPL �! BTRI

and BTRI �! BTOP . A topologi
al manifold possesses a triangulation if and only if its


lassifying map into BTOP has a lift to BTRI and similiar for BPL, provided that the

dimensions are large enough. Let �

h

3

be the abelian group of homology bordism 
lasses of

oriented homology 3-spheres modulo oriented homology 3-spheres whi
h are the boundary

of a
y
li
 4-dimensional PL-manifolds. The stru
ture of �

h

3

is at the time of writing not

known, at least one knows that it is not �nitely generated. The Rohlin invariant de�nes a

homomorphism � : �

h

3

�! Z=2. We get an exa
t sequen
e

1.14 0

-

ker(�)

-

�

h

3

-

�

Z=2

-

0

There are �brations
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1.15 K(Z=2; 3) �! BPL �! BTOP

K(�

h

3

; 3) �! BPL �! BTRI

K(ker(�); 4) �! BTRI �! BTOP

Let �(M) 2 H

4

(M ;Z=2) be the Kirby-Siebenmann obstru
tion for the existen
e of a

PL-stru
ture on a topologi
al manifold M . The short exa
t sequen
e 1.14 above de�nes a

Bo
kstein homomorphism

1.16 � : H

4

(M ;Z=2) �! H

5

(M ; ker(�))

Put r(M) := �(�(M)). Then r(M) is the obstru
tion for the existen
e of a trian-

gulation of M . The existen
e of an oriented homology 3-sphere H with the properties that

�(H) = 1 and H℄H is the boundary of an a
y
li
 4-dimensional PL-manifold, is equivalent

to the existen
e of a se
tion for the sequen
e 1.14. If su
h a se
tion exists, the Bo
kstein

homomorphism and hen
e r(M) vanishes.

A PL-stru
ture on a manifold is more than the existen
e of a triangulation. For n � 5

there is a triangulation on S

n

whi
h is not 
ombinatorial. Namely, let H be a homology

3-sphere whi
h not homotopi
 to S

3

su
h that there is a homeomorphism from�

2

H to S

5

.

Su
h H exists by the Double Suspension Theorem of Edwards. Choose a triangulation on

H. It indu
es a triangulation on �

2

H and by the homeomorphism above on S

5

. We have an

embedding S

1

� �

2

H 
oming from suspending ; � H twi
e. If the triangulation on H were


ombinatorial, then this embedding would be a PL-embedding. Hen
e it would be isotopi


to the standard embedding of S

1

into S

5

. This would imply S

5

� S

1

' S

3

, a 
ontradi
tion

to �

2

H � S

1

' H.

1.17 Maybe the most important appli
ation of the Casson invariant is the 
on
lusion that

the Rohlin invariant of a homotopy 3-sphere is zero. A lot of strategies for disproving the

3-dimensional Poin
ar�e 
onje
ture that any homotopy 3-sphere is homeomorphi
 to S

3

were

based on �nding a homotopy 3-sphere with non-trivial Rohlin invariant (see Mandelbaum

[29℄).

Another 
onsequen
e is the existen
e of 4-dimensional topologi
al manifolds having no

triangulation. By the 
elebrated result of Freedman (see Freedman [12℄), there is a 
losed, 1-


onne
ted, almost parallelizable, almost-smooth 4-dimensional topologi
al manifoldM with

interse
tion matrix E

8

. "Almost" means that the property holds for M � fpointg. Suppose

that M has a triangulation (K; t). Let S resp. L be the star resp. link of a vertex v.

Then L is homotopy 3-sphere and a homology 3-manifold. This implies already that L is a

3-manifold bounding a smooth 4-manifold




M obtained from M by taking out the interior

of S. As M and




M have the same interse
tion form, the signature of




M is 8. Sin
e




M is

parallelizable, the Rohlin invariant of L is 1. But it must be 0 as L is a homotopy 3-sphere,

a 
ontradi
tion.
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Next we make some 
omments on the 
onstru
tion of the Casson invariant . We need

some notation.

Notation 1.18

Let W

g

=W be the standard modell of the 3-dimensional handle body of genus g. Namely

W is the g-fold 
onne
ted sum of S

1

�D

2

.

Denote by F the boundary of W . This is the surfa
e of genus g, or in other words, the g-fold


onne
ted sum of S

1

� S

1

.

Let D � F be a �xed embedded 2-disk.

Put F

�

:= F �D and S

1

:= �D.

Fix a base point x 2 D

1.19

a

1

a

2

b

1

b

2

x

D

The standard orientation ofR

3

indu
es an orientation onW . Then F , F

�

, D and S

1

inherits

orientations by the general agreement that an oriented manifold indu
es an orientation on

its boundary using the de
omposition �(�M;M) � T�M = TM j

�M

and the outward normal

�eld.

De�nition 1.20 (Heegard modell) Consider an orientation reversing homeomorphism

h : (F;D; x) �! (F;D; x). De�ne the Heegard modell of h by

j (W;H) j:=W [

h

W

8



De�nition 1.21 (Heegard splitting) LetM be an oriented 
losed 3-manifold. A Heegard

splitting of M is a pair (W

1

;W

2

) 
onsisting of submanifolds W

1

;W

2

�M of 
odimension 0

satisfying

W

1

[W

2

=M �W

1

= W

1

\W

2

= �W

2

W

1

�

=

W

2

Any oriented 
losed 3-manifold has a Heegard-de
omposition. For a handle body

de
omposition of M with exa
tly one 0- and one 3-handle put W

1

resp. W

2

to be the

union of all 0 and 1-handles resp. all 2- and 3-handles. If (W

1

;W

2

) is a Heegard de
om-

position of M and f

i

: W

i

�!W is a homeomorphism to the standard handle body for

i = 1; 2 su
h that the 
omposition f

2

Æ f

�1

1

indu
es an orientation reversing homeomorphism

h : (F;D; x) �! (F;D; x), then M and j (W;h) j are oriented homeomorphi
. Two Heegard

de
omposition of the same manifold are equivalent in the sense that after stabilization they

be
ome isotopi
. The stabilization pro
ess 
onsists of taking out a so 
alled unknotted handle

in W

1

and in
reases the genus by 1. It may happen that two Heegard splittings of the same

genus are not isotopi
, although appropiate stabilizations of them are.

Given a Heegard splitting (W

1

;W

2

) of M , we obtain a diagram of in
lusions of spa
es

1.22

�F

�

-

F

�

-

F

�

�>

Z

Z~

W

1

W

2

Z

Z~

�

�>

M

Applying the fundamental group with respe
t to the base point x gives a diagram of homo-

morphisms of groups

1.23

�

1

(�F

�

)

-

�

1

(F

�

)

-

�

1

(F )

�

�>

Z

Z~

�

1

(W

1

)

�

1

(W

2

)

Z

Z~

�

�>

�

1

(M)

9



That all the maps in the diagram 1.23 are epimorphisms ex
ept for the �rst one,

follows from the following presentations of the fundamental groups if M is the Heegard

modell j (W;h) j. The paths a

i

and b

i

on F

�

are indi
ated in diagram 1.19 and i : F �!W

is the in
lusion.

1.24 �

1

(F

�

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

>

�

1

(F; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j

Q

g

i=1

[a

i

; b

i

℄ = 1 >

�

1

(W

1

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j b

1

= b

2

= ::: = b

g

= 1 >

�

1

(W

2

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j (i Æ h

�1

)

�

(b

j

) = 1 1 � j � g >

�

1

(M;x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::; b

g

j b

j

= 1; (i Æ h)

�1

�

(b

j

) = 1 1 � j � g >

Let G be a dis
rete group. The spa
e of representations of G in SU(2) is de�ned by

1.25 R(G) := Hom(G; SU(2)) � map(G; SU(2))

The 
onjugation operation of SU(2) on itself indu
es an operation of SO(3) =

SU(2)=Z=2 = SU(2)=
enter(SU(2)) on SU(2) and hen
e an SO(3)-operation on R(G). If

we apply this fun
tor R(?) to the diagram 1.23 and de�ne :

Notation 1.26 R

�

:= R(�

1

(�F

�

))

R

�

:= R(�

1

(F

�

))

R := R(�

1

(F ))

Q

i

:= R(�

1

(W

i

)) for i = 1,2

we obtain a diagram where all maps ex
ept � are in
lusions:

1.27

R

�

�

�

R

�

�

R

�

�=

Z

Z}

Q

1

Q

2

Z

Z}

�

�=

R(�

1

(M))

We derive from the presentation of the fundamental groups 1.24 sin
e �

1

(F

�

) and �

1

(W

i

)

are free:

10



1.28 R

�

=

Q

2g

j=1

S

3

Q

i

=

Q

g

j=1

S

3

R

�

= S

3

Hen
e the interse
tion number < Q

1

; Q

2

>

R

�

of Q

1

and Q

2

in R

�

is de�ned. One key

result is the following :

Proposition 1.29 Let M be an oriented 3-manifold. Then :

1. < Q

1

; Q

2

>

R

�

is di�erent from 0 if and only if M is a rational homology sphere.

2. If M is a rational homology sphere, then

j< Q

1

; Q

2

>

R

�

j=j H

1

(M ;Z) j

3. < Q

1

; Q

2

>

R

�

is �1 if and only if M is an integral homology sphere.

4. Q

1

and Q

2

interse
t at 1 transversely if and only if M is a rational homology sphere.

Next we examine what happens after dividing out the SO(3)-a
tion on the representa-

tion spa
es. Re
all that a representation is redu
ible if it 
ontains a proper invariant linear

subspa
e and irredu
ible otherwise. Let the map

1.30 � : R

�

�! R

�

be indu
ed from the in
lusion i : �F

�

�! F

�

. Denote for a (dis
rete group) G

1.31 S(G) = f� 2 R(G) j � is irredu
ible g

The key result for the 
onstru
tion of the Casson invariant is :

Proposition 1.32

1. The map � is surje
tive.

2. The set of 
riti
al points is the set S of redu
ible representations.

3. S(�

1

(F

�

; x)) = S(�

1

(F; x))

4. R = �

�1

(1)

11



5. R � S is an open smooth manifold of dimension 6g � 3 and 
arries a free proper

SO(3)-a
tion.

We will deal with its proof in a later le
ture. As SO(3) is 
ompa
t, we get smooth,

free and proper SO(3)-a
tions on R, Q

1

and Q

2

.

Notation 1.33

^

R := (R � S)=SO(3)

^

Q

i

:= (Q

i

� S)=SO(3)

This implies

Proposition 1.34

1.

^

R is a smooth open manifold of dimension 6g � 6.

2.

^

Q

i

is a properly embedded open submanifold of dimension 3g � 3 in

^

R.

3.

^

Q

1

\

^

Q

2

is 
ompa
t.

If one has �xed orientations on

^

R and

^

Q

i

, then the interse
tion number <

^

Q

1

;

^

Q

2

>

^

R

is de�ned.

The orientation on M indu
es an orientation on W

1

and W

2

by restri
tion. Then F

from W

1

, F

�

from F and �F

�

from F

�

inherit orientations by the general 
onventions for

boundaries of oriented manifolds resp. by restri
tion. The orientation on �F

�

determines a

generator in �

1

(�F

�

) and thus an orientation on R

�

. Fix any orientation on R

�

. As R � S

sits in the preimage of 1 of the map � : R

�

�! R

�

, the orientations of R

�

and R

�

indu
e an

orientation on R�S. This determines also on orientation on

^

R. All in all we have explained,

how an orientation of M indu
es an orientation on

^

R. Fix any orientations on Q

1

and Q

2

.

This indu
es orientations on

^

Q

1

and

^

Q

2

. Now we de�ne

De�nition 1.35 (Casson invariant)

Let M be a oriented homology 3-sphere . De�ne :

�(M) :=

(�1)

g

� <

^

Q

1

;

^

Q

2

>

^

R

2� < Q

1

; Q

2

>

R

�

Obviously this is independent of the 
hoi
e of orientation of R

�

, Q

1

and Q

2

. If we

reverse the orientation of M , then the orientation of R

�

and hen
e of

^

R is reversed so that

�(M

�

) = ��(M) holds. Evidently �(M) vanishes if there are no non-trivial representations

of SO(3) (
f. 1.7). The 
ondition that M is a rational homology 3-sphere guarantees that

< Q

1

; Q

2

>

R

�

is not zero (see 1.29). We have to divide out this term to ensure that the 
hoi
e

12



of orientation on Q

1

and Q

2

do not matter. If we negle
t this 
hoi
e, the Casson invariant

would redu
e to a number mod 2 and hen
e just to the Rohlin invariant. But we even need

thatM is an integral homology sphere be
ause then the only redu
ible SO(3)-representation

of �

1

(M) is the trivial one (see Lemma 1.3). This is 
ru
ial for the proof that the interse
tion

of

^

Q

1

and

^

Q

2

in

^

R is de�ned (see Proposition 1.34)
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3.se
tion

The Alexander polynomial

The Alexander polynomial was introdu
ed by Alexander in 1928 [3℄ and is still one of

the most important invariants in knot theory. We will de�ne it using Seifert surfa
es and

then give other tools for its 
omputation.

Let S be an oriented Seifert surfa
e for the ordered oriented link L in the oriented

homology 3-sphere M . Choose a trivilization of the normal bundle �(S;M) 
ompatible with

the orientation of M and S and a Riemannian metri
 on M . We obtain an embedding

i : F � S

0

�!M . Let the embeddings :

i

+

: S �!M � S

i

�

: S �!M � S

be the restri
tions to F � f+1g and F � f�1g. Noti
e that the isotopy 
lasses of i

+

and i

�

are independent of the 
hoi
e of Riemannian metri
 on M . The Seifert pairing

3.1 s : H

1

(S)�H

1

(S) �! Z

sends (u; v) to the linking number link(u; i

+

(v)) of u and i

+

�

(v) in M . Choose an integral

bases b

1

; b

2

; ... ; b

k

of H

1

(S). De�ne the Seifert matrix A := (s(b

i

; b

j

))

(i;j=1;k)

. Noti
e that

A

t

= (link(b

j

; i

�

�

(b

i

)))

(i;j=1;k)

and A� A

t

is the interse
tion matrix of the Seifert surfa
e.

The polynomial det(t � A� t

�1

� A

t

) is independent of the 
hoi
e of bases where A

t

is the

transposed matrix.

De�nition 3.2 Let L be an oriented link in a oriented homology 3-sphere M with Seifert

surfa
e S. If S is not a disk, we de�ne the Alexander polynomial by :

�

L

(t) = det(t � A� t

�1

� A

t

):

If S is a disk, de�ne the Alexander polynomial by

�

L

(t) = 1

For a proof that this de�nition is independent of the 
hoi
e of Seifert surfa
e we refer

to [25℄ , page 192� 200 .

Example 3.3 We illustrate the result above by 
omputing the Alexander polynomial of the

trefoil and the Hopf link again but now using Seifert surfa
es. The following pi
ture shows

the Seifert surfa
e of the trefoil together with a standard base a; b of its �rst homology and

a �xed base �; � of the �rst homology group of the 
omplement of the Seifert surfa
e.
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3.4

+

+

+

�

�

�

�

�

a

b

One easily 
he
ks :

link(a; �) = link(b; �) = 1 link(b; �) = link(a; �) = 0

The positive push-o�s a

+

and b

+

look as indi
ated below

3.5

a

+

b

+

Hen
e we obtain :

a

+

= �� b

+

= �� �

Then the Seifert matrix looks like :

A =

 

�1 1

0 �1

!

We obtain for the Alexander polynomial :

�

T

(t) = t

2

� 1 + t

�2

15



For the Hopf link we obtain the following pi
ture

3.6

6

�

�

+

+

+

6

�

The Seifert matrix is (1). Hen
e we obtain :

�

H

(t) = t� t

�1

The next lemma 
olle
ts the main properties of this invariant:

Lemma 3.7 1. If K is an oriented knot in an oriented homology 3-sphere M , we get :

�

K

(1) = 1

2. If L is an oriented link with r-
omponents in a oriented homology 3-sphere , its Alexan-

der polynomial is (�1)

r

-symmetri
:

�

L

(t) = (�1)

r

��

L

(t

�1

)

3. Let L be an oriented link with two 
omponents L

1

and L

2

in an oriented homo-

logy 3-sphere M . If the Alexander polynomial �

L

is zero, then the linking number

link(L

1

; L

2

)is zero. If �

L

is di�erent from zero, we obtain :

1

2

�

d

dt

�

L

�

�

�

�

�

t=1

= link(L

1

; L

2

)

4. �

K℄L

= �

K

��

L

5. �

K

`

L

= 0

6. Let L be an oriented link and K be a knot in the oriented homology 3-sphere M .

Suppose that there are Seifert surfa
es S

L

and S

K

su
h that S

K

\ S

L

= ; holds. Let q

be an integer. Then :

�(L �M) = �(L �M(K; 1=q))

16



Let L

+

, L

�

and L

0

be links in an oriented 3-manifoldM . We 
all (L

+

; L

�

; L

0

) a skein triple

if there is an embedded ball D

3

�M su
h that L

+

, L

�

and L

0

are equal in M � int(D

3

)

and within D

3

look as follows

3.8 Skein triple of links

�

�R

�

�	

L

+

�

�R

�

�	

L

�

�

�R

�

�	

L

0

We say that L

+

, L

�

and L

0

are skein related if (L

+

; L

�

; L

0

) is a skein triple. We


all link diagramms L

+

, L

�

and L

0

skein related if there is a ball D

2

� R

2

su
h that the

diagrams are identi
al outside D

2

and are given inside D

2

be the pi
tures below.

3.9 Skein triple of link diagrams

�

�R

�

�	

L

+

�

�R

�

�	

L

�

�

�R

�

�	

L

0

Of 
ourse three link diagrams L

+

, L

�

and L

0

are skein related if and only if the links,

they dis
ribe in S

3

, are skein related.

17



Lemma 3.10 Let L

+

, L

�

and L

0

be skein related links in an oriented homology 3-sphere

M . Then :

�

L

+

��

L

�

� (t� t

�1

) ��

L

0

= 0

Proof : We 
an �nd Seifert surfa
es S

+

, S

�

and S

0

for L

+

, L

�

and L

0

su
h that they agree

outside an embedded ball D

3

and look inside the ball as indi
ated below :

3.11 Seifert surfa
es of the skein triple

S

+

�

�

+

+

S

�

�

�

+

+

S

0

�

�

+

+

We obtain S

+

and S

�

from S

0

by atta
hing a 1-handle D

1

�D

1

to the boundary. Hen
e

there is a 
urve a in S

+

\ S

�

su
h that H

1

(S

�

) =< a > �H

1

(S

0

) holds. Let a(S

+

)

+

and

a(S

�

)

+

be the positive push-o�s of a for S

+

and S

�

. These 
urves are indi
ated below :

3.12

a(S

+

)

+

a a(S

�

)

+

a s

The 
urve s � D

3

�M satis�es link(s; a) = 1 and a(S

+

)

+

� a(S

�

)

+

= s. Hen
e we 
an
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�nd Seifert matri
es V

+

,V

�

and V

0

su
h that the following holds :

V

+

= V

�

+

0

B

B

B

B

�

1 0 0 � � � 0

0 0 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � 0

1

C

C

C

C

A

V

+

=

 

� �

0 V

0

!

Now one 
al
ulates :

�

L

+

��

L

�

= det(t � V

+

� t

�1

� V

t

+

)� det(t � V

�

� t

�1

� V

t

�

) =

(t� t

�1

) � det(t � V

0

� t

�1

� V

t

0

) = (t� t

�1

) ��

L

0

Let L be a link diagram in S

3

. Denote by 
(L) the number of 
rossings, by r(L) the

number of 
omponents and by n(L) the minimal number of 
rossings whi
h must be 
hanged

in order to get a link diagram des
ribing the trivial link of r(L) 
omponents. The last

number is well de�ned by the following argument. Choose an ordering and orientation of

the 
omponents of L. For i = 1; 2; ... ; r(L)� 1 do the following : Fix a point x on L

i

and

move along L

i

in the positive dire
tion from x to x and, if ne
essary, 
hange the 
rossing

with the 
omponents L

j

for j = i; i+ 1; ... ; r(L) su
h that the ar
, one is just moving on,

is the over
rossing ar
. The 
omponents of the resulting link are sta
ked one below the other

and are hen
e unlinked. Moreover, ea
h 
omponent bounds an embedded disk and is hen
e

trivial. We 
all the pair (
(L); N(L)) the 
omplexity of a link diagram.

Lemma 3.13 Suppose that the fun
tion

� : f isotopy 
lasses of oriented links in oriented homology 3-spheres g �! Z[t; t

�1

℄

has the following properties :

a.) Let L be a link and K be a knot in the oriented homology 3-sphere M . Suppose that there

are Seifert surfa
es S

L

and S

K

su
h that S

K

\ S

L

= ; holds. Let q be an integer. Then :

�(L �M) = �(L �M(K; 1=q))

b.) If (L

+

; L

�

; L

0

) is a skein triple of links in an oriented homology 3-sphere M , then :

�(L

+

�M)��(L

�

�M)� (t� t

�1

) ��(L

0

�M) = 0


.) �(unknot � S

3

) = 1

Then � is the Alexander polynomial. The Alexander polynomial has these properties

Proof : The Alexander polynomial has the property a.) by lemma 3.7 and b.) by lemma

3.10 and 
.) is easily veri�ed. It remains to prove for the di�eren
e r of � as above and

the Alexander polynomial that r is identi
ally zero.

We �rst treat the 
ase where M is S

3

. Obviously r applied to the unknot is zero.

Be
ause of the following skein relation
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3.14

r of the unlink of two 
omponents is zero. Indu
tively over the number of 
omponents one

veri�es that r of the unlink is always zero. Given any link L with 
(L) > 0 and n(L) > 0,

there is a skein triple (L

+

; L

�

; L

0

) 
ontaining L su
h that for the other members 
(L) or n(L)

is smaller. Hen
e we 
an prove by indu
tion over the 
omplexity of L that r(L) vanishes.

Now we 
ome to the general 
ase of a link L in an oriented homology 3-sphere M . We

will later show that there is a sequen
e of oriented homology 3-spheres M

0

,M

1

, ... ,M

r

su
h

that M

i+1

is obtained from M

i

by �1 surgery on a knot K

i

�M

i

and M

0

is M and M

r

is

S

3

. We use indu
tion over r. The indu
tion begin M = S

3

is done above. Choose Seifert

surfa
es S

L

for L and S

0

for K

0

in M . Sin
e these are surfa
es with boundary, there exists

one-dimensional spines F

L

and F

0

for S

L

and S

0

su
h that S

L

and S

0

are ambient isotopi


to arbitrary small regular neighbourhoods of the spines. We 
an �nd an ambient isotopy of

K

0

in M su
h that F

L

and F

0

are disjoint be
ause the sum of the dimensions of the spines

is smaller than the dimension of M . By a se
ond ambient isotopy of K

0

we 
an a
hieve that

S

0

is disjoint from F

L

. By an ambient isotopy of L we obtain that the Seifert surfa
es are

disjoint. Noti
e that these pro
esses may require 
rossings of K and L but no self 
rossings

of L and K. But now we derive from property a.) that r(L �M) = r(L �M

1

). Now

apply the indu
tion hypothesis to L �M

1

.

In the surgery formula for the Casson invariant a term involving the se
ond derivative

of the Alexander polynomial appears. We 
an 
hara
terize this term as follows.

Lemma 3.15 Suppose that the fun
tion


 : f isotopy 
lasses of oriented links in oriented homology 3-spheres g �! R

has the following properties :

a.) Let L be a link and K be a knot in the oriented homology 3-sphere M . Suppose that there

are Seifert surfa
es S

L

and S

K

su
h that S

K

\ S

L

= ; holds. Let q be an integer. Then :


(L �M) = 
(L �M(K; 1=q))

b.) If (L

+

; L

�

; L

0

) is a skein triple of links in an oriented homology 3-sphere M su
h that

L

+

is a knot. Then L

�

is a knot and L

0

is a link of two 
omponents L

0

0

and L

00

0

and we have:


(L

+

�M)� 
(L

�

�M) = link(L

0

0

; L

00

0

)


.) 
(unknot � S

3

) = 0

Then 
(L) is

1

4

�

d

2

dt

2

�

L

�

�

�

t=1

.
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Proof : We only show that

1

4

�

d

2

dt

2

�

L

�

�

�

t=1

has the required properties, the veri�
ation of

uniqueness is analogous to the proof in lemma 3.13. We get properties a.) and 
.) dire
tly

from lemma 3.13. Sin
e we have �

L

0

(t) = ��

L

0

(t

�1

), we get :

�

L

0

j

t=1

= 0

We derive property b.) from from lemma 3.13, lemma 3.7 and the following 
al
ulation :

d

2

dt

2

�

L

+

�

�

�

t=1

�

d

2

dt

2

�

L

�

�

�

�

t=1

=

d

2

dt

2

((t� t

�1

) ��

L

0

)

�

�

�

t=1

=

0 �

d

2

dt

2

�

L

0

�

�

�

t=1

+ (+2) �

d

dt

�

L

0

�

�

�

t=1

+ (�2) � �

L

0

j

t=1

=

4 � link(L

0

0

; L

00

0

)

Next we explain how one 
an 
ompute the Alexander polynomial from the fundamental

group. We start with introdu
ing the di�erential 
al
ulus due to Fox. Let G be a group.

Let � : Z[G℄ �! Z be the augmentation homomorphism sending

P

g2G

�

g

� g to

P

g2G

�

g

. A

derivation is a homomorphism Æ : Z[G℄ �!M into a Z[G℄-module M satisfying :

Æ(u+ v) = Æ(u) + Æ(v) (linearity)

Æ(u � v) = Æ(u) � �(v) + u � Æ(v) (Leibniz rule)

If f :M �! N is a homomorphism of Z[G℄-modules and Æ a derivation on M , then f Æ Æ

is a derivation on N . Hen
e the set of Z[G℄-derivations into a Z[G℄� Z[H℄-bimodule M

inherits a right Z[H℄-module stru
ture. The following rules are important for 
al
ulations

(g 2 G):

3.16 Æ(m) = 0 for m 2 Z

Æ(g

�1

) = �g

�1

� Æ(g)

Æ(g

n

) = (1 + g + g

2

+ ... + g

n�1

) � Æ(g)

Æ(g

�n

) = �(g

�1

+ g

�2

+ ... + g

�n

) � Æ(g) for n � 1

If F is the free group in generators s

1

, s

2

, ..., s

n

, then for any elements x

1

, x

2

, ..., x

n

in a Z[F ℄-bimodule M there is pre
isely one derivation sending s

i

to x

i

. Its 
onstru
tion and

the veri�
ation of uniqueness is done by indu
tion over the word length. Let � : F �! G

be a group homomorphism. Then Z[G℄ be
omes a Z[F ℄� Z[G℄-bimodule. The derivations

�

�s

i

: Z[F ℄ �! Z[G℄ sending s

j

to 1, if i = j, and to 0, if i 6= j, are 
alled the partial deri-

vations with respe
t to �. They form a basis for the right Z[G℄-module of Z[F ℄-derivations

into Z[G℄. The Fox derivatives are useful for 
omputing 
ellular 
hain 
omplexes of universal


overings.

Lemma 3.17 Let X be a �nite 2-dimensional CW -
omplex with fundamental group � and

universal 
overing

f

X. Suppose that X has only one 0-
ell. Let

< s

1

; s

2

; ... ; s

n

j R

1

; R

2

; ... ; R

m

>= �

be a 
ellular representation of the fundamental group, i.e. the generators s

i


orrespond to

the 1-
ells and the relations R

i

are de�ning relations for the 2-
ells. Let � : F �! � be the
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anoni
al proje
tion, if F is the free group in generators s

1

, s

2

, ..., s

n

. Then the 
ellular

Z[�℄-
hain 
omplex of the universal 
overing with respe
t to a 
ellular bases looks like

Z[�℄

m

A

�! Z[�℄

n

B

�! Z[�℄

where the matri
es A and B are given as follows :

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�R

1

�s

1

�R

2

�s

1

� � �

�R

m

�s

1

�R

1

�s

2

�R

2

�s

2

� � �

�R

m

�s

2

.

.

.

.

.

.

.

.

.

.

.

.

�R

1

�s

n

�R

2

�s

n

� � �

�R

m

�s

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

B =

�

s

1

� 1 s

2

� 1 � � � s

m

� 1

�

Proof : This is obvious for the matrix B, sin
e the 1-
ell 
orresponding to S

i

lifts in the


overing to a path from ~x to s

i

� ~x for a �xed lift ~x of the only 0-
ell x. Let w be a loop in X

with base point x. Denote by ~w a lift in

f

X with starting point ~x. This de�nes an element in

C

1

(

f

X), also denoted by ~w. It depends only on the 
lass of w in �. Hen
e we 
an de�ne a map

Æ : Z[�℄ �! C

1

(

f

X) sending

P

w2�

�

w

� w to

P

w2�

�

w

� ~w. One easily 
he
ks that Æ is linear

and satis�es Æ(w � v) = Æ(w) + w � Æ(v). Let Æ

i

be the i

th

-
omponent of Æ, if we identify C

1

(

f

X)

with Z[Z

m

℄ using the 
ellular bases ~s

1

, ~s

2

,..., ~s

m

. Then Æ

i

is a derivation Z[F ℄ �! Z[G℄

mapping �(s

j

) to 1, if i = j, and to 0 otherwise. Therefore it has to be

�

�s

i

. But Æ(R

i

) is

just the image of the 
ellular base element 
orresponding to the 2-
ell with de�ning relation

R

i

under the se
ond di�erential in the 
ellular 
hain 
omplex of

f

X.

The proof of the next lemma is omitted. It is a 
onsequen
e of lemma 3.17 and the

des
ription of the Alexander polynomial as a torsion invariant by Milnor [32℄.

Lemma 3.18 Let L be an oriented link in an oriented homology 3-sphere. Let

< s

1

; s

2

; ... ; s

n

j R

1

; R

2

; ... ; R

n�1

>= �

be a representation of the fundamental group � of the link 
omplement with n generators

and n� 1 relations. Let � : F �! � be the 
anoni
al proje
tion, if F is the free group in

generators s

1

, s

2

, ..., s

n

, and  : � �! Z be the 
anoni
al epimorphism. Denote by A

�

the
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matrix over Z[�℄

A

�

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�R

1

�s

1

�R

2

�s

1

� � �

�R

n�1

�s

1

�R

1

�s

2

�R

2

�s

2

� � �

�R

n�1

�s

2

.

.

.

.

.

.

.

.

.

.

.

.

�R

1

�s

n

�R

2

�s

n

� � �

�R

n�1

�s

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Let i be any integer 1 � i � n su
h that �(s

i

)� 1 6= 0. Su
h i always exists. Denote by

A

 �

i

the matrix obtained from A

�

by deleting the i

th

-row and then applying the 
hange of

rings map Z[�℄ �! Z[Z℄ indu
ed by the Hopf map  : � �! Z whi
h sends a loop w in the


omplement of the link to the sum of the linking numbers of w with the 
omponents of the

link. Then �

L

(t) is di�erent from zero if and only if det(A

�

i

) is non-zero, and we obtain in

this 
ase for some s and some sign �:

�

L

(t) = �t

s

� det(A

�

i

)(t

2

)

Remark 3.19 The 
omputation above determines �

L

if K is a knot and only up to a sign

�1 if K is not a knot. Namely, let p be a polynomial satisfying �

L

(t) = �t

s

� p(t) for some

sign � and some s. Sin
e �

L

(t

�1

) = �(�1)

r

��

L

(t) holds, we 
on
lude

p(t) = (�1)

r

� t

2s

� p(t

�1

)

This determines s. If K is a knot, we 
an derive the sign in the equation above using the

fa
t �

K

(1) = 1. Noti
e that both polynomials are independent of the orientations of M and

L, provided that L is knot.

Example 3.20 Noti
e that the lemma ?? and lemma 3.18 give an algorithm to 
ompute

the Alexander polynomial of a link from a link diagram. We 
arry this out in the 
ase of the

trefoil using the following link diagram

3.21

s

1

s

2

s

3
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The Wirtinger presentation looks like :

�

1

(S

3

(T )) =< s

1

; s

2

; s

3

j s

2

s

1

= s

1

s

3

; s

1

s

3

= s

3

s

2

; s

3

s

2

= s

2

s

1

>

We may omitt the third relation. We obtain the following matrix A

0

B

�

s

2

� s

2

s

1

s

�1

3

s

�1

1

1

1 �s

1

s

3

s

�1

2

�s

2

s

1

s

�1

3

s

1

� s

1

s

3

s

�1

2

s

�1

3

1

C

A

We have to put t = s

1

= s

2

= s

3

sin
e the Hopf map sends s

i

to t, and obtain

0

B

�

t� 1 1

1 �t

�t t� 1

1

C

A

The minors in this matrix are �t

2

+ t� 1, t

2

� t+ 1 and �t

2

+ t� 1. Hen
e the Alexander

polynomial of the trefoil satis�es

�

T

= �t

s

� (t

4

� t

2

+ 1)

Hen
e we get:

�

T

= t

2

� 1 + t

�2

Example 3.22 We do the same for the Hopf link

3.23

s

1

s

2

�

�

��

We obtain the Wirtinger presentation :

�

1

(S

3

(H)) =< s

1

; s

2

j s

1

s

2

s

�1

1

s

�1

2

>

Then the matrix A looks like :

 

1� s

1

s

2

s

�1

1

s

1

� s

1

s

2

s

�1

1

s

�1

2

!

Hen
e the Alexander polynomial of H satsi�es

�

H

= �t

s

� (t

2

� 1)

24



This implies:

Æ

H

(t) = �(t� t

�1

)

These 
omputations are 
ompatible with the previous 
al
ulation made using Seifert surfa
es.

Finally we mention the 
uriosity that the term

1

4

�

d

2

dt

�

L

�

�

�

t=1

is related to a homomorphism

�. Denote by Z[Z℄

(0)

the quotient �eld of Z[Z℄. Let Z[Z℄

�

(0)

be the multipli
ative group of

units. We de�ne an homomorphism of abelian groups

3.24 � : Z[Z℄

�

(0)

=f�t

n

g �! R

with respe
t to the multipli
ative stru
ture on the sour
e and the additive stru
ture on the do-

main as follows. An element in Z[Z℄

�

(0)

=f�t

n

g is represented by a quotient

p

q

with p; q 2 zz[Z℄ � f0g.

As Z[Z℄ is fa
torial, there are unique non-negative integers �

p

and �

q

satisfying p = (t� 1)

�

p

� p

0

and q = (t� 1)

�

q

� q

0

su
h that p

0

(1) 6= 0 and q

0

(1) 6= 0 holds. We de�ne :

�(

p

q

) :=

d

2

dt

2

p

0

(t) � p

0

(t

�1

)

p

0

(1) � p

0

(1)

�

�

�

�

�

t=1

�

d

2

dt

2

q

0

(t) � q

0

(t

�1

)

q

0

(1) � q

0

(1)

�

�

�

�

�

t=1

We have to show that this is independent of the various 
hoi
es and that this is indeed

an homomorphism. Any other representative of the 
lass of

p

q

in �

�

(0)

=�

�

looks like

p�r���t

n

q�r

for

some r 2 �� f0g, � 2 f�1g and n 2 Z. Choose r

0

2 � and a non-negative integer �

r

su
h

that r = r

0

� (t� 1)

�

r

and r

0

(1) 6= 0 holds. Let x

i

(t) for i = 1; 2 be elements in � satisfying

x

i

(t) = x

i

(t

�1

) and x

i

(1) = 1. Then we get :

d

dt

x

i

(t) =

d

dt

x

i

(t

�1

) = �t

�2

�

d

dt

x

i

(t

�1

)

This implies :

d

dt

x

i

�

�

�

�

�

t=1

= 0

Hen
e we get :

d

2

dt

2

(x

1

� x

2

)

�

�

�

�

�

t=1

=

d

2

dt

2

(x

1

)

�

�

�

�

�

t=1

+

d

2

dt

2

(x

2

)

�

�

�

�

�

t=1

Applying this to

p(t)�p

0

(t

�1

)

p

0

(1)�p

0

(1)

and the 
orresponding expression for r

0

shows that the map is well

de�ned. The veri�
ation that it is a homomorphism is similar. We have for a knot K in an

oriented homology 3-sphere M

�(�

K

) = 2 �

d

2

dt

2

�

K

�

�

�

�

�

t=1

and will later see:

�(M(K; 1=(n+ 1)))� �(M(K); 1=n))) =

1

8

� �(�

K

)
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Remark 3.25 The Alexander polynomial �

L

of de�nition 3.2 and the Alexander-Conway

polynomial �

Con

L

is used in Akbulut-M
Carthy [1℄ are related by �

L

(t) = �


on

L

(t

2

).

The Alexander polynomial is extensively treated in the textbooks Burde-Zies
hang [6℄

and Rolfson [40℄. For its 
onne
tion to torsion invariants we refer to Turaev [43℄ . The

skein invarian
e is treated in Conway [9℄ and Kau�man [24℄.
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4.se
tion

The Jones polynomial

Although we do not need the Jones polynomial for the Casson invariant, we spend some

time on it, as it is a natural extension of the Alexander polynomial and interesting in its

own right. In this se
tions all links are understood to be oriented links in S

3

.

De�nition 4.1 A skein invariant is a fun
tion


 : f isotopy 
lasses of oriented links in S

3

g �! R

into an asso
iative 
ommutative ring R with unit 1 with the following properties :

a.) There exist units a

+

; a

�

; a

0

2 R

�

su
h that for any skein triple (L

+

; L

�

; L

0

) the following

relation holds :

a

+

� 
(L

+

) + a

�

� 
(L

�

) + a

0

� 
(L

0

) = 0

b.) 
(unknot) = 1

Example 4.2 The Alexander polynomial is a skein invariant for R = Z[t; t

�1

℄ and skein


oeÆ
ients 1;�1;�(t� t

�1

) by lemma 3.10.

The skein relation is e�e
tive for 
omputations. Consider a skein invariant 
 with

skein 
oeÆ
ients a

+

; a

�

; a

0

. Let unlink

r

be the unlink of r 
omponents, H be the Hopf link

(with linking number +1) and T the trefoil (with positive 
rossings). Given a link L, denote

by L

�

its mirrow image, i.e. the image of L under an orientation reversing homeomorphism

S

3

�! S

3

. If L is given by a link diagram, a link diagram for L

�

is obtained by 
hanging

all 
rossings. One easily 
omputes from the following skein relations

4.3
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4.4

4.5

4.6

4.7
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4.8 
(unlink

2

) = �a

+

a

�1

0

� a

�

a

�1

0


(H) = a

�

a

�1

0

+ a

�1

+

a

2

�

a

�1

0

� a

�1

+

a

0


(T ) = �2a

�1

+

a

�

� a

�2

+

a

2

�

+ a

�2

+

a

2

0


(H

�

) = a

+

a

�1

0

+ a

2

+

a

�1

�

a

�1

0

� a

�1

�

a

0


(T

�

) = �2a

+

a

�1

�

� a

2

+

a

�2

�

+ a

�2

�

a

2

0

In parti
ular we get for the Alexander polynomials the same values as we got before in

example 3.20 and example 3.3.

Lemma 4.9 Let 
 : f isotopy 
lasses of oriented links in S

3

g �! R be a skein invariant.

1.) 
 is determined by the skein 
oeÆ
ients.

2.) The following assertions are equivalent :

a.) There are skein 
oeÆ
ients a

+

; a

�

; a

0

for 
 satisfying a

+

+ a

�

+ a

0

= 0

b.) 
(unlink

2

) = 1


.) 
(L) = 1 for all links L.

3.) The following assertions are equivalent :

a.) There are skein 
oeÆ
ients a

+

; a

�

; a

0

for 
 satisfying a

+

+ a

�

� a

0

= 0

b.) 
(unlink

2

) = �1


.) 
(L) = (�1)

r(L)+1

for all links L where r(L) is the number of 
omponents.

4.) The following assertions are equivalent :

a.) 
(unlink

2

) =2 f�1g

b.) The skein 
oeÆ
ients of 
 satisfy :

a

+

� (
(H)� 
(unlink

2

)) = a

0

� (
(unlink

2

)

2

� 1)

a

�

= �a

+

� a

0

� 
(unlink

2

) = 0

5.) Suppose that R has no zero divisors. Then the values of 
(unlink

2

) and 
(H) determine


. They also determine the skein 
oeÆ
ients up to multipli
ation with a 
ommon unit,

provided that 
(unlink

2

) =2 f�1g holds.

Proof : We use by indu
tion over the 
omplexity of the link. We get 2.) from the

skein triple 4.3. We derive 3.) from the observation for a skein triple L

+

; L

�

; L

0

that

r(L

+

) = r(L

�

) = r(L

0

)� 1 holds. We 
on
lude 4.) from the skein triples 4.3 and 4.4. Now

5.) is a dire
t 
onsequen
e.

De�nition 4.10 A skein invariant

� : f isotopy 
lasses of oriented links in S

3

g �! R

is a universal skein invariant , if for any skein invariant


 : f isotopy 
lasses of oriented links in S

3

g �! S

there is a ring homomorphism � : R �! S satisfying 
 = � Æ �
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It will turn out that there is a universal skein invariant, the two-variable Jones polyno-

mial. Before we 
onstru
t the universal skein invariant, we derive its main properties from

the universal property. Noti
e that we do not require that the homomorphism � appearing

in the de�nition of a universal skein invariant is unique.

Lemma 4.11 Suppose there is a skein invariant

� : f isotopy 
lasses of oriented links in S

3

g �! Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄

su
h that a

+

; a

�

; a

0

are skein 
oeÆ
ients. Then :

1.) � is a universal skein invariant.

2.) Let Æ be a skein invariant taking values in R su
h that Æ(unlink

2

) =2 f�1g. Let � and  

be homomorphisms from Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄ to R satisfying � Æ � =  Æ � = Æ. Then

there is a unit u 2 R su
h that u � � =  holds.

3.) �(L) is a homogenous polynomial of total degree zero.

4.) �(L) = �(L

�

) , where L

�

is obtained from L by simultaneously reversing the orientations

of the 
omponents.

5.) �(K

`

L) = �(K) � �(L) �

�a

0

a

+

+a

�

6.) �(K℄L) = �(K) � �(L)

7.) �(L

�

)(a

+

; a

�

; a

0

) = �(L)(a

�

; a

+

; a

0

)

Proof : 1.) For a skein invariant 
 with values in R and skein 
oeÆ
ients �

+

; �

�

; �

0

, de�ne

� : Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄ �! R by sending a

+

to �

+

, a

�

to �

�

, a

0

to �

0

. By indu
tion

over the 
omplexity of a link one veri�es 
 = � Æ �. 2.) and 3.) are proven by indu
tion

over the 
omplexity of a link using lemma 4.9. The following fun
tions are skein invariants

with values in Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄ and skein 
oeÆ
ients a

+

; a

�

; a

0

.

L 7! �(L

�

)

L 7! �(K

`

L) � �(K)

�1

� �(unlink

2

)

�1

L 7! �(K℄L) � �(K)

�1

L 7! �(L

�

)(a

�

; a

+

; a

0

)

Now the 
laims 4.) to 7.) follow from lemma 4.9

Remark 4.12 If the skein invariant � exists, we derive from 4.8 that the trefoil and its mir-

row image are not ambient isotopi
. Noti
e that the Alexander polynomial 
annot distinguish

a knot from its mirrow image. This follows from remark 3.19 and the obvious fa
t that the

(not re�ned) Alexander torsion is independent of the orientation of the knot.

In view of lemma 4.11 one may expe
t that there is 2-variable version of �. This is,

indeed, the 
ase.

Lemma 4.13 Suppose there is a skein invariant
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J : f isotopy 
lasses of oriented links in S

3

g �! Z[l; l

�1

; m;m

�1

℄

su
h that l; l

�1

; m are skein 
oeÆ
ients. If L is any link, then 
(L) is a sum of monomials

r

a;b

� l

a

�m

b

for r

a;b

2 R su
h that a + b is even. Hen
e we 
an de�ne

�(L) 2 Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄

by

�(L)(a

+

; a

�

; a

0

) := J(L)(a

1=2

+

� a

�1=2

�

; a

0

� a

�1=2

+

� a

�1=2

�

)

Then � is a skein invariant with skein 
oeÆ
ients a

+

; a

�

; a

0

.

We will 
onstru
t the skein invariant J des
ribed in the lemma 4.13 above. Some

preparations are needed.

We begin with introdu
ing the braid group B

n

. Let P

n

be a set of n points in D

2

. Let [n℄

denote the set of n elements. A braid with n strings or shortly, a n-braid, is an embedding

� : [n℄� [0; 1℄ �! D

2

� [0; 1℄

sending (k; t) to (




�

k

(t); t) su
h that [n℄� fig is mapped to P

n

� fig. If




�

k

is 
onstant, we

obtain the trivial n-braid

4.14 Nontrivial and trivial braid

An isotopy I of two n-braids � and 
 is a map

I : [n℄� [0; 1℄� [0; 1℄ �! D

2

� [0; 1℄

su
h that I

s

, given by the restri
tion of I to [n℄� [0; 1℄� fsg, is a n-braid for all s 2 [0; 1℄.

Let B

n

be the set of isotopy 
lasses of n-braids. It inherits the stru
ture of a group from the

sta
king operation
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4.15 Sta
king of braids

The trivial braid represents the unit element. The inverse of a 
lass given by a braid � is

represented by �

�

whi
h is obtained from � by reversing the t-dire
tion

4.16 Inverse braid
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Let �

i

2 B

n

for 1 � i < n be the following n-braid

4.17

1 2 : : i i+1 : : n

Lemma 4.18 The braid group B

n

has the following presentation :

B

n

=

*

�

1

; �

2

; : : : ; �

n�1

�

�

�

�

�

�

i

�

j

= �

j

�

i

for 1 � i; j � n� 1; j i� j j� 2

�

i+1

�

i

�

i+1

= �

i

�

i+1

�

i

for 1 � i � n� 2

+

A proof of this lemma 
an be found in Birman [4℄. If we add the relation �

i

�

i

= 1, we get

a presentation of the symmetri
 group �

n

of permutations of [n℄ = f1; 2; : : : ng. Hen
e there

is an epimorphism

4.19 p : B

n

�! �

n

The image of a braid under p is the automorphism of P

n

sending an element x of P

n

to the

element p(x) whi
h is 
onne
ted to x by a string of the braid. Consider the epimorphism

4.20 e : B

n

�! Z

sending �

i

to 1. Given a pi
ture of a braid � as in 4.14, e(�) is the number of 
rossings


ounted with sign. One easily 
he
ks, that e is the abelianization of the braid group. There

is an obvious in
lusion

4.21 i : B

n

�! B

n+1
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given by adding a trivial string.

Links and braids a related by the so 
alled 
losure of a braid . Namely, any braid �

de�nes a link 
los(�) by the 
onstru
tion indi
ated below.

4.22 Closure of a braid

We obtain a map :

4.23 
los :

`

n�1

B

n

�! f isotopy 
lasses of oriented links in S

3

g

Theorem 4.24 (Alexander) The map 
los is surje
tive

Let �

n

2 B

n

and 


m

2 B

m

be braids. We say, that 


m

is obtained from �

n

by a Markov

operation of type 1 , if n = m and there is Æ

n

2 B

n

satisfying 


n

= Æ

n

�

n

Æ

�1

n

. If m = n + 1

and 


n+1

= �

n

�

�

n

for some � 2 f�1g holds, we say that 


n+1

is obtained from �

n

by a Markov

operation of type 2. Consider a sequen
e of braids Æ

1

n

1

, Æ

2

n

2

,: : : Æ

r

n

r

su
h that Æ

n

i

i

is obtained

from Æ

n

i+1

i+1

by a Markov operation 1 or 2 or Æ

n

i+1

i+1

is obtained from Æ

n

i

i

by a Markov operation

1 or 2 for 1 � i � n� 1. Then we say that Æ

1

n

1

and Æ

r

n

r

are related by a sequen
e of Markov

operations.

Theorem 4.25 (Markov) Two braids �

n

2 B

n

and 


m

2 B

m

have the same 
losure if and

only if they are related by a sequen
e of Markov operations.
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Proofs of the theorems of Alexander and Markov 
an be found in Birman [4℄. These two

results allow to translate 
onstru
tions of invariants for links to the 
onstru
tion of invariants

for braids. The main advantage of braids is that they build a group what is not true for links.

Espe
ially one 
an investigate representations of the braid group. We will see that this leads

to a 
onstru
tion of the Jones polynomial. Before we go into the details, we explain how

one 
an 
onstru
t the Alexander polynomial out of the so 
alled Burau representation of the

braid group.

Let t be the generator of the group Z. The Burau representation is the homomorphism

4.26  

n

: B

n

�! Gl(n;Z[Z℄)

sending the generator �

i

to the following matrix

A

i

=

0

B

B

B

�

E

1� t t

1 0

E

1

C

C

C

A

where E is the identity matrix and (1� t) is the (i; i)-entry. This is well de�ned, be
ause the

matri
es above satisfy the relations appearing in the presentation of the braid group given in

lemma 4.18.

There is the following me
hani
al interpretation of the Burau representation. Suppose

that we let parti
les travel along the strings of a braid �. We do not allow at a 
rossing that

a parti
le moving along the under
rossing string jumps upwards to the over
rossing string,

but a parti
le travelling on the over
rossing string has the probability t of falling down to the

under
rossing string. Then the (i; j)-entry in  (�) is the pobability that a parti
le starting

at the i-th point will end up at the j-th point.

Let � : �

n

Z[Z℄ �! Z[Z℄ be the map sending (x

1

; x

2

; : : : ; x

n

) to

P

n

i=1

x

i

. The homomor-

phism �

n

Z[Z℄ �! �

n

Z[Z℄ mapping x to xA

i

leaves the kernel of � invariant. Hen
e there is

an indu
ed representation

e

 on the kernel of �. This gives the redu
ed Burau representation

4.27

e

 

n

: B

n

�! Gl(n� 1;Z[Z℄)

The proof of the following result 
an be found in Burde-Zies
hang [6℄ proposition 10.20.

Lemma 4.28 Let �

n

be a n-braid and L the link in S

3

given by L = 
los(�

n

). Then :

�

L

(t) � (1 + t+ : : : t

n�1

) = det(1�

e

 

n

(�

n

)(t))

The theorem of Alexander 4.24 and Markov 4.25 and the 
omputation of the Alexan-

der polynomial by the Burau representation in lemma 4.28 suggest the following strategy for
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onstru
ting link invariants. Find representations of the braid groups together with an inva-

riant of a braid 
onstru
ted out of this representation whi
h is invariant under the Markov

operations. Sin
e the �rst Markov operation is given by 
onjugation, it is natural to use

a tra
e. A natural 
andidate for su
h things are He
ke algebras together with a tra
e as

des
ribed below.

Let F be a �eld and q 2 F an element in this �eld. The He
ke algebra H

n

= H

n

(F; q)

asso
iated with F and q for n � 2 is the asso
iative F -algebra with unit 1, generated by T

1

,T

2

: : : T

n�1

subje
t to the following relations.

4.29 T

i

T

j

= T

j

T

i

for 1 � i; j � n� 1 and j i� j j� 2

T

i

T

i+1

T

i

= T

i+1

T

i

T

i+1

for 1 � i < n

T

2

i

= (1� q)T

i

+ q for 1 � i < n

If n is 1, we put H

1

(F; q) := F . We see that there is a natural map H

n�1

�! H

n

of F -

algebras. In parti
ular H

n

be
omes a H

n�1

-H

n�1

-bimodule. An important example of a He
ke

algebra is the group ring of the symmetri
 group �

n

whi
h is the He
ke algebra H

n

(F; 1). The

main te
hni
al result is the following

Lemma 4.30 There is an isomorphism of H

n

-H

n

-bimodules

� : H

n

�

�

H

n




H

n�1

H

n

�

�! H

n+1

sending a+

P

i

b

i


 


i

to a+

P

i

b

i

T

n




i

.

First we show that � is well de�ned. We have to show for u 2 H

n�1

and b; 
 2 H

n

that

buT

n


 and bT

n

u
 agree. But u is a linear 
ombination of monomials in T

1

,T

2

,: : : T

n�2

and

all these elements 
ommute with T

n

.

It is also easy to see by indu
tion on n that � is surje
tive. It suÆ
es to show by indu
-

tion over n that any element x 2 H

n+1


an be written as a linear 
ombination of monomials

in the T

i

su
h that T

n

o

urs only on
e in it. We redu
e the o

uren
es of T

n

as follows.

Consider x = y

1

T

n

y

2

T

n

y

3

su
h that y

i

does not 
ontain T

n

. If y

2

does not 
ontain T

n�1

, an

appli
ation of the �rst and third relation in 4.29 redu
es the number of o

uren
es of T

n

. By

indu
tion hypothesis we 
an assume that T

n�1

o

urs pre
isely one times in y

2

. Be
ause of

the �rst relation we 
an assume y

2

= T

n�1

. Now an appli
ation of the se
ond relation redu
es

the number of o

uren
es of T

n

. This shows surje
tivity.

Suppose that dim

F

(H

n

) = n!. Then the dimensions of the sour
e and target of � are

equal and hen
e � is an isomorphism. The proof of dim

F

(H

n

) = n! 
an be found in de la

Harpe, Kervaire and Weber [15℄, se
tion 4. They 
onstru
t an expli
it set B in H

n

and

an algebra map L : H

n+1

�! End

F

(F [�

n+1

℄) su
h that its 
omposition with evaluation at 1

de�nes a F -linear map H

n

�! F [�

n+1

℄ sending B bije
tively to �

n

.

There is a natural representation
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4.31 �

n+1

: B

n+1

�! H

n+1

�

i

7! T

i

The idea is to 
onstru
t a tra
e on the He
ke algebras and to de�ne an invariant of

braids by applying the tra
e to the image of the braid under �. This would take 
are of the

�rst Markov operation, as a tra
e is invariant under 
onjugation. For the se
ond Markov

operation one needs a good 
ontrol over the tra
e of aT

n

for a 2 H

n

. In view of the lemma

4.30 it is reasonable to de�ne indu
tively over n tra
es tr

n

on H

n

su
h that tr

n+1

(aT

n

b) 
an

be expressed by a,b and the tra
e tr

n

. Indeed, the following is true.

Lemma 4.32 Let F be a �eld and q; z elements in F . Let H

n

be the He
ke algebra H

n

(F; q).

Then there exists F -linear maps

tr

n

: H

n

�! F

with the following properties :

1.) tr

n+1

restri
ted to H

n

is tr

n

.

2.) tr

n

(1) = 1

3.) tr

n

(ab) = tr

n

(ba)

4.) tr

n+1

(aT

n

b) = ztr

n

(ab) for a; b 2 H

n

The maps tr

n

are uniquely determined by these properties.

The elementary proof of this lemma 
an be found in de la Harpe, Kervaire and Weber [15℄,

se
tion 5.

Our �rst attempt to de�ne an invariant for links is :

b

J(�

n

) = tr

n

(�(�

n

)) for � 2 B

n

We have to 
he
k the transformation behaviour under the two Markov operations. The �rst

one does not 
hange the invariant :

tr

n

(�(�

n

)) = tr

n

(�(


n

�

n




�1

n

))

In the se
ond 
ase we obtain for �

n

2 B

n

and the generator �

n

2 B

n+1

tr

n+1

(�

n+1

(�

n

�

n

)) = z � tr

n

(�(�

n

))

tr

n+1

(�

n+1

(�

n

�

�1

n

)) = w � tr

n

(�(�

n

))

where w :=

1

q

(z + q � 1). Noti
e that T

�1

i

=

1

q

(T

i

+ q � 1) holds be
ause of the third relation

in the de�nition of a He
ke algebra 4.29. Hen
e we modify our �rst attempt as follows. For

not yet de�ned fun
tions

a

n

: B

n

�! Z

b

n

: B

n

�! Z

we put

b

J(�

n

) = z

a

n

(�

n

)

� w

b

n

(�

n

)

� tr

n

(�(�

n

))

Then

b

J is invariant under the Markov moves, if the following 
onditions are satis�ed :

a

n

(


n

�

n




�1

n

) = a

n

(�

n

)
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b

n

(


n

�

n




�1

n

) = b

n

(�

n

)

a

n+1

(�

n

�

n

) = a

n

(�

n

)� 1

b

n+1

(�

n

�

n

) = b

n

(�

n

)

a

n+1

(�

n

�

�1

n

) = a

n

(�

n

)

b

n+1

(�

n

�

�1

n

) = b

n

(�

n

)� 1

Our invariant is supposed to assign 1 to the trivial link. Sin
e the trivial link is given by the

braid �

1

, we also demand :

a

2

(�

1

) = 0

b

2

(�

1

) = 0

One easily �nds out that the following fun
tions have these properties :

a

n

(�

n

) =

1

2

� (�e(�

n

)� n+ 1)

b

n

(�

n

) =

1

2

� (e(�

n

)� n + 1

Hen
e we 
an de�ne for a be a link L in S

3

:

4.33

b

J(L) = z

�e(�

n

)�n+1

� w

e(�)�n+1

� tr

n

(�

n

(�

n

))

where �

n

is any braid with L as 
losure.

Now we make a spe
ial 
hoi
e for the �eld F . Let C(q; z) be the rational �eld over

C in two independent variables q and z. Let K be the extension obtained by adjoining the

square roots

p

q and

q

z=w. Now we take H

n

over K and let q and z be the elements in K

given by the variables q and z.

Lemma 4.34 Let (L

+

; L

�

; L

0

) be a skein triple of oriented links in S

3

. De�ne elements l

and m in K by

l = iz

1=2

w

�1=2

q

�1=2

m = i(q

1=2

� q

�1=2

)

Then we get

l �

b

J(L

+

) + l

�1

�

b

J(L

�

) +m �

b

J(L

0

) = 0

Proof : We 
an �nd positive integers k and n and braids � and 
 in B

n

su
h that k � n� 1

and the 
losure of the braids �

+

= ��

k


, �

�

= ��

�1

k


 and �

0

= �
 is L

+

, L

�

and L

0

. Now

one 
omputes on the level of He
ke algebras :

l � z

�e(�

+

)�n+1

�w

e(�

+

)�n+1

� �

n

(�

+

) + l

�1

� z

�e(�

�

)�n+1

�w

e(�

�

)�n+1

� �

n

(�

�

) +m � z

�e(�

0

)�n+1

�

w

e(�

0

)�n+1

� �

n

(�

0

)

= l �z

�1=2

�w

1=2

�z

�e(�

0

)�n+1

�w

e(�

0

)�n+1

��(�)T

k

�(
)+ l

�1

�z

1=2

�w

�1=2

�z

�e(�

0

)�n+1

�w

e(�

0

)�n+1

�

�(�)T

�1

k

�(
) +m � z

�e(�

0

)�n+1

� w

e(�

0

)�n+1

� �(�)�(
)

= �(�) �

�

l � z

�1=2

� w

1=2

� T

k

+ l

�1

� z

1=2

� w

�1=2

� q

�1

� (T

k

+ q � 1) +m

�

�(
)

This expression turns out to be zero be
ause of the following easily veri�ed equations :

l � z

�1=2

� w

1=2

+ l

�1

� z

1=2

� w

�1=2

� q

�1

= 0
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l

�1

� z

1=2

� w

�1=2

� q

�1

� (q � 1) +m = 0

Now apply tr

n

to the equation above and the 
laim follows.

There is an embedding of algebras 	 : Z[l; l

�1

; m;m

�1

℄ �! K sending l to l and analo-

gously for l

�1

,m and m

�1

. If two of the elements

b

J(L

+

),

b

J(L

�

) and

b

J(L

0

) lie in the image

of  , then also the third by the lemma 4.34 above. Sin
e

b

J(unknot) is 1 by 
onstru
tion,

we show indu
tively over the 
omplexity of a link that

b

J(L) lies in the image of 	 for all

oriented links L in S

3

.

De�nition 4.35 Let L be an oriented link in S

3

. The Jones polynomial

J(L) 2 Z[l; l

�1

; m;m

�1

℄

is de�ned by 	(J(L)) =

b

J(L).

We derive from lemma 4.13 and lemma 4.34.

Theorem 4.36 The Jones polynomial is a skein invariant with skein 
oeÆ
ients l; l

�1

; m

and gives a universal skein invariant.

Originally the Jones polynomials was introdu
ed only in one variable. Namely ,the

Jones polynomial as 
onstru
ted by Jones [20℄ is a skein invariant with skein 
oeÆ
ients

t;�t

�1

; (t

1=2

� t

�1=2

). It 
ame out of the investigation of the possible indi
es of subfa
tors

of von Neumann algebras, where 
ertain proje
tions appear whose 
ommuting relations are

similar to the presentation of the braid group (see lemma 4.18). A few months later it was

dis
overed independently by four di�erent groups, that the one-variable polynomial of Jones


ould be generalized to the universal skein invariant as 
onstru
ted above (see Freyd, P. and

Yetter, D. ; Hoste, J. ; Li
korish, W.B.R. and Millet, K. ; O
neanu, A. in [13℄). The

approa
h using He
ke algebras is due to O
neanu. We also explain the 
onstru
tion of the

one-variable Jones polynomial due to Kau�man whi
h allows to 
ompute it dire
tly from a

link diagram in a simple manner.

Let L be an unoriented link diagram. For ea
h 
rossings there are two 
hoi
es of so


alled markers as indi
ated below.

4.37
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A

ording to the 
hoosen marker one may dissolve the 
rossing by 
onne
ting the two

regions sele
ted by the marker

4.38

A state S for L is 
hoi
e of marker at ea
h 
rossings. Let a(S) and b(S) be the number

of markers of type A resp. B. If we dissolve the 
rossings a

ording to the state S as

indi
ated above, we obtain a bun
h of disjoint simple 
urves. Let j S j be their number.

De�ne an element

< L >:=

X

S

A

a(S)

B

b(S)

d

jSj�1

2 Z[A;B; d℄

One easily 
he
ks :

Lemma 4.39

1.) < unknot >= 1

2.) < unknot

`

L >= d� < L > , if L is non-empty

3.) If L is an oriented link diagram and � a 
rossing. Let L

A

resp. L

B

be the link diagram

obtained from L by dissolving this 
rossing � a

ording to the 
hoi
e of marker A resp. B.

Then we have :

< L >= A� < L

A

> +B� < L

B

>

We will abbreviate the equation above by the following

< >= A < > +B < >

Re
all that two link diagrams des
ribe the same link if they 
an be obtained from one another

by a sequen
e of Reidemeister moves ??.

Lemma 4.40 The invariant <> is invariant under the �rst and third Reidemeister moves

if that B = A

�1

and d = �A

2

� A

�2

holds.
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Proof : This follows from the following 
al
ulations :

< > = A < > +B < > =

A

�

A < > +B < >

�

+B

�

A < > +B < >

�

=

�

ABd+A

2

+B

2

�

< > +AB < > = < >

and

< >= A < > +B < > = A < > +B < > = < >

It remains to treat the se
ond Reidemeister move. Indeed, the invariant as it stands is

not invariant under the se
ond one.

De�nition 4.41 The writh number w(L) of an oriented link diagram is the sum of signs of

the 
rossings

Then Kau�man de�nes an invariant of an oriented link L in S

3

given by an oriented link

diagram L :

4.42 f

L

(A) = (�A)

�3w(L)

� < L >2 Z[A;A

�1

℄

The writh number is not 
hanged by the �rst and third Reidemeister move so that the inva-

raint f

L

is invariant under these moves. Suppose that L is obtained from

b

L by removing the

loop :

4.43

Then

b

L,

b

L

A

and

b

L

B

look like
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4.44

b

L

b

L

A

b

L

B

We get :

<

b

L >= A < L > +A

�1

< L

`

unknot >=

A < L > +A

�1

(�A

2

� A

�2

) < L >= (�A)

�3

< L >

Sin
e w(

b

L) = w(L)� 1 holds, we derive f

b

L

= f

L

. The proof for the other loop is similar.

one easily 
he
ks using lemma 4.39 that f

L

is a skein invariant with values in Z[A;A

�1

℄ and

skein 
oeÆ
ients A

4

;�A

�4

; (A

2

� A

�2

). This shows :

Lemma 4.45 We have for any oriented link L in S

3

:

J

L

(t) = f

L

(t

1=4

)

More details about this invariant and about a new invariant whi
h is not a skein invariant


an be found in the book by Kau�man [25℄, appendix.

Remark 4.46 The Alexander polynomial does not determine the one-variable Jones polyno-

mial and vi
e versa. Namely, Conway's eleven 
rossings knot 11

471

has trivial Alexander but

non-trivial Jones polynomial, whereas the knots 4

1

and 11

388

have the same Jones,but di�e-

rent Alexander polynomials. Moreover, the one-variable Jones polynomial and the Alexander

polynomial together do not determine Jones polynomial de�ned in 4.35. Namely, 11

388

and

its mirrow image have the same Alexander and one variable Jones polynomial, but the Jones

polynomial of 4.35 does distinguish them.

One of the striking properties of the Jones polynomial is that it 
an distinguish a knot

from its mirrow image, what is not true for the Alexander polynomial. Another important

appli
ations are the proofs of Kau�man and Marasugi of the Taite 
onje
tures. Taite is

viewed as one of the founders of knot theory and he spelled out his 
onje
tures 100 years

ago. A survey about these 
onje
tures is given in de la Harpe, Kervaire and Weber [15℄,
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se
tion 9. The main point is that the span of the one variable Jones polynomial gives a

lower bound for the minimal number of 
rossings and is equal to it for alternating redu
ed

link diagrams. This implies one of the Tait 
onje
tures that for a prime alternating knot the

minimal diagrams are exa
tly the alternating redu
ed ones. Redu
ed means that one 
annot

de
rease the number of 
rossing by 
ertain elementary moves and a link diagram is minimal

if the number of 
rossing in any other link diagram presenting the same link is not smaller.

A stronger still unproved versions says that two redu
ed alternating link diagrams determine

the same link if and only if they 
an be obtained from one another by 
yping, a spe
ial move

indi
ated below

4.47

Another now veri�ed Tait 
onje
ture says that the writh number for alternating redu
ed

link diagrams depends only on the asso
iated link. In parti
ular the writh number of a

redu
ed alternating link diagram des
ribing an amphi
hiral link is zero. A link is 
alled

amphi
hiral if it is ambient isotopi
 to its mirror image. We mention the so 
alled Perko

pair of link diagrams whi
h des
ribe the same link, but have di�erent writh numbers. We

refer to Kau�man's book [25℄, appendix, for more information.
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5.se
tion

Quantum Field theory and the Jones polynomial

In this se
tion we introdu
e the axioms of a quantum �eld theory in the sense of Segal

and explain how one 
an 
onstru
t the Jones polynomial out of a suitable quantum �eld

theory. Some preparations are needed.

A (symmetri
) monoidal 
ategory is a 6-tuple C;

`

; ;; S

1

; S

2

; S

3


onsisting of

� a 
ategory C

� a fun
tor

`

: C � C �! C (produ
t)

� an obje
t ; 2 C (unit obje
t)

� a natural transformation S

1

(C;D;E) : (C

`

D)

`

E �! C

`

(D

`

E) (asso
iativity)

� a natural transformation S

2

(C;D) : C

`

D �! D

`

C (
ommutativity)

� a natural transformation S

3

(C) : C

`

; �! C (unit element)

su
h that the obvious 
ompatibility 
onditions are satis�ed. We will often surpress the trans-

formations and the unit element in the sequel. A fun
tor of monoidal 
ategories

(F; T

`

; �) : (C;

a

C

) �! (D;

a

D

)


onsists of

� a fun
tor F : C �! D

� a natural transformation T

`

(C;D) : F (C

`

C

D) �! F (C)

`

D

F (D)

� an isomorphism � : F (;

C

) �! ;

D

su
h that the obvious 
ompatibility 
onditions are satis�ed.

An involution (I; S) on a monoidal 
ategory C is given by

� a 
ontravariant fun
tor I = (I; T

`

; �) : C �! C of monoidal 
ategories

� a natural transformation S(C) : C �! I Æ I(C)

su
h that S(I(C)) Æ I(S(C)) = id holds for all obje
ts C 2 C and I(�) Æ S(;) = � is true.

We will often drop the natural transformation S in the notation. A fun
tor of monoidal


ategories with involution (F; T

`

;T

I

) : (C;

`

C

; I

C

) �! (D;

`

D

; I

D

) 
onsists of
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� a fun
tor F : C �! D

� a natural transformation T

`

(C;D) : F (C

`

C

D) �! F (C)

`

D

F (D)

� a natural transformation T

I

(C) : F (I(C)) �! I(F (C))

su
h that T

I

(;

C

) Æ F (�

C

) = �

D

and (F; T

`

) : (C;

`

C

) �! (D;

`

D

) is a fun
tor of monoidal


ategories. We will mainly deal with the following examples.

Convention 5.1 Let W be an oriented d+1-manifold for d � 1. Then the boundary inhe-

rits an orientation using the de
omposition TW j

�W

= �(�W;W )� T�W and the outward

normal. This is 
onsistent with the 
onvention that the positive orientation on S

1

is given

by the anti-
lo
kwise dire
tion and that the positive orientation on R

2

is represented by the

ordered bases f(1; 0); (0; 1)g. An orientation of a 0-dimensional manifold is a 
hoi
e of + or �

for ea
h 
omponent. If W is an oriented 1-dimensional manifold, the indu
ed orientation for

a 
omponent of the boundary is + resp. �, if the orientation at this 
omponent 
orresponds

to the outward resp. inward normal. Noti
e that this means for an oriented path that he

starts at � and ends at +.

Example 5.2 Let M and N be oriented 
losed d-manifolds. A bordism from M to N

is a 5-tuple (W ;W

0

;W

1

; f

0

; f

1

) 
onsisting of an oriented d + 1-dimensional manifold W

with boundary �W and 
losed and open submanifolds W

0

and W

1

of the boundary sa-

tisfying W

0

\W

1

= ; and W

0

[W

1

= �W together with orientation preserving di�eomor-

phisms f

0

:M

�

�! W

0

and f

1

:W

1

�! N . The symbol M

�

denotes the manifold N with

the reversed orientation. We 
all two su
h bordisms (W ;W

0

;W

1

; f

0

; f

1

) and (V ;V

0

; V

1

; g

0

; g

1

)

from M to N equivalent , if there is an orientation preserving di�eomorphism F :W �! V

su
h that F Æ f

0

= g

0

and g

1

Æ F j

W

1

= f

1

holds. If i

k

denotes the obvious di�eomorphism, the

trivial bordism [0; 1℄�M fromM toM is represented by ([0; 1℄�M ; f0g �M; f1g �M ; i

0

; i

1

).

Noti
e that the orientation on f0g �M indu
ed by the outward normal is the opposite

of the orientation on M , whereas on f1g �M we get the orientation on M ba
k. Let

(W ;W

0

;W

1

; f

0

; f

1

) resp.(V ;V

0

; V

1

; g

0

; g

1

) be a bordism from L to M resp. M to N . We get

a bordism (W [

g

0

Æf

1

V ;W

0

; V

1

; f

0

; g

1

) from L to N by glueing. This is 
ompatible with the

equivalen
e relation de�ned above.

Assume d � 1. LetM

d;d+1

be the following monoidal 
ategory with involution. Obje
ts

are d-dimensional oriented 
losed manifolds M . Equivalen
e 
lasses of bordisms from M to

N build the set of morphisms from M to N . The identity morphism is given by the trivial

bordism and the 
omposition of morphisms given by the glueing pro
ess des
ribed above.

The monoidal stru
ture

`

M

d;d+1


omes from the disjoint union. The unit obje
t is the empty

set. The involution I

M

d;d+1
assigns to a morphismW := (W ;W

0

;W

1

; f

0

; f

1

) fromM to N in

M

d;d+1

the morphism




W := (W ;W

1

;W

0

; f

�1

1

; f

�1

0

) from N

�

to M

�

. Noti
e that ; and ;

�

are identi
al and the involution a
ts by the identity on the set of endomorphisms of ;.

Let f :M �! N be an orientation preserving di�eomorphism of 
losed oriented d-

dimensional manifolds. It determines a morphism, denoted by f :M �! N , inM

d;d+1

by
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the bordism ([0; 1℄�M ; f0g �M; f1g �M ; id; f). Two di�eomorphisms f

0

; f

1

:M �! N

are 
alled pseudoisotopi
 , if there is a di�eomorphism F :M � [0; 1℄ �! N � [0; 1℄ whose

restri
tion to M � fig is f

i

for i = 0; 1. One easily 
he
ks that f

0

and f

1

de�ne the same

morphism in M

d;d+1

if and only if they are pseudoisotopi
. If W := (W ;W

0

;W

1

; f

0

; f

1

) is

a morphism from N to L and f :M �! N an orientation preserving di�eomorphism, the


ompositionW Æ f is represented by (W ;W

0

;W

1

; f

0

Æ f; f

1

) and similar for f : L �! K and

f ÆW .

Example 5.3 Let V be the monoidal 
ategory with involution with �nitely generated 
om-

plex ve
tor spa
es as obje
ts and linear maps as morphisms. The monoidal stru
ture is

indu
ed by the tensor produ
t. The unit element is given by C. The involution sends V

to the dual ve
tor spa
e V

�

. The natural transformation T (V ) : V �! V

�

�

sends v to the

homomorphism V

�

�! C mapping f to f(v). Let � : C �! C

�

send z 2 C to the homo-

morphism C �! C sending u to z � u. The inverse of � is evaluation at 1. This de�nition

makes also sense for �nitely generated proje
tive modules over any ring with involution.

Let H be the monoidal 
ategory with involution with Hilbert spa
es as obje
ts and

bounded linear operators as morphisms. The tensor produ
t and the dual spa
e 
onsisting

of bounded linear operators with C as target yield the produ
t and the involution. The

transformation T(H), the unit element and � are de�ned as above. Noti
e that one does not

need a Hilbert stru
ture but the stru
ture of a re
exive Bana
h spa
e.

De�nition 5.4 A d-d+1-quantum �eld theory is a fun
tor of monoidal 
ategories with

involution

H :M

d;d+1

�!

(

V

H

Let W be an oriented d+1-dimensional manifold. Let W : ; �! �W be the morphism

given by (W ; ;; �W ; id; id). Sin
e H(;) = C, we have the element 1 2 H(;). We de�ne :

5.5 Z(W ) := H(W )(1) 2 H(�W )

Noti
e that Z(W ) is a 
omplex number, if W is 
losed. Built into the de�nition of a quantum

�eld theory is a kind of glueing formula. Let V andW be d+1-dimensional oriented manifolds

and f : �V �! �W

�

an orientation preserving di�eomorphism. We obtain a pairing

5.6 < ; >

f

: H(�V )
H(�W ) �! C

by the 
omposition

H(�V )
H(�W )

H(f)
id

�! H(�W

�

)
H(�W )

T

I

(�W )
id

�! H(�W )

�


H(�W )

ev

�! C

We obtain a 
losed oriented d + 1-dimensional manifold V [

f

W by glueing and hen
e a


omplex number Z(V [

f

W ).
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Lemma 5.7 Z(V [

f

W ) =< Z(V ); Z(W ) >

f

Proof : Re
all that H(;) is C. Consider the following diagram

H(;)
H(;)

-

H(V )
H(W )

H(�V )
H(�W )

?

id

?

H(f)
 id

H(;)
H(;)

-

H(f Æ V )
H(W )

H(�W

�

)
H(�W )

?

T

I

(;)
 id

?

T

I

(�W )
 id

H(;)

�


H(;)

-

H(

b

V Æ

b

f)

�


H(W )

H(�W )

�


H(�W )

?

ev

?

ev

H(;)

-

H((V [

f

W ))

H(;)

We derive from the de�nition of a fun
tor of monoidal 
ategories with involution that

the diagram 
ommutes and that T

I

(;) : H(;) �! H(;)

�

is just the map � : C �! C

�

. Consi-

der 1
 1 2 H(;)
H(;). Sending it from the left upper 
orner to the right lower 
orner in

the 
lo
kwise dire
tion gives < Z(V ); Z(W ) >

f

and in the anti-
lo
kwise dire
tion gives

Z(V [

f

W ) by the de�nitions.

Next we give the most elementary non-trivial example of a d-d+1-quantum �eld theory

for d even. Denote by �(W ) the Euler 
hara
teristi
 and by �(W ) the signature of an

oriented manifold. Re
all that the signature is de�ned to be zero, if the dimension is not

divisible by four, and to be the signature of the interse
tion pairing in dimensions divisible

by 4. These invariants satisfy the following additivity formulas. Given d + 1- dimensional

manifolds V and W and an orientation preserving di�eomorphism f : V

1

�!W

0

between

disjoint unions of 
omponents of the boundaries of V and W , we get :

�(V [

h

W

�

) = �(V ) + �(W )� �(V

1

)

and

�(V [

f

W

�

) = �(V )� �(W )
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Noti
e for odd d that �(V

0

) is zero by Poin
ar�e duality so that we get for odd d :

�(V [

h

W

�

) = �(V ) + �(W )

We mention the following 
on
lusions �(V

�

) = ��(V ) and �(V

�

) = �(V ). These invariants

are 
hara
terized by the following property.

A SK-invariant for 
losed oriented m-dimensional manifolds is a fun
tion � assigning

to any 
losed oriented m-dimensional manifold W an element

5.8 �(W ) 2 A

in an abelian group A su
h that the following holds :

� If V and W are oriented di�eomorphi
, then �(V ) = �(W )

� �(V

`

W ) = �(V ) + �(W )

� Let f; g : �W

1

�! �W

2

be two orientation preserving di�eomorphisms. Then we have

�(W

1

[

f

W

�

2

) = �(W

1

[

g

W

�

2

)

For SK-invariants in general and a proof of the following theorem we refer to Karras-

Kre
k-Neumann-Ossa [23℄. See also J�ani
h [17℄ and [18℄. A SK-group (A; �) is 
alled uni-

versal, if for any SK-group A

0

; �

0

there is a homomorphism � : A �! A

0

uniquely determined

by the property �

0

= � Æ �

Lemma 5.9 The universal SK-invariant is given by

(�(W )� �(W ))=2; �(W ) 2 Z� Z ,if m � 0 mod 4

�(W )=2 2 Z ,if m � 2 mod 4

and is zero for odd m

Example 5.10 Let d be even. Let r be a positive real number and z be an element in

S

1

� C. The d-d+ 1-dimensional quantum �eld theory

H(r; z) = H :M

d;d+1

�! H

assigns C with the standard Hilbert stru
ture to all obje
ts and the map r

�(W )

� z

�(W )

to a

morphism (W ;W

0

;W

1

; f

0

; f

1

). We have to 
he
k the axioms. We obtain fun
toriality from

the additivity formulas. Obviously H is 
ompatible with the involutions. We will later

introdu
e two further axioms 5.13 and 5.14. Both are sati�ed by H(r; z).
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Noti
e for the quantum �eld theory above that the group Diff

+

(M) of self di�eomor-

phisms of the oriented 
losed d-manifold M a
ts trivally on H(M). Under this assumption

we 
annot expe
t other invariants Z(W ) for 
losed orientable d + 1-dimensional manifolds

W than the Euler 
hara
teristi
 and the signature. Namely, we get as a 
orollary of lemma

5.7 and lemma 5.9

Lemma 5.11 Let H be a d-d + 1-quantum �eld theory su
h that for any orientable 
losed

d-manifold the group Diff

+

(M) a
ts trivially on H(M) and Z(W ) 2 C is not zero for all


losed orientable d + 1-manifolds W . Then we get for any 
losed orientable d + 1-manifold

W :

Z(W ) = Z(S

d+1

)

(�(W )��(W ))=2

�

�

Z(CP

d+1

) � Z(S

d+1

)

�(d+1)=4

�

�(W )

if d+ 1 � 0 mod 4

Z(W ) = Z(S

d+1

)

�(W )=2

if d+ 1 � 2 mod 4

Z(W ) = 1 if d+ 1 is odd

Remark 5.12 Noti
e that a m-braid may be viewed as an automorphism of (S

2

; m) given

by S

2

with m points with positive orientation. Hen
e the braid group B

m

embedds into the

group of automorphisms of (S

2

; m). Thus we obtain a representation of B

m

.

There are the following two additional axioms one may or may not require. Both will

be satis�ed in the situations we will study, but in parti
ular the se
ond one is not ful�lled in

other interesting 
ases e.g, the 3-4-quantum �eld theory given by the Donaldson polynomial

and Floer homology.

5.13 Given three obje
ts M , L and N inM

d;d+1

, there is a natural bije
tion

�

L

:Mor(M [ L;N) �!Mor(M;L

�

[N)

sending (W ;W

M

`

W

L

;W

N

; f

M

[ f

L

; f

N

) to (W ;W

M

;W

L

`

W

N

; f

M

; f

�1

L

`

f

N

). Analogous-

ly, for three obje
ts A, B and C in V resp.H, there is a natural bije
tion

�

B

: Hom(A
 B;C) �! Hom(A;B

�


 C)

indu
ed from the natural isomorphisms

Hom(A;Hom(B;C)) �! Hom(A
B;C)

and

B

�


 C �! Hom(B;C)

. The axiom says that the fun
tor H is 
ompatible with these maps. In other words, the

following square 
ommutes

Mor(M [ L;N) Mor(M;L

�

[N)

-

�

L

?

H

?

H

Hom(H(M)
H(L); H(N)) Hom(H(M); H(L)

�


H(N))

-

�

H(L)
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This axiom says in parti
ular that it suÆ
es to treat morphisms with the empty set as sour
e

only.

The map indu
ed by the involution from Mor(M;N) to Mor(N

�

;M

�

) sending W to




W is the 
omposition of �

N

, S

2

(M

�

; N) and �

M

and analogously in the 
ategory V and H,

so that this axiom is an extension of the axiom that H is 
ompatible with the involutions.

If this axiom holds, there is an obvious extension of lemma 5.7 in the 
ase, where only

a disjoint union of 
omponents of the boundaries and not ne
essarily the whole boundaries

are glued together.

5.14 This axiom makes sense only if the quantum �eld theory takes values in the 
ategory

H of Hilbert spa
es. For a morphism W := (W ;W

0

;W

1

; f

0

; f

1

) from M to N in M

d;d+1

de�ne the morphism W

�

:M

�

�! N

�

by W

�

:= (W

�

;W

�

0

;W

�

1

; f

0

; f

1

). Given an obje
t

M , de�ne the isomorphism �

M

: H(M

�

) �! H(M) by the 
omposition of the inverse of the

isomorphism H(M) �! H(M)

�


oming from the Hilbert stru
ture and the natural isomor-

phism T

I

(M) : H(M

�

) �! H(M)

�

. The axiom requires the 
ommutativity of the following

diagram

H(M

�

) H(N

�

)

-

H(W

�

)

?

�

M

?

�

N

H(M) H(N)

-

H(W )

Suppose that this axiom is satis�ed. Then for any morphismW :M �! N the adjoint

of H(W ) : H(M) �! H(N) is given by H(

d

W

�

) : H(N) �! H(M). In parti
ular we get for

any 
losed oriented d+ 1-dimensional manifold W be
ause of

d

W

�

= W

�

Z(W

�

) = Z(W )

If f :M �! N is an orientation preserving di�eomorphism of 
losed oriented d-manifolds,

we get




f

�

= f

�1

. Hen
e H(f) : H(M) �! H(N) is an isometry.

We will always assume that also these two axioms are satis�ed unless expli
itely stated

di�erently.

Example 5.15 We look at all 0-1-quantum �eld theories H :M

0;1

�! H. Let V be the


omplex Hilbert spa
e asso
iated to the obje
t p given by a point with a �xed orientation.

Then H(p

�

) must be V

�

and we get in general :

H

  

a

n

p

!

a

 

a

m

p

�

!!

= V


n


 V

�


m
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There is pre
isely one morphism w : p �! p

�

and the only morphism from p

�

to p is

b

w = w

�

.

The indu
ed maps H(w) : H(p) �! H(p

�

) and H(

b

w) : H(p

�

) �! H(p) are to another in-

verse isometries if we equip V

�

with the Hilbert stru
ture 
oming from V . We use them as

identi�
ations. Now we get

H

  

a

n

p

!

a

 

a

m

p

�

!!

= V


(n+m)

and T

I

be
omes trivial. A morphism inM

0;1

is a permutation of the set f1; 2; � � � ; n+mg.

The indu
ed map on V


n+m

is just given by the permutation itself. Hen
e a 0-1-quantum

�eld theory is up to natural equivalen
e given by a 
omplex Hilbert spa
e V .

In order to de�ne invariants for links, we have to enlarge our 
ategory M

d;d+1


onsi-

derably. We will only 
onsider the dimensions, we are interested in. The generalization to

other dimensions is obvious. In the sequel we denote by R the trivial bundle with �bre R.

Given a framing � of R� �, we denote by �

�

the framing obtained by 
omposition with the

bundle automorphism (�id)� id of R� �.

5.16 We will 
onsider the following 
ategoryM.

� An obje
t (P;M; �

M

; i; �

i

) 
onsists of

{ an oriented 0-dimensional manifold P

{ a 2-dimensional manifold M together with framing �

M

of R� TM

{ an embedding i : P �!M together with a framing �

i

of the normal bundle �(i)

su
h that for all x 2 P the framings �

M

and �

i

indu
e the same orientation

on TM

x

, if x has the positive orientation, and opposite orientations on TM

x

otherwise.

We will often abbreviate (P;M; �

M

; i; �

i

) by (M;P ). We denote by (M;P )

�

the ob-

je
t obtained from (M;L) by substituting the framing �

M

by �

M

�

and reversing the

orientation of P . The framing �

i

is un
hanged.

� A morphism (L;W; �

W

; k; �

k

;W

0

;W

1

; f

0

; f

1

) from (P;M; �

M

; i; �

i

) to

(Q;N; �

N

; j; �

j

) is given by :

{ a 1-dimensional oriented manifold L

{ a 3-dimensional manifold W together with a framing �

W

of the tangent bundle

{ open and 
losed submanifolds W

0

and W

1

of �W su
h that W

0

[W

1

= �W and

W

0

\W

1

= ; holds. Noti
e that R� T�W inherits a framing from TW using the

outward normal.

{ open and 
losed submanifolds L

0

and L

1

of �L with L

0

[ L

1

= �L and

L

0

\ L

1

= ;.
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{ di�eomorphisms f

0

:M �! W

0

and f

1

: W

1

�! N su
h that �

�

M

= f

�

0

�

W

0

and

�

W

1

= f

�

1

�

N

holds

{ an embedding k : L �!W together with a framing �

k

of the normal bundle �(k)

with the following properties: The orientations of TL

x

, �(k)

x

and TW

x

given

by assumption or by the framings mat
h up for all x 2 L. The map f

0

satis�es

f

�

0

�

k

= �

P

and indu
es an orientation preserving di�eomorphism from i(P ) to

k(L) \W

0

and analogously at the other end W

1

.

If (L;W; �

W

; k; �

k

;W

0

;W

1

; f

0

; f

1

) and (L

0

;W

0

; �

W

0

; k

0

; �

k

0

;W

0

0

;W

0

1

; f

0

0

; f

0

1

) are two mor-

phisms from (P;M; �

M

; i; �

i

) to (Q;N; �

N

; j; �

j

), they will be identi�ed if the following

exists :

{ di�eomorphisms g : L �! L

0

and G : W �! W

0

with G Æ k = k

0

Æ g, F Æ f

0

= f

0

0

and f

0

1

Æ F j

W

1

= f

1

{ an ambient isotopy relative boundary � between the embeddings G Æ k and k

0

Æ f .

{ an isotopy relative boundary of the framings �

W

and G

�

�

W

0

{ There is an isotopy relative boundary of the framings �

k

and �

�

�

k

0

of the embed-

ding k, where �

�

�

k

0


omes from g,G and � and the framing �

k

0

We will often write shortly (W;L) for a morphism.

� Composition is given by glueing. The identity morphism of (P;M; �

M

; i; �

i

) is de�ned

by 
rossing with the unit interval

� the monoidal stru
ture is given by the disjoint union and the involution sending a

morphism (W;L) : (M;P ) �! (N;Q) to

d

(W;L) : (N;Q)

�

�! (M;P )

�

is given by re-

versing the bordism

Notation 5.17 In the sequel a quantum �eld theory will be a fun
tor of monoidal 
ategories

with involution

H :M�!H

su
h that the analogues of the axioms 5.13 and 5.14 are satis�ed.

Remark 5.18 Our goal is to 
onstru
t an invariant for oriented links in oriented homology

3-spheres using a quantum �eld theory so that it is natural to invoke links in the 
ategoryM.

The 
hoi
e of an isotopy 
lass of framings for the links is needed in the expli
it 
onstru
tion

of a quantum �eld theory. In the 
omparitively easy 
ase of an abelian theory 
ertain

integrals appear, whi
h just give the linking number of two disjoint knots (see lemma ??).

But the self linking number of a knot is only de�ned, if one has spe
i�ed an isotopy 
lass of

framings. Sin
e the links have to have isotopy 
lasses of framings, the 3-manifolds appearing

in a morphism should also 
ome with an isotopy 
lass of framings. As 
omposition is given

by glueing, we are for
ed to put on the obje
ts an a
tual framing and not only an isotopy

52




lass. Namely, it is not true for 3 manifolds W and V with �W = �V that isotopy 
lasses

of framings on V and W whi
h restri
t to the same isotopy 
lass of stable framings on the


ommon boundary determine an isotopy 
lass of framings on W [V . The reason is that the

homotopy 
ategory of spa
es has no push outs. Here is a 
ounterexample. Take V and W

to be the lower and upper hemisphere in S

3

= V [W . There is pre
isely one isotopy 
lass

of framings on the 
ontra
tible spa
es V and W , but the isotopy 
lasses of framings on S

3

are in bije
tive 
orresponden
e to the set of homotopy 
lasses of maps from S

3

to GL(3;R)

whi
h is Z� f�1g.

We will now dis
uss whi
h properties a quantum �eld theory has to satisfy in order to

give a skein invaraint. We spe
ify the following obje
ts and morphisms inM. In the sequel

we equip S

3

and D

3

with the standard framings. We put on S

2

= �D

3

the indu
ed stable

framing of R� TS

2

.

We use from now on the following 
onvention. Let k : A �! B be an embedding of

an oriented manifold into a framed manifold su
h that dim(B) = dim(A) + 2 holds. Then a


hoi
e of a non-vanishing se
tion of the normal bundle �(k) determines a framing of it and

vi
e versa. Given a framing � : R

2

�! �(k), we obtain a se
tion of �(k) by 
omposing the


onstant se
tion of R

2

with value the �rst element of the standard bases. Given a se
tion s of

�(k), we obtain a se
ond linearly independent se
tion

b

s and hen
e a framing by the following


onstru
tion. The framing on TB indu
es an orientation and a Riemannian metri
 on TB

and by means of the orientation of A also on �(k). Given any ve
tor v in the �bre �(k)

x

at

x, there is pre
isely one ve
tor

b

v, su
h that the norm of

b

v is 1, v and

b

v are orthogonal and

fv;

b

vg agrees with the orientation. Now de�ne

b

s(x) for x 2 A by

d

s(x). This gives a bije
tive


orresponden
e between the isotopy 
lasses of non-vanishing se
tions and isotopy 
lasses of

framings of the normal bundles �(k). We will illustrate framings of points in 2-manifolds

resp. links in 3-manifolds in pi
tures by drawing a tangent ve
tor resp. a parallel 
urve whi
h

indi
ates a non-vanishing se
tion.

Next we de�ne two obje
ts (S

2

; 2) and (S

2

; 4) in M. The underlying stably framed

2-manifold is in both 
ases the 2-dimensional sphere S

2

. The embeddings of 0-dimensional

manifolds are given by 2 resp. 4 oriented points on S

2

together with expli
it framings of the

normal bundles. The obje
ts are illustrated by the following pi
tures using the 
onventions

above.
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5.19 Obje
ts

(S

2

; 2)

+

�

�

��

�

��

(S

2

; 4)

+ +

� �

�

��

�

�I

�

�R

�

�	

Next we de�ne three morphism D

3

+

, D

3

�

and D

3

0

from ; to (S

2

; 4) inM. The underlying

framed bordism is D

3

in all 
ases. The embedded 1-dimensional manifolds together with the

framing of their normal bundles is indi
ated below

5.20 Morphisms

D

3

+

+ +

� �

D

3

�

+ +

� �

D

3

0

+ +

� �

The following observation will be important for the sequel. We de�ne di�eomorphisms

5.21 ! : S

2

�! S

2


 : D

3

�! D

3

satisfying ! = 
 j

S

2

. The di�eomorphism 
 is height preserving and is given by a rotation

about the angle �(t) on the level of height t 2 [1; 1℄, where �(t) is zero for t � 0, is �2�t
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for �1=2 � t � 0 and is � for �1 � t � �1=2. The framings of the normal bundles at the

four points spe
i�ed in the de�nition of the obje
t S

2

are respe
ted by the di�erential of !.

The pull ba
k of the standard framing of TS

2

�R is isotopi
 to its pull ba
k with ! by an

expli
it isotopy indu
ed from the obvious isotopy between id and !. Su
h an isotopy may be

viewed as an (unstable) framing on the trivial bordism from S

2

� [0; 1℄. These data de�ne a

morphism with the trivial bordism as underlying bordism

5.22

e

! : (S

2

; 4) �! (S

2

; 4)

One easily 
he
ks using the extension 
 of !

Lemma 5.23 We have the following identities of morphisms from ; to (S

2

; 4) :

e

! ÆD

3

+

= D

3

0

and

e

! ÆD

3

0

= D

3

�

De�ne a di�eomorphism

5.24 Æ : S

2

�! S

2

by a lo
al Dehn twist at the positive point of the two marked points in S

2

. This leaves

this point and the 
omplement of a small neighbourhood of it �xed and looks within this

neighbourhood as indi
ated below

5.25 Lo
al Dehn twist
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Noti
e that the di�erential of Æ at the positive point is the identity, so that Æ respe
ts

the framing of the normal bundles. Moreover, there is an expli
it isotopy relative the positive

point (but not relative to the positive point and the di�erential at this point) between Æ and

id. It indu
es an expli
it isotopy between the standard framing of TS

2

�R and its pull ba
k

with Æ. Hen
e we obtain a morphism

5.26

e

Æ : (S

2

; 2) �! (S

2

; 2)

There are morphisms from ; to (S

2

; 2) for i = 0; 1

5.27 


i

: ; �! (S

2

; 2)

indi
ated by the pi
tures below

5.28




1




2

One easily 
he
ks

Lemma 5.29 We have

e

Æ Æ 


1

= 


2

Now we make the following assumption on our quantum �eld theory

Assumption 5.30 dim(H(S

2

; 2)) = 1 and dim(H(S

2

; 4)) = 2

Let L be a link in a framed 3-manifoldW together with a framing (of its normal bundle)

meeting the boundary in an appropiate way. Then we obtain a morphism

(W;L) : ; �! (�W;L \ �W )
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and hen
e an invariant 5.5

Z(W;L) 2 H(�W;L \ �W )

Re
all that this is just a 
omplex number and depends only on the isotopy 
lass of

the framings, provided that W is 
losed. Now suppose we have three su
h pairs (W;L

+

),

(W;L

�

) and (W;L

0

) and there is an embedded 3-ball D

3

in W su
h that the framed links are

identi
ally outside of D

3

and look in D

3

as in the de�nition 5.20 of D

3

+

, D

3

�

and D

3

0

.

Lemma 5.31 Let det and tra
e be the determinant and the tra
e of the linear endomorphism

H(!) of H(S

2

; 4). Then we get :

det � Z(W;L

+

) + Z(W;L

�

)� tra
e � Z(W;L

0

) = 0

Proof : We derive from lemma 5.7, if (W




; L




) is the morphism from ; to (S

2

; 4) given by

the 
omplement of D

3

in W :

< Z(W




; L




); Z(W;L

+

) >

id

= Z(W;L

+

)

< Z(W




; L




); Z(W;L

�

) >

id

= Z(W;L

�

)

< Z(W




; L




); Z(W;L

0

) >

id

= Z(W;L

0

)

Sin
e the dimension of H(S

2

; 4) is two by assumption 5.30, we get for the 
hara
teristi


polynomial p of the endomorphism H(!)

p(x) = x

2

� tra
e � x + det

We get zero, if we put H(!) into its 
hara
teristi
 polynomial. We derive from lemma 5.23

Z(W;L

�

)� tra
e � Z(W;L

0

) + det � Z(W;L

+

) = 0

and the 
laim follows.

Next we have to 
he
k the dependen
y on the framing. Let L be an oriented link in 3-

manifoldM with two framings �

L

and �

0

L

su
h that the orientations of TL

x

, �(L �M)

x

and

TM

x

mat
h up for all x 2 L. The 
omposition �

�1

L

Æ �

0

L

is a framing of the trivial bundle R

over L 
ompatible with the standard orientation. Isotopy 
lasses of su
h framings are in bije
-

tive 
orresponden
e with homotopy 
lasses of maps L �! GL(2;R)

+

. Sin
e �

1

(GL(2;R)

+

)

is Z and L is oriented, this 
an be identi�ed with Z

r(L)

, where r(L) is the number of 
om-

ponents of L. The sum of the 
omponents is the total relative framing number and denoted

by :

5.32 d(�

L

; �

0

L

) 2 Z

Lemma 5.33 Let L be a link with framings �

L

and �

0

L

in a 
losed 3-manifold W with

framing �

W

. Then the 
omplex number Z(W;L) depends only on the isotopy 
lasses of fra-

mings. Let 
 be the 
omplex number for whi
h the endomorphism H(

e

Æ) of the 1-dimensional

ve
tor spa
e H(S

2

; 2) is given by 
 � id. Then we get :

Z(W;�

W

; L; �

0

L

) = 


d(�

L

;�

L

0

)

� Z(W;�

W

; L; �

L

)
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Proof : Suppose that �

0

L

is obtained from �

L

in the following way. There is an embedded

disk D

3

in W su
h that the interse
tion of L and D

3

looks like 


1

as indi
ated in 5.28. Now

�

0

L

is obtained from �

L

by taking out 


1

and plugging in 


2

. We get from lemma 5.7:

< Z(W




; L




); Z(


1

) >= Z(W;L; �

L

)

< Z(W




; L




); Z(


2

) >= Z(W;L; �

0

L

)

Then we get from lemma 5.29 :

Z(


2

) = 
 � Z(


1

)

This implies the 
laim in this parti
ular 
ase. The general 
ase is obtained by an iteration

of this spe
ial 
ase, be
ause any two isotopy 
lasses of framings of L 
an be transformed into

one another by a sequen
e of operations of the type above.

Next we 
onsider framed links in a framed oriented homology 3-sphere M . Let S be a

Seifert surfa
e for L. Then the outward normal �eld of S at the boundary indu
es a framing

on L. We 
all su
h a framing a Seifert framing . We 
laim that the isotopy 
lass of this

framing is independent of the 
hoi
e of the Seifert surfa
es. Re
all that isotopy 
lasses of

framings of L are in bije
tive 
orresponden
e with Z

r(L)

. Namely, a framing determines

a non-vanishing se
tion of the normal bundles and hen
e a push-o� L

p

of the link L into

the link 
omplement. For ea
h 
omponent L

i

we obtain an integer by the linking number

n(L

i

) := link(L

p

i

; L

i

). Let l(i; j) be the linking number link(L

i

; L

j

). Consider the following

linking matrix

5.34

A

link

=

0

B

B

B

B

B

B

B

�

n(1) l(1; 2) l(1; 3) � � � l(1; r)

l(1; 1) n(2) l(2; 3) � � � l(2; r)

l(3; 1) l(3; 2) n(3) � � � l(3; r)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l(r; 1) l(r; 2) l(r; 3) � � � n(r)

1

C

C

C

C

C

C

C

A

Lemma 5.35 The sum of the elements in any 
olumn of the linking matrix is zero

Proof : Fix 1 � i � r. Let S be a Seifert surfa
e for L. Then L

p

i

does not meet the Seifert

surfa
e. Hen
e its linking number with L, i.e.

P

r

i

link(L

p

i

; L

i

) vanishes. But link(L

p

i

; L

j

) is

n(i) for i = j and l(i; j) otherwise.

Let L be an oriented link in S

3

. Equip S

3

with the standard framing and L with a

Seifert framing. Then we obtain a morphism (S

3

; L) : ; �! ;. De�ne :

5.36 
(L) = Z(S

3

; L) 2 C

Noti
e that 
(L) is an invariant of the ambient isotopy 
lass of the link L in S

3

. We


laim that this is a skein invariant.
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Lemma 5.37 Let det and tra
e be the determinant and the tra
e of the linear endomorphism

H(!) of the 2-dimensional ve
tor spa
e H(S

2

; 4). Denote by 
 the 
omplex number for whi
h

the endomorphism H(

e

Æ) of the 1-dimensional ve
tor spa
e H(S

2

; 2) is given by 
 � id. De�ne

l(H) = 
 � det

1=2

m(H) = �tra
e � det

�1=2

Then 
 de�ned in 5.36 is a skein invariant with skein 
oeÆ
ients l(H); l(H)

�1

; m(H).

Proof : Consider a skein triple (L

+

; L

�

; L

0

) of oriented links in the oriented homology 3-

sphere M . Equip them with framings �

+

, �

�

and �

0

su
h that �

�

is a Seifert framing and

the assumptions in lemma 5.31 are satis�ed, i.e. there is an embedded 3-ball D

3

in W su
h

that the framed links are identi
ally outside of D

3

and look in D

3

as in the de�nition 5.20

of D

3

+

, D

3

�

and D

3

0

. Hen
e we have :

det � Z(W;L

+

) + Z(W;L

�

)� tra
e � Z(W;L

0

) = 0

Denote by �

s

+

, �

s

�

and �

s

0

Seifert framings of L

+

,L

�

and L

0

. We want to determine the

total relative framing numbers f(�

+

; �

s

+

), f(�

�

; �

s

�

) and f(�

0

; �

s

0

) de�ned in 5.32. We have

by assumption �

�

= �

s

�

so that f(�

�

; �

s

�

) is zero. We may suppose that we have Seifert

surfa
es S

+

, S

�

and S

0

for L

+

,L

�

and L

0

whi
h agree outside the embedded D

3

. Hen
e

we 
an assume that the Seifert framings of the links agree outside D

3

. By assumption the

framings �

+

, �

�

and �

0

agree outside D

3

. Hen
e the di�eren
es f(�

+

; �

s

+

)� f(�

�

; �

s

�

) and

f(�

0

; �

s

0

)� f(�

�

; �

s

�

) do not depend on the links outside D

3

. Therefore we 
an 
ompute

these numbers for one spe
i�
 example and get the 
ommon answer for all 
ases. We derive

from

5.38

the relations :

f(�

+

; �

s

+

)� f(�

�

; �

s

�

) = 2

f(�

0

; �

s

0

)� f(�

�

; �

s

�

) = 1

Hen
e 
 is a skein invariant with skein 
oeÆ
ients 


2

� det; 1;�
 � tra
e by lemma 5.31 and

lemma 5.33. Now the 
laim follows.

Theorem 5.39 Suppose that there are quantum �eld theories H(n; k) indexed by positive

integers n and k su
h that any 
omplex polynomial p(x; y) in two variables with the property
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that p(l(H(n; k)); m(H(n; k))) vanishes for all k and n, is zero and assumption 5.30 is sa-

tis�ed. Then there is a skein invariant as des
ribed in lemma 4.13,namely

J : f isotopy 
lasses of oriented links in S

3

g �! Z[l; l

�1

; m;m

�1

℄

with l; l

�1

; m as skein 
oeÆ
ients.

Proof : One proves by indu
tion over the 
omplexity of a link in S

3

the unique existen
e

of a polynomial J(L)(l; m) su
h that J(L)(l(H(n; k)); m(H(n; k))) = 


H(n;k)

(L) holds for all

n,k.
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6.se
tion

The 
onstru
tion of quantum �eld theories

In this se
tion we sket
h the 
onstru
tion of appropiate quantum �eld theories H(n; k)

whi
h give the Jones polynomial as des
ribed in lemma 5.37 and theorem 5.39. The index

k � 2 will be 
alled the level and n will parametrize the underlying family of Lie groups,

namely, the family SU(n).

We have to enlarge our 
ategory M de�ned in 5.16 as follows. Namely, we require

for an obje
t that to ea
h element in the 0-dimensional manifold P we have assigned a

SU(n)-representation V . Similarly we demand for morphism that we have atta
hed to ea
h


omponent of the link L a representation V whi
h agrees with the given representation at the

positive end and with the dual of the given representation at the negative end. In all expli
ite

obje
ts appearing in the last se
tion we require that we have assigned the n-dimensional


anoni
al representation C

n

with the obvious SU(n)-a
tion to points with positive orientation

and the dual representation (C

n

)

�

to points with negative orientation. The representations

atta
hed to the 
omponents of the links appearing in the expli
ite morphisms are always C

n

.

In view of example 5.15 this means that we are 
oupling a 0-1-quantum �eld theory and a

2-3-quantum �eld theory in the sequel.

We start with the 
onstru
tion of the Hilbert spa
e H(M) assigned to an obje
t in the


ase, where the 0-dimensional submanifold P is empty. Then the obje
t 
onsists of a 
losed

2-manifold with a framing of R� TM . The 
onstru
tion is done in several steps summarized

as follows.

6.1

1. The framing of R� TM indu
es a Riemannian metri
 and an orientation on M .

2. The Riemannian metri
 on M de�nes a 
onformal stru
ture on M .

3. The 
onformal stru
ture determines an almost 
omplex stru
ture on TM .

4. The almost 
omplex stru
ture indu
es a holomorphi
 stru
ture on M by the theorem

of Nirenberg and Neulander.

5. Given the holomorphi
 stru
ture on M , there is a moduli spa
eMODB of stable holo-

morphi
 SU(n) bundles whi
h are topologi
ally trivial. This spa
e turns out to be a


omplex K�ahler manifold.

6. There is a family of �-operators parametized byMODB.

7. Asso
iated to su
h family is the determinant line bundle det(�) 
onstru
ted by Quillen.

This is a holomorphi
 ve
tor bundle overMODB. It possess a Riemannian metri
.

8. De�ne H(M) to be the �nite-dimensional ve
tor spa
e of holomorphi
 se
tions of




k

det(�).
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We make some 
omments on the items of the list 6.1 :

1.) A framing indu
es a Riemannian metri
 and an orientation and a subbundle inhe-

rits a Riemannian metri
 and an orientation.

2.) A 
onformal stru
ture on a manifold is an equivalen
e 
lass of Riemannian metri
s.

Two Riemannian metri
s h ; i

1

and h ; i

2

are 
onformally equivalent if there is a fun
tion

f :M �! R su
h that for all x 2M and v; w 2 TM

x

we have :

hv; wi

1

x

= f(x) � hv; wi

2

x

Hen
e two Riemannian metri
s give the same 
onformal stru
ture if and only if they de�ne

the same angles between tangent ve
tors.

3.) An almost 
omplex stru
ture on TM is a bundle isomorphism J : TM �! TM

over id :M �!M su
h that J Æ J = �id holds and for ea
h v 2 TM

x

for x 2 M the set

fv; J(v)g is a bases 
onsistent with the orientation of M . Given a Riemannian metri
 h ; i

and v 2 TM

x

for x 2M , de�ne J(v) 2 TM

x

to be the tangent ve
tor uniquely determined by

the properties that fv; J(v)g is a orthogonal bases of TM

x


orresponding to the orientation

of M and hv; vi and hJ(v); J(v)i agree. Then J is an almost 
omplex stru
ture and depends

only on the 
onformal stru
ture determined by the Riemannian metri
 h ; i.

Suppose, we are given an almost 
omplex stru
ture J . Fix a 
overing U = fU

i

j i 2 Ig

of M su
h that TM restri
ted to any U

i

is trivial. Choose for any i 2 I a nowhere-vanishing

se
tion s of TM j

U

i

. Let h ; i

i

be the Riemannian metri
 on TM j

U

i

for whi
h fs(x); J(s(x))g

is an orthonormal bases of TM

x

for all x 2 M . Choose a partition fe

i

j i 2 Ig of unity

subordinate to the open 
overing U . Let h ; i be the Riemannian metri


P

i2I

e

i

� h ; i

i

. One

easily 
he
ks that the 
onformal 
lass of this Riemannian metri
 does only depend on J and

that these two 
onstru
tions give to another inverse bije
tions between the set of 
onformal

stru
tures on M and the set of almost 
omplex stru
tures on M .

4.) Let J be an almost 
omplex stru
ture on M . Extend J to an automorphism of

TM 
C, also denoted by J . As J

2

is �id, the eigenspa
es of the eigenvalues i and �i of J

give a de
omposition

TM 
C = TM

0

� TM

00

This de
omposition is orthogonal with respe
t to any unitary Riemannian metri
, i.e. a

Riemannian metri
 for whi
h J is isometri
. We obtain a de
omposition of the 
omplexi�ed

dual tangent bundle

T

�

M 
C = �

1;0

M � �

0;1

M

and thus a de
omposition :

�

n

T

�

M 
C = �

p+q=n

�

p;q

M

if we put �

p;q

M = �

p

(�

1;0

)
 �

q

(�

0;1

M) for n � 0. The exterior di�erental d indu
es :

�

p;q

: C

1

(�

p;q

M) �! C

1

(�

p+1;q

M)

�

p;q

: C

1

(�

p;q

M) �! C

1

(�

p;q+1

M)

62



Now suppose that M is holomorphi
. In lo
al 
oordinates z

1

, z

2

, : : : z

m

de�ne for

z

i

= x

i

+ i � y

i

:

�

�z

i

=

1

2

�

�

�

x

i

�

�

y

i

�

�

�z

i

=

1

2

�

�

�

x

i

+ i �

�

y

i

�

dz

i

=

1

2

� (dx

i

� i � dy

i

) dz

i

=

1

2

� (dx

i

+ i � dy

i

)

For f :M �! C we de�ne :

�(f) =

P

i

�f

�z

i

� dz

i

�(f) =

P

i

�f

�z

i

� dz

i

De�ne 
omplex subbundles of T

�

M 
C :

TM

0

= span

n

�

�z

i

o

TM

00

= span

n

�

�z

i

o

�

1;0

M = spanfdzg �

0;1

M = spanfdz

i

g

Moreover we get operators :

� : C

1

(M) �! C

1

(�

1;0

M) � : C

1

(M) �! C

1

(�

0;1

M)

These bundle maps are invariantly de�ned and independent of the 
oordinate 
harts. An

almost 
omplex stru
ture on TM is given by :

J(

�

�x

i

) =

�

�y

i

J(

�

�y

i

) = �

�

�x

i

Noti
e that the de�nitions of TM

0

, TM

00

, �

1;0

M , �

0;1

M , � : C

1

(M) �! C

1

(�

1;0

M) and

� : C

1

(M) �! C

1

(�

0;1

M) for holomorphi
 M agree with the one for J , if J is the almost


omplex stru
ture indu
ed from the holomorphi
 stru
ture.

Theorem 6.2 (Nirenberg-Neulander) The following assertions are equivalent for an al-

most 
omplex stru
ture J on TM :

1. J arises from a holomorphi
 stru
ture.

2. d = � + �

3. � Æ � = 0

IfM is 2-dimensional, � Æ � = 0 holds always for dimension reasons. Hen
e any almost


omplex stru
ture J 
omes from a holomorphi
 stru
ture onM . If two holomorphi
 stru
tures

de�ne the same almost 
omplex stru
ture, they agree. This follows from the fa
t that a

di�eomorphism f : U �! V of open subsets of C

n

is holomorphi
 if and only if its di�erential

is 
ompatible with the almost 
omplex stru
tures on U and V 
oming from the standard almost


omplex stru
ture on C

n

. Hen
e for surfa
es we get a bije
tive 
orresponden
e between almost


omplex stru
tures and holomorphi
 stru
tures.
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5.) Let M be a surfa
e with holomorphi
 stru
ture. Let � be a holomorphi
 ve
tor

bundle. It is 
alled stable if for any proper subbundles � we have :

rank(�)

degree(�)

<

rank(�)

degree(�)

The degree of � is the evaluation of the �rst 
hern 
lass of the line bundle �

rank(�)

� on the

fundamental 
lass ofM . LetMODB be the moduli spa
e of stable holomorphi
 SU(n)-bundles

whi
h are topologi
ally trivial. This spa
e is a proje
tive algebrai
 variety. In parti
ular it

is a holomorphi
 manifold and is K�ahler, i.e. there is a unitary metri
 on M su
h that the

asso
iated the K�ahler 2-form


(v; w) = �hv; J(w)i

is 
losed. We mention that a holomorphi
 manifold M is Hodge, if and only if it admits a

K�ahler metri
 su
h that the K�ahler form 
 is 


1

(�) for some line bundle �. Obviuosly CP

n

is Hodge and hen
e any algebrai
 variety is Hodge. The 
onverse is also true (see Gilkey [14℄

remark 3.6.3.)

The moduli spa
eMODB 
an be identi�ed with the moduli spa
eMODC of 
at 
onne
-

tions modulo gauge transformations on the trivial SU(n)-bundle over M .

6.) We have introdu
ed the notion of the � operator on a holomorphi
 manifold M . If

� is a holomorphi
 ve
tor bundle over M , we 
an 
onsider a �-twisted version :

� : C

1

(�) �! C

1

(�

0;1

TM 
 �)

If � is trivial, C

1

(�) is a dire
t sum of 
opies C

1

(M) and C

1

(�

0;1

M 
 �) is a dire
t

sum of 
opies of C

1

(�

0;1

M). De�ne for trivial � the operator � by a matrix of operators

� : C

1

(M) �! C

1

�

0;1

M . This generalizes to arbitrary � using lo
al 
ooodinates.

Hen
e the moduli spa
e of stable holomorphi
 topologi
ally trivial ve
tor bundlesMODB

of rank n parametrizes a family of operators

� : C

1

(C

n

) �! C

1

(�

0;1

M 
C

n

)

if C

n

denotes in this 
ase the trivial C

1

-ve
tor bundle over M . The kernel of � is just the

ve
tor spa
e of holomorphi
 se
tions of the 
orresponding holomorphi
 bundle.

7.) Given su
h an operator

� : C

1

(C

n

) �! C

1

(�

0;1

M 
C

n

)

de�ne its determinant line det(�) to be

det(�) = �

max

ker(�)

�


 �

max


oker(�)

where �

max

V for V a �nite-dimensional ve
tor spa
e V is �

dim(V )

V . This de�nition makes

sense as � is an Fredholm operator. Thus we get for any element in the moduli spa
eMODB

a 
omplex line. These �t together to the determinant line bundle of the family of det(�)

indexed byMODB :

det(�) # MODB

64



Next we make some 
omments in the 
ase where the 0-dimensional submanifold P is

non-trivial. Then one has to modify the moduli spa
e in su
h a way that the holomorphi


ve
tor bundles are related at the marked points to the spe
i�ed representations. The re-

presentations at the marked points determine so 
alled paraboli
 stru
tures on the bundles

under 
onsideration and one divides out not the full gauge group, but the group of gauge

transformation respe
ting these extra stru
tures. The 
orresponding moduli spa
es have been

developed by Seshradi. In terms of representation theory resp. 
at 
onne
tions one studies

representations �

1

(N � fp

1

; : : : p

r

g) �! G whose monodromy around the marked points, i.e.

the image of a small loop around the marked point, lie in a given 
onjuga
y 
lass of elements

of order k in G whi
h are given by the representations atta
hed to the marked points.

The e�e
t one wants to have is the following :

Lemma 6.3 Consider S

2

with a positively oriented points p

+

1

, p

+

2

, : : : p

+

a

and b negatively

oriented points p

�

1

, p

�

2

, : : : p

�

b

and representations V

+

1

, V

+

2

, : : : V

+

a

and V

�

1

, V

�

2

: : : V

�

b

. Then

the Hilbert spa
e assigned to the obje
t determined by this data is, where for a = 0 or b = 0

the tensor produ
t over an empty set is de�ned to be C:

�

V

+

1


 V

+

2


 : : : V

+

a


 V

�

1


 V

�

2


 : : : V

�

b

�

G

Lemma 6.4 We obtain for the dimension dim = dim(H(X)) of the Hilbert spa
e assigned

to the following obje
ts :

1. S

2

with no marked points :

dim = 1

2. S

2

with two marked points p

+

and p

�

and irredu
ible representations V and W :

dim = 1 if V and W

�

are linearly isomorphi


dim = 0 otherwise

3. S

2

with two positively oriented points and two negatively oriented points and represen-

tation C

n

in the positive and (C

n

)

�

in the negative 
ase :

dim = 2

Proof : 1.) The moduli spa
e redu
es to a point and hen
e the determinant line bundle

be
omes the Hilbert spa
e C over a point.

2.) We get from lemma 6.3 that the Hilbert spa
e is given by :

Hom

SU(n)

(V;W

�

)

By S
hur's lemma this is zero if V and W

�

are not linearly isomorphi
, and a skew �eld

over C and hen
e C itself if V and W

�

are linearly isomorphi
.
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3.) We get from lemma 6.3 that the Hilbert spa
e is given by :

Hom

SU(n)

(C

n


C

n

;C

n


C

n

)

Now we have the de
omposition :

C

n


C

n

= Sym(C

n

)� Alt(C

n

)

As Sym(C

n

) and Alt(C

n

) are irredu
ible and not isomorphi
, we get from S
hur's lemma :

Hom

SU(n)

(C

n


C

n

;C

n


C

n

) =

Hom

SU(n)

(Sym(C

n

); Sym(C

n

))�Hom

SU(n)

(Alt(C

n

); Alt(C

n

)) = C�C

and the 
laim follows.

Now we have shown that the quantum �eld theory 
onstru
ted above satis�es the asump-

tion 5.30. Further expli
it 
omputations prove that the 
ondition appearing in theorem 5.39

are satis�ed.

Next we deal with morphisms in the 
ategory M and the maps they indu
e on the

asso
iated Hilbert spa
es. We only 
onsider the 
ase of a morphism from ; to ;. Hen
e we

have to assign a 
omplex number to a 
losed framed 3-manifold W together with a framed

link L � W together with a 
hoi
e of representations for ea
h 
omponent of the link. Some

preparations are needed.

Let G be a 
ompa
t Lie group and p : E �! B a G-prin
ipal bundle over a manifold

B. A 
onne
tion on p is a 1-form on E with values in the Lie algebra LG of G

� 2 �

1

(E;LG)

with the following properties

� For all x 2 E we have �

x

Æ �

x

= id, where �

x

: LG = T

1

G �! T

x

E is the di�erential

at 1 of the map G �! E sending g to gx.

� R

�

g

� = ad(g)

�

�, where ad : G �! End(LG) is the adjoint representation.

Noti
e that we obtain a horizontal subspa
e H

x

2 T

x

E for x 2 E by ker(�

x

) be
ause of

the �rst 
ondition. Horizontal means that T

x

p : T

x

E �! T

p(x)

B indu
es an isomorphism

H

x

�! T

p(x)

B. The se
ond 
ondition ensures that R

�

g

H

x

= H

gx

holds for g 2 G and x 2 E.

Thus a 
onne
tion is the in�nitesimal version of parallel transport . Namely, for any path

w : I �! B and v 2 E

w(0)

the 
onne
tion de�nes a lift

e

w : I �! E of w satisfying

e

w(0) = v.

Hen
e we obtain an isomorphism, the parallel transport along w :

tp

�

(w) : E

w(0)

�! E

w(1)

The 
urvature 
 = 


�

is the 2-form with values in LG de�ned by :


 = d�+

1

2

� [�;�℄
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It satis�es the Bian
hi identity :

d
 = [
;�℄

This form is equivariant and horizontal. It is in parti
ular determined by its values on

horizontal tangent ve
tors. The 
urvature 
an be interpreted as follows. Given two tangent

ve
tors v and w in T

x

E, we may proje
t them down to T

p(x)

B. Then tv and tw determine

an in�nitesimal parallelogram. The parallel transport along this parallelogram determines an

automorphism of E

x

and thus an element g(t) in G. Consider the path g(t) in G for small t.

It determines an element in LG, whi
h is by de�nition 
(v; w). A 
onne
tion is 
alled 
at,

if its 
urvature vanishes. This is equivalent to the statement that the parallel transport along

a path w depends only on the homotopy 
lass relative endpoints of the path. In parti
ular

a 
at 
onne
tion determines a homomorphism �

1

(B) �! G. Hen
e 
at 
onne
tions are in

bije
tive 
orresponden
e to representations of the fundamental group of B into G.

Now 
onsider a 
losed 3-manifold W and the trivial SU(n)-bundle E # W for n � 2.

Let A be the spa
e of 
onne
tions A on E # W . The di�eren
e of two 
onne
tions is an

invariant horizontal 1-form on E with 
oeÆ
ients in LG and hen
e a 1-form on W with


oeÆ
ients in LG. Hen
e A is an aÆne spa
e modelled on �

1

(B;LG). In parti
ular it

makes sense to speak of the tangent spa
e of A at �, it 
an be identi�ed with �

1

(B;LG). A

1-form on A is given by a family of linear maps �

1

(B;LG) �! R parametrized by A. We

get a 1-form 
urv on A, by the following 
onstru
tion :


urv

�

: �

1

(B;LG) �! R ! 7!

Z

W

tr(! ^ 


�

)

This 1-form turns out to be 
losed. It turns out that it is exa
t, i.e. there is a fun
tion L

on A satisfying dL = Curv. This fun
tion is the so 
alled Chern-Simons fun
tional (see

Chern-Simons [7℄) :

L : A �! R A 7!

1

4�

�

Z

M

tr(A ^ dA+

2

3

�A ^ A ^ A)

Let G be the gauge group of E # W , i.e. the group of bundle automorphisms of E # W over

the identity on W . As E # W is trivial, G is just map(W;G). We will be interested in A=G.

Noti
e that 
urv is G-invariant and hen
e de�nes also a 1-form on A=G. The fun
tion L

is at least invariant under the a
tion of the 
omponent of the identity G

0

of G. As W is

3-dimensional and SU(n) is 2-
onne
ted, we get :

�

0

(G) = G=G

0

= [W;SU(N)℄ = H

3

(W ; �

3

(SU(n))) = H

3

(W ;Z) = Z

The a
tion of �

0

(G) = Z on L is given by adding a 
ertain integer to L. Hen
e L indu
es a

fun
tion :

L : A=G �! R=Z

Hen
e we obtain a well-de�ned fun
tion :

A=G �! C A � G 7! exp(ikL(A))

Now Witten de�nes a 
omplex number

Z(W ) =

Z

A=G

exp(ikL(A)) dA=G
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Of 
ouse the real meaning of this integral is not 
lear, as one is integrating over a very big

spa
e and no expli
ite measure is known.

Finally, we explain, how one takes links L in W together with representations for V

i

for ea
h 
omponent L

i

into a

ount. Given a 
onne
tion A , let the Wilson line be de�ned

by :

W

L

i

(A) = 
har

V

i

(tp

A

(L

i

))

where tp

A

(L

i

) 2 G is the parallel transport along L

i

given by A and 
har

V

i

: G �! C the


hara
ter of the representation V

i

. Then one de�nes :

Z(W;L) =

Z

A=G

exp(ikL(A)) �

Y

i

W

L

i

(A) dA=G
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7.se
tion

Basi
 fa
ts about 3-manifolds

In this se
tion we 
olle
t some basi
 fa
ts about 3-manifolds. We begin with the proof

of the following theorem due to Stiefel.

Theorem 7.1 Any orientable 3-manifold is parallizable, i.e. its tangent bundle is trivial.

The proof needs some preparation. Let

w(M) := w(TM) 2 H

�

(M ;Z=2)

be the total Stiefel-Whitney 
lass of M . The Stiefel-Whitney 
lasses of a n-dimensional

ve
tor bundle � # X are de�ned as follows. The 
ohomology ring with Z=2-
oeÆ
ients of the


lassifying spa
e BO(n) of su
h bundles is a free polynomial algebra

H

�

(BO(n);Z=2) = Z=2[w

1

; w

2

; : : : w

n

℄

where the degree of w

i

is i. Let f

�

: X �! BSO(n) be the 
lassifying map of �, i.e., the

map uniquely determined up to homotopy by the property that f

�

�




n

is isomorphi
 to � where


 # BO(n) is the universal bundle. Then the i-th Stiefel-Whitney 
lass w

i

(�) is de�ned by

f

�

�

w

i

. The total Wu-
lass

v(M) 2 H

�

(M ;Z=2)

is uniquely de�ned by the property that for all total 
ohomology 
lasses x we have :

hx [ v(M); [M ℄i = hSq(x); [M ℄i

if Sq

i

: H

�

(X) �! H

�+i

(X) is the 
ohomology operation given by the Steenrod squares. The

Wu formula says :

w(M) = Sq(v(M))

The Steenrod squares satisfy Sq

i

(x) = 0 for any j-dimensional 
ohomology 
lass x if j < i

holds. Hen
e the Wu 
lass of a n-dimensional manifold satis�es v

k

(M) = 0 for k < n� k.

In parti
ular we get for a 3-manifold M :

v(M) = 1 + v

1

(M)

We derive from the Wu formula w

1

(M) = v

1

(M). As M is supposed to be orientable, w

1

(M)

vanishes. Hen
e we get

Lemma 7.2 The total Wu 
lass and the total Stiefel Whitney 
lass of an orientable 3-

manifold are trivial.
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Next we deal with the lower homotopy groups of SO(3) and BSO(3). Let H

�

=

R

4

be

the Lie group of quaternions. Denote by S

3

the unit sphere. We obtain an operation by


onjugation :

q : H� f0g �H �! H (x; y) 7! xyx

�1

The 
enter of H is given by R. Let V be the orthogonal 
omplement of R in H. We obtain

an indu
ed operation by orientation preserving isometries :

S

3

� V �! V

As V is isometri
 to R

3

as real ve
tor spa
e, we obtain an exa
t sequen
e of Lie groups :

7.3 Z=2 �! S

3

p

�! SO(3)

In parti
ular p is a 
overing. An alternative des
ription of p is given by the adjoint repre-

sentation of SU(2) and an identi�
ation of Eu
lidean spa
es between the Lie algebra LSU(2)

and R

3

. We derive from elementary homotopy theory :

Lemma 7.4

�

i

(BSO(3)) = �

i�1

(SO(3)) =

8

>

<

>

:

f0g i = 0; 1; 3

Z=2 i = 2

Z i = 4

Hen
e the obvious map j : BSO(3) �! K(Z=2; 2) into the Eilenberg-Ma
Lane spa
e

K(Z=2; 2) is 4-
onne
ted. As a 3-dimensional manifold M has the homotopy type of a 3-

dimensional CW -
omplex, we obtain a bije
tion :

j

�

: [M ;BSO(3)℄ �! [M;K(Z=2; 2)℄

There is a natural isomorphism :

� : [M;K(Z=2; 2)℄ �! H

2

(M ;Z=2)

The 
ohomology ring H

�

(BSO(n);Z=2) is a free polynomial algebra

H

�

(BSO(n);Z=2) = Z=2[

f

w

2

; : : :

f

w

n

℄ ; deg(

f

w

i

) = i

and for the 
anoni
al map q : SO(3) �! O(3) we get for 2 � i � n:

Bq

i

(w

i

) =

f

w

i

This shows for an oriented 3-manifold M :

� Æ j

�

(f

TM

) = w

2

(M)

As � Æ j

�

is an isomorphism, theorem 7.1 follows from lemma 7.2. More details 
an be found

in Milnor-Stashe� [34℄.

Next we deal with Heegaard de
ompositions of an oriented 
losed 3-manifold.
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Notation 7.5

Let W

g

=W be the standard modell of the 3-dimensional handle body of genus g. Namely

W is the g-fold 
onne
ted sum of S

1

�D

2

.

Denote by F the boundary of W . This is the surfa
e of genus g, or in other words, the g-fold


onne
ted sum of S

1

� S

1

.

Let D � F be a �xed embedded 2-disk.

Put F

�

:= F �D and S

1

:= �D.

Fix a base point x 2 D

7.6

a

1

a

2

b

1

b

2

x

D

The standard orientation of R

3

indu
es an orientation on W . Then F , F

�

, D and S

1

inhe-

rits orientations by the general agreement that an oriented manifold indu
es an orientation

on its boundary using the de
omposition �(�M;M) � T�M = TM and the outward normal

�eld.

De�nition 7.7 (Heegard modell) If h : (F;D; x) �! (F;D; x) is an orientation rever-

sing homeomorphism, de�ne the Heegard modell of h by

j (W;h) j:= W [

h

W

De�nition 7.8 (Heegard splitting) Let M be an oriented 
losed 3-manifold. A Heegard

splitting of M is a pair (W

1

;W

2

) 
onsisting of submanifolds W

1

;W

2

�M of 
odimension 0

satisfying

W

1

[W

2

=M �W

1

= W

1

\W

2

= �W

2

W

1

�

=

W

2
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Lemma 7.9 Any 
losed 3-manifold admits a Heegard de
omposition.

Proof : Choose a handlebody de
omposition of M with exa
tly one 0-handle and one 3-

handle. Let W

1

be the union of 0- and 1-handles and W

2

the union of all 2- and 3-handles.

Then W

1

resp. W

2

is di�eomorphi
 to the standard model of the 3-dimensional handle body

whose genus is the number of 1 resp 3-handles. The number of 1- resp 3-handles has to

agree, as the Euler 
hara
teristi
 of a 
losed 3-manifold is zero by Poin
are duality and


an be 
omputed from a handlebody de
omposition by

P

i=3

i=0

(�1)

i

� h

i

, where h

i

denotes the

number of i-dimensional handles. This shows that W

1

and W

2

are di�eomorphi
. Obviously

M = W

1

[W

2

and �M = W

1

\W

2

holds.

Another proof of lemma 7.9 is done as follows. A triangulation (T; h) of M 
onsists

of a �nite simpli
ial 
omplex T together with a homeomorphism h : j T j�!M . Two trin-

gulations (T

1

; h

1

) and (T

2

; h

2

) are 
ompatible , if h

�1

2

Æ h

1

is pie
ewise linear. The star of

a simplex � is the sub
omplex of T 
onsisting of all simpli
es of K, whi
h meet �, together

with all their fa
es. The link is the sub
omplex of all simpli
es whi
h do not meet K, but

whi
h are fa
es of some simplex of K 
ontaining �. A triangulation is 
alled 
ombinatorial

if for ea
h vertex v of T the link link(v) is PL-homeomorphi
 to an n � 1-simplex or the

boundary of an n-simplex a

ording to h(v) 2 �M or h(v) 2 int(M). A PL-stru
ture on M

is a maximal, non-empty 
olle
tion of 
ompatible 
ombinatorial triangulations of M . De�ne

for a sub
omplex L of T :

N(L; T ) = [

�2T

star(�; T )

If there are �nite sub
omplexes K and L of T su
h that K 
ollapses down to L, then

N = h(K) is a regular neighbourhood of P = h(L) = j L j. Su
h regular neighbourhoods N

of P are in a 
ertain sense unique, i.e. there is a PL-homeomorphism from N

1

to N

2

whi
h

is the identity on P , if N

1

and N

2

are regular neighbourhoods of P satisfying P � int(N

i

).

A regular neighbourhood of j L j in j T j is given by N(K

00

; T

00

).

Given a triangulation ofM , let �

1

be the 1-skeleton and �

2

be the dual 1-skeleton, i.e. a

maximal 1-sub
omplex of the bary
entri
 subdivision T

0

disjoint from �

1

. Put V

i

= N(�

i

; T

00

).

Then V

i

turns out to be a regular neighbourhood of �

i

. Moreover, (V

1

; V

2

) is a Heegaard

de
omposition of M (see Hempel [16℄, page 17).

Two Heegard de
ompositions (W

1

;W

2

) and (V

1

; V

2

) of M are 
alled isotopi


(W

1

;W

2

) � (V

1

; V

2

)

if there is an ambient isotopy of M taking W

1

to V

1

and W

2

to V

2

. Given a Heegard de
om-

position (W

1

;W

2

) of genus g, we de�ne a new Heegard de
omposition of genus g + 1, the

suspension, �(W

1

;W

2

) as follows. Choose an unknotted handle H in W

2

, i.e. an embedding

of D

2

� [0; 1℄ in W

2

su
h that H \ �W

2

= D

2

� �[0; 1℄ holds and there is an embedded disk

B

2

in W

2

su
h that the union of B

2

\ �W

2

and f0g � [0; 1℄ is the boundary of B

2

. De�ne

�(W

1

;W

2

) to be (W

1

[H; 
los(W

2

�H)). Then the isotopy 
lass of the suspension depends

only on the isotopy 
lass of (W

1

;W

2

). Two Heegard de
ompositions (W

1

;W

2

) and (V

1

; V

2

)

are 
alled stably equivalent ,

(W

1

;W

2

) � (V

1

; V

2

)
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if there are non-negative integers a and b satisfying :

�

a

(W

1

;W

2

) � �

b

(V

1

; V

2

)

It may happen that two Heegard de
ompositions of the same 3-manifold M are not isotopi
.

However, we have :

Theorem 7.10 (Singer) Two Heegard de
ompositions of the same 3-manifoldM are stably

equivalent.

Proof : We give only a sket
h of a proof. In the �rst step one veri�es for an arbitrary

Heegard de
omposition (W

1

;W

2

) the existen
e of a triangulation (T; h) su
h that :

(W

1

;W

2

) � (N(�

1

); 
los(M � (N(�

1

)))

We des
ribe at least the triangulation T . Think of W

i

as a 3-ball with g 1-handles atta
hed.

Now 
hoose a triangulation (T

0

; h

0

) of F = �W

1

\ �W

2

su
h that �D

2

� �[0; 1℄ for any 1-

handle D

2

� [0; 1℄ is a subgraph of h(T

1

0

). Extend (T

0

; h

0

) over D

2

� �[0; 1℄ by 
oning over

the 
enters yielding (T

1

; h

1

). Next extend (T

1

; h

1

) to (T

2

; h

2

) by 
oning to the 
enter of the

0-handle. Then extend (T

2

; h

2

) to the desired triangulation (T; h) by 
oning to the 
enters

of the 1-handles. Then W

1

is a regular neighbourhood of a 
ertain subgraph � of (T;H) and

their is a sequen
e of subgraphs � = �

1

, �

2

, : : :�

n

= h(T ) su
h that �

i+1

is obtained from

�

i

by atta
hing an edge in a spe
i�
 way. One shows that the Heegard de
ompositions given

by �

i

and �

i+1

are stably equivalent.

In the se
ond step one veri�es that the Heegard de
ompositions given by a subdivision

of (T; h) and of (T; h) itself are stably equivalent. As two triangulations have a 
ommon

subdivision, the 
laim follows.

7.11 Let (W

1

;W

2

) and (V

1

; V

2

) be Heegard de
ompositions of M and N . Choose 3-balls

B and C in M and N su
h that B \ �W

1

is a 2-disk with boundary �B \ �W

1

holds and a

similar statement for C. Taking the boundary 
onne
ted sums of the handle bodies

(W

1

;W

2

)℄(V

1

; V

2

) = (W

1

℄

�

V

1

;W

2

℄

�

V

2

)

yields a Heegard de
omposition of the 
onne
ted sum M℄N .

7.12
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The genus one Heegard de
omposition of S

3

is given by the Heegard model (S

1

� S

2

; f)

where f : �(S

1

� S

2

) �! �(S

1

� S

2

) is given by the 
ip map on S

1

� S

1

= �(S

1

�D

2

).

Given a Heegard splitting (W

1

;W

2

) of M , we obtain a diagram of in
lusions of spa
es

7.13

�F

�

-

F

�

-

F

�

�>

Z

Z~

W

1

W

2

Z

Z~

�

�>

M

Applying the fundamental group with respe
t to the base point x gives a diagram of groups

7.14

�

1

(�F

�

)

-

�

1

(F

�

)

-

�

1

(F )

�

�>

Z

Z~

�

1

(W

1

)

�

1

(W

2

)

Z

Z~

�

�>

�

1

(M)

That all the maps in the diagram 7.14 are epimorphisms ex
ept for the �rst one, fol-

lows from the following presentations of the fundamental groups if M is the Heegard modell

j (W;h) j. The paths a

i

and b

i

on F

�

are indi
ated in diagram 7.6 and i : F �!W is the

in
lusion.

7.15 �

1

(F

�

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

>

�

1

(F; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j

Q

g

i=1

[a

i

; b

i

℄ = 1 >

�

1

(W

1

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j b

1

= b

2

= ::: = b

g

= 1 >

�

1

(W

2

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j (i Æ h

�1

)

�

(b

j

) = 1 1 � j � g >

�

1

(M;x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::; b

g

j b

j

= 1; (i Æ h)

�1

�

(b

j

) = 1 1 � j � g >
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Next we 
ompute the �rst homology of M from the homeomorphism h appearing in the

Heegard model (W;h) of M . As F is oriented, we have the interse
tion pairing. Its matrix

with respe
t to the bases of H

1

(F ;Z) given by fa

1

; : : : ; a

g

; b

1

; : : : b

g

g is :

J =

 

0 I

�I 0

!

Let h : F �! F be an orientation reversing di�eomorphism. Then h

�

= H

1

(h;Z) respe
ts

the interse
tion pairing up to a sign. This is equivalent to

h

�1

�

= �J

�1

h

tr

�

J

If we write h

�

with respe
t to the bases above :

h

�

=

 

A B

C D

!

we get :

h

�1

�

=

 

D

tr

�B

tr

�C

tr

A

tr

!

Be
ause of the presentations of �

1

(M) in 7.15 we obtain presentation matri
es for H

1

(M ;Z)

by both B and the following matrix P :

7.16 P =

 

0 B

tr

I �A

tr

!

In parti
ular we 
on
lude

Lemma 7.17 If we write h

�

as

h

�

=

 

A B

C D

!

we get :

1. H

1

(M) is di�erent from zero, if and only if det(B) = det(P ) is di�erent from zero.

2. Suppose that det(B) is di�erent from zero. Then we get

j det(B) j = j det(P ) j = j H

1

(M) j

Next we want to deal with the Kirby-
al
ulus. For this purpose we re
all the basi


notions of surgery along framed links.

A framed link L in an oriented 3-manifold M is a link L together with a framing of its

normal bundle, i.e. an isomorphism of ve
tor bundles R

2

� L �! �(L;M) over the identity,

su
h that the indu
ed orientation on �(L;M) and the given orientations on L and M are
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ompatible with the obvious isomorphism �(L;M)� TL �! TM j

L

. Noti
e that �(L;M) is

stably trivial and hen
e for dimension reasons trivial be
ause of theorem 7.1. In an oriented

homology 3-sphere we 
an des
ribe a framing of a link by an element n 2 H

0

(L) = Z

r(L)

,

where r(L) is the number of 
omponents of the link. De�ne a map

n : fisotopy 
lasses of framings on Lg �! Z

r

as follows. Given a framing f : R

2

� L �! �(L;M), we obtain from the standard se
-

tion of R

2

� L given by the �rst standard basi
 ve
tor in R

2

and the exponential map

exp : �(L;M) �! N(L) onto an open neighbourhood of L a parallel link L

0

. Choose an

orientation on L and equip L

0

with the indu
ed orientation. Let n(L) be given by the se-

quen
e of integers link(L

i

; L

0

i

), where i runs over the 
omponents of the link. Noti
e that

this is independent of the 
hoi
e of orientation on L, as a 
hange of the orientation of L

i


auses also a 
hange of orientation on L

0

i

.

Lemma 7.18 Let M be an oriented homology 3-sphere and L � M be an oriented link.

Then

n : fisotopy 
lasses of framings on Lg �! Z

r

is a bije
tion.

Proof : The orientations of L and M indu
e an orientation on �(L;M). Choose a Rie-

mannian metri
 on �(L;M). Given v 6= 0 2 �(L;M), let

b

v 2 �(L;M) be the ve
tor uniquely

determined by the property that v and

b

v are orthogonal,

b

v has norm 1 and the bases fv;

b

vg

is 
ompatible with the orientation. If s is a nowhere-vanishing se
tion of �(L;M), we obtain

another se
tion

b

s by requiring

b

s(x) :=

d

s(x) for x 2 L. Noti
e that s;

b

s determines a framing

of �(L;M), denoted by f(s). Moreover, the isotopy 
lass of f(s) is independent of the 
hoi
e

of Riemannian metri
 on �(L;M) and depends only on the isotopy 
lass of the nowhere

vanishing se
tion s. One easily 
he
ks that we obtain a bije
tion

f : fisotopy 
lasses of nowhere vanishing se
tions in �(L;M)g �!

fisotopy 
lasses of framings of �(L;M)g

As the isotopy 
lasses of framings of nowhere vanishing se
tions in the trivial bundle R

2

� L


orrespond bije
tively to the homotopy 
lasses of maps L �! R

2

� f0g, the 
laim follows.

7.19 Let L be an oriented link in an oriented homology 3-sphere M . Suppose, we are

given for any 
omponent L

i

an element in r

i

2 Q [ f1g. Choose integers p

i

and q

i

su
h

that r

i

= p

i

=q

i

holds and p

i

and q

i

are prime, provided that r

i

2 Q. If r

i

is 1 put p = 0

and q = 1. Denote by N(L

i

) a tubular neighbourhood of L

i

and by N(L) their union. Let

M(L

i

) beM � int(N(L

i

)) andM(L) beM �N(L). Choose 
lasses �

i

and �

i

in H

1

(�N(L

i

))

su
h that �

i

resp. �

i

lies in the kernel of the homomorphism H

1

(�N(L

i

)) �! H

1

(N(L

i

))

resp. H

1

(�N(L

i

)) �! H

1

(M(L

i

)) indu
ed from the in
lusion and the interse
tion number

of �

i

and �

i

in �N(L

i

) with respe
t to the orientation indu
ed from the one on M is 1.

Noti
e that the pair (p; q) resp. (�; �) is not unique, there is exa
tly one other 
hoi
e,
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namely, (�p;�q) resp. (��;��). Sin
e p and q are relatively prime, we 
an 
hoose a

homeomorphism �

i

: S

1

�D

2

�! N(L

i

) su
h that H

1

(�

i

) sends the 
lass of f1g � �D

2

to

p�+ q�. Let i : �N(L) �!M(L) be the in
lusion. Then de�ne the result of Dehn surgery

M(L; r

1

; : : : r

r(L)

) by the push out

`

i

S

1

� �D

2

M(L)

-

i Æ

`

i

�

i

? ?

`

i

S

1

�D

2

M(L; r

1

; : : : r

r(L)

)

-

We have already indi
ated in the �rst se
tion that this 
onstru
tion depends up to oriented

homeomorphism only on the isotopy 
lass of L and the elements r

1

, : : : ,r

r(L)

.

7.20 Let L be a framed link in an oriented 3-manifold M . The framing together with

the exponential map indu
e an homeomorphism � :

`

i

S

1

�D

2

�! N(L) onto a tubular

neighbourhood of L in M . Let M(L) be M �N(L). Let � :

`

i

S

1

� S

1

�! �M(L) be

given by the restri
tion of � and the in
lusion �M(L) �!M(L). Now de�ne the result

under surgery along the framed link L by the push out :

`

i

S

1

� S

1

M(L)

-

�

? ?

`

i

D

2

� S

1

M

L

-

7.21 Let V be a an oriented 4-manifold and L be a framed link in �V . As above the

framing and the exponential map determine an homeomorphism � :

`

i

S

1

�D

2

�! N(L)

onto a tubular neighbourhood of L in �V . Now de�ne the oriented 4-manifold V

L

by the

push out :
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`

S

1

�D

2

�V

-

�

? ?

`

D

2

�D

2

V

L

-

These types of surgeries are related as follows :

Lemma 7.22

1. Let L be a framed link in a oriented homology 3-sphere M . Let the integers n

1

, : : : ,

n

r

be given by the framings. Then the result under Dehn surgery M(L; n

1

; : : : ; n

r(L)

)

de�ned in 7.19 and the result under surgery M

L

de�ned in 7.20 agree.

2. Let V be an oriented 4-manifold and L be a framed link in M = �V . Then we get :

�(V

L

) =M

L

Let L be a oriented framed link in a oriented homology 3-sphere M . We have de�ned

its linking matrix in 5.34

A

link

=

0

B

B

B

B

B

B

B

�

n(1) l(1; 2) l(1; 3) � � � l(1; r)

l(1; 1) n(2) l(2; 3) � � � l(2; r)

l(3; 1) l(3; 2) n(3) � � � l(3; r)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l(r; 1) l(r; 2) l(r; 3) � � � n(r)

1

C

C

C

C

C

C

C

A

where l(i; j) denotes the linking number of L

i

and L

j

.

Lemma 7.23 Let V be an oriented homology 4-ball. Then its boundary M = �V is an

oriented homology 3-sphere . Let L be an oriented framed link in M . Then :

1. H

i

(V

L

) vanishes for i = 1; 3.

2. H

2

(M

L

) is a �nitely generated free abelian group and their is a 
anoni
al bases 
oming

from the link. With respe
t to this bases the interse
tion pairing is des
ribed by the

linking matrix A

L

of L.

3. A

L

is a presentation matrix for H

1

(M

L

).
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4. M

L

is a rational 3 homology sphere if and only if det(A

L

) is di�erent from zero.

5. M

L

is a homology 3-sphere if and only if det(A

L

) is �1.

Proof : 1.) V

L

has no 1-handles.

2.) Let S

i

and S

j

for 1 � i; j � r(L) ; i 6= j be Seifert surfa
es of L

i

and L

j

in M . As M

has a 
ollar in V , one may �nd a surfa
e S

0

j

in V by pushing o� S

j

a little bit, su
h that

S

0

j

\M = L

j

. Denote by F

i

and F

j

the 
ore of the 
orresponding handle H

i

and H

j

. Noti
e

that F

i

\ �H

i

= F

i

\M = L

i

holds. Hen
e S

i

[

L

i

F

i

and S

0

j

[

L

j

F

j

are 
losed embedded sur-

fa
es in V

L

representing the 
anoni
al bases. Now the (i; j)-entry in the interse
tion matrix is

given by 
ounting elements in their interse
tion with signs. By 
onstru
tion this is the same

as 
ounting the interse
tion of S

i

and L

j

in M with signs, what is just the linking number of

L

i

and L

j

. A similar argument shows that the (i; i)-entry in the interse
tion matrix is just

the framing number n(L

i

).

3.) The interse
tion pairing is des
ribed by the following 
omposition:

H

2

(V

L

)

i

�

�! H

2

(V

L

; �V

L

)

\[V

L

℄

�! H

2

(V

L

)

�

�! Hom(H

2

(V

L

;Z)

where i

�

is indu
ed from the in
lusion. Noti
e that \[V

L

℄ is the Poin
ar�e isomorphism and

the 
anoni
al map � is an isomorphism by the universal 
oeÆ
ient theorem, sin
e H

1

(V

L

) is

zero. The long homology sequen
e of the pair (V

L

;M

L

) gives an exa
t sequen
e :

H

2

(V

L

)

i

�

�! H

2

(V

L

; �V

L

) �! H

1

(M

L

) �! f0g

Now the 
laim 3. follows from 1.

The other assertions are now easy 
onsequen
es of 
laim 3.

The Kirby 
al
ulus deals with the question, when S

3

K

and S

3

L

resp. D

4

K

and D

4

L

for

framed links K and L in S

3

are oriented homeomorphi
. We re
all that homeomorphi


implies di�eomorphi
 for 3-manifolds. We de�ne two so 
alled Kirby moves for framed links

K and L in S

3

. Re
all that the isotopy 
lasses of framings are spe
i�ed by atta
hing an

integer to ea
h of the 
omponents (see lemma 7.18). We say that L is obtained from K by a

Kirby move of type 1, if L is obtained from K by the disjoint union with a trivial knot with

framing �1.

7.24 Kirby move of type 1

K L

�1
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We say that L is obtained from K by a Kirby move of type 2, if the following is true. There

are two di�erent 
omponents L

i

and L

j

and a band w from some ar
 on L

i

to some ar
 on

L

0

j

where L

0

j

is a parallel 
urve of L

j


orresponding to the framing n(L

j

) of L

j

. Re
all that

the parallel 
urve L

0

j

is given by the exponential map of the normal bundles and a nowhere

vanishing se
tion of the normal bundle su
h that link(L

j

; L

0

j

) is n(j). Let L

i

℄L

0

j

be the


onne
ted sum of L

i

and L

0

j

along w. Then the link K has the same 
omponents as L ex
ept

for the 
omponent L

i

, whi
h is substituted by L

i

℄L

0

j

.

7.25 Kirby move of type 2

K L

The framings of K are determined by the following property of the linking matrix.

Choose orientations on ea
h 
omponents of L. Let � be 1, if the 
onne
ting band is 
ompatible

with the orientations, and �1 otherwise. Then the linking matri
es A

L

and A

K

satisfy :

7.26 A

K

= E

i;j

(�)A

L

E

i;j

(�)

tr

where E

i;j

(a) is the elementary matrix with a as (i; j)-entry. Noti
e that the framings on K

do not depend on the 
hoi
e of orientations.

Re
all that all entries in E

i;j

(a) o� the diagonal are zero ex
ept the (i; j)-entry whi
h

is a, and all diagonal entries are 1. We mention the behaviour of the linking matrix under

the �rst Kirby move :

7.27 A

K

=

 

A

L

0

0 �1

!

Now we have :

Theorem 7.28
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1. For any 
losed oriented 3-manifold M there is a framed link L in S

3

su
h that M is

oriented homeomorphi
 to S

3

L

.

2. Let K and L be framed links in S

3

. Then S

3

K

and S

3

L

are oriented homeomorphi
 if

and only if one 
an obtain K from L by a sequen
e of Kirby moves of type 1 or 2 or

their inverses.

A proof of this theorem 
an be found in Kirby [26℄. A 
orollary of this theorem is that

any oriented 
losed 3-manifold is the boundary of an oriented 4-manifold.

Lemma 7.29 Let M be an oriented 3-manifold. Then there is an oriented framed link L

in S

3

su
h that M is oriented homeomorphi
 to S

3

L

and the linking matrix A

L

is a diagonal

matrix with �1 as diagonal entries.

Proof : Be
ause of theorem 7.28 we 
an �nd a framed link L in S

3

su
h that M is S

3

L

. By

Kirby moves of type 1 we obtain a framed link L

0

su
h that M is S

3

L

0

and the linking matrix

of L

0

looks like :

A

L

0

=

0

B

�

0 0 1

0 �1 0

A

L

0 0

1

C

A

Hen
e A

L

0

is a unimodular, inde�nite and odd symmetri
 bilinear form over Z. Re
all that

unimodular means that A

L

0

is invertible, inde�nite means that there are x and y satisfying

xA

L

0

x

tr

> 0 and yA

L

0

y

tr

< 0, and odd means that xA

L

0

x

tr

is odd for some x. By the result

of Milnor and Husemoller [33℄ there is an invertible matrix U su
h that UA

L

0

U

tr

is diago-

nal. We may suppose that det(U) is 1 otherwise multiply U with an appropiate diagonal

matrix. As Z is a prin
ipal domain, U 
an be written as a produ
t of elementary matries

E

i;j

(n). Sin
e E

i;j

(a) � E

i;j

(b) = E

i;j

(a + b) holds, we may even suppose that U is a produ
t

of elementary matries E

i;j

(�1). Now the 
laim follows from lemma 7.26.

Corollary 7.30

1. LetM be an oriented homology 3-sphere. Then there is a sequen
e of oriented homology

3-spheres M

0

, M

1

, : : : , M

n

su
h that M

i

is obtained from M

i�1

by �1-Dehn surgery

on a knot in M

i�1

, M

0

is M and M

n

is S

3

.

2. The Casson invariant is uniquely determined by the surgery formula and the 
ondition

�(S

3

) = 1.

Next we deal with the Kirby 
al
ulus for 4-manifolds. The Kirby 
al
ulus des
ribing D

4

L

,

whi
h we have developed so far, deals only with 2-handles. In order to take 1-handles into

a

ount, we extend our notion of framed link to the notion of extended framed link. Namely,

an extended framed link is a link su
h that any 
omponent either has a framing given by an

integer or is the trivial knot and has a dot on it. In other words, we have framed 
omponents
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as before and have additionally unframed trivial 
omponents, whi
h are distinguished from

the others by a dot. The latter ones 
orrespond to 1-handles and the framed 
omponents to

2-handles. Here is the pre
ise des
ription of D

4

L

for an extended framed link L in S

3

. Atta
h

for any non-framed 
omponent a 1-handles. Call the result V . Consider the framed link L

0

in V obtained from L in D

4

by the following 
onstru
tion. Whenever an ar
 of a framed


omponent L

i

of L runs through the trivial knot representing a 1-handles, let the ar
 go over

the 1 handle. Now let L

0

be the union of all framed 
omponents of L modi�ed in the above

way. Now the problem is to spe
ify the atta
hed 3-handles by indi
ating embeddings of S

2

.

Fortunately, this is not ne
essary, provided that we deal with 
losed 4-manifolds. Namely,

we have the result of Montesinos [36℄ (see also Tra
e [42℄).

Theorem 7.31 Let M be a 
losed orientable 4-manifold with a handle body de
omposition

M = H

0

[ aH

1

[ bH

2

[ 
H

3

[H

4

. Then the oriented homeomorphism type of M is 
omple-

tely determined by H

0

[ aH

1

[ bH

2

and the number 
 of 3-handles.

Thus the way the 3- and 4-handles are atta
hed does not matter, provided that M is


losed. Given an extended framed link L in D

4

and a non-negative integer 
, let D

4

(L;
)

be

the 
losed 4-manifold obtained from D

4

L

by atta
hing 
 3-handles and one 1-handle. It may

happen that we 
annot get a 
losed manifold this way and then D

4

(L;
)

is not de�ned. Now we


onsider the following third Kirby move on an extended framed link. It 
onsists of introdu
ing

7.32 Kirby move of type 3

0 n

+ 3-handle

The proof of the following theorem is given in Kirby [26℄.

Theorem 7.33 Let L and K be extended framed links in D

4

and 


K

and 


L

be non-negative

numbers. Suppose that D

4

(K; 


K

) and D

4

(L;


L

)

are de�ned. Then they are oriented homeo-

morphi
 if and only if one 
an obtain (L; 


L

) from (K; 


K

) by a sequen
e of Kirby moves of

type 2 and type 3 or their inverses.
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There are other kind of more 
onvenient moves whi
h 
an be used to de
ide whether

two (extended) framed links des
ribe the same manifold. For example :

7.34

one full twist

(left / right hand)

Here are some examples of 
losed oriented 3-manifolds and their representations in the

Kirby 
al
ulus :

7.35 Lens spa
e L(n; 1; 1)

n
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7.36 Lens spa
e L(pq � q; p; q) = L(pq � 1; q; p)

p q

7.37 Poin
ar�e sphere

1

7.38 Poin
ar�e sphere

1 1

1
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7.39 Poin
ar�e sphere

�2

�2 �2 �2 �2 �2 �2 �2

7.40 Torus

0 0

0

More information about the Kirby 
al
ulus 
an be found in Fenn-Rourke [10℄ Kirby [26℄

and [27℄ and Mandelbaum [29℄.
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8.se
tion

The 
onstru
tion of the Casson invariant

This se
tion is devoted to the 
onstru
tion of the Casson invariant. We have already

explained in se
tion 1 what the main properties and appli
ations of the Casson invariant are.

We are following the expositions of Akbulut and M
Carthy [1℄ and of Marin [30℄.

LetM be an oriented homology 3-sphere. We use the notation 7.5 and 
hoose a Heegard

splitting (W

1

;W

2

) as de�ned in 7.8. This de�nes a diagram of spa
es 7.13 and by applying the

fun
tor "fundamental group" a diagram of groups 7.14. If G is a 
onne
ted 
ompa
t Lie group

and � a dis
rete group, denote by R(�;G) the spa
e of homorphisms from � to G equipped

with the topology indu
ed from the in
lusion R(�;G) � map(�;G), where map(�;G) gets

the 
ompa
tly generated topology 
oming from the 
ompa
t-open topology. If G is SU(2), we

write brie
y R(�) instead of R(�; SU(2)). Noti
e that G a
ts on R(�;G) by 
omposition with

the 
onjugation homorphism 
(g) : G �! G whi
h sends h to g

�1

hg. As the 
enter of G a
ts

trivially, we obtain an indu
ed G=
enter(G)-a
tion. Thus R(?; G) be
omes a 
ontravariant

fun
tor from the 
ategory of dis
rete groups to the 
ategory of G=
enter(G)-spa
es. Noti
e

for G = SU(2) that SU(2) 
an be identi�ed with the unit sphere S

3

in the quaternions H by

the Lie group isomorphism

S

3

� C

2

�! SU(2) (a; b) 7!

 

a b

�

�

b �a

!

The 
enter of SU(2) is �id. In parti
ular we get from the exa
t sequen
e 7.3 an identi�
ation

of SU(2)=
enter(SU(2)) = SO(3). Hen
e we obtain a 
ontravariant fun
tor:

8.1 R(?) : f dis
rete groups g �! f SO(3)-spa
es g

There are the following natural maps :

8.2  : H

1

(�) �! H

3

(R(�;G))

given by the following 
omposition :

H

1

(�) �! Hom(�;Z) �! map(R(Z; G); R(�;G)) �!

map(G;R(�;G)) �! Hom(H

n

(G); H

n

(R(�;G)))

ev

�! H

n

(R(�;G))

where n is the dimension of G and ev evaluation at the fundamental 
lass [G℄ 2 H

n

(G).

De�ne

8.3 � : T

�

0

R(�;G) �! H

1

(�;LG)
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as follows. Consider an element in the tangent spa
e T

�

0

R(�;G) of R(�;G) at the trivial

representation �

0

given by a derivation D on the germ of fun
tions on R(�;G) at �

0

. Let

ev

w

: R(�;G) �! G be the homomorphism given by evaluation at w 2 �. Pulling ba
k the

derivation D with ev

w

de�nes a derivation D

w

sending a germ f of fun
tions on G at 1 to

D(f Æ ev

w

). This de�nes a homomorphism from � to T

1

G = LG. Let its 
lass in H

1

(�;LG)

be the image of D under �.

Lemma 8.4

1. The homomorphisms  and � de�ned in 8.2 and 8.3 are natural in �.

2. The homomorphisms  and � de�ned in 8.2 and 8.3 are 
ompatible with amalgamation

of groups.

3. Suppose that � is a �nitely generated free group and G is S

3

. Then the homomorphisms

 and � de�ned in 8.2 and 8.3 are isomorphisms.

4. Suppose that � is a �nitely generated free group and G is S

3

. Then we obtain an

isomorphism, natural in �

	 : H

�

(R(�; S

3

) �!

�

^

H

1

(�)

Proof : 3.) Choose a bases s

1

, s

2

: : : s

r

of �. Then we get a natural identi�
ation :

R(�) =

r

Y

i=1

S

3

Be
ause of 2.) the following square 
ommutes

�

r

i

H

1

(Zhs

i

i) �

r

i

H

3

(R(Zhs

i

i))

-

�

r

i

 Zhs

i

i

? ?

H

1

(�

r

i=1

Zhs

i

i) H

3

(R(�

r

i=1

Zhs

i

i))

-

 (�

r

i=1

Zhs

i

i)

where the right verti
al arrow 
omes from the K�unneth formula and is an isomorphism

be
ause H

i

(S

3

) is Z for i = 0; 3 and zero otherwise. Also the left verti
al arrow is a bije
tion.

Hen
e it suÆ
es to prove the 
laim in the spe
ial 
ase � = Z what is easily done.

4.) De�ne 	 by the following 
omposition of isomorphisms resp. their inverses :

	 : H

�

(R(�))

[

 �

V

�

H

3

(R(�)) �

V

�

Hom(H

3

(R(�));Z)
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V

�

 

�

�!

V

�

Hom(H

1

(�);Z) �

V

�

H

1

(�)

Re
all that a SU(2)- representation is redu
ible if it 
ontains a proper invariant linear

subspa
e and irredu
ible otherwise.

Lemma 8.5 Let M be an orientable 
losed 3-manifold. Then the following assertions are

equivalent :

1. M is a homology sphere.

2. The fundamental group �

1

(M) is perfe
t.

3. H

1

(M) = H

1

(M ;Z) is zero.

4. There are no non-trivial redu
ible SO(3)-representations of �

1

(M).

Proof : 1.) and 3.) are equivalent by Poin
are duality and the universal 
oeÆ
ient theorem.

Sin
e H

1

(M) is the abelianization of �

1

(M), the assertions 2.) and 3.) are equivalent. If

H

1

(M) is not trivial, one easily 
onstru
ts a non-trivial representation of H

1

(M) and hen
e

of �

1

(M). It remains to prove that 4.) implies 3.)

Suppose that � is a non-trivial redu
ible representation of �

1

(M). Hen
e � is the

dire
t sum of two 1-dimensional unitary representations �

1

and �

2

. But these are given by

homomorphisms from �

1

(M) to S

1

. As � is non-trivial, �

1

or �

2

is non-trivial. Hen
e there is

a non-trivial homomorphism from �

1

(M) to the abelian group S

1

. This implies that H

1

(M)

is non-trivial.

Lemma 8.6 A representation � of the dis
rete group � into SU(n) is irredu
ible, if and

only if its isotropy group under the SU(n)-operation on R(�; SU(n)) by 
onjugation is the


enter of SU(n).

Proof : Let A be an element of the isotropy group of �, i.e. A � �(w) �A

�1

= �(w) holds for

all w 2 �. Let � be a 
omplex number and E

�

(A) be the eigenspa
e of A for the eigenvalue �.

As A � �(w) = �(w) � A holds for all w 2 �, E

�

(A) is a �-invariant subspa
e of C

n

. Noti
e

that A has at least one eigenvalue �. Then E

�

(A) is a non-trivial subspa
e of C

n

. Suppose

that the representation � is irredu
ible. Then E

�

(A) is the whole spa
e C

n

and A lies in the


enter of SU(n). Suppose that � is redu
ible. If V is a proper �- invariant subspa
e in C

n

,

we get a de
omposition of � into V � V

?

. Let A be a matrix a
ting on V by the identity and

on V

?

by � � id for some 
omplex number � 6= 1. Then A belongs to the isotropy group of �,

but not to the 
enter of SU(n).

If we apply the fun
tor R(?) to the diagram 1.23 and de�ne :
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Notation 8.7 R

�

:= R(�

1

(�F

�

))

R

�

:= R(�

1

(F

�

))

R := R(�

1

(F ))

Q

i

:= R(�

1

(W

i

)) for i = 0,1

we obtain :

8.8

R

�

�

�

R

�

�

R

�

�=

Z

Z}

Q

1

Q

2

Z

Z}

�

�=

R(�

1

(M))

Noti
e that all maps in this diagram are in
lusions ex
ept the map � : R

�

�! R

�

whi
h

is an epimorphism. We derive from the presentation of the fundamental groups 7.15

8.9 R

�

=

Q

2g

j=1

S

3

Q

i

=

Q

g

j=1

S

3

Therefore the interse
tion number < Q

1

; Q

2

>

R

�

of Q

1

and Q

2

in R

�

is de�ned.

Proposition 8.10 Let M be an oriented 3-manifold. Then :

1. < Q

1

; Q

2

>

R

�

is di�erent from 0 if and only if M is a rational homology sphere.

2. If M is a rational homology sphere, then

j< Q

1

; Q

2

>

R

�

j=j H

1

(M ;Z) j

3. < Q

1

; Q

2

>

R

�

is �1 if and only if M is an integral homology sphere.

4. Q

1

and Q

2

interse
t at 1 transversely if and only if M is a rational homology sphere.

Proof : Consider the following 
omposition of isomorphisms :

V

�

(H

1

(�

1

(W

1

))�H

1

(�

1

(W

2

))) �! (

V

�

(H

1

(�

1

(W

1

)))
 (

V

�

H

1

(�

1

(W

2

)))

	
	

�!
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H

�

(R(�

1

(W

1

)))
H

�

(R(�

1

(W

2

))) �! H

�

(Q

1

)
H

�

(Q

2

) �! H

�

(Q

1

�Q

2

)

As �

1

(F

�

) is free of rank g, there is a Lie group stru
ture on R

�

=

Q

g

i=1

S

3

. De�ne the map

:

m : Q

1

�Q

2

�! R

�

by m(q

1

; q

2

) = q

1

� q

2

. Then the interse
tion number of Q

1

and Q

2

in R

�

is just the degree of

m. The following square 
ommutes :

V

�

H

1

(�

1

(F

�

))

V

�

(H

1

(i

1

)�H

1

(i

2

))

-

V

�

(H

1

(�

1

(W

1

))�H

1

(�

1

(W

2

)))

?

 

?

 

H

�

(R

�

)

H

�

(m)

-

H

�

(Q

1

�Q

2

)

The upper horizontal arrow 
an be identi�ed with the �rst arrow in the following sequen
e,

whose exa
tness follows from the Mayer-Vietoris sequen
e :

H

1

(F

�

)

H

1

(i

1

)�H

1

(i

2

)

�! H

1

(W

1

)�H

1

(W

2

) �! H

1

(M) �! f0g

The 
okernel of H

1

(i

1

)�H

1

(i

2

) is �nite, if and only if

V

2g

(H

1

(i

1

)�H

1

(i

2

)) is di�erent

from zero. If this 
okernel is �nite, its 
ardinality is the 
ardinality of the 
okernel of

V

2g

(H

1

(i

1

)�H

1

(i

2

)). Now the assertions 1.),, 2.) and 3.) follow.

It remains to prove 4.). Noti
e that Q

1

and Q

2

interse
t tranversely at 1, if and only

if the following map is an epimorphism :

T

1

Q

1

� T

1

Q

2

�! T

1

R

�

Now the 
laim follows from lemma 8.4 applied to the map � de�ned in 8.3.

Next we examine the orbit spa
es under the SO(3)-a
tion on the representation spa
es.

8.11 S = S(�

1

(F

�

; x)) := f� 2 R

�

= R(�

1

(F

�

; x)) j � is redu
ibleg

Proposition 8.12

1. The map � is surje
tive.

2. The set of 
riti
al points is the set S of redu
ible representations.

3. S(�

1

(F

�

; x)) = S(�

1

(F; x))

4. R = �

�1

(1)
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5. R � S is an open smooth manifold of dimension 6g � 3 and 
arries a free proper

SO(3)-a
tion.

Proof : 1.) and 4.) The fun
tor R(?; G) turns push outs of groups into pull ba
ks of spa
es.

Now apply the theorem of Seifert-von Kampen.

3.) Any redu
ible SU(2)-representation of � fa
torizes through the abelianization of �. Hen
e

any redu
ible SU(2)-representation of �

1

(F

�

; x) fa
torizes through �

1

(F; x).

5.) The a
tion is free by lemma 8.6. Sin
e SO(3) is 
ompa
t, the a
tion is proper.

We omitt the proof of 2.), as 2.) is not used in the 
onstru
tion of the Casson invariant.

Notation 8.13

^

R := (R � S)=SO(3)

^

Q

i

:= (Q

i

� S)=SO(3)

Proposition 8.14

1.

^

R is a smooth open manifold of dimension 6g � 6.

2.

^

Q

i

is a properly embedded open submanifold of dimension 3g � 3 in

^

R.

3.

^

Q

1

\

^

Q

2

is 
ompa
t.

Proof : We derive 1.) and 2.) dire
tly from proposition 8.12. It remains to prove 3.) that

^

Q

1

\

^

Q

2

is 
ompa
t.

Sin
e �

1

(F

�

; x) �! �

1

(M;x) is an epimorphism, we get :

S(�

1

(M;x)) = S \ R(�

1

(M;x))

By the theorem of Seifert-von Kampen the square in the diagram of groups 7.14 is a push

out of groups. As the fun
tor R(?; G) turns push outs into pull ba
ks, we 
on
lude :

R(�

1

(M;x)) = Q

1

\Q

2

This implies :

((Q

1

� S) \ (Q

2

� S))

a

f1g = Q

1

\Q

2

Sin
e Q

1

and Q

2

interse
t at 1 transversely, f1g is an open subset in Q

1

\ Q

2

. Sin
e

(Q

1

� S) \ (Q

2

� S) is a 
losed subset of the 
ompa
t set Q

1

\Q

2

, (Q

1

� S) \ (Q

2

� S) and

hen
e its quotient under the SO(3)- a
tion

^

Q

1

\

^

Q

2

is 
ompa
t.

If one has �xed orientations on

^

R and

^

Q

i

, then the interse
tion number <

^

Q

1

;

^

Q

2

>

^

R

is de�ned by proposition 8.14. One 
an �nd an isotopy of




Q

i

whi
h is 
onstant outside a


ompa
t set 
ontaining

^

Q

1

\

^

Q

2

su
h that the interse
tion of

^

Q

1

and

^

Q

2


onsists of �nitely
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many points where

^

Q

1

and

^

Q

2

meet transversely. Then the interse
tion number is the sum

of these �nitely many interse
tion points 
ounted with a sign whi
h depends on the lo
al

orientations.

The orientation on M indu
es an orientation on W

1

and W

2

by restri
tion. Then F

from W

1

, F

�

from F and �F

�

from F

�

inherit orientations by the general 
onventions for

boundaries of oriented manifolds resp. by restri
tion. The orientation on �F

�

determines a

generator in �

1

(�F

�

) and thus an orientation on R

�

. Fix any orientation on R

�

. As R�S

sits in the preimage of 1 of the map � : R

�

�! R

�

, we obtain a short exa
t sequen
e

0 �! T

x

(R� S) �! T

x

R

�

T

x

�

�! T

1

R

�

�! 0

Thus the oreintations of R

�

and R

�

indu
e an orientation on R � S. This determines also

on orientation on

^

R using the exa
t sequen
e

0 �! T

1

SO(3) �! T

x

(R� S) �! T

1

^

R �! 0

All in all we have explained, how an orientation of M indu
es an orientation on

^

R, if we

have �xed an orientation on R

�

. Choose any orientations on Q

1

and Q

2

. This indu
es

orientations on

^

Q

1

and

^

Q

2

. Now we de�ne

De�nition 8.15 (Casson invariant)

Let M be a oriented homology 3-sphere . De�ne :

�(M) :=

(�1)

g

� <

^

Q

1

;

^

Q

2

>

^

R

2� < Q

1

; Q

2

>

R

�

Obviously this is independent of the 
hoi
e of orientation of R

�

, Q

1

and Q

2

be
ause a


hange of one of these orientations 
hanges the sign in the nominator and denominator in

the fra
tion de�ning the Casson invariant simultaneously. The 
ondition thatM is a rational

homology 3-sphere guarantees that < Q

1

; Q

2

>

R

�

is not zero (see 8.10). We have to divide

out this term to ensure that the 
hoi
e of orientation on R

�

, Q

1

and Q

2

do not matter. If we

negle
t this 
hoi
e, the Casson invariant would redu
e to a number mod 2 and hen
e just to

the Rohlin invariant. But we even need that M is an integral homology sphere be
ause then

the only redu
ible SO(3)-representation of �

1

(M ;Z) is the trivial one (see Lemma 8.5). This

is 
ru
ial for the proof that the interse
tion of

^

Q

1

and

^

Q

2

in

^

R is de�ned (see Proposition

8.14).

We have to show that the Casson-invariant is independent of the 
hoi
e of Heegard-

splitting. We begin with verifying, that we get the same invariant, if we inter
hange the order

of the W

i

-s to (W

2

;W

1

). If we keep all orientations as in (W

1

;W

2

), but inter
hange Q

1

and

Q

2

, we get :

<

^

Q

1

;

^

Q

2

>

^

R

= (�1)

(3g�3)�(3g�3)

� <

^

Q

2

;

^

Q

1

>

^

R

< Q

1

; Q

2

>

R

�

= (�1)

3g�3g

< Q

2

; Q

1

>

R

�
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This implies :

(�1)

g

� <

^

Q

1

;

^

Q

2

>

^

R

2� < Q

1

; Q

2

>

R

�

= �

(�1)

g

� <

^

Q

2

;

^

Q

1

>

^

R

2� < Q

2

; Q

1

>

R

�

If we inter
hange W

1

and W

2

, F

�

and hen
e R

�

and R get the reversed orientations, whereas

we 
an assume that the orientations on Q

1

, Q

2

and R

�

are un
hanged. Hen
e the order of

the W

i

-s does not matter.

In order to show that the 
hoi
e of Heegard splitting does not matter, it suÆ
es be
ause

of theorem 7.10 to analyse what happens under suspension. Then the genus of the Heegard

de
omposition is in
reased by one and the 
orresponding diagram of representation spa
es


an be identi�ed with :

8.16

R

0

�

�

�

0

R

�

� S

3

� S

3

�

R

0

�

�=

Z

Z}

Q

1

� S

3

� f1g

Q

2

� f1g � S

3

Z

Z}

�

�=

R(�

1

(M))

We 
ompute for the interse
tion number < Q

0

1

; Q

0

2

>

R

�0

, where < ; > denotes both the

interse
tion and the Krone
ker pairing and [ ℄ denotes the images of the fundamental 
lasses

or the Poin
ar'e duals of them in the homology resp. 
ohomology of R

�

resp. R

�

�S

3

�S

3

:

< Q

0

1

; Q

0

2

>

R

�0

=

< Q

1

� S

3

� f1g; Q

2

� f1g � S

3

>

R

�

�S

3

�S

3

=

< [Q

1

� S

3

� f1g℄ [ [Q

2

� f1g � S

3

℄; [R

�

� S

3

� S

3

℄ >=

(�1)

g

� < [Q

1

℄ [ [Q

2

℄ [ [S

3

� f1g℄ [ [f1g � S

3

℄; [R

�

℄ [ [S

3

� S

3

℄ >=

(�1)

g

� < [Q

1

℄ [ [Q

2

℄; [R

�

℄ > � < [S

3

� f1g℄ [ [f1g � S

3

℄; [S

3

� S

3

℄ >=

(�1)

g

� < Q

1

; Q

2

>

R

�

We get on the quotient level :

<

^

Q

1

0

;

^

Q

2

0

>

^

R

0

= (�1)

g�1

<

^

Q

1

;

^

Q

2

>

^

R

To prove this, one purtubates Q

1

� S

3

� f1g within R

�0

to P

1

relative to a 
ompa
t subset

su
h that

^

P

1

and (Q

2

� f1g � S

3

)

^

are transverse in

^

R

0

. Then P

1

\ R

�

� f1g � f1g lies in

R and is on the quotient level a pertubation of

^

Q

1

whi
h is transverse to

^

Q

2

in

^

R. Now

the set of interse
tion points of the two relevant sets agree, but the signs of the interse
tion

points di�er by a sign (�1)

g�1

, be
ause the dimension of

^

Q

2

is 3g � 3. This shows that

suspending the Heegard de
omposition does not a�e
t the number appearing in the de�nition

of the Casson invariant. This shows that the Casson invariant is well-de�ned.
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