
1.setion

Survey over the Casson invariant

We start with desribing the Casson invariant axiomatially.

1.1 The Casson invariant assigns to any oriented homology 3-sphere M an integer

�(M) 2 Z

suh that the following onditions are satis�ed :

1.) If M and N are oriented homeomorphi, then �(M) = �(N).

2.) Let K � M be a knot. Suppose that M(K; 1=n) is obtained fromM by

1

n

-surgery on K.

ThenM(K; 1=n) is again a homology 3-sphere . Let �

K

be the symmetrized and normalized

Alexander-Conway polynomial of K � M . Then :

�(M(K; 1=(n+ 1))� �(M(K; 1=n)) =

1

2

��

00

K

(1)

3.) �(S

3

) = 0

We start with explaining the various terms appearing in the axioms above and then

derive some onlusions and give appliations. Finally we indiate the onstrution of the

Casson invariant.

De�nition 1.2 Let R be a ommutative assoiative ring with unit and n a positive integer.

A R-homology n-sphereM is a n-dimensional manifoldM satisfying H

�

(M ;R) = H

�

(S

n

;R).

We allM a homology sphere or integral homology sphere, if R is Z, and a rational homology

sphere, if R is Q

Any R-homology n-sphere is a losed orientable manifold. The following result is a

diret onsequene of Poinar�e duality and the fat that any reduible SO(3)-representation

is in fat a S

1

-representation and fatorizes over �

1

(M) �! H

1

(M).

Lemma 1.3 Let M be an orientable losed 3-manifold. Then the following assertions are

equivalent :

1. M is a homology sphere.

2. The fundamental group �

1

(M) is perfet.

3. H

1

(M) = H

1

(M ;Z) is zero.

4. There are no non-trivial reduible SO(3)-representations of �

1

(M).
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A link K in a 3-manifold M is an oriented losed submanifold of odimension 2. In

other words, it is a disjoint union of embedded 1-dimensional spheres in M . A knot is a

link whih has only one omponent. Consider a knot K in the oriented homology 3-sphere

M . Let N(K) be a losed regular neighbourhood of K. De�neM(K) =M � int(N(K)).By

Alexander duality H

1

(M(K))

�

=

H

2

(M;K). We derive from the long ohomology sequene

H

2

(M;K)

�

=

H

1

(K), sine M is a homology sphere. Hene H

1

(M(K)) is isomorphi to

Z. We denote by � resp. � a generator of the kernel of i

�

: H

1

(�N(K)) �! H

1

(N(K))

resp. j

�

: H

1

(�N(K)) �! H

1

(M(K)), where i and j are the inlusions. These genera-

tors are only unique up to multipliation with �1. They an also be haraterized by the

property that they are represented by simple urves in �N(K) suh that the linking num-

ber of � resp. � with K is �1 resp. 0. The orientation of M indues an orientation

on N(K) and hene an orientation on �N using the outward normal and the deomposi-

tion �(�N(K); N(K)) � T�N(K) = TN(K) j

�N(K)

. We always assume that the intersetion

number of � and � in �N is +1. Then there are only two hoies for the pair (�; �). Fix

suh a hoie. We all � the longitudinal and � the meridian of K �M .

1.4 Longitudinal and meridian

λ

µ

µ

λ

Suppose we have �xed integers p and q satisfying (p; q) = (1). Let � : S

1

� �D

2

�! �N(K)

be a homeomorphism assigning p�+ q� to the lass of f1g � �D

2

2 H

1

(S

1

� �D

2

). Then

de�ne M(K; p=q) by the push out
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1.5 S

1

� �D

2

M(K)

-

i Æ �

? ?

S

1

�D

2

M(K; p=q)

-

Equip M(K; p=q) with the orientation indued from M(K) �M . We laim that the

oriented homeomorphism type of M(K; p=q) depends only on the underlying set of K and

the element p=q 2 Q [ f1g and is independent of the hoies of �; �,p, q and � and the

orientation of the knot. Suppose that we have made di�erent hoies �

0

; �

0

, p

0

, q

0

and �

0

.

The omposition �

�1

Æ �

0

: S

1

� �D

2

�! S

1

� �D

2

sends the lass of f1g � �D

2

to itself up

to a possible sign. Isotopy lasses of self maps of S

1

� S

1

are lassi�ed by the indued map on

homology. Hene a homeomorphism f : S

1

� S

1

�! S

1

� S

1

extends to a homeomorphism

F : S

1

�D

2

�! S

1

�D

2

if and only if there is a homomorphism g making the following

diagram ommutative

H

1

(S

1

� S

1

) H

1

(S

1

� S

1

)

-

H

1

(f)

?

i

�

?

i

�

H

1

(S

1

�D

2

) H

1

(S

1

�D

2

)

-

g

This implies the existene of an extension � : S

1

�D

2

�! S

1

�D

2

of �

�1

Æ �

0

. Now the

desired homeomorphism is indued by �, �

�1

Æ � and the identity on M(K). Given a knot

K in a homology 3-sphere and an element r 2 Q [ f1g, we say that M(K; r) is obtained

from M by r-Dehn surgery on K. Notie that M(K;1) =M holds.

Lemma 1.6 Let K be a knot in the homology 3-sphereM . Let p and q be integers satisfying

(p; q) = (1). Then

H

1

(M(K; p=q)) = Z=p

In partiular M(K; 1=n) is again a homology 3-sphere .

Proof : This follows from the Mayer-Vietoris-sequene of 1.5 whih gives an exat sequene

Z� Z

(p;1)

�! Z� Z �! H

1

(M(K; p=q)) �! f0g
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Let K be a knot in a homology 3-sphere M . Denote by X the knot omplement

M �K. We have already shown above using Alexander duality that H

1

(X) is isomorphi to

Z. Let p :



X �! X be the orresponding yli overing. Then there is an exat sequene

for some r � 0

0

-

�

r

Z[Z℄

-

i

�

r

Z[Z℄

-

H

1

(



X)

-

0

Let det(i) 2 Z[Z℄ be the determinant of i. Then there is exatly one �nite Laurent series

with integral oeÆients p(t) suh that p(1) = 1, p(t) = p(t

�1

) and p(t) = �t

m

� det(i) for

appropiate m 2 Z holds. This Laurent series denoted by �

K

is an invariant of the knot K,

alled the (symmetrized and normalized) Alexander polynomial. Now we have de�ned all

terms in the axiomati haraterization of the Casson invariant 1.1.

1.7 The Casson invariant has also the following properties :

a. ) If M

�

denotes the manifold M with orientation reversed, then :

�(M) = ��(M

�

)

b ) If �(M) 6= 0, then there is a non-trivial representation of �

1

(M) in SU(2). In partiular

the Casson invariant vanishes for homotopy 3-spheres, i. e. oriented 3-manifolds with the

homotopy type of S

3

.

.) Let �(M) 2 Z=2 be the Rohlin invariant of the homology 3-sphere M . Then :

�(M) � �(M) mod 2

In partiular the Rohlin invariant of a homotopy sphere is zero.

d.) Let M℄N be the onneted sum of the homology 3-spheres M and N . Then M℄N is

again a homology 3-sphere satisfying

�(M℄N) = �(M) + �(N)

e.) The Casson invariant is uniquely determined by its axioms 1.1

We reall the de�nition of the Rohlin invariant �(M) of a Z=2-homology 3-sphere. For

any suh M there is a 4-dimensional PL-manifoldW with �W =M and vanishing �rst and

seond Stiefel Whitney lasses w

1

(W ) and w

2

(W ). These onditions are equivalent to the

existene of a Spin-struture on W . In partiular W is orientable. The Rohlin invariant

�(M) 2 Z=16 is the lass represented by the signature �(W ). This is well de�ned by Rohlin's

Theorem that the signature of an orientable losed 4-dimensional PL-manifold with a Spin-

struture is divisible by 16. Namely, if V is another suh manifold, the losed 4-manifold

W [

M

V

�

has trivial �rst and seond Stiefel Whitney lass beause Stiefel-Whitney lasses

are natural and the restrition mapsH

i

(W [

M

V

�

;Z=2) �! H

i

(W ;Z=2)�H

i

(V

�

;Z=2) are

injetive, and the signature is additive : �(W [

M

V ) = �(W ) + �(V ). IfM is a Z-homology

3-sphere, the signature of W is always divisible by 8. Then one de�nes the Rohlin invariant

�(M) 2 Z=2 to be the lass of �(W )=8. We will always use the last de�nition of the Rohlin

invariant for a homology 3-sphere .

4



Next we make some omments on the properties 1.7 of the Casson invariant listed

above.

1.8 We will later prove that for any oriented homology 3-sphere M there is a sequene of

oriented homology 3-spheres M

0

, M

1

, ... , M

r

suh that M

j

is obtained from M

j�1

by 1=n-

surgery on a knot K

j�1

� M

j�1

and M

0

is S

3

and M

r

is M . This implies e.), the uniqueness

of the Casson invariant.

1.9 Any integer an our as the value of the Casson invariant. Beause the Casson inva-

riant is addititive under onneted sum, it suÆes to realize the value 1. Consider the trefoil

T in S

3

. Its Alexander-Conway polynomial is �

T

(t) = t� 1 + t

�1

. Notie that S

3

(T; 1)

is the so-alled Poinar�e sphere, whih is de�ned as the quotient of SU(2) by the binary

dodeahedral group A

�

5

of order 120. This is the universal entral extension of A

5

by Z=2.

Sine �(S

3

(T; 0)) = �(S

3

) = 0, we get

�(S

3

(T; 1)) = 1

1.10 The Casson invariant is not an invariant of the fundamental group. Let M be a

oriented homology 3-sphere with non-trivial Casson invariant . Then the Casson invariant

of M℄M

�

is zero beause of

�(M℄M

�

) = �(M) + �(M

�

) = �(M)� �(M) = 0

On the other hand �(M℄M) is 2 � �(M) and hene di�erent from zero. But M℄M and

M℄M

�

have the same fundamental group by the Theorem of Seifert-von Kampen, namely

the amalgam of �

1

(M) with itself.

1.11 The Casson invariant is not invariant under homology bordism. A homology bordism

fromM to N is a bordismW fromM toN suh that the inlusion of bothM and N inW is a

homology equivalene. Namely, there is a oriented homology 3-sphereM bounding a smooth

ontratible 4-manifold W with non-trivial Casson invariant. Notie that W � int(D

4

) is a

homology bordism between M and S

3

for any imbedded D

4

� W . Reall that the Rohlin

invariant is an invariant under homology bordism.

1.12 If the oriented homology 3-sphere M possesses an orientation reversing di�eomor-

phism, then its Casson invariant vanishes beause of �(M) = �(M

�

) = ��(M). In partiu-

lar the Rohlin invariant of M is zero.

This onlusion is important beause of the following result

Theorem 1.13 (Galewski-Stern) The following assertions are equivalent :
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� Eah topologial manifold of dimension � 7 an be triangulated.

� There is a homology 3-sphere H suh that H℄H bounds a ontratible 4-dimensional

PL-manifold and �(H) = 1.

A strategy to onstrut suh an oriented homology 3-sphere is to onstrut an oriented

homology 3-sphere H with �(1) = 1 arrying an orientation reversing involution. Then

H℄H is oriented di�eomorphi to H℄H

�

. As ((H � int(D

3

))� I)� int(D

4

) is a homology

bordism from H℄H

�

to �D

4

, H℄H is the boundary of an ayli 4-dimensional manifold.

But suh a H does not exist by 1.12.

We give some explanations of the Theorem 1.13 of Galewski and Stern. A polyhedron

P is a subset P � R

n

suh that any point p 2 P possesses a one neighbourhood of the

shape N = fpg �K for a ompat subset K � P where � denotes the join. We all N a star

and K a link of p in P . A map f : P �! Q between polyhedra is pieewise linear or PL

for short if eah point p 2 P has a star N = fpg �K suh that f(�a+ �x) = �f(a) + �f(x)

holds. As R

n

has a anonial struture of a polyhedron, the notion of a PL-struture on a

topologial manifold is obvious. A triangulation (K; t) of a topologial spae X is a simplial

omplex K together with a homeomorphism t :j K j�! X. A simplial omplex whih is

PL-homeomorphi to a PL-manifold is alled a ombinatorial manifold . It is haraterized

by the fat that any link of eah simplex is PL-homeomorphi to a PL-sphere or PL-ball.

A PL-triangulation of a polyhedron P is a triangulation (K; t) with the property that t is

a PL-homeomorphism. Any polyhedron possesses a PL-triangulation. If f :j K j�!j L j is

a PL-homeomorphism of the underlying polyhedra of simpliial omplexes K and L, then

there are subdivisions K

0

and L

0

suh that f is indued from a simpliial map from K

0

to

L

0

. A topologial manifold M has a PL-struture if and only if it has a triangulation by a

ombinatorial manifold. We will see the existene of a non-ombinatorial triangulation of

some PL-manifold and of topologial manifolds possessing no triangulation. There are also

topologial manifolds possessing a triangulation but not a PL-struture.

There are lassifying spaes BPL, BTRI and BTOP for PL-manifolds, topologial

manifolds with triangulation and topologial manifolds and natural maps BPL �! BTRI

and BTRI �! BTOP . A topologial manifold possesses a triangulation if and only if its

lassifying map into BTOP has a lift to BTRI and similiar for BPL, provided that the

dimensions are large enough. Let �

h

3

be the abelian group of homology bordism lasses of

oriented homology 3-spheres modulo oriented homology 3-spheres whih are the boundary

of ayli 4-dimensional PL-manifolds. The struture of �

h

3

is at the time of writing not

known, at least one knows that it is not �nitely generated. The Rohlin invariant de�nes a

homomorphism � : �

h

3

�! Z=2. We get an exat sequene

1.14 0

-

ker(�)

-

�

h

3

-

�

Z=2

-

0

There are �brations
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1.15 K(Z=2; 3) �! BPL �! BTOP

K(�

h

3

; 3) �! BPL �! BTRI

K(ker(�); 4) �! BTRI �! BTOP

Let �(M) 2 H

4

(M ;Z=2) be the Kirby-Siebenmann obstrution for the existene of a

PL-struture on a topologial manifold M . The short exat sequene 1.14 above de�nes a

Bokstein homomorphism

1.16 � : H

4

(M ;Z=2) �! H

5

(M ; ker(�))

Put r(M) := �(�(M)). Then r(M) is the obstrution for the existene of a trian-

gulation of M . The existene of an oriented homology 3-sphere H with the properties that

�(H) = 1 and H℄H is the boundary of an ayli 4-dimensional PL-manifold, is equivalent

to the existene of a setion for the sequene 1.14. If suh a setion exists, the Bokstein

homomorphism and hene r(M) vanishes.

A PL-struture on a manifold is more than the existene of a triangulation. For n � 5

there is a triangulation on S

n

whih is not ombinatorial. Namely, let H be a homology

3-sphere whih not homotopi to S

3

suh that there is a homeomorphism from�

2

H to S

5

.

Suh H exists by the Double Suspension Theorem of Edwards. Choose a triangulation on

H. It indues a triangulation on �

2

H and by the homeomorphism above on S

5

. We have an

embedding S

1

� �

2

H oming from suspending ; � H twie. If the triangulation on H were

ombinatorial, then this embedding would be a PL-embedding. Hene it would be isotopi

to the standard embedding of S

1

into S

5

. This would imply S

5

� S

1

' S

3

, a ontradition

to �

2

H � S

1

' H.

1.17 Maybe the most important appliation of the Casson invariant is the onlusion that

the Rohlin invariant of a homotopy 3-sphere is zero. A lot of strategies for disproving the

3-dimensional Poinar�e onjeture that any homotopy 3-sphere is homeomorphi to S

3

were

based on �nding a homotopy 3-sphere with non-trivial Rohlin invariant (see Mandelbaum

[29℄).

Another onsequene is the existene of 4-dimensional topologial manifolds having no

triangulation. By the elebrated result of Freedman (see Freedman [12℄), there is a losed, 1-

onneted, almost parallelizable, almost-smooth 4-dimensional topologial manifoldM with

intersetion matrix E

8

. "Almost" means that the property holds for M � fpointg. Suppose

that M has a triangulation (K; t). Let S resp. L be the star resp. link of a vertex v.

Then L is homotopy 3-sphere and a homology 3-manifold. This implies already that L is a

3-manifold bounding a smooth 4-manifold



M obtained from M by taking out the interior

of S. As M and



M have the same intersetion form, the signature of



M is 8. Sine



M is

parallelizable, the Rohlin invariant of L is 1. But it must be 0 as L is a homotopy 3-sphere,

a ontradition.
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Next we make some omments on the onstrution of the Casson invariant . We need

some notation.

Notation 1.18

Let W

g

=W be the standard modell of the 3-dimensional handle body of genus g. Namely

W is the g-fold onneted sum of S

1

�D

2

.

Denote by F the boundary of W . This is the surfae of genus g, or in other words, the g-fold

onneted sum of S

1

� S

1

.

Let D � F be a �xed embedded 2-disk.

Put F

�

:= F �D and S

1

:= �D.

Fix a base point x 2 D

1.19

a

1

a

2

b

1

b

2

x

D

The standard orientation ofR

3

indues an orientation onW . Then F , F

�

, D and S

1

inherits

orientations by the general agreement that an oriented manifold indues an orientation on

its boundary using the deomposition �(�M;M) � T�M = TM j

�M

and the outward normal

�eld.

De�nition 1.20 (Heegard modell) Consider an orientation reversing homeomorphism

h : (F;D; x) �! (F;D; x). De�ne the Heegard modell of h by

j (W;H) j:=W [

h

W

8



De�nition 1.21 (Heegard splitting) LetM be an oriented losed 3-manifold. A Heegard

splitting of M is a pair (W

1

;W

2

) onsisting of submanifolds W

1

;W

2

�M of odimension 0

satisfying

W

1

[W

2

=M �W

1

= W

1

\W

2

= �W

2

W

1

�

=

W

2

Any oriented losed 3-manifold has a Heegard-deomposition. For a handle body

deomposition of M with exatly one 0- and one 3-handle put W

1

resp. W

2

to be the

union of all 0 and 1-handles resp. all 2- and 3-handles. If (W

1

;W

2

) is a Heegard deom-

position of M and f

i

: W

i

�!W is a homeomorphism to the standard handle body for

i = 1; 2 suh that the omposition f

2

Æ f

�1

1

indues an orientation reversing homeomorphism

h : (F;D; x) �! (F;D; x), then M and j (W;h) j are oriented homeomorphi. Two Heegard

deomposition of the same manifold are equivalent in the sense that after stabilization they

beome isotopi. The stabilization proess onsists of taking out a so alled unknotted handle

in W

1

and inreases the genus by 1. It may happen that two Heegard splittings of the same

genus are not isotopi, although appropiate stabilizations of them are.

Given a Heegard splitting (W

1

;W

2

) of M , we obtain a diagram of inlusions of spaes

1.22

�F

�

-

F

�

-

F

�

�>

Z

Z~

W

1

W

2

Z

Z~

�

�>

M

Applying the fundamental group with respet to the base point x gives a diagram of homo-

morphisms of groups

1.23

�

1

(�F

�

)

-

�

1

(F

�

)

-

�

1

(F )

�

�>

Z

Z~

�

1

(W

1

)

�

1

(W

2

)

Z

Z~

�

�>

�

1

(M)
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That all the maps in the diagram 1.23 are epimorphisms exept for the �rst one,

follows from the following presentations of the fundamental groups if M is the Heegard

modell j (W;h) j. The paths a

i

and b

i

on F

�

are indiated in diagram 1.19 and i : F �!W

is the inlusion.

1.24 �

1

(F

�

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

>

�

1

(F; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j

Q

g

i=1

[a

i

; b

i

℄ = 1 >

�

1

(W

1

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j b

1

= b

2

= ::: = b

g

= 1 >

�

1

(W

2

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j (i Æ h

�1

)

�

(b

j

) = 1 1 � j � g >

�

1

(M;x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::; b

g

j b

j

= 1; (i Æ h)

�1

�

(b

j

) = 1 1 � j � g >

Let G be a disrete group. The spae of representations of G in SU(2) is de�ned by

1.25 R(G) := Hom(G; SU(2)) � map(G; SU(2))

The onjugation operation of SU(2) on itself indues an operation of SO(3) =

SU(2)=Z=2 = SU(2)=enter(SU(2)) on SU(2) and hene an SO(3)-operation on R(G). If

we apply this funtor R(?) to the diagram 1.23 and de�ne :

Notation 1.26 R

�

:= R(�

1

(�F

�

))

R

�

:= R(�

1

(F

�

))

R := R(�

1

(F ))

Q

i

:= R(�

1

(W

i

)) for i = 1,2

we obtain a diagram where all maps exept � are inlusions:

1.27

R

�

�

�

R

�

�

R

�

�=

Z

Z}

Q

1

Q

2

Z

Z}

�

�=

R(�

1

(M))

We derive from the presentation of the fundamental groups 1.24 sine �

1

(F

�

) and �

1

(W

i

)

are free:

10



1.28 R

�

=

Q

2g

j=1

S

3

Q

i

=

Q

g

j=1

S

3

R

�

= S

3

Hene the intersetion number < Q

1

; Q

2

>

R

�

of Q

1

and Q

2

in R

�

is de�ned. One key

result is the following :

Proposition 1.29 Let M be an oriented 3-manifold. Then :

1. < Q

1

; Q

2

>

R

�

is di�erent from 0 if and only if M is a rational homology sphere.

2. If M is a rational homology sphere, then

j< Q

1

; Q

2

>

R

�

j=j H

1

(M ;Z) j

3. < Q

1

; Q

2

>

R

�

is �1 if and only if M is an integral homology sphere.

4. Q

1

and Q

2

interset at 1 transversely if and only if M is a rational homology sphere.

Next we examine what happens after dividing out the SO(3)-ation on the representa-

tion spaes. Reall that a representation is reduible if it ontains a proper invariant linear

subspae and irreduible otherwise. Let the map

1.30 � : R

�

�! R

�

be indued from the inlusion i : �F

�

�! F

�

. Denote for a (disrete group) G

1.31 S(G) = f� 2 R(G) j � is irreduible g

The key result for the onstrution of the Casson invariant is :

Proposition 1.32

1. The map � is surjetive.

2. The set of ritial points is the set S of reduible representations.

3. S(�

1

(F

�

; x)) = S(�

1

(F; x))

4. R = �

�1

(1)

11



5. R � S is an open smooth manifold of dimension 6g � 3 and arries a free proper

SO(3)-ation.

We will deal with its proof in a later leture. As SO(3) is ompat, we get smooth,

free and proper SO(3)-ations on R, Q

1

and Q

2

.

Notation 1.33

^

R := (R � S)=SO(3)

^

Q

i

:= (Q

i

� S)=SO(3)

This implies

Proposition 1.34

1.

^

R is a smooth open manifold of dimension 6g � 6.

2.

^

Q

i

is a properly embedded open submanifold of dimension 3g � 3 in

^

R.

3.

^

Q

1

\

^

Q

2

is ompat.

If one has �xed orientations on

^

R and

^

Q

i

, then the intersetion number <

^

Q

1

;

^

Q

2

>

^

R

is de�ned.

The orientation on M indues an orientation on W

1

and W

2

by restrition. Then F

from W

1

, F

�

from F and �F

�

from F

�

inherit orientations by the general onventions for

boundaries of oriented manifolds resp. by restrition. The orientation on �F

�

determines a

generator in �

1

(�F

�

) and thus an orientation on R

�

. Fix any orientation on R

�

. As R � S

sits in the preimage of 1 of the map � : R

�

�! R

�

, the orientations of R

�

and R

�

indue an

orientation on R�S. This determines also on orientation on

^

R. All in all we have explained,

how an orientation of M indues an orientation on

^

R. Fix any orientations on Q

1

and Q

2

.

This indues orientations on

^

Q

1

and

^

Q

2

. Now we de�ne

De�nition 1.35 (Casson invariant)

Let M be a oriented homology 3-sphere . De�ne :

�(M) :=

(�1)

g

� <

^

Q

1

;

^

Q

2

>

^

R

2� < Q

1

; Q

2

>

R

�

Obviously this is independent of the hoie of orientation of R

�

, Q

1

and Q

2

. If we

reverse the orientation of M , then the orientation of R

�

and hene of

^

R is reversed so that

�(M

�

) = ��(M) holds. Evidently �(M) vanishes if there are no non-trivial representations

of SO(3) (f. 1.7). The ondition that M is a rational homology 3-sphere guarantees that

< Q

1

; Q

2

>

R

�

is not zero (see 1.29). We have to divide out this term to ensure that the hoie

12



of orientation on Q

1

and Q

2

do not matter. If we neglet this hoie, the Casson invariant

would redue to a number mod 2 and hene just to the Rohlin invariant. But we even need

thatM is an integral homology sphere beause then the only reduible SO(3)-representation

of �

1

(M) is the trivial one (see Lemma 1.3). This is ruial for the proof that the intersetion

of

^

Q

1

and

^

Q

2

in

^

R is de�ned (see Proposition 1.34)
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3.setion

The Alexander polynomial

The Alexander polynomial was introdued by Alexander in 1928 [3℄ and is still one of

the most important invariants in knot theory. We will de�ne it using Seifert surfaes and

then give other tools for its omputation.

Let S be an oriented Seifert surfae for the ordered oriented link L in the oriented

homology 3-sphere M . Choose a trivilization of the normal bundle �(S;M) ompatible with

the orientation of M and S and a Riemannian metri on M . We obtain an embedding

i : F � S

0

�!M . Let the embeddings :

i

+

: S �!M � S

i

�

: S �!M � S

be the restritions to F � f+1g and F � f�1g. Notie that the isotopy lasses of i

+

and i

�

are independent of the hoie of Riemannian metri on M . The Seifert pairing

3.1 s : H

1

(S)�H

1

(S) �! Z

sends (u; v) to the linking number link(u; i

+

(v)) of u and i

+

�

(v) in M . Choose an integral

bases b

1

; b

2

; ... ; b

k

of H

1

(S). De�ne the Seifert matrix A := (s(b

i

; b

j

))

(i;j=1;k)

. Notie that

A

t

= (link(b

j

; i

�

�

(b

i

)))

(i;j=1;k)

and A� A

t

is the intersetion matrix of the Seifert surfae.

The polynomial det(t � A� t

�1

� A

t

) is independent of the hoie of bases where A

t

is the

transposed matrix.

De�nition 3.2 Let L be an oriented link in a oriented homology 3-sphere M with Seifert

surfae S. If S is not a disk, we de�ne the Alexander polynomial by :

�

L

(t) = det(t � A� t

�1

� A

t

):

If S is a disk, de�ne the Alexander polynomial by

�

L

(t) = 1

For a proof that this de�nition is independent of the hoie of Seifert surfae we refer

to [25℄ , page 192� 200 .

Example 3.3 We illustrate the result above by omputing the Alexander polynomial of the

trefoil and the Hopf link again but now using Seifert surfaes. The following piture shows

the Seifert surfae of the trefoil together with a standard base a; b of its �rst homology and

a �xed base �; � of the �rst homology group of the omplement of the Seifert surfae.

14



3.4

+

+

+

�

�

�

�

�

a

b

One easily heks :

link(a; �) = link(b; �) = 1 link(b; �) = link(a; �) = 0

The positive push-o�s a

+

and b

+

look as indiated below

3.5

a

+

b

+

Hene we obtain :

a

+

= �� b

+

= �� �

Then the Seifert matrix looks like :

A =

 

�1 1

0 �1

!

We obtain for the Alexander polynomial :

�

T

(t) = t

2

� 1 + t

�2

15



For the Hopf link we obtain the following piture

3.6

6

�

�

+

+

+

6

�

The Seifert matrix is (1). Hene we obtain :

�

H

(t) = t� t

�1

The next lemma ollets the main properties of this invariant:

Lemma 3.7 1. If K is an oriented knot in an oriented homology 3-sphere M , we get :

�

K

(1) = 1

2. If L is an oriented link with r-omponents in a oriented homology 3-sphere , its Alexan-

der polynomial is (�1)

r

-symmetri:

�

L

(t) = (�1)

r

��

L

(t

�1

)

3. Let L be an oriented link with two omponents L

1

and L

2

in an oriented homo-

logy 3-sphere M . If the Alexander polynomial �

L

is zero, then the linking number

link(L

1

; L

2

)is zero. If �

L

is di�erent from zero, we obtain :

1

2

�

d

dt

�

L

�

�

�

�

�

t=1

= link(L

1

; L

2

)

4. �

K℄L

= �

K

��

L

5. �

K

`

L

= 0

6. Let L be an oriented link and K be a knot in the oriented homology 3-sphere M .

Suppose that there are Seifert surfaes S

L

and S

K

suh that S

K

\ S

L

= ; holds. Let q

be an integer. Then :

�(L �M) = �(L �M(K; 1=q))

16



Let L

+

, L

�

and L

0

be links in an oriented 3-manifoldM . We all (L

+

; L

�

; L

0

) a skein triple

if there is an embedded ball D

3

�M suh that L

+

, L

�

and L

0

are equal in M � int(D

3

)

and within D

3

look as follows

3.8 Skein triple of links

�

�R

�

�	

L

+

�

�R

�

�	

L

�

�

�R

�

�	

L

0

We say that L

+

, L

�

and L

0

are skein related if (L

+

; L

�

; L

0

) is a skein triple. We

all link diagramms L

+

, L

�

and L

0

skein related if there is a ball D

2

� R

2

suh that the

diagrams are idential outside D

2

and are given inside D

2

be the pitures below.

3.9 Skein triple of link diagrams

�

�R

�

�	

L

+

�

�R

�

�	

L

�

�

�R

�

�	

L

0

Of ourse three link diagrams L

+

, L

�

and L

0

are skein related if and only if the links,

they disribe in S

3

, are skein related.

17



Lemma 3.10 Let L

+

, L

�

and L

0

be skein related links in an oriented homology 3-sphere

M . Then :

�

L

+

��

L

�

� (t� t

�1

) ��

L

0

= 0

Proof : We an �nd Seifert surfaes S

+

, S

�

and S

0

for L

+

, L

�

and L

0

suh that they agree

outside an embedded ball D

3

and look inside the ball as indiated below :

3.11 Seifert surfaes of the skein triple

S

+

�

�

+

+

S

�

�

�

+

+

S

0

�

�

+

+

We obtain S

+

and S

�

from S

0

by attahing a 1-handle D

1

�D

1

to the boundary. Hene

there is a urve a in S

+

\ S

�

suh that H

1

(S

�

) =< a > �H

1

(S

0

) holds. Let a(S

+

)

+

and

a(S

�

)

+

be the positive push-o�s of a for S

+

and S

�

. These urves are indiated below :

3.12

a(S

+

)

+

a a(S

�

)

+

a s

The urve s � D

3

�M satis�es link(s; a) = 1 and a(S

+

)

+

� a(S

�

)

+

= s. Hene we an

18



�nd Seifert matries V

+

,V

�

and V

0

suh that the following holds :

V

+

= V

�

+

0

B

B

B

B

�

1 0 0 � � � 0

0 0 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 � � � 0

1

C

C

C

C

A

V

+

=

 

� �

0 V

0

!

Now one alulates :

�

L

+

��

L

�

= det(t � V

+

� t

�1

� V

t

+

)� det(t � V

�

� t

�1

� V

t

�

) =

(t� t

�1

) � det(t � V

0

� t

�1

� V

t

0

) = (t� t

�1

) ��

L

0

Let L be a link diagram in S

3

. Denote by (L) the number of rossings, by r(L) the

number of omponents and by n(L) the minimal number of rossings whih must be hanged

in order to get a link diagram desribing the trivial link of r(L) omponents. The last

number is well de�ned by the following argument. Choose an ordering and orientation of

the omponents of L. For i = 1; 2; ... ; r(L)� 1 do the following : Fix a point x on L

i

and

move along L

i

in the positive diretion from x to x and, if neessary, hange the rossing

with the omponents L

j

for j = i; i+ 1; ... ; r(L) suh that the ar, one is just moving on,

is the overrossing ar. The omponents of the resulting link are staked one below the other

and are hene unlinked. Moreover, eah omponent bounds an embedded disk and is hene

trivial. We all the pair ((L); N(L)) the omplexity of a link diagram.

Lemma 3.13 Suppose that the funtion

� : f isotopy lasses of oriented links in oriented homology 3-spheres g �! Z[t; t

�1

℄

has the following properties :

a.) Let L be a link and K be a knot in the oriented homology 3-sphere M . Suppose that there

are Seifert surfaes S

L

and S

K

suh that S

K

\ S

L

= ; holds. Let q be an integer. Then :

�(L �M) = �(L �M(K; 1=q))

b.) If (L

+

; L

�

; L

0

) is a skein triple of links in an oriented homology 3-sphere M , then :

�(L

+

�M)��(L

�

�M)� (t� t

�1

) ��(L

0

�M) = 0

.) �(unknot � S

3

) = 1

Then � is the Alexander polynomial. The Alexander polynomial has these properties

Proof : The Alexander polynomial has the property a.) by lemma 3.7 and b.) by lemma

3.10 and .) is easily veri�ed. It remains to prove for the di�erene r of � as above and

the Alexander polynomial that r is identially zero.

We �rst treat the ase where M is S

3

. Obviously r applied to the unknot is zero.

Beause of the following skein relation
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3.14

r of the unlink of two omponents is zero. Indutively over the number of omponents one

veri�es that r of the unlink is always zero. Given any link L with (L) > 0 and n(L) > 0,

there is a skein triple (L

+

; L

�

; L

0

) ontaining L suh that for the other members (L) or n(L)

is smaller. Hene we an prove by indution over the omplexity of L that r(L) vanishes.

Now we ome to the general ase of a link L in an oriented homology 3-sphere M . We

will later show that there is a sequene of oriented homology 3-spheres M

0

,M

1

, ... ,M

r

suh

that M

i+1

is obtained from M

i

by �1 surgery on a knot K

i

�M

i

and M

0

is M and M

r

is

S

3

. We use indution over r. The indution begin M = S

3

is done above. Choose Seifert

surfaes S

L

for L and S

0

for K

0

in M . Sine these are surfaes with boundary, there exists

one-dimensional spines F

L

and F

0

for S

L

and S

0

suh that S

L

and S

0

are ambient isotopi

to arbitrary small regular neighbourhoods of the spines. We an �nd an ambient isotopy of

K

0

in M suh that F

L

and F

0

are disjoint beause the sum of the dimensions of the spines

is smaller than the dimension of M . By a seond ambient isotopy of K

0

we an ahieve that

S

0

is disjoint from F

L

. By an ambient isotopy of L we obtain that the Seifert surfaes are

disjoint. Notie that these proesses may require rossings of K and L but no self rossings

of L and K. But now we derive from property a.) that r(L �M) = r(L �M

1

). Now

apply the indution hypothesis to L �M

1

.

In the surgery formula for the Casson invariant a term involving the seond derivative

of the Alexander polynomial appears. We an haraterize this term as follows.

Lemma 3.15 Suppose that the funtion

 : f isotopy lasses of oriented links in oriented homology 3-spheres g �! R

has the following properties :

a.) Let L be a link and K be a knot in the oriented homology 3-sphere M . Suppose that there

are Seifert surfaes S

L

and S

K

suh that S

K

\ S

L

= ; holds. Let q be an integer. Then :

(L �M) = (L �M(K; 1=q))

b.) If (L

+

; L

�

; L

0

) is a skein triple of links in an oriented homology 3-sphere M suh that

L

+

is a knot. Then L

�

is a knot and L

0

is a link of two omponents L

0

0

and L

00

0

and we have:

(L

+

�M)� (L

�

�M) = link(L

0

0

; L

00

0

)

.) (unknot � S

3

) = 0

Then (L) is

1

4

�

d

2

dt

2

�

L

�

�

�

t=1

.
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Proof : We only show that

1

4

�

d

2

dt

2

�

L

�

�

�

t=1

has the required properties, the veri�ation of

uniqueness is analogous to the proof in lemma 3.13. We get properties a.) and .) diretly

from lemma 3.13. Sine we have �

L

0

(t) = ��

L

0

(t

�1

), we get :

�

L

0

j

t=1

= 0

We derive property b.) from from lemma 3.13, lemma 3.7 and the following alulation :

d

2

dt

2

�

L

+

�

�

�

t=1

�

d

2

dt

2

�

L

�

�

�

�

t=1

=

d

2

dt

2

((t� t

�1

) ��

L

0

)

�

�

�

t=1

=

0 �

d

2

dt

2

�

L

0

�

�

�

t=1

+ (+2) �

d

dt

�

L

0

�

�

�

t=1

+ (�2) � �

L

0

j

t=1

=

4 � link(L

0

0

; L

00

0

)

Next we explain how one an ompute the Alexander polynomial from the fundamental

group. We start with introduing the di�erential alulus due to Fox. Let G be a group.

Let � : Z[G℄ �! Z be the augmentation homomorphism sending

P

g2G

�

g

� g to

P

g2G

�

g

. A

derivation is a homomorphism Æ : Z[G℄ �!M into a Z[G℄-module M satisfying :

Æ(u+ v) = Æ(u) + Æ(v) (linearity)

Æ(u � v) = Æ(u) � �(v) + u � Æ(v) (Leibniz rule)

If f :M �! N is a homomorphism of Z[G℄-modules and Æ a derivation on M , then f Æ Æ

is a derivation on N . Hene the set of Z[G℄-derivations into a Z[G℄� Z[H℄-bimodule M

inherits a right Z[H℄-module struture. The following rules are important for alulations

(g 2 G):

3.16 Æ(m) = 0 for m 2 Z

Æ(g

�1

) = �g

�1

� Æ(g)

Æ(g

n

) = (1 + g + g

2

+ ... + g

n�1

) � Æ(g)

Æ(g

�n

) = �(g

�1

+ g

�2

+ ... + g

�n

) � Æ(g) for n � 1

If F is the free group in generators s

1

, s

2

, ..., s

n

, then for any elements x

1

, x

2

, ..., x

n

in a Z[F ℄-bimodule M there is preisely one derivation sending s

i

to x

i

. Its onstrution and

the veri�ation of uniqueness is done by indution over the word length. Let � : F �! G

be a group homomorphism. Then Z[G℄ beomes a Z[F ℄� Z[G℄-bimodule. The derivations

�

�s

i

: Z[F ℄ �! Z[G℄ sending s

j

to 1, if i = j, and to 0, if i 6= j, are alled the partial deri-

vations with respet to �. They form a basis for the right Z[G℄-module of Z[F ℄-derivations

into Z[G℄. The Fox derivatives are useful for omputing ellular hain omplexes of universal

overings.

Lemma 3.17 Let X be a �nite 2-dimensional CW -omplex with fundamental group � and

universal overing

f

X. Suppose that X has only one 0-ell. Let

< s

1

; s

2

; ... ; s

n

j R

1

; R

2

; ... ; R

m

>= �

be a ellular representation of the fundamental group, i.e. the generators s

i

orrespond to

the 1-ells and the relations R

i

are de�ning relations for the 2-ells. Let � : F �! � be the
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anonial projetion, if F is the free group in generators s

1

, s

2

, ..., s

n

. Then the ellular

Z[�℄-hain omplex of the universal overing with respet to a ellular bases looks like

Z[�℄

m

A

�! Z[�℄

n

B

�! Z[�℄

where the matries A and B are given as follows :

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�R

1

�s

1

�R

2

�s

1

� � �

�R

m

�s

1

�R

1

�s

2

�R

2

�s

2

� � �

�R

m

�s

2

.

.

.

.

.

.

.

.

.

.

.

.

�R

1

�s

n

�R

2

�s

n

� � �

�R

m

�s

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

B =

�

s

1

� 1 s

2

� 1 � � � s

m

� 1

�

Proof : This is obvious for the matrix B, sine the 1-ell orresponding to S

i

lifts in the

overing to a path from ~x to s

i

� ~x for a �xed lift ~x of the only 0-ell x. Let w be a loop in X

with base point x. Denote by ~w a lift in

f

X with starting point ~x. This de�nes an element in

C

1

(

f

X), also denoted by ~w. It depends only on the lass of w in �. Hene we an de�ne a map

Æ : Z[�℄ �! C

1

(

f

X) sending

P

w2�

�

w

� w to

P

w2�

�

w

� ~w. One easily heks that Æ is linear

and satis�es Æ(w � v) = Æ(w) + w � Æ(v). Let Æ

i

be the i

th

-omponent of Æ, if we identify C

1

(

f

X)

with Z[Z

m

℄ using the ellular bases ~s

1

, ~s

2

,..., ~s

m

. Then Æ

i

is a derivation Z[F ℄ �! Z[G℄

mapping �(s

j

) to 1, if i = j, and to 0 otherwise. Therefore it has to be

�

�s

i

. But Æ(R

i

) is

just the image of the ellular base element orresponding to the 2-ell with de�ning relation

R

i

under the seond di�erential in the ellular hain omplex of

f

X.

The proof of the next lemma is omitted. It is a onsequene of lemma 3.17 and the

desription of the Alexander polynomial as a torsion invariant by Milnor [32℄.

Lemma 3.18 Let L be an oriented link in an oriented homology 3-sphere. Let

< s

1

; s

2

; ... ; s

n

j R

1

; R

2

; ... ; R

n�1

>= �

be a representation of the fundamental group � of the link omplement with n generators

and n� 1 relations. Let � : F �! � be the anonial projetion, if F is the free group in

generators s

1

, s

2

, ..., s

n

, and  : � �! Z be the anonial epimorphism. Denote by A

�

the
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matrix over Z[�℄

A

�

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

�R

1

�s

1

�R

2

�s

1

� � �

�R

n�1

�s

1

�R

1

�s

2

�R

2

�s

2

� � �

�R

n�1

�s

2

.

.

.

.

.

.

.

.

.

.

.

.

�R

1

�s

n

�R

2

�s

n

� � �

�R

n�1

�s

n

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Let i be any integer 1 � i � n suh that �(s

i

)� 1 6= 0. Suh i always exists. Denote by

A

 �

i

the matrix obtained from A

�

by deleting the i

th

-row and then applying the hange of

rings map Z[�℄ �! Z[Z℄ indued by the Hopf map  : � �! Z whih sends a loop w in the

omplement of the link to the sum of the linking numbers of w with the omponents of the

link. Then �

L

(t) is di�erent from zero if and only if det(A

�

i

) is non-zero, and we obtain in

this ase for some s and some sign �:

�

L

(t) = �t

s

� det(A

�

i

)(t

2

)

Remark 3.19 The omputation above determines �

L

if K is a knot and only up to a sign

�1 if K is not a knot. Namely, let p be a polynomial satisfying �

L

(t) = �t

s

� p(t) for some

sign � and some s. Sine �

L

(t

�1

) = �(�1)

r

��

L

(t) holds, we onlude

p(t) = (�1)

r

� t

2s

� p(t

�1

)

This determines s. If K is a knot, we an derive the sign in the equation above using the

fat �

K

(1) = 1. Notie that both polynomials are independent of the orientations of M and

L, provided that L is knot.

Example 3.20 Notie that the lemma ?? and lemma 3.18 give an algorithm to ompute

the Alexander polynomial of a link from a link diagram. We arry this out in the ase of the

trefoil using the following link diagram

3.21

s

1

s

2

s

3
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The Wirtinger presentation looks like :

�

1

(S

3

(T )) =< s

1

; s

2

; s

3

j s

2

s

1

= s

1

s

3

; s

1

s

3

= s

3

s

2

; s

3

s

2

= s

2

s

1

>

We may omitt the third relation. We obtain the following matrix A

0

B

�

s

2

� s

2

s

1

s

�1

3

s

�1

1

1

1 �s

1

s

3

s

�1

2

�s

2

s

1

s

�1

3

s

1

� s

1

s

3

s

�1

2

s

�1

3

1

C

A

We have to put t = s

1

= s

2

= s

3

sine the Hopf map sends s

i

to t, and obtain

0

B

�

t� 1 1

1 �t

�t t� 1

1

C

A

The minors in this matrix are �t

2

+ t� 1, t

2

� t+ 1 and �t

2

+ t� 1. Hene the Alexander

polynomial of the trefoil satis�es

�

T

= �t

s

� (t

4

� t

2

+ 1)

Hene we get:

�

T

= t

2

� 1 + t

�2

Example 3.22 We do the same for the Hopf link

3.23

s

1

s

2

�

�

��

We obtain the Wirtinger presentation :

�

1

(S

3

(H)) =< s

1

; s

2

j s

1

s

2

s

�1

1

s

�1

2

>

Then the matrix A looks like :

 

1� s

1

s

2

s

�1

1

s

1

� s

1

s

2

s

�1

1

s

�1

2

!

Hene the Alexander polynomial of H satsi�es

�

H

= �t

s

� (t

2

� 1)
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This implies:

Æ

H

(t) = �(t� t

�1

)

These omputations are ompatible with the previous alulation made using Seifert surfaes.

Finally we mention the uriosity that the term

1

4

�

d

2

dt

�

L

�

�

�

t=1

is related to a homomorphism

�. Denote by Z[Z℄

(0)

the quotient �eld of Z[Z℄. Let Z[Z℄

�

(0)

be the multipliative group of

units. We de�ne an homomorphism of abelian groups

3.24 � : Z[Z℄

�

(0)

=f�t

n

g �! R

with respet to the multipliative struture on the soure and the additive struture on the do-

main as follows. An element in Z[Z℄

�

(0)

=f�t

n

g is represented by a quotient

p

q

with p; q 2 zz[Z℄ � f0g.

As Z[Z℄ is fatorial, there are unique non-negative integers �

p

and �

q

satisfying p = (t� 1)

�

p

� p

0

and q = (t� 1)

�

q

� q

0

suh that p

0

(1) 6= 0 and q

0

(1) 6= 0 holds. We de�ne :

�(

p

q

) :=

d

2

dt

2

p

0

(t) � p

0

(t

�1

)

p

0

(1) � p

0

(1)

�

�

�

�

�

t=1

�

d

2

dt

2

q

0

(t) � q

0

(t

�1

)

q

0

(1) � q

0

(1)

�

�

�

�

�

t=1

We have to show that this is independent of the various hoies and that this is indeed

an homomorphism. Any other representative of the lass of

p

q

in �

�

(0)

=�

�

looks like

p�r���t

n

q�r

for

some r 2 �� f0g, � 2 f�1g and n 2 Z. Choose r

0

2 � and a non-negative integer �

r

suh

that r = r

0

� (t� 1)

�

r

and r

0

(1) 6= 0 holds. Let x

i

(t) for i = 1; 2 be elements in � satisfying

x

i

(t) = x

i

(t

�1

) and x

i

(1) = 1. Then we get :

d

dt

x

i

(t) =

d

dt

x

i

(t

�1

) = �t

�2

�

d

dt

x

i

(t

�1

)

This implies :

d

dt

x

i

�

�

�

�

�

t=1

= 0

Hene we get :

d

2

dt

2

(x

1

� x

2

)

�

�

�

�

�

t=1

=

d

2

dt

2

(x

1

)

�

�

�

�

�

t=1

+

d

2

dt

2

(x

2

)

�

�

�

�

�

t=1

Applying this to

p(t)�p

0

(t

�1

)

p

0

(1)�p

0

(1)

and the orresponding expression for r

0

shows that the map is well

de�ned. The veri�ation that it is a homomorphism is similar. We have for a knot K in an

oriented homology 3-sphere M

�(�

K

) = 2 �

d

2

dt

2

�

K

�

�

�

�

�

t=1

and will later see:

�(M(K; 1=(n+ 1)))� �(M(K); 1=n))) =

1

8

� �(�

K

)
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Remark 3.25 The Alexander polynomial �

L

of de�nition 3.2 and the Alexander-Conway

polynomial �

Con

L

is used in Akbulut-MCarthy [1℄ are related by �

L

(t) = �

on

L

(t

2

).

The Alexander polynomial is extensively treated in the textbooks Burde-Zieshang [6℄

and Rolfson [40℄. For its onnetion to torsion invariants we refer to Turaev [43℄ . The

skein invariane is treated in Conway [9℄ and Kau�man [24℄.
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4.setion

The Jones polynomial

Although we do not need the Jones polynomial for the Casson invariant, we spend some

time on it, as it is a natural extension of the Alexander polynomial and interesting in its

own right. In this setions all links are understood to be oriented links in S

3

.

De�nition 4.1 A skein invariant is a funtion

 : f isotopy lasses of oriented links in S

3

g �! R

into an assoiative ommutative ring R with unit 1 with the following properties :

a.) There exist units a

+

; a

�

; a

0

2 R

�

suh that for any skein triple (L

+

; L

�

; L

0

) the following

relation holds :

a

+

� (L

+

) + a

�

� (L

�

) + a

0

� (L

0

) = 0

b.) (unknot) = 1

Example 4.2 The Alexander polynomial is a skein invariant for R = Z[t; t

�1

℄ and skein

oeÆients 1;�1;�(t� t

�1

) by lemma 3.10.

The skein relation is e�etive for omputations. Consider a skein invariant  with

skein oeÆients a

+

; a

�

; a

0

. Let unlink

r

be the unlink of r omponents, H be the Hopf link

(with linking number +1) and T the trefoil (with positive rossings). Given a link L, denote

by L

�

its mirrow image, i.e. the image of L under an orientation reversing homeomorphism

S

3

�! S

3

. If L is given by a link diagram, a link diagram for L

�

is obtained by hanging

all rossings. One easily omputes from the following skein relations

4.3

27



4.4

4.5

4.6

4.7
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4.8 (unlink

2

) = �a

+

a

�1

0

� a

�

a

�1

0

(H) = a

�

a

�1

0

+ a

�1

+

a

2

�

a

�1

0

� a

�1

+

a

0

(T ) = �2a

�1

+

a

�

� a

�2

+

a

2

�

+ a

�2

+

a

2

0

(H

�

) = a

+

a

�1

0

+ a

2

+

a

�1

�

a

�1

0

� a

�1

�

a

0

(T

�

) = �2a

+

a

�1

�

� a

2

+

a

�2

�

+ a

�2

�

a

2

0

In partiular we get for the Alexander polynomials the same values as we got before in

example 3.20 and example 3.3.

Lemma 4.9 Let  : f isotopy lasses of oriented links in S

3

g �! R be a skein invariant.

1.)  is determined by the skein oeÆients.

2.) The following assertions are equivalent :

a.) There are skein oeÆients a

+

; a

�

; a

0

for  satisfying a

+

+ a

�

+ a

0

= 0

b.) (unlink

2

) = 1

.) (L) = 1 for all links L.

3.) The following assertions are equivalent :

a.) There are skein oeÆients a

+

; a

�

; a

0

for  satisfying a

+

+ a

�

� a

0

= 0

b.) (unlink

2

) = �1

.) (L) = (�1)

r(L)+1

for all links L where r(L) is the number of omponents.

4.) The following assertions are equivalent :

a.) (unlink

2

) =2 f�1g

b.) The skein oeÆients of  satisfy :

a

+

� ((H)� (unlink

2

)) = a

0

� ((unlink

2

)

2

� 1)

a

�

= �a

+

� a

0

� (unlink

2

) = 0

5.) Suppose that R has no zero divisors. Then the values of (unlink

2

) and (H) determine

. They also determine the skein oeÆients up to multipliation with a ommon unit,

provided that (unlink

2

) =2 f�1g holds.

Proof : We use by indution over the omplexity of the link. We get 2.) from the

skein triple 4.3. We derive 3.) from the observation for a skein triple L

+

; L

�

; L

0

that

r(L

+

) = r(L

�

) = r(L

0

)� 1 holds. We onlude 4.) from the skein triples 4.3 and 4.4. Now

5.) is a diret onsequene.

De�nition 4.10 A skein invariant

� : f isotopy lasses of oriented links in S

3

g �! R

is a universal skein invariant , if for any skein invariant

 : f isotopy lasses of oriented links in S

3

g �! S

there is a ring homomorphism � : R �! S satisfying  = � Æ �
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It will turn out that there is a universal skein invariant, the two-variable Jones polyno-

mial. Before we onstrut the universal skein invariant, we derive its main properties from

the universal property. Notie that we do not require that the homomorphism � appearing

in the de�nition of a universal skein invariant is unique.

Lemma 4.11 Suppose there is a skein invariant

� : f isotopy lasses of oriented links in S

3

g �! Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄

suh that a

+

; a

�

; a

0

are skein oeÆients. Then :

1.) � is a universal skein invariant.

2.) Let Æ be a skein invariant taking values in R suh that Æ(unlink

2

) =2 f�1g. Let � and  

be homomorphisms from Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄ to R satisfying � Æ � =  Æ � = Æ. Then

there is a unit u 2 R suh that u � � =  holds.

3.) �(L) is a homogenous polynomial of total degree zero.

4.) �(L) = �(L

�

) , where L

�

is obtained from L by simultaneously reversing the orientations

of the omponents.

5.) �(K

`

L) = �(K) � �(L) �

�a

0

a

+

+a

�

6.) �(K℄L) = �(K) � �(L)

7.) �(L

�

)(a

+

; a

�

; a

0

) = �(L)(a

�

; a

+

; a

0

)

Proof : 1.) For a skein invariant  with values in R and skein oeÆients �

+

; �

�

; �

0

, de�ne

� : Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄ �! R by sending a

+

to �

+

, a

�

to �

�

, a

0

to �

0

. By indution

over the omplexity of a link one veri�es  = � Æ �. 2.) and 3.) are proven by indution

over the omplexity of a link using lemma 4.9. The following funtions are skein invariants

with values in Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄ and skein oeÆients a

+

; a

�

; a

0

.

L 7! �(L

�

)

L 7! �(K

`

L) � �(K)

�1

� �(unlink

2

)

�1

L 7! �(K℄L) � �(K)

�1

L 7! �(L

�

)(a

�

; a

+

; a

0

)

Now the laims 4.) to 7.) follow from lemma 4.9

Remark 4.12 If the skein invariant � exists, we derive from 4.8 that the trefoil and its mir-

row image are not ambient isotopi. Notie that the Alexander polynomial annot distinguish

a knot from its mirrow image. This follows from remark 3.19 and the obvious fat that the

(not re�ned) Alexander torsion is independent of the orientation of the knot.

In view of lemma 4.11 one may expet that there is 2-variable version of �. This is,

indeed, the ase.

Lemma 4.13 Suppose there is a skein invariant
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J : f isotopy lasses of oriented links in S

3

g �! Z[l; l

�1

; m;m

�1

℄

suh that l; l

�1

; m are skein oeÆients. If L is any link, then (L) is a sum of monomials

r

a;b

� l

a

�m

b

for r

a;b

2 R suh that a + b is even. Hene we an de�ne

�(L) 2 Z[a

+

; a

�1

+

; a

�

; a

�1

�

; a

0

; a

�1

0

℄

by

�(L)(a

+

; a

�

; a

0

) := J(L)(a

1=2

+

� a

�1=2

�

; a

0

� a

�1=2

+

� a

�1=2

�

)

Then � is a skein invariant with skein oeÆients a

+

; a

�

; a

0

.

We will onstrut the skein invariant J desribed in the lemma 4.13 above. Some

preparations are needed.

We begin with introduing the braid group B

n

. Let P

n

be a set of n points in D

2

. Let [n℄

denote the set of n elements. A braid with n strings or shortly, a n-braid, is an embedding

� : [n℄� [0; 1℄ �! D

2

� [0; 1℄

sending (k; t) to (



�

k

(t); t) suh that [n℄� fig is mapped to P

n

� fig. If



�

k

is onstant, we

obtain the trivial n-braid

4.14 Nontrivial and trivial braid

An isotopy I of two n-braids � and  is a map

I : [n℄� [0; 1℄� [0; 1℄ �! D

2

� [0; 1℄

suh that I

s

, given by the restrition of I to [n℄� [0; 1℄� fsg, is a n-braid for all s 2 [0; 1℄.

Let B

n

be the set of isotopy lasses of n-braids. It inherits the struture of a group from the

staking operation
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4.15 Staking of braids

The trivial braid represents the unit element. The inverse of a lass given by a braid � is

represented by �

�

whih is obtained from � by reversing the t-diretion

4.16 Inverse braid

32



Let �

i

2 B

n

for 1 � i < n be the following n-braid

4.17

1 2 : : i i+1 : : n

Lemma 4.18 The braid group B

n

has the following presentation :

B

n

=

*

�

1

; �

2

; : : : ; �

n�1

�

�

�

�

�

�

i

�

j

= �

j

�

i

for 1 � i; j � n� 1; j i� j j� 2

�

i+1

�

i

�

i+1

= �

i

�

i+1

�

i

for 1 � i � n� 2

+

A proof of this lemma an be found in Birman [4℄. If we add the relation �

i

�

i

= 1, we get

a presentation of the symmetri group �

n

of permutations of [n℄ = f1; 2; : : : ng. Hene there

is an epimorphism

4.19 p : B

n

�! �

n

The image of a braid under p is the automorphism of P

n

sending an element x of P

n

to the

element p(x) whih is onneted to x by a string of the braid. Consider the epimorphism

4.20 e : B

n

�! Z

sending �

i

to 1. Given a piture of a braid � as in 4.14, e(�) is the number of rossings

ounted with sign. One easily heks, that e is the abelianization of the braid group. There

is an obvious inlusion

4.21 i : B

n

�! B

n+1
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given by adding a trivial string.

Links and braids a related by the so alled losure of a braid . Namely, any braid �

de�nes a link los(�) by the onstrution indiated below.

4.22 Closure of a braid

We obtain a map :

4.23 los :

`

n�1

B

n

�! f isotopy lasses of oriented links in S

3

g

Theorem 4.24 (Alexander) The map los is surjetive

Let �

n

2 B

n

and 

m

2 B

m

be braids. We say, that 

m

is obtained from �

n

by a Markov

operation of type 1 , if n = m and there is Æ

n

2 B

n

satisfying 

n

= Æ

n

�

n

Æ

�1

n

. If m = n + 1

and 

n+1

= �

n

�

�

n

for some � 2 f�1g holds, we say that 

n+1

is obtained from �

n

by a Markov

operation of type 2. Consider a sequene of braids Æ

1

n

1

, Æ

2

n

2

,: : : Æ

r

n

r

suh that Æ

n

i

i

is obtained

from Æ

n

i+1

i+1

by a Markov operation 1 or 2 or Æ

n

i+1

i+1

is obtained from Æ

n

i

i

by a Markov operation

1 or 2 for 1 � i � n� 1. Then we say that Æ

1

n

1

and Æ

r

n

r

are related by a sequene of Markov

operations.

Theorem 4.25 (Markov) Two braids �

n

2 B

n

and 

m

2 B

m

have the same losure if and

only if they are related by a sequene of Markov operations.
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Proofs of the theorems of Alexander and Markov an be found in Birman [4℄. These two

results allow to translate onstrutions of invariants for links to the onstrution of invariants

for braids. The main advantage of braids is that they build a group what is not true for links.

Espeially one an investigate representations of the braid group. We will see that this leads

to a onstrution of the Jones polynomial. Before we go into the details, we explain how

one an onstrut the Alexander polynomial out of the so alled Burau representation of the

braid group.

Let t be the generator of the group Z. The Burau representation is the homomorphism

4.26  

n

: B

n

�! Gl(n;Z[Z℄)

sending the generator �

i

to the following matrix

A

i

=

0

B

B

B

�

E

1� t t

1 0

E

1

C

C

C

A

where E is the identity matrix and (1� t) is the (i; i)-entry. This is well de�ned, beause the

matries above satisfy the relations appearing in the presentation of the braid group given in

lemma 4.18.

There is the following mehanial interpretation of the Burau representation. Suppose

that we let partiles travel along the strings of a braid �. We do not allow at a rossing that

a partile moving along the underrossing string jumps upwards to the overrossing string,

but a partile travelling on the overrossing string has the probability t of falling down to the

underrossing string. Then the (i; j)-entry in  (�) is the pobability that a partile starting

at the i-th point will end up at the j-th point.

Let � : �

n

Z[Z℄ �! Z[Z℄ be the map sending (x

1

; x

2

; : : : ; x

n

) to

P

n

i=1

x

i

. The homomor-

phism �

n

Z[Z℄ �! �

n

Z[Z℄ mapping x to xA

i

leaves the kernel of � invariant. Hene there is

an indued representation

e

 on the kernel of �. This gives the redued Burau representation

4.27

e

 

n

: B

n

�! Gl(n� 1;Z[Z℄)

The proof of the following result an be found in Burde-Zieshang [6℄ proposition 10.20.

Lemma 4.28 Let �

n

be a n-braid and L the link in S

3

given by L = los(�

n

). Then :

�

L

(t) � (1 + t+ : : : t

n�1

) = det(1�

e

 

n

(�

n

)(t))

The theorem of Alexander 4.24 and Markov 4.25 and the omputation of the Alexan-

der polynomial by the Burau representation in lemma 4.28 suggest the following strategy for
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onstruting link invariants. Find representations of the braid groups together with an inva-

riant of a braid onstruted out of this representation whih is invariant under the Markov

operations. Sine the �rst Markov operation is given by onjugation, it is natural to use

a trae. A natural andidate for suh things are Heke algebras together with a trae as

desribed below.

Let F be a �eld and q 2 F an element in this �eld. The Heke algebra H

n

= H

n

(F; q)

assoiated with F and q for n � 2 is the assoiative F -algebra with unit 1, generated by T

1

,T

2

: : : T

n�1

subjet to the following relations.

4.29 T

i

T

j

= T

j

T

i

for 1 � i; j � n� 1 and j i� j j� 2

T

i

T

i+1

T

i

= T

i+1

T

i

T

i+1

for 1 � i < n

T

2

i

= (1� q)T

i

+ q for 1 � i < n

If n is 1, we put H

1

(F; q) := F . We see that there is a natural map H

n�1

�! H

n

of F -

algebras. In partiular H

n

beomes a H

n�1

-H

n�1

-bimodule. An important example of a Heke

algebra is the group ring of the symmetri group �

n

whih is the Heke algebra H

n

(F; 1). The

main tehnial result is the following

Lemma 4.30 There is an isomorphism of H

n

-H

n

-bimodules

� : H

n

�

�

H

n




H

n�1

H

n

�

�! H

n+1

sending a+

P

i

b

i


 

i

to a+

P

i

b

i

T

n



i

.

First we show that � is well de�ned. We have to show for u 2 H

n�1

and b;  2 H

n

that

buT

n

 and bT

n

u agree. But u is a linear ombination of monomials in T

1

,T

2

,: : : T

n�2

and

all these elements ommute with T

n

.

It is also easy to see by indution on n that � is surjetive. It suÆes to show by indu-

tion over n that any element x 2 H

n+1

an be written as a linear ombination of monomials

in the T

i

suh that T

n

ours only one in it. We redue the ourenes of T

n

as follows.

Consider x = y

1

T

n

y

2

T

n

y

3

suh that y

i

does not ontain T

n

. If y

2

does not ontain T

n�1

, an

appliation of the �rst and third relation in 4.29 redues the number of ourenes of T

n

. By

indution hypothesis we an assume that T

n�1

ours preisely one times in y

2

. Beause of

the �rst relation we an assume y

2

= T

n�1

. Now an appliation of the seond relation redues

the number of ourenes of T

n

. This shows surjetivity.

Suppose that dim

F

(H

n

) = n!. Then the dimensions of the soure and target of � are

equal and hene � is an isomorphism. The proof of dim

F

(H

n

) = n! an be found in de la

Harpe, Kervaire and Weber [15℄, setion 4. They onstrut an expliit set B in H

n

and

an algebra map L : H

n+1

�! End

F

(F [�

n+1

℄) suh that its omposition with evaluation at 1

de�nes a F -linear map H

n

�! F [�

n+1

℄ sending B bijetively to �

n

.

There is a natural representation
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4.31 �

n+1

: B

n+1

�! H

n+1

�

i

7! T

i

The idea is to onstrut a trae on the Heke algebras and to de�ne an invariant of

braids by applying the trae to the image of the braid under �. This would take are of the

�rst Markov operation, as a trae is invariant under onjugation. For the seond Markov

operation one needs a good ontrol over the trae of aT

n

for a 2 H

n

. In view of the lemma

4.30 it is reasonable to de�ne indutively over n traes tr

n

on H

n

suh that tr

n+1

(aT

n

b) an

be expressed by a,b and the trae tr

n

. Indeed, the following is true.

Lemma 4.32 Let F be a �eld and q; z elements in F . Let H

n

be the Heke algebra H

n

(F; q).

Then there exists F -linear maps

tr

n

: H

n

�! F

with the following properties :

1.) tr

n+1

restrited to H

n

is tr

n

.

2.) tr

n

(1) = 1

3.) tr

n

(ab) = tr

n

(ba)

4.) tr

n+1

(aT

n

b) = ztr

n

(ab) for a; b 2 H

n

The maps tr

n

are uniquely determined by these properties.

The elementary proof of this lemma an be found in de la Harpe, Kervaire and Weber [15℄,

setion 5.

Our �rst attempt to de�ne an invariant for links is :

b

J(�

n

) = tr

n

(�(�

n

)) for � 2 B

n

We have to hek the transformation behaviour under the two Markov operations. The �rst

one does not hange the invariant :

tr

n

(�(�

n

)) = tr

n

(�(

n

�

n



�1

n

))

In the seond ase we obtain for �

n

2 B

n

and the generator �

n

2 B

n+1

tr

n+1

(�

n+1

(�

n

�

n

)) = z � tr

n

(�(�

n

))

tr

n+1

(�

n+1

(�

n

�

�1

n

)) = w � tr

n

(�(�

n

))

where w :=

1

q

(z + q � 1). Notie that T

�1

i

=

1

q

(T

i

+ q � 1) holds beause of the third relation

in the de�nition of a Heke algebra 4.29. Hene we modify our �rst attempt as follows. For

not yet de�ned funtions

a

n

: B

n

�! Z

b

n

: B

n

�! Z

we put

b

J(�

n

) = z

a

n

(�

n

)

� w

b

n

(�

n

)

� tr

n

(�(�

n

))

Then

b

J is invariant under the Markov moves, if the following onditions are satis�ed :

a

n

(

n

�

n



�1

n

) = a

n

(�

n

)
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b

n

(

n

�

n



�1

n

) = b

n

(�

n

)

a

n+1

(�

n

�

n

) = a

n

(�

n

)� 1

b

n+1

(�

n

�

n

) = b

n

(�

n

)

a

n+1

(�

n

�

�1

n

) = a

n

(�

n

)

b

n+1

(�

n

�

�1

n

) = b

n

(�

n

)� 1

Our invariant is supposed to assign 1 to the trivial link. Sine the trivial link is given by the

braid �

1

, we also demand :

a

2

(�

1

) = 0

b

2

(�

1

) = 0

One easily �nds out that the following funtions have these properties :

a

n

(�

n

) =

1

2

� (�e(�

n

)� n+ 1)

b

n

(�

n

) =

1

2

� (e(�

n

)� n + 1

Hene we an de�ne for a be a link L in S

3

:

4.33

b

J(L) = z

�e(�

n

)�n+1

� w

e(�)�n+1

� tr

n

(�

n

(�

n

))

where �

n

is any braid with L as losure.

Now we make a speial hoie for the �eld F . Let C(q; z) be the rational �eld over

C in two independent variables q and z. Let K be the extension obtained by adjoining the

square roots

p

q and

q

z=w. Now we take H

n

over K and let q and z be the elements in K

given by the variables q and z.

Lemma 4.34 Let (L

+

; L

�

; L

0

) be a skein triple of oriented links in S

3

. De�ne elements l

and m in K by

l = iz

1=2

w

�1=2

q

�1=2

m = i(q

1=2

� q

�1=2

)

Then we get

l �

b

J(L

+

) + l

�1

�

b

J(L

�

) +m �

b

J(L

0

) = 0

Proof : We an �nd positive integers k and n and braids � and  in B

n

suh that k � n� 1

and the losure of the braids �

+

= ��

k

, �

�

= ��

�1

k

 and �

0

= � is L

+

, L

�

and L

0

. Now

one omputes on the level of Heke algebras :

l � z

�e(�

+

)�n+1

�w

e(�

+

)�n+1

� �

n

(�

+

) + l

�1

� z

�e(�

�

)�n+1

�w

e(�

�

)�n+1

� �

n

(�

�

) +m � z

�e(�

0

)�n+1

�

w

e(�

0

)�n+1

� �

n

(�

0

)

= l �z

�1=2

�w

1=2

�z

�e(�

0

)�n+1

�w

e(�

0

)�n+1

��(�)T

k

�()+ l

�1

�z

1=2

�w

�1=2

�z

�e(�

0

)�n+1

�w

e(�

0

)�n+1

�

�(�)T

�1

k

�() +m � z

�e(�

0

)�n+1

� w

e(�

0

)�n+1

� �(�)�()

= �(�) �

�

l � z

�1=2

� w

1=2

� T

k

+ l

�1

� z

1=2

� w

�1=2

� q

�1

� (T

k

+ q � 1) +m

�

�()

This expression turns out to be zero beause of the following easily veri�ed equations :

l � z

�1=2

� w

1=2

+ l

�1

� z

1=2

� w

�1=2

� q

�1

= 0
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l

�1

� z

1=2

� w

�1=2

� q

�1

� (q � 1) +m = 0

Now apply tr

n

to the equation above and the laim follows.

There is an embedding of algebras 	 : Z[l; l

�1

; m;m

�1

℄ �! K sending l to l and analo-

gously for l

�1

,m and m

�1

. If two of the elements

b

J(L

+

),

b

J(L

�

) and

b

J(L

0

) lie in the image

of  , then also the third by the lemma 4.34 above. Sine

b

J(unknot) is 1 by onstrution,

we show indutively over the omplexity of a link that

b

J(L) lies in the image of 	 for all

oriented links L in S

3

.

De�nition 4.35 Let L be an oriented link in S

3

. The Jones polynomial

J(L) 2 Z[l; l

�1

; m;m

�1

℄

is de�ned by 	(J(L)) =

b

J(L).

We derive from lemma 4.13 and lemma 4.34.

Theorem 4.36 The Jones polynomial is a skein invariant with skein oeÆients l; l

�1

; m

and gives a universal skein invariant.

Originally the Jones polynomials was introdued only in one variable. Namely ,the

Jones polynomial as onstruted by Jones [20℄ is a skein invariant with skein oeÆients

t;�t

�1

; (t

1=2

� t

�1=2

). It ame out of the investigation of the possible indies of subfators

of von Neumann algebras, where ertain projetions appear whose ommuting relations are

similar to the presentation of the braid group (see lemma 4.18). A few months later it was

disovered independently by four di�erent groups, that the one-variable polynomial of Jones

ould be generalized to the universal skein invariant as onstruted above (see Freyd, P. and

Yetter, D. ; Hoste, J. ; Likorish, W.B.R. and Millet, K. ; Oneanu, A. in [13℄). The

approah using Heke algebras is due to Oneanu. We also explain the onstrution of the

one-variable Jones polynomial due to Kau�man whih allows to ompute it diretly from a

link diagram in a simple manner.

Let L be an unoriented link diagram. For eah rossings there are two hoies of so

alled markers as indiated below.

4.37
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Aording to the hoosen marker one may dissolve the rossing by onneting the two

regions seleted by the marker

4.38

A state S for L is hoie of marker at eah rossings. Let a(S) and b(S) be the number

of markers of type A resp. B. If we dissolve the rossings aording to the state S as

indiated above, we obtain a bunh of disjoint simple urves. Let j S j be their number.

De�ne an element

< L >:=

X

S

A

a(S)

B

b(S)

d

jSj�1

2 Z[A;B; d℄

One easily heks :

Lemma 4.39

1.) < unknot >= 1

2.) < unknot

`

L >= d� < L > , if L is non-empty

3.) If L is an oriented link diagram and � a rossing. Let L

A

resp. L

B

be the link diagram

obtained from L by dissolving this rossing � aording to the hoie of marker A resp. B.

Then we have :

< L >= A� < L

A

> +B� < L

B

>

We will abbreviate the equation above by the following

< >= A < > +B < >

Reall that two link diagrams desribe the same link if they an be obtained from one another

by a sequene of Reidemeister moves ??.

Lemma 4.40 The invariant <> is invariant under the �rst and third Reidemeister moves

if that B = A

�1

and d = �A

2

� A

�2

holds.
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Proof : This follows from the following alulations :

< > = A < > +B < > =

A

�

A < > +B < >

�

+B

�

A < > +B < >

�

=

�

ABd+A

2

+B

2

�

< > +AB < > = < >

and

< >= A < > +B < > = A < > +B < > = < >

It remains to treat the seond Reidemeister move. Indeed, the invariant as it stands is

not invariant under the seond one.

De�nition 4.41 The writh number w(L) of an oriented link diagram is the sum of signs of

the rossings

Then Kau�man de�nes an invariant of an oriented link L in S

3

given by an oriented link

diagram L :

4.42 f

L

(A) = (�A)

�3w(L)

� < L >2 Z[A;A

�1

℄

The writh number is not hanged by the �rst and third Reidemeister move so that the inva-

raint f

L

is invariant under these moves. Suppose that L is obtained from

b

L by removing the

loop :

4.43

Then

b

L,

b

L

A

and

b

L

B

look like
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4.44

b

L

b

L

A

b

L

B

We get :

<

b

L >= A < L > +A

�1

< L

`

unknot >=

A < L > +A

�1

(�A

2

� A

�2

) < L >= (�A)

�3

< L >

Sine w(

b

L) = w(L)� 1 holds, we derive f

b

L

= f

L

. The proof for the other loop is similar.

one easily heks using lemma 4.39 that f

L

is a skein invariant with values in Z[A;A

�1

℄ and

skein oeÆients A

4

;�A

�4

; (A

2

� A

�2

). This shows :

Lemma 4.45 We have for any oriented link L in S

3

:

J

L

(t) = f

L

(t

1=4

)

More details about this invariant and about a new invariant whih is not a skein invariant

an be found in the book by Kau�man [25℄, appendix.

Remark 4.46 The Alexander polynomial does not determine the one-variable Jones polyno-

mial and vie versa. Namely, Conway's eleven rossings knot 11

471

has trivial Alexander but

non-trivial Jones polynomial, whereas the knots 4

1

and 11

388

have the same Jones,but di�e-

rent Alexander polynomials. Moreover, the one-variable Jones polynomial and the Alexander

polynomial together do not determine Jones polynomial de�ned in 4.35. Namely, 11

388

and

its mirrow image have the same Alexander and one variable Jones polynomial, but the Jones

polynomial of 4.35 does distinguish them.

One of the striking properties of the Jones polynomial is that it an distinguish a knot

from its mirrow image, what is not true for the Alexander polynomial. Another important

appliations are the proofs of Kau�man and Marasugi of the Taite onjetures. Taite is

viewed as one of the founders of knot theory and he spelled out his onjetures 100 years

ago. A survey about these onjetures is given in de la Harpe, Kervaire and Weber [15℄,
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setion 9. The main point is that the span of the one variable Jones polynomial gives a

lower bound for the minimal number of rossings and is equal to it for alternating redued

link diagrams. This implies one of the Tait onjetures that for a prime alternating knot the

minimal diagrams are exatly the alternating redued ones. Redued means that one annot

derease the number of rossing by ertain elementary moves and a link diagram is minimal

if the number of rossing in any other link diagram presenting the same link is not smaller.

A stronger still unproved versions says that two redued alternating link diagrams determine

the same link if and only if they an be obtained from one another by yping, a speial move

indiated below

4.47

Another now veri�ed Tait onjeture says that the writh number for alternating redued

link diagrams depends only on the assoiated link. In partiular the writh number of a

redued alternating link diagram desribing an amphihiral link is zero. A link is alled

amphihiral if it is ambient isotopi to its mirror image. We mention the so alled Perko

pair of link diagrams whih desribe the same link, but have di�erent writh numbers. We

refer to Kau�man's book [25℄, appendix, for more information.
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5.setion

Quantum Field theory and the Jones polynomial

In this setion we introdue the axioms of a quantum �eld theory in the sense of Segal

and explain how one an onstrut the Jones polynomial out of a suitable quantum �eld

theory. Some preparations are needed.

A (symmetri) monoidal ategory is a 6-tuple C;

`

; ;; S

1

; S

2

; S

3

onsisting of

� a ategory C

� a funtor

`

: C � C �! C (produt)

� an objet ; 2 C (unit objet)

� a natural transformation S

1

(C;D;E) : (C

`

D)

`

E �! C

`

(D

`

E) (assoiativity)

� a natural transformation S

2

(C;D) : C

`

D �! D

`

C (ommutativity)

� a natural transformation S

3

(C) : C

`

; �! C (unit element)

suh that the obvious ompatibility onditions are satis�ed. We will often surpress the trans-

formations and the unit element in the sequel. A funtor of monoidal ategories

(F; T

`

; �) : (C;

a

C

) �! (D;

a

D

)

onsists of

� a funtor F : C �! D

� a natural transformation T

`

(C;D) : F (C

`

C

D) �! F (C)

`

D

F (D)

� an isomorphism � : F (;

C

) �! ;

D

suh that the obvious ompatibility onditions are satis�ed.

An involution (I; S) on a monoidal ategory C is given by

� a ontravariant funtor I = (I; T

`

; �) : C �! C of monoidal ategories

� a natural transformation S(C) : C �! I Æ I(C)

suh that S(I(C)) Æ I(S(C)) = id holds for all objets C 2 C and I(�) Æ S(;) = � is true.

We will often drop the natural transformation S in the notation. A funtor of monoidal

ategories with involution (F; T

`

;T

I

) : (C;

`

C

; I

C

) �! (D;

`

D

; I

D

) onsists of
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� a funtor F : C �! D

� a natural transformation T

`

(C;D) : F (C

`

C

D) �! F (C)

`

D

F (D)

� a natural transformation T

I

(C) : F (I(C)) �! I(F (C))

suh that T

I

(;

C

) Æ F (�

C

) = �

D

and (F; T

`

) : (C;

`

C

) �! (D;

`

D

) is a funtor of monoidal

ategories. We will mainly deal with the following examples.

Convention 5.1 Let W be an oriented d+1-manifold for d � 1. Then the boundary inhe-

rits an orientation using the deomposition TW j

�W

= �(�W;W )� T�W and the outward

normal. This is onsistent with the onvention that the positive orientation on S

1

is given

by the anti-lokwise diretion and that the positive orientation on R

2

is represented by the

ordered bases f(1; 0); (0; 1)g. An orientation of a 0-dimensional manifold is a hoie of + or �

for eah omponent. If W is an oriented 1-dimensional manifold, the indued orientation for

a omponent of the boundary is + resp. �, if the orientation at this omponent orresponds

to the outward resp. inward normal. Notie that this means for an oriented path that he

starts at � and ends at +.

Example 5.2 Let M and N be oriented losed d-manifolds. A bordism from M to N

is a 5-tuple (W ;W

0

;W

1

; f

0

; f

1

) onsisting of an oriented d + 1-dimensional manifold W

with boundary �W and losed and open submanifolds W

0

and W

1

of the boundary sa-

tisfying W

0

\W

1

= ; and W

0

[W

1

= �W together with orientation preserving di�eomor-

phisms f

0

:M

�

�! W

0

and f

1

:W

1

�! N . The symbol M

�

denotes the manifold N with

the reversed orientation. We all two suh bordisms (W ;W

0

;W

1

; f

0

; f

1

) and (V ;V

0

; V

1

; g

0

; g

1

)

from M to N equivalent , if there is an orientation preserving di�eomorphism F :W �! V

suh that F Æ f

0

= g

0

and g

1

Æ F j

W

1

= f

1

holds. If i

k

denotes the obvious di�eomorphism, the

trivial bordism [0; 1℄�M fromM toM is represented by ([0; 1℄�M ; f0g �M; f1g �M ; i

0

; i

1

).

Notie that the orientation on f0g �M indued by the outward normal is the opposite

of the orientation on M , whereas on f1g �M we get the orientation on M bak. Let

(W ;W

0

;W

1

; f

0

; f

1

) resp.(V ;V

0

; V

1

; g

0

; g

1

) be a bordism from L to M resp. M to N . We get

a bordism (W [

g

0

Æf

1

V ;W

0

; V

1

; f

0

; g

1

) from L to N by glueing. This is ompatible with the

equivalene relation de�ned above.

Assume d � 1. LetM

d;d+1

be the following monoidal ategory with involution. Objets

are d-dimensional oriented losed manifolds M . Equivalene lasses of bordisms from M to

N build the set of morphisms from M to N . The identity morphism is given by the trivial

bordism and the omposition of morphisms given by the glueing proess desribed above.

The monoidal struture

`

M

d;d+1

omes from the disjoint union. The unit objet is the empty

set. The involution I

M

d;d+1
assigns to a morphismW := (W ;W

0

;W

1

; f

0

; f

1

) fromM to N in

M

d;d+1

the morphism



W := (W ;W

1

;W

0

; f

�1

1

; f

�1

0

) from N

�

to M

�

. Notie that ; and ;

�

are idential and the involution ats by the identity on the set of endomorphisms of ;.

Let f :M �! N be an orientation preserving di�eomorphism of losed oriented d-

dimensional manifolds. It determines a morphism, denoted by f :M �! N , inM

d;d+1

by
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the bordism ([0; 1℄�M ; f0g �M; f1g �M ; id; f). Two di�eomorphisms f

0

; f

1

:M �! N

are alled pseudoisotopi , if there is a di�eomorphism F :M � [0; 1℄ �! N � [0; 1℄ whose

restrition to M � fig is f

i

for i = 0; 1. One easily heks that f

0

and f

1

de�ne the same

morphism in M

d;d+1

if and only if they are pseudoisotopi. If W := (W ;W

0

;W

1

; f

0

; f

1

) is

a morphism from N to L and f :M �! N an orientation preserving di�eomorphism, the

ompositionW Æ f is represented by (W ;W

0

;W

1

; f

0

Æ f; f

1

) and similar for f : L �! K and

f ÆW .

Example 5.3 Let V be the monoidal ategory with involution with �nitely generated om-

plex vetor spaes as objets and linear maps as morphisms. The monoidal struture is

indued by the tensor produt. The unit element is given by C. The involution sends V

to the dual vetor spae V

�

. The natural transformation T (V ) : V �! V

�

�

sends v to the

homomorphism V

�

�! C mapping f to f(v). Let � : C �! C

�

send z 2 C to the homo-

morphism C �! C sending u to z � u. The inverse of � is evaluation at 1. This de�nition

makes also sense for �nitely generated projetive modules over any ring with involution.

Let H be the monoidal ategory with involution with Hilbert spaes as objets and

bounded linear operators as morphisms. The tensor produt and the dual spae onsisting

of bounded linear operators with C as target yield the produt and the involution. The

transformation T(H), the unit element and � are de�ned as above. Notie that one does not

need a Hilbert struture but the struture of a reexive Banah spae.

De�nition 5.4 A d-d+1-quantum �eld theory is a funtor of monoidal ategories with

involution

H :M

d;d+1

�!

(

V

H

Let W be an oriented d+1-dimensional manifold. Let W : ; �! �W be the morphism

given by (W ; ;; �W ; id; id). Sine H(;) = C, we have the element 1 2 H(;). We de�ne :

5.5 Z(W ) := H(W )(1) 2 H(�W )

Notie that Z(W ) is a omplex number, if W is losed. Built into the de�nition of a quantum

�eld theory is a kind of glueing formula. Let V andW be d+1-dimensional oriented manifolds

and f : �V �! �W

�

an orientation preserving di�eomorphism. We obtain a pairing

5.6 < ; >

f

: H(�V )
H(�W ) �! C

by the omposition

H(�V )
H(�W )

H(f)
id

�! H(�W

�

)
H(�W )

T

I

(�W )
id

�! H(�W )

�


H(�W )

ev

�! C

We obtain a losed oriented d + 1-dimensional manifold V [

f

W by glueing and hene a

omplex number Z(V [

f

W ).
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Lemma 5.7 Z(V [

f

W ) =< Z(V ); Z(W ) >

f

Proof : Reall that H(;) is C. Consider the following diagram

H(;)
H(;)

-

H(V )
H(W )

H(�V )
H(�W )

?

id

?

H(f)
 id

H(;)
H(;)

-

H(f Æ V )
H(W )

H(�W

�

)
H(�W )

?

T

I

(;)
 id

?

T

I

(�W )
 id

H(;)

�


H(;)

-

H(

b

V Æ

b

f)

�


H(W )

H(�W )

�


H(�W )

?

ev

?

ev

H(;)

-

H((V [

f

W ))

H(;)

We derive from the de�nition of a funtor of monoidal ategories with involution that

the diagram ommutes and that T

I

(;) : H(;) �! H(;)

�

is just the map � : C �! C

�

. Consi-

der 1
 1 2 H(;)
H(;). Sending it from the left upper orner to the right lower orner in

the lokwise diretion gives < Z(V ); Z(W ) >

f

and in the anti-lokwise diretion gives

Z(V [

f

W ) by the de�nitions.

Next we give the most elementary non-trivial example of a d-d+1-quantum �eld theory

for d even. Denote by �(W ) the Euler harateristi and by �(W ) the signature of an

oriented manifold. Reall that the signature is de�ned to be zero, if the dimension is not

divisible by four, and to be the signature of the intersetion pairing in dimensions divisible

by 4. These invariants satisfy the following additivity formulas. Given d + 1- dimensional

manifolds V and W and an orientation preserving di�eomorphism f : V

1

�!W

0

between

disjoint unions of omponents of the boundaries of V and W , we get :

�(V [

h

W

�

) = �(V ) + �(W )� �(V

1

)

and

�(V [

f

W

�

) = �(V )� �(W )
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Notie for odd d that �(V

0

) is zero by Poinar�e duality so that we get for odd d :

�(V [

h

W

�

) = �(V ) + �(W )

We mention the following onlusions �(V

�

) = ��(V ) and �(V

�

) = �(V ). These invariants

are haraterized by the following property.

A SK-invariant for losed oriented m-dimensional manifolds is a funtion � assigning

to any losed oriented m-dimensional manifold W an element

5.8 �(W ) 2 A

in an abelian group A suh that the following holds :

� If V and W are oriented di�eomorphi, then �(V ) = �(W )

� �(V

`

W ) = �(V ) + �(W )

� Let f; g : �W

1

�! �W

2

be two orientation preserving di�eomorphisms. Then we have

�(W

1

[

f

W

�

2

) = �(W

1

[

g

W

�

2

)

For SK-invariants in general and a proof of the following theorem we refer to Karras-

Krek-Neumann-Ossa [23℄. See also J�anih [17℄ and [18℄. A SK-group (A; �) is alled uni-

versal, if for any SK-group A

0

; �

0

there is a homomorphism � : A �! A

0

uniquely determined

by the property �

0

= � Æ �

Lemma 5.9 The universal SK-invariant is given by

(�(W )� �(W ))=2; �(W ) 2 Z� Z ,if m � 0 mod 4

�(W )=2 2 Z ,if m � 2 mod 4

and is zero for odd m

Example 5.10 Let d be even. Let r be a positive real number and z be an element in

S

1

� C. The d-d+ 1-dimensional quantum �eld theory

H(r; z) = H :M

d;d+1

�! H

assigns C with the standard Hilbert struture to all objets and the map r

�(W )

� z

�(W )

to a

morphism (W ;W

0

;W

1

; f

0

; f

1

). We have to hek the axioms. We obtain funtoriality from

the additivity formulas. Obviously H is ompatible with the involutions. We will later

introdue two further axioms 5.13 and 5.14. Both are sati�ed by H(r; z).
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Notie for the quantum �eld theory above that the group Diff

+

(M) of self di�eomor-

phisms of the oriented losed d-manifold M ats trivally on H(M). Under this assumption

we annot expet other invariants Z(W ) for losed orientable d + 1-dimensional manifolds

W than the Euler harateristi and the signature. Namely, we get as a orollary of lemma

5.7 and lemma 5.9

Lemma 5.11 Let H be a d-d + 1-quantum �eld theory suh that for any orientable losed

d-manifold the group Diff

+

(M) ats trivially on H(M) and Z(W ) 2 C is not zero for all

losed orientable d + 1-manifolds W . Then we get for any losed orientable d + 1-manifold

W :

Z(W ) = Z(S

d+1

)

(�(W )��(W ))=2

�

�

Z(CP

d+1

) � Z(S

d+1

)

�(d+1)=4

�

�(W )

if d+ 1 � 0 mod 4

Z(W ) = Z(S

d+1

)

�(W )=2

if d+ 1 � 2 mod 4

Z(W ) = 1 if d+ 1 is odd

Remark 5.12 Notie that a m-braid may be viewed as an automorphism of (S

2

; m) given

by S

2

with m points with positive orientation. Hene the braid group B

m

embedds into the

group of automorphisms of (S

2

; m). Thus we obtain a representation of B

m

.

There are the following two additional axioms one may or may not require. Both will

be satis�ed in the situations we will study, but in partiular the seond one is not ful�lled in

other interesting ases e.g, the 3-4-quantum �eld theory given by the Donaldson polynomial

and Floer homology.

5.13 Given three objets M , L and N inM

d;d+1

, there is a natural bijetion

�

L

:Mor(M [ L;N) �!Mor(M;L

�

[N)

sending (W ;W

M

`

W

L

;W

N

; f

M

[ f

L

; f

N

) to (W ;W

M

;W

L

`

W

N

; f

M

; f

�1

L

`

f

N

). Analogous-

ly, for three objets A, B and C in V resp.H, there is a natural bijetion

�

B

: Hom(A
 B;C) �! Hom(A;B

�


 C)

indued from the natural isomorphisms

Hom(A;Hom(B;C)) �! Hom(A
B;C)

and

B

�


 C �! Hom(B;C)

. The axiom says that the funtor H is ompatible with these maps. In other words, the

following square ommutes

Mor(M [ L;N) Mor(M;L

�

[N)

-

�

L

?

H

?

H

Hom(H(M)
H(L); H(N)) Hom(H(M); H(L)

�


H(N))

-

�

H(L)
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This axiom says in partiular that it suÆes to treat morphisms with the empty set as soure

only.

The map indued by the involution from Mor(M;N) to Mor(N

�

;M

�

) sending W to



W is the omposition of �

N

, S

2

(M

�

; N) and �

M

and analogously in the ategory V and H,

so that this axiom is an extension of the axiom that H is ompatible with the involutions.

If this axiom holds, there is an obvious extension of lemma 5.7 in the ase, where only

a disjoint union of omponents of the boundaries and not neessarily the whole boundaries

are glued together.

5.14 This axiom makes sense only if the quantum �eld theory takes values in the ategory

H of Hilbert spaes. For a morphism W := (W ;W

0

;W

1

; f

0

; f

1

) from M to N in M

d;d+1

de�ne the morphism W

�

:M

�

�! N

�

by W

�

:= (W

�

;W

�

0

;W

�

1

; f

0

; f

1

). Given an objet

M , de�ne the isomorphism �

M

: H(M

�

) �! H(M) by the omposition of the inverse of the

isomorphism H(M) �! H(M)

�

oming from the Hilbert struture and the natural isomor-

phism T

I

(M) : H(M

�

) �! H(M)

�

. The axiom requires the ommutativity of the following

diagram

H(M

�

) H(N

�

)

-

H(W

�

)

?

�

M

?

�

N

H(M) H(N)

-

H(W )

Suppose that this axiom is satis�ed. Then for any morphismW :M �! N the adjoint

of H(W ) : H(M) �! H(N) is given by H(

d

W

�

) : H(N) �! H(M). In partiular we get for

any losed oriented d+ 1-dimensional manifold W beause of

d

W

�

= W

�

Z(W

�

) = Z(W )

If f :M �! N is an orientation preserving di�eomorphism of losed oriented d-manifolds,

we get



f

�

= f

�1

. Hene H(f) : H(M) �! H(N) is an isometry.

We will always assume that also these two axioms are satis�ed unless expliitely stated

di�erently.

Example 5.15 We look at all 0-1-quantum �eld theories H :M

0;1

�! H. Let V be the

omplex Hilbert spae assoiated to the objet p given by a point with a �xed orientation.

Then H(p

�

) must be V

�

and we get in general :

H

  

a

n

p

!

a

 

a

m

p

�

!!

= V


n


 V

�


m
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There is preisely one morphism w : p �! p

�

and the only morphism from p

�

to p is

b

w = w

�

.

The indued maps H(w) : H(p) �! H(p

�

) and H(

b

w) : H(p

�

) �! H(p) are to another in-

verse isometries if we equip V

�

with the Hilbert struture oming from V . We use them as

identi�ations. Now we get

H

  

a

n

p

!

a

 

a

m

p

�

!!

= V


(n+m)

and T

I

beomes trivial. A morphism inM

0;1

is a permutation of the set f1; 2; � � � ; n+mg.

The indued map on V


n+m

is just given by the permutation itself. Hene a 0-1-quantum

�eld theory is up to natural equivalene given by a omplex Hilbert spae V .

In order to de�ne invariants for links, we have to enlarge our ategory M

d;d+1

onsi-

derably. We will only onsider the dimensions, we are interested in. The generalization to

other dimensions is obvious. In the sequel we denote by R the trivial bundle with �bre R.

Given a framing � of R� �, we denote by �

�

the framing obtained by omposition with the

bundle automorphism (�id)� id of R� �.

5.16 We will onsider the following ategoryM.

� An objet (P;M; �

M

; i; �

i

) onsists of

{ an oriented 0-dimensional manifold P

{ a 2-dimensional manifold M together with framing �

M

of R� TM

{ an embedding i : P �!M together with a framing �

i

of the normal bundle �(i)

suh that for all x 2 P the framings �

M

and �

i

indue the same orientation

on TM

x

, if x has the positive orientation, and opposite orientations on TM

x

otherwise.

We will often abbreviate (P;M; �

M

; i; �

i

) by (M;P ). We denote by (M;P )

�

the ob-

jet obtained from (M;L) by substituting the framing �

M

by �

M

�

and reversing the

orientation of P . The framing �

i

is unhanged.

� A morphism (L;W; �

W

; k; �

k

;W

0

;W

1

; f

0

; f

1

) from (P;M; �

M

; i; �

i

) to

(Q;N; �

N

; j; �

j

) is given by :

{ a 1-dimensional oriented manifold L

{ a 3-dimensional manifold W together with a framing �

W

of the tangent bundle

{ open and losed submanifolds W

0

and W

1

of �W suh that W

0

[W

1

= �W and

W

0

\W

1

= ; holds. Notie that R� T�W inherits a framing from TW using the

outward normal.

{ open and losed submanifolds L

0

and L

1

of �L with L

0

[ L

1

= �L and

L

0

\ L

1

= ;.
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{ di�eomorphisms f

0

:M �! W

0

and f

1

: W

1

�! N suh that �

�

M

= f

�

0

�

W

0

and

�

W

1

= f

�

1

�

N

holds

{ an embedding k : L �!W together with a framing �

k

of the normal bundle �(k)

with the following properties: The orientations of TL

x

, �(k)

x

and TW

x

given

by assumption or by the framings math up for all x 2 L. The map f

0

satis�es

f

�

0

�

k

= �

P

and indues an orientation preserving di�eomorphism from i(P ) to

k(L) \W

0

and analogously at the other end W

1

.

If (L;W; �

W

; k; �

k

;W

0

;W

1

; f

0

; f

1

) and (L

0

;W

0

; �

W

0

; k

0

; �

k

0

;W

0

0

;W

0

1

; f

0

0

; f

0

1

) are two mor-

phisms from (P;M; �

M

; i; �

i

) to (Q;N; �

N

; j; �

j

), they will be identi�ed if the following

exists :

{ di�eomorphisms g : L �! L

0

and G : W �! W

0

with G Æ k = k

0

Æ g, F Æ f

0

= f

0

0

and f

0

1

Æ F j

W

1

= f

1

{ an ambient isotopy relative boundary � between the embeddings G Æ k and k

0

Æ f .

{ an isotopy relative boundary of the framings �

W

and G

�

�

W

0

{ There is an isotopy relative boundary of the framings �

k

and �

�

�

k

0

of the embed-

ding k, where �

�

�

k

0

omes from g,G and � and the framing �

k

0

We will often write shortly (W;L) for a morphism.

� Composition is given by glueing. The identity morphism of (P;M; �

M

; i; �

i

) is de�ned

by rossing with the unit interval

� the monoidal struture is given by the disjoint union and the involution sending a

morphism (W;L) : (M;P ) �! (N;Q) to

d

(W;L) : (N;Q)

�

�! (M;P )

�

is given by re-

versing the bordism

Notation 5.17 In the sequel a quantum �eld theory will be a funtor of monoidal ategories

with involution

H :M�!H

suh that the analogues of the axioms 5.13 and 5.14 are satis�ed.

Remark 5.18 Our goal is to onstrut an invariant for oriented links in oriented homology

3-spheres using a quantum �eld theory so that it is natural to invoke links in the ategoryM.

The hoie of an isotopy lass of framings for the links is needed in the expliit onstrution

of a quantum �eld theory. In the omparitively easy ase of an abelian theory ertain

integrals appear, whih just give the linking number of two disjoint knots (see lemma ??).

But the self linking number of a knot is only de�ned, if one has spei�ed an isotopy lass of

framings. Sine the links have to have isotopy lasses of framings, the 3-manifolds appearing

in a morphism should also ome with an isotopy lass of framings. As omposition is given

by glueing, we are fored to put on the objets an atual framing and not only an isotopy

52



lass. Namely, it is not true for 3 manifolds W and V with �W = �V that isotopy lasses

of framings on V and W whih restrit to the same isotopy lass of stable framings on the

ommon boundary determine an isotopy lass of framings on W [V . The reason is that the

homotopy ategory of spaes has no push outs. Here is a ounterexample. Take V and W

to be the lower and upper hemisphere in S

3

= V [W . There is preisely one isotopy lass

of framings on the ontratible spaes V and W , but the isotopy lasses of framings on S

3

are in bijetive orrespondene to the set of homotopy lasses of maps from S

3

to GL(3;R)

whih is Z� f�1g.

We will now disuss whih properties a quantum �eld theory has to satisfy in order to

give a skein invaraint. We speify the following objets and morphisms inM. In the sequel

we equip S

3

and D

3

with the standard framings. We put on S

2

= �D

3

the indued stable

framing of R� TS

2

.

We use from now on the following onvention. Let k : A �! B be an embedding of

an oriented manifold into a framed manifold suh that dim(B) = dim(A) + 2 holds. Then a

hoie of a non-vanishing setion of the normal bundle �(k) determines a framing of it and

vie versa. Given a framing � : R

2

�! �(k), we obtain a setion of �(k) by omposing the

onstant setion of R

2

with value the �rst element of the standard bases. Given a setion s of

�(k), we obtain a seond linearly independent setion

b

s and hene a framing by the following

onstrution. The framing on TB indues an orientation and a Riemannian metri on TB

and by means of the orientation of A also on �(k). Given any vetor v in the �bre �(k)

x

at

x, there is preisely one vetor

b

v, suh that the norm of

b

v is 1, v and

b

v are orthogonal and

fv;

b

vg agrees with the orientation. Now de�ne

b

s(x) for x 2 A by

d

s(x). This gives a bijetive

orrespondene between the isotopy lasses of non-vanishing setions and isotopy lasses of

framings of the normal bundles �(k). We will illustrate framings of points in 2-manifolds

resp. links in 3-manifolds in pitures by drawing a tangent vetor resp. a parallel urve whih

indiates a non-vanishing setion.

Next we de�ne two objets (S

2

; 2) and (S

2

; 4) in M. The underlying stably framed

2-manifold is in both ases the 2-dimensional sphere S

2

. The embeddings of 0-dimensional

manifolds are given by 2 resp. 4 oriented points on S

2

together with expliit framings of the

normal bundles. The objets are illustrated by the following pitures using the onventions

above.
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5.19 Objets

(S

2

; 2)

+

�

�

��

�

��

(S

2

; 4)

+ +

� �

�

��

�

�I

�

�R

�

�	

Next we de�ne three morphism D

3

+

, D

3

�

and D

3

0

from ; to (S

2

; 4) inM. The underlying

framed bordism is D

3

in all ases. The embedded 1-dimensional manifolds together with the

framing of their normal bundles is indiated below

5.20 Morphisms

D

3

+

+ +

� �

D

3

�

+ +

� �

D

3

0

+ +

� �

The following observation will be important for the sequel. We de�ne di�eomorphisms

5.21 ! : S

2

�! S

2


 : D

3

�! D

3

satisfying ! = 
 j

S

2

. The di�eomorphism 
 is height preserving and is given by a rotation

about the angle �(t) on the level of height t 2 [1; 1℄, where �(t) is zero for t � 0, is �2�t
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for �1=2 � t � 0 and is � for �1 � t � �1=2. The framings of the normal bundles at the

four points spei�ed in the de�nition of the objet S

2

are respeted by the di�erential of !.

The pull bak of the standard framing of TS

2

�R is isotopi to its pull bak with ! by an

expliit isotopy indued from the obvious isotopy between id and !. Suh an isotopy may be

viewed as an (unstable) framing on the trivial bordism from S

2

� [0; 1℄. These data de�ne a

morphism with the trivial bordism as underlying bordism

5.22

e

! : (S

2

; 4) �! (S

2

; 4)

One easily heks using the extension 
 of !

Lemma 5.23 We have the following identities of morphisms from ; to (S

2

; 4) :

e

! ÆD

3

+

= D

3

0

and

e

! ÆD

3

0

= D

3

�

De�ne a di�eomorphism

5.24 Æ : S

2

�! S

2

by a loal Dehn twist at the positive point of the two marked points in S

2

. This leaves

this point and the omplement of a small neighbourhood of it �xed and looks within this

neighbourhood as indiated below

5.25 Loal Dehn twist
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Notie that the di�erential of Æ at the positive point is the identity, so that Æ respets

the framing of the normal bundles. Moreover, there is an expliit isotopy relative the positive

point (but not relative to the positive point and the di�erential at this point) between Æ and

id. It indues an expliit isotopy between the standard framing of TS

2

�R and its pull bak

with Æ. Hene we obtain a morphism

5.26

e

Æ : (S

2

; 2) �! (S

2

; 2)

There are morphisms from ; to (S

2

; 2) for i = 0; 1

5.27 

i

: ; �! (S

2

; 2)

indiated by the pitures below

5.28



1



2

One easily heks

Lemma 5.29 We have

e

Æ Æ 

1

= 

2

Now we make the following assumption on our quantum �eld theory

Assumption 5.30 dim(H(S

2

; 2)) = 1 and dim(H(S

2

; 4)) = 2

Let L be a link in a framed 3-manifoldW together with a framing (of its normal bundle)

meeting the boundary in an appropiate way. Then we obtain a morphism

(W;L) : ; �! (�W;L \ �W )
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and hene an invariant 5.5

Z(W;L) 2 H(�W;L \ �W )

Reall that this is just a omplex number and depends only on the isotopy lass of

the framings, provided that W is losed. Now suppose we have three suh pairs (W;L

+

),

(W;L

�

) and (W;L

0

) and there is an embedded 3-ball D

3

in W suh that the framed links are

identially outside of D

3

and look in D

3

as in the de�nition 5.20 of D

3

+

, D

3

�

and D

3

0

.

Lemma 5.31 Let det and trae be the determinant and the trae of the linear endomorphism

H(!) of H(S

2

; 4). Then we get :

det � Z(W;L

+

) + Z(W;L

�

)� trae � Z(W;L

0

) = 0

Proof : We derive from lemma 5.7, if (W



; L



) is the morphism from ; to (S

2

; 4) given by

the omplement of D

3

in W :

< Z(W



; L



); Z(W;L

+

) >

id

= Z(W;L

+

)

< Z(W



; L



); Z(W;L

�

) >

id

= Z(W;L

�

)

< Z(W



; L



); Z(W;L

0

) >

id

= Z(W;L

0

)

Sine the dimension of H(S

2

; 4) is two by assumption 5.30, we get for the harateristi

polynomial p of the endomorphism H(!)

p(x) = x

2

� trae � x + det

We get zero, if we put H(!) into its harateristi polynomial. We derive from lemma 5.23

Z(W;L

�

)� trae � Z(W;L

0

) + det � Z(W;L

+

) = 0

and the laim follows.

Next we have to hek the dependeny on the framing. Let L be an oriented link in 3-

manifoldM with two framings �

L

and �

0

L

suh that the orientations of TL

x

, �(L �M)

x

and

TM

x

math up for all x 2 L. The omposition �

�1

L

Æ �

0

L

is a framing of the trivial bundle R

over L ompatible with the standard orientation. Isotopy lasses of suh framings are in bije-

tive orrespondene with homotopy lasses of maps L �! GL(2;R)

+

. Sine �

1

(GL(2;R)

+

)

is Z and L is oriented, this an be identi�ed with Z

r(L)

, where r(L) is the number of om-

ponents of L. The sum of the omponents is the total relative framing number and denoted

by :

5.32 d(�

L

; �

0

L

) 2 Z

Lemma 5.33 Let L be a link with framings �

L

and �

0

L

in a losed 3-manifold W with

framing �

W

. Then the omplex number Z(W;L) depends only on the isotopy lasses of fra-

mings. Let  be the omplex number for whih the endomorphism H(

e

Æ) of the 1-dimensional

vetor spae H(S

2

; 2) is given by  � id. Then we get :

Z(W;�

W

; L; �

0

L

) = 

d(�

L

;�

L

0

)

� Z(W;�

W

; L; �

L

)
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Proof : Suppose that �

0

L

is obtained from �

L

in the following way. There is an embedded

disk D

3

in W suh that the intersetion of L and D

3

looks like 

1

as indiated in 5.28. Now

�

0

L

is obtained from �

L

by taking out 

1

and plugging in 

2

. We get from lemma 5.7:

< Z(W



; L



); Z(

1

) >= Z(W;L; �

L

)

< Z(W



; L



); Z(

2

) >= Z(W;L; �

0

L

)

Then we get from lemma 5.29 :

Z(

2

) =  � Z(

1

)

This implies the laim in this partiular ase. The general ase is obtained by an iteration

of this speial ase, beause any two isotopy lasses of framings of L an be transformed into

one another by a sequene of operations of the type above.

Next we onsider framed links in a framed oriented homology 3-sphere M . Let S be a

Seifert surfae for L. Then the outward normal �eld of S at the boundary indues a framing

on L. We all suh a framing a Seifert framing . We laim that the isotopy lass of this

framing is independent of the hoie of the Seifert surfaes. Reall that isotopy lasses of

framings of L are in bijetive orrespondene with Z

r(L)

. Namely, a framing determines

a non-vanishing setion of the normal bundles and hene a push-o� L

p

of the link L into

the link omplement. For eah omponent L

i

we obtain an integer by the linking number

n(L

i

) := link(L

p

i

; L

i

). Let l(i; j) be the linking number link(L

i

; L

j

). Consider the following

linking matrix

5.34

A

link

=

0

B

B

B

B

B

B

B

�

n(1) l(1; 2) l(1; 3) � � � l(1; r)

l(1; 1) n(2) l(2; 3) � � � l(2; r)

l(3; 1) l(3; 2) n(3) � � � l(3; r)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l(r; 1) l(r; 2) l(r; 3) � � � n(r)

1

C

C

C

C

C

C

C

A

Lemma 5.35 The sum of the elements in any olumn of the linking matrix is zero

Proof : Fix 1 � i � r. Let S be a Seifert surfae for L. Then L

p

i

does not meet the Seifert

surfae. Hene its linking number with L, i.e.

P

r

i

link(L

p

i

; L

i

) vanishes. But link(L

p

i

; L

j

) is

n(i) for i = j and l(i; j) otherwise.

Let L be an oriented link in S

3

. Equip S

3

with the standard framing and L with a

Seifert framing. Then we obtain a morphism (S

3

; L) : ; �! ;. De�ne :

5.36 (L) = Z(S

3

; L) 2 C

Notie that (L) is an invariant of the ambient isotopy lass of the link L in S

3

. We

laim that this is a skein invariant.
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Lemma 5.37 Let det and trae be the determinant and the trae of the linear endomorphism

H(!) of the 2-dimensional vetor spae H(S

2

; 4). Denote by  the omplex number for whih

the endomorphism H(

e

Æ) of the 1-dimensional vetor spae H(S

2

; 2) is given by  � id. De�ne

l(H) =  � det

1=2

m(H) = �trae � det

�1=2

Then  de�ned in 5.36 is a skein invariant with skein oeÆients l(H); l(H)

�1

; m(H).

Proof : Consider a skein triple (L

+

; L

�

; L

0

) of oriented links in the oriented homology 3-

sphere M . Equip them with framings �

+

, �

�

and �

0

suh that �

�

is a Seifert framing and

the assumptions in lemma 5.31 are satis�ed, i.e. there is an embedded 3-ball D

3

in W suh

that the framed links are identially outside of D

3

and look in D

3

as in the de�nition 5.20

of D

3

+

, D

3

�

and D

3

0

. Hene we have :

det � Z(W;L

+

) + Z(W;L

�

)� trae � Z(W;L

0

) = 0

Denote by �

s

+

, �

s

�

and �

s

0

Seifert framings of L

+

,L

�

and L

0

. We want to determine the

total relative framing numbers f(�

+

; �

s

+

), f(�

�

; �

s

�

) and f(�

0

; �

s

0

) de�ned in 5.32. We have

by assumption �

�

= �

s

�

so that f(�

�

; �

s

�

) is zero. We may suppose that we have Seifert

surfaes S

+

, S

�

and S

0

for L

+

,L

�

and L

0

whih agree outside the embedded D

3

. Hene

we an assume that the Seifert framings of the links agree outside D

3

. By assumption the

framings �

+

, �

�

and �

0

agree outside D

3

. Hene the di�erenes f(�

+

; �

s

+

)� f(�

�

; �

s

�

) and

f(�

0

; �

s

0

)� f(�

�

; �

s

�

) do not depend on the links outside D

3

. Therefore we an ompute

these numbers for one spei� example and get the ommon answer for all ases. We derive

from

5.38

the relations :

f(�

+

; �

s

+

)� f(�

�

; �

s

�

) = 2

f(�

0

; �

s

0

)� f(�

�

; �

s

�

) = 1

Hene  is a skein invariant with skein oeÆients 

2

� det; 1;� � trae by lemma 5.31 and

lemma 5.33. Now the laim follows.

Theorem 5.39 Suppose that there are quantum �eld theories H(n; k) indexed by positive

integers n and k suh that any omplex polynomial p(x; y) in two variables with the property
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that p(l(H(n; k)); m(H(n; k))) vanishes for all k and n, is zero and assumption 5.30 is sa-

tis�ed. Then there is a skein invariant as desribed in lemma 4.13,namely

J : f isotopy lasses of oriented links in S

3

g �! Z[l; l

�1

; m;m

�1

℄

with l; l

�1

; m as skein oeÆients.

Proof : One proves by indution over the omplexity of a link in S

3

the unique existene

of a polynomial J(L)(l; m) suh that J(L)(l(H(n; k)); m(H(n; k))) = 

H(n;k)

(L) holds for all

n,k.
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6.setion

The onstrution of quantum �eld theories

In this setion we sketh the onstrution of appropiate quantum �eld theories H(n; k)

whih give the Jones polynomial as desribed in lemma 5.37 and theorem 5.39. The index

k � 2 will be alled the level and n will parametrize the underlying family of Lie groups,

namely, the family SU(n).

We have to enlarge our ategory M de�ned in 5.16 as follows. Namely, we require

for an objet that to eah element in the 0-dimensional manifold P we have assigned a

SU(n)-representation V . Similarly we demand for morphism that we have attahed to eah

omponent of the link L a representation V whih agrees with the given representation at the

positive end and with the dual of the given representation at the negative end. In all expliite

objets appearing in the last setion we require that we have assigned the n-dimensional

anonial representation C

n

with the obvious SU(n)-ation to points with positive orientation

and the dual representation (C

n

)

�

to points with negative orientation. The representations

attahed to the omponents of the links appearing in the expliite morphisms are always C

n

.

In view of example 5.15 this means that we are oupling a 0-1-quantum �eld theory and a

2-3-quantum �eld theory in the sequel.

We start with the onstrution of the Hilbert spae H(M) assigned to an objet in the

ase, where the 0-dimensional submanifold P is empty. Then the objet onsists of a losed

2-manifold with a framing of R� TM . The onstrution is done in several steps summarized

as follows.

6.1

1. The framing of R� TM indues a Riemannian metri and an orientation on M .

2. The Riemannian metri on M de�nes a onformal struture on M .

3. The onformal struture determines an almost omplex struture on TM .

4. The almost omplex struture indues a holomorphi struture on M by the theorem

of Nirenberg and Neulander.

5. Given the holomorphi struture on M , there is a moduli spaeMODB of stable holo-

morphi SU(n) bundles whih are topologially trivial. This spae turns out to be a

omplex K�ahler manifold.

6. There is a family of �-operators parametized byMODB.

7. Assoiated to suh family is the determinant line bundle det(�) onstruted by Quillen.

This is a holomorphi vetor bundle overMODB. It possess a Riemannian metri.

8. De�ne H(M) to be the �nite-dimensional vetor spae of holomorphi setions of




k

det(�).
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We make some omments on the items of the list 6.1 :

1.) A framing indues a Riemannian metri and an orientation and a subbundle inhe-

rits a Riemannian metri and an orientation.

2.) A onformal struture on a manifold is an equivalene lass of Riemannian metris.

Two Riemannian metris h ; i

1

and h ; i

2

are onformally equivalent if there is a funtion

f :M �! R suh that for all x 2M and v; w 2 TM

x

we have :

hv; wi

1

x

= f(x) � hv; wi

2

x

Hene two Riemannian metris give the same onformal struture if and only if they de�ne

the same angles between tangent vetors.

3.) An almost omplex struture on TM is a bundle isomorphism J : TM �! TM

over id :M �!M suh that J Æ J = �id holds and for eah v 2 TM

x

for x 2 M the set

fv; J(v)g is a bases onsistent with the orientation of M . Given a Riemannian metri h ; i

and v 2 TM

x

for x 2M , de�ne J(v) 2 TM

x

to be the tangent vetor uniquely determined by

the properties that fv; J(v)g is a orthogonal bases of TM

x

orresponding to the orientation

of M and hv; vi and hJ(v); J(v)i agree. Then J is an almost omplex struture and depends

only on the onformal struture determined by the Riemannian metri h ; i.

Suppose, we are given an almost omplex struture J . Fix a overing U = fU

i

j i 2 Ig

of M suh that TM restrited to any U

i

is trivial. Choose for any i 2 I a nowhere-vanishing

setion s of TM j

U

i

. Let h ; i

i

be the Riemannian metri on TM j

U

i

for whih fs(x); J(s(x))g

is an orthonormal bases of TM

x

for all x 2 M . Choose a partition fe

i

j i 2 Ig of unity

subordinate to the open overing U . Let h ; i be the Riemannian metri

P

i2I

e

i

� h ; i

i

. One

easily heks that the onformal lass of this Riemannian metri does only depend on J and

that these two onstrutions give to another inverse bijetions between the set of onformal

strutures on M and the set of almost omplex strutures on M .

4.) Let J be an almost omplex struture on M . Extend J to an automorphism of

TM 
C, also denoted by J . As J

2

is �id, the eigenspaes of the eigenvalues i and �i of J

give a deomposition

TM 
C = TM

0

� TM

00

This deomposition is orthogonal with respet to any unitary Riemannian metri, i.e. a

Riemannian metri for whih J is isometri. We obtain a deomposition of the omplexi�ed

dual tangent bundle

T

�

M 
C = �

1;0

M � �

0;1

M

and thus a deomposition :

�

n

T

�

M 
C = �

p+q=n

�

p;q

M

if we put �

p;q

M = �

p

(�

1;0

)
 �

q

(�

0;1

M) for n � 0. The exterior di�erental d indues :

�

p;q

: C

1

(�

p;q

M) �! C

1

(�

p+1;q

M)

�

p;q

: C

1

(�

p;q

M) �! C

1

(�

p;q+1

M)
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Now suppose that M is holomorphi. In loal oordinates z

1

, z

2

, : : : z

m

de�ne for

z

i

= x

i

+ i � y

i

:

�

�z

i

=

1

2

�

�

�

x

i

�

�

y

i

�

�

�z

i

=

1

2

�

�

�

x

i

+ i �

�

y

i

�

dz

i

=

1

2

� (dx

i

� i � dy

i

) dz

i

=

1

2

� (dx

i

+ i � dy

i

)

For f :M �! C we de�ne :

�(f) =

P

i

�f

�z

i

� dz

i

�(f) =

P

i

�f

�z

i

� dz

i

De�ne omplex subbundles of T

�

M 
C :

TM

0

= span

n

�

�z

i

o

TM

00

= span

n

�

�z

i

o

�

1;0

M = spanfdzg �

0;1

M = spanfdz

i

g

Moreover we get operators :

� : C

1

(M) �! C

1

(�

1;0

M) � : C

1

(M) �! C

1

(�

0;1

M)

These bundle maps are invariantly de�ned and independent of the oordinate harts. An

almost omplex struture on TM is given by :

J(

�

�x

i

) =

�

�y

i

J(

�

�y

i

) = �

�

�x

i

Notie that the de�nitions of TM

0

, TM

00

, �

1;0

M , �

0;1

M , � : C

1

(M) �! C

1

(�

1;0

M) and

� : C

1

(M) �! C

1

(�

0;1

M) for holomorphi M agree with the one for J , if J is the almost

omplex struture indued from the holomorphi struture.

Theorem 6.2 (Nirenberg-Neulander) The following assertions are equivalent for an al-

most omplex struture J on TM :

1. J arises from a holomorphi struture.

2. d = � + �

3. � Æ � = 0

IfM is 2-dimensional, � Æ � = 0 holds always for dimension reasons. Hene any almost

omplex struture J omes from a holomorphi struture onM . If two holomorphi strutures

de�ne the same almost omplex struture, they agree. This follows from the fat that a

di�eomorphism f : U �! V of open subsets of C

n

is holomorphi if and only if its di�erential

is ompatible with the almost omplex strutures on U and V oming from the standard almost

omplex struture on C

n

. Hene for surfaes we get a bijetive orrespondene between almost

omplex strutures and holomorphi strutures.
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5.) Let M be a surfae with holomorphi struture. Let � be a holomorphi vetor

bundle. It is alled stable if for any proper subbundles � we have :

rank(�)

degree(�)

<

rank(�)

degree(�)

The degree of � is the evaluation of the �rst hern lass of the line bundle �

rank(�)

� on the

fundamental lass ofM . LetMODB be the moduli spae of stable holomorphi SU(n)-bundles

whih are topologially trivial. This spae is a projetive algebrai variety. In partiular it

is a holomorphi manifold and is K�ahler, i.e. there is a unitary metri on M suh that the

assoiated the K�ahler 2-form


(v; w) = �hv; J(w)i

is losed. We mention that a holomorphi manifold M is Hodge, if and only if it admits a

K�ahler metri suh that the K�ahler form 
 is 

1

(�) for some line bundle �. Obviuosly CP

n

is Hodge and hene any algebrai variety is Hodge. The onverse is also true (see Gilkey [14℄

remark 3.6.3.)

The moduli spaeMODB an be identi�ed with the moduli spaeMODC of at onne-

tions modulo gauge transformations on the trivial SU(n)-bundle over M .

6.) We have introdued the notion of the � operator on a holomorphi manifold M . If

� is a holomorphi vetor bundle over M , we an onsider a �-twisted version :

� : C

1

(�) �! C

1

(�

0;1

TM 
 �)

If � is trivial, C

1

(�) is a diret sum of opies C

1

(M) and C

1

(�

0;1

M 
 �) is a diret

sum of opies of C

1

(�

0;1

M). De�ne for trivial � the operator � by a matrix of operators

� : C

1

(M) �! C

1

�

0;1

M . This generalizes to arbitrary � using loal ooodinates.

Hene the moduli spae of stable holomorphi topologially trivial vetor bundlesMODB

of rank n parametrizes a family of operators

� : C

1

(C

n

) �! C

1

(�

0;1

M 
C

n

)

if C

n

denotes in this ase the trivial C

1

-vetor bundle over M . The kernel of � is just the

vetor spae of holomorphi setions of the orresponding holomorphi bundle.

7.) Given suh an operator

� : C

1

(C

n

) �! C

1

(�

0;1

M 
C

n

)

de�ne its determinant line det(�) to be

det(�) = �

max

ker(�)

�


 �

max

oker(�)

where �

max

V for V a �nite-dimensional vetor spae V is �

dim(V )

V . This de�nition makes

sense as � is an Fredholm operator. Thus we get for any element in the moduli spaeMODB

a omplex line. These �t together to the determinant line bundle of the family of det(�)

indexed byMODB :

det(�) # MODB
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Next we make some omments in the ase where the 0-dimensional submanifold P is

non-trivial. Then one has to modify the moduli spae in suh a way that the holomorphi

vetor bundles are related at the marked points to the spei�ed representations. The re-

presentations at the marked points determine so alled paraboli strutures on the bundles

under onsideration and one divides out not the full gauge group, but the group of gauge

transformation respeting these extra strutures. The orresponding moduli spaes have been

developed by Seshradi. In terms of representation theory resp. at onnetions one studies

representations �

1

(N � fp

1

; : : : p

r

g) �! G whose monodromy around the marked points, i.e.

the image of a small loop around the marked point, lie in a given onjugay lass of elements

of order k in G whih are given by the representations attahed to the marked points.

The e�et one wants to have is the following :

Lemma 6.3 Consider S

2

with a positively oriented points p

+

1

, p

+

2

, : : : p

+

a

and b negatively

oriented points p

�

1

, p

�

2

, : : : p

�

b

and representations V

+

1

, V

+

2

, : : : V

+

a

and V

�

1

, V

�

2

: : : V

�

b

. Then

the Hilbert spae assigned to the objet determined by this data is, where for a = 0 or b = 0

the tensor produt over an empty set is de�ned to be C:

�

V

+

1


 V

+

2


 : : : V

+

a


 V

�

1


 V

�

2


 : : : V

�

b

�

G

Lemma 6.4 We obtain for the dimension dim = dim(H(X)) of the Hilbert spae assigned

to the following objets :

1. S

2

with no marked points :

dim = 1

2. S

2

with two marked points p

+

and p

�

and irreduible representations V and W :

dim = 1 if V and W

�

are linearly isomorphi

dim = 0 otherwise

3. S

2

with two positively oriented points and two negatively oriented points and represen-

tation C

n

in the positive and (C

n

)

�

in the negative ase :

dim = 2

Proof : 1.) The moduli spae redues to a point and hene the determinant line bundle

beomes the Hilbert spae C over a point.

2.) We get from lemma 6.3 that the Hilbert spae is given by :

Hom

SU(n)

(V;W

�

)

By Shur's lemma this is zero if V and W

�

are not linearly isomorphi, and a skew �eld

over C and hene C itself if V and W

�

are linearly isomorphi.
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3.) We get from lemma 6.3 that the Hilbert spae is given by :

Hom

SU(n)

(C

n


C

n

;C

n


C

n

)

Now we have the deomposition :

C

n


C

n

= Sym(C

n

)� Alt(C

n

)

As Sym(C

n

) and Alt(C

n

) are irreduible and not isomorphi, we get from Shur's lemma :

Hom

SU(n)

(C

n


C

n

;C

n


C

n

) =

Hom

SU(n)

(Sym(C

n

); Sym(C

n

))�Hom

SU(n)

(Alt(C

n

); Alt(C

n

)) = C�C

and the laim follows.

Now we have shown that the quantum �eld theory onstruted above satis�es the asump-

tion 5.30. Further expliit omputations prove that the ondition appearing in theorem 5.39

are satis�ed.

Next we deal with morphisms in the ategory M and the maps they indue on the

assoiated Hilbert spaes. We only onsider the ase of a morphism from ; to ;. Hene we

have to assign a omplex number to a losed framed 3-manifold W together with a framed

link L � W together with a hoie of representations for eah omponent of the link. Some

preparations are needed.

Let G be a ompat Lie group and p : E �! B a G-prinipal bundle over a manifold

B. A onnetion on p is a 1-form on E with values in the Lie algebra LG of G

� 2 �

1

(E;LG)

with the following properties

� For all x 2 E we have �

x

Æ �

x

= id, where �

x

: LG = T

1

G �! T

x

E is the di�erential

at 1 of the map G �! E sending g to gx.

� R

�

g

� = ad(g)

�

�, where ad : G �! End(LG) is the adjoint representation.

Notie that we obtain a horizontal subspae H

x

2 T

x

E for x 2 E by ker(�

x

) beause of

the �rst ondition. Horizontal means that T

x

p : T

x

E �! T

p(x)

B indues an isomorphism

H

x

�! T

p(x)

B. The seond ondition ensures that R

�

g

H

x

= H

gx

holds for g 2 G and x 2 E.

Thus a onnetion is the in�nitesimal version of parallel transport . Namely, for any path

w : I �! B and v 2 E

w(0)

the onnetion de�nes a lift

e

w : I �! E of w satisfying

e

w(0) = v.

Hene we obtain an isomorphism, the parallel transport along w :

tp

�

(w) : E

w(0)

�! E

w(1)

The urvature 
 = 


�

is the 2-form with values in LG de�ned by :


 = d�+

1

2

� [�;�℄
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It satis�es the Bianhi identity :

d
 = [
;�℄

This form is equivariant and horizontal. It is in partiular determined by its values on

horizontal tangent vetors. The urvature an be interpreted as follows. Given two tangent

vetors v and w in T

x

E, we may projet them down to T

p(x)

B. Then tv and tw determine

an in�nitesimal parallelogram. The parallel transport along this parallelogram determines an

automorphism of E

x

and thus an element g(t) in G. Consider the path g(t) in G for small t.

It determines an element in LG, whih is by de�nition 
(v; w). A onnetion is alled at,

if its urvature vanishes. This is equivalent to the statement that the parallel transport along

a path w depends only on the homotopy lass relative endpoints of the path. In partiular

a at onnetion determines a homomorphism �

1

(B) �! G. Hene at onnetions are in

bijetive orrespondene to representations of the fundamental group of B into G.

Now onsider a losed 3-manifold W and the trivial SU(n)-bundle E # W for n � 2.

Let A be the spae of onnetions A on E # W . The di�erene of two onnetions is an

invariant horizontal 1-form on E with oeÆients in LG and hene a 1-form on W with

oeÆients in LG. Hene A is an aÆne spae modelled on �

1

(B;LG). In partiular it

makes sense to speak of the tangent spae of A at �, it an be identi�ed with �

1

(B;LG). A

1-form on A is given by a family of linear maps �

1

(B;LG) �! R parametrized by A. We

get a 1-form urv on A, by the following onstrution :

urv

�

: �

1

(B;LG) �! R ! 7!

Z

W

tr(! ^ 


�

)

This 1-form turns out to be losed. It turns out that it is exat, i.e. there is a funtion L

on A satisfying dL = Curv. This funtion is the so alled Chern-Simons funtional (see

Chern-Simons [7℄) :

L : A �! R A 7!

1

4�

�

Z

M

tr(A ^ dA+

2

3

�A ^ A ^ A)

Let G be the gauge group of E # W , i.e. the group of bundle automorphisms of E # W over

the identity on W . As E # W is trivial, G is just map(W;G). We will be interested in A=G.

Notie that urv is G-invariant and hene de�nes also a 1-form on A=G. The funtion L

is at least invariant under the ation of the omponent of the identity G

0

of G. As W is

3-dimensional and SU(n) is 2-onneted, we get :

�

0

(G) = G=G

0

= [W;SU(N)℄ = H

3

(W ; �

3

(SU(n))) = H

3

(W ;Z) = Z

The ation of �

0

(G) = Z on L is given by adding a ertain integer to L. Hene L indues a

funtion :

L : A=G �! R=Z

Hene we obtain a well-de�ned funtion :

A=G �! C A � G 7! exp(ikL(A))

Now Witten de�nes a omplex number

Z(W ) =

Z

A=G

exp(ikL(A)) dA=G
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Of ouse the real meaning of this integral is not lear, as one is integrating over a very big

spae and no expliite measure is known.

Finally, we explain, how one takes links L in W together with representations for V

i

for eah omponent L

i

into aount. Given a onnetion A , let the Wilson line be de�ned

by :

W

L

i

(A) = har

V

i

(tp

A

(L

i

))

where tp

A

(L

i

) 2 G is the parallel transport along L

i

given by A and har

V

i

: G �! C the

harater of the representation V

i

. Then one de�nes :

Z(W;L) =

Z

A=G

exp(ikL(A)) �

Y

i

W

L

i

(A) dA=G
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7.setion

Basi fats about 3-manifolds

In this setion we ollet some basi fats about 3-manifolds. We begin with the proof

of the following theorem due to Stiefel.

Theorem 7.1 Any orientable 3-manifold is parallizable, i.e. its tangent bundle is trivial.

The proof needs some preparation. Let

w(M) := w(TM) 2 H

�

(M ;Z=2)

be the total Stiefel-Whitney lass of M . The Stiefel-Whitney lasses of a n-dimensional

vetor bundle � # X are de�ned as follows. The ohomology ring with Z=2-oeÆients of the

lassifying spae BO(n) of suh bundles is a free polynomial algebra

H

�

(BO(n);Z=2) = Z=2[w

1

; w

2

; : : : w

n

℄

where the degree of w

i

is i. Let f

�

: X �! BSO(n) be the lassifying map of �, i.e., the

map uniquely determined up to homotopy by the property that f

�

�



n

is isomorphi to � where

 # BO(n) is the universal bundle. Then the i-th Stiefel-Whitney lass w

i

(�) is de�ned by

f

�

�

w

i

. The total Wu-lass

v(M) 2 H

�

(M ;Z=2)

is uniquely de�ned by the property that for all total ohomology lasses x we have :

hx [ v(M); [M ℄i = hSq(x); [M ℄i

if Sq

i

: H

�

(X) �! H

�+i

(X) is the ohomology operation given by the Steenrod squares. The

Wu formula says :

w(M) = Sq(v(M))

The Steenrod squares satisfy Sq

i

(x) = 0 for any j-dimensional ohomology lass x if j < i

holds. Hene the Wu lass of a n-dimensional manifold satis�es v

k

(M) = 0 for k < n� k.

In partiular we get for a 3-manifold M :

v(M) = 1 + v

1

(M)

We derive from the Wu formula w

1

(M) = v

1

(M). As M is supposed to be orientable, w

1

(M)

vanishes. Hene we get

Lemma 7.2 The total Wu lass and the total Stiefel Whitney lass of an orientable 3-

manifold are trivial.
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Next we deal with the lower homotopy groups of SO(3) and BSO(3). Let H

�

=

R

4

be

the Lie group of quaternions. Denote by S

3

the unit sphere. We obtain an operation by

onjugation :

q : H� f0g �H �! H (x; y) 7! xyx

�1

The enter of H is given by R. Let V be the orthogonal omplement of R in H. We obtain

an indued operation by orientation preserving isometries :

S

3

� V �! V

As V is isometri to R

3

as real vetor spae, we obtain an exat sequene of Lie groups :

7.3 Z=2 �! S

3

p

�! SO(3)

In partiular p is a overing. An alternative desription of p is given by the adjoint repre-

sentation of SU(2) and an identi�ation of Eulidean spaes between the Lie algebra LSU(2)

and R

3

. We derive from elementary homotopy theory :

Lemma 7.4

�

i

(BSO(3)) = �

i�1

(SO(3)) =

8

>

<

>

:

f0g i = 0; 1; 3

Z=2 i = 2

Z i = 4

Hene the obvious map j : BSO(3) �! K(Z=2; 2) into the Eilenberg-MaLane spae

K(Z=2; 2) is 4-onneted. As a 3-dimensional manifold M has the homotopy type of a 3-

dimensional CW -omplex, we obtain a bijetion :

j

�

: [M ;BSO(3)℄ �! [M;K(Z=2; 2)℄

There is a natural isomorphism :

� : [M;K(Z=2; 2)℄ �! H

2

(M ;Z=2)

The ohomology ring H

�

(BSO(n);Z=2) is a free polynomial algebra

H

�

(BSO(n);Z=2) = Z=2[

f

w

2

; : : :

f

w

n

℄ ; deg(

f

w

i

) = i

and for the anonial map q : SO(3) �! O(3) we get for 2 � i � n:

Bq

i

(w

i

) =

f

w

i

This shows for an oriented 3-manifold M :

� Æ j

�

(f

TM

) = w

2

(M)

As � Æ j

�

is an isomorphism, theorem 7.1 follows from lemma 7.2. More details an be found

in Milnor-Stashe� [34℄.

Next we deal with Heegaard deompositions of an oriented losed 3-manifold.
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Notation 7.5

Let W

g

=W be the standard modell of the 3-dimensional handle body of genus g. Namely

W is the g-fold onneted sum of S

1

�D

2

.

Denote by F the boundary of W . This is the surfae of genus g, or in other words, the g-fold

onneted sum of S

1

� S

1

.

Let D � F be a �xed embedded 2-disk.

Put F

�

:= F �D and S

1

:= �D.

Fix a base point x 2 D

7.6

a

1

a

2

b

1

b

2

x

D

The standard orientation of R

3

indues an orientation on W . Then F , F

�

, D and S

1

inhe-

rits orientations by the general agreement that an oriented manifold indues an orientation

on its boundary using the deomposition �(�M;M) � T�M = TM and the outward normal

�eld.

De�nition 7.7 (Heegard modell) If h : (F;D; x) �! (F;D; x) is an orientation rever-

sing homeomorphism, de�ne the Heegard modell of h by

j (W;h) j:= W [

h

W

De�nition 7.8 (Heegard splitting) Let M be an oriented losed 3-manifold. A Heegard

splitting of M is a pair (W

1

;W

2

) onsisting of submanifolds W

1

;W

2

�M of odimension 0

satisfying

W

1

[W

2

=M �W

1

= W

1

\W

2

= �W

2

W

1

�

=

W

2
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Lemma 7.9 Any losed 3-manifold admits a Heegard deomposition.

Proof : Choose a handlebody deomposition of M with exatly one 0-handle and one 3-

handle. Let W

1

be the union of 0- and 1-handles and W

2

the union of all 2- and 3-handles.

Then W

1

resp. W

2

is di�eomorphi to the standard model of the 3-dimensional handle body

whose genus is the number of 1 resp 3-handles. The number of 1- resp 3-handles has to

agree, as the Euler harateristi of a losed 3-manifold is zero by Poinare duality and

an be omputed from a handlebody deomposition by

P

i=3

i=0

(�1)

i

� h

i

, where h

i

denotes the

number of i-dimensional handles. This shows that W

1

and W

2

are di�eomorphi. Obviously

M = W

1

[W

2

and �M = W

1

\W

2

holds.

Another proof of lemma 7.9 is done as follows. A triangulation (T; h) of M onsists

of a �nite simpliial omplex T together with a homeomorphism h : j T j�!M . Two trin-

gulations (T

1

; h

1

) and (T

2

; h

2

) are ompatible , if h

�1

2

Æ h

1

is pieewise linear. The star of

a simplex � is the subomplex of T onsisting of all simplies of K, whih meet �, together

with all their faes. The link is the subomplex of all simplies whih do not meet K, but

whih are faes of some simplex of K ontaining �. A triangulation is alled ombinatorial

if for eah vertex v of T the link link(v) is PL-homeomorphi to an n � 1-simplex or the

boundary of an n-simplex aording to h(v) 2 �M or h(v) 2 int(M). A PL-struture on M

is a maximal, non-empty olletion of ompatible ombinatorial triangulations of M . De�ne

for a subomplex L of T :

N(L; T ) = [

�2T

star(�; T )

If there are �nite subomplexes K and L of T suh that K ollapses down to L, then

N = h(K) is a regular neighbourhood of P = h(L) = j L j. Suh regular neighbourhoods N

of P are in a ertain sense unique, i.e. there is a PL-homeomorphism from N

1

to N

2

whih

is the identity on P , if N

1

and N

2

are regular neighbourhoods of P satisfying P � int(N

i

).

A regular neighbourhood of j L j in j T j is given by N(K

00

; T

00

).

Given a triangulation ofM , let �

1

be the 1-skeleton and �

2

be the dual 1-skeleton, i.e. a

maximal 1-subomplex of the baryentri subdivision T

0

disjoint from �

1

. Put V

i

= N(�

i

; T

00

).

Then V

i

turns out to be a regular neighbourhood of �

i

. Moreover, (V

1

; V

2

) is a Heegaard

deomposition of M (see Hempel [16℄, page 17).

Two Heegard deompositions (W

1

;W

2

) and (V

1

; V

2

) of M are alled isotopi

(W

1

;W

2

) � (V

1

; V

2

)

if there is an ambient isotopy of M taking W

1

to V

1

and W

2

to V

2

. Given a Heegard deom-

position (W

1

;W

2

) of genus g, we de�ne a new Heegard deomposition of genus g + 1, the

suspension, �(W

1

;W

2

) as follows. Choose an unknotted handle H in W

2

, i.e. an embedding

of D

2

� [0; 1℄ in W

2

suh that H \ �W

2

= D

2

� �[0; 1℄ holds and there is an embedded disk

B

2

in W

2

suh that the union of B

2

\ �W

2

and f0g � [0; 1℄ is the boundary of B

2

. De�ne

�(W

1

;W

2

) to be (W

1

[H; los(W

2

�H)). Then the isotopy lass of the suspension depends

only on the isotopy lass of (W

1

;W

2

). Two Heegard deompositions (W

1

;W

2

) and (V

1

; V

2

)

are alled stably equivalent ,

(W

1

;W

2

) � (V

1

; V

2

)
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if there are non-negative integers a and b satisfying :

�

a

(W

1

;W

2

) � �

b

(V

1

; V

2

)

It may happen that two Heegard deompositions of the same 3-manifold M are not isotopi.

However, we have :

Theorem 7.10 (Singer) Two Heegard deompositions of the same 3-manifoldM are stably

equivalent.

Proof : We give only a sketh of a proof. In the �rst step one veri�es for an arbitrary

Heegard deomposition (W

1

;W

2

) the existene of a triangulation (T; h) suh that :

(W

1

;W

2

) � (N(�

1

); los(M � (N(�

1

)))

We desribe at least the triangulation T . Think of W

i

as a 3-ball with g 1-handles attahed.

Now hoose a triangulation (T

0

; h

0

) of F = �W

1

\ �W

2

suh that �D

2

� �[0; 1℄ for any 1-

handle D

2

� [0; 1℄ is a subgraph of h(T

1

0

). Extend (T

0

; h

0

) over D

2

� �[0; 1℄ by oning over

the enters yielding (T

1

; h

1

). Next extend (T

1

; h

1

) to (T

2

; h

2

) by oning to the enter of the

0-handle. Then extend (T

2

; h

2

) to the desired triangulation (T; h) by oning to the enters

of the 1-handles. Then W

1

is a regular neighbourhood of a ertain subgraph � of (T;H) and

their is a sequene of subgraphs � = �

1

, �

2

, : : :�

n

= h(T ) suh that �

i+1

is obtained from

�

i

by attahing an edge in a spei� way. One shows that the Heegard deompositions given

by �

i

and �

i+1

are stably equivalent.

In the seond step one veri�es that the Heegard deompositions given by a subdivision

of (T; h) and of (T; h) itself are stably equivalent. As two triangulations have a ommon

subdivision, the laim follows.

7.11 Let (W

1

;W

2

) and (V

1

; V

2

) be Heegard deompositions of M and N . Choose 3-balls

B and C in M and N suh that B \ �W

1

is a 2-disk with boundary �B \ �W

1

holds and a

similar statement for C. Taking the boundary onneted sums of the handle bodies

(W

1

;W

2

)℄(V

1

; V

2

) = (W

1

℄

�

V

1

;W

2

℄

�

V

2

)

yields a Heegard deomposition of the onneted sum M℄N .

7.12
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The genus one Heegard deomposition of S

3

is given by the Heegard model (S

1

� S

2

; f)

where f : �(S

1

� S

2

) �! �(S

1

� S

2

) is given by the ip map on S

1

� S

1

= �(S

1

�D

2

).

Given a Heegard splitting (W

1

;W

2

) of M , we obtain a diagram of inlusions of spaes

7.13

�F

�

-

F

�

-

F

�

�>

Z

Z~

W

1

W

2

Z

Z~

�

�>

M

Applying the fundamental group with respet to the base point x gives a diagram of groups

7.14

�

1

(�F

�

)

-

�

1

(F

�

)

-

�

1

(F )

�

�>

Z

Z~

�

1

(W

1

)

�

1

(W

2

)

Z

Z~

�

�>

�

1

(M)

That all the maps in the diagram 7.14 are epimorphisms exept for the �rst one, fol-

lows from the following presentations of the fundamental groups if M is the Heegard modell

j (W;h) j. The paths a

i

and b

i

on F

�

are indiated in diagram 7.6 and i : F �!W is the

inlusion.

7.15 �

1

(F

�

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

>

�

1

(F; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j

Q

g

i=1

[a

i

; b

i

℄ = 1 >

�

1

(W

1

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j b

1

= b

2

= ::: = b

g

= 1 >

�

1

(W

2

; x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::b

g

j (i Æ h

�1

)

�

(b

j

) = 1 1 � j � g >

�

1

(M;x) =< a

1

; a

2

; :::; a

g

; b

1

; b

2

; :::; b

g

j b

j

= 1; (i Æ h)

�1

�

(b

j

) = 1 1 � j � g >
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Next we ompute the �rst homology of M from the homeomorphism h appearing in the

Heegard model (W;h) of M . As F is oriented, we have the intersetion pairing. Its matrix

with respet to the bases of H

1

(F ;Z) given by fa

1

; : : : ; a

g

; b

1

; : : : b

g

g is :

J =

 

0 I

�I 0

!

Let h : F �! F be an orientation reversing di�eomorphism. Then h

�

= H

1

(h;Z) respets

the intersetion pairing up to a sign. This is equivalent to

h

�1

�

= �J

�1

h

tr

�

J

If we write h

�

with respet to the bases above :

h

�

=

 

A B

C D

!

we get :

h

�1

�

=

 

D

tr

�B

tr

�C

tr

A

tr

!

Beause of the presentations of �

1

(M) in 7.15 we obtain presentation matries for H

1

(M ;Z)

by both B and the following matrix P :

7.16 P =

 

0 B

tr

I �A

tr

!

In partiular we onlude

Lemma 7.17 If we write h

�

as

h

�

=

 

A B

C D

!

we get :

1. H

1

(M) is di�erent from zero, if and only if det(B) = det(P ) is di�erent from zero.

2. Suppose that det(B) is di�erent from zero. Then we get

j det(B) j = j det(P ) j = j H

1

(M) j

Next we want to deal with the Kirby-alulus. For this purpose we reall the basi

notions of surgery along framed links.

A framed link L in an oriented 3-manifold M is a link L together with a framing of its

normal bundle, i.e. an isomorphism of vetor bundles R

2

� L �! �(L;M) over the identity,

suh that the indued orientation on �(L;M) and the given orientations on L and M are
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ompatible with the obvious isomorphism �(L;M)� TL �! TM j

L

. Notie that �(L;M) is

stably trivial and hene for dimension reasons trivial beause of theorem 7.1. In an oriented

homology 3-sphere we an desribe a framing of a link by an element n 2 H

0

(L) = Z

r(L)

,

where r(L) is the number of omponents of the link. De�ne a map

n : fisotopy lasses of framings on Lg �! Z

r

as follows. Given a framing f : R

2

� L �! �(L;M), we obtain from the standard se-

tion of R

2

� L given by the �rst standard basi vetor in R

2

and the exponential map

exp : �(L;M) �! N(L) onto an open neighbourhood of L a parallel link L

0

. Choose an

orientation on L and equip L

0

with the indued orientation. Let n(L) be given by the se-

quene of integers link(L

i

; L

0

i

), where i runs over the omponents of the link. Notie that

this is independent of the hoie of orientation on L, as a hange of the orientation of L

i

auses also a hange of orientation on L

0

i

.

Lemma 7.18 Let M be an oriented homology 3-sphere and L � M be an oriented link.

Then

n : fisotopy lasses of framings on Lg �! Z

r

is a bijetion.

Proof : The orientations of L and M indue an orientation on �(L;M). Choose a Rie-

mannian metri on �(L;M). Given v 6= 0 2 �(L;M), let

b

v 2 �(L;M) be the vetor uniquely

determined by the property that v and

b

v are orthogonal,

b

v has norm 1 and the bases fv;

b

vg

is ompatible with the orientation. If s is a nowhere-vanishing setion of �(L;M), we obtain

another setion

b

s by requiring

b

s(x) :=

d

s(x) for x 2 L. Notie that s;

b

s determines a framing

of �(L;M), denoted by f(s). Moreover, the isotopy lass of f(s) is independent of the hoie

of Riemannian metri on �(L;M) and depends only on the isotopy lass of the nowhere

vanishing setion s. One easily heks that we obtain a bijetion

f : fisotopy lasses of nowhere vanishing setions in �(L;M)g �!

fisotopy lasses of framings of �(L;M)g

As the isotopy lasses of framings of nowhere vanishing setions in the trivial bundle R

2

� L

orrespond bijetively to the homotopy lasses of maps L �! R

2

� f0g, the laim follows.

7.19 Let L be an oriented link in an oriented homology 3-sphere M . Suppose, we are

given for any omponent L

i

an element in r

i

2 Q [ f1g. Choose integers p

i

and q

i

suh

that r

i

= p

i

=q

i

holds and p

i

and q

i

are prime, provided that r

i

2 Q. If r

i

is 1 put p = 0

and q = 1. Denote by N(L

i

) a tubular neighbourhood of L

i

and by N(L) their union. Let

M(L

i

) beM � int(N(L

i

)) andM(L) beM �N(L). Choose lasses �

i

and �

i

in H

1

(�N(L

i

))

suh that �

i

resp. �

i

lies in the kernel of the homomorphism H

1

(�N(L

i

)) �! H

1

(N(L

i

))

resp. H

1

(�N(L

i

)) �! H

1

(M(L

i

)) indued from the inlusion and the intersetion number

of �

i

and �

i

in �N(L

i

) with respet to the orientation indued from the one on M is 1.

Notie that the pair (p; q) resp. (�; �) is not unique, there is exatly one other hoie,
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namely, (�p;�q) resp. (��;��). Sine p and q are relatively prime, we an hoose a

homeomorphism �

i

: S

1

�D

2

�! N(L

i

) suh that H

1

(�

i

) sends the lass of f1g � �D

2

to

p�+ q�. Let i : �N(L) �!M(L) be the inlusion. Then de�ne the result of Dehn surgery

M(L; r

1

; : : : r

r(L)

) by the push out

`

i

S

1

� �D

2

M(L)

-

i Æ

`

i

�

i

? ?

`

i

S

1

�D

2

M(L; r

1

; : : : r

r(L)

)

-

We have already indiated in the �rst setion that this onstrution depends up to oriented

homeomorphism only on the isotopy lass of L and the elements r

1

, : : : ,r

r(L)

.

7.20 Let L be a framed link in an oriented 3-manifold M . The framing together with

the exponential map indue an homeomorphism � :

`

i

S

1

�D

2

�! N(L) onto a tubular

neighbourhood of L in M . Let M(L) be M �N(L). Let � :

`

i

S

1

� S

1

�! �M(L) be

given by the restrition of � and the inlusion �M(L) �!M(L). Now de�ne the result

under surgery along the framed link L by the push out :

`

i

S

1

� S

1

M(L)

-

�

? ?

`

i

D

2

� S

1

M

L

-

7.21 Let V be a an oriented 4-manifold and L be a framed link in �V . As above the

framing and the exponential map determine an homeomorphism � :

`

i

S

1

�D

2

�! N(L)

onto a tubular neighbourhood of L in �V . Now de�ne the oriented 4-manifold V

L

by the

push out :
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`

S

1

�D

2

�V

-

�

? ?

`

D

2

�D

2

V

L

-

These types of surgeries are related as follows :

Lemma 7.22

1. Let L be a framed link in a oriented homology 3-sphere M . Let the integers n

1

, : : : ,

n

r

be given by the framings. Then the result under Dehn surgery M(L; n

1

; : : : ; n

r(L)

)

de�ned in 7.19 and the result under surgery M

L

de�ned in 7.20 agree.

2. Let V be an oriented 4-manifold and L be a framed link in M = �V . Then we get :

�(V

L

) =M

L

Let L be a oriented framed link in a oriented homology 3-sphere M . We have de�ned

its linking matrix in 5.34

A

link

=

0

B

B

B

B

B

B

B

�

n(1) l(1; 2) l(1; 3) � � � l(1; r)

l(1; 1) n(2) l(2; 3) � � � l(2; r)

l(3; 1) l(3; 2) n(3) � � � l(3; r)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

l(r; 1) l(r; 2) l(r; 3) � � � n(r)

1

C

C

C

C

C

C

C

A

where l(i; j) denotes the linking number of L

i

and L

j

.

Lemma 7.23 Let V be an oriented homology 4-ball. Then its boundary M = �V is an

oriented homology 3-sphere . Let L be an oriented framed link in M . Then :

1. H

i

(V

L

) vanishes for i = 1; 3.

2. H

2

(M

L

) is a �nitely generated free abelian group and their is a anonial bases oming

from the link. With respet to this bases the intersetion pairing is desribed by the

linking matrix A

L

of L.

3. A

L

is a presentation matrix for H

1

(M

L

).
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4. M

L

is a rational 3 homology sphere if and only if det(A

L

) is di�erent from zero.

5. M

L

is a homology 3-sphere if and only if det(A

L

) is �1.

Proof : 1.) V

L

has no 1-handles.

2.) Let S

i

and S

j

for 1 � i; j � r(L) ; i 6= j be Seifert surfaes of L

i

and L

j

in M . As M

has a ollar in V , one may �nd a surfae S

0

j

in V by pushing o� S

j

a little bit, suh that

S

0

j

\M = L

j

. Denote by F

i

and F

j

the ore of the orresponding handle H

i

and H

j

. Notie

that F

i

\ �H

i

= F

i

\M = L

i

holds. Hene S

i

[

L

i

F

i

and S

0

j

[

L

j

F

j

are losed embedded sur-

faes in V

L

representing the anonial bases. Now the (i; j)-entry in the intersetion matrix is

given by ounting elements in their intersetion with signs. By onstrution this is the same

as ounting the intersetion of S

i

and L

j

in M with signs, what is just the linking number of

L

i

and L

j

. A similar argument shows that the (i; i)-entry in the intersetion matrix is just

the framing number n(L

i

).

3.) The intersetion pairing is desribed by the following omposition:

H

2

(V

L

)

i

�

�! H

2

(V

L

; �V

L

)

\[V

L

℄

�! H

2

(V

L

)

�

�! Hom(H

2

(V

L

;Z)

where i

�

is indued from the inlusion. Notie that \[V

L

℄ is the Poinar�e isomorphism and

the anonial map � is an isomorphism by the universal oeÆient theorem, sine H

1

(V

L

) is

zero. The long homology sequene of the pair (V

L

;M

L

) gives an exat sequene :

H

2

(V

L

)

i

�

�! H

2

(V

L

; �V

L

) �! H

1

(M

L

) �! f0g

Now the laim 3. follows from 1.

The other assertions are now easy onsequenes of laim 3.

The Kirby alulus deals with the question, when S

3

K

and S

3

L

resp. D

4

K

and D

4

L

for

framed links K and L in S

3

are oriented homeomorphi. We reall that homeomorphi

implies di�eomorphi for 3-manifolds. We de�ne two so alled Kirby moves for framed links

K and L in S

3

. Reall that the isotopy lasses of framings are spei�ed by attahing an

integer to eah of the omponents (see lemma 7.18). We say that L is obtained from K by a

Kirby move of type 1, if L is obtained from K by the disjoint union with a trivial knot with

framing �1.

7.24 Kirby move of type 1

K L

�1
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We say that L is obtained from K by a Kirby move of type 2, if the following is true. There

are two di�erent omponents L

i

and L

j

and a band w from some ar on L

i

to some ar on

L

0

j

where L

0

j

is a parallel urve of L

j

orresponding to the framing n(L

j

) of L

j

. Reall that

the parallel urve L

0

j

is given by the exponential map of the normal bundles and a nowhere

vanishing setion of the normal bundle suh that link(L

j

; L

0

j

) is n(j). Let L

i

℄L

0

j

be the

onneted sum of L

i

and L

0

j

along w. Then the link K has the same omponents as L exept

for the omponent L

i

, whih is substituted by L

i

℄L

0

j

.

7.25 Kirby move of type 2

K L

The framings of K are determined by the following property of the linking matrix.

Choose orientations on eah omponents of L. Let � be 1, if the onneting band is ompatible

with the orientations, and �1 otherwise. Then the linking matries A

L

and A

K

satisfy :

7.26 A

K

= E

i;j

(�)A

L

E

i;j

(�)

tr

where E

i;j

(a) is the elementary matrix with a as (i; j)-entry. Notie that the framings on K

do not depend on the hoie of orientations.

Reall that all entries in E

i;j

(a) o� the diagonal are zero exept the (i; j)-entry whih

is a, and all diagonal entries are 1. We mention the behaviour of the linking matrix under

the �rst Kirby move :

7.27 A

K

=

 

A

L

0

0 �1

!

Now we have :

Theorem 7.28
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1. For any losed oriented 3-manifold M there is a framed link L in S

3

suh that M is

oriented homeomorphi to S

3

L

.

2. Let K and L be framed links in S

3

. Then S

3

K

and S

3

L

are oriented homeomorphi if

and only if one an obtain K from L by a sequene of Kirby moves of type 1 or 2 or

their inverses.

A proof of this theorem an be found in Kirby [26℄. A orollary of this theorem is that

any oriented losed 3-manifold is the boundary of an oriented 4-manifold.

Lemma 7.29 Let M be an oriented 3-manifold. Then there is an oriented framed link L

in S

3

suh that M is oriented homeomorphi to S

3

L

and the linking matrix A

L

is a diagonal

matrix with �1 as diagonal entries.

Proof : Beause of theorem 7.28 we an �nd a framed link L in S

3

suh that M is S

3

L

. By

Kirby moves of type 1 we obtain a framed link L

0

suh that M is S

3

L

0

and the linking matrix

of L

0

looks like :

A

L

0

=

0

B

�

0 0 1

0 �1 0

A

L

0 0

1

C

A

Hene A

L

0

is a unimodular, inde�nite and odd symmetri bilinear form over Z. Reall that

unimodular means that A

L

0

is invertible, inde�nite means that there are x and y satisfying

xA

L

0

x

tr

> 0 and yA

L

0

y

tr

< 0, and odd means that xA

L

0

x

tr

is odd for some x. By the result

of Milnor and Husemoller [33℄ there is an invertible matrix U suh that UA

L

0

U

tr

is diago-

nal. We may suppose that det(U) is 1 otherwise multiply U with an appropiate diagonal

matrix. As Z is a prinipal domain, U an be written as a produt of elementary matries

E

i;j

(n). Sine E

i;j

(a) � E

i;j

(b) = E

i;j

(a + b) holds, we may even suppose that U is a produt

of elementary matries E

i;j

(�1). Now the laim follows from lemma 7.26.

Corollary 7.30

1. LetM be an oriented homology 3-sphere. Then there is a sequene of oriented homology

3-spheres M

0

, M

1

, : : : , M

n

suh that M

i

is obtained from M

i�1

by �1-Dehn surgery

on a knot in M

i�1

, M

0

is M and M

n

is S

3

.

2. The Casson invariant is uniquely determined by the surgery formula and the ondition

�(S

3

) = 1.

Next we deal with the Kirby alulus for 4-manifolds. The Kirby alulus desribing D

4

L

,

whih we have developed so far, deals only with 2-handles. In order to take 1-handles into

aount, we extend our notion of framed link to the notion of extended framed link. Namely,

an extended framed link is a link suh that any omponent either has a framing given by an

integer or is the trivial knot and has a dot on it. In other words, we have framed omponents
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as before and have additionally unframed trivial omponents, whih are distinguished from

the others by a dot. The latter ones orrespond to 1-handles and the framed omponents to

2-handles. Here is the preise desription of D

4

L

for an extended framed link L in S

3

. Attah

for any non-framed omponent a 1-handles. Call the result V . Consider the framed link L

0

in V obtained from L in D

4

by the following onstrution. Whenever an ar of a framed

omponent L

i

of L runs through the trivial knot representing a 1-handles, let the ar go over

the 1 handle. Now let L

0

be the union of all framed omponents of L modi�ed in the above

way. Now the problem is to speify the attahed 3-handles by indiating embeddings of S

2

.

Fortunately, this is not neessary, provided that we deal with losed 4-manifolds. Namely,

we have the result of Montesinos [36℄ (see also Trae [42℄).

Theorem 7.31 Let M be a losed orientable 4-manifold with a handle body deomposition

M = H

0

[ aH

1

[ bH

2

[ H

3

[H

4

. Then the oriented homeomorphism type of M is omple-

tely determined by H

0

[ aH

1

[ bH

2

and the number  of 3-handles.

Thus the way the 3- and 4-handles are attahed does not matter, provided that M is

losed. Given an extended framed link L in D

4

and a non-negative integer , let D

4

(L;)

be

the losed 4-manifold obtained from D

4

L

by attahing  3-handles and one 1-handle. It may

happen that we annot get a losed manifold this way and then D

4

(L;)

is not de�ned. Now we

onsider the following third Kirby move on an extended framed link. It onsists of introduing

7.32 Kirby move of type 3

0 n

+ 3-handle

The proof of the following theorem is given in Kirby [26℄.

Theorem 7.33 Let L and K be extended framed links in D

4

and 

K

and 

L

be non-negative

numbers. Suppose that D

4

(K; 

K

) and D

4

(L;

L

)

are de�ned. Then they are oriented homeo-

morphi if and only if one an obtain (L; 

L

) from (K; 

K

) by a sequene of Kirby moves of

type 2 and type 3 or their inverses.
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There are other kind of more onvenient moves whih an be used to deide whether

two (extended) framed links desribe the same manifold. For example :

7.34

one full twist

(left / right hand)

Here are some examples of losed oriented 3-manifolds and their representations in the

Kirby alulus :

7.35 Lens spae L(n; 1; 1)

n
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7.36 Lens spae L(pq � q; p; q) = L(pq � 1; q; p)

p q

7.37 Poinar�e sphere

1

7.38 Poinar�e sphere

1 1

1
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7.39 Poinar�e sphere

�2

�2 �2 �2 �2 �2 �2 �2

7.40 Torus

0 0

0

More information about the Kirby alulus an be found in Fenn-Rourke [10℄ Kirby [26℄

and [27℄ and Mandelbaum [29℄.
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8.setion

The onstrution of the Casson invariant

This setion is devoted to the onstrution of the Casson invariant. We have already

explained in setion 1 what the main properties and appliations of the Casson invariant are.

We are following the expositions of Akbulut and MCarthy [1℄ and of Marin [30℄.

LetM be an oriented homology 3-sphere. We use the notation 7.5 and hoose a Heegard

splitting (W

1

;W

2

) as de�ned in 7.8. This de�nes a diagram of spaes 7.13 and by applying the

funtor "fundamental group" a diagram of groups 7.14. If G is a onneted ompat Lie group

and � a disrete group, denote by R(�;G) the spae of homorphisms from � to G equipped

with the topology indued from the inlusion R(�;G) � map(�;G), where map(�;G) gets

the ompatly generated topology oming from the ompat-open topology. If G is SU(2), we

write briey R(�) instead of R(�; SU(2)). Notie that G ats on R(�;G) by omposition with

the onjugation homorphism (g) : G �! G whih sends h to g

�1

hg. As the enter of G ats

trivially, we obtain an indued G=enter(G)-ation. Thus R(?; G) beomes a ontravariant

funtor from the ategory of disrete groups to the ategory of G=enter(G)-spaes. Notie

for G = SU(2) that SU(2) an be identi�ed with the unit sphere S

3

in the quaternions H by

the Lie group isomorphism

S

3

� C

2

�! SU(2) (a; b) 7!

 

a b

�

�

b �a

!

The enter of SU(2) is �id. In partiular we get from the exat sequene 7.3 an identi�ation

of SU(2)=enter(SU(2)) = SO(3). Hene we obtain a ontravariant funtor:

8.1 R(?) : f disrete groups g �! f SO(3)-spaes g

There are the following natural maps :

8.2  : H

1

(�) �! H

3

(R(�;G))

given by the following omposition :

H

1

(�) �! Hom(�;Z) �! map(R(Z; G); R(�;G)) �!

map(G;R(�;G)) �! Hom(H

n

(G); H

n

(R(�;G)))

ev

�! H

n

(R(�;G))

where n is the dimension of G and ev evaluation at the fundamental lass [G℄ 2 H

n

(G).

De�ne

8.3 � : T

�

0

R(�;G) �! H

1

(�;LG)
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as follows. Consider an element in the tangent spae T

�

0

R(�;G) of R(�;G) at the trivial

representation �

0

given by a derivation D on the germ of funtions on R(�;G) at �

0

. Let

ev

w

: R(�;G) �! G be the homomorphism given by evaluation at w 2 �. Pulling bak the

derivation D with ev

w

de�nes a derivation D

w

sending a germ f of funtions on G at 1 to

D(f Æ ev

w

). This de�nes a homomorphism from � to T

1

G = LG. Let its lass in H

1

(�;LG)

be the image of D under �.

Lemma 8.4

1. The homomorphisms  and � de�ned in 8.2 and 8.3 are natural in �.

2. The homomorphisms  and � de�ned in 8.2 and 8.3 are ompatible with amalgamation

of groups.

3. Suppose that � is a �nitely generated free group and G is S

3

. Then the homomorphisms

 and � de�ned in 8.2 and 8.3 are isomorphisms.

4. Suppose that � is a �nitely generated free group and G is S

3

. Then we obtain an

isomorphism, natural in �

	 : H

�

(R(�; S

3

) �!

�

^

H

1

(�)

Proof : 3.) Choose a bases s

1

, s

2

: : : s

r

of �. Then we get a natural identi�ation :

R(�) =

r

Y

i=1

S

3

Beause of 2.) the following square ommutes

�

r

i

H

1

(Zhs

i

i) �

r

i

H

3

(R(Zhs

i

i))

-

�

r

i

 Zhs

i

i

? ?

H

1

(�

r

i=1

Zhs

i

i) H

3

(R(�

r

i=1

Zhs

i

i))

-

 (�

r

i=1

Zhs

i

i)

where the right vertial arrow omes from the K�unneth formula and is an isomorphism

beause H

i

(S

3

) is Z for i = 0; 3 and zero otherwise. Also the left vertial arrow is a bijetion.

Hene it suÆes to prove the laim in the speial ase � = Z what is easily done.

4.) De�ne 	 by the following omposition of isomorphisms resp. their inverses :

	 : H

�

(R(�))

[

 �

V

�

H

3

(R(�)) �

V

�

Hom(H

3

(R(�));Z)
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V

�

 

�

�!

V

�

Hom(H

1

(�);Z) �

V

�

H

1

(�)

Reall that a SU(2)- representation is reduible if it ontains a proper invariant linear

subspae and irreduible otherwise.

Lemma 8.5 Let M be an orientable losed 3-manifold. Then the following assertions are

equivalent :

1. M is a homology sphere.

2. The fundamental group �

1

(M) is perfet.

3. H

1

(M) = H

1

(M ;Z) is zero.

4. There are no non-trivial reduible SO(3)-representations of �

1

(M).

Proof : 1.) and 3.) are equivalent by Poinare duality and the universal oeÆient theorem.

Sine H

1

(M) is the abelianization of �

1

(M), the assertions 2.) and 3.) are equivalent. If

H

1

(M) is not trivial, one easily onstruts a non-trivial representation of H

1

(M) and hene

of �

1

(M). It remains to prove that 4.) implies 3.)

Suppose that � is a non-trivial reduible representation of �

1

(M). Hene � is the

diret sum of two 1-dimensional unitary representations �

1

and �

2

. But these are given by

homomorphisms from �

1

(M) to S

1

. As � is non-trivial, �

1

or �

2

is non-trivial. Hene there is

a non-trivial homomorphism from �

1

(M) to the abelian group S

1

. This implies that H

1

(M)

is non-trivial.

Lemma 8.6 A representation � of the disrete group � into SU(n) is irreduible, if and

only if its isotropy group under the SU(n)-operation on R(�; SU(n)) by onjugation is the

enter of SU(n).

Proof : Let A be an element of the isotropy group of �, i.e. A � �(w) �A

�1

= �(w) holds for

all w 2 �. Let � be a omplex number and E

�

(A) be the eigenspae of A for the eigenvalue �.

As A � �(w) = �(w) � A holds for all w 2 �, E

�

(A) is a �-invariant subspae of C

n

. Notie

that A has at least one eigenvalue �. Then E

�

(A) is a non-trivial subspae of C

n

. Suppose

that the representation � is irreduible. Then E

�

(A) is the whole spae C

n

and A lies in the

enter of SU(n). Suppose that � is reduible. If V is a proper �- invariant subspae in C

n

,

we get a deomposition of � into V � V

?

. Let A be a matrix ating on V by the identity and

on V

?

by � � id for some omplex number � 6= 1. Then A belongs to the isotropy group of �,

but not to the enter of SU(n).

If we apply the funtor R(?) to the diagram 1.23 and de�ne :
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Notation 8.7 R

�

:= R(�

1

(�F

�

))

R

�

:= R(�

1

(F

�

))

R := R(�

1

(F ))

Q

i

:= R(�

1

(W

i

)) for i = 0,1

we obtain :

8.8

R

�

�

�

R

�

�

R

�

�=

Z

Z}

Q

1

Q

2

Z

Z}

�

�=

R(�

1

(M))

Notie that all maps in this diagram are inlusions exept the map � : R

�

�! R

�

whih

is an epimorphism. We derive from the presentation of the fundamental groups 7.15

8.9 R

�

=

Q

2g

j=1

S

3

Q

i

=

Q

g

j=1

S

3

Therefore the intersetion number < Q

1

; Q

2

>

R

�

of Q

1

and Q

2

in R

�

is de�ned.

Proposition 8.10 Let M be an oriented 3-manifold. Then :

1. < Q

1

; Q

2

>

R

�

is di�erent from 0 if and only if M is a rational homology sphere.

2. If M is a rational homology sphere, then

j< Q

1

; Q

2

>

R

�

j=j H

1

(M ;Z) j

3. < Q

1

; Q

2

>

R

�

is �1 if and only if M is an integral homology sphere.

4. Q

1

and Q

2

interset at 1 transversely if and only if M is a rational homology sphere.

Proof : Consider the following omposition of isomorphisms :

V

�

(H

1

(�

1

(W

1

))�H

1

(�

1

(W

2

))) �! (

V

�

(H

1

(�

1

(W

1

)))
 (

V

�

H

1

(�

1

(W

2

)))

	
	

�!
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H

�

(R(�

1

(W

1

)))
H

�

(R(�

1

(W

2

))) �! H

�

(Q

1

)
H

�

(Q

2

) �! H

�

(Q

1

�Q

2

)

As �

1

(F

�

) is free of rank g, there is a Lie group struture on R

�

=

Q

g

i=1

S

3

. De�ne the map

:

m : Q

1

�Q

2

�! R

�

by m(q

1

; q

2

) = q

1

� q

2

. Then the intersetion number of Q

1

and Q

2

in R

�

is just the degree of

m. The following square ommutes :

V

�

H

1

(�

1

(F

�

))

V

�

(H

1

(i

1

)�H

1

(i

2

))

-

V

�

(H

1

(�

1

(W

1

))�H

1

(�

1

(W

2

)))

?

 

?

 

H

�

(R

�

)

H

�

(m)

-

H

�

(Q

1

�Q

2

)

The upper horizontal arrow an be identi�ed with the �rst arrow in the following sequene,

whose exatness follows from the Mayer-Vietoris sequene :

H

1

(F

�

)

H

1

(i

1

)�H

1

(i

2

)

�! H

1

(W

1

)�H

1

(W

2

) �! H

1

(M) �! f0g

The okernel of H

1

(i

1

)�H

1

(i

2

) is �nite, if and only if

V

2g

(H

1

(i

1

)�H

1

(i

2

)) is di�erent

from zero. If this okernel is �nite, its ardinality is the ardinality of the okernel of

V

2g

(H

1

(i

1

)�H

1

(i

2

)). Now the assertions 1.),, 2.) and 3.) follow.

It remains to prove 4.). Notie that Q

1

and Q

2

interset tranversely at 1, if and only

if the following map is an epimorphism :

T

1

Q

1

� T

1

Q

2

�! T

1

R

�

Now the laim follows from lemma 8.4 applied to the map � de�ned in 8.3.

Next we examine the orbit spaes under the SO(3)-ation on the representation spaes.

8.11 S = S(�

1

(F

�

; x)) := f� 2 R

�

= R(�

1

(F

�

; x)) j � is reduibleg

Proposition 8.12

1. The map � is surjetive.

2. The set of ritial points is the set S of reduible representations.

3. S(�

1

(F

�

; x)) = S(�

1

(F; x))

4. R = �

�1

(1)
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5. R � S is an open smooth manifold of dimension 6g � 3 and arries a free proper

SO(3)-ation.

Proof : 1.) and 4.) The funtor R(?; G) turns push outs of groups into pull baks of spaes.

Now apply the theorem of Seifert-von Kampen.

3.) Any reduible SU(2)-representation of � fatorizes through the abelianization of �. Hene

any reduible SU(2)-representation of �

1

(F

�

; x) fatorizes through �

1

(F; x).

5.) The ation is free by lemma 8.6. Sine SO(3) is ompat, the ation is proper.

We omitt the proof of 2.), as 2.) is not used in the onstrution of the Casson invariant.

Notation 8.13

^

R := (R � S)=SO(3)

^

Q

i

:= (Q

i

� S)=SO(3)

Proposition 8.14

1.

^

R is a smooth open manifold of dimension 6g � 6.

2.

^

Q

i

is a properly embedded open submanifold of dimension 3g � 3 in

^

R.

3.

^

Q

1

\

^

Q

2

is ompat.

Proof : We derive 1.) and 2.) diretly from proposition 8.12. It remains to prove 3.) that

^

Q

1

\

^

Q

2

is ompat.

Sine �

1

(F

�

; x) �! �

1

(M;x) is an epimorphism, we get :

S(�

1

(M;x)) = S \ R(�

1

(M;x))

By the theorem of Seifert-von Kampen the square in the diagram of groups 7.14 is a push

out of groups. As the funtor R(?; G) turns push outs into pull baks, we onlude :

R(�

1

(M;x)) = Q

1

\Q

2

This implies :

((Q

1

� S) \ (Q

2

� S))

a

f1g = Q

1

\Q

2

Sine Q

1

and Q

2

interset at 1 transversely, f1g is an open subset in Q

1

\ Q

2

. Sine

(Q

1

� S) \ (Q

2

� S) is a losed subset of the ompat set Q

1

\Q

2

, (Q

1

� S) \ (Q

2

� S) and

hene its quotient under the SO(3)- ation

^

Q

1

\

^

Q

2

is ompat.

If one has �xed orientations on

^

R and

^

Q

i

, then the intersetion number <

^

Q

1

;

^

Q

2

>

^

R

is de�ned by proposition 8.14. One an �nd an isotopy of



Q

i

whih is onstant outside a

ompat set ontaining

^

Q

1

\

^

Q

2

suh that the intersetion of

^

Q

1

and

^

Q

2

onsists of �nitely
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many points where

^

Q

1

and

^

Q

2

meet transversely. Then the intersetion number is the sum

of these �nitely many intersetion points ounted with a sign whih depends on the loal

orientations.

The orientation on M indues an orientation on W

1

and W

2

by restrition. Then F

from W

1

, F

�

from F and �F

�

from F

�

inherit orientations by the general onventions for

boundaries of oriented manifolds resp. by restrition. The orientation on �F

�

determines a

generator in �

1

(�F

�

) and thus an orientation on R

�

. Fix any orientation on R

�

. As R�S

sits in the preimage of 1 of the map � : R

�

�! R

�

, we obtain a short exat sequene

0 �! T

x

(R� S) �! T

x

R

�

T

x

�

�! T

1

R

�

�! 0

Thus the oreintations of R

�

and R

�

indue an orientation on R � S. This determines also

on orientation on

^

R using the exat sequene

0 �! T

1

SO(3) �! T

x

(R� S) �! T

1

^

R �! 0

All in all we have explained, how an orientation of M indues an orientation on

^

R, if we

have �xed an orientation on R

�

. Choose any orientations on Q

1

and Q

2

. This indues

orientations on

^

Q

1

and

^

Q

2

. Now we de�ne

De�nition 8.15 (Casson invariant)

Let M be a oriented homology 3-sphere . De�ne :

�(M) :=

(�1)

g

� <

^

Q

1

;

^

Q

2

>

^

R

2� < Q

1

; Q

2

>

R

�

Obviously this is independent of the hoie of orientation of R

�

, Q

1

and Q

2

beause a

hange of one of these orientations hanges the sign in the nominator and denominator in

the fration de�ning the Casson invariant simultaneously. The ondition thatM is a rational

homology 3-sphere guarantees that < Q

1

; Q

2

>

R

�

is not zero (see 8.10). We have to divide

out this term to ensure that the hoie of orientation on R

�

, Q

1

and Q

2

do not matter. If we

neglet this hoie, the Casson invariant would redue to a number mod 2 and hene just to

the Rohlin invariant. But we even need that M is an integral homology sphere beause then

the only reduible SO(3)-representation of �

1

(M ;Z) is the trivial one (see Lemma 8.5). This

is ruial for the proof that the intersetion of

^

Q

1

and

^

Q

2

in

^

R is de�ned (see Proposition

8.14).

We have to show that the Casson-invariant is independent of the hoie of Heegard-

splitting. We begin with verifying, that we get the same invariant, if we interhange the order

of the W

i

-s to (W

2

;W

1

). If we keep all orientations as in (W

1

;W

2

), but interhange Q

1

and

Q

2

, we get :

<

^

Q

1

;

^

Q

2

>

^

R

= (�1)

(3g�3)�(3g�3)

� <

^

Q

2

;

^

Q

1

>

^

R

< Q

1

; Q

2

>

R

�

= (�1)

3g�3g

< Q

2

; Q

1

>

R

�
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This implies :

(�1)

g

� <

^

Q

1

;

^

Q

2

>

^

R

2� < Q

1

; Q

2

>

R

�

= �

(�1)

g

� <

^

Q

2

;

^

Q

1

>

^

R

2� < Q

2

; Q

1

>

R

�

If we interhange W

1

and W

2

, F

�

and hene R

�

and R get the reversed orientations, whereas

we an assume that the orientations on Q

1

, Q

2

and R

�

are unhanged. Hene the order of

the W

i

-s does not matter.

In order to show that the hoie of Heegard splitting does not matter, it suÆes beause

of theorem 7.10 to analyse what happens under suspension. Then the genus of the Heegard

deomposition is inreased by one and the orresponding diagram of representation spaes

an be identi�ed with :

8.16

R

0

�

�

�

0

R

�

� S

3

� S

3

�

R

0

�

�=

Z

Z}

Q

1

� S

3

� f1g

Q

2

� f1g � S

3

Z

Z}

�

�=

R(�

1

(M))

We ompute for the intersetion number < Q

0

1

; Q

0

2

>

R

�0

, where < ; > denotes both the

intersetion and the Kroneker pairing and [ ℄ denotes the images of the fundamental lasses

or the Poinar'e duals of them in the homology resp. ohomology of R

�

resp. R

�

�S

3

�S

3

:

< Q

0

1

; Q

0

2

>

R

�0

=

< Q

1

� S

3

� f1g; Q

2

� f1g � S

3

>

R

�

�S

3

�S

3

=

< [Q

1

� S

3

� f1g℄ [ [Q

2

� f1g � S

3

℄; [R

�

� S

3

� S

3

℄ >=

(�1)

g

� < [Q

1

℄ [ [Q

2

℄ [ [S

3

� f1g℄ [ [f1g � S

3

℄; [R

�

℄ [ [S

3

� S

3

℄ >=

(�1)

g

� < [Q

1

℄ [ [Q

2

℄; [R

�

℄ > � < [S

3

� f1g℄ [ [f1g � S

3

℄; [S

3

� S

3

℄ >=

(�1)

g

� < Q

1

; Q

2

>

R

�

We get on the quotient level :

<

^

Q

1

0

;

^

Q

2

0

>

^

R

0

= (�1)

g�1

<

^

Q

1

;

^

Q

2

>

^

R

To prove this, one purtubates Q

1

� S

3

� f1g within R

�0

to P

1

relative to a ompat subset

suh that

^

P

1

and (Q

2

� f1g � S

3

)

^

are transverse in

^

R

0

. Then P

1

\ R

�

� f1g � f1g lies in

R and is on the quotient level a pertubation of

^

Q

1

whih is transverse to

^

Q

2

in

^

R. Now

the set of intersetion points of the two relevant sets agree, but the signs of the intersetion

points di�er by a sign (�1)

g�1

, beause the dimension of

^

Q

2

is 3g � 3. This shows that

suspending the Heegard deomposition does not a�et the number appearing in the de�nition

of the Casson invariant. This shows that the Casson invariant is well-de�ned.
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