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Chapter 1

Introduction

1.1 The Organization of the Book and a User’s
Guide

We have written the text in a way such that one can read small units, e.g., a
single chapter, independently from the rest, concentrate on certain aspects,
and extract easily and quickly specific information. We hopefully have found
the right mixture between definitions, theorems, examples, and remarks so
that reading the book is entertaining and illuminating. We have successfully
used parts of this book, sometimes a single chapter, for seminars, reading
courses, and advanced lecture courses.

Each section comes with a review where we briefly recollect the basics
needed from [18].

Comment 3 (by W.): Needs to be completed.

1.1.1 Supplement

The book contains a number of exercises. They are not needed for the expo-
sition of the book, but give some illuminating insight. Moreover, the reader
may test whether she or he has understood the text or improve her or his
understanding by trying to solve the exercises. Hints to the solutions of the
exercises are given in Chapter 9.

If one wants to find a specific topic, the extensive index of the monograph
can be used to find the right spot for a specific topic. The index contains an
item “Theorem”, under which all theorems with their names appearing in
the book are listed, and analogously there is an item “Conjecture”.

Comment 4 (by W.): Needs to be completed.

1.1.2 Prerequisites

1.2 Notations and Conventions

We have tried to keep the notation consistent with [18].
Here is a briefing on our main conventions and notations. Details are of

course discussed in the text.

• Ring will mean (not necessarily commutative) associative ring with unit
unless explicitly stated otherwise;

• Module means always left module unless explicitly stated otherwise;

1



2 1 Introduction

• Group means discrete group unless explicitly stated otherwise;
• We will always work in the category of compactly generated spaces, com-

pare [24] and [26, I.4]. In particular every space is automatically Hausdorff;
• We use the standard symbols Z, Q, R, C, Zp̂, and Qp̂ for the integers,

the rational numbers, the real numbers, the complex numbers, the p-adic
numbers, and the p-adic rationals. Given a real number r ∈ R we write
R≥r = {s ∈ R | s ≥ r0}. It is now selfexplanatory what the notions R>r,
R≤r R<r Q≥r Q>r, Q≤r Q<r Z≥r Z>r, Z≤r, and Z<r mean. We also write
N = Z≥0 for the set {0, 1, 2, . . .} of natural numbers;

• We denote certain groups by:

symbol name

Z/n finite cyclic group of order n

Sn symmetric group of permutations of the set {1, 2, . . . n}
An alternating group of even permutations of the set {1, 2, . . . , n}
D∞ infinite dihedral group

D2n dihedral group of order 2n

1.3 Acknowledgments

1.4 Notes

last edited on 22.05.2025 (Wolfgang)
last compiled on 2025-05-22 at 23:33:43



Chapter 2

The Atiyah Conjecture

2.1 Introduction

2.2 Review

2.2.1 The Group von Neumann algebra

Let G be a (discrete) group. Let l2(G) be the (complex) Hilbert space of
square summable formal sums

∑
g∈G λg · g for λg ∈ C. The group von Neu-

mann algebra N (G) is the C-algebra B(l2(G)) of bounded G-equivariant op-
erators l2(G) → l2(G). We will consider N (G) just as a ring with unit and
ignore the topology on it. It becomes a ring with involution ∗ : N (G)→ N (G)
by taking the adjoint of a bounded G-equivariant operator l2(G) → l2(G).
Comment 5 (by T.): We should specify once (best here in the def) our
left/right convention and stick to it. Comment 6 (by W.): At least we say
in Section 1.2 that we work with left modules. Does this suffice? Otherwise
we should say that we use the conventions of [18].

The so-called von Neumann trace

(2.1) trN (G) : N (G)→ C

sends a bounded G-equivariant operator f : l2(G) → l2(G) to 〈f(e), e〉l2(G)

for e ∈ G the unit element. This extends to matrices by the usual formula

(2.2) trN (G) : Mn(N (G))→ C, A 7→
n∑
i=1

trN (G)(ai,i).

Given a finitely generated projective N (G)-module P , define its Hattori-
Stallings rank or its von Neumann dimension to be

(2.3) dimN (G)(P ) :=
∑

trN (G)(A) ∈ R≥0,

where A is an element in Mn(N (G)) with A2 = A such that the image of
the N (G)-linear map rA : N (G)n → N (G)n induced by right multiplication
with A is N (G)-isomorphic to P . One easily checks that this definition is
independent of the choice of n and A and takes values in R≥0.

Exercise 2.4 Show that definition (2.3) is independent of the choice of n
and A and takes values in R≥0.

3



4 2 The Atiyah Conjecture

Remark 2.5. The category of finitely generated projective N (G)-modules
is equivalent to the category of finitely generated Hilbert N (G)-modules and
under this identification the von Neumann dimension corresponds to the clas-
sical Murray-von Neumann dimension of finitely generated Hilbert N (G)-
modules which is defined in operator theoretic terms, see [18, Theorem 6.24
on page 249].

2.2.2 Dimension Theory

Next we review how one can extend the dimension dimN (G) for finitely gen-
erated projective N (G)-modules of (2.3) to arbitrary N (G)-modules.

Definition 2.6 (Closure of a submodule). Let R be a ring. Consider an R-
submodule M of the R-module N . Define the closure of M in N to be the
R-submodule of N

M = {x ∈ N | f(x) = 0 for all f ∈ N∗ = homR(N,R) satisfying M ⊂ ker(f)}.

For an R-module M define the R-submodule TM and the quotient R-module
PM by

TM := {x ∈M | f(x) = 0 for all f ∈M∗};
PM := M/TM.

Definition 2.7 (Extended dimension). We define for a N (G)-module M its
extended dimension

dim′N (G)(M) ∈ R≥0 q {∞}

to be

sup{dimN (G)(P ) | P ⊂M finitely generated projective submodule}.

(We will later drop the prime in dim′N (G), see Notation 2.9.)

Theorem 2.8 (Dimension function for arbitrary N (G)-modules) Let
G be a group.

(i) The ring N (G) is semihereditary, i.e., any finitely generated submodule
of a projective module is projective;

(ii) For every finitely generated N (G)-module M there exists n ∈ Z≥0 and
an N (G)-homomorphism f : N (G)n → N (G)n and an exact sequence of
N (G)-modules

0→ N (G)n
f∗f−−→ N (G)n →M → 0;

(iii) If K ⊂ M is a submodule of the finitely generated N (G)-module M , then
M/K is finitely generated projective and K is a direct summand in M ;



2.2 Review 5

(iv) If M is a finitely generated N (G)-module, then PM is finitely generated
projective and

M ∼= PM ⊕TM ;

(v) The dimension dim′N (G) has the following properties:

(a) Extension Property

If M is a finitely generated projective N (G)-module, then

dim′N (G)(M) = dimN (G)(M);

(b) Additivity

If 0 → M0
i−→ M1

p−→ M2 → 0 is an exact sequence of N (G)-modules,
then

dim′N (G)(M1) = dimN (G)(M0) + dimN (G)(M2),

where for r, s ∈ R≥0 q {∞} we define r+ s by the ordinary sum of two
real numbers if both r and s are not ∞, and by ∞ otherwise;

(c) Cofinality

Let {Mi | i ∈ I} be a cofinal system of submodules of M , i.e., M =⋃
i∈IMi and for two indices i and j there is an index k in I satisfying

Mi,Mj ⊂Mk. Then

dim′N (G)(M) = sup{dim′N (G)(Mi) | i ∈ I};

(d) Continuity

If K ⊂ M is a submodule of the finitely generated N (G)-module M ,
then

dim′N (G)(K) = dim′N (G)(K);

(e) If M is a finitely generated R-module, then

dim′N (G)(M) = dimN (G)(PM);

dim′N (G)(TM) = 0;

(f) Uniqueness

The dimension dim′ is uniquely determined by the Extension Property,
Additivity, Cofinality, and Continuity.

Proof. See [18, Theorem 6.5 and Theorem 6.7 on page 239 and Lemma 6.28
on page 252]. ut

Notation 2.9. In view of Theorem 2.8 we will not distinguish between
dim′N (G) and dimN (G) in the sequel.

Exercise 2.10 Let P be a finitely generated projective N (G)-module and
let M be an arbitrary N (G)-module. Prove:



6 2 The Atiyah Conjecture

(i) P = 0⇐⇒ dimN (G)(P ) = 0;
(ii) We have dimN (G)(M) = 0 if and only if every finitely generated projective
N (G)-submodule of M is trivial;

Theorem 2.11 (Dimension and colimits) Let {Mi | i ∈ I} be a directed
system of N (G)-modules over the directed set I. For i ≤ j let φi,j : Mi →
Mj be the associated morphism of N (G)-modules. For i ∈ I let ψi : Mi →
colimi∈IMi be the canonical morphism of N (G)-modules.

(i) We get for the dimension of the N (G)-module given by the colimit colimi∈IMi

dimN (G)

(
colimi∈IMi

)
= sup

{
dim(im(ψi)) | i ∈ I

}
;

(ii) Suppose for each i ∈ I that there is i0 ∈ I with i ≤ i0 such that
dim(im(φi,i0)) <∞ holds. Then

dim
(
colimi∈IMi

)
= sup {inf {dim(im(φi,j : Mi →Mj)) | j ∈ I, i ≤ j} | i ∈ I} .

Proof. See [18, Theorem 6.13 on page 243]. ut

Theorem 2.12 (Dimension and inverse limits) Let {Mi | i ∈ I} be
an inverse system of N (G)-modules over the directed set I. For i ≤ j let
φi,j : Mj → Mi be the associated morphism of N (G)-modules. For i ∈ I let
ψi : limi∈IMi →Mi be the canonical map. Suppose that there is a countable
sequence i1 ≤ i2 ≤ . . . such that for each j ∈ I there is n ≥ 0 with j ≤ in.

(i) We get for the dimension of the N (G)-module given by the inverse limit
invlimi∈IMi

dimN (G)

(
invlimi∈IMi

)
= sup

{
dimN (G)(im(ψi : lim

i∈I
Mi →Mi)) | i ∈ I

}
;

(ii) Suppose that for each index i ∈ I there is an index i0 ∈ I with i ≤ i0 and
dimN (G)(im(φi,i0)) <∞. Then

dimN (G)

(
invlimi∈IMi

)
= sup

{
inf
{

dimN (G)(im(φi,j)) | j ∈ I, i ≤ j
}
| i ∈ I

}
.

Proof. See [18, Theorem 6.18 on page 244]. ut

Let i : H → G be an injective group homomorphism. It induces a ring ho-
momorphism N (i) : N (H)→ N (G), see [18, Definition 1.23 on page 29]. For
an N (H)-module M let i∗M be the N (G)-module N (G)⊗N (H) M obtained
by induction with N (i).

Theorem 2.13 Let i : H → G be an injective group homomorphism.

(i) Induction with i is a faithfully flat functor from the category of N (H)-
modules to the category of N (G)-modules, i.e., a sequence of N (H)-
modules M0 →M1 →M2 is exact at M1 if and only if the induced sequence
of N (G)-modules i∗M0 → i∗M1 → i∗M2 is exact at i∗M1;
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(ii) For any N (H)-module M we have:

dimN (H)(M) = dimN (G)(i∗M).

Proof. See [18, Theorem 6.29 on page 253]. ut

2.2.3 L2-Betti Numbers

Definition 2.14 (L2-Betti numbers). Let X be a (left) G-space. Equip
N (G) with the obvious N (G)-ZG-bimodule structure. The singular homol-
ogy HG

p (X;N (G)) of X with coefficients in N (G) is the homology of the

N (G)-chain complex N (G) ⊗ZG Csing
∗ (X), where Csing

∗ (X) is the singular
chain complex of X with the induced ZG-structure. Define the n-th L2-Betti
number of X by

b(2)
n (X;N (G)) := dimN (G)

(
HG
n (X;N (G))

)
∈ R≥0 q {∞}.

Define for any (discrete) group G its n-th L2-Betti number by

b(2)
n (G) := b(2)

n (EG;N (G)) ∈ R≥0 q {∞}.

Theorem 2.15 (L2-Betti numbers)

(i) Homology invariance

We have for a G-map f : X → Y :

(a) Suppose for k ∈ Z≥0 that for each subgroup H ⊂ G the induced map
fH : XH −→ Y H is C-homologically k-connected, i.e., the homomor-
phism Hsing

m (fH ;C) : Hsing
m (XH ;C) → Hsing

m (Y H ;C) induced by fH on
singular homology with complex coefficients is bijective for m < k and
surjective for m = k.
Then the induced map HG

n (f ;N (G)) : HG
n (X;N (G)) −→ HG

n (Y ;N (G))
is bijective for n < k and surjective for n = k and we get

b(2)
n (X;N (G)) = b(2)

n (Y ;N (G)) for n < k;

b(2)
n (X;N (G)) ≥ b(2)

p (Y ;N (G)) for n = k;

(b) Suppose that for each subgroup H ⊂ G the induced map fH : XH → Y H

is a C-homology equivalence, i.e., Hsing
m (fH ;C) is bijective for m ∈ Z≥0.

Then for all n ∈ Z≥0 the homomorphism HG
n (f ;N (G)) : HG

n (X;N (G))→
HG
n (Y ;N (G)) induced by f is bijective and we get

b(2)
n (X;N (G)) = b(2)

n (Y ;N (G));

(ii) Comparison with the Borel construction

Let X be a G-CW -complex. Suppose that for all x ∈ X the isotropy group

Gx is finite or satisfies b
(2)
m (Gx) = 0 for all m ∈ Z≥0.
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Then we get for all n ∈ Z≥0.

b(2)
n (X;N (G)) = b(2)

n (EG×X;N (G));

(iii) Invariance under non-equivariant C-homology equivalences

Suppose that f : X → Y is a G-equivariant map of G-CW -complexes such
that the induced map Hsing

m (f ;C) on singular homology with complex coef-
ficients is bijective for m ∈ Z≥0. Suppose that for all x ∈ X the isotropy

group Gx is finite or satisfies b
(2)
m (Gx) = 0 for all m ∈ Z≥0, and analo-

gously for all y ∈ Y .
Then we get for for all n ∈ Z≥0

b(2)
n (X;N (G)) = b(2)

n (Y ;N (G));

(iv) Independence of equivariant cells with infinite isotropy

Let X be a G-CW -complex. Let X[∞] be the G-CW -subcomplex consisting
of those points whose isotropy subgroups are infinite.
Then we get for all n ∈ Z≥0

b(2)
n (X;N (G)) = b(2)

n (X,X[∞];N (G));

(v) Künneth formula

Let X be a G-space and Y be an H-space. Then X × Y is a G×H-space
and we get for all n ∈ Z≥0

b(2)
n (X × Y ) =

∑
p+q=n

b(2)
p (X) · b(2)

q (Y ),

where we use the convention that 0 ·∞ = 0, r ·∞ =∞ for r ∈ R>0q{∞}
and r +∞ =∞ for r ∈ R≥0 q {∞};

(vi) Restriction

Let H ⊂ G be a subgroup of finite index [G : H].

(a) Let M be an N (G)-module and resHG M be the N (H)-module obtained
from M by restriction.
Then

dimN (H)(resHG M) = [G : H] · dimN (G)(M),

where [G : H] · ∞ is understood to be ∞;
(b) Let X be a G-space and let resHG X be the H-space obtained from X by

restriction.
Then we get for all n ∈ Z≥0

b(2)
n (resHG X;N (H)) = [G : H] · b(2)

n (X;N (G))

with the convention [G : H] · ∞ =∞;
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(vii) Induction

Let i : H → G be an inclusion of groups and let X be an H-space.
Then we get for all n ∈ Z≥0

HG
n (G×H X;N (G)) = N (G)⊗N (H) H

H
p (X;N (H));

b(2)
n (G×H X;N (G)) = b(2)

n (X;N (H));

(viii) Zero-th homology and L2-Betti number

Let X be a path-connected G-space. Then:

(a) There is an N (G)-isomorphism HG
0 (X;N (G))

∼=−→ N (G)⊗CG C;

(b) We have b
(2)
0 (X;N (G)) = |G|−1, where |G|−1 is defined to be zero if

the order |G| of G is infinite;
(c) HG

0 (X;N (G)) is trivial if and only if G is non-amenable;

Proof. See [18, Theorem 6.54 on page 265]. ut

2.2.4 The Fundamental Square

Definition 2.16 (Properties of rings). Let R be a ring.

(i) It is called Noetherian if any submodule of a finitely generated R-module
is again finitely generated;

(ii) It is called regular if it is Noetherian and every R-module has a projective
resolution of finite dimension;

(iii) It is called semihereditary , if any finitely generated submodule of a pro-
jective module is projective;

(iv) It is called von Neumann regular if any finitely presented R-module is
projective;

(v) It is called semisimple if every R-module is projective.

Recall that a ring is Noetherian if and only if any ascending sequence of
ideas I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ R becomes stationary, i.e., there exists n ∈ Z≥0

satisfying In = Ij for every j ∈ Z≥n.

Proposition 2.17. The following statements are equivalent for a ring R:

(i) It is semisimple:
(ii) Every R-module is injective;

(iii) It is of the form
∏m
i=1 Mni

(Di) for m,n1, n2, . . . , nm ∈ Z≥1 and skew fields
Di.

(iv) Every short exact sequence splits;
(v) It is Noetherian and von Neumann regular.

Proof. See [23, page 604]. ut

Proposition 2.18. The following statements are equivalent for a ring R:
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(i) R is von Neumann regular;
(ii) For any r ∈ R there exists s ∈ R with rsr = r;

(iii) Every principal ideal in R is generated by an idempotent;
(iv) Every finitely generated submodule of a finitely generated projective R-

module is a direct summand;
(v) Every finitely presented R-module is projective;

(vi) Every R-module is R-flat.

Proof. See [22, Lemma 4.15, Theorem 4.16 and Theorem 9.15], [25, Theorem
4.2.9 on page 98]. ut

Associated to the von Neumann algebra N (G) is the algebra of affiliated
operators U(G) which contains N (G). Its functional analytic defintion can
be found in [18, Section 8.1]. For us the following properties will be relevant.

Proposition 2.19.

(i) The ring U is the Ore localization of N (G) with respect to the multiplicative
subset of non-zero divisors;

(ii) U is flat as an N (G)-module;
(iii) U(G) is von Neumann regular;
(iv) The inclusion i : N (G)→ U(G) induces an isomorphism

K0(i) : K0(N (G))
∼=−→ K0(U(G)).

Proof. See [18, Theorem 8.2 on page 327 and Theorem 9.20 (i) on page 345].
ut

One can define

(2.20) dimU(G)(M) ∈ R≥0 q {∞}

for an arbitrary U(G)-module M such that for any N (G)-module N we have

(2.21) dimU(G)(U(G)⊗N (G) N) = dimN (G)(N).

Moreover, dimU(G) shares all the good properties of dimN (G) such as Cofinal-
ity and so on. For a projective U(G)-module P we have dimU(G)(P ) = 0⇐⇒
P = {0}. For all of these claims see [18, Definition 8.28 and Theorem 8.29 on
page 330].

Let G be a group and F a field with Q ⊆ F ⊆ C which is closed under
complex conjugation.

Now one can consider the so called division closure DF (G) of FG in U(G),
i.e., the smallest ring DF (G) satisfying FG ⊂ DF (G) ⊂ U(G) with the prop-
erty that, if x ∈ DF (G) is invertible in U(G), its inverse is already contained
in DF (G).

Sometimes one views also the rational closure RF (G), i..e., the smallest
ring RF (G) satisfying FG ⊂ RF (G) ⊂ U(G) with the property that, if
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A ∈ Mn(RF (G)) is invertible in Mn(U(G)), its inverse is already contained
in Mn(RF (G)).

A subring R ⊆ U(G) is called ∗-regular if it is closed under the involution ∗
on U(G) and is von Neumann regular. Let REGF (G) be the ∗-regular closure
of FG in U(G), i.e, the smallest ∗-regular subring of U(G) containing FG.

Proposition 2.22. Let G be a group and F be a field with Q ⊆ F ⊆ C which
is closed under complex conjugation.

(i) We have the inclusions FG ⊆ DF (G) ⊆ RF (G) ⊆ REGF (G);
(ii) If DF (G) is von Neumann regular, then DF (G) = RF (G) = REGF (G):

(iii) If REGF (G) is a skewfield, then DF (G) = RF (G) = REGF (G).

Proof. (i) The inclusions FG ⊆ DF (G) ⊆ RF (G) are obvious. Since
REGF (G) is von Neumann regular, it is not hard to check that it is divi-
sion closed in U(G), see [20, Proposition 13.15 on page 103]. Hence RF (G) ⊆
REGF (G).

(ii) If DF (G) is von Neumann regular, it is ∗-regular and hence REGF (G) ⊆
DF (G). Now the claim follows from assertion (i).

(iii) Suppose that REGF (G) is a skewfield. Then every element in DF (G)
different from 0 is a unit in U(G) and hence is a unit in DF (G). Therefore
DF (G) is a skewfield. Now apply assertion (ii). ut

The so-called fundamental square is given by the square of inclusions of
rings

(2.23) FG //

��

N (G)

��
S // U(G).

where S is a ∗-regular ring, e.g., S = DF (G), DF (G), or REGF (G).

2.2.5 K0 and G0 of Rings

Definition 2.24 (Projective class group K0(R) and G0(R)). Let R be
ring. Define its projective class group K0(R) to be the abelian group whose
generators are isomorphism classes [P ] of finitely generated projective R-
modules P and whose relations are [P0] + [P2] = [P1] for any exact sequence
0→ P0 → P1 → P2 → 0 of finitely generated projective R-modules.

Define G0(R) analogously but replacing finitely generated projective by
finitely generated.

We denote by K̃0(R) and G̃0(R) respectively the quotient of K0(R) and
G0(R) respectively by the subgroup generated by the class [R] of R.
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Every ring homomorphism ϕ : R→ S induces a homomorphism of abelian
groups K0(ϕ) : K0(R) → K0(S) by sending the class [P ] of a finitely gener-
ated projective R-module to the class [ϕ∗P ] of the finitely generated projec-
tive S-module ϕ∗P = S ⊗R P . This is not true in general for G0, one needs
the extra condition that the functor sending a finitely generated R-module M
to the finitely generated S-module ϕ∗M is exact. This condition is automati-
cally satisfied if R is semisimple, e.g. R = FH for a finite group H and a field
F of characteristic zero. This has the effect that the inclusion FG→ DF (G)
does not induce a homomorphism from G0(FG) to G0(DF (G)) in general.
If G contain the free group Z ∗ Z as subgroup, the class of [CG] in G0(CG)
is trivial, whereas the class of [CG] in K0(CG) generates an infinite cyclic
subgroup. The map K0(R)→ G0(R) is in general not injective or surjective,
but is a bijection if R is regular or semisimple.

If R is semisimple, it is of the form R =
∏k
i=1 Mli(Di) for skew fields Di

and one obtains explicit isomorphisms

(2.25) K0(R)
∼=−→

k∏
i=1

K0(Mli(Di))
∼=−→

k∏
i=1

K0(Di)
∼=−→

k∏
i=1

Z.

In particular K0(R) is a finitely generated free abelian group. For more in-
formation about K0(R) and G0(R) we refer for instance to [19, Chapter 2].

2.3 The Statement of the Atiyah Conjecture

Conjecture 2.26 (Atiyah Conjecture). Let G be a group. Let F be a field
satisfying Q ⊆ F ⊆ C. Let Λ be an abelian group satisfying Z ⊆ Λ ⊆ R.

We say that G satisfies the Atiyah Conjecture of order Λ with coefficients
in F if for any matrix A ∈ Mm,n(FG) the von Neumann dimension of the
kernel of the N (G)-homomorphism rA : N (G)m → N (G)n given by right
multiplication with A satisfies

dimN (G)

(
ker(rA : N (G)m → N (G)n)

)
∈ Λ.

Define the abelian group

(2.27) Z ⊆ 1

FIN (G)
Z ⊆ Q

to be the additive subgroup of Q generated by the set {|H|−1 | H ⊆ G, |H| <
∞}. We will explain in Remark 2.38 that 1

FIN (G)Z is the smallest possi-

ble choice for Λ in Conjecture 2.26. So the most interesting case of Conjec-
ture 2.26 is Λ = 1

FIN (G)Z.

The case F = Q is the most relevant one for applications to topology as
explained in Proposition 2.32, whereas for applications in algebra the case
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F = C is the desired one. If we take F = C and Λ = 1
FIN (G)Z in Conjec-

ture 2.26, we obtain the so-called Strong Atiyah Conjecture.

Conjecture 2.28 (Strong Atiyah Conjecture). A group G satisfies the strong
Strong Atiyah Conjecture if for any matrix A ∈ Mm,n(CG) the von Neumann
dimension of the kernel of N (G)-homomorphism rA : N (G)m → N (G)n

given by right multiplication with A satisfies

dimN (G)

(
ker(rA : N (G)m → N (G)n)

)
∈ 1

FIN (G)
Z.

In the special case that G is torsionfree, we will consider the following
versions of the two conjectures above.

Conjecture 2.29 (Atiyah Conjecture with coefficients in F for torsionfree
groups). Let G be a torsionfree group. Let F be a field satisfying Q ⊆ F ⊆ C
which is closed under complex conjugation.

We say that G satisfies the Atiyah Conjecture with coefficients in F for
the torsionfree group G if for any matrix A ∈ Mm,n(FG) the von Neumann
dimension of the kernel of the N (G)-homomorphism rA : N (G)m → N (G)n

given by right multiplication with A satisfies

dimN (G)

(
ker(rA : N (G)m → N (G)n)

)
∈ Z.

Conjecture 2.30 (Strong Atiyah Conjecture for torsionfree groups). A tor-
sionfree group G satisfies the Strong Atiyah Conjecture if for any matrix
A ∈ Mm,n(CG) the von Neumann dimension of the kernel of the N (G)-
homomorphism rA : N (G)m → N (G)n given by right multiplication with A
satisfies

dimN (G)

(
ker(rA : N (G)m → N (G)n)

)
∈ Z.

Obviously Conjecture 2.29 holds for all field with Q ⊆ F ⊆ C if and only
if Conjecture 2.30 is true.

Notation 2.31. A group G has property (B) if there is an upper bound on
the orders of the finite subgroups of G.

We will explain in Section 2.8 that there are counterexamples to Conjec-
ture 2.26 and Conjecture 2.28 unless one makes the assumption that G has
property (B) introduced in Notation 2.31. No counterexamples are known for
Conjecture 2.29 and Conjecture 2.30.

2.4 Some Reformulations and Variants of the
Atiyah Conjecture

We can reformulate the Atiyah Conjecture 2.26 for F = Q in terms of L2-
Betti numbers as follows.
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Proposition 2.32. Let G be a group. Consider any d ∈ Z≥2. Let Z ⊆ Λ ⊆ Q
be an additive subgroup of Q. Then the following statements are equivalent:

(i) For every cocompact free proper G-manifold M and every n ∈ Z≥0, we get

b(2)
n (M ;N (G)) ∈ Λ;

(ii) For every cocompact free proper G-manifold M without boundary of di-
mension (2d+ 4) we get

b
(2)
d (M ;N (G)) ∈ Λ;

(iii) For every free G-CW -complex X of finite type and every n ∈ Z≥0, we get

b(2)
n (X;N (G)) ∈ Λ;

(iv) For every (d+ 1)-dimensional free G-CW -complex X, we get

b
(2)
d (X;N (G)) ∈ Λ;

(v) The Atiyah Conjecture 2.26 of order Λ with coefficients in Q is true for
G.

Proof. The proof is similar to the one of [18, Lemma 10.5 on page 371]. ut

One can rephrase the Atiyah Conjecture also in a more module-theoretic
fashion.

Notation 2.33. Let G be a group and let F be a field with Q ⊆ F ⊆ C.
Define Λ(G,F )fgp, Λ(G,F )fp, Λ(G,F )fg, or Λ(G,F )all respectively to be the
additive subgroup of R given by differences

dimN (G)(N (G)⊗FGM1)− dimN (G)(N (G)⊗FGM0),

where M0 and M1 run through all finitely generated projective FG-modules,
finitely presented FG-modules, finitely generated FG-modules, or all FG-
modules with dimN (G)(N (G)⊗FGMi) <∞ for i = 0, 1 respectively.

Proposition 2.34. A group G satisfies the Atiyah Conjecture of order Λ
with coefficients in F if and only if Λ(G,F )fp ⊆ Λ holds, or, equivalently, for
any finitely presented FG-module M we have

dimN (G)(N (G)⊗FGM) ∈ Λ.

Proof. See [18, Lemma 10.7 on page 372]. ut

Proposition 2.35. Let G be a group and let F be a field with Q ⊆ F ⊆ C
which is closed under complex conjugation.
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(i) We have 1
|FIN (G)|Z ⊆ Λ(G,F )fgp.

If the assembly map

colimH⊆G,|H|<∞K0(FH)→ K0(FG)

given by the various inclusions H ⊆ G is surjective, then we have
1

|FIN (G)|Z = Λ(G,F )fgp;

(ii) We have Λ(G,F )fgp ⊆ Λ(G,F )fp ⊆ Λ(G,F )fg ⊆ Λ(G,F )all;

(iii) Λ(G,F )fg ⊆ Λ(G,F )fp, where the closure is taken in R;
(iv) We have

Λ(G,F )fp = Λ(G,F )fg;

Λ(G,F )all = Λ(G,F )fg q {∞}.

Proof. See [18, Lemma 10.10 on page 373] ut

Remark 2.36. Suppose that G satisfies property (B). Then the least com-
mon multiple lcm(G) of the orders of finite subgroups is defined and

1

|FIN (G)|
Z = {r ∈ R | lcm(G) · r ∈ Z}.

Hence by Proposition 2.34 and Proposition 2.35 the strong Atiyah Conjec-
ture 2.28 is equivalent to the equality

{r ∈ R | lcm(G) · r ∈ Z} = Λ(G,C)fgp = Λ(G,C)fp = Λ(G,C)fg = Λ(G,C)all.

In particular the strong Atiyah Conjecture 2.30 for a torsionfree group G is
equivalent to the equality

Z = Λ(G,C)fgp = Λ(G,C)fp = Λ(G,C)fg = Λ(G,C)all.

Exercise 2.37 Show that the following assertions for a group G are equiv-
alent:

(i) The group G has property (B);
(ii) The subgroup 1

|FIN (G)|Z of R is discrete;

(iii) The subgroup 1
|FIN (G)|Z of R is closed.

Remark 2.38. If the Atiyah Conjecture 2.26 of order Λ with coefficients in F
holds for G, then we must have 1

|FIN (G)| ·Z ⊆ Λ because of Proposition 2.35.

2.5 The K-Theoretic Atiyah Conjecture

Next we give a purely K-theoretic version of the Atiyah-Conjecture. We need
some notation for certain subgroups of the projective class group K0(U(G))
of U(G).
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Notation 2.39. Let G be a group and let F be a field with Q ⊆ F ⊆ C.
Define the subgroups κ(G,F )fgp, and κ(G,F )fp, respectively of K0(U(G)) to
be the subgroup given by differences

[U(G)⊗FGM1]− [U(G)⊗FGM0],

where M0 and M1 run through all finitely generated projective FG-modules
or finitely presented FG-modules respectively.

Define the subgroup κ(G;F )fin of K0(U(G)) to be the image of the com-
posite ⊕

H⊆G,|H|<∞

K0(FH)→ K0(FG)
K0(j)−−−−→ K0(U(G))

where the first map is induced by the various inclusions of finite subgroups
H ⊆ G and the second map is induced by the inclusion j : FG→ U(G).

The definition of κ(G,F )fp make senses, since for a finitely presented FG-
module M the U(G)-module U(G) ⊗N (G) M is a finitely presented U(G)-
module and hence a finitely generated projective U(G)-module, since U(G)
is von Neumann regular by Proposition 2.19 (iii).

Conjecture 2.40 (The K-theoretic Atiyah Conjecture). Let G be a group
and let F be a field with Q ⊆ F ⊆ C. Then

κ(G,F )fin = κ(G,F )fp.

Proposition 2.41. Let G be a group and let F be a field with Q ⊆ F ⊆ C.

(i) We have κ(G,F )fin ⊆ κ(G,F )fgp ⊆ κ(G,F )fp;
(ii) If G satisfies the Full Farrell-Jones Conjecture, see [19, Conjecture 13.30

on page 401], then κ(G,F )fin = κ(G,F )fgp.

Proof. (i) This is obvious since κ(G,F )fgp agrees the image of the homomor-
phism K0(j) : K0(FG)→ K0(U(G)).

(ii) The Full Farrell-Jones Conjecture implies that the map⊕
H⊆G,|H|<∞

K0(FH)→ K0(FG)

is surjective, see [19, Theorem 13.65 (Xii) on page 421]. ut

Remark 2.42. The Full Farrell-Jones Conjecture is known for a large class
of groups, see [19, Theorem 16.1 on page 499]. For example, it contains all hy-
perbolic groups, finite-dimensional CAT(0)-groups, lattices in path connected
second countable locally compact Hausdorff groups, fundamental groups of
manifolds of dimension ≤ 3, and S-arithmetic groups. Furthermore, it is
closed under taking subgroups, passing to over group of finite index, and
passing to colimits over directed systems of groups with arbitrary structure
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maps. Its precise statement is not relevant for this monograph and therefore
omitted.

Remark 2.43. Let G be a group and let F be a field with Q ⊆ F ⊆ C.
The K-theoretic Atiyah Conjecture 2.40 implies the Atiyah Conjecture 2.26
of order Λ = 1

FIN (G)Z with coefficients in F by the following argument. The

dimension function dimN (G) of (2.3) defines a homomorphism

(2.44) dimN (G) : K0(N (G))→ R.

The homomorphism K0(i) : K0(N (G))
∼=−→ K0(U(G)) is bijective by Proposi-

tion 2.19 (iv). One easily checks using (2.21) that the image of κ(G,F )fp and

κ(G,F )fin under the composite K0(U(G))
K0(i)−1

−−−−−→ K0(N (G))
dimN(G)−−−−−→ R is

Λ(G,F )fp and 1
FIN (G)Z respectively.

2.6 The Center-Valued Atiyah Conjecture

Let G be a group and let F be a field with Q ⊆ F ⊆ C. Using the center-
valued universal trace and the associated center-valued universal dimension
function, one obtains homomorphisms

dimu
N (G) : K0(N (G))→ center(N (G))Z/2 = {a ∈ center(N (G)) | a = a∗},

and

dimu
U(G) : K0(U(G))→ center(N (G))Z/2 = {a ∈ center(N (G)) | a = a∗},

where center(N (G)) is the center of the von Neumann algebra and the group
structure on center(N (G))Z/2 comes from the addition. The composite of
dimu

U(G) with the isomorphism K0(j) : K0(FG) → K0(U(G)) is dimu
N (G).

The homomorphism dimN (G) is always injective. It is bijective if N (G) is of
type II1. All these claims follow from [18, Theorem 9.13 (2) on page 342].
If G is finitely generated and not virtually finitely generated abelian, then
N (G) is of type II1, see [18, Lemma 9.4 (3) on page 338]. If G is torsionfree,
N (G) = N (G)Z/2 = R holds by [18, Lemma 9.4 (4) on page 338].

Notation 2.45. LetG be a group and let F be a field with Q ⊆ F ⊆ C, which
is closed under complex conjugation. Define Λu(G,F )fgp, and Λu(G,F )fp, re-
spectively to be the additive subgroup of center(N (G))Z/2 given by differences

dimu
N (G)(N (G)⊗FGM1)− dimu

N (G)(N (G)⊗FGM0),

where M0 and M1 run through all finitely generated projective FG-modules
and finitely presented FG-modules for i = 0, 1 respectively. Let Λu(G,F )fin

be the image of the composite
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colimH⊆G,|H|<∞K0(FH)→ K0(FG)→ K0(N (G))
dimN(G)−−−−−→ center(N (G))Z/2.

Conjecture 2.46 (The center-valued Atiyah Conjecture). Let G be a group
and let F be a field with Q ⊆ F ⊆ C. Then the center-valued Atiyah Conjec-
ture predicts

Λu(G,F )fin = Λu(G,F )fp.

Proposition 2.47. Let G be a group and let F be a field with Q ⊆ F ⊆ C.
Then the K-theoretic Atiyah Conjecture 2.40 and the center-valued Atiyah
Conjecture 2.46 are equivalent.

Proof. This follows from the definitions and the fact that the homomorphism
dimu

N (G) : K0(N (G))→ center(N (G))Z/2 is injective. ut

2.7 Some Implications and Applications of the
Atiyah Conjecture

We briefly describe a few applications of the Atyiah Conjecture-many more
will be discussed later in this monograph. Comment 7 (by W.): Maybe
add references later.

2.7.1 The Zero-Divisor Conjecture of Kaplansky and
the Embedding Conjecture of Malcev

We have the following prominent conjectures due to Kaplansky and Malcev.

Conjecture 2.48 (Zero-Divisor Conjecture). Let F be a field of character-
istic zero and G be a torsionfree group. Then FG contains no non-trivial
zero-divisors.

Conjecture 2.49 (Embedding Conjecture). Let F be a field of characteristic
zero and G be a torsionfree group. Then FG embeds into a skewfield.

Obviously the Embedding Conjecture 2.49 implies the Zero-Divisor Con-
jecture 2.48.

Remark 2.50. We conclude from Theorem 2.69 (i) that the Strong Atiyah
Conjecture for torsionfree groups, see Conjecture 2.30, implies the Embed-
ding Conjecture 2.49 if Q ⊆ F ⊆ C holds. The Strong Atiyah Conjecture
for torsionfree groups, see Conjecture 2.30, implies the Zero-Divisor Conjec-
ture 2.48 for all fields F of characteristic zero because of [19, Remark 2.84
on page 57].

Remark 2.51. Let F be a field and G be a group such that FG has non-
nontrivial zero-divisors. Then G is amenable if and only if FG is an Ore
domain, i.e., satisfies the Ore condition with respect to the multiplicative
subgroup FG \ {0}, see [3, Theorem A.1].
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Suppose that G be an amenable group. Then the strong Atiyah Conjec-
ture 2.28 holds for G if and only if the Zero-Divisor Conjecture 2.48 holds
for CG, see [18, Lemma 10.16 on page 376]. In this case DC(G) = RC(G) =
REGC(G) agrees with the skewfield given by the Ore localization of CG with
respect the multiplicative subgroup FG \ {0}.

2.7.2 Computation of L2-Betti Numbers

Let G be a group and let F be a field with Q ⊆ F ⊆ C. Given a matrix
A ∈ Mm,n(FG) one can consider the FG-homomorphism rA : N (G)m →
N (G)n given by right multiplication with A and asks for the computation

of dimN (G)(ker(r
(2)
A )). If one has an algorithm to solve the word problem in

G, one can define a monotone increasing sequence (cp(A))p≥0 of elements in
R≥0 such that each element is computable and one has

dimN (G)(ker(rA)) = lim
p→∞

cp(A).

This is proved in [18, Section 3.7]. Löh and Uschold [17] investigate the com-
putability degree of this limit.

Now suppose that G satisfies condition (B) and that the Atiyah Conjecture
of order Λ = 1

|FIN (G)|Z with coefficients in F , see Conjecture 2.26, holds.

If there is a p such that cp(A) < lcm(G)−1 holds, then we conclude from

Remark 2.36 that we have dimN (G)(ker(r
(2)
A )) = 0, and one does not have to

compute all the elements of the sequence (cp(A))p≥0.
It is clear that this can be very useful to show the vanishing of L2-Betti

numbers, see [18, Remark 3.173 on page 195] and to compute L2-invariant in
general.

2.7.3 Finite Generation of Projective Modules

Question 2.52 (Finite generation of projective modules over group rings
and their von Neumann dimension). Let G be a group satisfying condition
(B). Consider a ring R with Z ⊆ R ⊆ C. Let P be a projective RG-module
such that dimN (G)(N (G)⊗RG P ) <∞ holds. Is then P finitely generated?

This question is only interesting in the case, where G has property (B).

Exercise 2.53 Consider a field F with Z ⊆ F ⊆ C. Construct an abelian
group G such that for any ε ∈ R>0 there is a projective FG-module P such
that P is not finitely generated and dimN (G)(N (G)⊗RG P ) <∞ holds.

Here is a partial answer to Question 2.52.

Proposition 2.54. Let G be a group satisfying condition (B). Consider a
ring R and a field F with Z ⊆ R ⊆ F ⊆ C. Suppose that the Atiyah Conjecture
of order Λ = 1

|FIN (G)|Z with coefficients in F , see Conjecture 2.26, holds. Let

P be a projective RG-module. Then the following assertions are equivalent:
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(i) The RG-module P is finitely generated;
(ii) We have dimN (G)(N (G)⊗RG P ) <∞;

It is a direct consequence of the following two facts whose proof can be
found in [13, Lemma 4 and Lemma 5].

Consider the situation of Proposition 2.54. Then

• Suppose that G satisfies condition (B) and that the Atiyah Conjecture of
order Λ = 1

|FIN (G)|Z with coefficients in F , see Conjecture 2.26, holds.

Let N be an RG-module. Suppose that dimN (G)(N (G)⊗RG N) <∞.
Then there exists a finitely generated RG-submodule M ⊂ N satisfying
dimN (G)(N (G)⊗ZG N/M) = 0;

• Let P be a projective RG-module such that for some finitely generated
RG-submodule M ⊂ P we have dimN (G)(N (G)⊗RG P/M) = 0.
Then P is finitely generated.

Recall that a group G is of type FPn or FFn respectively if there exists
an exact sequence of ZG-modules 0 → Pn → Pn−1 → · · · → Pn → Z for Z
equipped with the trivial G-action such that each module Pi is finitely gener-
ated projective or finitely generated free respectively. We omit the elementary
proof that the next Proposition 2.55 follows from Proposition 2.54.

Proposition 2.55. Let G be a finitely generated group of cohomological di-

mension ≤ 2 with b
(2)
2 (G) < ∞. Suppose that G satisfies the Atiyah Con-

jecture with coefficients in F = Q for the torsionfree group G, see Conjec-
ture 2.29

Then G is of type FP2.
If G satisfies the Full Farrell-Jones Conjecture, then we can replace FP2

by FF2 in the statement above.

Theorem 2.56 (Vanishing of top L2-Betti numbers and passing to
subgroups) Let H be a subgroup of G. Let X be a d-dimensional proper G-
CW -complex which we can also view as d-dimensional proper H-CW -complex

by restriction. Suppose b
(2)
d (X;N (G)) = 0.

Then we get b
(2)
d (X;N (H)) = 0.

Proof. For any CG-module M be a obtain an N (H)-homomorphism, natural
in M ,

(2.57) T (M) : N (H)⊗CH M → N (G)⊗CGM, u⊗ x 7→ i(u)⊗ x.

Next we want to show that it is injective for projective CG-modules M . As T
is compatible with direct sums over arbitrary index sets, it suffices to prove
the claim for M = CG.

Let T be a transversal of the projection pr : G→ H\G, i.e., T is a subset
of G such that pr |T : T → H\G is a bijection. We will assume e ∈ T for the
unit e ∈ G. We obtain an isomorphism of left CH-modules
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t∈G/H

CH
∼=−→ CG, (xt)t∈T 7→

∑
t∈T

xt · t.

It induces a bijection

α :
⊕
t∈T
B(L2(H))H

∼=−→ B(L2(H))H ⊗CH CG, (ft)t∈T 7→
∑
t∈T

ft ⊗ t

and an H-equivariant isomorphism of Hilbert spaces

ξ :
⊕

t∈T
l2(H)

∼=−→ l2(G), (ut)t∈T 7→
∑
t∈T

ut · t,

where the source is the Hilbert space completion of the pre Hilbert space⊕
t∈G/H l

2(H). We have the isomorphism

β : N (G)⊗CG CG
∼=−→ B(L2(G))G, f ⊗

(∑
g∈G

λg · g
)
7→
∑
g∈G

λg ·
(
f ◦ rg−1

)
where rg−1 : l2(G)→ l2(G) is right multiplication with g−1. Hence it remains
to show that

β ◦ T (CG) ◦ α :
⊕

t∈G/H

B(l2(H))H → B(l2(G))G

is injective. Given s ∈ T and an element fs in the copy of B(l2(H))H belong-
ing to s in the source of α, we get a commutative diagram of operators of
Hilbert spaces

(2.58)
⊕

t∈T l
2(H)

ξ

∼=
//

σs

��

l2(G)

rs−1

��⊕
t∈T l

2(H)
ξ

∼=
//

⊕
t∈T fs

��

l2(G)

i(fs)

��⊕
t∈T l

2(H)
ξ

∼=
// l2(G)

where for t0, t1 ∈ T the operator (σs)t0,t1 : l2(H) → l2(H) is trivial if
pr(t0s

−1) 6= pr(t1) and is right multiplication with the element t0s
−1t−1

1 ∈ H
if pr(t0s

−1) = pr(t1).
Now suppose that the element (fs)s∈T ∈

⊕
t∈G/H B(l2(H))H lies in the

kernel of β ◦ T (CG) ◦ α. Then ξ−1 ◦
(∑

s∈T i(fs) ◦ rs−1

)
◦ ξ :

⊕
t∈T l

2(H) →⊕
t∈T l

2(H) is trivial.
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We get for t ∈ T that (σs)t,e is zero for s 6= t since pr(ts−1) =
pr(e) =⇒ ts−1 ∈ H =⇒ pr(t) = pr(s) =⇒ s = t. Fix t ∈ T . Let
jt : l

2(H)→
⊕

t∈T l
2(H) be the inclusion of the summand belonging to t ∈ T

and pre :
⊕

t∈T l
2(H)→ l2(H) be the projection onto the summand belonging

to e ∈ T . Then the composite

pre ◦ξ−1 ◦

(∑
s∈T

i(fs) ◦ rs−1

)
◦ ξ ◦ jt : l2(H)→ l2(H)

is zero and sends u to ft(u) because of the commutative diagram (2.58).
Hence ft = 0 for all t ∈ T . This finishes the proof that the natural map
T (M) of (2.57) is bijective for every free CG-module M .

If cd : C∗(X) → C∗(X) is the d-th differential in the cellular CG-chain
complex C∗(X;C), we get a commutative diagram

N (H)⊗CH Cd(X;C)
T (Cd(X;C)) //

idN(H)⊗CHcd

��

N (G)⊗CG Cd(X;C)

idN(G)⊗CGcd

��
N (H)⊗CH Cd−1(X;C)

T (Cd−1(X;C))

// N (G)⊗CG Cd−1(X;C)

whose horizontal arrows are injective. Hence the left vertical arrow is injective
if the right vertical arrow is injective. Now the claim follows from the fact that
a projective N (G)-module P is trivial if and only if dimN (G)(P ) vanishes,
see [18, Lemma 6.28 (3) on page 252]. ut

Theorem 2.56 has been proved for proper G-actions on simplicial com-
plexes using orbit equivalence in [6, Theorem 1.5].

Proposition 2.55 and Theorem 2.56 imply the next proposition which has
already been proved by Jaikin-Zapirain-Linton [9, Theorem 3.7].

Proposition 2.59. Let G be a group of cohomological dimension ≤ 2 with

b
(2)
2 (G) = 0. Suppose that G satisfies the Atiyah Conjecture with coefficients

in F = Q for the torsionfree group G, see Conjecture 2.29.
Then G is almost coherent in the sense that every finitely generated sub-

group H ⊆ G is of type FP2.
If G satisfies the Full Farrell-Jones Conjecture, then we can replace FP2

by FF2 in the statement above.

Proposition 2.59 is interesting in connection with the following question.

Question 2.60 (Coherent groups). Let G be a group of cohomological di-

mension ≤ 2 with b
(2)
2 (G) = 0. Is then G coherent in the sense that any

finitely generated subgroup H ⊆ G has a finite 2-dimensional model for BH?

Comment 8 (by W.): Discuss here or later the relation to the existence
of non-positive immersions and the vanishing of the second L2-Betti number.
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See in particular Jaikin-Zapirain-Linton [9, Theorem 1.2].

Or one shifts parts of this subsection to Chapter 5.

2.8 Counterexamples to the Atiyah Conjecture

Dropping the condition (B) that there is an upper bound on the orders of
finite subgroups, one might still ask if Λ(G;Q)fp = Q holds, motivated by
the observation that the image of the composite⊕

H⊆G,|H|<∞

K0(QH)→ K0(QG)→ K0(N (G))
dimU(G)−−−−−→ R

is contained in Q. This goes back to Atiyah’s original question [1, page 72],

who asked for the rationality of the L2-Betti numbers b
(2)
n (M̃) of every closed

manifold M . Austin [2, Corollary 1.2] gave the first example of a finitely
generated group G, where for some matrix A ∈ Mm,n(QG) the dimension
dimN (G)(ker(rA)) of the kernel of the N (G)-homomorphism rA : N (G)m →
N (G)n is irrational. Grabowski [7, Theorem 1.3] proved, using Turing ma-
chines, that any non-negative real number can occur in this way for some
finitely generated group G and some matrix A. Comment 9 (by T.): Men-
tion also first examples with finitely presented group? Comment 10 (by
W.): I agree. Can Thomas formulate a sentence? Löh and Uschold [17] inves-
tigate the computability degree of real numbers arising as L2-Betti numbers
or L2-torsion of groups, parametrised over the Turing degree of the word prob-
lem. Roughly speaking, the complexity of the computation of L2-invariants
of a group is the same as the complexity of the word problem.

2.9 Positive Results about the Atiyah
Conjecture

The notions of elementary amenable groups and amenable groups are ex-
plained for instance in [18, Subsection 6.4.1].

Definition 2.61 (Class of groups C). Let C be the smallest class of groups
satisfying the following conditions:

(i) C contains all free groups;
(ii) If {Gi | i ∈ I} is a directed system of subgroups directed by inclusion such

that each Gi belongs to C, then G =
⋃
i∈I Gi belongs to C;

(iii) Let 1→ K → G→ Q→ 1 be an extension of groups such that K belongs
to C and Q is elementary amenable, then G belongs to C.

Definition 2.62 (Class of groups AF ). Consider a field F satisfying Q ⊆
F ⊆ C. Denote by AF the collection of all groups which have property (B)
Comment 11 (by T.): We should also add hyperlinks for such properties;
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however, at important points I’d prefer to explicitly state this property (not
too long) Comment 12 (by W.): I agree. Can Thomas do this at this place.
I am not quire sure about the latex command. I can implement then this at
all other places. and satisfy the Atiyah Conjecture 2.26 with coefficients in
F .

Definition 2.63 (Class of groupsDF ). Consider a field F satisfying Q ⊆ F ⊆
C. Let DF be the smallest class of groups satisfying the following conditions:

(i) The trivial group belongs to DF ;
(ii) If {Gi | i ∈ I} is a filtered system of groups in DF (with arbitrary structure

maps), then its colimit again belongs to DF ;
(iii) If {Gi | i ∈ I} is a cofiltered system of groups in DF (with arbitrary

structure maps), then its limit again belongs to DF ;
(iv) If G belongs to DF and H ⊆ G is a subgroup, then H ∈ DF ;
(v) If p : G→ A is an epimorphism of a torsionfree group G onto an elementary

amenable group A and if p−1(B) ∈ DF for every finite group B ⊆ A, then
G ∈ DF .

Note that each element in DF is a torsionfree group, and the class DF
contains all residually (torsionfree elementary amenable) groups.

A group is called locally indicable, if every non-trivial finitely generated
subgroup admits an epimorphism onto Z. Locally indicable groups are tor-
sionfree. Examples for locally indicable groups are torsionfree one-relator
groups.

Theorem 2.64 (Status of the Atiyah Conjecture 2.26 with coeffi-
cients in F ) Consider a field F with Q ⊆ F ⊆ C.

(i) If G belongs to C and has property (B), then G ∈ AF ;
(ii) If G belongs to DF , then G is torsionfree and G ∈ AF ;

(iii) If 1 → H → G → Q → 1 is an extension of groups, H is torsionfree and
belongs to AF , and Q is locally indicable, then G is torsionfree and belongs
to AF ;

(iv) If G ∈ AF and H ⊆ G is a subgroup with lcm(H) = lcm(G), then H ∈ AF ;
(v) If G is the directed union

⋃
i∈I Gi of subgroups Gi directed by inclusion

and each Gi belongs to AF , then G belongs to AF ;
(vi) The group G belongs to AF if and only if all its finitely generated subgroups

belong to AF ;
(vii) If 1 → K → G → Q → 1 is an extension of groups such that K is finite

and G belongs to AF , then Q belongs to AF ;
(viii) Let M be a connected (not necessarily compact) d-dimensional manifold

(possibly with non-empty boundary) such that d ≤ 3 and its fundamental
group π1(M) is torsionfree, then π1(M) ∈ C and hence π1(M) ∈ AF ;

(ix) If the group G has property (B) and belongs to one of the following classes
below, then G belongs to AF :

(a) Residually {torsionfree elementary amenable} groups;
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(b) Free by elementary amenable groups;
(c) Braid groups;
(d) Right-angled Artin and Coxeter groups;
(e) Torsionfree p-adic analytic pro-p-groups;
(f) Locally indicable groups;
(g) One-relator groups.

Proof. (i) This is due to Linnell, see for instance [16] or [18, Theorem 10.19
on page 378].

(ii) This follows from [8, Corollary 1.2], which is based on on [4, Theorem 1.4].

(iii) This follows from [10, Proposition 6.5].

(iv) This follows from [18, Theorem 6.29 (2) on page 253].

(v) See [18, Lemma 10.4 on page 371].

(vi) This follows from assertions (iv) and (v).

(vii) This follows from [18, Lemma 13.45 on page 473]. Comment 13 (by
T.): Eventually, here we could add the relevant computations of the lcms,
or give a reference which includes this? Comment 14 (by W.): This is a
general statement and one may not say anything about the lcm here. Figur-
ing out the lcm depends on the special case one is looking at.

(viii) This follows from [11, Theorem 1.1] for d = 3. The case d = 2 can be
reduced to the case d = 3 by crossing with S1 and assertion (iv) or just use
the fact that the epimorphism the fundamental group of a connected mani-
fold of dimension ≤ 2 onto its abelianization has free group as kernel.

(ix) This follows from the other assertions or from [8, Theorem 1.1 and
Corollary 1.2] and [10, Corollary 1.3] using [14, Theorem 2] and [5, Theo-
rem 1.1]. ut

Remark 2.65. The class AF is very large by aforementioned results. Nev-
ertheless, we do not know whether the Atiyah Conjecture 2.26 holds for all
hyperbolic groups or for all amenable groups.

Theorem 2.66 (Status of the K-theoretic Atiyah Conjecture 2.40)
The K-theoretic Atiyah Conjecture 2.40 holds for a group G and F = C if G
belongs to the class C and has property (B).

Proof. This follows essentially by inspecting the proof of Linnell for the
Atiyah Conjecture, see [12, Theorem 1.11]. ut

There are partial results on the difficult question, whether the Atiyah Con-
jecture 2.26 holds for a group G if it holds for a subgroup of finite index, see
for instance [15]. Comment 15 (by T.): So, in the “passage to subgroups”
of Theorem 2.66 you had restrictions in mind. How should we formulate
them? Comment 16 (by W.): I mean the general results Thomas worked
together with Linnell in [15]. If I remember correctly, one does not know that
this passage to overgroups of finite index works in general. I think that the
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interested reader should just consult that paper and we do not have to say
more at this place unless there is a nice positive example.

2.10 Strategy for a Proof of the K-Theoretic
Atiyah Conjecture Following Linnell

We have already explained in Section 2.8 that the Atiyah Conjecture has only
a chance to be true if the group G has property (B), i.e., has a bound on the
order of its finite subgroups. The strategy of proof of the Atiyah Conjecture
for groups G which have property (B) and belong to the class C due to
Linnell [16] has been elaborated on and expanded and finally carried out in
details for the class C in [18, Chapter 10] and [21]. We summarize and record
some old ideas and some new developments concerning it in this section. We
first give a brief summary in the torsionfree case in Subsection 2.10.1 and in
the case, where G has property (B), in Subsection 2.10.2. Then we give more
details for the interested reader in Subsection 2.10.3.

We have introduced the subrings ring DF (G), RF (G), and REGF (G) of
U(G) and explained that dimN (G) extends to dimU(G) in Subsection 2.2.4.

2.10.1 Summary in the Torsionfree Case

Let G be a torsionfree group and let F be a field with Q ⊆ F ⊆ C. Then the
following assertions are equivalent:

(i) The K-theoretic Atiyah Conjecture 2.40 holds for G and F ;
(ii) The Atiyah Conjecture with coefficients in F for torsionfree groups, see

Conjecture 2.29, holds for G.
(iii) There is a ring S satisfying FG ⊆ S ⊆ U(G), which is von Neuman regular

and satisfies K̃0(S) = {0};
(iv) The ring REGF (G) satisfies K̃0(S) = {0};
(v) The ring REGF (G) is a skewfield;

(vi) The ring DF (G) is von Neumann regular and satisfies K̃0(S) = {0};
(vii) We have G̃0(DF (G)) = {0};
(viii) The ring DF (G) is a skewfield;
(ix) The ring RF (G) is a skewfield.

To prove the K-theoretic Atiyah Conjecture 2.40 or the equivalent Atiyah
Conjecture with coefficients in F for torsionfree groups, see Conjecture 2.29,
the most promising attempt seems to be to prove assertion (iii) or (iv). As-
sertion (vii) looks also promising but we have explained in Subsection 2.2.5
that it is better to work with K0(R) than with G0(R). We will also prove
that in the case that one of the equivalent assertions above is true, the three
rings DF (G), RF (G), and REGF (G) agree. Without involving K0 or G0 we
do not know a strategy to prove assertions (v), (viii) and (ix) directly.
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2.10.2 Summary in the Case Where There a Bound on
the Orders of Finite Subgroups

Let G be a group and let F be a field with Q ⊆ F ⊆ C.

Notation 2.67. We say that a ring S with FG ⊆ S ⊆ U(G) has property
(K) if the composite⊕

H⊆G,|H|<∞

K0(FH)→ K0(FG)
K0(k)−−−−→ K0(S)

for k : FG→ S the inclusion is surjective.

Then the following assertions are equivalent if G has property (B):

(i) The K-theoretic Atiyah Conjecture 2.40 holds for G and F
(ii) There is a ring S satisfying FG ⊆ S ⊆ U(G) which is von Neuman regular

and has property (K);
(iii) The ring REGF (G) has property (K);
(iv) The ring DF (G) is von Neumann regular and has property (K);
(v) The composite

⊕
H⊆G,|H|<∞G0(FH)→ G0(DF (G)) induced by the var-

ious inclusions FH → DF (G) is surjective;
(vi) The ring RF (G) is von Neumann regular and has property (K);

To prove the K-theoretic Atiyah Conjecture 2.40 the most promising at-
tempt seems to be to prove assertion (ii) and (iii). Assertion (v) looks also
promising but we have explained in Subsection 2.2.5 that it is better to work
with K0(R) than with G0(R). We will also prove that in the case that one of
the equivalent assertions above is true, the three rings DF (G), RF (G), and
REGF (G) agree.

2.10.3 More Information and Details

Theorem 2.68 (Strategy for a proof of the K-theoretic Atiyah Con-
jecture) Let G be a group and let F be a field with Q ⊆ F ⊆ C.

(i) If there is a ring S satisfying FG ⊆ S ⊆ U(G) which is von Neuman
regular and has property (K), then the K-theoretic Atiyah Conjecture 2.40
holds for G and F ;

(ii) If G satisfies the Full-Farrell-Jones Conjecture and there is a ring S sat-
isfying FG ⊆ S ⊆ U(G) which is von Neuman regular and for which
K0(k) : K0(FG)→ K0(S) is surjective, then the K-theoretic Atiyah Con-
jecture 2.40 holds for G and F ;

(iii) If REGF (G) has property (K), then the K-theoretic Atiyah Conjecture 2.40
holds for G and F ;

(iv) If G satisfies the Full-Farrell-Jones Conjecture and and the homomorphism
K0(k) : K0(FG) → K0(REGF (G)) is surjective, then the K-theoretic
Atiyah Conjecture 2.40 holds for G and F ;



28 2 The Atiyah Conjecture

(v) If G is torsionfree, the following statements are equivalent:

(a) The K-theoretic Atiyah Conjecture 2.40 holds for G and F ;
(b) The Atiyah Conjecture with coefficients in F for G, see Conjecture 2.29,

is true;
(c) There is a skewfield D with FG ⊆ D ⊆ U(G);
(d) DF (G) is a skew-field;
(e) RF (G) is a skew-field;
(f) REGF (G) is a skew-field;

(vi) Let S be a ring satisfying FG ⊆ S ⊆ U(G) which is von Neuman regular
and has property (K). Then the following assertions are equivalent:

(a) The group G has property (B);
(b) The ring S is semisimple;

(vii) Let S be a ring satisfying FG ⊆ S ⊆ U(G) which is von Neuman regular
and has property (K). Then the following assertions are equivalent:

(a) G is torsionfree;
(b) The ring S is a skewfield;

(viii) If G is torsionfree and there is a ring S satisfying FG ⊆ S ⊆ U(G) which is
von Neuman regular and has property (K), then the rings DF (G), RF (G),
and REGF (G) agree and are skewfields.

Proof. (i) Let M be a finitely presented FG-module. Then S ⊗FG M is
a finitely presented S-module. As S is von Neumann regular, S ⊗FG M is
a finitely generated projective S-module and hence defines a class [S ⊗F
GM ] ∈ K0(S). Because of property (K) this class lies in the image of⊕

H⊆G,|H|<∞K0(FH) → K0(FG)
K0(k)−−−−→ K0(S). Hence U(G) ⊗FG M is

a finitely generated projective U(G)-module whose class in the image of⊕
H⊆G,|H|<∞K0(FH)→ K0(FG)

K0(l)−−−→ K0(U(G)) for the inclusion l.

(ii) This follows from assertion (i) since the Full-Farrell-Jones Conjecture
implies the surjectivity of

⊕
H⊆G,|H|<∞K0(FH)→ K0(FG), see [19, Theo-

rem 13.65 (xii) on page 421].

(iii) This follows from assertion (i), since REGF (G) is von Neumann regular.

(iv) This follows from assertion (ii) since REGF (G) is von Neumann regular.

(v) We get the implication (va) =⇒ (vb) from Remark 2.43. The impli-
cation (vb) =⇒ (vd) is proved in [18, Lemma 10.39 on page 388], where
only the case F = C is treated, but the argument carries directly over to the
general case Q ⊆ F ⊆ C. The implication (vd) =⇒ (vc) is obvious. The
implication (vc) =⇒ (va) follows from assertion (ii). Hence we have proved
that the assertions (va), (vb), (vc), and (vd) are equivalent. Now assertion (v)
follows from assertion (viii).
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(vi) Suppose that S is semisimple. ThenK0(S) is finitely generated, see (2.25).
Hence the image of the composite⊕
H⊆G,|H|<∞

K0(FH)→ K0(FG)
K0(k)−−−−→ K0(S)

K0(l)−−−→ K0(U(G))
dimU(G)−−−−−→ R

for the inclusion l : S → U(G) is finitely generated. This image is 1
|FIN (G)|Z ⊆

Λ. Hence G has property (B).
Suppose G has property (B). Because of Proposition 2.17 it suffices to

show that S is Noetherian.
Let lcm(G) be the least common multiple of the orders of finite subgroups

of G. Since S has property (K), the image of the composition

K0(S)
l−→ K0(U(G))

dimU(G)−−−−−→ R

lies in 1
lcm(G)Z = {r ∈ R | lcm(G) · r ∈ Z}. Next we show that for any chain

of ideals {0} = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ir = S of S(G) with Ii 6= Ii+1 we have
r ≤ lcm(G).

Choose xi ∈ Ii with xi /∈ Ii−1 for 1 ≤ i ≤ r − 1. Let Ji be the ideal
generated by x1, x2, . . ., xi for 1 ≤ i ≤ r − 1. Then we obtain a sequence
of finitely generated ideals of the same length {0} = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂
Jr = S(G) of S(G) with Ji 6= Ji+1. Since S is von Neumann regular, Propo-
sition 2.18 implies we get a direct sum decompositions Ji = Ji−1 ⊕ Ki for
i = 1, 2, . . . , r for finitely generated projective non-trivial S-modules K1,
K2, . . . , Kr. Choose an idempotent pi ∈ Mni(S) representing Ki. Then
pi considered as an element Mni

(U(G)) represents U(G) ⊗S(G) Ki and is
non-trivial. Hence U(G) ⊗S(G) Ki is a non-trivial finitely generated projec-
tive U(G)-module. We conclude from [18, Theorem 8.29 on page 330] that
dimU(G)(U(G)⊗U(S) Ki) > 0 holds for i = 1, 2, . . . , r. Hence we get

0 < dimU(G)(U(G)⊗S(G) J1) < dimU(G)(U(G)⊗S(G) J2)

< · · · < dimU(G)(U(G)⊗S(G) Jr−1) < 1.

Since lcm(G) · dimU(G)(U(G) ⊗S Ji) is an integer for i = 1, 2, . . . , r − 1, we
get r ≤ lcm(G).

(vii) Suppose that G is torsionfree. We have seen in the proof of assertion (vi)
that S has no non-trivial ideal. This implies that S is a skewfield.

Suppose that S is a skewfield. Then Z → K0(S) sending n to n · [S]

is bijective. Hence the image of K0(S)
K0(l)−−−→ K0(U(G))

dimU(G)−−−−−→ R is Z.
Therefore the image of the composite⊕
H⊆G,|H|<∞

K0(FH)→ K0(FG)
K0(k)−−−−→ K0(S)

K0(l)−−−→ K0(U(G))
dimU(G)−−−−−→ R
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is Z. Since this image is 1
|FIN (G)|Z ⊆ Λ, the group G is torsionfree.

(viii) Since DF (G) is division closed in U(G) and hence division closed in
the skewfield S, it is itself a skewfield. Now the equality DF (G) = RF (G) =
REGF (G) follows from Proposition 2.22 (ii). This finishes the proof of The-
orem 2.68. ut

Next we record the special case, where G is torsionfree.

Theorem 2.69 (The Atiyah Conjecture for torsionfree groups and
skewfields) Let G be a torsionfree group. Consider a field F with Q ⊆ F ⊆
C.

(i) The following statements are equivalent:

(a) The K-theoretic Atiyah Conjecture 2.40 holds for G and F ;
(b) The group G satisfies the Atiyah Conjecture with coefficients in F for

torsionfree groups, see Conjecture 2.29;
(c) There exists a skewfield S with FG ⊆ S ⊆ U(G);
(d) The ring DF (G) is a skew field;
(e) The ring RF (G) is a skew field;
(f) The ring REGF (G) is a skew field;
(g) The subrings rings DF (G), RF (G), and REGF (G) agree and are skew

fields;

(ii) Suppose that G satisfies the Atiyah Conjecture with coefficients in F for
torsionfree groups, see Conjecture 2.29;
Then we get for every projective FG-chain complex C∗ and every n ≥ 0

b(2)
n

(
N (G)⊗FG C∗

)
= dimD(G)

(
Hn(D(G)⊗QG C∗)

)
.

In particular b
(2)
n

(
N (G)⊗FG C∗

)
is an integer or ∞.

Proof. (i) Assertions (ia) and (ib) are equivalent by Proposition 2.47, since
for torsionfree groups we have center(N (G))Z/2 = R and under this identifi-
cation we have dimu

N (G) = dimN (G). The assertions (ia) (ic), (id) (ie), and (if)
are equivalent by Theorem 2.68 (v). We get the implication (id) =⇒ (ig)
from Proposition 2.22 (ii).

(ii) This follows from Proposition 2.19 (ii) and (2.21). ut

Consider the situation of Theorem 2.68 (vi). One can say actually more
about S than just that it is semisimple. Recall that we have seen in the proof
of assertion (vi) that for any chain of ideals {0} = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ir = S
of S with Ii 6= Ii+1 we have r ≤ lcm(G).

Theorem 2.70 (The ring DF (G) is Atiyah-expected)
Let G be a group and let F be a field with Q ⊆ F ⊆ C which is closed

under complex conjugation. Suppose G has property (B). Then the following
assertions are equivalent:
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(i) The ring DF (G) is semisimple ring, which is Atiyah-expected in the sense
of [12, Definition 3.6];

(ii) The ring DF (G) is semisimple and has property (K);
(iii) The composite ⊕

H⊆G,|H|<∞

G0(FH)→ G0(DF (G))

induced by the various inclusions FH → DF (G) is surjective;
(iv) The K-theoretic Atiyah Conjecture 2.40 holds for G and F ;
(v) The center-valued Atiyah Conjecture 2.46 holds for G and F .

Proof. The equivalence of the statements (i), (ii), (iii), and (v) is proved
in [12, Theorem 3.7]. The equivalence of the statements (iv) and (v) is proved
in Proposition 2.47. ut

The notion of Atiyah-expected in the sense of [12, Definition 3.6] makes
precise predictions about the numbers k and li appearing in the decomposi-
tion of DF (G) as product

∏k
i=1 Mli(Di) for appropriate division rings Di in

terms of G and F .

2.11 Strategy for a Proof of the K-Theoretic
Atiyah Conjecture in the Torsionfree
Case Following Jaikin-Zapirain

2.12 Notes

For more information about the Atiyah Conjecture we refer for instance
to [8], [9], and [18, Chapter 10], Comment 17 (by W.): This list has to be
completed.
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Chapter 9

Solutions of the Exercises

Chapter 2

2.4. Let R be a ring coming with a trace trR : R → G with values in
an abelian group G. This trace extends to matrices by the usual formula
trR(A) =

∑n
i=1 trR(ai,i) for A ∈ Mn(R). Then the Hattori-Stallings rank

dimR(P ) ∈ G of a finitely generated projective R-module P is defined to be
trR(A) where A is an element in Mn(R) with A2 = A such that the image
of the R-linear map rA : Rn → Rn induced by right multiplication with A
is R-isomorphic to P . Let B ∈ Mm(R) be another such matrix. By taking
the block sum with trivial square matrix one can arrange m = n. Then one
can find U ∈ GLn(R) with UAU−1 = B. Now the trace property implies
trR(B) = trR(UAU−1) = trR(AU−1U) = trR(A).

If we apply this to R = N (G) and trR = trN (G), we obtain a well-defined
element dimN (G)(P ) ∈ C. It remains to prove that it actually lies in R≥0.
This follows from the fact that we can alway find A ∈ Mn(N (G)) satisfying
A = A2, im(rA) ∼=N (G) P , and A = B∗B for some B ∈ Mn(N (G)). This
follows from Remark 2.5 and taking orthogonal projections. This implies
dimN (G)(P ) = trN (G)(B

∗B) ∈ R≥0.

2.10. The first assertion follows from [18, Theorem 1.9 (3) on page on
page 18] and obviously implies the second assertion.

2.37. The implication (i) =⇒ (ii) follows from Remark 2.36. The impli-
cation (ii) =⇒ (iii) is obvious. The implication (iii) =⇒ (i) is proved as
follows. Let r = inf{q ∈ 1

|FIN (G)|Z | q > 0}. As the subgroup 1
|FIN (G)|Z

is countable and closed in R, we must have r ∈ 1
|FIN (G)|Z and r > 0. This

implies r ≤ |H|−1 for every finite subgroup H ⊆ G. Hence r−1 is an upper
bound on the orders of the finite subgroups of G.

2.53. Take G =
⊕∞

i=1 Z/2
k. Choose n ∈ Z≥1 such that 21−n ≤ ε holds.

Put P =
⊕∞

k=n F [G/Z2k ], where F [G/Z2k ] is the permutation FG-module
given by the FG-set G/Z2k obtained from G by dividing out the summand
Z/2k. Then P is projective but not finitely generated and we conclude from
Theorem 2.11

45
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dimN (G)(P ) =

∞∑
k=n

dimN (G)(F [G/Z/2k]) =

∞∑
k=n

dimN (Z/2k)(F )

=

∞∑
k=n

2−k = 21−n < ε.

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8
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Astérisque, 32-33:43–72, 1976.
2. T. Austin. Rational group ring elements with kernels having irrational dimension.

Proc. Lond. Math. Soc. (3), 107(6):1424–1448, 2013.
3. L. Bartholdi. Amenability of groups is characterized by Myhill’s theorem. J. Eur.

Math. Soc. (JEMS), 21(10):3191–3197, 2019. With an appendix by Dawid Kielak.
4. J. Dodziuk, P. Linnell, V. Mathai, T. Schick, and S. Yates. Approximating L2-

invariants and the Atiyah conjecture. Comm. Pure Appl. Math., 56(7):839–873, 2003.

Dedicated to the memory of Jürgen K. Moser.
5. D. R. Farkas and P. A. Linnell. Congruence subgroups and the Atiyah conjecture.

In Groups, rings and algebras, volume 420 of Contemp. Math., pages 89–102. Amer.

Math. Soc., Providence, RI, 2006.
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TM , 4
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