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ABSTRACT. We introduce notions of finiteness obstruction, Euler characteris-
tic, L2-Euler characteristic, and Mobius inversion for wide classes of categories.
The finiteness obstruction of a category I" of type (FPg) is a class in the pro-
jective class group Ko(RT'); the functorial Euler characteristic and functorial
L2-Euler characteristic are respectively its R-rank and L2-rank. We also ex-
tend the second author’s K-theoretic Mébius inversion from finite categories
to quasi-finite categories. Our main example is the proper orbit category, for
which these invariants are established notions in the geometry and topology of
classifying spaces for proper group actions. Baez—Dolan’s groupoid cardinality
and Leinster’s Euler characteristic are special cases of the L2-Euler character-
istic. Some of Leinster’s results on M&bius-Rota inversion are special cases of
the K-theoretic M&bius inversion.
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0. INTRODUCTION AND STATEMENT OF RESULTS

The Euler characteristic is one the earliest and most elementary homotopy in-
variants. Though purely combinatorially defined for finite simplicial complexes
as the alternating sum of the numbers of simplices in each dimension, the Euler
characteristic has remarkable connections to geometry. For example, for closed
connected orientable surfaces M, the Euler characteristic determines the genus:
g=1- %x(M) For such M, if x(M) is negative, then M admits a hyperbolic
metric. More substantially, the celebrated Gauss-Bonnet Theorem computes the
Euler characteristic in terms of curvature. A further example of geometry in the
Euler characteristic is provided by the Hopf-Singer conjecture.

Of course, Euler characteristics are not only defined for finite simplicial com-
plexes or manifolds, but also for a great variety of objects, such as equivariant
spaces, orbifolds, or finite posets. Baez—Dolan considered in [2] an Euler charac-
teristic (groupoid cardinality) for finite groupoids and certain infinite ones, such
as the groupoid of finite sets. Leinster and Berger—Leinster have considered Eu-
ler characteristics not just of finite posets and groupoids, but more generally of
finite categories in [I3] and [7]. If a finite category admits both a weighting and
coweighting, then it admits an Euler characteristic in the sense of Leinster.

In the present paper, we define FEuler characteristics for wide classes of cate-
gories, provide a unified conceptual framework in terms of finiteness obstructions
and projective class groups, and extract geometric and algebraic information from
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our invariants in certain cases. This obstruction-theoretic framework works well for
both finite and infinite categories. Our main example is the proper orbit category
of a group G. In this case, our invariants are established geometric invariants of
the classifying space for proper G-actions. We also extend the second author’s K-
theoretic Mobius inversion from finite El-categories to quasi-finite El-categories (a
category I is said to be EI if each endomorphism in I' is an isomorphism). The K-
theoretic M6bius inversion does not require the categories in question to be skeletal,
unlike the M6bius inversion of Leinster [I3]. Several of the results of [I3] are special
cases.

Our point of departure is the theory of projective modules over a category and the
associated projective class group. Let I" be a small category, and R an associative
commutative ring with identity. An RI'-module is a functor from I'°P to the abelian
category of left R-modules. If I' is a group G viewed as a one-object category, then
an RI-module is nothing more than a right RG-module. The category MOD-RI"
of RI-modules is an abelian category, and therefore we automatically have the
notions of projective RI'-module, chain complexes of RI'-modules, and resolutions
of RI-modules. The finiteness obstruction, whenever it exists, lives in the projective
class group Ko(RT'), which is the free abelian group on the isomorphism classes of
finitely generated projective RI'-modules modulo short exact sequences. We say
that T is of type (FPg) if the constant RT-module R: I'°? — R-MOD admits a
resolution by finitely generated projective RI’-modules in which only finitely many
of the RT-modules are nonzero. If T' is of type (FPpR), the finiteness obstruction
o(T'; R) € Ko(RT") is the alternating sum of the classes of modules appearing in
a finite projective resolution of R. For example, if I' is a finite group of order
invertible in R, then R is itself a projective RI['-module, R provides us with a finite
projective resolution of R, and [R] is the finiteness obstruction o(I'; R). Further
examples of categories of type (FPg) are provided by any finite El-category such
that | aut(x)| is invertible in R for each object z, and any category I" which admits
a finite I'-CW-model for ET. The basics of RI'-modules and finiteness obstructions
are discussed in Sections [Il and

To obtain the Euler characteristic and the L2-Euler characteristic from the finite-
ness obstruction, we use Liick’s Splitting of Ky [15, Theorem 10.34 on page 196],
and two notions of rank for RI-modules: the RI-rank rkgr and the L?-rank rk(F2).
In the case that every endomorphism in I' is an isomorphism, that is, ' is an
El-category, Liick constructed in [I5] the natural splitting isomorphism

S: Ko(RT) — Split Ko(RT') := P Ko(Raut(z))
zeiso(T)

and its natural inverse FE, called extension. In Section [B] we recall the split-
ting (S, E), and prove that S remains a left inverse to E in the more general
case of directly finite I'. Let S, denote the ZT-component of S and let U(I") de-
note the free abelian group on the isomorphism classes of objects of I'. The
RT-rank of a finitely generated RI-module M is the element rkrr M € U(T)
which is rkg (SEM ® R aut(«) R) at T € iso(I'). This induces a homomorphism
rkpr: Ko(RT') — U(T). If T is of type (FPRr), we define the functorial Euler
characteristic x s(I'; R) to be the image of the finiteness obstruction o(I'; R) under
rkrr. The sum of the components of xf(I'; R) is called the Euler characteristic
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of T, denoted x(T'; R). Indeed, if R is Noetherian, and T is directly finite in addi-
tion to type (FPR), then x(I'; R) coincides with the topological Euler characteristic
X(BI'; R). For example, if T is a finite group, then x¢(I'; Q) is 1, and so is the ratio-
nal Euler characteristic. In Section [ we treat the topological Euler characteristic
Xx(BT'; R), the RI'-rank rkgr, the functorial Euler characteristic x ;(I'; R), and the
Euler characteristic x(I'; R).

To obtain the L2-Euler characteristic from the finiteness obstruction using the
splitting functor S, and the L2-rank rkg), we need some elementary theory of finite
von Neumann algebras. For a group G, the group von Neumann algebra of G is the
algebra of G-equivariant bounded operators ¢?(G) — ¢*(G), which we denote by
N(G). If G is a finite group, N (G) is simply the group ring CG. The von Neumann
dimension for N(G)-modules is the unique function dimy () satisfying Hattori-
Stallings rank, additivity, cofinality, and continuity as recalled in Theorem (5.2l In
the case of a finite group G, the von Neumann dimension of a CG-module is the com-
plex dimension divided by |G|. The L2?-rank of a finitely generated CI'-module M is

the element rk{”) M € U(T) ©z R which is dim(ai(z)) (SeM ©c ant(a) N (aut(z)))
at T € iso(I'). This induces a homomorphism rkg): Ko(RT) - U(T) @z R. If T
is of type (FPc), the functorial L?-Euler characteristic X(f2) (T") is the image of the
finiteness obstruction o(T'; C) under rk{}). The L2-Euler characteristic x(I') is

the sum of the components of X}Q)(I‘). For example, if I' is a finite groupoid of

type (FPc), its functorial L?-Euler characteristic has at 7 the value 1/|aut(x)|,
and the L2-Euler characteristic is the sum of these. This agrees with the groupoid
cardinality of Baez-Dolan [2] and also Leinster’s Euler characteristic in the case
of finite groupoids. If T is directly finite and of type (FFz), and R is Noetherian,
then x(BT;R) = x(T; R) = x®(T"). In Section [ we review the necessary prereq-
uisites from the theory of finite von Neumann algebras, and introduce the L2-rank

rkg), the functorial L2-Euler characteristic X;Q)(F), and the L2-Euler characteristic

x@)(T). These are defined for categories of type (L?), a slightly weaker requirement
than type (FPc).

The invariants we introduce in this paper have many desirable properties. The
finiteness obstruction, functorial Euler characteristic, Euler characteristic, func-
torial L2-Euler characteristic, and L?-Euler characteristic are all invariant under
equivalence of categories and are compatible with finite products, finite coprod-
ucts, and homotopy colimits (see Fiore-Liick—Sauer [12] for the compatibility with
homotopy colimits). Moreover, the L?-Euler characteristic is compatible with isofi-
brations and coverings between finite groupoids (see Subsection [5.5). The L2-Euler
characteristic coincides with the classical L2-Euler characteristic in the case of a
group, for finite groups this is x(?(G) = ﬁ Another advantage of the L2-Euler
characteristic is that it is closely related to the geometry and topology of the clas-
sifying space for proper G-actions, a topic to which we return in Section

After this treatment of finiteness obstructions and various Euler characteristics,
we turn in Section [0l to our next main result: the generalization of the second au-
thor’s K-theoretic Mobius inversion to quasi-finite El-categories. We introduce the
restriction-inclusion splitting Res: Ko(RT') = Split Ko(RT'): I in Subsection
The K -theoretic Mébius inversion

w: Split Ko(RT') = Split Ko(RT'): w
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compares the splitting (Res,I) with the splitting (S, E) in Theorem [622] See
Subsection for the definition of (p,w) in terms of chains in T and hom-sets of
I". A computationally useful byproduct of the comparison via Mobius inversion is
the equation

S(o(lsR)) = p <(0(m; R))feisom)

for T of type (FPr). For example, this enables us to compute in Theorem
the finiteness obstruction and Euler characteristics of a finite El-category in terms
of chains. The K-theoretic Mdbius inversion is also compatible with the L2-rank
rk(F2) and the pair (7Z?,@?)) as in Subsection All of these splittings and
homomorphisms are illustrated explicitly for G-H-bisets in Subsection The
rest of Section [6] compares and contrasts the invariants for I' and I'°P, which can
generally be quite different. Important special cases are Mdbius-Rota inversion for
a finite partially ordered set (Example[624)), Leinster’s Mobius inversion for a finite
skeletal category with trivial endomorphisms (Example [6.20]), and rational Mobius
inversion for a finite, skeletal, free El-category (Example [6.33]).

In Section [ we recall the groupoid cardinality of Baez—Dolan [2] and the Euler
characteristic of Leinster [I3] and make comparisons. The groupoid cardinality
coincides with the L2?-Euler characteristic for finite groupoids. Leinster’s Euler
characteristic coincides with the L?-Euler characteristic for finite, free, skeletal EI-
categories. Here “free” is not meant in the usual category-theoretic sense, but rather
in the sense of group actions. We say that a category T is free if the left aut(y)-
action on mor(x,y) is free for every two objects z,y € ob(I'). If T is not free, then
x@(T) could very well be different from Leinster’s Euler characteristic of T' (see
Remark [T4]). Our invariants are more sensitive than Leinster’s Euler characterstic.
For example, Leinster’s Euler characteristic for finite categories only depends on
the set of objects ob(T") and the orders | morr(x,y)|. As such, it cannot distinguish
between the group Z/27Z and the two-element monoid consisting of the identity
and an idempotent. The finiteness obstruction and the L?-Euler characteristic can
distinguish these. Leinster’s Euler characteristic cannot distinguish between I' and
I'°P, while the functorial Euler characteristic, the functorial L2-Euler characteristic,
and the L2-Euler characteristic can. In Section [0 we also explain how to construct
weightings in the sense of Leinster from finite free resolutions of the constant RI'-
module R as well as from finite I'-C'W-models for the classifying I'-space. Several
of the weightings in Leinster’s article [I3] arise in this way.

As mentioned at the outset, Euler characteristics of spaces and manifolds contain
geometric information, such as genus, curvature, or evidence of a hyperbolic met-
ric. Similarly, the Euler characteristics of certain categories contain geometric and
algebraic information. The topic of Section []lis our main example: the proper orbit
category of a group G, denoted Or(G). Its objects are the homogeneous sets G/H
for finite subgroups H of GG, and its morphisms are the G-equivariant maps between
such homogeneous sets. The invariants of the category Or(G) are closely related
to the equivariant invariants of a model EG for the classifying space for proper
G-actions. Namely, if the model EG is a finitely dominated G-C'W-complex, then
our category-theoretic finiteness obstruction o(Or(G); Z) agrees with the equivari-
ant finiteness obstruction of EG. If the model EG is even a finite G-C'W-complex,
then both the functorial Euler characteristic x(Or(G);Z) and the functorial L*-

Euler characteristic X@(Q(G}) agree with the equivariant Euler characteristic of
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EG. Examples of groups G with finite models EG include hyperbolic groups, groups
that act simplicially cocompactly and properly by isometries on a CAT(0)-space,
mapping class groups, the group of outer automorphisms of a finitely generated free
group, finitely generated one-relator groups, and cocompact lattices in connected
Lie groups.

In addition to these geometric aspects of our invariants in the case of the category
Or(G), we also have interesting algebraic consequences of the K-theoretic Mobius
inversion and its compatibility with the L?-rank. For example, if the category
Or(G) is of type (FPg) and satisfies condition (I) of Condition [6.26] then the
functorial L?-Euler characteristic of Or(G) is the L?-Mdébius inversion of the L2-
FEuler characteristics of Weyl groups associated to finite H < G:

P or(@)) =7 ((X(2)(WGH))<H>.,H<00>'

More substantially, for finite G we deduce the Burnside ring congruences, which
distinguish the image of the character map

ch = ch: U(Or(G)) - P Z.
(H)

Here U(Or(G)) is the free abelian group on the set of isomorphism classes of objects
in Or(G), we identify U(Or(G)) with the Burnside ring A(G), and the direct sum
of Z’s is over the conjugacy classes (H) of subgroups of the finite group G. The
character map counts H-fixed points, namely, for any finite G-set S we have ch(S) =
(1SH]) ()" An element ¢ lies in the image of ch if and only if the integral congruence

V(é.)(H) =0 mod |WgH|

holds for every conjugacy class (H) of subgroups of G (the matrix v is specified in
Subsection B4]). We finish Section [ by working out everything explicitly for the
infinite dihedral group.

The last two sections of the paper are explicit examples. In Section[@lwe consider
a small example of a category which is not EI and calculate its various K-theoretic
morphisms: the splitting functor S, the extension functor E, the restriction functor
Res, and the homomorphism w. In Section [I0] we consider a category A which does
not satisfy property (FPg). Leinster considered this category in Example 1.11.d
of [I3] and proved that it does not admit a weighting. We prove that A does not
satisfy property (FPg), classify the finitely generated projective RA-modules, and
compute the projective class group Ky(RA), the Grothendieck group of finitely
generated QA-modules Go(QA), and the homology H, (BA; R) = H,(A; R).
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1. BASICS ABOUT MODULES OVER A CATEGORY

Throughout this paper, let I' be a small category and let R be an associative,
commutative ring with identity. We explain some basics about modules over a cat-
egory. More details can be found in Liick[I5], Section 9]. An RI'-module is a functor
from I'°P into the abelian category of left R-modules. This is a natural generaliza-
tion of the notion of right RG-module for a group GG. The category of RI'-modules
forms an abelian category MOD-RI'. An object of MOD-RI is projective if and
only if it is a direct summand in an RI’-module which is free on a collection of sets
indexed by ob(T"). Given a functor F': I';y — T's, we have induction and restric-
tion functors indp: MOD-RI'; & MOD-RI's: resp, and these are adjoint. We
also introduce in this section the projective class group Ko(RT'), which provides a
home for the finiteness obstruction o(T'; R). The projective class group Ko(RT) is
the free abelian group on the isomorphism classes of finitely generated projective
RT'-modules modulo short exact sequences. The induction functor induces a homo-
morphism of projective class groups, as does the restriction functor, provided F' is
admissible.

Definition 1.1 (Modules over a category). A (contravariant) RT'-module is a con-
travariant functor I' - R-MOD from I' to the abelian category of R-modules. A
morphism of RI'-modules is a natural transformation of such functors. We denote
by MOD-RT the category of (contravariant) RT-modules.

Example 1.2 (Modules over group rings). Let G be a group. Let G be the asso-
ciated groupoid with one object and G as its set of morphisms with the obvious
composition law. Then the category MOD-RG of contravariant RG-modules agrees
with the category of right RG-modules, where RG is the group ring of G with co-
efficients in R.

Example 1.3. Let I be the category having one object and the natural numbers
N ={0,1,2,...} as morphisms with the obvious composition law. Then MOD-RT’
is the category whose objects are endomorphisms of R-modules and whose set of
morphisms from an endomorphism f to an endomorphism g is given by the set of

commutative diagrams
M M

NT>N

f
—

If one replaces N by Z and endomorphisms by automorphisms, the corresponding
statement holds.

The (standard) structure of an abelian category on R-MOD induces the struc-
ture of an abelian category on MOD-RI in the obvious way, namely objectwise. In
particular, the notion of a projective RI'-module is defined. Namely, an RI-module
P is projective if for every surjective RI'-morphism p: M — N and RI-morphism
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f: P — N there exists an RT-morphism f: P — M such that po f = f, where p is
called surjective if for any object € T’ the R-homomorphism p(z): M (z) — N(x)
is surjective.

Consider an object = in I'. For a set C' we denote by RC' the free module with
C as basis, i.e., the R-module of maps with finite support from C' to R. Denote by

(1.4) Rmor(?,z) forz € ob(I)

the RT-module which sends an object y to the R-module Rmor(y,z), and a mor-
phism w:y — z to the R-map induced by the morphism of sets mor(z,z) —
mor(y, z) that maps v: z -z tovou: y — .

Lemma 1.5. Let M be any RT'-module. Consider any element o € M(x). Then
there is precisely one map of RI'-modules

Fy: Rmor(?,2) - M
such that F,(z): Rmor(z,z) — M(z) sends id, to a.

Proof. This is a direct application of the Yoneda Lemma. Given u: y — x, define
Fo(u) == M(u)(a). O

Since T' is by assumption small, its objects form a set denoted by ob(I'). An
ob(T")-set C' is a collection of sets C' = {C, | * € ob(I")} indexed by ob(T'). A
morphism of ob(T')-sets f: C'— D is a collection of maps of sets {f: Cy — Dy |
x € ob(I')}. Denote by ob(I')-SETS the category of ob(I')-sets. We obtain an
obvious forgetful functor

F: MOD-RT — ob(T')-SETS.

Let
B: ob(I')-SETS — MOD-RT

be the functor sending an ob(I")-set C' to the RI'-module

(1.6) B(C) := @ @Rmor(?,x).

z€ob(I') Cx
We call B(C) the free RT'-module with basis the ob(T")-set C. This name is justified
by the following consequence of Lemma [[L5l and the universal property of the direct
sum.

Lemma 1.7. We obtain a pair of adjoint functors by (B, F).

Lemma [[.7] implies that the abelian category MOD-RI" has enough projectives.
Namely, any free RI-module is projective and for any RI-module M there is
a surjective morphism of RT-modules B(F(M)) — M, given by the adjoint of
id: F(M) — F(M). Therefore the standard machinery of homological algebra ap-
plies to MOD-RI". We also conclude that an RI-module is projective if and only
if it is a direct summand in a free RI'-module.

An ob(I')-set C'is finite if the cardinality of [, ¢,y Cw is finite. An RI'-module
M is finitely generated if and only if there is a finite ob(I')-set C' together with a
surjective RI-morphism B(C') — M. An RT module is finitely generated projective
if and only if it is a direct summand in free RI-module B(C') for a finite ob(I")-set
C.
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Definition 1.8. If M: I'°? — R-MOD and N: I' - R-MOD are functors, then
the tensor product M ®gr N is the quotient of the R-module

P M(z) @k N(x)

zeob(T)
by the R-submodule generated by elements of the form
(M(f)m) ©n —me (N(f)n)

where f : & — y is a morphism in T', m € M(y), and n € N(z). The tensor product
is an R-module, not an RI'-module.

Definition 1.9 (Projective class group). The projective class group Ko(RT') is the
abelian group whose generators [P] are isomorphism classes of finitely generated
projective RI-modules and whose relations are given by expressions [Py] — [P1] +
[P,] = 0 for every exact sequence 0 — Py — P; — P, — 0 of finitely generated
projective RI'-modules.

Given a functor F': I'y — I'y, induction with F is the functor
(1.10) indp: MOD-RI'y — MOD-RI'y

which sends a contravariant RI'1-module M = M(?) to the contravariant RT's-
module M (?) ®gr, Rmorr,(??, F(?)) which is the tensor product over RT'; with
the RT';-RT's-bimodule Rmorr, (77, F(?)) (see Liick [I5] 9.15 on page 166] for more
details). The functor indp respects direct sums over arbitrary index sets and sat-
isfies indp (R morr, (7, 2)) = Rmorr, (77, F(x)) for every x € ob(I'1). Hence indp
sends finitely generated RI';-modules to finitely generated RI's-modules and sends
projective RI';-modules to projective RI's-modules. The functor indp induces a
homomorphism

(1.11) Foi Ko(RT'1) —  Ko(RI2),

which depends only on the natural isomorphism class of F'. Given functors Fy: I'g —
'y and Fy: 'y — T'e, the functors of abelian categories indp or, and indg oindg,
are naturally isomorphic and hence (Fy o Fp), = (F1)x 0 (Fp)«.

Given a functor F': I'y — I's, restriction with F is the functor of abelian cate-
gories

(1.12) resp: MOD-RI'; — MOD-RTy, M+ MoF.

It is exact and sends the constant RI'>-module R to the constant RI';-module R.
In general it does not send a finitely generated projective RI's-module to a finitely
generated projective RI';-module. We call F' admissible if resp sends a finitely
generated projective RI's-module to a finitely generated projective RI'j-module.
The question when F' is admissible is answered in Liick [I5] Proposition 10.16 on
page 187]. If F' is admissible, it induces a homomorphism

The following is proved in Liick [I5, 9.22 on page 169] and is based on the fact
that resp is the same as the functor — ® gr, Rmorr, (F(?),77).

Lemma 1.14. Given a functor F': Ty — I'1, we obtain an adjoint pair of functors
(indp,resp).
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2. THE FINITENESS OBSTRUCTION OF A CATEGORY

After the introduction to RI™-modules in Section[Il we can now define the finite-
ness obstruction of a category in terms of chain complexes and establish its basic
properties. Since MOD-RI is abelian, we can talk about RI'-chain complexes. In
the sequel all chain complexes C, will satisfy C,, = 0 for n < —1. A finite pro-
jective RI'-chain complex P, is an RI'-chain complex such there exists a natural
number N with P, = 0 for n > N and each RI-module P; is finitely generated
projective. Let M be an RI-module. A finite projective RI'-resolution of M is a
finite projective RI-chain complex P, satisfying H,(P,) = 0 for n > 1 together
with an isomorphism of RI™modules M = Hy(P,). If P, can be chosen as a finite
free RI'-chain complex, we call it a finite free RI'-resolution.

If the constant RI-module R: I'°? — R-MOD with value R admits a finite
projective RI'-resolution or a finite free RI'-resolution, we say that I' is of type
(FPRr) or of type (FFR) respectively. Examples of categories of type (FPpr) are:
any finite group of order invertible in R, and more generally, any finite category
in which every endomorphism is an isomorphism and |autr(z)| is invertible in R
for each object x. Any category I' which admits a finite I'-CW-model for ET is of
type (FFr) and therefore of type (FP ), in particular any category with a terminal
object is of type (FFr) and (FPg).

If T is of type (FPR), we define the finiteness obstruction o(T'; R) € Ko(RT") to be
the alternating sum of the classes [P,] appearing in a finite projective resolution of
R. If G is a finitely presented group of type (FPz), then the finiteness obstruction
is the same as Wall’s finiteness obstruction o(BG) € Ky(ZQ).

Type (FPR) and the finiteness obstruction have all the properties one could hope
for. Any category equivalent to a category of type (FPg) is also of type (FPg), and
the induced map of an equivalence preserves the finiteness obstruction. If I'; and I'y
are of type (FPg), then so are I'; x I's and I'y ITT'2, and the finiteness obstructions
behave accordingly. Restriction along admissible functors preserves type (FPg)
and finiteness obstructions, as does induction along right adjoints. In [12], we
prove that type (FPg), type (FFg), and the finiteness obstruction are compatible
with homotopy colimits.

Definition 2.1 (Finiteness obstruction of an RI'-module). Let M be an RT-module
which possesses a finite projective resolution. The finiteness obstruction of M is

o(M) = (=1)"[P,] € Ko(RT),
n>0
where P, is any choice of a finite projective RI'-resolution of M.
This definition is a special case of Liick [I5] Definition 11.1 on page 211]. It is
indeed independent of the choice of finite projective resolution. If P is a finitely
generated projective RI-module, then of course o(P) = [P]. Given an exact se-

quence 0 — My — M; — Ms — 0 of RI'-modules such that two of them possess

finite projective resolutions, then all three possess finite projective resolutions and
we get in Ko(RT)

(2.2) o(Mp) — o(My) + o(M3y) = 0.
All this follows for instance from Liick [I5l Chapter 11].
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Definition 2.3 (Type (FPr) and (FFp) for categories). We call a category T
of type (FPr) if the constant functor R: I'°? — R-MOD with value R defines a
contravariant RI'-module which possesses a finite projective resolution.

We call a category I' of type (FFg) if R possesses a finite free resolution.

If G is a group and G is the groupoid with one object and G as automorphism
group of this object, then the notions (FPg) and (FFg) for G of Definition
agree with the classical notions (FPr) and (FFg) for the group G (see Brown [9]
page 199]).

Example 2.4 (Finite groups of invertible order are of type (FPr)). Let G be a
finite group whose order is invertible in the ring R. Then the RG-map RG — R,

nggHng

geG geG

admits a right inverse, namely 1 — ‘—é‘ > gec g- The trivial RG-module R is then a
direct summand of a free RG-module, and is therefore projective. A finite projective
resolution of R is simply the identity R — R. The group G and category G are of
type (FPg).

Example 2.5 (Finite El-categories with automorphism groups of invertible order
are of type (FPg)). We may extend Example [Z4] to certain categories. If T' is a
category in which every endomorphism is an automorphism, |aut(z)| is invertible
in R for every object x, the category I' has only finitely many isomorphism classes
of objects, and | morr(z,y)| is finite for all objects « and y, then I is of type (FPR).
This will follow from Lemma

Example 2.6 (Categories I" with a finite I'-CTW-model for ET are of type (FFg)).
If I is a category which admits a finite I'-C'W-model X for the classifying I'-space
ET, then the cellular R-chains of X form a finite free resolution of the constant
RT-module R. For example, the categories {1 +— 0 — 2} and {a = b} admit
finite models, as does the poset of non-empty subsets of [¢] = {0,1,...,q}. Every
category with a terminal object also admits a finite model. (Our paper [12] recalls
the I'-CW-complexes of Davis—Liick [IT] in the context of Euler characteristics and
homotopy colimits.)

Definition 2.7 (Finiteness obstruction of a category). The finiteness obstruction
with coefficients in R of a category T of type (FPg) is

o(T; R) := o(R) € K,(RT),

where o(R) is the finiteness obstruction in Definition 21lfor the constant RT-module
R . We also use the notation [R], or simply [R], to denote the finiteness obstruction

o(T; R).

The notation [R] for the finiteness obstruction is quite natural, for in Example[2.4]
the module R is projective, and the alternating sum of Definition 2.11is merely [R].
However, in general, the module R may not be projective.

The homomorphism F. of (LT]) depends only on the natural isomorphism class
of F'. Hence F, is bijective if F' is an equivalence of categories. In general indp is
not exact and indg R is not isomorphic to R. However, this is the case if F' is an
equivalence of categories. This implies
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Theorem 2.8 (Invariance of the finiteness obstruction under equivalence of cat-
egories). Let T'y and Ty be two categories such that there exists an equivalence
F: Ty =Ty of categories.

Then Ty is of type (FPgr) if and only if Ts is of type (FPr). In this case the
isomorphism induced by F

F.: Ko(RTy) = Ko(RT5)

maps o(T'1; R) to o(T; R).
Moreover, T'y is of type (FFr) if and only if Ty is of type (FFR).

One easily checks

Theorem 2.9 (Restriction). Suppose that F': Ty — Ty is an admissible functor
and Iy is of type (FPg).

Then Ty is of type (FPgr) and the homomorphism F*: Ko(RT's) — Ko(RT)
sends o(T'2; R) to o(T'1; R).
Theorem 2.10 (Right adjoints and induction). Suppose for the functors F: T'y —
Ty and G: Ty — Ty that they form an adjoint pair (G, F). Suppose that T'y is of
type (FPR).

Then Ty is of type (FPgr) and

F.(o(T1;R)) = o(T'2;R).

Proof. Recall that indp agrees with —®pgp, Rmorp, (7?7, F(?)) and resc agrees with
— @pr, Rmorr, (G(?7),?7). The adjunction (G, F) (see Lemma [[L.T4) implies that
resqg = indp. Hence G is admissible. We conclude from Theorem [2.9]

F.(0o(T1; R)) = G*(o(T'1; R)) = o(T2; R). O

Example 2.11 (Category with a terminal object). Suppose that I' has a terminal
object . Then the constant RI-module R with value R agrees with the free
RT-module Rmor(?,z). Hence I' is of type (FFg) and the finiteness obstruction
satisfies

o(I'; R) = [Rmor(?,z)] € Ko(RT).
Let i: {#*} — T be the inclusion of the trivial category which has precisely one
morphism and sends the only object in {*} to x. Then the induced map

sends [R] to o(T'; R). This follows also from Theorem taking F' =i and G to
be the obvious projection.

Example 2.12 (Wall’s finiteness obstruction). Let G be a group. Let G be the
groupoid with one object and G as morphism set with the composition law coming
from the group structure. Because of Example the group G is of type (FPg)
in the sense of homological algebra (see Brown [0, page 199]) if and only if G is of
type (FPR) in the sense of Definition [Z3] and the projective class group Ky(ZG)
of the group ring ZG agrees with KO(Z@) introduced in Definition

Suppose that G is of type (FPz) and finitely presented. Then there is a model
for BG which is finitely dominated (see Brown [9 Theorem 7.1 in VIIL.7 on page
205]) and Wall (see [31] and [32]) has defined its finiteness obstruction

o(BG) € Ky(ZG).
It agrees with the finiteness obstruction o(G; Z) of Definition 27



FINITENESS OBSTRUCTIONS AND EULER CHARACTERISTICS OF CATEGORIES 13

The elementary proof of the next result is left to the reader.

Theorem 2.13 (Coproduct formula for the finiteness obstruction). Let I'y and I'y
be categories of type (FPr). Then their disjoint union I'y 11Ty has type (FPr) and
the inclusions induce an isomorphism
Ko(RT1) & Ko(RT3) — Ko(R(T'y I1Ty))

which sends (0(T'1),0(T'3)) to o(T'; I Tg).

Let = be any object of I'. We denote by aut(x) the group of automorphisms of
x. We often abbreviate the associated group ring by
(2.14) Rlz] = Rlaut(x)].

Example 2.15 (The finiteness obstruction of a finite groupoid). Let G be a finite
groupoid, i.e., a (small) groupoid such that iso(G) and autg(z) for any object = €
ob(G) are finite sets. Then I' is of type (FPg) if and only if for every object
z € ob(G), |autg(z)| - 1x is a unit in R (see Lemma [E.I5[(v))).

Suppose that G is of type (FPg). Then the trivial R[x]-module R is finitely
generated projective and defines a class [R] in Ko(R][x]) for every object x € ob(G).
We obtain from Theorem and Theorem a decomposition

Ko(RG) = (D Ko(Rlz]).
zeiso(T)
The finiteness obstruction o(G) has under the decomposition above the entry [R] €
Ko(R[z]) for € iso(T").
Let 'y and T's be two small categories. Then their product I'y x I's is a small
category. Since R is commutative, the tensor product ®z defines a functor
®pg: MOD-RI'; x MOD-RT's — MOD-R(T'; x I').
Namely, put (M @ N)(z,y) = M(x) ®g N(y). Obviously
(Mi®M2)@r(N1®N2) = (Mi®@rN1)®(M1®pN2) @ (M2®prN1) @ (M2®r N2),
and for 1 € ob(T';) and z2 € ob(I'2) we obtain isomorphisms of R(I'; xI'y)-modules
Rmorr, (?,21) ®g Rmorr, (??, z2) = Rmorr, xr, ((?,77), (z1,22)).
Hence we obtain a well-defined pairing
(216) XRR: Ko(er) X7z KO(RFQ) — Ko(R(Fl X FQ)), [Pl] ® [PQ] — [Pl XRr PQ].
Theorem 2.17 (Product formula for the finiteness obstruction). Let I'y and I'y be
categories of type (FPgr).
Then I'1 x 'y is of type (FPr) and we get
o(I'1 xT9;R) = o(T'1;R)®@ro(T'2; R)
under the pairing (210]).

Proof. Let P! be a finite projective resolution of R over MOD-RI; for i = 1,2.
The evaluation of a projective RI';-module at an object is projective and hence
flat as R-module since this is obviously true for Rmorr, (7, z) and every projective
RT;-module is a direct sum in a free one. Hence the R(I'y x I'y)-chain complex
Pl ®p P? is a projective RI'; x RI's-resolution of R. Now an easy calculation
(see Liick [I5] 11.18 on page 227] shows

o(T'1 x T9; R) = o(P} @ P?) = o(P!) @r o(P?) = o(T'1; R) @r o(T2; R). O
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Example 2.18. Let I' be the category which has precisely one object x and two
morphisms id,: * — x and p: * — x such that pop = p. Given an R-module
M, let I;(M) for i = 0,1 be the contravariant RI-module which sends p: z — =
toi-idy: M — M. Given any RI'-module N, we obtain an isomorphism of RI'-
modules

o

[+ Io(ker(N(p))) ® I (im(N (p))) — N

from the inclusions of ker(N(p)) and im(N(p)) to N(z). This isomorphism is nat-
ural in N and respects direct sums. If N = Rmor(?,z), we have ker(N(p)) =
im(N(p)) = R. Hence I;(R) is a finitely generated projective RT-module for
i = 0,1. This implies that N is a finitely generated projective RI-module if and
only if ker(N(p)) and im(N(p)) are finitely generated projective R-modules. Hence

we obtain an isomorphism
Ko(RT) = Ko(R) © Ko(R),  [P] = ([ker(P(p))], [in(P(p))])-

Tts inverse sends ([Pl [P1]) to [Io(Po) @ I1(P1)]. The constant RI-module R agrees
with I; (R). Hence the category I' is of type (FPr) and the finiteness obstruction
o(T'; R) is sent under the isomorphism above to the element (0, [R]).

3. SPLITTING THE PROJECTIVE CLASS GROUP

In this section we will investigate the projective class group Ko(RT'). In the case
that every endomorphism in I' is an isomorphism, we construct the natural splitting
isomorphism

S: Ko(RT) — Split Ko(RT) := P Ko(Rautr(z))
zeiso(T)

and its natural inverse E, called extension. This is Liick’s Splitting of Ko(RI")
in [I8, Theorem 10.34 on page 196]. If T' is merely directly finite rather than
EL we still have S o ' = idgpi¢ k,(rr) and the naturality of S, though S is no
longer bijective. The splitting functor S, of B3] and the extension functor E, of
B4 respect direct sums and send epimorphisms to epimorphisms. The extension
functor E, sends free R autr(z)-modules to free RT'-modules. If T is directly finite,
the restriction functor S, sends free RT-modules to free R autr(z)-modules and
respects finitely generated and projective. The relationship between El-categories,
directly finite categories, and Cauchy complete categories is clarified in Lemma
5. [0}

Recall that a ring is called directly finite if for two elements r, s € R we have the
implication rs =1 = sr = 1. Therefore we define

Definition 3.1 (Directly finite category). A category is called directly finite if for
any two objects z and y and morphisms u: z — y and v: y — x the implication
vu =id, == wv =id, holds.

Lemma 3.2 (Invariance of direct finiteness under equivalence of categories). Sup-
pose I'1 and T'y are equivalent categories. Then I'y is directly finite if and only if
Ty is directly finite.
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Proof. Suppose F': I'y — I'y is fully faithful and essentially surjective, that I'y is
directly finite, and vu = id, in I';. Then we can extend to a commutative diagram

x

=

(@) (b

1R
1R

F

2(f) ) F(g)

Hence F(go f) = idp(q), and go f = id,. The direct finiteness of I'; then implies
fog=1idy. Together with the commutativity of the two right squares above, this
implies u o v = id,, so that I'y is also directly finite. O

Let M be any RI-module and let x be any object. We denote by autr(z) (or
aut(x) when I is clear) the group of automorphisms of . As in[2Z14] we abbreviate
the associated group ring by R[x] := R[aut(x)]. Define an R-module S; M by the
cokernel of the map of R-modules

S, M := coker D M (u): T M(y) — M(z)
U Y ur Y
wu is not an isomorphism wu is not an isomorphism

In other words, S, M is the quotient of the R-module M (x) by the R-submodule
generated by all images of R-module homomorphisms M (u): M(y) — M(x) in-
duced by all non-invertible morphisms u: z — y in I'. One easily checks that
the right R[xz]-module structure on M (z) coming from functoriality induces a right

R[z]-module structure on S, M. Thus we obtain a functor called splitting functor
at x € ob(I')

(3.3) Sp: MOD-RT — MOD-R|z],

where MOD-R]z] denotes the category of right R[z]-modules. Define a functor,
called extension functor at x € ob(T'),

(3.4) E,: MOD-R[z] - MOD-RI'
by sending an R[z]-module N to the RI-module N ®g[,; Rmor(?, z).

Lemma 3.5 (Extension/splitting, direct sums, and free/projective modules).

(i) The functor E, respects direct sums. It sends epimorphisms to epimor-
phisms. It sends a free R[x]-module with the set C as basis to the free
RT'-module with the ob(T')-set D as basis, where D, = C and D, = 0 for
y # x. It respects finitely generated and projective;

(ii) We have Sy o E, =0, if x and y are not isomorphic. For every projective
right R[x]-module P we have a surjective map of R[x]-modules, natural in
P and compatible with direct sums

op: P — S, 0 E.(P);

(iii) The functor S, respects direct sums. It sends epimorphisms to epimor-
phisms and sends finitely generated RT-modules to finitely generated R[x]-
modules;
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(iv) Suppose that T' is directly finite. Then S, sends a free RT-module with
the ob(T")-set C as basis to the free R[z]-module with Hyeob(r),y:f Cy as
basis and respects finitely generated and projective. Further, op appearing
in assertion is bijective for every projective right R|x]-module P.

Proof. Obviously E, is compatible with direct sums. It sends epimorphisms to
epimorphisms since tensor products are right exact. We have

E.(R[z]) = R[x] ®g[z) Rmor(?,z) = Rmor(?, z).

Suppose that 2 and y are not isomorphic. Let P be an R[x]-module. Consider
an element p@u € E, P(y) = P®p[y Rmor(y, z). Since 2 and y are not isomorphic,
w is not an isomorphism. The element p ® u lies in the image of the map induced
by composition from the right with «

P ®pg[y) Rmor(z, ) — P @pg[y) Rmor(y, ),
a preimage is given by p ® id,. Hence S, o E;(P) = 0.

Define an R[z]-map P — P ®p[y mor(z,z) by sending p € P to p ®@p[, id,. Its
composition with the canonical projection P ® g, mor(z,x) — S, o E,(P) yields
an R[x]-map

op: P— S, 0 E,(P).
Obviously it is surjective, natural in P and compatible with direct sums.

This is obvious except that S, respects finitely generated. We know already
that S,Rmor(?,z) = 0 if  and y are not isomorphic and that there is an epimor-
phism R[z] — S, Rmor(?, x). Hence S, Rmor(?,y) is a finitely generated R aut(z)-
module for all y € ob(I") and the claim follows.

Consider an endomorphism u: « — x. It lies in the image of the map mor(z, z) —

mor(z,x), v — v owu, a preimage is id,. If u is an isomorphism, then there exists

no morphism w: x — y such that w is not an isomorphism and u lies in the image

of mor(y, x) — mor(x,x), v — vow, since I' is directly finite. This implies that
OR[z]: R[7] =5 S, 0 Ey(R[z]) = Sy Rmor(?, z)

is an isomorphism. Now assertion follows from compatibility with direct sums
and the facts that an RI'-module is projective if and only if it is a direct summand
in a free R[-module and that S, respects epimorphisms. 0

We denote by iso(I") the set of isomorphism classes of objects of I'. Choose for
any class T € iso(T") a representative x € T. Define

(3.6) Split Ko(RT) == @ Ko(R[z)).
zeiso(T)

Provided that T' is directly finite, we obtain from Lemma [3.5] homomorphisms

(3.7) S: Ko(RT) — Split Ko(RT),  [P] — {[S.P] | T € iso()};
(3.8) E: Split Ko(RI') = Ko(RT),  {[Qa] |Z €iso(l)} = > [E.Qu,
zeiso(T)

and get

Lemma 3.9. Suppose that T is directly finite. The composite S o E is the identity.
In particular S is split surjective.
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The group Split Ko(RT') is easier to understand than Ko(RT) since its input
are projective class groups over group rings. We will later explain that for an
El-category the maps E and S are bijective (see Theorem B14]).

Definition 3.10. A category is an FEl-category if every endomorphism is an iso-
morphism.

The El-property is invariant under equivalence of categories.
Lemma 3.11. Suppose I'1 and I's are equivalent categories. Then I'y is an EI-
category if and only if T's is an El-category.

Proof. Let I'; be an El-category, F': I’y — I's an equivalence of categories, and
b € ob(T'2). Then b = F(a) for some a € ob(I';). We have isomorphisms of
monoids

morr, (a,a) = morr, (F(a), F(a)) = morr, (b, b).

The first monoid is a group, and hence so is the last. O

Definition 3.12 (Cauchy complete category). A category I' is Cauchy complete if
every idempotent splits, i.e., for every idempotent p: x — x there exists morphisms
t:y—xand r: x — y with ro?¢=1id, and ¢ or = p.
Lemma 3.13. Consider a category I'. Consider the statements
(i) T is an El-category;
(ii) Ewery idempotent p: x — x in I salisfies p = id,;
(iii) T is directly finite and Cauchy complete.
Then :> cmd<:> @)
If mor(z, z) is finite for all x € ob(T), then[(1)] <= [(ii)| < [(ii1)}
Proof. = |(ii)| If p: 2 — x is an idempotent, it is an endomorphism and hence
an isomorphism. Hence id, =p~top=p lopop=id,op=p.
= Consider morphisms u: x — y and v: y — x with vu = id,. Then
(uv)? = wvuv = uoid, ov = ww is an idempotent and hence by assumption uv = id,.
Obviously I' is Cauchy complete.
== Consider an idempotent p: z — z. Since I' is Cauchy complete, we
can choose morphisms i: y — x and r: * — y with r o4 =id, and i o = p. Since
T" is directly finite, p =i or =id,.
It remains to show = |(1)| provided that mor(z,z) is finite for all objects
x € ob(T'). Consider an endomorphism f: z — x. Since mor(z,z) is finite, there
exists integers m,n > 1 with f™ = f™+". This implies f™ = f™*+*" for all natural
numbers k > 1. Hence we get f™ = ™" for some n > 1 with n —m > 0. Then

f’ﬂ o f”l — f271 — fm-‘rn o f’ﬂ—m — fm o f’ﬂ—m — f’ﬂ'
Hence f™ is an idempotent. Since then f” = id for some n > 1, the endomorphism
f must be an isomorphism. O

The next result is from Liick [I5, Theorem 10.34 on page 196].

Theorem 3.14 (Splitting of Ky(RT) for El-categories). IfT' is an El-category, the
group homomorphisms

S: Ko(RT) — Split Ko(RT),  [P]— {[S2P] | T € iso(I)};

E: Split Ko(RT) — Ko(RT),  {[Q.] |Z €iso(D)} = Y [E.Qul,
zeiso(T)
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of BX) and BJ) are isomorphisms and inverse to one another. They are co-
variantly natural with respect to functors F : 'y — T’y between El-categories, that
18

(Split F,) o ST = g2 o

and
F, o EFfTY = BRY2 o (Split F,).

The functor Split F, is defined in more detail in Lemma [Z13 Moreover, S and
E are also contravariantly natural with respect to admissible functors F : Ty — T’y
between El-categories, that is

SE o p* = Split F* o ST
and
BB o (Split F*) = F* o B2,

Example shows that the EI hypothesis on ' in Theorem [B.14] is necessary
for S and E to be bijections. Though the splitting homomorphism S is no longer
an isomorphism in general, it is covariantly natural in the more general setting of
directly finite categories.

Lemma 3.15. Let I'y and I's be directly finite categories and F: Ty — T's be a
functor.
Then the following diagram commutes

F,
Ko(er) —_— KO(RFQ)

Smﬁl j{erg

plit F
where the vertical maps have been defined in [B), the upper horizontal map is
induced by induction with F, and the lower horizontal arrow is given by the matriz
of homomorphisms
((FT@)*)feiso(Fl),yeiso(rz)
where (F5)« is trivial if F(x) # 7 and given by induction with the group homo-
morphism F,: autr, () — autr, (F(x)), f+— F(f) fory= F(z).
In particular, the commutativity of the diagram guarantees

I o F. = Foo SIT

Proof. For two objects x and y in I'y, let mor=(z, y) be the set of isomorphisms from
x to y. The covariant RT'1-module Rmor=(z,?) assigns to an object x the trivial
R-module {0} if T # 7 and Rmor=(z,y) if T = 7. The evaluation of Rmor=(z,?)
at a morphism f: y; — yo is given by

Rmor™ (x,y;) — Rmor™(z,y2), gw fog

if f is an isomorphism and T = ¥, and by the trivial R-homomorphism otherwise.
This definition makes sense since I'y is directly finite. Obviously Rmor=(z,?) is an
RT';-R[z]-bimodule. Hence we obtain a functor

MOD-RI'; — MOD-R[z], P+ P ®gr, Rmor™(z,7).
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It is naturally isomorphic to the splitting functor S, defined in ([B3]). Namely, a
natural isomorphism is given by the R[x]-isomorphisms which are inverse to one
another

S,P — P®gr, Rmor~(z,?), P+ p®id,.
and
P ®gr, Rmor™ (z,?) = S, P, p® f+— P(f)(p).

Consider a projective RT'y-module P. Then we obtain for y € iso(T'2) a natural
isomorphism of R[y]-modules

Syoindp P = P ®pgr, Rmorr,(??, F(?)) ®gr, Rmorg, (y,7?)
= PQ®rgn, Rmori (y, F(7))

~ PQ®npr, @ Rmor (z,7) @pjy) Rmorg, (y, F(x))
zeiso(T1),F(x)=7
= @ P ®gr, Rmory, (x,7) @g[y) Rmorr, (y, F(x))

zeiso(l'),F(z)=y

=~ D indp, oS, P.
zeiso(T1),F(x)=7
This finishes the proof of Lemma O

4. THE (FUNCTORIAL) EULER CHARACTERISTIC OF A CATEGORY

Perhaps the most naive notion of Euler characteristic for a category I' is the
topological Euler characteristic, namely the classical Euler characteristic of the clas-
sifying space BI'. However, even in the simplest cases, x(BT; R) may not exist, for
example I' = Z; and R = Zy. We propose better invariants using the homological
algebra of RI'-modules and von Neumann dimension.

Depending on which notion of rank we choose for RI'-modules, rkrr vs. rkg),
there are two possible ways to define (functorial) Euler characteristics. In this
section, we start with the topological Euler characteristic x(BI'; R), and then treat
the homological Euler characteristic x (I'; R) and its functorial counterpart x s (I'; R),

both of which arise from rkgr. In Section Bl we take R = C and rk{}) (defined in
terms of the von Neumann dimension) to treat the L%-Euler characteristic x(?(I")

and its functorial counterpart X}Q)(I‘).

To obtain the Euler characteristic, we use the splitting functor S, as follows.
The RT-rank of a finitely generated RT-module M is an element of U(T"), the free
abelian group on the isomorphism classes of objects of . At T € iso(T"), rkrr M is
kR (S2 M @R aut(z) 1) This induces a homomorphism rkgr from Ko(RI") to U(T').
If T is of type (FPRr), we define the functorial Euler characteristic xs(I'; R) to be
the image of the finiteness obstruction o(T’; R) under rkgpr. The functorial Euler
characteristic is compatible with equivalences between directly finite categories of
type (FPgr). The Euler characteristic x(T'; R) is the sum of the components of the
functorial Euler characteristic x;(I'; R). If T' is a directly finite category of type
(FPgr) and R is Noetherian, then the Euler characteristic x(I'; R) is equal to the
topological Euler characteristic x(BT'; R). If R is Noetherian and T is of type (FP ),
but not necessarily directly finite, then the image of the finiteness obstruction under
rkp pr, in ([@I6]) is the topological Euler characteristic x(BT'; R). If R is Noetherian
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and T is directly finite and of type (FFz), then x(BT; R) = x(T; R) = x®(I), see
Theorem .25

Each notion of Euler characteristic (y vs. X(2)) has its advantages. Both are
invariant under equivalence of categories (assuming directly finite) and are com-
patible with finite products, finite coproducts, and homotopy colimits (see Fiore—
Liick-Sauer [12] for the compatibility with homotopy colimits). The L2-Euler char-
acteristic is compatible with isofibrations and coverings between connected finite
groupoids (see Subsection [B.H). If the groupoids are additionally of type (FF¢),
then the Euler characteristic and topological Euler characteristic agree with the
L?-Euler characteristic, and are therefore compatible with the isofibrations and
coverings at hand. For a finite discrete category (a set), both x and x(® return the
cardinality. For a finite group G, we have X(@ :Q) = 1, while the L?-Euler charac-
teristic is Y2 (G) = ‘—é‘ The groupoid cardinality of Baez—Dolan [2] and the Euler

characteristic of Leinster [I3] will occur as an L?-Euler characteristic, see Section
[@ for the comparison. The main advantages of our K-theoretic approach are: 1)
it works for infinite categories, and 2) it encompasses important examples, such as
the L2-Euler characteristic of a group and the equivariant Euler characteristic of
the classifying space EG for proper G-actions.

To begin the details of the topological Euler characteristic and the Euler char-
acteristic, suppose that we have specified the notion of a rank

(4'1) l“kR(N) e

for every finitely generated R-module such that rkp(N1) = rkr(No) + rkr(N2)
for any sequence 0 — Ny — N1 — N> — 0 of finitely generated R-modules and

rkr(R) = 1. If R is a commutative principal ideal domain, we will use rkr(N) :=
dimp(F ®p N) for F the quotient field of R.

Definition 4.2 (The topological Euler characteristic of a category I'). Let I" be a
category. Let BT be its classifying space, i.e., the geometric realization of its nerve.
Suppose that H, (BT'; R) is a finitely generated R-module for every n > 0 and that
there exists a natural number d with H,(BT;R) = 0 for n > d. The topological
Euler characteristic of T is

X(BT;R) =Y (=1)" - tkp(H,(BT; R)) € Z.
n>0

Example 4.3 (The topological Euler characteristic of a finite groupoid). Let G be
a finite groupoid, i.e., a (small) groupoid such that iso(G) and aut(z) for any object
x € ob(G) are finite. Consider R = Q. Then the assumptions in Definition 2] are
satisfied and

X(BG) = |iso(G)]-

Notation 4.4 (The abelian group U(T") and the augmentation homomorphism ¢).
Let T' be a category. We denote by U(T') the free abelian group on the set of
isomorphism classes of objects in I, that is

UT) := Ziso(T).

For a functor F: 'y — T'9, the group homomorphism U(F): I'y — T'5 maps
the basis element Z to the basis element Fz. The augmentation homomorphism
e: U(T') — Z sends every basis element of iso(I') to 1 € Z. The augmentation
homomorphism is a natural transformation from the covariant functor U: CAT —



FINITENESS OBSTRUCTIONS AND EULER CHARACTERISTICS OF CATEGORIES 21

ABELIAN-GROUPS to the constant functor Z, that is, for any functor F': I'y — I’y
the diagram

comimutes.

Definition 4.6 (Rank of a finitely generated RT-module). Let M be a finitely
generated RI-module M, define its rank

I‘kRF(M) = {I‘kR(SzM QR[] R) | S iSO(F)} S U(F)

The rank rkgr defines a homomorphism

(47) rkpr: KQ(RP) — U(F), [P] — YkRp(P).

It obviously factorizes over S: Ko(RI') — Split Ko(RTI"). Define

(4.8) t: U(T) = Ko(RT), (nz)zeiso(r) — Z nz - [Rmor(?, z)].
zeiso(T)

This is the same as the composite

= P z—/—/="5 Srcuom t» P Ko(Rlz]) = Split Ko(RI') <> Ko(RT),

Teiso(T) Teiso(T)
where i,: Z — Ko(R[z]) sends n to n - [R[z]] and E has been defined in (B.3).
Lemma 4.9 (Naturality of rtkgr). The rank rkgr is natural for functors F: Ty —
T’y between directly finite categories. In particular, we have a natural transformation
rkp_: Ko(R—) = U(—)

between covariant functors

Ko(R—),U(—): DIRFIN.-CAT — ABELIAN-GROUPS.
Proof. The proof by Liick [I5, Proposition 10.44 (b) on page 202] for functors

between El-categories also works for functors between directly finite categories.
The rank rkgr is equal to 7 0.5 where r: Split Ko(RT') — U(T") is the direct sum of

Ko(R[z]) = Z
[P] — I‘kR(P ®R[m] R)
over T € iso(T"). By Lemma BIH the functor S is covariantly natural with respect
to functors between directly finite categories. The functor r is also natural for such

functors F, for if F,: autr, () — autr,(Fx) is the restriction of F to autr, (z) we
have

P @pje) R = indp. (P) ©ppa) R. 0
Lemma 4.10. Let I' be a directly finite category.
(i) The composite
U(T) % Ko(RT) 25 U(T)
of the homomorphisms defined in (1) and [EX)) is the identity;
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(ii) Let F be a finitely generated free RT'-module. Then

rkRF (F)f

Fx @ @ Rmor(?;x).

zeiso(I)  i=1
In particular two finitely generated free RT'-modules Fy and Fy are isomor-
phic if and only if tkrr(F1) = rkgr(Fs);
Proof. This follows from Lemma
Let F' be a free RI'-module. By definition it looks like
F= @ @Rmor(?,x)
z€iso(l') I
for some index sets I,. It is finitely generated if there exist natural numbers m,
and an epimorphism

Mg
f: @ @Rmor(?,x} — @ @Rmor(?,x)
zciso(T) =1 z€iso(I') Ix
such that only finitely many m, are different from zero. Lemma implies that
we obtain for every T € iso(I') an epimorphism S, f: @™ Rlz] — @, Rl[z]. This
implies that each set I, is finite and only finitely many of the sets I, are not empty.
Hence we can find for a finitely generated free RI'-module F' natural numbers n,

such that .
Fx @ @ Rmor(?,x)
zeiso(I) i=1

and only finitely many n, are different from zero. Lemma implies
I‘kRF(F)E = Ng.

In particular rkpr (F') determines the isomorphism type of a finitely generated free
RT-module F'. O

Definition 4.11 (The functorial Euler characteristic of a category). Suppose that
T is of type (FPRr). The functorial Euler characteristic of T with coefficients in R,

x5 R) € UD),

is the image of the finiteness obstruction o(I'; R) € Ko (RI") in Definition [ZT] under
the homomorphism rkgr: Ko(RT') — U(T) in ({@1).

The word functorial refers to the fact that the group, in which xs takes values,
depends in a functorial way on I'.

Example 4.12 (The functorial Euler characteristic of a finite groupoid). Let G be
a finite groupoid, i.e., a (small) groupoid such that iso(G) and aut(x) for any object
x € ob(G) are finite. Consider R = Q. Then U(G) is the abelian group generated
by iso(G) and x/(G) € U(G) is given by the sum of the basis elements.

Theorem 4.13 (Invariance of the functorial Euler characteristic under equivalence
of categories). Let F': I'y — I'y be an equivalence of categories and suppose that I'y
is of type (FPRr) and directly finite. Then T's is of type (FPr) and directly finite,
and

U(F)(xs(T1; R)) = x5(T2; R).
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Proof. The category I's is of type (FPg) and Fi(o(I'1; R)) = o(T's; R) by Theo-
rem[2.8 The category I'; is directly finite by Lemma[3.2] We have U(F)(xs(T'1; R)) =
x7(T2; R) by the naturality of rkg_ in Lemma[9land F,(o(I'1; R)) = o('y; R). O

Lemma 4.14. Let T be a directly finite category. Suppose that T is of type (FFr)
(see Definition[Z3). Then the finiteness obstruction o(T'; R) € Ko(RT) is the image
of x5 (I'; R) under the homomorphism v of ([&3).

Proof. This follows from the definitions in combination with Lemma [£.10 O

Obviously the functorial Euler characteristic x s(I'; R) and the topological Euler
characteristic x(BI'; R) are weaker invariants than the finiteness obstruction and
carry less information, but they live in explicit abelian groups and are easier to
compute.

Theorem 4.15 (The finiteness obstruction determines the topological Euler char-
acteristic). Let ' be a category of type (FPr). Suppose that R is Noetherian. We
denote by pr: T' — {x} the projection to the trivial category with precisely one
morphism.

Then the assumptions in Definition[{.2 are satisfied and the composite

(4.16) Ko(RT) 225 Ko(R{x}) = Ko(R) 25 7
sends the finiteness obstruction o(I'; R) to the topological Euler characteristic x(BT'; R).

Proof. Associated to a category I' there is a classifying contravariant I'-space ET
which is a I'-CW-complex with the property that ET evaluated at any object
x € ob(I') is contractible. We refer to Davis—Liick [II, Definition 1.2, Defini-
tion 3.2, Definition 3.8, and page 230] for the definition of a contravariant I'-space,
a I-CW-complex (which is called free I'-CW-complex there), the classifying T'-
space ET, and the bar construction. The cellular RT'-chain complex C,(X) with
R coefficients of a I'-C'W-complex X is the composition of the functor given by
X with the functor cellular chain complex with coefficients in R and has free RI'-
chain modules. The proof of the last fact is analogous to the proof of Liick [15]
Lemma 13.2 on page 260]. Since the evaluation of ET at any object 2 € ob(T)
is contractible, the RT-module H, (C.(ET;R)) is trivial for n # 0 and isomor-
phic to the constant R[-module R for n = 0. In particular C.(ET; R) is a pro-
jective RI'-resolution of the constant RI-module R. By assumption there ex-
ists a finite projective RI-resolution P, of R. By the fundamental lemma of
homological algebra (see Liick [I5, Lemma 11.3 on page 212]) there exists an
RT-chain homotopy equivalence f.: C,.(ET;R) — P.. If pr: T' — {x} is the
projection to the trivial category, we obtain an R-chain homotopy equivalence
indp, fi: indpy C4(ET; R) — indpy P.. There is also the notion of an induction
functor for contravariant I'-spaces (see Davis—Liick [I1, Definition 1.8] and a nat-
ural isomorphism of R-chain complexes indp, C\(ET'; R) =c, (indp, ET; R). The
CW-complex ind,,, ET is a model for BT (see [LI, Definition 3.10, page 225 and
page 230]). Hence we obtain a chain homotopy equivalence

C.(BT; R) = ind, P,

and indp, P, is an R-chain complex such that every R-chain module is finitely
generated projective and only finitely many R-chain modules are non-trivial. Since
R is Noetherian, this implies that H,, (indp, P,) is finitely generated as an R-module
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for every n > 0 and that there is a natural number d with H,(ind,, P.) = 0 for
n > d. This implies that the same is true for the homology H,(BT;R). Our
assumptions on the rank function rkg of (£I) imply

D (=1)" - rkp(indy Py) = > (=1)" - rkp(H, (indy, Py))

n>0 =0
= > (=1)" - tkg(H,(BT))
n>0
= x(BT;R).

Since the composite
Ko(RT) = Ko(R{+}) = Ko(R) = Z

sends o(T5 R) = >, ~o(=1)" - [Py] to >, (=1)" - rkg(indy, P,,), Theorem
follows. N N g

Example 4.17. Let T be the category appearing in Example It contains
idempotents different from the identity, is directly finite, and of type (FPg). We
have U(I') = Z and x¢(I'; R) = x(BI;R) = 1.

Definition 4.18 (The Euler characteristic of a category). Suppose that T' is of
type (FPRr). The Euler characteristic of T' with coefficients in R is the sum of the
components of the functorial Euler characteristic, that is,

X([5 R) == e(x (T R)).

Theorem 4.19 (Invariance of the Euler characteristic under equivalence of cate-
gories). Let F': Ty — T'y be an equivalence of categories and suppose that T'y is of
type (FPRr) and directly finite. Then Ty is of type (FPr) and directly finite, and
I'y and T's have the same Euler characteristic, that is,

x(I'; R) = x(T'2; R).

Proof. This follows from Theorem M.13] and the naturality of the augmentation
homomorphism in diagram {.5]). O

As we have seen in Theorem [15], the topological Euler characteristic is deter-
mined by the finiteness obstruction when I' is of type (FPr) and R is Noetherian. If
we additionally assume I' is directly finite, then the topological Euler characteristic
and Euler characteristic agree.

Theorem 4.20 (The Euler characteristic and topological Euler characteristic).
Let R be a Noetherian ring and T’ a directly finite category of type (FPr). Then
the Euler characteristic and topological Euler characteristic of T' agree. That is,
H, (BT;R) is a finitely generated R-module for every n > 0, there exists a natural
number d with H,(BT;R) =0 for alln > d, and

X(T; R) = X(BT; R) = » (~1)" - tkg(H. (BT R)) € Z,
n>0

where x(T'; R) is defined in Definition [{.18
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Proof. Because of Theorem 1] it suffices to show that the diagram

rer‘

Ko(RT') U(r)

Ko(R{x}) = Ko(R) T> Z

commutes. However, this is precisely the rkrp_ naturality diagram associated to
the functor I' — {x}. This diagram commutes by Lemma because T" and {*}
are directly finite categories. 0

Euler characteristics are compatible with finite products. There is an obvious

o

pairing coming from the natural bijection iso(I'1) x iso(T'2) — iso(T'; x I'z)
(421) &X: U(Fl) X7z U(FQ) — U(Fl X FQ)
Theorem 4.22 (Product formula for x¢, x, and x(B—)). Let I'1 and T'y be
categories of type (FPgr). Suppose that the rank rkg satisfies tkr(M ® N) =
rkp(M) - rkr(N) for all finitely generated R-modules M and N.
Then Ty x T's is of type (FPgr), the functorial Euler characteristic satisfies
xrTx Ty R) = xy(I'; R) @ xs(Fa; R)
under the pairing (L21), the Euler characteristic satisfies
X(I'1 x Ty R) = x(I'1; R) - x(I'2; R),
and the topological Euler characteristic satisfies
X(B(I'y x I'2); R) = x(BT'1; R) - x(Bl2; R).

Proof. The product I'y x I'y is of type (FPg) by Theorem 217
Consider the diagram below,

®r
Ko(RI'}) ® Ko(RTy) —= Ko(R(I'y x T'5))
(rerl OSRF1)®(rkRF2 051213)1 lrkmrl xTg) OSR(I'y xTy)

U(Fl) X U(FQ) T> U(Fl X FQ)

where the horizontal pairings have been introduced in (ZI6) and (ZI]), the ho-
momorphisms S in (B7), and the homomorphism rkpr in [@7). One easily checks
that it commutes. Now the claim follows for x; from Theorem 217

The claim for y follows from that for x ; because the pairing (Z.21) is compatible
with the augmentation homomorphism.

The claim for the topological Euler characteristic follows from the fact BT’y x
BI's = B(T'y x I'g) and the Kiinneth formula. O

5. THE (FUNCTORIAL) L?*-EULER CHARACTERISTIC AND L?-BETTI NUMBERS OF
A CATEGORY

In this section we introduce the (functorial) L2-Euler characteristic and L?-
Betti numbers of a category. This requires some input from the theory of finite von
Neumann algebras and their dimension theory which we briefly record next. For
more information we refer for instance to Liick [19], [20].
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In Subsection 5] we recall the group von Neumann algebra A (G) associated
to a group G, the von Neumann dimension dimys gy for right N (G)-modules, its
properties, and compatibility with induction and restriction for modules over group
von Neumann algebras. For a finite group G, the von Neumann algebra N'(G) is CG
and the von Neumann dimension of a CG-module is the complex dimension divided
by |G|. For general G, the von Neumann algebra N (G) is a CG-N(G)-bimodule.

In Subsection F2 we recall the L2-Euler characteristic x(?(C.) of an N(G)-chain
complex C, as the alternating sum of the von Neumann dimensions of the homology
groups, and discuss the relevant properties.

In Subsection [E3]we define the L2-Euler characteristic for categories of type (L?)
using the splitting functor S,. A category I is of type (L?) if the constant CI'-
module C admits a (not necessarily finite) projective CI'-resolution P, such that
the sum over all T € iso(T") of all von Neumann dimensions of the homology groups
of all NV (aut(x))-chain complexes S;P. ®caut(z) N (aut(z)) converges to a finite
number. Any directly finite category of type (FPc) is of type (L?). For example,
finite groupoids, finite posets, and more generally finite El-categories are of type
(12).

Let UM (T') be the set of absolutely convergent sequences on the index set iso(T").
The functorial L?-Euler characteristic X(f2) (T') € UM(T) has at index T the number

x@ (SIP* Rc aut(m)./\/(aut(:zr))) , where P, is a projective CI'-resolution of C. The L?-

Euler characteristic x®(I') € R is the sum of the sequence ng) (T"). For example,

if I' is a finite groupoid, then X(fm(F) has at index T the value 1/|aut(z)|, and the
L2-Euler characteristic is the sum of these.

Like the topological Euler characteristic and the Euler characteristic, the L?-
Euler characteristic comes from the finiteness obstruction in certain cases. However,
for the L?-Euler characteristic, we use the L?-rank rk?) instead of the RI'-rank
rkgr. In Subsection .4 we define the L2-rank and prove that rkg) o(T;C) = X(f2) ()
whenever T' is directly finite and of type (FP¢). '

The L2-Euler characteristic is compatible with covering maps and isofibrations
between connected finite groupoids, as we prove in Subsection

We now recall the prerequisites from the theory of finite von Neumann algebras
and motivate its use.

5.1. Group von Neumann algebras and their dimension theory. The ap-
pearence of (group) von Neumann algebras and their dimension theory in our con-
text stems from the task to assign some sort of rational- or real-valued dimension to
projective modules over group rings (coming from automorphism groups in a cate-
gory), which itself is needed to extract a number, namely the Euler characteristic,
from the finiteness obstruction.

The well-known Hattori-Stallings rank HS(M) in Brown [, Chapter IX, 2] of
a finitely generated projective R-module M over an arbitrary ring R is a way to
assign a “dimension” to M. However, HS(M) is not a number but an element
in the quotient R/[R, R] of R by the additive subgroup [R, R] generated by all
commutators ab — ba, a,b € R. In order to get, say, a C-valued invariant one needs
an additive homomorphism ¢ : R — C satisfying the trace property t(ab) = t(ba).

Consider the case of the complex group ring R = CG of a group G. The map
trag): CG — C, the notation of which already anticipates a more general setup,
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is defined by
trre) (D Agg) = Ae
geG

and satisfies the trace property, thus providing a notion of dimension for finitely
generated projective CG-modules. This dimension does not extend to arbitrary CG-
modules, which is a major drawback as we would like to define the dimension of
certain homology groups of projective resolutions that are not projective anymore.
Next we explain work of the second author that allows to define a dimension for all
modules — if one works with the larger ring N'(G), the group von Neumann algebra
of G, instead.

Let [2(G) be the Hilbert space with Hilbert basis G; it consists of formal sums
>_gec Ag-g for complex numbers g such that - |\g|> < o0. The complex group
ring CG is a dense subset of [2(G). In fact, [?(G@) is the Hilbert space completion
of the complex group ring CG with respect to the pre-Hilbert structure for which
G is an orthonormal basis. Left and right multiplication with elements in G induce
respectively isometric left and right G-actions on I%(G).

Definition 5.1 (Group von Neumann algebra). The group von Neumann algebra
of the group G

N(G) = B(1*(G))¢
is the algebra of bounded operators that are equivariant with respect to the right
G-action. The standard trace on N'(G) is defined by

trN(G): N(G) —-C, [~ <f(6), €>l2(G)'

The standard trace extends the definition on CG given earlier on. From now on
we view N (G) simply as a ring, ignoring its functional-analytic origin. The latter
is only important for the proof of our ‘blackbox’ Theorem [5.2] below. Modules over
N(G) are understood in the purely algebraic sense.

Sending an element g € G to the isometric G-equivariant operator I?(G) — 12(G)
given by left multiplication with g € G induces an embedding of CG into N(G) as
a subring. In particular, we can view N (G) as a CG-N(G)-bimodule.

Theorem 5.2 (Properties of the dimension function). There exists a dimension
function dimy; () that assigns to every right N (G)-module M a number, possibly
infinite,
dim () (M) € [0, 00] = Rxo U {0}
and satisfies the following properties:
(i) Hattori-Stallings rank

If M is a finitely generated projective N'(G)-module, then
dimN(G) (M) = Z trN(G)(ai,i) S [O, OO)7
i=1

where A = (a; ;) is any (n,n)-matriz over N (G) with A?> = A such that
the image of the N(G)-homomorphism N(G)" — N(G)" given by left
multiplication with A is N'(G)-isomorphic to M ;
(ii) Additivity
If 0 — My — My — Mo — 0 is an exact sequence of N'(G)-modules, then
dimp(q) (M1) = dimp ) (Mo) + dimy () (M2),



28 THOMAS M. FIORE, WOLFGANG LUCK, AND ROMAN SAUER

where for r;s € [0,00] we define v + s by the ordinary sum of two real
numbers if both r and s are not oo, and by oo otherwise;
(i) Cofinality
Let {M; | i € I} be a cofinal system of submodules of M, i.e., M = J,o; M;
and for two indices i and j there is an index k in I satisfying M;, M; C Mj,.
Then
dim gy (M) = sup{dimy; () (M;) | i € I}.

Proof. See Liick [19, Theorem 6.5 and Theorem 6.7 on page 239]. O

Let i: H — G be an injective group homomorphism. Then the induced injective
ring homomorphism i,: CH — CG extends to an injective ring homomorphism
denoted in the same way i,: N(H) — N(G).

Lemma 5.3. Leti: H — G be an injective group homomorphism.
(i) The induction functor ind;, : MOD-N(H) — MOD-N(G) sending M to
M @y N(G) is faithfully flat, i.e., a sequence of N'(H)-modules My —
My — My is exact if and only if the induced sequence of N (G)-modules
ind;, My} — ind;, My — ind;, M3 is exact;
(i) If M is an N'(H)-module, then

dimy () (ind;. M) = dimy g (M);

(i) Suppose that the index |G : i(H)] of i(H) in G is finite. Then we get for
every N'(G)-module M, if res;, denotes its restriction to an N (H)-module
by i
dlmN(H) (resi* M) = [G . Z(H)] . dlmN(G) (M),
where |G : i(H)] - 0o is defined to be oo.

Proof. See Liick [19, Theorem 6.29 on page 253 and Theorem 6.54 (6) on page 266)].
O

Here are some useful examples of the von Neumann dimension.

Example 5.4.

(i) (von Neumann dimension for finite groups). Let G be a finite group. Then
N(G) = CG and we get for a CG-module M

. 1 .
dimpr(qy (M) = @ - dimg (M);
where dimc is the dimension of M viewed as a complex vector space.
(ii) (von Neumann dimension and permutation modules). Let G be a (not
necessarily finite) group and S a cofinite G-set, i.e., S is the disjoint union

of homogeneous G-spaces [ [, ; G/ L; for finite I. By Liick [16, Lemma 4.4],

we have )
dimp () (CS ®ea N(G)) = Y T

(iii) (von Neumann dimension for Z). Let G = Z. Then N(Z) = L*°(S') by
Fourier transformation. Under this identification we obtain that

trarzy: N(Z) = C, f'—>/s1 fdp,
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where p is the probability Lebesgue measure on St.

Let X C S! be any measurable set and yx € L>(S*) be its characteris-
tic function. Since y x is an idempotent, its image P is a finitely generated
projective N(Z)-module, whose von Neumann dimension dimyr(z)(P) is
the volume p(X) of X. In particular any non-negative real number occurs
as dimpr(z) (P) for some finitely generated projective N'(Z)-module P.

5.2. The L2-Euler characteristic and L?-Betti numbers. In this section we
briefly recall some basic facts about L?-Betti numbers and L?-Euler characteristics.
For more information we refer to Liick [19) Section 6.6.1 on page 277ff].

Definition 5.5 (L?-Betti numbers). Let C, be an N(G)-chain complex. The p-th
L2-Betti number of C, is the von Neumann dimension of the A/(G)-module given
by its p-th homology, namely

b2(C.) = dimpe) (Hp(CL)) € [0,00).

Definition 5.6 (L?-Euler characteristic). Let C, be an N (G)-chain complex. De-
fine
2 (C,) = sz(f)(C*) € [0, o0].
p=>0
If K2 (C,) < oo, the L2-Euler characteristic of Cy is
XP(C) =Y (=17 bP(C.)  €R.

p=>0

Notice that A(?)(C.) can be finite also in the case, where infinitely many L>-Betti
numbers are different from zero.

Lemma 5.7.
(i) Let Cx be an N(G)-chain complex. Suppose that 3 - dimprc)(Cp) is
finite. Then h®)(C.) is finite and > pso(—1)P - dimpr ) (Cp) = X (CL);
(ii) Let C, and D, be N'(G)-chain complexes which are N'(G)-homotopy equiv-
alent. Then we get bz(,z)(C*) = b1(72)(D*) and K (C,) = A (D,) and,
provided that h®)(C,) is finite, x? (C.) = x(D,);
(ii) Let 0 = Cx — D — E. — 0 be an exact sequence of N(G)-chain com-
plexes. Suppose that two of the elements h?)(C.), h®(D,), and h? (E,)
in [0, 00] are finite. Then this is true for all three and we obtain that

x2(C) = xP(Dy) + xP(EL) = 0;

(iv) Let i: H — G be an injective group homomorphism and let C, be an
N (H)-chain complex. Then h®(C,) = h®(ind;, C.) and, provided that
R (C,) < 0o, we have x?(C,) = x? (ind;, C.);

(v) Let i: H — G be an injective group homomorphism with finite index
(G :i(H)]. Let Cy be an N(G)-chain complex. Then

h® (res;, C.) =[G +i(H)] - ') (C.)
and, provided that h®) (C.) < oo, we have
xP(res;, C,) =[G :i(H)] - x2(C,).

Proof. ii) is obvious from the definition. The rest easily follows from Theorem [(.2]
and Lemma O
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5.3. The (functorial) L?-Euler characteristic. In the following, I' is always a
small category. For every x € ob(T") let
N(z) := N (aut(z))

be the group von Neumann algebra of the automorphism group aut(z).

Recall that two projective N(G)-resolutions P, and Q. of the constant CI'-
module C are CI'-chain homotopy equivalent and hence the C[x]-chain complexes
Sy P and S; Q. and the C[z]-chain complexes Res, P, and Res, Q. are C[z]-chain
homotopy equivalent. Therefore the following definitions will be independent of the
choice of a projective CI'-resolution of C.

Definition 5.8 (Type (L?)). We call T of type (L?) if for some (and hence for
every) projective CI'-resolution P* of the constant CI'-module C we have

Z WP (S, P, @cp N(2)) < 0.
z€iso’

We shall see in Example [5.12 that any finite groupoid is of type (L?). We shall
see in Theorem [5.22 that any directly finite category of type (FP¢) is of type (L?).

Definition 5.9 (The functorial L?-Euler characteristic of a category). Suppose
that T is of type (L?) and let

o) = { 5 e

zeiso(T)

TEGR, Z |T5|<OO} H R.

zeiso(T) zeiso(I")
The functorial L?-Euler characteristic of T is

A) = (XD (S, P ey N (@) | 7 € is0(T) } € UD(T),
where P, is a projective CI'-resolution of the constant CI'-module C.

The word functorial refers to the fact that the group U™ (T'), in which X(fz) takes
values, depends in a functorial way on I'.
We can also get a real-valued invariant as follows.

Definition 5.10 (The L2-Euler characteristic of a category). Suppose that T is
of type (L?). The L2-Euler characteristic of T' is the sum over Z € iso(T") of the
components of the functorial Euler characteristic, that is,

YD) = Z X (82 P, ®cpa) N (2)) € R,
zeiso(T)
where P, is a projective CI'-resolution of the constant CI'-module C.

Notice that this definition makes sense since the condition (L?) ensures that the
SUM Y o cioo(r) X ) (S, P, ®cjy) N(z)) is absolutely convergent.

Remark 5.11. In Definition [5.10} the L2-Euler characteristic is defined to be the
sum of the components of the functorial L2-Euler characteristic. This is analogous
to the situation for the ordinary Euler characteristic in Definition

Example 5.12 (The (functorial) L2-Euler characteristic of groupoids). Let G be
a (small) groupoid such that autg(z) is finite for any object z € ob(G) and

(5.13) > !

seimag) |2ute ()]
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Let P, be any projective CG-resolution of C; a (not necessarily finite) projective
resolution always exists. Since G is a groupoid, for every x € obG and every CG-
module M we have S, M = Res, M. Thus S, is exact. By Lemma 3.5 S, respects
projectives. Hence S, P, is a projective C[z]-resolution of the trivial Clz]-module
C. Since autg(x) is finite, C is already a projective C[z]-module. This implies that

C&cpN(z) p=0

H, (SIP* ®cCe] N(x)) = {0 P> 0

Example 54[(i)] and (EI3) yield that G is of type (L?), the functorial L?-Euler
characteristic X(f2) () € [Izeiso(g) R has at T € iso(G) the value 1/|autg(z)|, and

@@= Y

L2 Tautg(@)

In particular, we can conclude that, for all groupoids such that (EI3]) holds, the
L?-Euler characteristic coincides with the Baez-Dolan groupoid cardinality, and
also with Leinster’s Euler characteristic when the groupoid is finite.

A concrete case of a groupoid satisfying our conditions is a skeleton G of the
groupoid of nonempty finite sets. This groupoid has objects (isomorphic to) 1 =
{1}, 2 ={1,2},3 ={1,2,3}, and so on. The morphisms are the permutations. This
example was studied by Baez-Dolan [2]. The groupoid G is of type (L?), and the
functorial L?-Euler characteristic has at the object n the value 1/|autg(n)| = 1/n!.
The L2-Euler characteristic is

@@ =S L g1 _
X(@_zh&Fi:m_&

n>1 n>1
Remark 5.14. If G is a group and G denotes the groupoid with precisely one
object and G as automorphism group of this object, then x(*(G) in the sense of
Definition 10 agrees with the classical definition of the L2-Euler characteristic

x?(G) of a group which has been intensively studied in the literature (see for
instance Liick [I9, Chapter 7]).
Lemma 5.15 (Invariance of L?-Euler characteristic under equivalence of cate-
gories).
(i) Suppose 'y and T's are equivalent categories. Then T'y is both directly finite
and of type (L?) if and only if Uy is both directly finite and of type (L*).
(ii) Let F: Ty — Iy be an equivalence of categories. Suppose that T'; is both
directly finite and of type (L?) fori =1,2.
Then the bijection

UD(F): UD(Ty) S UM(y)
induced by F sends chz)(l"l) to chz)(l"g) and we have
XA () = xB(T).
Proof. We have already shown that the property of being directly finite depends
only on the equivalence class of a category (see Lemma B2). So in the sequel we

can assume that I'y and I'y are directly finite.
Let F: 'y — I'y be an equivalence of categories. It induces a bijection

F,: iso(Ty) = iso(T'y), T F(z),
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and thus a bijection
UD(F): UO(Ty) S uW(Ty).
Recall from Section [ that the induction functor indp associated to F' sends projec-

tive CI'1-modules to projective CI'y-modules. The equivalence F' induces for every
object x in I'; an isomorphism of groups

F,: autr, (z) — autp, (F(z)), f+ F(f).

From the proof of Lemma 315 we have for every object z in I';y and projective
CT';-module P a natural isomorphism of C[F(x)]-modules

a(P): indpg, oS, P =N Sp(x) oindp P

(the direct sum in the proof of Lemma has only one summand because F' is
an equivalence).

Fix an object « in I';. The argument in the proof of Theorem 2-T0lshows that the
induction functor indp associated to F' is an exact functor and sends C to C. Let
P, be a free CI'y-resolution of C. Then indg P, is a free CI's-resolution of C. The
various isomorphisms «(P,) induce an isomorphism of C[F(z)]-chain complexes

a(P,): indp, oS, P, — Sp(e) 0 indp Py.
We have for every R[z]-module M a canonical N(F(x))-isomorphism
(indp, M) @cr) N(F(z)) =5 indp, (M @cpq N (x)).

If we apply — ®c(p(2) N (F(2)) to a(P,) and use the isomorphisms above we obtain
an isomorphism of N (F(x))-chain complexes

a® (P*): indg, (SQCP»< AC[z] N(:v)) i (SF(m) oindg P*) QC[F(2)] N(F(:v))
We conclude from Lemma Iﬂ

h(2) (S P ®(C[m] N({E)) = h(z) ((SF(m) o indF P*) ®(C[F(m)] N(F(I)))
and, prov1ded that h(® (S, P, ®cpy N(x))
@ (82 P @ N(2)) = ((Sm) oindp P.) @cir(a) N (F(2))) -
Now Lemma follows. O

Next we consider products of categories. Since iso(I'; x I'y) = iso(T";) x iso(T'2),
we obtain a pairing

(5.16) ©@: UND() @ UD(Ty) = UMDy x Ty),

E TH'ZZ?_l X E SE'.I_Q’—) E THSE'(ZZH,IQ).

Ty€iso(T'y) zz€iso(T'2) (z1,22)€iso(T'y xT'2)

Theorem 5.17 (Product formula for ng) and X(Q)). Let Ty and T'y be categories

of type (L?).
Then T'y x Ty is of type (L?), we get for the functorial L*-Euler characteristic

XPTxTy) = xP ) exP ()
under the pairing (m), and we get for the L?-Euler characteristic
X(2) (T; xT'y) = X(2) () - X(2) (I'3).
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Proof. If P, is a projective CI'j-resolution of the constant CI'y-module C and Q.
is a projective CI's-resolution of the constant CI's-module C, then P, ® Q. is
a projective C(I'y x I'y)-resolution of the constant C(I'y x I's)-module C. Given
7 € iso(I'1) and 7 € iso(T'2), there is a canonical isomorphism of chain complexes
over C[(z,y)] = Clz] ®c C[y]

Sy P Q¢ Syp* = S(x,y) (P* XRc Q*)

Since the Cauchy product of two absolutely convergent series of real numbers is
again an absolutely convergent series, it suffices to show for two groups H and G, a
projective CH-chain complex C, and a projective CG-chain complex D, that for
the projective C[G x H]-chain C, ®¢ D, we have

hA(C, @c D,) < oo;

XP(Cree D) = xP(C.)-xP(D.)
provided that A®)(C,) and h(®)(D,) are finite. The proof of this claim is the chain
complex analogue of the proof of Liick [19, Theorem 6.80 (6) on page 278|. O

5.4. The finiteness obstruction and the (functorial) L?-Euler character-
istic. Next we compare these definitions with the finiteness obstruction and FEuler
characteristic.

Definition 5.18 (L?-rank of a finitely generated CI'-module). Let M be a finitely
generated CI'-module M. The L2-rank of M is

kP (M) := {dimpe) (SeM e N(2)) | 7 €iso(T)} € UT) @z R = P R
iso(T")

The rank rkg) defines a homomorphism
(5.19) k(2 Ko(CT) —» U(T) @z R, [P] — k2 (P)

since for a finitely generated CI'-module M the value of S, M is non-trivial only
for finitely many elements T € iso(I') and the Caut(z)-module S;M is finitely
generated for every x € ob(T") (see Lemma [B.5)).

If T is directly finite, then the map rk{}) obviously factorizes over S: Ko(CI') —
Split Ko (CT).

Example 5.20. If H is a subgroup of G of finite index [G : H|, and ¢ denotes the
inclusion, then the diagram

rkg)

R
i*l l[G:H}
R

(2)
rky;
cominmutes.

Proof. Tt follows from existence of a CH-isomorphism CG™ = &g, yCH" that the
restriction ¢* P of a finitely generated projective CG-module P is a finitely generated
projective CH-module. So the left vertical map in the above diagram is well defined.
It directly follows from the proof of Liick [I9, Theorem 6.54 (6) on page 266] that

(i*P) @cuy N (H) = res;, (P @ce N(G)).



34 THOMAS M. FIORE, WOLFGANG LUCK, AND ROMAN SAUER

Now the assertion follows from Lemma O

Remark 5.21 (L?-rank of a finitely generated RT-module). In Definition we
have defined the L?-rank of a finitely generated CI'-module. If R is a subring of
C, we may analogously define the L2-rank of a finitely generated RI-module M.
Namely, we view N (z) as an Raut(x)-N(z)-bimodule via the embedding of rings
Raut(z) — Caut(z) — N(aut(x)) and then take dimps(y)(SeM @ g N(x)) as
the components of the L2-rank of M. We will primarily be interested in the case

R = C, so we omit C from the notation rk(FQ)

R=Q.

Theorem 5.22 (Relating the finiteness obstruction and the L2-Euler characteris-
tic). Suppose that T is a directly finite category of type (FPc). Then T is of type
(L?) and the image of the finiteness obstruction o(I';C) (see Definition[2.7]) under
the homomorphism

. Occasionally we will also consider

kP Ko(Ch) » U @zR= P R
Teiso(T)
defined in ([I9) is Xf ( ).

Proof. Since T is of type (FP¢), we can find a finite projective CI-resolution P,
of C. Hence S, P, is non-trivial only for finitely many objects z in I" and a finite
projective C[z]-chain complex for all objects = in I’ by Lemma Hence T is of
type (L?). Now apply Lemma |5_._'_ﬂ O

Example 5.23. Finite El-categories are of type (L?) by Theorem (.22 Lemma[3.13]
and Lemma

Lemma 5.24. Suppose that T is directly finite. Then:
(i) If F is a finitely generated free CT'-module, the rank rker(F) of Defini-
tion [{.0] and the rank rkg) (F) of Definition agree;
(ii) The composite

U(I') & Ko(CI') L UT)®zR

of the homomorphisms defined in (I8) and (&I9) is the obvious inclusion
UI) = UT) @z R;

Proof. This follows from Lemma since for 7 = T we have

rkg)((C mor(?, )y = dimy/(y) (SzCmor(?, z) @cpz N (2))
= dimp(,) (N (z)) = 1 = rke(S;Cmor(?, z) ¢y, C) = rker (Cmor(?, z))g.
and for 7 # T we get
rkg)((C mor(?, z))y = 0 = rker (Cmor(?, x))y.
This follows from assertion|(i)| and Lemma g

Theorem 5.25 (Invariants agree for directly finite and type (FFz)). Suppose T’
is directly finite and of type (FFz). Then the functorial L?-Euler characteristic of
Definition [7.9 coincides with the functorial Euler characteristic of Definition [{-1]]
for any associative, commutative ring R with identily

P (I) = x¢ (T3 R) € UT) CUD(D),



FINITENESS OBSTRUCTIONS AND EULER CHARACTERISTICS OF CATEGORIES 35

and thus x®)(T') = x(T; R) in Definition [0 and Definition .18
If R is additionally Noetherian, then

(5.26) X(BT;R) = x(T; R) = ().

Moreover, if T is merely of type (FFc) rather than (FFy), then equation (526
holds for any Noetherian ring R containing C.

Proof. I T is of type (FFyz), it is also of type (FFR), since any (augmented) resolu-
tion of Z is contractible as a complex of Z-modules, thus stays exact after applying
_®z R. Using Lemma we can show

rkr (Sm (Fr, ®z R) ®R[a R) =r1kg (San ®z[z] Z) .
Consequently, xs(I'; R) = x;(I';Z) and x(I'; R) = x(I'; Z) for any ring R.

By Lemma the CI-rank rker coincides with the L2-rank rkg) for finitely
generated free CI'-modules, and we have X;Z)(I‘) = rkg) o(T; C) = rker o(T;C) =
Xf([;C) = xs(I; R) by Theorem and the above (here we use a finite free
resolution in o(T'; C)). Summing up, we have x(2(I') = x(T'; R). If R is additionally
Noetherian, then Theorem [£20 implies x(I'; R) = x(BT; R).

The statement after([Z.26]) follows by a similar argument as above. (]

We may contrast the assumptions of (FFz) and direct finiteness in Theorem [5.28]
with the relaxed assumptions of (FPg) and direct finiteness. If we only assume type
(FPg) and direct finiteness, then x(I'; R) and x(BT'; R) coincide by Theorem 20,
but these may be different from X(z)(l"). For example, if G is a nontrivial finite
group, then it is of type (FP¢) but not of type (FF¢), and we have x(BT;C) =

X(T5C) =1, but xB(T) = .

Corollary 5.27. Suppose I is directly finite and of type (FFz). We have
(P (I1;0)) = o(I;C)

for the homomorphism ¢ defined in equation (LS.

Proof. This follows from Theorem [5.25 and Lemma [£.14] O

Remark 5.28. Recall that x(BC; Q) is the Euler characteristic of BC. However, it
is not true that y(?)(C) is related to the L2-Euler characteristic x(?) (E@, N(m1(BC)))
in the sense of Liick [I9, Definition 6.20]. We will compute x(?(Or(Dy.)) = 0 in
Subsection On the other hand BOr(Ds) = Do \ED is contractible and
hence x (BC; N'(m1(BC))) = x(BOr(Ds)) = 1.

5.5. Compatibility of Euler characteristics with coverings and isofibra-
tions. Our next task is to show that the L2-Euler characteristic is compatible with
covering maps and isofibrations between connected finite groupoids. In the context
of groupoids, the role of a covering neighborhood is played by the star of an object.
If £ is a small groupoid and e is an object of £, we denote by St(e) the star of e,
namely the set of all morphisms in £ with domain e.

Definition 5.29 (Covering of a groupoid). A functor p: £ — B between connected
small groupoids is a covering if it is surjective on objects and restricts to a bijection

St(e) —— St(p(e))
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for each object e of £. We say that a covering p is n-sheeted if | ob(p~1(b))| = n for
all objects b of B.

Recall that a small groupoid £ is finite if iso(€) is finite and for any object
e € ob(€) the set aut(e) is finite.

Theorem 5.30 (Compatibility of the L2-Euler characteristic with coverings of
finite groupoids). Let £ and B be connected finited groupoids. If p: € — B is an
n-sheeted covering, then

(5.31) X (€) = nx®(B).

Proof. We present two proofs, one counting morphisms and the other using the
technology of the finiteness obstruction.

To prove the theorem by counting morphisms, we first reduce to the case where
the base groupoid has only one object. If b € B and &, denotes the groupoid

p‘l(aﬁ(\b)), then the diagram
&€&

o |

aut(b)—— B
commutes and the horizontal functors are equivalences of categories. The groupoid
Ep is connected; for if e, e’ € &, then f:e = € in &, and p(f) € aut(db), so
f € mor(&,). Moreover, Stg,(e) C Ste(e) for all e € &, Stauew)(b) € Sts(b), and
ple, is an n-sheeted covering. By Theorem 28 Lemma 313 Theorem (522, and
Definition .10, the groupoids & and € have the same L2-Euler characteristic, as

do m and B. Alternatively, we know from Example directly that

&) = =X E)
— 1
x® (aut (b)) = Tant(0)] X (B).

Thus, if the theorem holds in the case where the base groupoid has only one object,
it holds in general. -

Suppose now that B has only one object b, so that B = aut(b). Then & has only
n objects, say eq,...,e,. Since £ is a connected finite groupoid, all of its hom-sets
have the same number of elements. Let e € £. We have

|aut(b)] = |St(e)] = | | J more(e,e;)| = > [more(e, ;)] = Y _ | aut(e)|
i=1 i=1 =1
(5.32) = n|aut(e)|.

In conclusion, x(?(€) = nx® (B).

We may also prove Theorem[5.30 on the level of finiteness obstructions as follows,
without reduction to the case of one object in the base groupoid.

The covering p: £ — B is admissible in the sense that res, sends a finitely
generated projective RB-module to a finitely generated projective RE-module as a
consequence of Liick [I5 Proposition 10.16 on page 187] as follows. A morphism
h:p(x) — y in B is said to be irreducible if for any factorization h = f o p(g)
the morphism ¢ in &£ is an isomorphism. Clearly, the set Irr(z,y) of irreducible
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morphisms p(z) — y in B is morg(p(x),y), since £ is a groupoid. Since & is finite,
for a given y € B, the set Irr(z, y) is nonempty for only finitely many T € iso(E).
Since B is finite, for each x € £ the right autg(z)-set Irr(z,y) has only finitely
many orbits. The right action of autg(x) on Irr(x, y) is free because B is a groupoid
and p is a covering: if h € morp(p(x),y) and h o pm = h o pn, then pm = pn and
m = n. Every morphism h in morg(p(z),y) is irreducible, so clearly we have a
factorization f o p(g) = h with f irreducible, namely f = h and g = id,. Any two
factorizations f o p(g) = h and f’ op(g’) = h with f and f’ irreducible are related
by the isomorphism k := ¢’ o g~ .

We fix an z € € and let H = autg(z), G = autp(p(z)). The covering p induces
an inclusion of H into G. Consider the following diagram.

rk(g)
Ko(CB) ——— Ko(CG) R > _UB)oR
e
p” p” [G:H]
Kk
o (CE) ——=— Ko(CH) R+——U(€)®R
rk(;)

The left square commutes by Theorem[3.14l The second square commutes by Exam-
ple The top and bottom diagrams commute by definition of k@, Beginning
in the upper left-hand corner, we have o(B;C) € K¢(CB). By Theorem [Z9] we
have p*(o(B;C)) = o(&;C). Two applications of Theorem combined with the
commutativity of the diagrams leads us to x(?/(§) = [G : H]-x®(B). An argument
similar to the one in (32)) shows that [G : H] is equal to the number of sheets
n. O

Example 5.33. Let £ = {0 <> 1} and let B be the category with one object and
one nontrivial arrow, which is its own inverse. By Example (.12 the L?-Euler
characteristics are x(?(£) = 1 and x(B) = 1/2. The unique covering & — B is
2-sheeted and we have

X (€) =2x®(B).

Corollary 5.34. Anyn-sheeted covering functor between connected finite groupoids
is equivalent to the inclusion of an indexr n subgroup into a finite group. More
precisely, if p: € — B is an n-sheeted covering between connected finite groupoids
and e € &, then the diagram

aut(e)— €
plm)l Jp
aut(p(e)—— B

commutes, the horizontal functors are equivalences of categories, the left vertical
functor is mono, and [aut(p(e)) : p(aut(e))] = n.



38 THOMAS M. FIORE, WOLFGANG LUCK, AND ROMAN SAUER

Remark 5.35. Examples of covering functors are obtained from coverings of topo-
logical spaces: a covering of topological spaces induces a covering functor between
the associated fundamental groupoids.

We next turn to compatibility of x(2) with isofibrations.

Definition 5.36 (Isofibration). A functor p: &€ — B is an isofibration if for every
isomorphism in B of the form g: b 2 p(e) there is an isomorphism f in £ such that

p(f)=g

We remark that if £ and B are groupoids, then isofibrations and Grothendieck
fibrations coincide (because isomorphisms in the domain category are always carte-
sian arrows).

Theorem 5.37 (Compatibility of the L2-Euler characteristic with isofibrations
of finite groupoids). Let p: & — B be an isofibration between connected finite
groupoids. If b € B and p~(b) is connected, then

(5.38) XP(E) =xP (7' (v) - X (B).
Proof. As in the proof of Theorem (.30, we reduce to the case where the base

groupoid has only one object. If b € B and &, denotes the groupoid p‘%aﬁc?b)),
then the diagram
E—— &

W |

aut(b)— B
commutes, the horizontal functors are equivalences of categories, and &, is con-
nected. The fiber groupoid p|gb1(b) is the same as the fiber groupoid p~1(b), so

p|gb1 (b) is also connected. Since x? (&) = x(? (&) and x?(B) = X(2)(E;t(\b)), we

have (5:38) if P (&) = X(2)(p|gb1 (b)) - X(2)(E;t(\b)). We have reduced to the case
where the base groupoid has only one object.

—

Suppose now that B has only one object b, so that B = aut(b). For e € p~1(b),
we write simply p. for the group homomorphism aut(e) — aut(b). Then p. is
surjective. If g is an automorphism of b, there exists an f: ¢/ — e with p(f) = g.
The connectivity of the fiber p~!(b) then gives us an isomorphism h: e — €/, and
an automorphism f o h of e such that p.(f oh) =g.

Finally,

1 1

@) ey _ @ 1)) (@)
X (E) Tant(e)] ~ Tkerpe] - Jant®)] ~ X (p~ (b)) - x(B). O

6. MOBIUS INVERSION

We extend the K-theoretic Mobius inversion of Liick [I5, Chapter 16] from fi-
nite to quasi-finite El-categories and apply it to the finiteness obstruction and the
Euler characteristic of a category. Throughout this section let I be an El-category
(see Definition B.I0). We have already introduced the splitting (S, E) of Ko(RI)
in Theorem B.J4l Provided that I' is a quasi-finite El-category, we obtain a sec-
ond splitting (Res, I) in Theorem The K-theoretic Mébius inversion (1, w)
will compare these two splittings in Theorem As a consequence, in Theo-
rem we obtain explicit formulas for the various Euler characteristics of finite
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El-categories. Important special cases of our K-theoretic Mobius inversion include
Philip Hall’s M&bius inversion formula for finite posets and Leinster’s Mobius in-
version formula for finite skeletal categories with only trivial endomorphisms. See
Examples and

After treating the second splitting (Res, I) and the K-theoretic Mobius inver-
sion (p,w) in Subsections and [6.2] we turn to the relationship between the
K-theoretic Mébius inversion (u,w) and the L?-rank in Subsection There we
construct a pair of homomorphisms 7 : U(T) ®7 Q = U(T) @z Q: @? that are
inverse to one another if ' is a quasi-finite, free El-category, and commute appro-
priately with (u,w) and rk{}) as in Theorem All of these homomorphisms
and splittings are illustrated for G- H-bisets (viewed as two-object El-categories) in
Subsection

In general, the finiteness obstruction and Euler characteristics of I'°P are different
from those of I, as we see in Subsection with a biset example. However, in the
case of a finite El-category T', the groups Ky(QT') and Ky(QI'°P) are isomorphic,
and we say more about the respective splittings in Subsection

In Section [6] we also introduce the proper orbit category Or(G), an important
quasi-finite, free El-category to which we shall return in Section

6.1. A second splitting. Given an object z in a (small) category I', define the
restriction functor at x

(6.1) Res,: MOD-RT' -+ MOD-R]z]

by evaluating an RI'-module N at the object . This functor is exact but does

not respect finitely generated projective in general. Given an El-category I', the
inclusion functor at x

(6.2) I,: MOD-R[z] - MOD-RT
sends a right R[z]-module M to the RT-module given by

L M(y) = {

Notice that we need the El-condition to ensure that this definition makes sense.
This functor is compatible with direct sums, but does not respect finitely generated
projective in general.

M ®pgjz) Rmor(y,z) ify=T;
0 ify £7.

Lemma 6.3. Let T be an El-category. Then we obtain for every x € ob(I') ad-
joint pairs of functors (E.,Res;) and (S, I.), where E,, Res,, S, and I, are the

functors defined in BA4), €I, B3) and [62).
Proof. See Liick [15, Lemma 9.31 on page 171]. O

The El-property ensures that we obtain a well-defined partial ordering on iso(T")
by
(6.4) T<7y <= mor(z,y)#0.
Definition 6.5 (Length of an element). Given an element x € iso(T"), define its
length

I(z) € {0,1,2,.. .} T {0}

to be the supremum over the natural numbers n, for which there exists elements
T, Tno1, ---,Z0 in iso(T) with T, < T,—1 < ... < Tp and Tg = T.
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The length of T is zero if and only if every morphism with = as target is an
isomorphism.

Definition 6.6 (Finite, quasi-finite, and free categories). Let I" be a (small) cate-
gory.

We call T’ quasi-finite if for every T € iso(T") the set {7 € iso(I") | ¥ < T} is finite,
and for every two objects z,y € ob(T") the right aut(z)-set mor(z,y) is proper and
cofinite, i.e., every isotropy group under the right aut(x)-action is finite and the
quotient mor(z,y)/ aut(z) is finite.

We call T finite if iso(T") is finite and mor(z,y) is finite for every two objects
x,y € ob(I"). A small category is finite if and only if it is equivalent to a category
with finitely many objects and finitely many morphisms.

We call T' free if the left aut(y)-action on mor(x,y) is free for every two objects
x,y € ob(T).

One of our main examples for I" will be the orbit category.

Definition 6.7 (Orbit category and proper orbit category). Let G be a group. The
orbit category Or(G) has as objects homogeneous spaces G/H and as morphisms
G-equivariant maps. The proper orbit category

Or(G) = Orrzn(G),

sometimes also called the orbit category associated to the family FZN of finite
subgroups, is defined to be the full subcategory of Or(G) consisting of objects
G/H with finite H.

Lemma 6.8. Let H and K be subgroups of a group G. If g € G and g~'Hg C K,
then we get a well-defined G-equivariant map

Ry: G/H —— G/K

gH+——¢'gK .
FEvery G-equivariant map G/H — G/K is of the form Ry,. We have Ry = Ry if
and only if g~1g’ € K holds. In particular, we have a bijection
(6.9) mor(G/H,G/K) —— {gK | g 'Hg C K}

f——f(1H).
We also have Ry, o Ry, = Ry, 4, -
Proof. See tom Dieck [29] 1.1.14] and Liick [I5, Lemma 1.31 on page 22]. O
Lemma 6.10. The orbit category Or(G) is a free El-category.

Proof. A direct consequence of Lemma is that the monoid map(G/H,G/H)
is isomorphic to the Weyl group NoH/H, so every endomorphism of Or(G) is an
automorphism.

If G/H and G/K are two objects in Or(G), and f: G/H — G/K and a: G/K —
G/K are G-equivariant maps, then a o f = f implies a = id since f is surjective.
Hence Or(G) is free. O

Lemma 6.11. The proper orbit category Or(G) is a quasi-finite and free EI-
category.
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Proof. The proper orbit category Or(G) is a full subcategory of the orbit category
Or(G), which is a free El-category, so Or(G) is also a free El-category.

For the quasi-finiteness, we first observe from the bijection (6.9]) that

mor(G/H,G/K) #

if and only if H is G-conjugate to a subgroup of K. If H and H' are G-conjugate,
then G/H and G/H' are isomorphic objects of Or(G). Thus for a fixed G/K,
the number of isomorphism classes G/H with mor(G/H,G/K) # () is at most the
number of G-conjugacy classes of subgroups of K. Whenever K is a finite group,
this number is finite. Thus, {G/H € iso(Or(G)) | G/H < G/K} is finite.

Continuing the notation of Lemma [6.8] consider a morphism R,,: G/H — G/K
in Or(G). Suppose R,, € aut(G/H) fixes R,,. Then R,,,, = R,, and g, 'g1g2 €
K, so that g; € ggKggl. But ggKggl is finite, so there are only finitely many
possibilities for ¢g;. Thus every isotropy group for the right aut(G/H)-action on
mor(G/H,G/K) is finite.

For objects G/H and G/K in Or(G), the quotient mor(G/H,G/K)/aut(G/H)
is in bijective correspondence with
(6.12) {92K | 9, " Hgo € K}/ ~
by Lemma [6.8] where go K ~ g192K if g1 € G and glegl C H. Since H is finite,
glegl C H implies glegl = H. But (6I2) is in bijective correspondence with

G-conjugates of H contained in K, of which there are only finitely many because
K is finite. Thus the quotient mor(G/H,G/K)/aut(G/H) is finite. O

Lemma 6.13.
(i) Suppose for the El-category I' that for every T € iso(T") the set {7 € iso(T") |
y < T} is finite. Let M be a finitely generated RT-module M. Then
{z €iso(l') | M(z) #0}
is finite;
(ii) If T is a quasi-finite El-category of type (FPr), then iso(I") is finite.
Proof. Choose a finite subset I C iso(I') and natural numbers n; > 1 for each
i € I such that there exists an epimorphism of RI'-modules

@Rmor(?,xi)”i — M.

i€l
Then for every § € iso(T") with M(y) # 0 there is ¢ € I with § < Z;. Since I is
finite, {Z € iso(I") | M (z) # 0} is finite.
(ii)| This follows from assertion |(i)| applied to the constant module R. O

Definition 6.14 (Length of a module). The length I((M) € {—1,0,1,2...} T {oco}
of an RI-module M is defined to be —1 if M is zero and otherwise to be the
supremum of the length of elements T € iso(I') with M (x) # 0.

If T is quasi-finite and hence {7 € iso(I") | ¥ < T} is finite for every T € iso(T),
the length of Rmor(?, z) is finite for every object € ob(I") and hence every finitely
generated RI'-module has finite length.

Lemma 6.15. Suppose that I" is a quasi-finite El-category. Suppose for any mor-
phism f: x — y in T that the order of the finite group {g € aut(x) | fog = f} is
invertible in R.
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(i) Consider x € ob(T"). Let M be an RT'-module which is finitely generated
projective or which possesses a finite projective RI'-resolution respectively.
Then the Raut(z)-module Res, M = M(x) is finitely generated projective
or has a finite projective R[z]-resolution respectively;

(ii) Let M be an RI'-module such that the set

{z eiso(l') | M(z) #0}

is finite. If Res, M possesses a finite projective R[x]-resolution for all
x € ob(), then M possesses a finite projective RT -resolution, ;

(iii) Let x € ob(T") and let N be an R[x]-module which possesses a finite projec-
tive R[x]-resolution. Then the RT-module I, N defined in ([62) possesses
a finite projective RI'-resolution;

(iv) T is of type (FPg) if and only if iso(T') is finite and for every object x €
ob(T") the trivial R[z]-module R is of type (FPr) respectively;

(v) Let T be a finite El-category. Assume that for every object x the order
of the finite group aut(z) is invertible in R. Then an RT-module M pos-
sesses a finite projective resolution if for every object x the R-module M (x)
possesses a finite projective R-resolution. In particular I" is of type (FPR).

Proof. [(Q)]Since Res, is exact, it suffices to show that Res, R mor(?,y) = Rmor(z, y)
is a finitely generated projective R[x]-module for every y € ob(I"). This follows from
the assumptions that the right aut(x)-set mor(x,y) is a finite union of homogeneous
aut(x)-spaces of the form H)\ aut(z) for finite H C aut(z) such that |[H|-1g is a
unit in R.

Since I' is quasi-finite and M has finite support, the RI-module M has finite
length. We do induction over the length of the RI-module M. The induction
beginning [ = —1 is trivial, the induction step from [ — 1 to I > 0 done as follows.

If0o— My — My — M3 — 0 is an exact sequence of RI[-modules such that
two of the RI'-modules My, M5, and M3 possess finite projective RI'-resolutions,
then all three possess finite projective RI-resolutions (see Liick [I5, Lemma 11.6
on page 216]). Thus, using the Filtration Theorem (see Liick [I5, Theorem 16.8 on
page 326]) and the induction hypothesis, it suffices to show for any object = of length
[ and any R[z]-module N which admits a finite projective R[z]-resolution that I, N
has a finite projective RI-resolution. Since I, is exact, it is enough to consider the
case N = R[z]. Consider the epimorphism f: Rmor(?,2) — I,(R[x]) sending id,,
to 1 ply®ids € R[z|®@pg[y Rmor(z, z) = I, (R[z]). Its kernel ker(f) is an RI-module
of length < ! — 1 and satisfies Res, (ker(f)) = Rmor(y,x) = Res, Rmor(?,z) for
7 < T and Resy(ker(f)) = 0 otherwise. Assertion |(i)| implies that Res, (ker(f))
possesses a finite projective R[y]-resolution for all objects y € ob(T"). Hence ker(f)
possesses a finite projective RI'-resolution by induction hypothesis. This implies
that I, R[x] possesses a finite projective RT-resolution. This finishes the proof of
the induction step.

This follows directly from assertion
This follows directly from Lemma and assertions |(i)| and

Since |aut(x)| is invertible in R and finite, an R[z]-module possesses a finite
projective R[z]-resolution if and only if it possesses a finite projective R-resolution.

Now apply assertion O

Our main example for R will of course be Q.
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Theorem 6.16 (A second splitting of Ko(RT)). Suppose that T is a quasi-finite
El-category. Suppose for any morphism f: x — y in I' that the order of the finite
group {g € aut(z) | fog= f} is invertible in R.

Then we obtain isomorphisms Res and I which are inverse to one another.

Res: Ko(RT") — Split Ko(RT), [P] — {[Res; P] | T € iso(T")}
I: Split Ko(RT') — Ko(RT), {[Qz] | T € iso(I)} — Z [1,Q.]
zeiso(T)

Proof. Consider a finitely generated projective RI'-module P. Then for any object
x € ob(T") the R[z]-module Res, P possesses a finite projective R[z]-resolution (see
Lemma [6.15 and hence defines an element in K(R[x]), namely its finiteness
obstruction in the sense of Definition 21l Since I' is by assumption quasi-finite
and hence {7 € iso(I") | ¥ < T} is finite for every object z € ob(T"), there are only
finitely many elements T € iso(I") with Res, P # 0 by Lemma Hence we
obtain a well-defined element
Res([P]) := {[Res, P] | Z € iso(T)} € @B Ko(R[z]) = Split Ko(RT).
zeiso(T)
Thus we obtain a homomorphism
Res: Ko(RT') — Split Ko(RL).
Define
I+ Split Ko(RT) — Ko(RT)

analogously using Lemma

One obtains Resol = id from the fact that the functor Res, oI, : MOD-R[z] —
MOD-R][y] is naturally isomorphic to the identity functor if x = y and is trivial
if T # 7. It remains to show that I is surjective. This is done by induction over
the length, which is finite by Lemma of a finitely generated projective

RT-module representing a class in Ko(RT') using Lemma and the Filtration
Theorem (see Liick [I5, Theorem 16.8 on page 326]). O

6.2. The K-theoretic Mobius inversion.

Convention 6.17. Suppose for the remainder of this subsection that I is a quasi-
finite El-category and that for every morphism f: 2 — y in I' the order of the finite
group {g € aut(z) | fog= f} is invertible in R.

We obtain a well-defined homomorphism
way: Ko(Rlz]) = Ko(R[y]), [P]+ [P ®pjm) Rmor(y, x)]

since the right R[y]-module Rmor(y,z) = Res, Rmor(?,z) is finitely generated
projective by Lemma Define

(6.18) w: Split Ko(RT') — Split Ko(RT)
by the matrix of homomorphisms
Wendegenom: @ Ko®l)) = @ KolRly).
zeiso(T) yeiso(T")

This definition makes sense since for a given T € iso(I") there are only finitely many
g € iso(I") with wg, # 0.
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Example 6.19. If R = Q and I is a finite skeletal category with trivial automor-
phism groups, then Ky(Q[z]) = Z and w,, = |morr(y,x)| for all z,y € ob(T).
In this case of R and I', the matrix for w is the transpose of the zeta function
considered by Leinster in Section 1 of [13]. See also Example [6.25

Definition 6.20 (I-chain in iso(I")). Let I" be an El-category. Given a natural
number | > 1, an [-chain in iso(I") is a sequence ¢ = Tg < T < -+ < T;. Denote
by ch;(T") the set of I-chains in T'.

Given two objects z and y, let ch;(y,z) be the set of I-chains ¢ = Tg < T1 <

- < 7y with Tg = ¥ and 7; = Z. Define for an l-chain ¢ =7y <77 < --- < 7T7 in
chy(y, z) the aut(z)-aut(y)-biset

S(C) = HlOI‘(Ilfl, .I) Xaut(z;_1) HlOI‘(:Z?1727 xl*l) Xaut(z;_o) *** Xaut(zr) mor(ya Il)
for some choice of representatives x; € T; for 0 < i <l—1. (If Il = 1 then S(c) is to
be understood as the aut(z)-aut(y)-biset mor(y, z).)

Define chy(T") to be iso(T"). Define chy(y,x) to be empty if T # 7 and to be 7 if
T=y. IfT =7, put S(c) = mor(z,x) for ¢ € cho(y, x).

Notice that the aut(x)-aut(y)-biset S(c) is unique up to isomorphism of aut(z)-
aut(y)-bisets. Since I' is quasi-finite and hence for every two objects =,y € ob(I")
the right aut(y)-set mor(y, ) is proper and cofinite, each set S(c) is a proper cofinite
right aut(y)-set, and the R[y]-module RS(c) is finitely generated projective. Hence
we obtain a well-defined homomorphism for ¢ € ch;(y, x)

fay(c): Ko(R[z]) = Ko(Rly]), [P]— [P ®g( RS(c)].
Define a homomorphism
(6.21) pu: Split Ko(RT) — Split Ko(RT)

by the matrix of homomorphisms

DD D aeyle) . P Ko(Blz) » D Ko(Rly).

>0 cechy (y,x) z,g€iso(T) zeiso(T) yeiso(T")

This definition makes sense since for a given T € iso(T") there are only finitely many
g € iso(T") with g, # 0.
Theorem 6.22 (Two splittings and the K-theoretic Mdbius inversion). Suppose
that I is a quasi-finite El-category. Suppose for any morphism f: x —y in I that
the order of the finite group {g € aut(x) | fog = f} is invertible in R.
(i) Then we obtain pairs of inverse isomorphisms (S, E) (see Theorem [3.1)),
(Res, I) (see Theorem [616) and (w, ) (see (GIR) and (©210)). They are

compatible with one another in the sense that the following diagram com-

N

Split Ko(RT) . T Split Ky(RI).

w
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(ii) Suppose that T is of type (FPgr), or, equivalently, that iso(T') is finite
and for each object x € ob(I") the trivial R[x]-module R possesses a finite
projective R[z]-resolution. Let n € Split Ko(RT) be the element whose
component at T € iso(T') is given by the class [R] € Ko(R[x]) of the trivial
R[z]-module R. That is, the component of 1 at each T is the finiteness
obstruction o(aft-\(ar); R) € Ko(Raut(z)). Then

S (o(T; R)) = pu(n).

Proof. We have already shown in Theorem BI4] that S and E are inverse to one
another and in Theorem [6.16] that Res and I are inverse to one another. Obviously
w = ResoF. Hence it remains to show that pow = id. This follows analogously to
the argument at the end of the proof of Liick [I5, Theorem 16.27 on page 330].

This follows from assertion[(i)] and Lemma and[(iv)] Namely, Res, [R] =
[R], so Res[R] =1, and S (o(T"; R)) = pRes (o(T'; R)) = pRes[R] = pu(n). O

We can now apply Mobius inversion to calculate the finiteness obstruction and
Euler characteristics of finite El-categories in terms of chains.

Theorem 6.23 (The finiteness obstruction and Euler characteristics of finite EI-
categories). Suppose that I" is a finite El-calegory. Suppose that for every object
x € ob(T") the order of its automorphism group |aut(z)| is invertible in R. Then T’
is of type (FPRr) and we have:

(i) The image of the finiteness obstruction o(T'; R) under the isomorphism

P Ko(Ry)

yeiso(T")

o

S: Ko(RT) =

has as component for 7 € iso(I") the element in Ko(R[y]) given by
2D > Y [Rlaut@)\s(@),
>0 z€iso(T") cechy(y,x)

where aut(x)\S(c) is the finite right aut(y)-set obtained from the aut(x)-
aut(y)-biset S(c) (see Definition[6220) by dividing out the left aut(z)-action
and R(aut(z)\S(c)) is the associated right Rly]-module;

(ii) The functorial Euler characteristic x¢(I'; R) € U(T') has at § the value

Z Z Z laut(z)\S(c)/ aut(y)|,

>0 zeiso(I') cechy(y,z)

where ’aut(a:)\S(c)/aut(y)‘ is the order of the set obtained from S(c) by
dividing out the aut(x)-action and the aut(y)-action;

(iii) The Euler characteristic x(I', R) and topological Fuler characteristic x(BT'; R)

are equal and are both given by the integer

Z(—l)l- Z Z ‘aut (¢)/ aut(y )|

>0 z,y€iso(I") cechy(y,x)

(iv) The functorial L*-Euler characteristic x?) (T') € U(T) has at G the value

DED YT Y dimy (Claut(@)\S(€) ©cpy N (),

>0 zeiso(l') cechy(y,x)
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where dim () (C(aut(z)\S(c)) Q¢ N(y)) is Dier, |Lil<oo 1/|L;| if the
cofinite right aut(y)-set aut(xz)\S(c) is the disjoint union of homogeneous

aut(y)-spaces [[;c; Li\ aut(y);
(v) The L?-Euler characteristic x?)(T) is given by

S Y Y dimg) (Claut@)\S©) ey NW)).
>0 z,y€iso(I") cech;(y,z)
Proof. The category I is of type (FPg) by Lemma BIEI[(v)]
This follows from Theorem since the R[y]-modules R ®gaut(z) RS(c)
and R(aut(x)\S(c)) are isomorphic.
and follow now from assertion Lemma [3.13, and Theorem

and follow from Theorem [£.22] Example m and assertion O

Example 6.24 (Mobius inversion for a finite partially ordered set). Let (I, <) be
a partially ordered set. It defines an El-category I'(I) whose set of objects is I
and for which mor(z,y) consists of precisely one element if < y and is empty
otherwise.

Suppose that I is finite. Take R = Q Then

Split Ko(QI'(1)) = ZI = EB 7

and the homomorphism w is given by the matrix A = (am)”el with a; ; = 1 if

j <iand w;; = 0 otherwise. Let B = (b; J) ; be the matrix given by

bij = (=1)"[chi(4,i)],
1>0
where | chg(7,4)| is 0 if j # i and 1 otherwise, and for [ > 1, ch;(j,4) is the set of
chains j = kg < k1 < ... < kj—1 < k; = i. Then we conclude from Theorem [6.22
that the matrices A and B are inverse to one another. This is the classical Mdbius

inversion in combinatorics (see for instance Aigner [1l IV.2]).
We get from Theorem and

X(T3Q) =xP(T) = D biy.
ijel
Example 6.25 (Mobius inversion for a finite skeletal category with trivial en-
domorphisms). Generalizing Example [6.24] let T be a finite skeletal category in

which every endomorphism is an identity, and take R = Q. Recall that a category
is skeletal if for any two objects z and y with x & y, we have x = y. Then

Split Ko(QT) = Zob(I) = P Z
ob(T")
and the homomorphism w is given by the matrix A = (am/)z yeob(I') with a,,, =
| mor(y, ).
The (bi)set S(c) in Definition is simply the set of non-degenerate paths
xo = X1 — - — xy, and pg(c) = |S(c)|. Let B = be the matrix
given by

by = Z(—l)l- Z [S(e)| = Z(—l)l-|{non-degenerate I-paths from y to z}|.

>0 cechy(y,x) >0

(bmﬂ/) z,y€ob(T)
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Then we conclude from Theorem that the matrices A and B are inverse to
one another. That is to say, in the terminology of Leinster [13], the category I' has
Mébius inversion given by B. Thus Corollary 1.5 of Leinster [13] is a special case
of the K-theoretic Mobius inversion of Theorem See also Example [6.33]
which illustrates rational Mobius inversion for a finite, skeletal, free EI-category. See
also the related proof of Lemma [73} which shows that the L2-Euler characteristic
coincides with Leinster’s Euler characteristic in the case of a finite, skeletal, free
El-category.

6.3. The K-theoretic Mébius inversion and the L2-rank. In this subsection
we investigate when the homomorphisms w and p factorize over the homomorphism
given by the L?-rank.

Condition 6.26 (Condition (I) for groups and categories). A group G satisfies
condition (I) if the map induced by the various inclusions of finite subgroups

P Ko(QH)®zQ — Ko(QG) 22 Q

HCG,|H|<o0

is surjective. A category I' satisfies condition (I) if for every object x its automor-
phism group autr(z) satisfies condition (I).

Obviously any finite group and any finite category satisfy condition (I).

Remark 6.27 (Condition (I) and the Farrell-Jones Conjecture). Let F7(Q) be the
class of groups for which the K-theoretic Farrell-Jones Conjecture with coeflicients
in Q holds. By Bartels-Liick-Reich [5, Theorem 0.5], every group in F.7 (Q) satisfies
condition (I). This class FJ(Q) is analyzed for instance by Bartels-Liick in [3]
and Bartels—Liick—Reich in [4] and [5]. Tt contains for instance subgroups of finite
products of hyperbolic groups or CAT(0)-groups, directed colimits of hyperbolic
groups or CAT(0)-groups, and all elementary amenable groups. For a survey article
on the Farrell-Jones Conjecture we refer for instance to Liick-Reich [23].

Lemma 6.28. Let G and H be groups. Suppose that H satisfies condition (I)
defined in [G20). Let S be an H-G-biset which is cofinite proper as a right G-set
and free as a left H-set.

(i) The image of
rkiy s Ko(QH) = R, [P] = dimyu) (P ©gu N (H))
lies in Q;

(ii) The following diagram commutes

Ko(QH) —= Ko(QG)

rkg) l lrkg)

where wg sends [P] to [P ®qu QS], and Ws is multiplication with the
rational number dimy () (QS ®ga N (G)).

Proof. Because H satisfies condition (I), this follows from Lemma and
Example m )
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For a finite group H' every element in Ko(QH') ®7 Q can be written as a Q-
linear combination of elements of the form [Q[K\H']| (see Serre [25, Theorem 30
in Chapter 13 on page 103]). Since H in the claim satisfies condition (I), we can
find for every element n € Ko(QH) a natural number k& > 1, finitely many finite
subgroups Ki, K», ..., K, of H, and integers ny, no, ..., n, such that we get in

Ko(QH)
ko= ni- [QUK\H].
i=1
Hence it suffices to show for any finite subgroup K C H

dimp () (QIK\H] ®gn QS ®ge N(G))
= dimp(a) (QUK\H] @om N(H)) - dimp(g) (QS @gc N (G))-
We get from Example EEI

dimn) (QUK\H) en N(H) =
dimy(e) (QIE\H] ®gr QS ©gc N(G)) = dim ) (QUK\S] @gc N(G)).

Hence it suffices to show for a K-G-biset T" which is proper and cofinite as a G-set
and free as a left K-set

|K| - dimy gy (QIE\T] @gc N(G)) = dimpa) (QT ®gc N (G)).

We can interpret the K-G-biset T' as a right (K x G)-set by putting ¢-(k, g) = k~1tg
for k€ K, g€ Gandt € T, and vice versa. Since K is finite, T is free as a left
K-set, and T is cofinite and proper as a right G-set, the (K x G)-set T is a finite
union of homogeneous spaces of the form L\ (K x G), where L is a finite subgroup
of K x G with (K x {1})NL = {1}. Hence we can assume without loss of generality
that T is of the form L\(K x G) for finite L C K x G with (K x {1})NL = {1}

The projection pr: K x G — G induces a bijection L =N pr(L). Since the G-sets
K\(L\(K x G)) and pr(L)\G are G-isomorphic, we conclude from Example G.A[(ii)]
. K
K| - dimp ) (QK\(L\(K x G))] ®ea N(G)) = H

We conclude from Lemma [5:3 and Example 5.41[(ii)]

dimy (e (Q[L\(K x G)] ®oc N (@)
dimy() (Q[L\(K x G)] @qirxa) QK x G] @gc N(G))
= dimy g (Q[L\(K x G)] ®qrxa) N(K x G))
= |K|-dimyxxa) (Q[L\(K x G)] @qprxa) N (K x G))

_ 5
L]
This finishes the proof of Lemma O

Let T’ be a quasi-finite, free El-category. Define the Q-homomorphism
(6.29) @ UM)®2Q - U ®2Q
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by the matrix over the rational numbers

<dmw ) (Qmor(y, ) @gj, N (y))>

%, y€iso(T)

Define the Q-homomorphism
(6.30) 2 UM)®zQ— UT)2zQ

by the matrix over the rational numbers

(Z(—l)l- T dimpy) (@S() Bgp V)

>0 cech; (y,) >z,y€iso(1")

Notice that these homomorphisms are well-defined because of Example [£.4]
since the right aut(y)-sets mor(y,z) and S(c) are proper cofinite and for a given
7 € iso(T") there are only finitely many 3 € iso(T") for which the sets mor(y, z) and
S(c) are non-empty.

Theorem 6.31 (Rational Mobius inversion). Let T' be a quasi-finite, free EI-
category. Then the homomorphisms @2 of @29) and TP of @30) are iso-
morphisms and inverse to one another.

Proof. Let

7: U(D EB Z — Split Ko(QI') = EB Ko(Q
zeiso(T) so(T")

be the homomorphism that sends {nz | T € iso(I")} to {nz [Qz]] | T €iso(I)}. A
direct computation shows that

rk%z) owol=w?,

The image of wo7 in Split Ko(QI") has the property that its value at any T € iso(T")
is an element in Ky(Q[x]) given by a Z-linear combination of classes of the form
[Q[K\ aut(z)]] for finite subgroups K C aut(z). Hence the argument in the proof
of Lemma shows (without using condition (I)) that rk{?) op =7 o rk{})
is true on the image of w o 7. This implies

ﬁ@) ow® = ﬁ@) o rk{?) owol= rk{?) o owoTl.

We conclude pow = id from Theorem [6.22] A direct computation shows rk{}) ol =
id. Hence

ﬁ(z) o 5(2) =id.

Since the matrix defining @ is a triangular matrix whose entries on the diagonal
are all 1, @ is an isomorphism. Hence @? of B29) and 7? of [B30) are
isomorphisms and inverse to one another. O

Remark 6.32. Notice that the condition free is not needed when we want to
define the finiteness obstruction or to compute it as long as we stay on the K-
theory level. It does enter, when we want to consider the rank or L2-rank of the
finiteness obstruction, to ensure that certain comparisons can be done on the level
of the Euler characteristics, or, equivalently, certain maps on the Ky-level factorize
over the rank or L2-rank homomorphism from Ky(RT) to U(T') or U(T') ®z R.
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Example 6.33 (Rational Mobius inversion for a finite, skeletal, free EI-category).
Generalizing Example [6.24] let T' be a finite skeletal El-category which is free in
the sense of Definition [6.0, and take R = Q. Then

UM ezQ= P Q
ob(T")
and the homomorphism @® is given by the matrix
mor(y, )|

. N I (N
( lm/\/(y) (Qmor(y ,T) Qly] (y)) z,y€ob(I) |aut(y)| z,y€ob(T")

The last equality follows from Example BA4I[(ii)] If we let wy, be the matrix

(| morr (3, 2))syconiry
and D is the diagonal matrix with entry |aut(y)| at (y,y) for y € ob(T"), then
Dow® = wr,.

Then by Theorem B3] the homomorphism @? is invertible and its inverse is
7i?). Hence wy, admits an inverse iz, == (D o@®)~! = 7?0 D', We calculate
iz by way of the matrix for 77(?) using the formula just after equation (G30). For
any [-chain ¢ € chy(y,x) with ¢ = 29 < 21 < -+ < x; we have
1S()| = | mor(z;—1, ;)| - | mor(x;—o,x;—1)] -+ | mor(zg, 21)|

[t 1) - Jaut(e )] - Jaut(z)]
by freeness. Then,

dimpry) (QS(c) @gpy N ()

_ [S(c)] _ | mor(z;—1, ;)| - | mor(x;_2,z—1)| - - -+ - | mor(zo, x1)|
laut(y)]  [aut(zi-1)] - [aut(z;-2)| - --- - [aut(z1)] - |aut(zo)|

by Example Iﬂl Summing up, we have
pp =m* oD

—(Tev X dingg (@50 w0y V) oD
>0 cechy(y,z) x,y€ob(T")
— (Z(_1)z > |I|rl:1§t(f;17il?|| : |rtﬂOI"(fE172.,.J.Tl.,.1)| e |r.nor(3:0,171)|) R
>0 ccoh(y.2) 1-1)| - |aut(z; o) laut(z1)| - [aut(zo)| /), ,eonm)
—(Tey. y metneenll et no)l Jmetae )
= ear aut(a;)| - |aut(z;—1)| - aut(zi—2)| - - - - - |aut(ay)| - | aut(zo)] £,y€ob(T)

_ L 1
= (Z( 1) Z|aut(xl)|.|aut(xl1)|.|aut(;pl2)|...--|aut(:c1)|-|aut(a:0)|>zﬁyeob(m'

1>0

The final sum is over all [-paths zyp — x1 — - -+ — x; from y to x such that =g, ..., x;
are all distinct. Thus, in the terminology of Leinster [I3], the category I' has Mobius
inversion given by pr, and Leinster’s Euler characteristic xr(T") is the sum of the
entries in the matrix puy, above. The free case of Leinster [I3, Theorem 1.4] is now
a special case of rational Mobius inversion (Theorem [G3T]). See also the related
proof of Lemma [73] which shows that the L2-Euler characteristic coincides with
Leinster’s Euler characteristic in the case of a finite, skeletal, free EI-category. Thus,
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the L2-Euler characteristic x(?)(I') is also given by the sum of the entries in the
matrix pr above.

Theorem 6.34 (The K-theoretic Mobius inversion and the L2-rank). Let T' be
a quasi-finite, free El-category satisfying condition (I) defined in [6-27 Then the
following diagram commutes

2N

Split Ko( (@F Spht Ko(Qr)

w
rkg) rkg)

7
UMezQT "~ TRUMezQ

o)

Here the pairs (S,E) (see Theorem [3.1])), (Res,I) (see Theorem [6.16), (w, )
(see Theorem[623), and (@2, 1)) (see Theorem[G31) are pairs of isomorphisms
inverse to one another, and the map rk%z) comes from the map defined in (5.19).

Proof. The map rkg) takes values in U(I") ®z Q by Lemma The other

claims follow from Theorem [6.22] Lemma and Theorem O
Theorem 6.35 (The finiteness obstruction and the (functorial) L?-Euler charac-
teristic).

(i) Let T be a quasi-finite El-category of type (FPg). Then the image of the

finiteness obstruction o(T'; Q) under the homomorphism
Res: Ko(QT') — Split Ko(QI)

defined in Theorem [G10] has as entry at T € iso(T") the finiteness obstruc-
tion o(aut(xz); Q) of the category aut(z), i.e., the finiteness obstruction
0(Q) of the Q[x]-module Q with the trivial aut(x)-action. This possesses
a finite projective Q[x]-resolution by Lemma . As usual, we will
write [Q] for o(aut(z); Q).

(i) Suppose that T' is a quasi-finite, free El-category of type (FPg) satisfying
condition (I) or that T is a quasi-finite, free El-category of type (FFg).

Then for every object x the L?-Euler characteristic x? (aut(x)) is a

rational number and is non-trivial for only finitely many T € iso(I'). The
collection (x¥ (aut(z)) defines an element n € U(I') @z Q. The

zeiso(T)
functorial L*-Euler characteristic XE@(F) lies in U(T") ®z Q. We get

TP =
2m) = X,

where @2 and T are the homomorphisms defined in ©.29) and G.30).
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Proof. |(1)|Since T is of type (FPg), we conclude from Lemma that the Q[x]-
module Q with the trivial aut(x)-action possesses a finite projective Q[z]-resolution
and hence defines an element in Ky(Q[z]). Since Res,: MOD-QI' - MOD-Q|z] is
exact, the claim follows from Lemma

We begin with the case where I is a quasi-finite, free El-category of type (FPgq)
satisfying condition (I). The map rk{?): Split Ko(QI') = [lzcisor) R takes values
in U(T') ®z Q by Lemma The image of o(I'; Q) under the composite

K@
Ko(@r) 2 Split Ko(QP) = [ R
zeiso(T)

is by definition X}Q)(I‘). The image of o(I'; Q) under the composite

o)
Ko(@T) 2 split Ko@) 2 [ R
zeiso(I)

is by definition 7. Now the claim follows from Theorem
Next we deal with the case where I' is a quasi-finite, free El-category of type
(FFg). Since T is of type (FFg), the image of o(I';Q) under the isomorphism

S: Ko(QT) =, Split Ko (Qr) is the image of Xf)(l") € U(T) under the map ¢: U(T") —

Split Ko(QT") defined in (@8], as rkg) ot is the inclusion of U(T"), see Lemma [5.24

)

A direct computation shows that @?) = 1rk§12 ow o ¢. This implies

z® (1)) = .
We get

from Theorem O

6.4. The example of a biset. Let H and G be groups and let S be a G-H-biset.
They define an El-category I'(S) with two objects z and y, where the automorphism
group of x is H, the automorphism group of y is G, the set of morphisms from x
to y is S, the set of morphisms from y to z is empty and the composition in I'(S)
comes from the group structure on H and G and the G-H-biset structure on S.
Any El-category with precisely two objects which are not isomorphic arises as I'(S)
for some S. The category I'(S) is free if and only if S is free as a left G-set. The
category I'(S) is quasi-finite if and only if S is proper and cofinite as a right H-set.
The set of isomorphism classes of objects contains precisely two elements, namely
z and y.

Suppose that I'(S) is quasi-finite. Then I'(S) is of type (FPg) if and only if
the trivial Q H-module Q has a finite projective Q H-resolution and the trivial QG-
module Q has a finite projective QG-resolution (see Lemma GIH[(iv)).

Suppose that I'(S) is quasi-finite and of type (FPg). Then the image of the
finiteness obstruction under the isomorphism

St Ko(QI(S)) = Ko(QH) ® Ko(QG)

is the element x([Q], [Q]) by Theorem where [Q] stands, of course, for the
finiteness obstruction of the trivial Q H-module and trivial QG-module Q, respec-
tively. That is, [Q] means o(H;Q) or o(G;Q) respectively.
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Suppose that T'(S) is quasi-finite, free, and of type (FPg). Then the QH-module
QG\ S has a finite projective QH-resolution and the image of the finiteness obstruc-
tion under the isomorphism

S: Ko(Qr(S)) = Ko(QH) @ Ko(QG)

is the element

#([Q], [Q) = ([Q] - [Q ®qc QS], Q) = ([Q] - [QG\S], [Q))

by Theorem

Suppose that I'(S) is quasi-finite, free, and of type (FPg), and that H and G
satisfy Condition (I) (see [6.26). Then I'(S) satisfies Condition (I) by definition.
The commutative diagram appearing in Theorem

Ko(Qr'(S))

E Res
M
Split Ko(QU(S)) T Split Ko (Q(S))

w

(2) (2)
rkr(s) rkr(s)

ﬁ(2)

UTS) QT T UI(S)®2Q

=2

2N

Ko(QH) @ Ko( QG Ko(QH) @ Ko(QG)

becomes

(2) (2)
rkr(s) rkr(s)

7(2)
Q@Qt:::::::::::::::Q®Q
=@

where w sends ([P],[Q]) to ([P] + [Q ®gc QS],[Q]) and p sends ([P],[Q]) to
([P] — [Q ®qc QS], [Q]) If the proper cofinite right H-set S is the disjoint union
I, L\H and d := Y., 1/|L |, then the matrices for @ and ﬂ@) are respec-

tively ( :l (1) > and ( 1d 1 > by Example |ﬂ| and Lemma [6 We
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conclude from Theorem 635 the definitions of x;(I'(S); Q) and x(I'(S);Q), and
Theorem that

X7 @mS) = (PH)-d x? (@), xP(@));

XP@S) = xPH)+(1-d)-xP(G);
xf(0(S);Q) = (1-[G\S/H|1);

x(T(S);Q) = 2—[G\S/H|;

X(BL(S);Q) = 2—|G\S/H]|.
The situation above simplifies considerably in the finite case.

Example 6.36 (Finite G-H-biset for finite groups H and G). Let H and G be finite
groups and S a finite G-H-biset. Then the category I'(S) is a finite El-category.
We conclude from Theorem that I'(S) is of type (FPg). The image of the
finiteness obstruction under the isomorphism
S Ko(QI(S)) = Ko(QH) & Ko(QG)
is the element p([Q], [Q]) = ([Q] — [QG\S], [Q]), and
1 |G\S|] 1

) = (- e
L1 (6]

(2) B At
X (T(S)) e m
xr(L(S);Q) = (1—-I|G\S/H| 1);
x(T(8);Q) = 2-I[G\S/H]J;
X(BT(S);Q) = 2—|G\S/H]|.

since dimpr(z) (C(G\S) @cu N (H)) = % by Example GA[(D)} If S is free as a
left G-set, or, equivalently, if T'(S) is free, we obtain

@) 1 I )
V2Is) = C—————T—;
i (TS) |H| |G| |H| |G|
11 El
(2) —
AA(S) = oo e
; ; ; IG\S| _ __IS]
since in this case W = W

6.5. The passage to the opposite category. In this subsection we want to
compare the invariants of I' with the invariants of the opposite category I'°P. The
categories I' and I'"°P can be distinguished by o, x, chz), and x(?).

In general I' and I'°P behave very differently. It may happen that I" is of type
(FPg) but I'°? is not of type (FPg) or that both T" and I'°P are of type (FPg), but
their finiteness obstructions and functorial Euler characteristics are very different.

This is illustrated by the following example.

Example 6.37. Let G be a group. Let S be the G-{1} biset consisting of precisely
one element. Let I'(S) be the associated El-category of Subsection It has two
objects x and y. The sets morp(g)(w, ) and morr(g)(z,y) each contain precisely
one element, the set morp(g)(y, y) is equal to G, and the set morp(g)(y, z) is empty.
The category I'(S) is quasi-finite in the sense of Definition[G.6land also directly finite
in the sense of Definition Bl We conclude from Lemma that T'(S) is of
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type (FPg) if and only if the group G is of type (FPg), i.e., the trivial QG-module
Q possesses a finite projective QG-resolution.

Now suppose that G is of type (FPg). Then the trivial QG-module Q has a
finite projective QG-resolution and defines an element [Q] = o(G;Q) € Ko(QG).
Let a: Ko(QG) — Ko(Q) be the homomorphism which sends [P] to [P ®qg¢ Q).
We conclude from Theorem that the finiteness obstruction o(T'; Q) is sent
under the isomorphism of (B.7)

Sor(sy: Ko(QI(S)) = Ko(Q) ® Ko(QG)

to 1([Q], [Q]) = ([Q] — a([Q]), [Q]),
This implies

APIES) = (1-x(BG),x?(G) eUT(S)2zQ=QaQ;
YD) = 1-x(BG)+x2(G) €

Xs(L(S:Q) = (1-x(BG),x(BQ)) €UI(S)=L&L;
xT(9):;Q) = 1 € Z;

X(BT(S);Q) = 1 cZ.

If G satisfies condition (I) of ([6.26) or G is of type (FFg), then we conclude from
Lemma
XP(r(s)) = 1.
The opposite category I'(S)°P = I'(S°P) has a terminal object, namely z. Hence

it is always of type (FPg) and its finiteness obstruction o(I'(5)°P; Q) is sent under
the isomorphism of (B7)

Sar(syr : Ko(QI(S)P) =5 Ko(Q) & Ko(QG)

to u([Q], [Q]) = (1Q],0).
This implies

XP@S)P) = (1,0) eU@ES)P)@zQ=Q6Q;
X(@Es)r) = 1 e

xf(LS)™?:Q) = (1,0) €eUT(S)™) =201
x(T(9)°»Q) = 1 e

X(BL(S)?:Q) = 1 €Z

Notice that all the results for T'(S) depend on G, whereas the results for I'(S)°P are
all independent of G. So for example, if G is not of type (FPg), then I'(S) is not
of type (FPgq), while I'(S)°P is of type (FPg).

6.6. The passage to the opposite category for finite EIl-categories. One
can say more about the passage from I' to I'°? in the special case where I" is a
finite El-category. Let R be a commutative ring. Given an R-module M, denote
by M* := hompg(M, R) its dual R-module. Notice that M* is again an R-module
since R is commutative. This defines a contravariant functor

*r: MOD-R — MOD-R.

There is a natural R-homomorphism I(M): M — (M*)* which sends m € M to
M* = R, ¢ — ¢(m). Tt is an isomorphism if M is a finitely generated projective
R-module.

We obtain a functor

*pr: MOD-RT — MOD-RI°P
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which sends a contravariant RI[-module P to the contravariant RI'°P-module, or

equivalently, covariant RI'-module P* given by the composite I’ £ MOD-R &
MOD-R. The functor *gr is exact when restricted to RI'-modules M for which
M (z) is a finitely generated projective R-module for every object x € ob(T"). Let
M be an RI-module such that M (z) is a finitely generated projective R-module for
every object © € ob(T"). Then M* is an RT'°P-module such that M (z) is a finitely
generated projective R-module for every object x € ob(I'°P) and there is a natural

isomorphism of RT-modules M —» (M*)*.

Now assume that the order of the automorphism group of every object in I' is
invertible in R. Then an RI-module M, for which the R-module M (x) possesses a
finite projective R-resolution for every object = € ob(I"), possesses a finite projective
RI'-resolution by Lemma Hence we obtain a well-defined homomorphism
(6.38) xpr: Ko(RT) — Ko(RT°P), [P]— [P*]

The functor *gpr sends the constant RI'-module R to the constant RI'°P-module R.
We conclude:

Lemma 6.39. Let I' be a finite EI-category. Let R be a commutative ring such
that the order of the automorphism group of every object in I' is invertible in R.

(i) The map of ([G38)
xpr: Ko(RT) — Ko(RT°P)
is bijective, an inverse is
*grev : Ko(RT'P) — Ko(RT);
(ii) Both I and I'°P are of type (FPr) and
#gr(o(I; R)) = o(I°P; R).
The map *gr is rather complicated as the next result shows.

Lemma 6.40. Let I' be a finite El-category. Let R be a commutative ring such
that the order of the automorphism group of every object in I' is invertible in R.
Then the following diagram commutes

Ko(RD) — " Ko(RI°P)

o

Serﬁ :\LSRFOP

Split Ko(RT) ——s Split Ko(RTP)

Here Spr and Sgpree are the homomorphisms defined in BI) which are isomor-
phisms by Theorem [3.17), the isomorphism xgr has been defined in (G38) and the
isomorphism v is the composite

v: Split Ko(RT) <25 Split Ko(RT) 25 Split Ko(RTP) L2222, Split Ko (RTP),
where wrr is the isomorphism defined in (6I8]) for T', pgrrer is the isomorphism

defined in ([G2I) for T°P and D is given by the direct sum of the isomorphisms

Ko(Rautr(z)) =N Ko(Rautres (x)) sending the class of the finitely generated pro-
jective Rautr(z)-module P to the class of the finitely generated projective R autpop (x)-
module P*.
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Proof. Consider the following diagram.
Ko(RD) — 5 Ko(RI°P)
Snr J/RCS Ar ReSRlﬂopl Snrer
Split Ko(RI") —— Split Ko(RT) — Split Ko(RT°P) Ty Split Ko(RIP)

The left and right triangles commute by Theorem [6.22] and the middle square
commutes from the definitions, so the entire diagram commutes. 0

Lemma 6.41. Let I' be a finite El-category. Suppose that both I' and T'°P are free
in the sense of Definition[6.8. Then the following diagram commutes.

Ko(QI) ——— Ko(Qr?)

o

SQF‘[Z :lSQFOP

Split Ko(QI) —;> Split Ko(QI°P)

rkl(?)l j{rkl(ﬂzo)p

U(T) @2 @ —2— U(T) @2 Q

Here the upper square is taken from Lemma [6.40, the maps rkg) and rk%?o)p have

been defined in (519), and the isomorphism T2 is defined to be ﬁ(fo)p ow(FQ), where
w(ﬁ) is the isomorphism defined in ([G29) for T' and ﬁg,)p is the isomorphism defined
in [G30Q) for T'°P.

Proof. This follows from Theorem[6.34] Lemmal6.40] and the easy to verify fact that
the following diagram commutes for the homomorphism D appearing in Lemma[6.40

Split Ko(QI') —2 Split Ko (QI°P)

rkl(?)l j{rkl(ﬂzo)p

U) ®2Q —— U() ®2Q
O

Example 6.42 (The isomorphism x* for a finite G- H-biset for finite groups H and
G). Let H and G be finite groups and S a finite G-H-biset. We have defined a
finite El-category I'(S) in Subsection and Example We conclude from
Subsection that the commutative diagram appearing in Lemma can be
identified for T'(.S) with

*Qr(s)

Ko(QI'(5)) ———F=—— Ko(QI(5))

SQNS)JE 115@F<S>°P

Ko(QH) & Ko(QG) —— Ko(QH) & Ko(QGP).

By the calculation for w and g in Subsection 6.4 the homomorphism v sends

([P],1Q)) to
([P"]+[(Q ®gc QS)7], [Q"] — [P* ®qmer QSP] — [(Q ®gc QS)" @guer QSP))



58 THOMAS M. FIORE, WOLFGANG LUCK, AND ROMAN SAUER

(recall that the roles of G°P and H°P are switched in the formula for pgres).

Now suppose that both T'(S) and T'(S)°P are free, or, equivalently, that G acts
freely from the left on S and H acts freely from the right on S. Then the commu-
tative diagram appearing in Lemma can be identified with

Ko(Qr(S)) = Ko(Qr'(5)°")

5@F<S>Ju ﬁls@wsm

Ky(QH) ® Ko(QG) % Ko(QH?) & Ko(QG°P)

(2) (2)
rkr(s)l lrkr(s)op

*Qr(s)

QeQ — QaQ
1 151
where 7(?) is given by the matrix 151 ‘H\‘SP .
“la L e

7. COMPARISON WITH THE INVARIANTS OF BAEZ-DOLAN AND LEINSTER

In this section we compare our invariants with the groupoid cardinality of Baez—
Dolan [2] and the Euler characteristic of Leinster [I3]. If T is a skeletal, finite, free
El-category, then T is of type (FPg) and of type (L?), and Leinster’s Euler char-
acteristic coincides with the L2-Euler characteristic. However, if we leave out the
freeness hypothesis, then Leinster’s Fuler characteristic can very well be different
from the L2-Euler characteristic, see Remark [7.4l

7.1. Comparison with the groupoid cardinality of Baez—Dolan. Baez—Dolan
define in [2] the groupoid cardinality of a groupoid T' to be

1
2 | aut(z)|’

zeiso(T)
provided this sum converges. In other words, the groupoid cardinality is the count of
the isomorphism classes of objects inversely weighted by the size of their symmetry

groups. This agrees with the L2-Euler characteristic of such groupoids as seen in
Example (.12

7.2. Review of Leinster’s Euler characteristic. We briefly review the Euler
characteristic due to Leinster [13]. Let T' be a finite category (see Definition [66)).
A weighting on T' is a function k®: ob(I') — Q such that for all objects x € iso(T")
we have Eyeob(f‘) | mor(x,y)|-kY = 1. A coweighting ke on I is a weighting on I'°P.

Definition 7.1. A finite category I' has an Fuler characteristic in the sense of
Leinster if it has a weighting and a coweighting. Its Euler characteristic in the
sense of Leinster is then defined as

w@= Y = Y ok
y€eob(T) xeob(T)

for any choice of weighting k°® or coweighting k.

This is indeed independent of the choice of the weighting and the coweighting.
In particular we get xr(I') = xz(T'°P).
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Remark 7.2. Leinster’s Euler characteristic can only be defined if the category I
is finite and depends only on the set of objects ob(I') and the orders | mor(z,y)|
for x,y € ob(I'). This is different from the other invariants such as the finiteness
obstruction. For instance x, does not « distinguish between the category I' appearing

in Example 218 and the groupoid Z/2, whereas the finiteness obstructions and the
L2-Euler characteristic do.

7.3. Finite, free, skeletal, EI-categories and comparison of y(?) with ;.

Lemma 7.3. Let I" be a finite, free, El-category which is skeletal, i.e., two isomor-
phic objects are already equal.

Then T is of type (FPc) and of type (L?), and has an Euler characteristic in the
sense of Leinster. We get for the L?-Buler characteristic x? (TI') of Definition 10
and Leinster’s Euler characteristic x1,(T') of Definition[7]]

X(T) = x.(I).

Proof. By [13] Lemma 1.3 and Theorem 1.4] the category I'°P has a Mébius inver-
sion, i.e., the homomorphism

wr,: U(F)@Z@—} U(F)@ZQ
given by the matrix

(| morr (y, z) |)x,y€ob(F)

is bijective, and has an Euler characteristic in the sense of Leinster. Then by
definition

@ =@ = Y ki

zeob(T)

for any element ks € U(I") @z Q such that wy(ke) is the element 1 € U(T") which
assigns 1 to every element in ob(T).

We conclude from Theorem [6.23] that T is of type (FP¢) and hence of type (L?).
Hence it remains to show

wr (X)) =T eU(D),

since by definition x(?(I") = 2 weob(T X(f2) (T)(x).
Since aut(y) is finite, Example [54|(ii)| implies

for every x,y € ob(I'). Hence the homomorphism wj, agrees with the composite
D ow®?, where @®? is defined in [:29) and D is the isomorphism given by the
diagonal matrix with entry |aut(y)| at (y,y) for y € ob(T). Since D o @? maps
X(f2) (T') to 1 because of Theorem and because of x? (aut(z)) = 1/| aut(z)|,
Lemma [73] follows. We need T' to be free in the sense of Definition in order to
apply Theorem O

Remark 7.4. The condition in Lemma [T that T" is free is necessary as the fol-
lowing example shows. Let H and G be finite groups and S be a finite G-H-biset.
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Let T'(S) be the associated finite El-category of Example We conclude from
Example [6.36] and the definition of xr(T'(S)) that

11 |G\S|

(2) 4 il
S = e A
X)) = 2 [C\S/H;
X(BI(S) = 2-|C\S/H:
w(D(S) = 1

[H] " 1G] 1GI-H]

Hence xP(I'(S)) = xr(I'(S)) holds if and only if |G\S| = % The latter is
equivalent to the condition that I'(S) is free.

Notice that x(I'(.S)) and x(BI'(S)) are always integers and are in general different
from both x®)/(T'(S)) and x1,(T'(9)).

Remark 7.5 (Homotopy colimit formula). In [I2], we prove the compatability
of various Euler characteristics of categories with homotopy colimits. There we
compare our homotopy colimit results with Leinster’s results on Grothendieck fi-
brations.

7.4. Passage to the opposite category and initial and terminal objects.
Leinster’s Euler characteristic x 1, (') and the topological Euler characteristic x(BT")
do not see a difference between I' and I'°P. We have discussed in detail in Subsec-
tion [GH] that T' and T°P can be distinguished by the finiteness obstruction o(T'; R),
the functorial Euler characteristic xf(I'; R), the functorial L?-Euler characteristic
x?) (T"), and the L?-Euler characteristic (2 (T").

Suppose that T" has a terminal object z. Let i: {*} — I' be the inclusion of the
trivial category with value 2. Then the finiteness obstruction is the image of [R]
under i, : Ko(R) = Ko(RT') by Example 211l The functorial Euler characteristic
xf(I; R) € U(T) and the functorial L2-Euler characteristic x?) (T') € UM(T) agree
and are given by the element 1-Z. The Euler characteristic x(I'; R), the L>-Euler
characteristic x(?(I") € UM(T'), and topological Euler characteristic x(BT'; R) are
all equal to 1. Since I" has a terminal object, it admits a weighting, see Leinster [13]
Example 1.11.c]. If T’ additionally admits a coweighting, then Leinster’s Euler
characteristic xr,(I") is equal to 1.

If ' has an initial object, we cannot predict the values of o(I'; R), xs(I'; R),
x?) (T"), and /(") in general, as the results in Subsections and illustrate.
In particular, X(2)(I‘) is not necessarily 1 if I' has an initial object. For instance,
ExampleB30 yields for H = 1, S = {*}, and G any finite group x®(I'(S)) = 1/|G|.
If I has an initial object, then I' admits a coweighting. If I' additionally admits a
weighting, then Leinster’s Euler characteristic x(I") is equal to 1.

The topological Euler characteristic x(BT'; R) is of course equal to 1 if T" has an
initial or a terminal object.

7.5. Relationship between weightings and free resolutions.

Theorem 7.6 (Weighting from a free resolution). Let I be a finite category. Sup-
pose that the constant RI'-module R admits a finite free resolution Py. If P, is free
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on the finite ob(T')-set C,,, that is
(7.7) P,=B(C,) = @ @Rmor(?, Y),
yeob(I') C¥
then the function k®: ob(I') — Q defined by
=Ygy
n>0
is a weighting on I'.

Proof. At each object x of T', the R-chain complex P, (x) has Euler characteristic 1,
since it is a resolution of R. Further, calculating the Euler characteristic of Py (x)
using equation (7)) yields

1= x(Pu(2)) = Y (=1)" rkg Py(x)

n>0

=Y =D Y [0y [mor(z,y)]

n>0 yeob(T)

= Y |mor(z,y) [ D (-1)"|CY]

yeob(T) n>0

= Z | mor(x, y)| kY. O
yeob(T)

In [12], we recall the I'-CW-complexes of Davis-Liick [I1] in the context of Euler
characteristics and homotopy colimits.

Corollary 7.8 (Construction of a weighting from a finite I'-CW-model for the
classifying I'-space). Let T' be a finite category. Suppose that T admits a finite T'-
CW-model X for the classifying T-space ET. Then the function k®: ob(T') — Q
defined by
kY = Z(—l)"(number of n-cells of X based at y)
n>0
is a weighting on I'.

Proof. The composite of the cellular R-chain complex functor with X is a finite
free resolution of the constant RI'-module R. The number of n-cells of X based at
y is |CY]. O

Remark 7.9. We may think of k£°® in Corollary [Z.8 as the I'-Fuler characteristic of
the I-CW -space X. If R = C and I is skeletal and directly finite, then the function
k® is just x¢(I;C) = X(f2) (T') by Lemma and Theorem The role of
direct finiteness is to guarantee that the splitting functors S, are defined.

Example 7.10. Let I' = {1 + 0 — 2} be the category with objects 0, 1, and 2 and
only two nontrivial morphisms, one from 0 to 1 and one from 0 to 2. A finite I-C'W-
model for ET has two zero-cells mor(?, 1) and mor(?, 2) and one 1-cell mor(?,0) x D*
whose attaching map mor(?,0) x S° — mor(?,1) Il mor(?,2) is the disjoint union
of the canonical maps mor(?,0) — mor(?,1) and mor(?,0) — mor(?,2). This finite
model produces the weighting (k°, k!, k?) = (=1, 1, 1) by Corollary [Z.8 This is the
same weighting as Leinster [13] 1.11.a].
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Example 7.11. Let I' = {a = b} be the category consisting of two objects and
a single pair of parallel arrows between them. A finite I'-CW-model for ET has a
single 0O-cell based at b and a single 1-cell based at a. The gluing map mor(—, a) x
S% — mor(—,b) is induced by the two parallel arrows a = b. Corollary [.8 then
produces the weighting (k%, k*) = (-1, 1), the same weighting as Leinster [I3] 3.4.b].

Example 7.12. Let I' be the category with objects the non-empty subsets of
[q] = {0,1,...,¢} and a unique arrow J — K if and only if K C J. In [12], we
construct a finite I-C'W-model with precisely one |J| — 1 cell based at J for each
nonempty J C [¢]. By Corollary [[8 we obtain a weighting k® on T’ by defining
k7 := (=1)I7I=1. This is the same weighting as Leinster [I3| 3.4.d].

Remark 7.13. For a finite group G, there is no finite model. So it appears the
above method of finding the weighting does not work. However, if we use the L2-
rank, something similar does. Every finite group G has a finite projective resolution
of Q, namely Q itself. Then we obtain for the weighting

Eo=Y (=) dimye) Q, = dimye) Q = 1/|G],
n>0

precisely as by Leinster.

8. THE PROPER ORBIT CATEGORY

The principal virtue of the finiteness-obstruction approach to Euler characteris-
tics is the wide variety of examples and familiar notions it encompasses. We have
already seen the topological Euler characteristic of a category and the classical L?-
Euler characteristic of a group [I9] Chapter 7] as special cases. We turn now to
another special case: the equivariant Euler characteristic of the classifying space
EG for proper G-actions. Recall from Definition [6.7 that the proper orbit category
Or(G) has as objects the homogeneous spaces G/H with H a finite subgroup of G,
and as morphisms the G-equivariant maps. We have shown in Lemma that
Or(G) is a quasi-finite and free El-category. We will explain in this section that
the finiteness obstructions and Euler characteristic notions for I' = Or(G) corre-
spond to established notions in equivariant topology for the classifying space EG
for proper G-actions. This gives in particular the possibility to compute and relate
the invariants for Or(G) to more geometric notions.

In Subsection B we recall G-CW-complexes, the classifying space for proper
G-actions, and the relationship between equivariant invariants of EG and our
category-theoretic invariants of Or(G). In Subsection we discuss Mobius in-
version for Or(@) in the case where EG admits a finite model. If Gy is a subgroup
of G and G, then the Euler characteristics of Or(G *¢, G2) are computed addi-
tively from those of Or(Gy), Or(G1), and Or(G2) in Subsection B3l In Subsection
B4 we derive the Burnside congruences from an integrality condition involving
(7?,w?)). We work everything out explicitly for G' the infinite dihedral group in
Subsection Fundamental groupoids are considered in Subsection

8.1. The classifying space for proper G-actions.

Definition 8.1 (G-CW-complex). A G-CW -complex X is a G-space X together
with a filtration by G-spaces X 1 =0 C X C X; C...C X = Unzo X,, such that
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X = colim,, o X,, and for each n there is a G-pushout, that is, a pushout in the
category of G-spaces

Uie]n qa;’
_—

Hie]n G/Hl x gn—1 Xn_1

I I

ier, QF
I,c;, G/H; x D" HL> X,.

For more information about G-CW-complexes we refer to Liick [I5, Chapters 1
and 2]. A G-CW-complex is proper if and only if all its isotropy groups are finite
(see Liick [I5, Theorem 1.23 on page 18]).

A G-CW-complex is finite, i.e., is built out of finitely many equivariant cells
G/H; x D™ if and only if it is cocompact, i.e., G\X is compact. A G-CW-complex
X is finitely dominated if and only if there exists a finite G-CW-complex Y and G
maps i: X - Y and r: Y — X with r o7 ~¢ idx.

Definition 8.2 (Classifying space for proper G-actions). A model for the classify-
ing space for proper G-actions is a G-CW-complex EG such that the subspace of
H-fixed points EGH is contractible for every finite subgroup H C G and is empty
for every infinite subgroup H C G.

For much more information about £G than presented here we refer the reader to
the survey article [21] of Liick. We have EG = EG if and only if G is torsion-free.
We can choose G/G as a model for EG if and only if G is finite.

Remark 8.3. The classifying space for proper G-actions has the following universal
property. If X is a proper G-CW-complex, then there is up to G-homotopy precisely
one G-map from X to EG. In other words, a model for EG is a terminal object in
the G-homotopy category of proper G-C'W-complexes. In particular, two models
for EG are G-homotopy equivalent.

Recall from Notation 4 that U(T") := Ziso(T") for any category T'.

Definition 8.4 (Equivariant Euler characteristic). Let X be a finite G-C'W-complex
(see Definition BTl). The equivariant Fuler characteristic of X

X°(X) € U(O1(G))
is
XO(X) = (=) Y G/H;
n>0 icl,
for any choice of G-pushout appearing in Definition

Theorem 8.5 (The relation between EG and Or(G)).

(i) If there exists a finite G-CW -model for EG, then the El-category Or(Q)
is of type (FFRr) for any ring R;
(i) If there exists a finitely dominated G-CW -model for EG, then Or(G) is
of type (FPR) for any ring R;
(iii) Suppose that G contains only finitely many conjugacy classes of finite sub-
groups and for every finite subgroup H C G its Weyl group WgH =
NgH/H is finitely presented. Suppose that R = Z. Then the converses of

assertions and are true;
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(iv) If EG is a finitely dominated G-CW -complex, then the equivariant finite-
ness obstruction of Lick [15, Definition 14.4 on page 278| agrees with the
finiteness obstruction o(Or(G); Z) of Definition [2.7;

(v) Suppose that there is a finite G-CW -complex model for EG. Then its equi-
variant Buler characteristic x°(EG) € U(Or(G)) agrees with the functo-
rial Buler characteristic x ;(Or(G); Z) and the functorial L) -Euler char-

acteristic X(f2) (Or(@)). Moreover, its finiteness obstruction o(Or(G); R) is
the image of x;(Or(G);Z) under the composite

U(Or(G)) = Ko(ZOr(G)) = Ko(ROx(G))

where ¢ has been defined in [L8]) and c is the obvious change of coefficients
homomorphism.

Proof. The cellular ZOt(G)-chain complex C,(X) of a proper G-CW-complex
X sends G/H to the cellular chain complex of the CW-complex map(G/H, X) =
XH_ Tt is always free, and it is finite free if and only if X is finite (see Liick [I5]
Section 18A].

Since EGH is contractible, the cellular ZOt(G)-chain complex C,(EG) is a free
and hence projective resolution of the constant ZOr(G)-module R.

(ii)| This follows from Liick [I5, Proposition 11.11 on page 222].
This follows from Liick—Meintrup [22] Theorem 0.1].
This follows now from the definitions.

This follows for x;(Or(G);Z) from the definitions. For x?) (Or(G)) apply
Theorem [5.25 O

Remark 8.6. The classifying spaces for proper G-actions EG play a prominent
role in the Baum-Connes Conjecture (see Baum—Connes-Higson [6] Conjecture 3.15
on page 254]) and they have been intensively studied in their own right.

Given a group G, there are often nice geometric models for EG which are finite.
If there is a finitely dominated model for BG, then G must be torsion-free. This is
not the case for EG.

Example 8.7 (Groups with finite EG). If G is a hyperbolic group in the sense of
Gromov, then its Rips complex (for an appropriate parameter) is a finite model for
EG (see Meintrup—Schick [24]).

If the group G acts simplicially cocompactly and properly by isometries on a
CAT(0)-space X, i.e., a complete Riemannian manifold with non-positive sectional
curvature or a tree, then X is a finite G-CW-model for EG. This follows from
Bridson—Haefliger [8, Corollary 11.2.8 on page 179].

Further groups admitting finite models for EG are mapping class groups, the
group of outer automorphisms of a finitely generated free group, finitely generated
one-relator groups, and cocompact lattices in connected Lie groups.

8.2. The Moébius inversion for the proper orbit category. Next we take a
closer look at Theorem [6334] in the case of I' = Or(G) for a group G with a finite
model for EG.

Given an object G/H, we obtain by Lemma an isomorphism of groups

(8.8) WeH := NoH/H = aut(G/H)
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by sending the class gH € NgH/H to the G-automorphism G/H — G/H,g'H
g9 'H.
We obtain a bijection

(8.9) {(H) | H CG,|H| < oo} = iso(Or(G)), (H)— G/H

where (H) denotes the conjugacy class of the subgroup H. Define a partial ordering
on {(H)| HCG,|H| <oo} by

(8.10) (H) < (K) < H is conjugate to a subgroup of K

Then the bijection (89 is compatible with the partial orderings of (6.4 and (8I0).

Given two elements G/H,G/K € iso(Or(G)), an I-chain ¢ € ch)(G/K,G/H) in
the sense of Definition is, under the bijection ([B3]), the same as a sequence of
conjugacy classes of subgroups (Hy) < (Hy) < ... < (H;) with (Hy) = (K) and
(H;) = (H). The aut(G/H)-aut(G/K)-biset S(c) becomes under this identification
and the identification (B8] the W H-We K-biset

S(c) = mapg(G/Hi—1,G/H) Xwen, , mape(G/Hi—2, G/Hi—1) XwaH, »
oo Xwem, mapg(G/K,G/Hy)
= (G/H)"1 xyom, , (G/H_) T2 xywem o Xwem, (G/H)E
where we can arrange K C H1 C Ho C ... C Hj_1 C H.

The commutative diagram appearing in Theorem [6.34] becomes the following
diagram

Ko(QOr(G))
S I

E Res
o

-

GB(H),|H|<oo Ko(QWeH) - @(H),\H\<oo Ko(QWgH)
(2) (2)
D), 1 H1<o0 KW H D (). 1H|<oo K1

ﬂ(z)

D < QT T @B 1< Q

=@

where tkiy) . : Ko(QWGH) — Q sends [P] to dimywem (P @ower N(WeH)),
the map w is given by the collection of homomorphisms
W(H),(K) " KQ(QWGH) — KQ(QWGK), [P] — [P RQoWwe H QmapG(G/K, G/H)} R

the map p is given by the collection of homomorphisms

pemy,(x) 2 Ko(QWeH) — Ko(QW6 K),
[Pl= > (D' Y [P ®awen QS(e)],

1>0 cechy ((K),(H))
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the map @® is given by the matrix (wgi}))(m) over Q, where

1
K):;m

if the right We K-set mapg (G/K,G/H) = (G/H)™ is the disjoint union Yo  Li\WGK,
and the map 7'? is given by the matrix (ﬁg;) ( K)) over Q, where

(1.0 = D (=1 Z Z |L

>0 cechy((

gl
PaS N
no

=

if the right Wg K-set
S(e) = (G/K)™ xwem_, (G/Hi-1)""* Xwam,_s - Xwom (G/H1)"
is the disjoint union Y_;_, L;i(¢)\Wg K.

8.3. Additivity of the finiteness obstruction and the Euler characteristic
for the proper orbit category.

Theorem 8.11 (Additivity of the finiteness obstruction and the Euler characteris-
tic for the proper orbit category). Consider two groups G1 and G2 with a common
subgroup Go. Let G be the amalgamated product G = Gy *g, G2. Then:

(i) We obtain a G-pushout of G-CW -complexes

G X Go EGy —>j1 G X Gy EG,

1

G X Go EGQ —)EG

where j1 and jo are inclusions of G-CW -complexes;
(ii) If Or(Gy) is of type (FPgr) for k = 0,1,2, then Or(G) is of type (FPg)
and we get for the finiteness obstruction

0o(O1(G); R) = (i1)«(0(O1(G1); R)) + (i2)« (0(O1(Go); R))

— (i0)+(0(Or(Go); R)) € Ko(ROx(G)),
where (ig)«: Ko(ROT(Gy)) = Ko(ROT(G)) is the homomorphism induced
by the functor (ir)«: Or(Gr) — Ov(G) coming from induction associated
to the inclusion iy : Gy, — G for k=0,1,2;

(iii) If Or(Gk) is of type (FPgr) for k = 0,1,2, then Ov(G) is of type (FPRr)
and we get for the functorial Euler characteristic
X7 (Or(G): R) = (i1)« (xf(Or(G1); R)) + (i2)« (x (Or(G2); R))
— (i0)« (xs(Ox(Go); R)) € U(0x(G)),

where (ir)«: U(Or(Gy)) — U(Or(Q)) is the homomorphism induced by
the functor (ix)«: Or(Gr) — OT(G) commg from induction associated to
the inclusion iy: Gy, — G for k =0,1,2, and we get for the Euler charac-
teristic

x(0r(G); R) = x(Or(G1); R) + x(Or(G2); R) — x(Ox(Go); R) € Z.
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If R is additionally Noetherian, then x(BOr(Gg); R) = x(Or(Gk); R) and
we get for the topological Euler characteristic
X(BOr(G); R) = x(BOr(G1); R) + x(BOr(Gs); R) — x(BOr(Go); R) € Z.
(iv) If Or(Gy) is of type (L?) for k = 0,1,2, then Or(G) is of type (L?) and

we get for the functorial L?-Euler characteristic

x?)@«;)):<z'1>*(x§.2>@<al>>) + (i2). (X (01(G2)))
(i0)« (xP(01(Go))) € UM (0r(G)),

where (ix): UD(Or(Gy)) — UD(O1(Q)) is the homomorphism induced
by the functor (ix)«: Or(Gy) — Or(G) coming from induction associated
to the inclusion iy: G, — G for k = 0,1,2, and we get for the L*-Euler
characteristic

X?(0r(@)) = xP(0r(Gr)) + xP(Or(G2)) — X (Or(Go))  €R.
Proof. Associated to G = G *¢g, G2 there is a 1-dimensional contractible G-
CW-complex T which is obtained as a G-pushout

G/Go x S0 PP coc 1GyG,

| |

G/Go x D! —— T
where pr,: G/Gy — G/G}, is the projection (see Serre [26] Theorem 7 in 1.4 on
page 32]).

Since for every finite subgroup H C G the H-fixed point set T is a non-empty
subtree, by Serre |26, Proposition 19 in 1.4 on p. 36], and thus contractible, the
product with the diagonal G-action T' x EG is again a model for EG. Note that
resg’“ EG is a model for EG), and

G/Gy x EG =55 G x¢, resG* EG, (9Gr, ) — (9,9 ')

is a G-equivariant homeomorphism. Combining everything, we obtain the following
G-pushout by crossing the G-pushout for 7" above with EG

G xg, EGo x S —— G xq, EG1 11 G xg, EGs

| |

G xg, EGox D' ———— S EG.

We can write the preceding G-pushout equivalently as
G %y EGy x D' —2 G xa, EG,
/| |
G xg, EGo ———— EG

where j; and j, are inclusions of G-C'W-complexes. Furthermore, EGo x D* is just
another model of EGy.

For k=0,1,2 we get
ind;, C.(EGy) = C, (G X @, EGk)
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where C.(EGYy) is the cellular ZOtv(Gy)-chain complex of the Gp-CW-complex
EGy, C.(G xg, EGy) is the cellular ZOr(G)-chain complex of the G-CW-complex
G x @, EGj. From the G-pushout of assertion we obtain a short exact sequence
of ZOr(G)-chain complexes

0— indio C, (EG()) — indil C, (EGI) ©® indiz C, (EGQ) — O, (EG) — 0.
Now apply Liick [I5, Theorem 11.2 on page 212], Theorem .15l and Theorem [R5

This follows from the definition of x;(Or(G); R) since rkgr: Ko(ROr(G)) —
U(Or(@)) is compatible with induction homomorphisms induced from group homo-
morphisms. The category Or(G) is directly finite by Lemma BT3], so Theorem 20
applies.

We obtain for any object G/H in Or(G) a short exact sequence of ZOr(G)-
chain complexes

0 = Sg i (indy, CL(EGo)) = Sgyu (inds, Co(EGL)) & Sgyu (ind;, C.(EG2))
— Se/u(Cu(EG)) — 0.

For every finite subgroup H C G and k = 0,1, 2 the inclusion G} — G induces
an injection Wq, H — WgH. The splitting functor is compatible with induction.
Now apply Theorem 5.7 O

8.4. The Burnside integrality relations and the classical Burnside congru-
ences. Let G be a group and let X be a finite proper G-CW-complex. We have
defined its equivariant Euler characteristic x“(X) € U(Or(G)) in Definition

The map
@ P e- P

(H),|H|<o0 (H),|H|<oo
defined in Subsection sends
X(X)eUr(@) cUOrG) Q= H Q

(H),|H|<o0

to the collection (X(2)(XH;N(WgH)))(H) | H| <o of the L?-Euler characteristics
of the N (WgH)-chain complexes Cy(XH#) @zwou N(WegH). If X = EG, then

XX NWeH)) = x? (WgH). Notice that we get for the map
i) U(0r(G)) @2 Q = U(0r(G)) @2 Q
defined in Subsection

7® ((x<2> (XH N (WoH))) — G (X,

<H>,H<oo>

Lemma 8.12. Consider n = (n(H))(H) |H|<oo € H(H) |H|<o0 R. Then there is a

finite proper G-CW -complex X with x (X", N (WgH)) = Ny for every finite
subgroup H C G if and only if n € U(O1(G)) ®z Q = D (1), mj<0 Q and 7@ (n)
lies in U(O1(Q)).

Proof. The direction “=" was proved in the sentences preceding the Lemma. For
the direction “<”, we first note that every element of U(Or(G)) can be realized as
X% (X) for some G-CW-complex X. Namely, G/H is realized by the 0-dimensional
G-CW-complex G/H, and —G/—H is realized by the 1-dimensional G-C'W-complex
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given by two G-1-cells G/H x D! attached to a single G-0O-cell G/H. All other
elements of U(Or(G)) arise from finite disjoint unions of G-C'W-complexes of these
two forms. If n € U(O1(G)) ®z Q and 7? () € U(Or(G)), then we realize 7it? (1)
as X% (X) and apply @? with Theorem BT to obtain x 2 (X7, N(WeH)) = n¢m
for every finite subgroup H C G. O

Lemma 8.13. Let G be a group such that Or(G) is of type (FPg).
(i) If Or(G) satisfies condition (I), then

Xy (or(@)) = 7® ((X(z)(WGH))w).,H@o);

(ii) If there is a finite model for EG, then the following integrality condition
is satisfied

i ((x<2><WGH>)(H>,|H|<OO) € U(0r(@)).
Proof. This follows from Theorem [6.35] Theorem [R5 and Lemma O

Example 8.14 (Burnside congruences). These considerations are already interest-
ing in the case of a finite group G. Since we assume G is finite in this example, we
refrain here from writing |H| < oo when summing over conjugacy classes (H) of
subgroups of G. For every finite G-CW-complex X, the map

z?: o P

(H) (H)

sends the equivariant Euler characteristic x“(X) to the collection (x(X*)/|W¢H]|) ()’
where x(X ) is the classical Euler characteristic of the H-fixed point set. We con-
clude from Lemma BI2 that for an element 7 = (1(mr)) ) € D ) Q there exists
a finite G-CW-complex X such that x(X#)/|[WgH| = x? (X H; N(WgH)) agrees
with (g for any subgroup H C G, if and only if 7® (n) € U(Or(@)). The latter is
a kind of integrality condition. In the case of a finite group G it can be transformed
into equivalent congruence conditions for integers.
Let
ch = ch®: U(Or(G)) - Pz
(H)

be the map uniquely determined by the property that it sends x“(X) to the col-
lection (y(X*)) () for every finite G-C'W-complex X. Under the obvious identi-

fication of U(Or(G)) with the Burnside ring A(G), the map ch corresponds to the

character map which sends a finite G-set S to the collection (|S]) )" We have

iocthow(2)oz',

if i: U(G) = U(G) ®z Q is the obvious inclusion and the map D: U(G) @z Q —
U(G) ®z Q is given by the diagonal matrix whose entry at (H) is |[WgH|. Let
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be the map uniquely determined by iov = D oi® o D=1 0 i. One easily checks
that it is given by the integer matrix whose entry at ((H), (K)) is

l
> (-1t > 1 WeHi 1\ mape(G/Hi, G/ Hiyy ).
=0 (Ho)<--<(Hy)ech; ((K),(H)) =1
Notice that 1 ov oy = D oi. We conclude that an element £ € @(H) Z lies in the
image of ch if and only if, for every conjugacy class (H) of subgroups of the finite
group G, the following congruence of integers holds:
I/(f)(H) =0 mod |WgH|

These are the Burnside ring congruences. For more information about the Burnside
ring we refer for instance to tom Dieck [28 Chapter 1].
If G is the cyclic group Z/p of order p for a prime p, then U(Or(Z/p)) = Z2,

ch = ( g 1 > 1 U(Ox(Z/p)) = Z° — U(Ox(Z/p)) = 2,

and
V= ( (1) _11 ) : U(Or(Z/p)) = Z° — U(Or(Z/p)) = Z°.
The Burnside ring congruences reduce to one congruence, namely
Nz/p)/ 1y — Nz/p)/z/p) =0 mod p.

The latter reflects the fact that the cardinality of S — S%/? is a multiple of p for a
finite Z/p-set S.

Example 8.15 (Amenable GG). Let G be an amenable group. Suppose that Or(G)

is of type (FPg). Then x(?(Or(G)) is the image of n = (n(H))(H) H|<oo deT

1% U(0r(G)) ©2Q = U(Or(@)) ©2Q
where 7g) = 0 if W H is infinite and n gy = 1/|WeH| if WgH is finite.
In particular, if W H is infinite for every finite subgroup H C G, then x®)(Or(G))
vanishes.
This follows from Theorem [6.35 Lemma BI3l and the result of Cheeger and

Gromov that all the L2-Betti numbers of any infinite amenable group G vanish
(see Cheeger—Gromov [I0] and Liick [IT9, Theorem 7.2 on page 294]).

8.5. The infinite dihedral group. Consider the infinite dihedral group
Do = (t,s|s*=1,sts =t )Y 2L x7L/2=7)2%7/2.

As an illustration we want to make all the material of this section explicit for this
easy special case.

The infinite dihedral group D has three conjugacy classes of finite subgroups
(C1), (C2), and (T'), where Cy = (s) and Cy = (ts) have order two and T is the
trivial group.

One easily checks that Wp_ C; is trivial for i = 1,2 and Wp_T = D,. Hence
we get

Split Ko(QOr(Dw)) = Ko(QDs) & Ko(Q) & Ko(Q) = Ko(QD) ©Z ® Z
by the discussion in Subsection
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The Wp_ Ci-Wp_ T-biset mapp (Doo/T, Doo/C5) is given by the right Dec-
set C;\Dy for i = 1,2. The Wp_T-Wp_T-biset mapp_ (Doo/T, Doo/T) is Do
regarded as Doo-Doo-biset. The Wp_ Cj-Wp_ Ci-biset mapp_ (Doo/Ci, Doo/Cj) is
empty for ¢ # j and is the {1}-{1}-biset consisting of one point for ¢ = j. The
Wp, T-Wp,_, Ci-biset mapp_(Doo/Ci, Do /T) is empty for i = 1,2. There are
exactly two 1-chains in Or(Dy,), namely (T') < (C1) and (T) < (Cs).

Hence we get

w: Kg(QDoo) #Z 8 7Z — Ko(QDoo) B Z & Z,
(a:,nl,ng) — ({E +ny - [ch\Doo] + no - [QCQ\DOO],nl,ng),

e KO(QDOO> SLOL— KO(QDOO) S Z @Z,
(z,n1,m2) = (z —n1 - [QC1\Doo] — 1z - [QC\Doc), 1, m2),

1 1/2 1/2

w(2) = 0 1 0 /RN ZB, (no,nl,ng) — (n0+n1/2+n2/2,n1,n2),
0 0 1

and

1 -1/2 -1/2

a? =10 1 0 P22 = 7%, (no,ni,na) = (no—n1/2-n2/2,m1,n2).
0 0 1

The map

k3 ) ) Ko(QDw) ZO L+ LSO LS T,

sends ([P], n1,n2) to (dimp(p_)(P ®gp.. N(Dss)), n1,n2).
There is the isomorphism
ZOLOL = Ko(QDso),  (no,n1,n2) = no-[QDac]+11-[QC1\ Doo]4+n2-[QC5\ Do

(see for example the Mayer-Vietoris sequence for amalgated products in Wald-
hausen [30, Corollary 2.15 on page 216] and the subsequent remarks there). Under
this identification

1 1/2 1/2 0 0
xkg;Dm)z 0 0 0 1 0 |:72°5->73

0 0 0 01
1 0000
01 01 0

w=]|001 0 1 |:2°=7°,
00010
00 0 01
and
1 00 0 0
01 0 —1 0
p=|0 01 0 -1 |:7Z°—7°

000 1 0
000 0 1



72 THOMAS M. FIORE, WOLFGANG LUCK, AND ROMAN SAUER

The infinite dihedral group Do, = Z % Z/2 acts on R by the action of Z on R
given by addition and the action of Z/2 in R given by multiplication with (—1).
There is a Dy.-CW-structure on R such that there are three equivariant cells of
the type Do, /C1 x D°, Do, /Ca x D°, and Do, /T x D. One easily checks that this
is a model for ED.,. Hence we get for the equivariant Euler characteristic of £ D«

X"*(EDoo) = Doo/C1 + Doo/C2 — Doo /T € U(QOr(Dec)).

By Theorem and Theorem the image of the finiteness obstruction
0(0Or(Dw)) under the isomorphism

S: Ko(QOr(Ds)) = Split Ko(QOT(Dwo)) = Ko(QDoo) B Z & Z = Z°

is (—1,0,0,1,1). The image of this element under w is (—1,1,1,1,1). All this is
consistent with Theorem 11 applied to Do = Z/2 % Z/2.

The trivial QDs.-module Q has a finite projective QD .-resolution of the form
0= QDy — QDo /C1®QDs/C1 — Q — 0 coming from the QD-chain complex
of R. This implies that the homomorphism

Res: KO(Q@(DOO)) i Split KO(QQ(DOO)) = KO(QDOO) QLOL= A

sends 0(Or(Du); Q) to (—1,1,1,1,1) (see Theorem B35[(T)). This is consistent
with the fact that w sends the image of the finiteness obstruction o(Or(Ds)) under
S, which is given by (—1,0,0,1,1) € Z5, to the element (—1,1,1,1,1) € Z5 (see
Theorem [6.22)).

We have x*(Or(D); Q) = (~1,1,1) € U(Or(Dwo)) = Z*. The composite

k) ) o Res: Ko(QOr(Da)) = U(Or(Da)) = 27

sends 0(Or(D); Q) to (x®(Deo), X ({1}),x?({1})). Since the L>-Euler char-
acteristic of an infinite amenable group vanishes (see Cheeger—Gromov [10]) and the
L2-Euler characteristic of the trivial group is 1, we get (y? (Duo), x@ ({1}), xP({1})) =
(0,1,1). This is consistent with the fact that @® sends (—1,1,1) to (0,1,1) and
with Example

8.6. The fundamental category. Let X be a G-space. Consider the functor
F: Or(G) — GROUPOIDS, G/H +— H(mapG(G/H,X)),

which sends G/H to the fundamental groupoid of X# = map,(G/H,X). Its
homotopy colimit is by definition the fundamental groupoid TI(G, X) which plays an
important role in transformation groups (see Liick [15] Definition 8.13 on page 144]).
Denote by II(G, X) the homotopy colimit of the functor F' above restricted to
Or(G). If all isotropy groups of X are finite, then II(G, X ) and II(G, X) agree.
Suppose that there is a finite G-C'W-model for EG. Let I,, be the set of equi-
variant n-cells ¢ = G/H, x (D™ — S"~1). Consider a G-CW-complex X. Suppose
that for every finite subgroup H C G each groupoid II(X ) is of type (FPq). This
is equivalent to requiring that for every finite subgroup H C G the set mo(X ) is
finite and at each base point € X the fundamental group 71 (X, z) is of type
(FPg). This follows from Brown [9] Exercise 8 in VIIL.6 on page 205] using the facts
that WgH is of type (FPq) because Or(G) is of type (FPg) (see Theorem
and Lemma and for every object x: G/H — X in II(G, X) there exists an

exact sequence

(8.16) 1— m (X", 2) = aut(z: G/H — X) = WgH(z) — 1
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for the subgroup W H (x) C Wg H of finite index which is the isotropy group of the
component in X ¥ determined by = under the W H-action on 7o (X 1) (see Liick [15]
Proposition 8.33 on page 150]). Hence the homotopy colimit formula of Fiore-
Sauer—Liick [I2] applies. For instance we get

UG X)) = Y (=0 > X? (aut(z(0)));

n>0 cel, Ceng(XHe)/WaH,
XI(GX)Q) = > (=" > > X(Baut(x(C)); Q),
n>0 c€ln Cemog(XHe)/WaH.

where for a component C' € (X *¢) we denote by z(C): G/H., — X an object
in II(G, X) such that z(C)(eH,) lies in the component C' and aut(z(C)) is its
automorphism group in II(G, X)) which fits into the exact sequence (RI0).

If we take X = {e} itself, we get back Theorem

One can define for a functor p: Or(G) — GROUPOIDS its equivariant Eilenberg
Mac Lane space E(u,1) which is a G-CW-complex such that p can be identified
with the functor Or(G) — GROUPOIDS sending G/ H to II(E(u, 1)) and we have
T (E(p, 1)H ) is trivial for all n > 2, H C G and = € E(u, 1) (see Liick [14]).
There is a natural equivalence hocolimo,(g) i — I(G; E(p, 1)) which induces an
isomorphism

Ko(Zhocolimg, gy 1) — Ko(ZI(G; E(p, 1))).

Under this isomorphism the finiteness obstruction of hocolimg,(g) ¢ in the sense
of Definition 277 corresponds to the finiteness obstruction of E(u, 1) in the sense
of Liick [I5] Definition 14.4 on page 278].

9. AN EXAMPLE OF A FINITE CATEGORY WITHOUT PROPERTY EI

For the remainder of this section we will consider the following category I'. It
has precisely two objects x and y. There is precisely one morphism u: x — y
and precisely one morphism v: y — x. There are precisely two endomorphisms of
x, namely, v o u and id,. There are precisely two endomorphisms of y, namely,
wov and id,. We have vuv = v and wvu = u. Obviously I' is a free finite
category. It has two idempotents which are not the identity, namely, vu and uv.
It is directly finite but it is not Cauchy complete and not an El-category. In this
section we compute the homomorphisms S, F, and Res for Ky(RI") and determine
the finiteness obstruction.

Given an R-module M, we define three RI'-modules I, M, I,M, and I.M as
follows. The contravariant functor I, M sends z to M and y to {0} and every
morphism except id, to the zero homomorphism. The contravariant functor I, M
sends y to M and z to {0} and every morphism except id, in I" to the zero ho-
momorphism. The contravariant functor I.M sends both x and y to M and every
morphism in I' to the identity ida,.

Lemma 9.1. Let M be an RI'-module. Then there is an isomorphism of RI'-
modules, natural in M

[ I (ker(M (vu))) @ I (ker(M (uv))) @ I.(im(vu)) = M.

Proof. The transformation f is given at the object x by the direct sum of the
obvious inclusions

i @ jo: ker(M(vu)) @ im(M (vu)) = M(z).
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This is an isomorphism since M (vu)? = M ((vu)?) = M (vu). The transformation f
is given at the object y by the direct sum of the inclusion ¢, and the map induced
by M (v)

iy & M (0) lim(ar(ury): ker(M (uv)) @ im(M (vu) = M(y).
This is an isomorphism of R-modules, an inverse is given by
(id =M (uv)) x M(u): M(y) — ker(M (uv)) @ im(M (vu)).

It remains to check that f is a transformation. We check this for the morphism
v, the proof for u is analogous. We have to show that the following diagram is
commutative

ker(M (vu)) & im(M (vu)) 0, ker(M (uv)) & im(M (vu))

izészl linBM(U)im(M(uv))

M(z) M(y)

M(v)

This is equivalent to showing that M (v)|xer(ar(vu)) = 0. This follows from M (v)
M (vuv) = M (v) o M (vu).

ol

Lemma 9.2. Let M be an R-module.

(i) The functors Res, and Res,, respectively from MOD-RI to MOD-R, which
are given by evaluation at x and y respectively, are exact and send finitely
generated projective RI'-modules to finitely generated projective R-modules;

(ii) The following assertions are equivalent:

(a) M is a finitely generated projective R-module;

(b) I.M is a finitely generated projective RT'-module;
(c) I,M is a finitely generated projective RT'-module;
(d) I.M is a finitely generated projective RT'-module.

Proof. Obviously Res, and Res, are exact. Hence it remains to show that they
send both Rmor(?,z) and Rmor(?,y) to a finitely generated projective R-module.
This is obviously true.

Suppose that I,M is a finitely generated projective RI'-module. Then M
is a finitely generated R-module because of assertion since I;(M)(z) = M.
Analogously one shows that M is finitely generated projective if I, M or I.M is a
finitely generated projective RI'-module.

Suppose that M is a finitely generated projective R-module. We want to show
that I, M, I,M, and I.M are finitely generated projective RI'-modules. Since the
functors I, I, and 1. are exact, it suffices to check this in the special case M = R.
This follows from Lemma@dlsince Rmor(?, z) and Rmor(?,y) are free RI-modules
and IR, IR, and I.R are direct summands in Rmor(?,z) or Rmor(?,y). O

Corollary 9.3. The constant functor R: I'°P — R-MOD with value R defines a
projective RI'-module. In particular, R admits a finite projective resolution and T"

is of type (FPR).
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Lemma 9.4. We obtain isomorphisms, inverse to one another,

a: Ko(R) @ Ko(R) ® Ko(R) = Ko(RT),
([P1]7 [P2]7 [PS]) = [Im(Pl)] + [Iy(P2)] + [IC(PS)]

and
8: Ko(RT) = Ko(R) ® Ko(R) ® Ko(R), [P]+ ([S.P],[S,P], [Res, P] - [S,P]),

where the functors Sy and S, are the splitting functors defined in ([B3).

Proof. This follows from Lemma and Lemma O

Consider the following commutative diagram

Split Ko(RT)
/
Ko(RT) id
y X
Split Ko(RT) — Split Ko(RT)
rkRJ/ rkr
u(r) u(r)

€l

where the homomorphisms S and E have been defined in (877) and in (8:8)) and sat-
isfy SoE = id by Lemma[3.3] the homomorphism Res sends [P] to ([Res, P], [Res, P]),
the homomorphism w has been defined in ([G.I8)), the map rkp is given by the direct
sum of the homomorphisms Ky(R) — Z sending [P] to rkr(P) and @ is given by
the matrix < % ; ) . Under the identification « of Lemma [0.4] and the definitions

Split Ko(RT") := Ko(R) @ Ko(R) and U(T') = Z @ Z, where the first summand
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corresponds to x and the second to y, this diagram becomes

YASY YASYA
2 1
(72
The finiteness obstruction o(I'; R) € Ko(RI') of Definition 7] corresponds under
the identification a of Lemma to the element (0,0, [R]) € Ko(R) ® Ko(R) ®
Ko(R). Tts image under S: Ko(RT') — Split Ko(RT') = Ko(R) ® Ko(R) is (0,0).
Its image under Res: Ko(RI') — Split Ko(RT') = Ko(R) ® Ko(R) is ([R], [R]). Its

image under the composite rkg o Res: Ko(RT') = U(T') = Z&Z is (1,1). An inverse
71 of the isomorphism induced by @: U(T') ®z Q — U(T") ®z Q is given by

2/3 —-1/3\
(_1/3 2/ ).@@@%@@@.

The Euler characteristic in the sense of Leinster [13] is 2/3+(—1/3)+(—1/3)+2/3 =
2/3. We see that the Euler characteristic in the sense of Leinster [I3] is the image
of the finiteness obstruction under the composite

Ko(RT) 25 Split Ko(RT) 25 UT) 5 U) 92,0 5 UT) ®,Q S Q

where 7 is the obvious inclusion and € is the augmentation homomorphism.

10. A FINITE CATEGORY WITHOUT PROPERTY (FPp)

In this section we investigate the finite category A appearing in Leinster [13]
Example 1.11.d], recalled below. Leinster showed that A has no weighting. Ob-
viously A is Cauchy complete but not directly-finite and in particular not an EI-
category. We will show that it is not of type (FPg), give a full classification of
the finitely generated projective RA-modules, and compute Ko(RA), Go(RA), and
H,(BA;R) = Hp (A R).
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The nontrivial morphisms of Leinster’s example A are drawn in the diagram

below.
f12,912

f11 Cal a23f22
f1

f21,921
f1s f2s
f31 faz2

as
faa

4 924

He also defines f33 := id,, and fi4 := id,,. Composition in the category A is:

for any composable pair aiimjimk in A for which neither p nor ¢ is an
identity we have gop = fir.

Lemma 10.1. The space |NA| is homotopy equivalent to a point.

Proof. We consider the subcategory U of A which does not contain go4, but other-
wise is the same as A. The object a4 is a terminal object for U, so |[NU| ~ .

But |[NU| ~ |[NA|. We have the inclusion i: U — A. The functor r: A — U is
the identity functor, except on go4, which r maps to foy4. Then ri = idy and we
also have a natural transformation «: ir = idy defined by

alar) = idg,
a(az) = fa
afag) = idg,
alay) =idg, -
The continuous maps |Nr| and |Ni| are homotopy inverses. O

Although A has the homotopy type of a point, A is not equivalent to the trivial
category, for the unique functor A — * is not fully faithful. Alternatively, we note
that the trivial category is of type (FPg) while A is not of type (FPRr), as we now
show.

10.1. Property (FPg).

Theorem 10.2. The above finite category A appearing in Leinster [13] Exam-
ples 1.11.d] is not of type (FPr) for any associative, commutative ring R with
identity.

Proof. In the sequel we use the notation in A appearing in Leinster [I3] Exam-
ples 1.11.d], recalled above. Let M be the RA-module M which is uniquely deter-
mined by M(a;) = {0} for i = 1,3,4, M(az) = R, and M(f22) = 0. Such an RA-
module M exists since id,, = a o b implies a = b = id,,. Let ug: Rmor(?,a4) = R
be the RA-homomorphism uniquely defined by the property that it sends id,, to
1€ R. Let uy: M — Rmor(?,a4) be the RA-homomorphism uniquely determined
by the property that its evaluation at as sends 1 € R = M(az) to foqg — go4. Let
v1: Rmor(?,az2) — M be the RA-homomorphism uniquely determined by the prop-
erty that it sends idg, to 1 € R = M(az). Let va: Rmor(?,a1) — Rmor(?,az) be
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the RA-homomorphism uniquely determined by the property that it sends id,, to
g12 € Rmor(aq,asz). Let vg: M — Rmor(?,a;) be the RA-homomorphism uniquely
determined by the property that its evaluation at ag sends 1 € R = M(az2) to
fo1 — g21. Then we obtain exact sequences of RA-modules

(10.3) 0— M % Rmor(?,a4) =% R — 0,
and
(10.4) 0— M % Rmor(?,a;) 2 Rmor(?,a) 2 M — 0.

The first exact sequence and Liick [15, Lemma 11.6 on page 216] imply that R has a
finite-dimensional projective RA-resolution if and only if M has. By concatenating
copies of [0.4] we obtain an exact sequence

0O—-M-—-F —--—=I—>M=0

with free RA-modules F; of arbitrarily long length n. Thus, using Brown [9, Lemma
(2.1) on p. 184], M has a finite-dimensional projective RA-resolution if and only
if M is projective. Hence R has a finite-dimensional projective RA-resolution if
and only if M is projective. Since v; is surjective, M is projective only if v; has a
section. Hence it suffices to show that v; has no section.

Let s: M — Rmor(?,a2) be any RA-homomorphism. Consider the homo-
morphism g¢7,: Rmor(az,as) — Rmor(ay,as) given by composition with gio. It
sends the R-basis {id,,, fo2} bijectively to the R-basis {gi2, fi2} and is hence
an isomorphism. The composite gis o s(az): M(az) — Rmor(ay,az) factorizes
through M (a1) and hence is trivial since M(ay) = {0}. Hence the RA-morphism
s: M — Rmor(?,az) is trivial and cannot be a section of v;. O

10.2. Finitely generated projective modules. We want to classify all finitely
generated projective RA-modules. Let P be a finitely generated projective R-
module. For ¢ = 1,2 let K1(P) be the RA-module whose evaluation at both ay
and as is P and whose evaluation at both a3 and a4 is {0}. We require that go;
for ¢ = 1 and that g2 for ¢« = 2 induces the identity id: P — P, whereas all other
morphisms in A besides the identity morphisms of the objects a; and as induce the
zero homomorphism. Then

Theorem 10.5. Let P be an RA-module.

(i) P is finitely generated projective if and only if there exists finitely generated
projective R-modules Py, P, Ps, and Py such that

PX2K(P)® Ko(Pa) ® Euy(Ps) ® Eq, (Py),

where E,, and E,, denote the extension functors defined in (34);
(ii) Suppose that there exists finitely generated projective R-modules Py, Ps,
Ps, and py such that

P =Ki(P1) ® Ky (P2) ® Eay (P3) © Eq, (Py).

Then
P =2 S, P;
P = S, P;
Py = coker(P(fs1): P(as) = P(ag));
P, = P(as),
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where S, s the splitting functor defined in [B3);
(iii) P is finitely generated free if and only if there exists finitely generated free
R-modules Fy, Iy, F3, and Fy such that

P> Ki(F)® Ky(F2) ® Eq, (F1 & Fo & F3) & E,, (Fy).

Proof. Recall that the extension functor E,, satisfies E,;(R) = Rmor(?,a;),
is compatible with direct sums, and sends finitely generated projective modules to
finitely generated projective modules (see Lemma BH[(i)). In particular E,,(Ps)
and E,, (Py) are finitely generated projective RA-modules if P is a finitely generated
projective R-module.

Given a category I' and an endomorphism u: x — x of an object in I' and an
R[z]-module @, we obtain a morphism of RT-modules u,: E,Q — E,Q as follows.
Its evaluation at an object y is given by

Q®R[m] Rmor(y,x) — Q®R[LI)] RHlOI‘(y,I), Q®v — Q®uv'

Obviously (ids)« =1idg,q and (u1)« o (u2)« = (u1 0 ug)« for two endomorphisms uq
and us.

Consider a finitely generated projective R-module P. Consider ¢ € {1,2}. The
construction above applied to the idempotent f;;: a; — a; yields an idempotent
endomorphism of RA-modules (fi;)«: Eq; P — E4 P. We obtain a direct sum
decomposition of finitely generated projective RA-modules

(10.6) E.. P = im((fii)«) ® ker((fii)«)-
Next we show for ¢ = 1,2
(10.7) im((fii)s) = EuP;

We only treat the case ¢ = 1, the case i = 2 is completely analogous. Let
(10.9) a: B, P— E, P

be the RI-homomorphism which is the adjoint under the adjunction of Liick [15]
Lemma 9.31 a) on page 171] of the R-homomorphism P — E, P(az) = P Qg
Rmor(as, a1) sending p to p® f31. Explicitly the evaluation of a at an object a; is
given by

P ®p Rmor(aj,a3) - P®r Rmor(aj,a1), pRur pQ (fz10u).

One easily checks that « is injective. The image of a(a;) is {0} for j = 4 and is
{p®@ fj1 | p € P} for j =1,2,3. This is the same as the image of (fi1)«: E,, P —
E., P and ([[070) follows. The cokernel of « is isomorphic to ker((fi1):) since
(f11)+ is an idempotent. Obviously the cokernel evaluated at a4 and ag is {0}. The
cokernel evaluated at the objects a; and ag is isomorphic to R. The element id,,
projects down to a generator in coker(a)(aq) and the element go; projects down to
a generator in coker(a)(az). Hence the morphism go; induces a map coker(«)(aq)
to coker(a)(az) that respects these generators. The morphisms fi1, fi12, fa2 and
g12 induce the trivial homomorphism on the cokernel of . Now (I0.E]) follows.

In particular we see that K;(P) is a finitely generated projective RA-module if
P is a finitely generated projective R-module.
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Now consider a finitely generated projective RA-module P. Choose a finitely
generated free RI-module F' together with RI'-mapsi: P — F and r: F' — P. Let
Oay(P): Eq,Play) — P
be the adjoint of the adjunction of Liick [I5] Lemma 9.31 on page 171] of the
R-homomorphism id,, : P(as) — P(a4). Explicitly its evaluation at a; is given by

P(as) ®r Rmor(aj,as) — P(aj), p®uw— Pu)(p).

The map o,,(P) is natural in P. Let P and F respectively be the cokernel of
04, (P) and o,, (F) respectively. Denote by pr(P): P — P and pr(F): P — F the
canonical projections.

Choose non-negative integers my, ms, ms, and my4 such that

4
F= @Rmor(?, a;)™.
j=1
Since the are no morphisms from a4 to the other objects a1, as and agz, one easily
checks that the sequence

B, Flag) 22 7 20, F

can be identified with the obvious split exact sequence

4 3
Rmor(?,a4)™ — @Rmor(?, a;)"™ — @Rmor(?, a;)™.

Jj=1 Jj=1

We obtain a commutative diagram

0 0 0
Eaq, (i(aa)) Eq,(r(as))
Eq,(P(as)) — Eq,(F(as)) — Eq,(P(as))
Gay (P) Tay (F) Tay (P)
P : F - P
pr(P) pr(F) pr(P)
ﬁ [ F T P
0 0 0

where 7 and 7 are the maps induced by i and r. We know already that the middle
row is exact. We conclude E,, (7(a4))o E,, (i(as)) = id and Toi = id from roi = id.
An easy diagram shows that all rows are exact.

Hence P is a finitely generated projective RA-module, we have the isomorphisms

P = E, (Play))®P;

3
F = @ Rmor(?,a;)™,
j=1
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and RA-homomorphisms i: P — F and 7: F — P with 7 o7 = id. The R-module
P(ay) is a finitely generated projective R-module since it is a direct summand in
the finitely generated free R-module F(ay) = R™4. Hence it suffices to proof the
claim for P.

Now we more or less repeat the argument above, but nor replacing a4 by as. So
we define

Oay(P): Eq,Plag) —
P): E,,F(a3) —

Tas (P)
as above. Denote by P and f respectively the cokernel of g, (P) and o, (F)

=l

respectively. Let pr(P): P — P and pr(F): F — F be the canonical projections.
Denote by i: P — F and 7: F — P the maps induced by 7 and 7. The maps
045 (P) are natural in P and compatible with direct sums. One easily checks that
the RA-homomorphism o,, (Rmor(?,a3)) is an isomorphism. Hence also the RA-
homomorphism

Oag(Rmor(?,a3)™?): E,, Rmor(as, az)"™ — Rmor(?,az)"?

is an isomorphism. The map o,,(Rmor(?,a1)): Fq, Rmor(as,a1) — Rmor(?,ay)
is the same as the map « defined in (I09]). Hence it is injective and its cokernel is
K1(R). This implies that

Oay(Rmor(?,a1)™): Eu, Rmor(ag,a;)”™ — Rmor(?,a;)™

is injective with the finitely generated projective RA-module K;(R™) as cokernel.
Analogously one shows that

Oasz (Rmor(?,as)"™?): E,y Rmor(as, as)™* — Rmor(?,az)™

is injective with the finitely generated projective RA-module Ko(R™2) as kernel.
This implies
F 2~ Ki(R™)® Ky(R™).

As above we obtain a commutative diagram with exact rows

0 0 0
Euy (Plas) —22 s B, (F(ag) —2"“, 1, (Play))
Tag (P) Oay (F) Tag (P)

P 3 T P
pr(P) pr(F) pr(P)

2 T r =
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Hence Pisa finitely generated projective RA-module with is a direct summand in
F 2 Ki(R™)® Ky(R™2) and we obtain an isomorphism

P~E,,(Pas)) & P.

Since P(a3) is a direct summand in the finitely generated free R-module F'(a3) =
Rrmatmatms it g finitely generated projective R-module. Hence it remains to prove
the claim for P.

Since P is a direct summand in K;(R™ ) @ Ky(R™2), one easily checks that we
have exact sequences of finitely generated projective R-modules

0— im(?(glg)) b, ﬁ(m) M im(ﬁ(gzl)) — 0,

and

il

0 — im(P(ga1)) 2 Plaz) =22 im(P(g12)) — 0,

where i1 and is are the inclusions. Choose R-maps
ri: Plar) — im(P(g12)),

ro: Plag) — im(P(gzl))7

satisfying r o047 = id and ry o i3 = id. Next we define an RA-isomorphism

3:P 5K, (im(P(921))) ® Ky (im(P(glg))) .

Its evaluation at a; is given by the R-isomorphism

P(go1) ®r: Play) — im(P(g21)) @ im(P(g12))

and its evaluation at as by the R-isomorphism

ro P ?(912)2 ?(az) i im(P(ggl)) &) im(P(glg)).
This finishes the proof of assertion |(i)| of Theorem

(ii)| Recall that K;(P;) is a direct summand in E,, (P;) for ¢ = 1,2 (see (I0.F)).
Using Lemma one easily checks

Sa, (P) Se, (Ki(P)) = P fori=1,2;
P(a4) P4.

A direct computation shows

coker(P(f34): P(as) — P(a3))

111

1%

2
@ coker (K;(p;)(fs1)) @ coker(Eq, (P3)(f31)) @ coker(Eq, (Ps)(f31))

Il

coker(Eq, (P3)(f34))
Ps.
This finishes the proof of assertion

This follows from assertions and and the isomorphism for ¢ = 1,2
(see (0.6), (I0.7) and (0.8))

Rmor(?,a;) = Rmor(?,a3) ® K1 (R).
This finishes the proof of Theorem O

I
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Remark 10.10. Notice that the decomposition of Theorem Illli! is not natural
in P. However, the cofiltration by epimorphisms

PP P
and the identifications
P = Ki(Sa,(P) ® K(Sa, (P));

E., (coker(P(f34): P(ag) — P(as))) ;
= Eo,(P(as)),

1%

R

are natural in P.

Let Kg (RA) be the Grothendieck group of finitely generated free RA-modules.
Let
1: UT) = K{(RA)
be the homomorphism which sends a basis element T € iso(A) to the class of
Rmor(?,x).

Theorem 10.11 (Ko (RA)). (i) The maps
& Ko(R)' = Ko(RA),
n: Ko(RA) = Ko(R)*,
defined by
E([P], [Po], [Ps], [Pa]) = [K1(P)] + [K2(P2)] + [Eay (Ps)] + [Ea, (Ps)],
n([P]) = ([Sa, Pl; [Sa, P, [coker(P(fsa): P(as) = P(a3))],[Sa,Pl) ,

are isomorphisms, inverse to another.
(ii) The map

i U(A) = K{(RA)
is bijective. If R is a principal domain, then the forgetful map

F?: KJ(RA) = Ko(RA)
is bijective.
Proof. This follows from Theorem and
The map ¢ is obviously surjective. The composite

UI) % K (RA) £5 Ko(RA) % Ko(R)* 52, 74
can be identified with the injection
A=Al (m1,ma,m3,ma) — (m1,mz, m1 4+ ma + msz,my)
by Theorem (iii)} The forgetful map F/: Kg(RA) — Ko(RA) is surjective

by Theorem (iii)| provided that R is an integral domain and hence Z —
Ko(R), n— [R™ is an isomorphism. This finishes the proof of Theorem [0 11l O
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10.3. K versus G. Let R be a commutative Noetherian ring and let I" be a finite
category (see Definition [6.6]). Denote by Go(QI") the Grothendieck group of finitely
generated QI'-modules. Since I' is finite, an RI'-module is finitely generated if and
only if for every object 2 the Q-module M () is finitely generated as an R-module.
In particular the category of RI'-modules is Noetherian, i.e., a submodule of a
finitely generated RT-module is finitely generated (see Liick [I5, Lemma 16.10 on
page 327]).

Remark 10.12. Notice that the constant R-module R defines an element [R] in
Go(RT') which may be viewed as a kind of analogue of the finiteness obstruction.
Only if T is of type (FPR), then we get also an element o(T'; R) := [R] in Ko(RT)
which is mapped under the forgetful homomorphism

FRF: Ko(RF) — Go(RF)
to [R] € Go(RL).

Notice that Frr is bijective if T' is a finite El-category and the order aut(z) is
invertible in R for every object  in " (see Liick [I5] Proposition 16.28 on page 332]).
This is not true in general as the following example shows.

Example 10.13. We conclude from (I04) that
(10.14) [Rmor(?,a1)] = [Rmor(?,a2)] € Go(RA).
This together with Theorem EIIEII implies that
F: Ko(RA) = Go(RA)

is not injective.

Define a map
(10.15)  Res: Go(RT) = @D Go(R[z]), [P]~ {[P(2)] | T € iso(I")}.

z€iso(I")

(
Provided that the order aut(x) is invertible in R for every object z in T', we also
obtain a map

(10.16) Res: Ko(RT) — Ko(R[z]), [P]— {[P(x)]|= €iso(T)},
zeiso(T)
and we get a commutative diagram

Frr

Ko(RT')

\LRCS chs

DPrcicom) Frls]
@feiso(r) Ko(R[z]) % @feiso(r) Go(R[z])

whose lower horizontal arrow is an isomorphism.

Now we consider the special case I' = A and R = Q. For a Q-module P and k €
{1,2,4} denote by I;(P) the QA-module for which I}, (Q)(ax) = Q, I (Q)(a;) = {0}
for j # k and all morphisms except id,, induce the trivial homomorphism. One
easily checks that this is a well-defined Q-module. (Notice that this definition does
not make sense for the object as).
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Theorem 10.17 (Go(QA)). The homomorphisms

w: Z* = Go(RA),
(nl, na, ng.n4) = nq - [Il (Q)] =+ no - [IQ(Q)] + ns - [anor(?, ag)] =+ ng - [14((@)]

and the composite

4
es i—17ko
Gol(@4) 22 P Go(@) 2= 21

i=1
are isomorphisms.

Proof. The composite
w Res . D, rko
Z* % Go(RA) == €P Go(Q) = Z*
i=1

sends (my, ma, ms, my) to (m1+ms, ma+ms, ms, my) and is hence an isomorphism.
Therefore it suffices to show that w is surjective.

Consider a finitely generated QA-module M. There is the epimorphism of QA-
modules M — I4(M(ay)) whose evaluation at a4 is the identity. Let N be its
kernel. Then we get [M] = [N] 4 [I4(M(a4)] in Go(QA) and N(aq) = {0}. Hence
it suffices to prove that [N] lies in the image of w.

Consider the QA-homomorphism f: E3(N(a3)) — N uniquely determined by
the property that its evaluation at as is the isomorphism N (a3) ®gQ mor(as, as) =
N(a3) sending = ® id,, to x. Let K be its kernel and L be its cokernel. We get in
[N] = [Es(N(as)] + [L] — [K] in Go(QA) and K (as) = K (as) = L(as) = L{as) =
{0}. Hence it suffices to show that K lies in the image of w if K is a finitely
generated QA-module with K (a3) = K(as) = 0.

Notice that the all morphisms in A possibly except g12 and go; and the iden-
tity morphisms for a; and as induce the trivial homomorphism on K since they
factor through the object ag or ay and K(az) = K(as) = 0. Consider the QA-
homomorphism

g: I (ker(N(g21)) = K

given by the inclusion ker(N(g21)) — N(a1). Let P be its cokernel. By construction
the map P(g21): P(a1) — P(a2) is injective. Since P(a3) = 0, we get

P(g21) 0 P(g12) = P(g12 0 g21) = P(f11) = P(f31 0 f13) = P(f13) o P(f31) = 0.
Since P(go1) is injective, P(g12) = 0. Hence the identity on P(az) induces an
injection I,,(P(az)) — P. Let @ be its cokernel. Then Q(az) = Q(a3) = Q(a4).
This implies @Q = I, (Q(a1)). Hence we get in Go(QA)

(K] = [la, (ker(N(g21))] + [1a, (P(a2))] + [a, (Q(a1))].

This finishes the proof of Theorem [T0.17 O
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Example 10.18. Put R = Q and I' = A. Then the following diagram commutes

Faa

lRes ’;’lRes
4 EBEE;SO(A) Fo 4
EBi:l KO(Q) T> 691:1 GO(Q)

ml@zl rkq ml®?l rko
z* < z*
where A is given by the matrix
2 2 1 1
2 2 1 2
11 1 1
0 0 0 1

Notice that (1,1,1,1) is not in the image of A: Z* — Z*. Obviously [Q] € Go(QA)
is sent under the composite -
4

EB rkg o Res: Go(QA) — Z*

i=1
to (1,1,1,1). Hence we see again that A is not of type (FPg), since otherwise
[R] € Go(QA) lies in the image of Fpa and hence (1,1,1,1) lies in the image of
A: 74 — 74

10.4. Homology of A. We obtain from the short exact sequence (I0.4) the fol-
lowing periodic projective resolution P, of the RA-module M

o 220 Rmor(?,a1) 2 Rmor(?, az) 22 Rmor(?,a1) - Rmor(?, az) — M.
Recall that vy sends id,, to gi2 and vs o vy sends idg,, to fo1 — go1. The R-chain
complex P, ®@pra R looks like

1 1

o SRY RO R R
Hence we get forn > 0
(10.19) HE(A; M) == H,, (P, ®pa M) = {0}.

We conclude from R ®@pa R = R, from ([[0.T9), and the short exact sequence (I0.3)
that
R ifn=0

Hn(BA;R) = Hy(A;R) = HYY(A; R) = {{0} ifn>0

as we may expect from the contractibility of BA.
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