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SOME CRITERIA CONCERNING THE RATIONAL VANISHING OF
WHITEHEAD GROUPS

WOLFGANG LÜCK AND BOB OLIVER

Abstract. We give several examples of finite groups G for which the rank of the tensor
product Z ⊗ZAut(G) Wh(G) is or is not zero. This is motivated by an earlier theorem of
the first author, which implies as a special case that when this group has nonzero rank,
the Whitehead group of any other group (finite or infinite) that contains G as a normal
subgroup is rationally nontrivial.

Introduction

This paper is motivated by the following question: for which groups Γ does the Whitehead
group Wh(Γ ) vanish, integrally or rationally? When Γ is finite, Wh(Γ ) is always finitely
generated, and its rank is determined in a theorem of Bass (see [Ba, Theorem 5]). So
it is natural to begin studying the Whitehead group of an infinite group Γ (integrally or
rationally) by trying to compare it to the Whitehead groups of its finite subgroups.

One means of doing this is provided by the Farrell-Jones Conjecture for the algebraic K-
theory of group rings. This conjecture is known to hold for a rather large class of groups, but
is open in general. Among other things, it makes some predictions about the contributions
of finite subgroups of a group Γ to Q ⊗Z Wh(Γ ) (see Theorem 1.1 below for one example
of such results). Other known results, such as Theorem 1.2, depend instead on assumptions
about the homology of centralizers of finite cyclic subgroups of Γ . But so far, there are very
few results about Whitehead groups known to hold in all cases.

One exception to this is Theorem 1.3 below. This had originally been predicted by the
Farrell-Jones Conjecture, but is now known to be true for all groups — independently of
whether or not the conjecture holds. This theorem in turn implies Corollary 1.4(b), which
says, for a group Γ with Q⊗Z Wh(Γ ) = 0, that Γ can contain a finite group H as a normal
subgroup only if Z ⊗Z[Aut(H)] Wh(H) is finite. Since the theorem and corollary hold for all
groups, this could give some evidence that the Farrell-Jones Conjecture for the algebraic
K-theory of group rings holds more generally.

In Section 1, we describe some of this background in more detail, ending with the state-
ments of Theorem 1.3 and Corollary 1.4. This then motivates the results in the next two
sections. In Section 2, we give a general formula for the rank of Z ⊗ZAut(G) Wh(G), for a
finite group G, in terms of numbers of classes of elements of G under certain equivalence
relations. This formula is then applied in Section 3, where we give a wide range of examples
of finite groups G for which rk(Z ⊗ZAut(G) Wh(G)) ̸= 0, and hence of groups that cannot
occur as normal subgroups in a group Γ with Q⊗Z Wh(Γ ) = 0.
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1. Some known results

We begin by describing some general information about the Whitehead group G of a
(discrete) group Γ , and the relation between Wh(Γ ) and the Whitehead groups of finite
subgroups of Γ .

A group Γ is called a Farrell-Jones group if it satisfies the “Full Farrell-Jones Conjecture”,
as formulated, for example, in [Lu3, Conjecture 13.30]. The full statement is quite compli-
cated and involves L-groups as well as K-theory, but one easily stated special case is that
the Whitehead group of a torsion free group is always trivial.

The class FJ of Farrell-Jones groups is quite large, and in fact, no groups are known not
to be in the class. It is known to contain all hyperbolic groups, finite-dimensional CAT(0)-
groups, solvable groups, fundamental groups of manifolds of dimension ≤ 3, and any lattice
in a locally compact second countable Hausdorff group. Also, it is closed under taking
subgroups, finite free products, finite direct products, and colimits of directed systems (with
arbitrary structure maps). For more information about the Full Farrell-Jones Conjecture and
its consequences, we refer to [Lu3, Chapter 15], and for a description of what is currently
known about the class FJ , to [Lu3, Chapter 16].

As one simple example of the role played by Farrell-Jones groups, we note the following
criterion for the rational vanishing of K-theory in degree at most 1. When H ≤ Γ are
groups, we let AutΓ (H) be the group of automorphisms of H of the form (x 7→ gxg−1) for
g ∈ NΓ (H).

Theorem 1.1 ([Lu3, Theorem 17.4]). Let Γ be a Farrell-Jones group. Consider the following
conditions on Γ :

(P) The order of every finite cyclic subgroup C ≤ Γ is a prime power.

(A) For every finite cyclic subgroup 1 ̸= C ≤ Γ , the automorphism group Aut(C) is gener-
ated by AutΓ (C) and the automorphism (x 7→ x−1).

Then

(a) Kn(ZΓ ) = 0 for n ≤ −2;

(b) Q⊗Z K−1(ZΓ ) = 0 if and only if condition (P) holds;

(c) Q⊗Z K̃0(ZΓ ) = 0 if condition (P); and

(d) conditions (P) and (A) =⇒ Q⊗Z Wh(Γ ) = 0 =⇒ condition (A).

The next theorem illustrates the sort of homological condition that can be used to get
such results, without assuming G is in FJ .

Theorem 1.2 ([LRRV, Theorem 1.1]). Let Γ be a group. Assume, for every finite cyclic
subgroup C ≤ Γ , that the homology groups H1(BCΓ (C);Z) and H2(BCΓ (C);Z) of the cen-
tralizer CΓ (C) are finitely generated. Then the canonical map

colimH∈SubFIN (Γ ) Q⊗Z Wh(H) −−−−−→ Q⊗Z Wh(Γ )

is injective.

Here SubFIN (Γ ) is the category whose objects are the finite subgroups of Γ , and where a
morphism from H to K is the class, modulo Inn(K), of a group homomorphism f : H −→ K
of the form (x 7→ gxg−1) for some g ∈ Γ .

Note that the homology condition appearing in Theorem 1.2 holds whenever there is a
model for the classifying space EFIN (Γ ) for proper Γ -actions whose 2-skeleton is cocompact
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(i.e., the orbit space of the 2-skeleton is finite). This is proved using arguments similar to
those in the proofs of Lemmas 1.3 and 4.1 in [Lu1]. Examples of groups which satisfy the
hypotheses of Theorem 1.2 but are not known to be Farrell-Jones groups are Out(Fn) (where
Fn is a free group on n letters) and Thompson’s group.

In contrast to Theorems 1.1 and 1.2, the next theorem holds for all (discrete) groups.
Let i : G → Γ be the inclusion of a finite normal subgroup G in a group Γ , and let
i∗ : Wh(G) −→ Wh(Γ ) be the induced homomorphism. The conjugation actions of Γ on
G and Γ induce Γ -actions on Wh(G) and Wh(Γ ), of which the latter is trivial. Hence i∗
induces a homomorphism

ı∗ : Z⊗ZΓ Wh(G) −−−−−→ Wh(Γ ).

Theorem 1.3 ([Lu2, Theorem 9.38]). Let i : G → Γ be the inclusion of a finite normal
subgroup G into an arbitrary group Γ . Then the homomorphism

ı∗ : Z⊗ZΓ Wh(G) −−−−−→ Wh(Γ )

induced by i has finite kernel.

Corollary 1.4. Let Γ be a group such that Q⊗Z Wh(Γ ) = 0. Then the following hold.

(a) Every finite cyclic subgroup of the center Z(Γ ) has order 1, 2, 3, 4, or 6.

(b) For each finite normal subgroup G ⊴ Γ , the group Z ⊗ZΓ Wh(G) and hence also
Z ⊗ZAut(G) Wh(G) is finite, where Aut(G) acts in the canonical way on Wh(G) and
trivially on Z.

Motivated by Corollary 1.4(b), in the rest of the paper, we look for finite groups G for
which rk(Z ⊗Z[Aut(G)] Wh(G)) > 0, since no such group can occur as a normal subgroup in
Γ if Q⊗Z Wh(Γ ) = 0. Note that this condition on Z⊗Z[Aut(G)] Wh(G) is independent of Γ .

2. Whitehead groups and conjugacy classes

From now on, we focus attention on Whitehead groups of finite groups.

When K is a field of characteristic 0 and n > 0 is an integer, we let µn be the group of
n-th roots of unity in an algebraic closure of K, and regard the Galois group Gal(K(µn)/K)
as a subgroup of (Z/n)×. Thus each automorphism γ ∈ Gal(K(µn)/K) is identified with
the unique class a+nZ ∈ (Z/n)× such that γ(ζ) = ζa for ζ ∈ µn. For example,

Gal(Q(µn)/Q) = (Z/n)×, Gal(R(µn)/R) = {±1} if n ≥ 3, and Gal(C(µn)/C) = 1.

Definition 2.1. Let K be a field of characteristic 0. When G is a finite group, two elements
g, h ∈ G of the same order n are K-G-conjugate if g is G-conjugate to ha for some a +
nZ ∈ Gal(K(µn)/K). More generally, when A ≤ Aut(G) is a subgroup containing Inn(G),
the elements g, h ∈ G of order n are K-A-conjugate if g is in the A-orbit of ha for some
a+ nZ ∈ Gal(K(µn)/K).

Thus g, h ∈ G are R-A-conjugate if g is in the A-orbit of h or h−1, while they are Q-
A-conjugate if the cyclic subgroups ⟨g⟩ and ⟨h⟩ are in the same A-orbit. In particular,
the number of Q-G-conjugacy classes is equal to the number of conjugacy classes of cyclic
subgroups of G.

As usual, by the rank of a finitely generated abelian group B, we mean the rank of its free
part; i.e., the order of its largest Z-linearly independent subset. Thus rk(B) = dim(Q⊗ZB).
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For a field K of characteristic 0 and a finite group G, we let IrrK(G) be the set of iso-
morphism classes of irreducible KG-modules, regarded as a finite Aut(G)-set. Via character
theory, one shows the following:

Proposition 2.2. Let K be a field of characteristic 0. For each finite group G, and each
group of automorphisms A ≤ Aut(G) containing Inn(G),

|IrrK(G)/A| = #
{
K-A-conjugacy classes of elements of G

}
.

Proof. Let RK(G) be the representation ring for KG-representations: thus a free abelian
group with basis IrrK(G). Let ClK(G) be the space of all maps G −→ K that are constant
on K-G-conjugacy classes, regarded as a vector space over K. By [Se, §12.4, Corollary 2],
the characters of the elements in IrrK(G) form a K-basis for ClK(G). Hence the sums of the
characters in each A-orbit form a basis for Fix(A,ClK(G)), and so

|IrrK(G)/A| = dimK(Fix(A,ClK(G))) = #
{
K-A-conjugacy classes of elements of G

}
. □

We refer to [Ol, Section I.2a] for the definition of reduced norms for finite dimensional
semisimple Q-algebras.

Proposition 2.3. Let G be a finite group. Set K = Z(QG), a product of fields, and let
R ≤ K be its unique maximal order (the product of the rings of integers in the factors). The
reduced norm induces a homomorphism

nr : K1(ZG) −−−−−→ R×

that commutes with the actions of Out(G) on K1(ZG) and on R×, and whose kernel and
cokernel are both finite. In particular, for each A ≤ Aut(G) containing Inn(G),

rk(Z⊗ZA Wh(G)) = rk(Fix(A,Wh(G))) = rk(Fix(A,K1(ZG))) = rk(Fix(A,R×)).

Proof. The fact that the reduced norm induces a homomorphism whose kernel and cokernel
are finite was shown by Swan (see, e.g., [Sw, Chapter 8] or [Ol, Theorem I.2.5(ii)]).

Clearly, nr commutes with the actions of A. So Fix(A,K1(ZG)) and Fix(A,R×) have the
same rank. □

We also need Dirichlet’s units theorem in the following form.

Lemma 2.4. Let K ⊇ Q be a finite extension, and let R ⊆ K be the ring of integers. Then

rk(R×) = #
{
field factors in R⊗Q K

}
− 1.

Proof. The ring R⊗Q K is isomorphic to a product of one copy of R for each embedding of
K into R, and one copy of C for each pair of conjugate embeddings of K into C with image
not in R. So the statement follows from Dirichlet’s theorem in its usual formulation (see
[ST, Theorem B.6]). □

Proposition 2.5. Let G be a finite group. Then for each A ≤ Aut(G) containing Inn(G),
we have

rk(Z⊗ZA Wh(G)) = rk(Fix(A,Wh(G))) = |IrrR(G)/A| − |IrrQ(G)/A|.

Proof. Set K = Z(QG), a product of fields, and let R ≤ K be its unique maximal order (the
product of the rings of integers in the factors). Then rk(Fix(A,Wh(G))) = rk(Fix(A,R×)) by
Proposition 2.3, and it remains to describe the rank of Fix(A,R×) in terms of representations
of G.

Set K0 = Fix(A,K) and R0 = Fix(A,R): the subgroups of elements fixed by A. By
Wedderburn’s theorem, there is a natural bijection of A-sets from IrrR(G) to the set of simple
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factors in RG, and hence to the set of field factors in Z(RG) ∼= R ⊗Q K. Also, by Galois
theory, if a subgroup A0 ≤ A sends a field factor to itself, then the set of elements in that
field fixed by A0 is a subfield. Thus the number of field factors in R⊗QK0 = Fix(A,R⊗QK)
is equal to |IrrR(G)/A|.

Clearly, R0 contains the product of the rings of integers in the field factors of K0, with
equality since for each field factor L of K0, the image of R0 under projection to L is a finitely
generated subring and hence contained in the ring of integers (see, e.g., [ST, Lemma 2.8]).
So by Lemma 2.4,

rk(Fix(A,R×)) = rk((R0)
×) = #

{
field factors in R⊗Q K0

}
− |IrrQ(G)/A|

= |IrrR(G)/A| − |IrrQ(G)/A|. □

Theorem 2.6. For each finite group G, and each subgroup A ≤ Aut(G) containing Inn(G),

dimQ
(
(Q⊗ZA Wh(G))

)
= #

{
R-A-conjugacy classes of elements in G

}
−#

{
Q-A-conjugacy classes of elements in G

}
.

Proof. When A = Inn(G), this is a theorem of Bass [Ba, Theorem 5]. For arbitrary A ≤
Aut(G) containing Inn(G), it follows from Propositions 2.5 and 2.2. □

3. Examples

Throughout this section, it will be convenient to define, for each finite group G,

NG = #
{
R-Aut(G)-conjugacy classes in G

}
−#

{
Q-Aut(G)-conjugacy classes in G

}
.

Thus by Theorem 2.6,

NG = rk(Z⊗ZAut(G) Wh(G)) = dimQ(Q⊗ZAut(G) Wh(G)).

So by Corollary 1.4(b), if NG > 0, then Q⊗Z Wh(Γ ) ̸= 0 for every group Γ that contains G
as a normal subgroup.

We now construct a wide variety of examples of finite groups G with NG > 0, including
some small metacyclic groups, metacyclic p-groups, and simple groups. For example, we
show that the smallest group with NG > 0 is the nonabelian group of order 55, and that
NG > 0 when G is the nonabelian group of order p3 and exponent p2 and p ≥ 5 is prime. We
also determine exactly which of the sporadic simple groups, and which of the linear groups
PSLn(q), satisfy NG > 0.

We first need some tools for constructing automorphisms.

Lemma 3.1. (a) Let H ⊴ G be a pair of finite groups such that H is abelian and G/H is
cyclic. Then for each x ∈ G such that G = H⟨x⟩, and each a ∈ Z prime to |G| such that
a ≡ 1 (mod |G/H|), there is α ∈ Aut(G) such that α(h) = ha for each h ∈ H ∪ {x}.

(b) Let G be a group, let Z ≤ Z(G) be a central subgroup, and let ψ ∈ Hom(G,Z) be a
homomorphism such that Z ≤ Ker(ψ). Then there is α ∈ Aut(G) such that α(g) =
gψ(g) for each g ∈ G.

Proof. (a) Define α : G −→ G by setting, for each h ∈ H and each i ∈ Z, α(hxi) = haxai.
By assumption, every element in G can be written in this form. If hxi = kxj for h, k ∈ H
and i, j ∈ Z, then k−1h = xj−i, so k−aha = (k−1h)a = xaj−ai, and hence haxai = kaxaj. So α
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is well defined as a map of sets. Finally, if h, k ∈ H and i, j ∈ Z are arbitrary, then

α((hxi)(kxj)) = α(h(xikx−i)xi+j) = ha(xikax−i)xai+aj = ha(xaikax−ai)xai+aj

= (haxai)(kaxaj) = α(hxi)α(kxj),

where the third equality holds since x(a−1)i ∈ H and hence commutes with ka. So α is an
automorphism.

(b) One easily checks that α is a homomorphism with inverse (g 7→ gψ(g)−1). □

As a first, very simple, application of Lemma 3.1(a), we have:

Example 3.2. If a finite group G contains a normal abelian subgroup of index at most 3,
then NG = 0.

Proof. Assume H ⊴ G is abelian of index at most 3. Fix g ∈ G; then either g ∈ H or
G = H⟨g⟩. By Lemma 3.1(a), for each a ∈ Z such that gcd(a, |G|) = 1, and such that a ≡ 1
(mod 3) if |G/H| = 3, there is α ∈ Aut(G) such that α(g) = ga. Thus all generators of ⟨g⟩
are R-Aut(G)-conjugate to g. Since g ∈ G was arbitrary, Theorem 2.6 now implies

NG = #
{
R-Aut(G)-conjugacy classes

}
−#

{
Q-Aut(G)-conjugacy classes

}
= 0. □

With a little more work, one can show that if G is a finite group with NG = 0, then
NG×H = 0 for each finite group H that contains an abelian subgroup of index at most 2.
However, if we let G ∼= C5 ⋊ C4 (induced by an injection C4 −→ Aut(C5)), and let H be a
nonabelian group of order 21, then NG = NH = 0, but NG×H > 0.

We next look at some more small groups G for which NG vanishes.

Example 3.3. If G is a group of order at most 54, then NG = 0.

Proof. If each element of G has order dividing 4 or 6, then all generators of each cyclic
subgroup of G are R-G-conjugate, so NG = 0. If G is abelian, or contains a normal abelian
subgroup of index 2 or 3, then NG = 0 by Example 3.2. From now on, we use these without
repeating the references each time.

When q = pk for a prime p and k ≥ 1, we let Eq denote an elementary abelian p-group
of order q and rank k. When P is a p-group for a prime p, we let Φ(P ) denote its Frattini
subgroup: the intersection of the maximal proper subgroups of P , and the smallest normal
subgroup such that P/Φ(P ) is elementary abelian.

Case 1: |G| = n where n ≤ 53 is odd. If n is prime or the square of a prime, or n = 35
or 45, then G is abelian, so NG = 0. Otherwise, n = 3m where m > 3 is prime or m = 9, so
G contains a normal abelian subgroup of index 3, and NG = 0.

Case 2: |G| = 2n where n ≤ 27 is odd. In these cases, G always contains a normal
subgroup H ⊴ G of order n and index 2. If H is abelian, then NG = 0. If H is nonabelian,
then n = 21 or 27.

If n = 21 and H is nonabelian, then G is a semidirect product of the form C14 ⋊ C3 or
C7 ⋊ C6. In the first case, NG = 0. In the second case, all elements of G have order 7 or
a divisor of 6, and the elements of order 7 are permuted transitively by Aut(G) by Lemma
3.1(a). So NG = 0 also in this case.

This leaves the case where |H| = n = 27 and H is nonabelian. If H has exponent 3,
then the order of each element of G divides 6, and so NG = 0. So assume H is nonabelian
of exponent 9. There are three subgroups of order 9 in H, at least one of which must be
invariant under the conjugation action of G/H ∼= C2. So there is a normal subgroup K ⊴ G
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with K ∼= C9. If CG(K) > K, then G has a normal abelian subgroup of index 3, and so
NG = 0. Otherwise, G/K ∼= C6 (since Aut(K) ∼= C6), and G is a semidirect product K⋊C6

where CG(K) = K.

In this last case, G has presentation ⟨a, b | a9 = 1 = b6, bab−1 = a2⟩. So by Lemma 3.1(a),
there is α ∈ Aut(G) such that α(a) = a7 and α(b) = b. Then α induces the identity on
G/⟨a3⟩, so for each cyclic subgroup C ≤ G of order 9, α(C) = C and hence all generators of
C are R-Aut(G)-conjugate. Since all other elements have order dividing 6, this shows that
NG = 0.

Case 3: |G| = 4n where n ≤ 13 is odd. If n = 1 or n ≡ 3 (mod 4), then G contains an
abelian subgroup of index 2. If n = 5 or 13, then either G has an abelian subgroup of index
2, or G ∼= Cn ⋊C4, and each element of G has order 1, 2, 4, or n. All elements in G of order
n are R-Aut(G)-conjugate by Lemma 3.1(a), so NG = 0.

Assume n = 9, so |G| = 36. If there is H ⊴ G of order 9, then either G has an abelian
subgroup of index 2, or H ∼= E9, CG(H) = H, and all elements of G have order 1, 2, 3, 4, 6.
So NG = 0 in all such cases. Otherwise, |Syl3(G)| = 4, the conjugation action on this
set induces a homomorphism χ : G −→ Σ4 with image A4, and so G has a normal abelian
subgroup of index 3.

Case 4: |G| = 8, 16, or 32. If G/Z(G) has an element of order 8, generated by the class
of g ∈ G, then Z(G)⟨g⟩ is abelian of index at most 2 in G. Also, if G has an element of order
16, then it generates a cyclic subgroup of index at most 2. So NG = 0 in all such cases.

Assume from now on that G/Z(G) has exponent at most 4 and G has exponent at most
8. So if g ∈ G has order 8, then g4 ∈ Z(G). If g /∈ Φ(G), then by Lemma 3.1(b), applied
with Z = ⟨g4⟩, there is α ∈ Aut(G) such that α(g) = g5. So all generators of ⟨g⟩ are
R-Aut(G)-conjugate in this case.

If g ∈ Φ(G) has order 8, then Φ(G) = ⟨g⟩ and G/Φ(G) ∼= C2 × C2, which is impossible
unless G has a cyclic subgroup of index 2.

Case 5: |G| = 24. If |Syl3(G)| = 1, then G contains a normal abelian subgroup of index
2, so NG = 0. Otherwise, |Syl3(G)| = 4, and the conjugation action on this set defines a
homomorphism χ : G −→ Σ4 whose image contains A4. So either G ∼= Σ4, or G/Z(G) ∼= A4

and |Z(G)| = 2, and in all such cases, all elements of G have order dividing 4 or 6. So
NG = 0.

Case 6: |G| = 40. In all cases, |Syl5(G)| = 1. Then either G has an abelian subgroup of
index 2 (and NG = 0), or there is a normal subgroup H ⊴ G such that H ∼= C10, G/H ∼= C4,
and CG(H) = H.

Assume we are in this last case. By Lemma 3.1(a), the generators of H are permuted
transitively by Aut(G), and similarly for the elements of order 5. All other elements have
order dividing 8. Let x ∈ H be the element of order 2, and let α ∈ Aut(G) be the automor-
phism that is the identity on the subgroup of index 2 that contains H, and sends g to gx
otherwise. If g ∈ G has order 8, then x = g4 and α(g) = gx = g5, so all generators of ⟨g⟩
are R-Aut(G)-conjugate. Thus NG = 0.

Case 7: |G| = 48. By the Sylow theorems, |Syl3(G)| = 1, 4, or 16.

Case 7A: If |Syl3(G)| = 16, then the Sylow 2-subgroup S ≤ G is normal and contains all
elements not of order 3. So S has an automorphism of order 3 that fixes only the identity
element, hence [S, S] is trivial or noncyclic, which implies S ∼= E16 or C4 × C4. Thus all
elements of G have order at most 4, and so NG = 0.
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Case 7B: Assume |Syl3(G)| = 4, and let χ : G −→ Σ4 be the homomorphism defined
by the conjugation action. If χ is onto, then Ker(χ) = Z(G) = ⟨x⟩ where |x| = 2, so by
Lemma 3.1(b), there is α ∈ Aut(G) such that α|χ−1(A4) = Id and α(g) = gx for g ∈ G with
χ(g) /∈ A4. So if g ∈ G has order 8, then g4 = x and α(g) = gx = g5. Thus all generators of
each cyclic subgroup of order 8 are R-Aut(G)-conjugate. Since all elements of G have order
dividing 6 or 8, this proves that NG = 0.

If χ(G) = A4, then either Ker(χ) ∼= E4, or Ker(χ) = Z(G) ∼= C4 and G ∼= C4 × A4 or
C4 ◦ SL2(3) (central product). In all such cases, all elements of G have order dividing 4 or 6,
so NG = 0.

Case 7C: Now assume |Syl3(G)| = 1, let H ⊴ G be the normal subgroup of order 3, and
choose S ∈ Syl2(G). Then CG(H) = HT for some T ≤ S of index at most 2, and NG = 0
if T is abelian. So assume S ∼= G/H is nonabelian of order 16, with a nonabelian subgroup
T ≤ S of index at most 2.

If T = S, then G ∼= H × S. If S/Z(S) has a cyclic subgroup of index 2, then S has an
abelian subgroup of index 2. Otherwise, |Z(S)| = 2 and S/Z(S) ∼= E8, in which case some
pair of commuting elements in S/Z(S) lift to commuting elements in S. So in all cases, S,
and hence G, have abelian subgroups of index 2, and so NG = 0.

Assume for the rest of the proof that T has index 2 in S. Since G is a semidirect product
G = H ⋊ S, each α ∈ Aut(S) with α(T ) = T extends to α̂ ∈ Aut(G) such that α̂|H = IdH .
Also, there is β ∈ Aut(G) such that β|S = IdS and β(h) = h−1 for h ∈ H.

If S has an element g of order 8, then since T is nonabelian, we have S = ⟨g, x⟩ and
T = ⟨g2, x⟩ for some x ∈ T ∖ ⟨g⟩. By Lemma 3.1(a), for each odd a ∈ Z, there is α ∈ Aut(S)
that α(g) = ga and α(x) = xa, so α(T ) = T , and hence α extends to α̂ ∈ Aut(G). Thus
NAut(G)(⟨g⟩) permutes transitively the generators of ⟨g⟩.

If g ∈ G has order 12, then H = ⟨g4⟩ and g3 ∈ T . Thus β(g4) = g−4 and β(g3) = g3,
so β(g) = g5, proving that all generators of ⟨g⟩ are R-Aut(G)-conjugate. All elements of G
have order 12, 8, 6, or at most 4, so NG = 0 in all of these cases. □

By Example 3.3, the smallest example of a finite group G such that NG > 0 has order
at least 55. We now prove that there is such a group. Let φ denote the Euler function:
φ(n) = |(Z/n)×|.

Example 3.4. Fix a prime p, and an integer m ≥ 3 such that m|(p − 1). Let G be a
semidirect product G ∼= Cp⋊Cm, where Cm acts faithfully on Cp. Then NG ≥ (φ(m)/2)−1,
with equality if m is prime. Thus NG > 0 if m = 5 or m ≥ 7.

Proof. Fix elements a, b ∈ G with |a| = p and |b| = m, and set H = ⟨a⟩ ⊴ G. Let
k ∈ Z be such that bab−1 = ak. For each α ∈ Aut(G), α(a) = as for some s, and so
α(b)α(a)α(b)−1 = α(a)s = bα(a)b−1. Hence α(b) ∈ bH. In other words, each automorphism
of G induces the identity on G/H ∼= Cm.

Thus the φ(m) generators of ⟨b⟩ all lie in one Q-Aut(G)-conjugacy class, but in separate
Aut(G)-conjugacy classes. Since each R-Aut(G)-conjugacy class is the union of at most
two Aut(G)-conjugacy classes, there are at least φ(m)/2 R-Aut(G)-conjugacy classes in the
Q-Aut(G)-conjugacy class of b. So NG ≥ (φ(m)/2)− 1.

If m is prime, then every nonidentity element of G has order p or m and hence is Q-G-
conjugate to a or b. All generators of ⟨a⟩ are Aut(G)-conjugate to a, and there are φ(m)/2
R-Aut(G)-conjugacy classes of generators of ⟨b⟩. So NG = (φ(m)/2)− 1 in this case. □
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With a little more work, one can show that NG =
∑

2<d|m((φ(d)/2)− 1) in the situation
of Example 3.4.

The next example also involves metacyclic groups, and shows that there are p-groups G
(for an arbitrary prime p) such that NG > 0. Note that the smallest examples constructed
in this way have order p3 when p ≥ 5, or order 36 or 210 when p = 3 or 2.

Example 3.5. Fix integers 1 < r|q, and let G be the group of order qr2 with presentation

G = ⟨a, b | aqr = 1 = br, bab−1 = aq+1⟩.

Then NG > 0 if φ(r) > 4, or if φ(r) = 4 and q is odd or 2r|q.

Proof. Set t = q+1 for short. Note first that ts = (1+ q)s ≡ 1+ sq (mod q2) for each s ≥ 1.
In particular, tr ≡ 1 (mod qr), so the above presentation does define a group of order qr2.

Let α ∈ Aut(G) be an automorphism that normalizes the cyclic subgroup ⟨b⟩. Thus

α(a) = aibj and α(b) = bk

for some i, j, k ∈ Z. Then gcd(k, r) = 1 since α(b) has order r, and gcd(i, q) = 1 since
⟨α(a), α(b)⟩ = G. Since α is a homomorphism,

ait
k

bj = bk(aibj)b−k = α(b)α(a)α(b)−1 = α(bab−1) = α(at) = (aibj)t = aiNbtj,

where N = 1+ tj + t2j + · · ·+ t(t−1)j. Since gcd(i, q) = 1, this implies that N ≡ tk (mod qr).
Hence

tk ≡ N ≡ 1 + (1 + jq) + (1 + 2jq) + · · ·+ (1 + (t− 1)jq) = t+ jq2t/2 (mod qr)

(recall q = t− 1). So tk ≡ t (mod qr) if q is odd or 2r|q, and tk ≡ t (mod qr/2) otherwise.
Since t = 1+ q and tk ≡ 1+ kq (mod qr), we now get that k ≡ 1 (mod r) if q is odd or 2r|q,
and k ≡ 1 (mod r/2) otherwise.

Thus if q is odd or 2r|q, then the only generators of ⟨b⟩ that are R-Aut(G)-conjugate to b
are b and b−1, so NG > 0 if φ(r) ≥ 4. Otherwise, r is even, the R-Aut(G)-conjugacy class of
b in ⟨b⟩ contains the four elements b±1 and b(r/2)±1, and NG > 0 if φ(r) > 4. □

We finish by looking at a few examples of finite simple groups G where NG > 0. These are
larger groups in most cases, but working with them has the advantage that the automorphism
groups of simple groups are well known, and their outer automorphism groups are in most
cases quite small. Also, the properties of conjugacy classes of elements of G needed to
determine NG are in many cases listed in the Atlas [Atl].

We start with the easiest case.

Example 3.6. If G is an alternating or symmetric group, then NG = 0.

Proof. If G ∼= An or Σn, then two generators of the same cyclic subgroup of G are always
conjugate in Σn, and hence in Aut(G). So Q-Aut(G)-conjugate elements are also Aut(G)-
conjugate, and hence NG = 0. □

We next look at the 26 sporadic simple groups, where we observe that the largest groups
are not necessarily the ones for which NG or rk(Wh(G)) are largest. For example, the
Whitehead group of F1 (the monster) is finite, while NG > 0 when G ∼= F2 (the baby
monster) or the Janko group J1 (one of the smallest sporadic groups).

Example 3.7. Among the sporadic simple groups G,
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(a) Wh(G) is finite, and hence NG = 0, when G is one of the five Matthieu simple groups,
one of Conway’s simple groups Con for n = 1, 2, 3, or one of the groups HS, McL, F3,
or F1;

(b) rk(Wh(G)) > 0 but NG = 0 when G ∼= J2, Suz, or Fi22; and

(c) NG > 0 when G is one of the Janko groups Jn for n = 1, 3, 4, or G ∼= He, Ly, Ru, O’N,
Fi23, Fi

′
24, F5 or F2.

Proof. From the character tables in [Atl], we see that every pair of Q-G-conjugate elements
is R-G-conjugate, and hence Wh(G) is finite, whenever G is one of the Matthieu groups,
one of Conway’s simple groups Con for n = 1, 2, 3, or HS, McL, F3 or F1. Note that an
entry “5A B*” at the top of the character table means that class 5B is Q-G-conjugate but
not R-G-conjugate to class 5A, while “5A B**” means that the classes are R-G-conjugate.

The computations of rk(Wh(G)) and NG in the other cases are described in Table 3.1. □

G rk(Wh(G)) NG classes

J1 5 5 5AB, 10AB, 15AB, 19ABC

J2 5 0 5AB!, 5CD!, 10AB!, 10CD!, 15AB!

J3 6 3 5AB!, 9ABC, 10AB!, 15AB!, 17AB

J4 11 11 20AB, 24AB, 31ABC, 33AB, 37ABC, 40AB, 43ABC, 66AB

Suz 3 0 13AB!, 15AB!, 21AB!

He 2 1 17AB!, 21AB

Ly 11 11 21AB, 24BC, 31ABCDE, 37AB, 40AB, 42AB, 67ABC

Ru 7 7 14ABC, 20BC, 24AB, 26ABC, 29AB

O’N 6 5 15AB, 16AB, 16CD, 19ABC, 28AB

Fi22 1 0 13AB!

Fi23 3 3 13AB, 26AB, 39AB

Fi′24 8 2 21CD!, 24FG!, 29AB!, 33AB, 39AB, 39CD!, 42BC!, 45AB!

F5 8 1 5CD!, 10DE!, 10GH!, 15BC!, 20AB, 20DE!, 25AB!, 30BC!

F2 3 3 32AB, 34BC, 56AB

Table 3.1. In the last column, we list families of G-conjugacy classes that are
Q-G-conjugate but not R-G-conjugate to each other. For example, “19ABC”
means that the three classes 19A, 19B, and 19C together form a Q-G-
conjugacy class, no two of which are R-G-conjugate. An exclamation point “!”
means that the classes are permuted transitively by Aut(G). When G = O’N,
the classes 16AB are exchanged with 16CD by an outer automorphism.

We finish by looking at the projective special linear groups.

Example 3.8. Assume G ∼= PSLn(q), where n ≥ 2, q is a prime power, and G is simple.
Then NG > 0, except when G is one of the groups PSL2(4) ∼= PSL2(5) ∼= A5, PSL2(7) ∼=
PSL3(2), PSL2(8), PSL2(9) ∼= A6, PSL3(4), or PSL4(2) ∼= A8.

Proof. Choose an ordered Fq-basis for Fqn , and let χ : F×
qn −→ GLn(q) be the injective

homomorphism that sends an element u ∈ F×
qn to the matrix for multiplication by u on Fqn .
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Fix a generator u0 ∈ F×
qn , set x̃ = χ(uq−1

0 ) ∈ SLn(q), and let x ∈ G = PSLn(q) be its class
modulo the center. Then x̃ has order (qn − 1)/(q − 1), and so x has order

M
def
=

qn − 1

(q − 1) · gcd(q − 1, n)
.

Note that qn−1
q−1

≡ n (mod q−1), and hence gcd(q−1, n) = gcd(q−1, q
n−1
q−1

). Also, AutG(⟨x⟩) ∼=
Cn, generated by the Frobenius automorphism (x 7→ xq).

Assume q = pk where p is prime and k ≥ 1. The automorphism group Aut(G) is generated
by Inn(G), the field automorphism that sends x to xp, diagonal automorphisms induced by
conjugation by χ(u0) that send x to itself, and if n ≥ 3, the graph automorphism “transpose
inverse” that (up to inner automorphism) sends x to x−1 (see, e.g., [Wi, § 3.3.4]). Thus
AutAut(G)(⟨x⟩) is generated by the automorphisms (x 7→ xp) of order nk and (if n ≥ 3)
(x 7→ x−1). It follows that

n = 2 and φ(M) > 2k

or n ≥ 3 and φ(M) > 2nk

}
=⇒ NG > 0. (3-1)

Assume n = 2 and p = 2. Then M = 2k + 1 is odd, and AutAut(G)(⟨x⟩) is cyclic
of order 2k, generated by the Frobenius automorphism (x 7→ x2). If M is divisible by
two or more odd primes, then Aut(⟨x⟩) is not cyclic, and hence NG > 0. Otherwise,
φ(M) ≥ 2

3
·M = 2

3
(2k + 1), and so NG > 0 if 2k + 1 > 3k. This holds whenever k ≥ 4, and

so NG > 0 whenever q = 2k ≥ 16.

Assume n = 2 and p is odd. Then M = (q + 1)/2, and again, AutAut(G)(⟨x⟩) is cyclic
of order 2k. If M is divisible by two or more odd primes, then NG > 0 since Aut(⟨x⟩) is not
cyclic. Otherwise, φ(M) ≥ 1

2
· 2
3
·M = (q + 1)/6, and so by (3-1), NG > 0 if q + 1 > 12k.

This holds for q ≥ 13 when k = 1, for q = p2 ≥ 25 when k = 2, for q = p3 ≥ 53 when k = 3,
and for all odd primes p when k ≥ 4. Thus by (3-1), NG > 0 whenever q ≥ 13 and q ̸= 27.

Assume n ≥ 3. In these cases, AutAut(G)(⟨x⟩) is the product of cyclic groups of order
nk and 2. If M is divisible by three or more odd primes, then Aut(⟨x⟩) has 2-rank at least
3, hence is not equal to AutAut(G)(⟨x⟩), and so NG > 0. If M is divisible by at most two odd
primes, then φ(M) ≥ 1

2
· 2
3
· 4
5
·M = 4

15
M . So by (3-1), NG > 0 if 2kn < 4

15
M , and since

M ≥ 1
n
· qn−1

q−1
> 1

n
qn−1, we have

qn−1 = pk(n−1) ≥ 15
2
· kn2 =⇒ NG > 0. (3-2)

By straightforward computation, the inequality in (3-2) holds whenever (p, k, n) is equal
to one of the triples

(11, 1, 3) (5, 2, 3) (3, 3, 3) (2, 5, 3) (5, 1, 4) (3, 2, 4) (2, 3, 4) (2, 2, 6) (3, 1, 7) (2, 1, 11)

Also, if this inequality holds for a given triple (p0, k0, n0) (with n0 ≥ 3), then it holds for
(p, k, n) (and hence NG > 0) whenever p ≥ p0, k ≥ k0, and n ≥ n0. Among the pairs (pk, n)
with n ≥ 3 for which (3-2) does not hold, the inequality in (3-1) holds (so NG > 0) in the
following cases:

q 3 5 7 8 9 16 4 2 3 4 2 3 2 2 2 2

n 3 3 3 3 3 3 4 5 5 5 6 6 7 8 9 10

M 13 31 19 73 91 91 85 31 121 341 63 182 127 255 511 1023

φ(M) 12 30 18 72 72 72 64 30 110 300 36 72 126 128 432 600

2kn 6 6 6 18 12 24 16 10 10 20 12 12 14 16 18 20
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Remaining cases (all n). We are left with the groups PSL2(q) for q ≤ 11 or q = 27,
PSL3(q) for q = 2, 4, and PSL4(q) for q = 2, 3. The groups PSL2(4) ∼= PSL2(5) ∼= A5,
PSL2(9) ∼= A6, and PSL4(2) ∼= A8 were handled in Example 3.6. Also, PSL3(2) ∼= PSL2(7),
so it remains to look at PSL2(7), PSL2(8), PSL2(11), PSL2(27), PSL3(4), and PSL4(3). In
each of these cases, the result follows with the help of the character tables in [Atl].

For example, when G = PSL2(11), the classes 5A and 5B are not R-Aut(G)-conjugate, so
NG > 0. When G = PSL2(27), there are six conjugacy classes of elements of order 13 (all
of them Q-G-conjugate), permuted in two orbits by field automorphisms of order 3, hence
forming two R-Aut(G)-conjugacy classes. When G = PSL4(3), the subgroups of order 13
have automizers in Aut(G) of order 6, so their generators form two R-Aut(G)-conjugacy
classes. Thus NG > 0 in the last two cases. When G = PSL2(7), PSL2(8), or PSL3(4), each
Q-Aut(G)-conjugacy class is permuted transitively by Aut(G), and so NG = 0. □
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